Total coverage: 175503 (15%)of 1210500
3137 1149 1523 449 241 5 269 2495 214 2495 1398 1523 46 2496 2498 2498 456 236 453 1 456 455 456 10 10 83 83 50 50 207 240 241 241 19 83 83 17 241 34 5 207 207 195 195 195 3895 1150 3885 17427 17129 3887 3895 3891 3892 3892 3140 3140 3141 3137 1150 1149 1150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. * Authors: David Chinner and Glauber Costa * * Generic LRU infrastructure */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/list_lru.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/memcontrol.h> #include "slab.h" #include "internal.h" #ifdef CONFIG_MEMCG static LIST_HEAD(memcg_list_lrus); static DEFINE_MUTEX(list_lrus_mutex); static inline bool list_lru_memcg_aware(struct list_lru *lru) { return lru->memcg_aware; } static void list_lru_register(struct list_lru *lru) { if (!list_lru_memcg_aware(lru)) return; mutex_lock(&list_lrus_mutex); list_add(&lru->list, &memcg_list_lrus); mutex_unlock(&list_lrus_mutex); } static void list_lru_unregister(struct list_lru *lru) { if (!list_lru_memcg_aware(lru)) return; mutex_lock(&list_lrus_mutex); list_del(&lru->list); mutex_unlock(&list_lrus_mutex); } static int lru_shrinker_id(struct list_lru *lru) { return lru->shrinker_id; } static inline struct list_lru_one * list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx) { if (list_lru_memcg_aware(lru) && idx >= 0) { struct list_lru_memcg *mlru = xa_load(&lru->xa, idx); return mlru ? &mlru->node[nid] : NULL; } return &lru->node[nid].lru; } static inline struct list_lru_one * lock_list_lru_of_memcg(struct list_lru *lru, int nid, struct mem_cgroup *memcg, bool irq, bool skip_empty) { struct list_lru_one *l; long nr_items; rcu_read_lock(); again: l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg)); if (likely(l)) { if (irq) spin_lock_irq(&l->lock); else spin_lock(&l->lock); nr_items = READ_ONCE(l->nr_items); if (likely(nr_items != LONG_MIN)) { rcu_read_unlock(); return l; } if (irq) spin_unlock_irq(&l->lock); else spin_unlock(&l->lock); } /* * Caller may simply bail out if raced with reparenting or * may iterate through the list_lru and expect empty slots. */ if (skip_empty) { rcu_read_unlock(); return NULL; } VM_WARN_ON(!css_is_dying(&memcg->css)); memcg = parent_mem_cgroup(memcg); goto again; } static inline void unlock_list_lru(struct list_lru_one *l, bool irq_off) { if (irq_off) spin_unlock_irq(&l->lock); else spin_unlock(&l->lock); } #else static void list_lru_register(struct list_lru *lru) { } static void list_lru_unregister(struct list_lru *lru) { } static int lru_shrinker_id(struct list_lru *lru) { return -1; } static inline bool list_lru_memcg_aware(struct list_lru *lru) { return false; } static inline struct list_lru_one * list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx) { return &lru->node[nid].lru; } static inline struct list_lru_one * lock_list_lru_of_memcg(struct list_lru *lru, int nid, struct mem_cgroup *memcg, bool irq, bool skip_empty) { struct list_lru_one *l = &lru->node[nid].lru; if (irq) spin_lock_irq(&l->lock); else spin_lock(&l->lock); return l; } static inline void unlock_list_lru(struct list_lru_one *l, bool irq_off) { if (irq_off) spin_unlock_irq(&l->lock); else spin_unlock(&l->lock); } #endif /* CONFIG_MEMCG */ /* The caller must ensure the memcg lifetime. */ bool list_lru_add(struct list_lru *lru, struct list_head *item, int nid, struct mem_cgroup *memcg) { struct list_lru_node *nlru = &lru->node[nid]; struct list_lru_one *l; l = lock_list_lru_of_memcg(lru, nid, memcg, false, false); if (!l) return false; if (list_empty(item)) { list_add_tail(item, &l->list); /* Set shrinker bit if the first element was added */ if (!l->nr_items++) set_shrinker_bit(memcg, nid, lru_shrinker_id(lru)); unlock_list_lru(l, false); atomic_long_inc(&nlru->nr_items); return true; } unlock_list_lru(l, false); return false; } bool list_lru_add_obj(struct list_lru *lru, struct list_head *item) { bool ret; int nid = page_to_nid(virt_to_page(item)); if (list_lru_memcg_aware(lru)) { rcu_read_lock(); ret = list_lru_add(lru, item, nid, mem_cgroup_from_slab_obj(item)); rcu_read_unlock(); } else { ret = list_lru_add(lru, item, nid, NULL); } return ret; } EXPORT_SYMBOL_GPL(list_lru_add_obj); /* The caller must ensure the memcg lifetime. */ bool list_lru_del(struct list_lru *lru, struct list_head *item, int nid, struct mem_cgroup *memcg) { struct list_lru_node *nlru = &lru->node[nid]; struct list_lru_one *l; l = lock_list_lru_of_memcg(lru, nid, memcg, false, false); if (!l) return false; if (!list_empty(item)) { list_del_init(item); l->nr_items--; unlock_list_lru(l, false); atomic_long_dec(&nlru->nr_items); return true; } unlock_list_lru(l, false); return false; } bool list_lru_del_obj(struct list_lru *lru, struct list_head *item) { bool ret; int nid = page_to_nid(virt_to_page(item)); if (list_lru_memcg_aware(lru)) { rcu_read_lock(); ret = list_lru_del(lru, item, nid, mem_cgroup_from_slab_obj(item)); rcu_read_unlock(); } else { ret = list_lru_del(lru, item, nid, NULL); } return ret; } EXPORT_SYMBOL_GPL(list_lru_del_obj); void list_lru_isolate(struct list_lru_one *list, struct list_head *item) { list_del_init(item); list->nr_items--; } EXPORT_SYMBOL_GPL(list_lru_isolate); void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item, struct list_head *head) { list_move(item, head); list->nr_items--; } EXPORT_SYMBOL_GPL(list_lru_isolate_move); unsigned long list_lru_count_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg) { struct list_lru_one *l; long count; rcu_read_lock(); l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg)); count = l ? READ_ONCE(l->nr_items) : 0; rcu_read_unlock(); if (unlikely(count < 0)) count = 0; return count; } EXPORT_SYMBOL_GPL(list_lru_count_one); unsigned long list_lru_count_node(struct list_lru *lru, int nid) { struct list_lru_node *nlru; nlru = &lru->node[nid]; return atomic_long_read(&nlru->nr_items); } EXPORT_SYMBOL_GPL(list_lru_count_node); static unsigned long __list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk, bool irq_off) { struct list_lru_node *nlru = &lru->node[nid]; struct list_lru_one *l = NULL; struct list_head *item, *n; unsigned long isolated = 0; restart: l = lock_list_lru_of_memcg(lru, nid, memcg, irq_off, true); if (!l) return isolated; list_for_each_safe(item, n, &l->list) { enum lru_status ret; /* * decrement nr_to_walk first so that we don't livelock if we * get stuck on large numbers of LRU_RETRY items */ if (!*nr_to_walk) break; --*nr_to_walk; ret = isolate(item, l, cb_arg); switch (ret) { /* * LRU_RETRY, LRU_REMOVED_RETRY and LRU_STOP will drop the lru * lock. List traversal will have to restart from scratch. */ case LRU_RETRY: goto restart; case LRU_REMOVED_RETRY: fallthrough; case LRU_REMOVED: isolated++; atomic_long_dec(&nlru->nr_items); if (ret == LRU_REMOVED_RETRY) goto restart; break; case LRU_ROTATE: list_move_tail(item, &l->list); break; case LRU_SKIP: break; case LRU_STOP: goto out; default: BUG(); } } unlock_list_lru(l, irq_off); out: return isolated; } unsigned long list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { return __list_lru_walk_one(lru, nid, memcg, isolate, cb_arg, nr_to_walk, false); } EXPORT_SYMBOL_GPL(list_lru_walk_one); unsigned long list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { return __list_lru_walk_one(lru, nid, memcg, isolate, cb_arg, nr_to_walk, true); } unsigned long list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { long isolated = 0; isolated += list_lru_walk_one(lru, nid, NULL, isolate, cb_arg, nr_to_walk); #ifdef CONFIG_MEMCG if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) { struct list_lru_memcg *mlru; struct mem_cgroup *memcg; unsigned long index; xa_for_each(&lru->xa, index, mlru) { rcu_read_lock(); memcg = mem_cgroup_from_id(index); if (!mem_cgroup_tryget(memcg)) { rcu_read_unlock(); continue; } rcu_read_unlock(); isolated += __list_lru_walk_one(lru, nid, memcg, isolate, cb_arg, nr_to_walk, false); mem_cgroup_put(memcg); if (*nr_to_walk <= 0) break; } } #endif return isolated; } EXPORT_SYMBOL_GPL(list_lru_walk_node); static void init_one_lru(struct list_lru *lru, struct list_lru_one *l) { INIT_LIST_HEAD(&l->list); spin_lock_init(&l->lock); l->nr_items = 0; #ifdef CONFIG_LOCKDEP if (lru->key) lockdep_set_class(&l->lock, lru->key); #endif } #ifdef CONFIG_MEMCG static struct list_lru_memcg *memcg_init_list_lru_one(struct list_lru *lru, gfp_t gfp) { int nid; struct list_lru_memcg *mlru; mlru = kmalloc(struct_size(mlru, node, nr_node_ids), gfp); if (!mlru) return NULL; for_each_node(nid) init_one_lru(lru, &mlru->node[nid]); return mlru; } static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware) { if (memcg_aware) xa_init_flags(&lru->xa, XA_FLAGS_LOCK_IRQ); lru->memcg_aware = memcg_aware; } static void memcg_destroy_list_lru(struct list_lru *lru) { XA_STATE(xas, &lru->xa, 0); struct list_lru_memcg *mlru; if (!list_lru_memcg_aware(lru)) return; xas_lock_irq(&xas); xas_for_each(&xas, mlru, ULONG_MAX) { kfree(mlru); xas_store(&xas, NULL); } xas_unlock_irq(&xas); } static void memcg_reparent_list_lru_one(struct list_lru *lru, int nid, struct list_lru_one *src, struct mem_cgroup *dst_memcg) { int dst_idx = dst_memcg->kmemcg_id; struct list_lru_one *dst; spin_lock_irq(&src->lock); dst = list_lru_from_memcg_idx(lru, nid, dst_idx); spin_lock_nested(&dst->lock, SINGLE_DEPTH_NESTING); list_splice_init(&src->list, &dst->list); if (src->nr_items) { WARN_ON(src->nr_items < 0); dst->nr_items += src->nr_items; set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru)); } /* Mark the list_lru_one dead */ src->nr_items = LONG_MIN; spin_unlock(&dst->lock); spin_unlock_irq(&src->lock); } void memcg_reparent_list_lrus(struct mem_cgroup *memcg, struct mem_cgroup *parent) { struct list_lru *lru; int i; mutex_lock(&list_lrus_mutex); list_for_each_entry(lru, &memcg_list_lrus, list) { struct list_lru_memcg *mlru; XA_STATE(xas, &lru->xa, memcg->kmemcg_id); /* * Lock the Xarray to ensure no on going list_lru_memcg * allocation and further allocation will see css_is_dying(). */ xas_lock_irq(&xas); mlru = xas_store(&xas, NULL); xas_unlock_irq(&xas); if (!mlru) continue; /* * With Xarray value set to NULL, holding the lru lock below * prevents list_lru_{add,del,isolate} from touching the lru, * safe to reparent. */ for_each_node(i) memcg_reparent_list_lru_one(lru, i, &mlru->node[i], parent); /* * Here all list_lrus corresponding to the cgroup are guaranteed * to remain empty, we can safely free this lru, any further * memcg_list_lru_alloc() call will simply bail out. */ kvfree_rcu(mlru, rcu); } mutex_unlock(&list_lrus_mutex); } static inline bool memcg_list_lru_allocated(struct mem_cgroup *memcg, struct list_lru *lru) { int idx = memcg->kmemcg_id; return idx < 0 || xa_load(&lru->xa, idx); } int memcg_list_lru_alloc(struct mem_cgroup *memcg, struct list_lru *lru, gfp_t gfp) { unsigned long flags; struct list_lru_memcg *mlru = NULL; struct mem_cgroup *pos, *parent; XA_STATE(xas, &lru->xa, 0); if (!list_lru_memcg_aware(lru) || memcg_list_lru_allocated(memcg, lru)) return 0; gfp &= GFP_RECLAIM_MASK; /* * Because the list_lru can be reparented to the parent cgroup's * list_lru, we should make sure that this cgroup and all its * ancestors have allocated list_lru_memcg. */ do { /* * Keep finding the farest parent that wasn't populated * until found memcg itself. */ pos = memcg; parent = parent_mem_cgroup(pos); while (!memcg_list_lru_allocated(parent, lru)) { pos = parent; parent = parent_mem_cgroup(pos); } if (!mlru) { mlru = memcg_init_list_lru_one(lru, gfp); if (!mlru) return -ENOMEM; } xas_set(&xas, pos->kmemcg_id); do { xas_lock_irqsave(&xas, flags); if (!xas_load(&xas) && !css_is_dying(&pos->css)) { xas_store(&xas, mlru); if (!xas_error(&xas)) mlru = NULL; } xas_unlock_irqrestore(&xas, flags); } while (xas_nomem(&xas, gfp)); } while (pos != memcg && !css_is_dying(&pos->css)); if (unlikely(mlru)) kfree(mlru); return xas_error(&xas); } #else static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware) { } static void memcg_destroy_list_lru(struct list_lru *lru) { } #endif /* CONFIG_MEMCG */ int __list_lru_init(struct list_lru *lru, bool memcg_aware, struct shrinker *shrinker) { int i; #ifdef CONFIG_MEMCG if (shrinker) lru->shrinker_id = shrinker->id; else lru->shrinker_id = -1; if (mem_cgroup_kmem_disabled()) memcg_aware = false; #endif lru->node = kcalloc(nr_node_ids, sizeof(*lru->node), GFP_KERNEL); if (!lru->node) return -ENOMEM; for_each_node(i) init_one_lru(lru, &lru->node[i].lru); memcg_init_list_lru(lru, memcg_aware); list_lru_register(lru); return 0; } EXPORT_SYMBOL_GPL(__list_lru_init); void list_lru_destroy(struct list_lru *lru) { /* Already destroyed or not yet initialized? */ if (!lru->node) return; list_lru_unregister(lru); memcg_destroy_list_lru(lru); kfree(lru->node); lru->node = NULL; #ifdef CONFIG_MEMCG lru->shrinker_id = -1; #endif } EXPORT_SYMBOL_GPL(list_lru_destroy);
42 95 157 4 1 5 5 2 5 5 240 7 5 31 99 73 29 17 4 106 52 123 36 2 264 265 264 8 5 2 265 254 94 265 15 2 15 7 15 128 15 137 84 48 82 64 130 110 21 11 17 21 130 59 2 2 2 2 2 138 3 42 33 87 32 264 75 120 42 259 145 3 107 106 16 96 82 16 16 252 16 8 106 106 106 104 2 23 40 6 5 7 4 4 7 2 2 7 2 6 20 2 12 4 7 5 1 26 114 27 1 47 39 76 30 89 24 65 60 18 68 9 43 35 76 2 76 2 71 7 70 8 73 5 75 3 75 3 69 9 67 11 2 76 89 110 1 73 35 108 107 1 75 65 75 9 70 75 68 5 6 6 5 10 75 2 2 3 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 // SPDX-License-Identifier: GPL-2.0-only /* * net/sched/sch_netem.c Network emulator * * Many of the algorithms and ideas for this came from * NIST Net which is not copyrighted. * * Authors: Stephen Hemminger <shemminger@osdl.org> * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> */ #include <linux/mm.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/vmalloc.h> #include <linux/prandom.h> #include <linux/rtnetlink.h> #include <linux/reciprocal_div.h> #include <linux/rbtree.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #define VERSION "1.3" /* Network Emulation Queuing algorithm. ==================================== Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based Network Emulation Tool [2] Luigi Rizzo, DummyNet for FreeBSD ---------------------------------------------------------------- This started out as a simple way to delay outgoing packets to test TCP but has grown to include most of the functionality of a full blown network emulator like NISTnet. It can delay packets and add random jitter (and correlation). The random distribution can be loaded from a table as well to provide normal, Pareto, or experimental curves. Packet loss, duplication, and reordering can also be emulated. This qdisc does not do classification that can be handled in layering other disciplines. It does not need to do bandwidth control either since that can be handled by using token bucket or other rate control. Correlated Loss Generator models Added generation of correlated loss according to the "Gilbert-Elliot" model, a 4-state markov model. References: [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general and intuitive loss model for packet networks and its implementation in the Netem module in the Linux kernel", available in [1] Authors: Stefano Salsano <stefano.salsano at uniroma2.it Fabio Ludovici <fabio.ludovici at yahoo.it> */ struct disttable { u32 size; s16 table[] __counted_by(size); }; struct netem_sched_data { /* internal t(ime)fifo qdisc uses t_root and sch->limit */ struct rb_root t_root; /* a linear queue; reduces rbtree rebalancing when jitter is low */ struct sk_buff *t_head; struct sk_buff *t_tail; u32 t_len; /* optional qdisc for classful handling (NULL at netem init) */ struct Qdisc *qdisc; struct qdisc_watchdog watchdog; s64 latency; s64 jitter; u32 loss; u32 ecn; u32 limit; u32 counter; u32 gap; u32 duplicate; u32 reorder; u32 corrupt; u64 rate; s32 packet_overhead; u32 cell_size; struct reciprocal_value cell_size_reciprocal; s32 cell_overhead; struct crndstate { u32 last; u32 rho; } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; struct prng { u64 seed; struct rnd_state prng_state; } prng; struct disttable *delay_dist; enum { CLG_RANDOM, CLG_4_STATES, CLG_GILB_ELL, } loss_model; enum { TX_IN_GAP_PERIOD = 1, TX_IN_BURST_PERIOD, LOST_IN_GAP_PERIOD, LOST_IN_BURST_PERIOD, } _4_state_model; enum { GOOD_STATE = 1, BAD_STATE, } GE_state_model; /* Correlated Loss Generation models */ struct clgstate { /* state of the Markov chain */ u8 state; /* 4-states and Gilbert-Elliot models */ u32 a1; /* p13 for 4-states or p for GE */ u32 a2; /* p31 for 4-states or r for GE */ u32 a3; /* p32 for 4-states or h for GE */ u32 a4; /* p14 for 4-states or 1-k for GE */ u32 a5; /* p23 used only in 4-states */ } clg; struct tc_netem_slot slot_config; struct slotstate { u64 slot_next; s32 packets_left; s32 bytes_left; } slot; struct disttable *slot_dist; }; /* Time stamp put into socket buffer control block * Only valid when skbs are in our internal t(ime)fifo queue. * * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, * and skb->next & skb->prev are scratch space for a qdisc, * we save skb->tstamp value in skb->cb[] before destroying it. */ struct netem_skb_cb { u64 time_to_send; }; static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) { /* we assume we can use skb next/prev/tstamp as storage for rb_node */ qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; } /* init_crandom - initialize correlated random number generator * Use entropy source for initial seed. */ static void init_crandom(struct crndstate *state, unsigned long rho) { state->rho = rho; state->last = get_random_u32(); } /* get_crandom - correlated random number generator * Next number depends on last value. * rho is scaled to avoid floating point. */ static u32 get_crandom(struct crndstate *state, struct prng *p) { u64 value, rho; unsigned long answer; struct rnd_state *s = &p->prng_state; if (!state || state->rho == 0) /* no correlation */ return prandom_u32_state(s); value = prandom_u32_state(s); rho = (u64)state->rho + 1; answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; state->last = answer; return answer; } /* loss_4state - 4-state model loss generator * Generates losses according to the 4-state Markov chain adopted in * the GI (General and Intuitive) loss model. */ static bool loss_4state(struct netem_sched_data *q) { struct clgstate *clg = &q->clg; u32 rnd = prandom_u32_state(&q->prng.prng_state); /* * Makes a comparison between rnd and the transition * probabilities outgoing from the current state, then decides the * next state and if the next packet has to be transmitted or lost. * The four states correspond to: * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period * LOST_IN_GAP_PERIOD => isolated losses within a gap period * LOST_IN_BURST_PERIOD => lost packets within a burst period * TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period */ switch (clg->state) { case TX_IN_GAP_PERIOD: if (rnd < clg->a4) { clg->state = LOST_IN_GAP_PERIOD; return true; } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { clg->state = LOST_IN_BURST_PERIOD; return true; } else if (clg->a1 + clg->a4 < rnd) { clg->state = TX_IN_GAP_PERIOD; } break; case TX_IN_BURST_PERIOD: if (rnd < clg->a5) { clg->state = LOST_IN_BURST_PERIOD; return true; } else { clg->state = TX_IN_BURST_PERIOD; } break; case LOST_IN_BURST_PERIOD: if (rnd < clg->a3) clg->state = TX_IN_BURST_PERIOD; else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { clg->state = TX_IN_GAP_PERIOD; } else if (clg->a2 + clg->a3 < rnd) { clg->state = LOST_IN_BURST_PERIOD; return true; } break; case LOST_IN_GAP_PERIOD: clg->state = TX_IN_GAP_PERIOD; break; } return false; } /* loss_gilb_ell - Gilbert-Elliot model loss generator * Generates losses according to the Gilbert-Elliot loss model or * its special cases (Gilbert or Simple Gilbert) * * Makes a comparison between random number and the transition * probabilities outgoing from the current state, then decides the * next state. A second random number is extracted and the comparison * with the loss probability of the current state decides if the next * packet will be transmitted or lost. */ static bool loss_gilb_ell(struct netem_sched_data *q) { struct clgstate *clg = &q->clg; struct rnd_state *s = &q->prng.prng_state; switch (clg->state) { case GOOD_STATE: if (prandom_u32_state(s) < clg->a1) clg->state = BAD_STATE; if (prandom_u32_state(s) < clg->a4) return true; break; case BAD_STATE: if (prandom_u32_state(s) < clg->a2) clg->state = GOOD_STATE; if (prandom_u32_state(s) > clg->a3) return true; } return false; } static bool loss_event(struct netem_sched_data *q) { switch (q->loss_model) { case CLG_RANDOM: /* Random packet drop 0 => none, ~0 => all */ return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng); case CLG_4_STATES: /* 4state loss model algorithm (used also for GI model) * Extracts a value from the markov 4 state loss generator, * if it is 1 drops a packet and if needed writes the event in * the kernel logs */ return loss_4state(q); case CLG_GILB_ELL: /* Gilbert-Elliot loss model algorithm * Extracts a value from the Gilbert-Elliot loss generator, * if it is 1 drops a packet and if needed writes the event in * the kernel logs */ return loss_gilb_ell(q); } return false; /* not reached */ } /* tabledist - return a pseudo-randomly distributed value with mean mu and * std deviation sigma. Uses table lookup to approximate the desired * distribution, and a uniformly-distributed pseudo-random source. */ static s64 tabledist(s64 mu, s32 sigma, struct crndstate *state, struct prng *prng, const struct disttable *dist) { s64 x; long t; u32 rnd; if (sigma == 0) return mu; rnd = get_crandom(state, prng); /* default uniform distribution */ if (dist == NULL) return ((rnd % (2 * (u32)sigma)) + mu) - sigma; t = dist->table[rnd % dist->size]; x = (sigma % NETEM_DIST_SCALE) * t; if (x >= 0) x += NETEM_DIST_SCALE/2; else x -= NETEM_DIST_SCALE/2; return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; } static u64 packet_time_ns(u64 len, const struct netem_sched_data *q) { len += q->packet_overhead; if (q->cell_size) { u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); if (len > cells * q->cell_size) /* extra cell needed for remainder */ cells++; len = cells * (q->cell_size + q->cell_overhead); } return div64_u64(len * NSEC_PER_SEC, q->rate); } static void tfifo_reset(struct Qdisc *sch) { struct netem_sched_data *q = qdisc_priv(sch); struct rb_node *p = rb_first(&q->t_root); while (p) { struct sk_buff *skb = rb_to_skb(p); p = rb_next(p); rb_erase(&skb->rbnode, &q->t_root); rtnl_kfree_skbs(skb, skb); } rtnl_kfree_skbs(q->t_head, q->t_tail); q->t_head = NULL; q->t_tail = NULL; q->t_len = 0; } static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) { struct netem_sched_data *q = qdisc_priv(sch); u64 tnext = netem_skb_cb(nskb)->time_to_send; if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) { if (q->t_tail) q->t_tail->next = nskb; else q->t_head = nskb; q->t_tail = nskb; } else { struct rb_node **p = &q->t_root.rb_node, *parent = NULL; while (*p) { struct sk_buff *skb; parent = *p; skb = rb_to_skb(parent); if (tnext >= netem_skb_cb(skb)->time_to_send) p = &parent->rb_right; else p = &parent->rb_left; } rb_link_node(&nskb->rbnode, parent, p); rb_insert_color(&nskb->rbnode, &q->t_root); } q->t_len++; sch->q.qlen++; } /* netem can't properly corrupt a megapacket (like we get from GSO), so instead * when we statistically choose to corrupt one, we instead segment it, returning * the first packet to be corrupted, and re-enqueue the remaining frames */ static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct sk_buff *segs; netdev_features_t features = netif_skb_features(skb); segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) { qdisc_drop(skb, sch, to_free); return NULL; } consume_skb(skb); return segs; } /* * Insert one skb into qdisc. * Note: parent depends on return value to account for queue length. * NET_XMIT_DROP: queue length didn't change. * NET_XMIT_SUCCESS: one skb was queued. */ static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct netem_sched_data *q = qdisc_priv(sch); /* We don't fill cb now as skb_unshare() may invalidate it */ struct netem_skb_cb *cb; struct sk_buff *skb2 = NULL; struct sk_buff *segs = NULL; unsigned int prev_len = qdisc_pkt_len(skb); int count = 1; /* Do not fool qdisc_drop_all() */ skb->prev = NULL; /* Random duplication */ if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng)) ++count; /* Drop packet? */ if (loss_event(q)) { if (q->ecn && INET_ECN_set_ce(skb)) qdisc_qstats_drop(sch); /* mark packet */ else --count; } if (count == 0) { qdisc_qstats_drop(sch); __qdisc_drop(skb, to_free); return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; } /* If a delay is expected, orphan the skb. (orphaning usually takes * place at TX completion time, so _before_ the link transit delay) */ if (q->latency || q->jitter || q->rate) skb_orphan_partial(skb); /* * If we need to duplicate packet, then clone it before * original is modified. */ if (count > 1) skb2 = skb_clone(skb, GFP_ATOMIC); /* * Randomized packet corruption. * Make copy if needed since we are modifying * If packet is going to be hardware checksummed, then * do it now in software before we mangle it. */ if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) { if (skb_is_gso(skb)) { skb = netem_segment(skb, sch, to_free); if (!skb) goto finish_segs; segs = skb->next; skb_mark_not_on_list(skb); qdisc_skb_cb(skb)->pkt_len = skb->len; } skb = skb_unshare(skb, GFP_ATOMIC); if (unlikely(!skb)) { qdisc_qstats_drop(sch); goto finish_segs; } if (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_help(skb)) { qdisc_drop(skb, sch, to_free); skb = NULL; goto finish_segs; } skb->data[get_random_u32_below(skb_headlen(skb))] ^= 1<<get_random_u32_below(8); } if (unlikely(q->t_len >= sch->limit)) { /* re-link segs, so that qdisc_drop_all() frees them all */ skb->next = segs; qdisc_drop_all(skb, sch, to_free); if (skb2) __qdisc_drop(skb2, to_free); return NET_XMIT_DROP; } /* * If doing duplication then re-insert at top of the * qdisc tree, since parent queuer expects that only one * skb will be queued. */ if (skb2) { struct Qdisc *rootq = qdisc_root_bh(sch); u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ q->duplicate = 0; rootq->enqueue(skb2, rootq, to_free); q->duplicate = dupsave; skb2 = NULL; } qdisc_qstats_backlog_inc(sch, skb); cb = netem_skb_cb(skb); if (q->gap == 0 || /* not doing reordering */ q->counter < q->gap - 1 || /* inside last reordering gap */ q->reorder < get_crandom(&q->reorder_cor, &q->prng)) { u64 now; s64 delay; delay = tabledist(q->latency, q->jitter, &q->delay_cor, &q->prng, q->delay_dist); now = ktime_get_ns(); if (q->rate) { struct netem_skb_cb *last = NULL; if (sch->q.tail) last = netem_skb_cb(sch->q.tail); if (q->t_root.rb_node) { struct sk_buff *t_skb; struct netem_skb_cb *t_last; t_skb = skb_rb_last(&q->t_root); t_last = netem_skb_cb(t_skb); if (!last || t_last->time_to_send > last->time_to_send) last = t_last; } if (q->t_tail) { struct netem_skb_cb *t_last = netem_skb_cb(q->t_tail); if (!last || t_last->time_to_send > last->time_to_send) last = t_last; } if (last) { /* * Last packet in queue is reference point (now), * calculate this time bonus and subtract * from delay. */ delay -= last->time_to_send - now; delay = max_t(s64, 0, delay); now = last->time_to_send; } delay += packet_time_ns(qdisc_pkt_len(skb), q); } cb->time_to_send = now + delay; ++q->counter; tfifo_enqueue(skb, sch); } else { /* * Do re-ordering by putting one out of N packets at the front * of the queue. */ cb->time_to_send = ktime_get_ns(); q->counter = 0; __qdisc_enqueue_head(skb, &sch->q); sch->qstats.requeues++; } finish_segs: if (skb2) __qdisc_drop(skb2, to_free); if (segs) { unsigned int len, last_len; int rc, nb; len = skb ? skb->len : 0; nb = skb ? 1 : 0; while (segs) { skb2 = segs->next; skb_mark_not_on_list(segs); qdisc_skb_cb(segs)->pkt_len = segs->len; last_len = segs->len; rc = qdisc_enqueue(segs, sch, to_free); if (rc != NET_XMIT_SUCCESS) { if (net_xmit_drop_count(rc)) qdisc_qstats_drop(sch); } else { nb++; len += last_len; } segs = skb2; } /* Parent qdiscs accounted for 1 skb of size @prev_len */ qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len)); } else if (!skb) { return NET_XMIT_DROP; } return NET_XMIT_SUCCESS; } /* Delay the next round with a new future slot with a * correct number of bytes and packets. */ static void get_slot_next(struct netem_sched_data *q, u64 now) { s64 next_delay; if (!q->slot_dist) next_delay = q->slot_config.min_delay + (get_random_u32() * (q->slot_config.max_delay - q->slot_config.min_delay) >> 32); else next_delay = tabledist(q->slot_config.dist_delay, (s32)(q->slot_config.dist_jitter), NULL, &q->prng, q->slot_dist); q->slot.slot_next = now + next_delay; q->slot.packets_left = q->slot_config.max_packets; q->slot.bytes_left = q->slot_config.max_bytes; } static struct sk_buff *netem_peek(struct netem_sched_data *q) { struct sk_buff *skb = skb_rb_first(&q->t_root); u64 t1, t2; if (!skb) return q->t_head; if (!q->t_head) return skb; t1 = netem_skb_cb(skb)->time_to_send; t2 = netem_skb_cb(q->t_head)->time_to_send; if (t1 < t2) return skb; return q->t_head; } static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb) { if (skb == q->t_head) { q->t_head = skb->next; if (!q->t_head) q->t_tail = NULL; } else { rb_erase(&skb->rbnode, &q->t_root); } } static struct sk_buff *netem_dequeue(struct Qdisc *sch) { struct netem_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; tfifo_dequeue: skb = __qdisc_dequeue_head(&sch->q); if (skb) { deliver: qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); return skb; } skb = netem_peek(q); if (skb) { u64 time_to_send; u64 now = ktime_get_ns(); /* if more time remaining? */ time_to_send = netem_skb_cb(skb)->time_to_send; if (q->slot.slot_next && q->slot.slot_next < time_to_send) get_slot_next(q, now); if (time_to_send <= now && q->slot.slot_next <= now) { netem_erase_head(q, skb); q->t_len--; skb->next = NULL; skb->prev = NULL; /* skb->dev shares skb->rbnode area, * we need to restore its value. */ skb->dev = qdisc_dev(sch); if (q->slot.slot_next) { q->slot.packets_left--; q->slot.bytes_left -= qdisc_pkt_len(skb); if (q->slot.packets_left <= 0 || q->slot.bytes_left <= 0) get_slot_next(q, now); } if (q->qdisc) { unsigned int pkt_len = qdisc_pkt_len(skb); struct sk_buff *to_free = NULL; int err; err = qdisc_enqueue(skb, q->qdisc, &to_free); kfree_skb_list(to_free); if (err != NET_XMIT_SUCCESS) { if (net_xmit_drop_count(err)) qdisc_qstats_drop(sch); sch->qstats.backlog -= pkt_len; sch->q.qlen--; qdisc_tree_reduce_backlog(sch, 1, pkt_len); } goto tfifo_dequeue; } sch->q.qlen--; goto deliver; } if (q->qdisc) { skb = q->qdisc->ops->dequeue(q->qdisc); if (skb) { sch->q.qlen--; goto deliver; } } qdisc_watchdog_schedule_ns(&q->watchdog, max(time_to_send, q->slot.slot_next)); } if (q->qdisc) { skb = q->qdisc->ops->dequeue(q->qdisc); if (skb) { sch->q.qlen--; goto deliver; } } return NULL; } static void netem_reset(struct Qdisc *sch) { struct netem_sched_data *q = qdisc_priv(sch); qdisc_reset_queue(sch); tfifo_reset(sch); if (q->qdisc) qdisc_reset(q->qdisc); qdisc_watchdog_cancel(&q->watchdog); } static void dist_free(struct disttable *d) { kvfree(d); } /* * Distribution data is a variable size payload containing * signed 16 bit values. */ static int get_dist_table(struct disttable **tbl, const struct nlattr *attr) { size_t n = nla_len(attr)/sizeof(__s16); const __s16 *data = nla_data(attr); struct disttable *d; int i; if (!n || n > NETEM_DIST_MAX) return -EINVAL; d = kvmalloc(struct_size(d, table, n), GFP_KERNEL); if (!d) return -ENOMEM; d->size = n; for (i = 0; i < n; i++) d->table[i] = data[i]; *tbl = d; return 0; } static void get_slot(struct netem_sched_data *q, const struct nlattr *attr) { const struct tc_netem_slot *c = nla_data(attr); q->slot_config = *c; if (q->slot_config.max_packets == 0) q->slot_config.max_packets = INT_MAX; if (q->slot_config.max_bytes == 0) q->slot_config.max_bytes = INT_MAX; /* capping dist_jitter to the range acceptable by tabledist() */ q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter)); q->slot.packets_left = q->slot_config.max_packets; q->slot.bytes_left = q->slot_config.max_bytes; if (q->slot_config.min_delay | q->slot_config.max_delay | q->slot_config.dist_jitter) q->slot.slot_next = ktime_get_ns(); else q->slot.slot_next = 0; } static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) { const struct tc_netem_corr *c = nla_data(attr); init_crandom(&q->delay_cor, c->delay_corr); init_crandom(&q->loss_cor, c->loss_corr); init_crandom(&q->dup_cor, c->dup_corr); } static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) { const struct tc_netem_reorder *r = nla_data(attr); q->reorder = r->probability; init_crandom(&q->reorder_cor, r->correlation); } static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) { const struct tc_netem_corrupt *r = nla_data(attr); q->corrupt = r->probability; init_crandom(&q->corrupt_cor, r->correlation); } static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) { const struct tc_netem_rate *r = nla_data(attr); q->rate = r->rate; q->packet_overhead = r->packet_overhead; q->cell_size = r->cell_size; q->cell_overhead = r->cell_overhead; if (q->cell_size) q->cell_size_reciprocal = reciprocal_value(q->cell_size); else q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; } static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) { const struct nlattr *la; int rem; nla_for_each_nested(la, attr, rem) { u16 type = nla_type(la); switch (type) { case NETEM_LOSS_GI: { const struct tc_netem_gimodel *gi = nla_data(la); if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { pr_info("netem: incorrect gi model size\n"); return -EINVAL; } q->loss_model = CLG_4_STATES; q->clg.state = TX_IN_GAP_PERIOD; q->clg.a1 = gi->p13; q->clg.a2 = gi->p31; q->clg.a3 = gi->p32; q->clg.a4 = gi->p14; q->clg.a5 = gi->p23; break; } case NETEM_LOSS_GE: { const struct tc_netem_gemodel *ge = nla_data(la); if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { pr_info("netem: incorrect ge model size\n"); return -EINVAL; } q->loss_model = CLG_GILB_ELL; q->clg.state = GOOD_STATE; q->clg.a1 = ge->p; q->clg.a2 = ge->r; q->clg.a3 = ge->h; q->clg.a4 = ge->k1; break; } default: pr_info("netem: unknown loss type %u\n", type); return -EINVAL; } } return 0; } static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, [TCA_NETEM_ECN] = { .type = NLA_U32 }, [TCA_NETEM_RATE64] = { .type = NLA_U64 }, [TCA_NETEM_LATENCY64] = { .type = NLA_S64 }, [TCA_NETEM_JITTER64] = { .type = NLA_S64 }, [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) }, [TCA_NETEM_PRNG_SEED] = { .type = NLA_U64 }, }; static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, const struct nla_policy *policy, int len) { int nested_len = nla_len(nla) - NLA_ALIGN(len); if (nested_len < 0) { pr_info("netem: invalid attributes len %d\n", nested_len); return -EINVAL; } if (nested_len >= nla_attr_size(0)) return nla_parse_deprecated(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), nested_len, policy, NULL); memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); return 0; } /* Parse netlink message to set options */ static int netem_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct netem_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_NETEM_MAX + 1]; struct disttable *delay_dist = NULL; struct disttable *slot_dist = NULL; struct tc_netem_qopt *qopt; struct clgstate old_clg; int old_loss_model = CLG_RANDOM; int ret; qopt = nla_data(opt); ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); if (ret < 0) return ret; if (tb[TCA_NETEM_DELAY_DIST]) { ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]); if (ret) goto table_free; } if (tb[TCA_NETEM_SLOT_DIST]) { ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]); if (ret) goto table_free; } sch_tree_lock(sch); /* backup q->clg and q->loss_model */ old_clg = q->clg; old_loss_model = q->loss_model; if (tb[TCA_NETEM_LOSS]) { ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); if (ret) { q->loss_model = old_loss_model; q->clg = old_clg; goto unlock; } } else { q->loss_model = CLG_RANDOM; } if (delay_dist) swap(q->delay_dist, delay_dist); if (slot_dist) swap(q->slot_dist, slot_dist); sch->limit = qopt->limit; q->latency = PSCHED_TICKS2NS(qopt->latency); q->jitter = PSCHED_TICKS2NS(qopt->jitter); q->limit = qopt->limit; q->gap = qopt->gap; q->counter = 0; q->loss = qopt->loss; q->duplicate = qopt->duplicate; /* for compatibility with earlier versions. * if gap is set, need to assume 100% probability */ if (q->gap) q->reorder = ~0; if (tb[TCA_NETEM_CORR]) get_correlation(q, tb[TCA_NETEM_CORR]); if (tb[TCA_NETEM_REORDER]) get_reorder(q, tb[TCA_NETEM_REORDER]); if (tb[TCA_NETEM_CORRUPT]) get_corrupt(q, tb[TCA_NETEM_CORRUPT]); if (tb[TCA_NETEM_RATE]) get_rate(q, tb[TCA_NETEM_RATE]); if (tb[TCA_NETEM_RATE64]) q->rate = max_t(u64, q->rate, nla_get_u64(tb[TCA_NETEM_RATE64])); if (tb[TCA_NETEM_LATENCY64]) q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]); if (tb[TCA_NETEM_JITTER64]) q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]); if (tb[TCA_NETEM_ECN]) q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); if (tb[TCA_NETEM_SLOT]) get_slot(q, tb[TCA_NETEM_SLOT]); /* capping jitter to the range acceptable by tabledist() */ q->jitter = min_t(s64, abs(q->jitter), INT_MAX); if (tb[TCA_NETEM_PRNG_SEED]) q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]); else q->prng.seed = get_random_u64(); prandom_seed_state(&q->prng.prng_state, q->prng.seed); unlock: sch_tree_unlock(sch); table_free: dist_free(delay_dist); dist_free(slot_dist); return ret; } static int netem_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct netem_sched_data *q = qdisc_priv(sch); int ret; qdisc_watchdog_init(&q->watchdog, sch); if (!opt) return -EINVAL; q->loss_model = CLG_RANDOM; ret = netem_change(sch, opt, extack); if (ret) pr_info("netem: change failed\n"); return ret; } static void netem_destroy(struct Qdisc *sch) { struct netem_sched_data *q = qdisc_priv(sch); qdisc_watchdog_cancel(&q->watchdog); if (q->qdisc) qdisc_put(q->qdisc); dist_free(q->delay_dist); dist_free(q->slot_dist); } static int dump_loss_model(const struct netem_sched_data *q, struct sk_buff *skb) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS); if (nest == NULL) goto nla_put_failure; switch (q->loss_model) { case CLG_RANDOM: /* legacy loss model */ nla_nest_cancel(skb, nest); return 0; /* no data */ case CLG_4_STATES: { struct tc_netem_gimodel gi = { .p13 = q->clg.a1, .p31 = q->clg.a2, .p32 = q->clg.a3, .p14 = q->clg.a4, .p23 = q->clg.a5, }; if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) goto nla_put_failure; break; } case CLG_GILB_ELL: { struct tc_netem_gemodel ge = { .p = q->clg.a1, .r = q->clg.a2, .h = q->clg.a3, .k1 = q->clg.a4, }; if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) goto nla_put_failure; break; } } nla_nest_end(skb, nest); return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) { const struct netem_sched_data *q = qdisc_priv(sch); struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); struct tc_netem_qopt qopt; struct tc_netem_corr cor; struct tc_netem_reorder reorder; struct tc_netem_corrupt corrupt; struct tc_netem_rate rate; struct tc_netem_slot slot; qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency), UINT_MAX); qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter), UINT_MAX); qopt.limit = q->limit; qopt.loss = q->loss; qopt.gap = q->gap; qopt.duplicate = q->duplicate; if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) goto nla_put_failure; if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency)) goto nla_put_failure; if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter)) goto nla_put_failure; cor.delay_corr = q->delay_cor.rho; cor.loss_corr = q->loss_cor.rho; cor.dup_corr = q->dup_cor.rho; if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) goto nla_put_failure; reorder.probability = q->reorder; reorder.correlation = q->reorder_cor.rho; if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) goto nla_put_failure; corrupt.probability = q->corrupt; corrupt.correlation = q->corrupt_cor.rho; if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) goto nla_put_failure; if (q->rate >= (1ULL << 32)) { if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate, TCA_NETEM_PAD)) goto nla_put_failure; rate.rate = ~0U; } else { rate.rate = q->rate; } rate.packet_overhead = q->packet_overhead; rate.cell_size = q->cell_size; rate.cell_overhead = q->cell_overhead; if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) goto nla_put_failure; if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) goto nla_put_failure; if (dump_loss_model(q, skb) != 0) goto nla_put_failure; if (q->slot_config.min_delay | q->slot_config.max_delay | q->slot_config.dist_jitter) { slot = q->slot_config; if (slot.max_packets == INT_MAX) slot.max_packets = 0; if (slot.max_bytes == INT_MAX) slot.max_bytes = 0; if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot)) goto nla_put_failure; } if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed, TCA_NETEM_PAD)) goto nla_put_failure; return nla_nest_end(skb, nla); nla_put_failure: nlmsg_trim(skb, nla); return -1; } static int netem_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct netem_sched_data *q = qdisc_priv(sch); if (cl != 1 || !q->qdisc) /* only one class */ return -ENOENT; tcm->tcm_handle |= TC_H_MIN(1); tcm->tcm_info = q->qdisc->handle; return 0; } static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct netem_sched_data *q = qdisc_priv(sch); *old = qdisc_replace(sch, new, &q->qdisc); return 0; } static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) { struct netem_sched_data *q = qdisc_priv(sch); return q->qdisc; } static unsigned long netem_find(struct Qdisc *sch, u32 classid) { return 1; } static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) { if (!walker->stop) { if (!tc_qdisc_stats_dump(sch, 1, walker)) return; } } static const struct Qdisc_class_ops netem_class_ops = { .graft = netem_graft, .leaf = netem_leaf, .find = netem_find, .walk = netem_walk, .dump = netem_dump_class, }; static struct Qdisc_ops netem_qdisc_ops __read_mostly = { .id = "netem", .cl_ops = &netem_class_ops, .priv_size = sizeof(struct netem_sched_data), .enqueue = netem_enqueue, .dequeue = netem_dequeue, .peek = qdisc_peek_dequeued, .init = netem_init, .reset = netem_reset, .destroy = netem_destroy, .change = netem_change, .dump = netem_dump, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("netem"); static int __init netem_module_init(void) { pr_info("netem: version " VERSION "\n"); return register_qdisc(&netem_qdisc_ops); } static void __exit netem_module_exit(void) { unregister_qdisc(&netem_qdisc_ops); } module_init(netem_module_init) module_exit(netem_module_exit) MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Network characteristics emulator qdisc");
1 10 3309 258 142 416 13 154 5 1584 40 1584 25268 2921 33 1607 1581 1583 28 743 41 41 41 531 530 531 1723 1702 16 1702 58 58 1249 15 41 41 803 2031 78 73 32 27 37 62 253 39834 20 122 353 395 391 183 42 395 395 1365 1367 1369 33 120 691 448 79 53 125 58 302 173 103 290 11 4 576 3 43 346 394 281 672 1259 123 1259 1675 572 822 21259 293 18427 1143 4539 3 498 28533 119 118 124 342 23220 575 21 3 382 92 1 8 92 391 399 5 78 82 51 38 1 38 2 418 2 1 3 3 3 7 7 260 421 2407 165 347 510 17 207 207 199 25 279 587 5541 998 4 2289 2290 173 174 10 10 10 31 4536 15 434 28 629 26 197 517 41 20719 55 2 1048 292 11 2549 23139 503 3 1104 3 382 3 80 12 109 200 25 17 84 273 1473 65 15 7 1555 11 1081 3 515 31 1290 15 2 859 53 18911 18907 72 66 10 279 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the AF_INET socket handler. * * Version: @(#)sock.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche <flla@stud.uni-sb.de> * * Fixes: * Alan Cox : Volatiles in skbuff pointers. See * skbuff comments. May be overdone, * better to prove they can be removed * than the reverse. * Alan Cox : Added a zapped field for tcp to note * a socket is reset and must stay shut up * Alan Cox : New fields for options * Pauline Middelink : identd support * Alan Cox : Eliminate low level recv/recvfrom * David S. Miller : New socket lookup architecture. * Steve Whitehouse: Default routines for sock_ops * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made * protinfo be just a void pointer, as the * protocol specific parts were moved to * respective headers and ipv4/v6, etc now * use private slabcaches for its socks * Pedro Hortas : New flags field for socket options */ #ifndef _SOCK_H #define _SOCK_H #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/list_nulls.h> #include <linux/timer.h> #include <linux/cache.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/skbuff.h> /* struct sk_buff */ #include <linux/mm.h> #include <linux/security.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/page_counter.h> #include <linux/memcontrol.h> #include <linux/static_key.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/cgroup-defs.h> #include <linux/rbtree.h> #include <linux/rculist_nulls.h> #include <linux/poll.h> #include <linux/sockptr.h> #include <linux/indirect_call_wrapper.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/llist.h> #include <net/dst.h> #include <net/checksum.h> #include <net/tcp_states.h> #include <linux/net_tstamp.h> #include <net/l3mdev.h> #include <uapi/linux/socket.h> /* * This structure really needs to be cleaned up. * Most of it is for TCP, and not used by any of * the other protocols. */ /* This is the per-socket lock. The spinlock provides a synchronization * between user contexts and software interrupt processing, whereas the * mini-semaphore synchronizes multiple users amongst themselves. */ typedef struct { spinlock_t slock; int owned; wait_queue_head_t wq; /* * We express the mutex-alike socket_lock semantics * to the lock validator by explicitly managing * the slock as a lock variant (in addition to * the slock itself): */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } socket_lock_t; struct sock; struct proto; struct net; typedef __u32 __bitwise __portpair; typedef __u64 __bitwise __addrpair; /** * struct sock_common - minimal network layer representation of sockets * @skc_daddr: Foreign IPv4 addr * @skc_rcv_saddr: Bound local IPv4 addr * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr * @skc_hash: hash value used with various protocol lookup tables * @skc_u16hashes: two u16 hash values used by UDP lookup tables * @skc_dport: placeholder for inet_dport/tw_dport * @skc_num: placeholder for inet_num/tw_num * @skc_portpair: __u32 union of @skc_dport & @skc_num * @skc_family: network address family * @skc_state: Connection state * @skc_reuse: %SO_REUSEADDR setting * @skc_reuseport: %SO_REUSEPORT setting * @skc_ipv6only: socket is IPV6 only * @skc_net_refcnt: socket is using net ref counting * @skc_bound_dev_if: bound device index if != 0 * @skc_bind_node: bind hash linkage for various protocol lookup tables * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol * @skc_prot: protocol handlers inside a network family * @skc_net: reference to the network namespace of this socket * @skc_v6_daddr: IPV6 destination address * @skc_v6_rcv_saddr: IPV6 source address * @skc_cookie: socket's cookie value * @skc_node: main hash linkage for various protocol lookup tables * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol * @skc_tx_queue_mapping: tx queue number for this connection * @skc_rx_queue_mapping: rx queue number for this connection * @skc_flags: place holder for sk_flags * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings * @skc_listener: connection request listener socket (aka rsk_listener) * [union with @skc_flags] * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row * [union with @skc_flags] * @skc_incoming_cpu: record/match cpu processing incoming packets * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) * [union with @skc_incoming_cpu] * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number * [union with @skc_incoming_cpu] * @skc_refcnt: reference count * * This is the minimal network layer representation of sockets, the header * for struct sock and struct inet_timewait_sock. */ struct sock_common { union { __addrpair skc_addrpair; struct { __be32 skc_daddr; __be32 skc_rcv_saddr; }; }; union { unsigned int skc_hash; __u16 skc_u16hashes[2]; }; /* skc_dport && skc_num must be grouped as well */ union { __portpair skc_portpair; struct { __be16 skc_dport; __u16 skc_num; }; }; unsigned short skc_family; volatile unsigned char skc_state; unsigned char skc_reuse:4; unsigned char skc_reuseport:1; unsigned char skc_ipv6only:1; unsigned char skc_net_refcnt:1; int skc_bound_dev_if; union { struct hlist_node skc_bind_node; struct hlist_node skc_portaddr_node; }; struct proto *skc_prot; possible_net_t skc_net; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr skc_v6_daddr; struct in6_addr skc_v6_rcv_saddr; #endif atomic64_t skc_cookie; /* following fields are padding to force * offset(struct sock, sk_refcnt) == 128 on 64bit arches * assuming IPV6 is enabled. We use this padding differently * for different kind of 'sockets' */ union { unsigned long skc_flags; struct sock *skc_listener; /* request_sock */ struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ }; /* * fields between dontcopy_begin/dontcopy_end * are not copied in sock_copy() */ /* private: */ int skc_dontcopy_begin[0]; /* public: */ union { struct hlist_node skc_node; struct hlist_nulls_node skc_nulls_node; }; unsigned short skc_tx_queue_mapping; #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING unsigned short skc_rx_queue_mapping; #endif union { int skc_incoming_cpu; u32 skc_rcv_wnd; u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ }; refcount_t skc_refcnt; /* private: */ int skc_dontcopy_end[0]; union { u32 skc_rxhash; u32 skc_window_clamp; u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ }; /* public: */ }; struct bpf_local_storage; struct sk_filter; /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_timewait_sock * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings * @sk_lock: synchronizer * @sk_kern_sock: True if sock is using kernel lock classes * @sk_rcvbuf: size of receive buffer in bytes * @sk_wq: sock wait queue and async head * @sk_rx_dst: receive input route used by early demux * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst * @sk_rx_dst_cookie: cookie for @sk_rx_dst * @sk_dst_cache: destination cache * @sk_dst_pending_confirm: need to confirm neighbour * @sk_policy: flow policy * @sk_receive_queue: incoming packets * @sk_wmem_alloc: transmit queue bytes committed * @sk_tsq_flags: TCP Small Queues flags * @sk_write_queue: Packet sending queue * @sk_omem_alloc: "o" is "option" or "other" * @sk_wmem_queued: persistent queue size * @sk_forward_alloc: space allocated forward * @sk_reserved_mem: space reserved and non-reclaimable for the socket * @sk_napi_id: id of the last napi context to receive data for sk * @sk_ll_usec: usecs to busypoll when there is no data * @sk_allocation: allocation mode * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) * @sk_pacing_status: Pacing status (requested, handled by sch_fq) * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) * @sk_sndbuf: size of send buffer in bytes * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets * @sk_no_check_rx: allow zero checksum in RX packets * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) * @sk_gso_max_size: Maximum GSO segment size to build * @sk_gso_max_segs: Maximum number of GSO segments * @sk_pacing_shift: scaling factor for TCP Small Queues * @sk_lingertime: %SO_LINGER l_linger setting * @sk_backlog: always used with the per-socket spinlock held * @sk_callback_lock: used with the callbacks in the end of this struct * @sk_error_queue: rarely used * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, * IPV6_ADDRFORM for instance) * @sk_err: last error * @sk_err_soft: errors that don't cause failure but are the cause of a * persistent failure not just 'timed out' * @sk_drops: raw/udp drops counter * @sk_ack_backlog: current listen backlog * @sk_max_ack_backlog: listen backlog set in listen() * @sk_uid: user id of owner * @sk_prefer_busy_poll: prefer busypolling over softirq processing * @sk_busy_poll_budget: napi processing budget when busypolling * @sk_priority: %SO_PRIORITY setting * @sk_type: socket type (%SOCK_STREAM, etc) * @sk_protocol: which protocol this socket belongs in this network family * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred * @sk_peer_pid: &struct pid for this socket's peer * @sk_peer_cred: %SO_PEERCRED setting * @sk_rcvlowat: %SO_RCVLOWAT setting * @sk_rcvtimeo: %SO_RCVTIMEO setting * @sk_sndtimeo: %SO_SNDTIMEO setting * @sk_txhash: computed flow hash for use on transmit * @sk_txrehash: enable TX hash rethink * @sk_filter: socket filtering instructions * @sk_timer: sock cleanup timer * @sk_stamp: time stamp of last packet received * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only * @sk_tsflags: SO_TIMESTAMPING flags * @sk_bpf_cb_flags: used in bpf_setsockopt() * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. * Sockets that can be used under memory reclaim should * set this to false. * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock * for timestamping * @sk_tskey: counter to disambiguate concurrent tstamp requests * @sk_zckey: counter to order MSG_ZEROCOPY notifications * @sk_socket: Identd and reporting IO signals * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. * @sk_frag: cached page frag * @sk_peek_off: current peek_offset value * @sk_send_head: front of stuff to transmit * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] * @sk_security: used by security modules * @sk_mark: generic packet mark * @sk_cgrp_data: cgroup data for this cgroup * @sk_memcg: this socket's memory cgroup association * @sk_write_pending: a write to stream socket waits to start * @sk_disconnects: number of disconnect operations performed on this sock * @sk_state_change: callback to indicate change in the state of the sock * @sk_data_ready: callback to indicate there is data to be processed * @sk_write_space: callback to indicate there is bf sending space available * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) * @sk_backlog_rcv: callback to process the backlog * @sk_validate_xmit_skb: ptr to an optional validate function * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 * @sk_reuseport_cb: reuseport group container * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage * @sk_rcu: used during RCU grace period * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME * @sk_txtime_report_errors: set report errors mode for SO_TXTIME * @sk_txtime_unused: unused txtime flags * @ns_tracker: tracker for netns reference * @sk_user_frags: xarray of pages the user is holding a reference on. * @sk_owner: reference to the real owner of the socket that calls * sock_lock_init_class_and_name(). */ struct sock { /* * Now struct inet_timewait_sock also uses sock_common, so please just * don't add nothing before this first member (__sk_common) --acme */ struct sock_common __sk_common; #define sk_node __sk_common.skc_node #define sk_nulls_node __sk_common.skc_nulls_node #define sk_refcnt __sk_common.skc_refcnt #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping #endif #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin #define sk_dontcopy_end __sk_common.skc_dontcopy_end #define sk_hash __sk_common.skc_hash #define sk_portpair __sk_common.skc_portpair #define sk_num __sk_common.skc_num #define sk_dport __sk_common.skc_dport #define sk_addrpair __sk_common.skc_addrpair #define sk_daddr __sk_common.skc_daddr #define sk_rcv_saddr __sk_common.skc_rcv_saddr #define sk_family __sk_common.skc_family #define sk_state __sk_common.skc_state #define sk_reuse __sk_common.skc_reuse #define sk_reuseport __sk_common.skc_reuseport #define sk_ipv6only __sk_common.skc_ipv6only #define sk_net_refcnt __sk_common.skc_net_refcnt #define sk_bound_dev_if __sk_common.skc_bound_dev_if #define sk_bind_node __sk_common.skc_bind_node #define sk_prot __sk_common.skc_prot #define sk_net __sk_common.skc_net #define sk_v6_daddr __sk_common.skc_v6_daddr #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr #define sk_cookie __sk_common.skc_cookie #define sk_incoming_cpu __sk_common.skc_incoming_cpu #define sk_flags __sk_common.skc_flags #define sk_rxhash __sk_common.skc_rxhash __cacheline_group_begin(sock_write_rx); atomic_t sk_drops; __s32 sk_peek_off; struct sk_buff_head sk_error_queue; struct sk_buff_head sk_receive_queue; /* * The backlog queue is special, it is always used with * the per-socket spinlock held and requires low latency * access. Therefore we special case it's implementation. * Note : rmem_alloc is in this structure to fill a hole * on 64bit arches, not because its logically part of * backlog. */ struct { atomic_t rmem_alloc; int len; struct sk_buff *head; struct sk_buff *tail; } sk_backlog; #define sk_rmem_alloc sk_backlog.rmem_alloc __cacheline_group_end(sock_write_rx); __cacheline_group_begin(sock_read_rx); /* early demux fields */ struct dst_entry __rcu *sk_rx_dst; int sk_rx_dst_ifindex; u32 sk_rx_dst_cookie; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sk_ll_usec; unsigned int sk_napi_id; u16 sk_busy_poll_budget; u8 sk_prefer_busy_poll; #endif u8 sk_userlocks; int sk_rcvbuf; struct sk_filter __rcu *sk_filter; union { struct socket_wq __rcu *sk_wq; /* private: */ struct socket_wq *sk_wq_raw; /* public: */ }; void (*sk_data_ready)(struct sock *sk); long sk_rcvtimeo; int sk_rcvlowat; __cacheline_group_end(sock_read_rx); __cacheline_group_begin(sock_read_rxtx); int sk_err; struct socket *sk_socket; struct mem_cgroup *sk_memcg; #ifdef CONFIG_XFRM struct xfrm_policy __rcu *sk_policy[2]; #endif __cacheline_group_end(sock_read_rxtx); __cacheline_group_begin(sock_write_rxtx); socket_lock_t sk_lock; u32 sk_reserved_mem; int sk_forward_alloc; u32 sk_tsflags; __cacheline_group_end(sock_write_rxtx); __cacheline_group_begin(sock_write_tx); int sk_write_pending; atomic_t sk_omem_alloc; int sk_sndbuf; int sk_wmem_queued; refcount_t sk_wmem_alloc; unsigned long sk_tsq_flags; union { struct sk_buff *sk_send_head; struct rb_root tcp_rtx_queue; }; struct sk_buff_head sk_write_queue; u32 sk_dst_pending_confirm; u32 sk_pacing_status; /* see enum sk_pacing */ struct page_frag sk_frag; struct timer_list sk_timer; unsigned long sk_pacing_rate; /* bytes per second */ atomic_t sk_zckey; atomic_t sk_tskey; __cacheline_group_end(sock_write_tx); __cacheline_group_begin(sock_read_tx); unsigned long sk_max_pacing_rate; long sk_sndtimeo; u32 sk_priority; u32 sk_mark; struct dst_entry __rcu *sk_dst_cache; netdev_features_t sk_route_caps; #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, struct net_device *dev, struct sk_buff *skb); #endif u16 sk_gso_type; u16 sk_gso_max_segs; unsigned int sk_gso_max_size; gfp_t sk_allocation; u32 sk_txhash; u8 sk_pacing_shift; bool sk_use_task_frag; __cacheline_group_end(sock_read_tx); /* * Because of non atomicity rules, all * changes are protected by socket lock. */ u8 sk_gso_disabled : 1, sk_kern_sock : 1, sk_no_check_tx : 1, sk_no_check_rx : 1; u8 sk_shutdown; u16 sk_type; u16 sk_protocol; unsigned long sk_lingertime; struct proto *sk_prot_creator; rwlock_t sk_callback_lock; int sk_err_soft; u32 sk_ack_backlog; u32 sk_max_ack_backlog; kuid_t sk_uid; spinlock_t sk_peer_lock; int sk_bind_phc; struct pid *sk_peer_pid; const struct cred *sk_peer_cred; ktime_t sk_stamp; #if BITS_PER_LONG==32 seqlock_t sk_stamp_seq; #endif int sk_disconnects; u8 sk_txrehash; u8 sk_clockid; u8 sk_txtime_deadline_mode : 1, sk_txtime_report_errors : 1, sk_txtime_unused : 6; #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) u8 sk_bpf_cb_flags; void *sk_user_data; #ifdef CONFIG_SECURITY void *sk_security; #endif struct sock_cgroup_data sk_cgrp_data; void (*sk_state_change)(struct sock *sk); void (*sk_write_space)(struct sock *sk); void (*sk_error_report)(struct sock *sk); int (*sk_backlog_rcv)(struct sock *sk, struct sk_buff *skb); void (*sk_destruct)(struct sock *sk); struct sock_reuseport __rcu *sk_reuseport_cb; #ifdef CONFIG_BPF_SYSCALL struct bpf_local_storage __rcu *sk_bpf_storage; #endif struct rcu_head sk_rcu; netns_tracker ns_tracker; struct xarray sk_user_frags; #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) struct module *sk_owner; #endif }; struct sock_bh_locked { struct sock *sock; local_lock_t bh_lock; }; enum sk_pacing { SK_PACING_NONE = 0, SK_PACING_NEEDED = 1, SK_PACING_FQ = 2, }; /* flag bits in sk_user_data * * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might * not be suitable for copying when cloning the socket. For instance, * it can point to a reference counted object. sk_user_data bottom * bit is set if pointer must not be copied. * * - SK_USER_DATA_BPF: Mark whether sk_user_data field is * managed/owned by a BPF reuseport array. This bit should be set * when sk_user_data's sk is added to the bpf's reuseport_array. * * - SK_USER_DATA_PSOCK: Mark whether pointer stored in * sk_user_data points to psock type. This bit should be set * when sk_user_data is assigned to a psock object. */ #define SK_USER_DATA_NOCOPY 1UL #define SK_USER_DATA_BPF 2UL #define SK_USER_DATA_PSOCK 4UL #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ SK_USER_DATA_PSOCK) /** * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied * @sk: socket */ static inline bool sk_user_data_is_nocopy(const struct sock *sk) { return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); } #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) /** * __locked_read_sk_user_data_with_flags - return the pointer * only if argument flags all has been set in sk_user_data. Otherwise * return NULL * * @sk: socket * @flags: flag bits * * The caller must be holding sk->sk_callback_lock. */ static inline void * __locked_read_sk_user_data_with_flags(const struct sock *sk, uintptr_t flags) { uintptr_t sk_user_data = (uintptr_t)rcu_dereference_check(__sk_user_data(sk), lockdep_is_held(&sk->sk_callback_lock)); WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); if ((sk_user_data & flags) == flags) return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); return NULL; } /** * __rcu_dereference_sk_user_data_with_flags - return the pointer * only if argument flags all has been set in sk_user_data. Otherwise * return NULL * * @sk: socket * @flags: flag bits */ static inline void * __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, uintptr_t flags) { uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); if ((sk_user_data & flags) == flags) return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); return NULL; } #define rcu_dereference_sk_user_data(sk) \ __rcu_dereference_sk_user_data_with_flags(sk, 0) #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ ({ \ uintptr_t __tmp1 = (uintptr_t)(ptr), \ __tmp2 = (uintptr_t)(flags); \ WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), \ __tmp1 | __tmp2); \ }) #define rcu_assign_sk_user_data(sk, ptr) \ __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) static inline struct net *sock_net(const struct sock *sk) { return read_pnet(&sk->sk_net); } static inline void sock_net_set(struct sock *sk, struct net *net) { write_pnet(&sk->sk_net, net); } /* * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK * or not whether his port will be reused by someone else. SK_FORCE_REUSE * on a socket means that the socket will reuse everybody else's port * without looking at the other's sk_reuse value. */ #define SK_NO_REUSE 0 #define SK_CAN_REUSE 1 #define SK_FORCE_REUSE 2 int sk_set_peek_off(struct sock *sk, int val); static inline int sk_peek_offset(const struct sock *sk, int flags) { if (unlikely(flags & MSG_PEEK)) { return READ_ONCE(sk->sk_peek_off); } return 0; } static inline void sk_peek_offset_bwd(struct sock *sk, int val) { s32 off = READ_ONCE(sk->sk_peek_off); if (unlikely(off >= 0)) { off = max_t(s32, off - val, 0); WRITE_ONCE(sk->sk_peek_off, off); } } static inline void sk_peek_offset_fwd(struct sock *sk, int val) { sk_peek_offset_bwd(sk, -val); } /* * Hashed lists helper routines */ static inline struct sock *sk_entry(const struct hlist_node *node) { return hlist_entry(node, struct sock, sk_node); } static inline struct sock *__sk_head(const struct hlist_head *head) { return hlist_entry(head->first, struct sock, sk_node); } static inline struct sock *sk_head(const struct hlist_head *head) { return hlist_empty(head) ? NULL : __sk_head(head); } static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); } static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); } static inline struct sock *sk_next(const struct sock *sk) { return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); } static inline struct sock *sk_nulls_next(const struct sock *sk) { return (!is_a_nulls(sk->sk_nulls_node.next)) ? hlist_nulls_entry(sk->sk_nulls_node.next, struct sock, sk_nulls_node) : NULL; } static inline bool sk_unhashed(const struct sock *sk) { return hlist_unhashed(&sk->sk_node); } static inline bool sk_hashed(const struct sock *sk) { return !sk_unhashed(sk); } static inline void sk_node_init(struct hlist_node *node) { node->pprev = NULL; } static inline void __sk_del_node(struct sock *sk) { __hlist_del(&sk->sk_node); } /* NB: equivalent to hlist_del_init_rcu */ static inline bool __sk_del_node_init(struct sock *sk) { if (sk_hashed(sk)) { __sk_del_node(sk); sk_node_init(&sk->sk_node); return true; } return false; } /* Grab socket reference count. This operation is valid only when sk is ALREADY grabbed f.e. it is found in hash table or a list and the lookup is made under lock preventing hash table modifications. */ static __always_inline void sock_hold(struct sock *sk) { refcount_inc(&sk->sk_refcnt); } /* Ungrab socket in the context, which assumes that socket refcnt cannot hit zero, f.e. it is true in context of any socketcall. */ static __always_inline void __sock_put(struct sock *sk) { refcount_dec(&sk->sk_refcnt); } static inline bool sk_del_node_init(struct sock *sk) { bool rc = __sk_del_node_init(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) { if (sk_hashed(sk)) { hlist_nulls_del_init_rcu(&sk->sk_nulls_node); return true; } return false; } static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) { bool rc = __sk_nulls_del_node_init_rcu(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_node, list); } static inline void sk_add_node(struct sock *sk, struct hlist_head *list) { sock_hold(sk); __sk_add_node(sk, list); } static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && sk->sk_family == AF_INET6) hlist_add_tail_rcu(&sk->sk_node, list); else hlist_add_head_rcu(&sk->sk_node, list); } static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); hlist_add_tail_rcu(&sk->sk_node, list); } static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); } static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); } static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { sock_hold(sk); __sk_nulls_add_node_rcu(sk, list); } static inline void __sk_del_bind_node(struct sock *sk) { __hlist_del(&sk->sk_bind_node); } static inline void sk_add_bind_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_bind_node, list); } #define sk_for_each(__sk, list) \ hlist_for_each_entry(__sk, list, sk_node) #define sk_for_each_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, sk_node) #define sk_nulls_for_each(__sk, node, list) \ hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) #define sk_nulls_for_each_rcu(__sk, node, list) \ hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) #define sk_for_each_from(__sk) \ hlist_for_each_entry_from(__sk, sk_node) #define sk_nulls_for_each_from(__sk, node) \ if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) #define sk_for_each_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_node) #define sk_for_each_bound(__sk, list) \ hlist_for_each_entry(__sk, list, sk_bind_node) #define sk_for_each_bound_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) /** * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @offset: offset of hlist_node within the struct. * */ #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos != NULL && \ ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ pos = rcu_dereference(hlist_next_rcu(pos))) static inline struct user_namespace *sk_user_ns(const struct sock *sk) { /* Careful only use this in a context where these parameters * can not change and must all be valid, such as recvmsg from * userspace. */ return sk->sk_socket->file->f_cred->user_ns; } /* Sock flags */ enum sock_flags { SOCK_DEAD, SOCK_DONE, SOCK_URGINLINE, SOCK_KEEPOPEN, SOCK_LINGER, SOCK_DESTROY, SOCK_BROADCAST, SOCK_TIMESTAMP, SOCK_ZAPPED, SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ SOCK_DBG, /* %SO_DEBUG setting */ SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ SOCK_MEMALLOC, /* VM depends on this socket for swapping */ SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ SOCK_FASYNC, /* fasync() active */ SOCK_RXQ_OVFL, SOCK_ZEROCOPY, /* buffers from userspace */ SOCK_WIFI_STATUS, /* push wifi status to userspace */ SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. * Will use last 4 bytes of packet sent from * user-space instead. */ SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ SOCK_TXTIME, SOCK_XDP, /* XDP is attached */ SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ }; #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) /* * The highest bit of sk_tsflags is reserved for kernel-internal * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that * SOF_TIMESTAMPING* values do not reach this reserved area */ #define SOCKCM_FLAG_TS_OPT_ID BIT(31) static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) { nsk->sk_flags = osk->sk_flags; } static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) { __set_bit(flag, &sk->sk_flags); } static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) { __clear_bit(flag, &sk->sk_flags); } static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, int valbool) { if (valbool) sock_set_flag(sk, bit); else sock_reset_flag(sk, bit); } static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) { return test_bit(flag, &sk->sk_flags); } #ifdef CONFIG_NET DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); static inline int sk_memalloc_socks(void) { return static_branch_unlikely(&memalloc_socks_key); } void __receive_sock(struct file *file); #else static inline int sk_memalloc_socks(void) { return 0; } static inline void __receive_sock(struct file *file) { } #endif static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) { return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); } static inline void sk_acceptq_removed(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); } static inline void sk_acceptq_added(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); } /* Note: If you think the test should be: * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") */ static inline bool sk_acceptq_is_full(const struct sock *sk) { return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); } /* * Compute minimal free write space needed to queue new packets. */ static inline int sk_stream_min_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_wmem_queued) >> 1; } static inline int sk_stream_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); } static inline void sk_wmem_queued_add(struct sock *sk, int val) { WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); } static inline void sk_forward_alloc_add(struct sock *sk, int val) { /* Paired with lockless reads of sk->sk_forward_alloc */ WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); } void sk_stream_write_space(struct sock *sk); /* OOB backlog add */ static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb dst not refcounted, we are going to leave rcu lock */ skb_dst_force(skb); if (!sk->sk_backlog.tail) WRITE_ONCE(sk->sk_backlog.head, skb); else sk->sk_backlog.tail->next = skb; WRITE_ONCE(sk->sk_backlog.tail, skb); skb->next = NULL; } /* * Take into account size of receive queue and backlog queue * Do not take into account this skb truesize, * to allow even a single big packet to come. */ static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) { unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); return qsize > limit; } /* The per-socket spinlock must be held here. */ static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, unsigned int limit) { if (sk_rcvqueues_full(sk, limit)) return -ENOBUFS; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) return -ENOMEM; __sk_add_backlog(sk, skb); sk->sk_backlog.len += skb->truesize; return 0; } int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (sk_memalloc_socks() && skb_pfmemalloc(skb)) return __sk_backlog_rcv(sk, skb); return INDIRECT_CALL_INET(sk->sk_backlog_rcv, tcp_v6_do_rcv, tcp_v4_do_rcv, sk, skb); } static inline void sk_incoming_cpu_update(struct sock *sk) { int cpu = raw_smp_processor_id(); if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) WRITE_ONCE(sk->sk_incoming_cpu, cpu); } static inline void sock_rps_save_rxhash(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_RPS /* The following WRITE_ONCE() is paired with the READ_ONCE() * here, and another one in sock_rps_record_flow(). */ if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) WRITE_ONCE(sk->sk_rxhash, skb->hash); #endif } static inline void sock_rps_reset_rxhash(struct sock *sk) { #ifdef CONFIG_RPS /* Paired with READ_ONCE() in sock_rps_record_flow() */ WRITE_ONCE(sk->sk_rxhash, 0); #endif } #define sk_wait_event(__sk, __timeo, __condition, __wait) \ ({ int __rc, __dis = __sk->sk_disconnects; \ release_sock(__sk); \ __rc = __condition; \ if (!__rc) { \ *(__timeo) = wait_woken(__wait, \ TASK_INTERRUPTIBLE, \ *(__timeo)); \ } \ sched_annotate_sleep(); \ lock_sock(__sk); \ __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ __rc; \ }) int sk_stream_wait_connect(struct sock *sk, long *timeo_p); int sk_stream_wait_memory(struct sock *sk, long *timeo_p); void sk_stream_wait_close(struct sock *sk, long timeo_p); int sk_stream_error(struct sock *sk, int flags, int err); void sk_stream_kill_queues(struct sock *sk); void sk_set_memalloc(struct sock *sk); void sk_clear_memalloc(struct sock *sk); void __sk_flush_backlog(struct sock *sk); static inline bool sk_flush_backlog(struct sock *sk) { if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { __sk_flush_backlog(sk); return true; } return false; } int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct smc_hashinfo; struct module; struct sk_psock; /* * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes * un-modified. Special care is taken when initializing object to zero. */ static inline void sk_prot_clear_nulls(struct sock *sk, int size) { if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, size - offsetof(struct sock, sk_node.pprev)); } struct proto_accept_arg { int flags; int err; int is_empty; bool kern; }; /* Networking protocol blocks we attach to sockets. * socket layer -> transport layer interface */ struct proto { void (*close)(struct sock *sk, long timeout); int (*pre_connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*disconnect)(struct sock *sk, int flags); struct sock * (*accept)(struct sock *sk, struct proto_accept_arg *arg); int (*ioctl)(struct sock *sk, int cmd, int *karg); int (*init)(struct sock *sk); void (*destroy)(struct sock *sk); void (*shutdown)(struct sock *sk, int how); int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); void (*keepalive)(struct sock *sk, int valbool); #ifdef CONFIG_COMPAT int (*compat_ioctl)(struct sock *sk, unsigned int cmd, unsigned long arg); #endif int (*sendmsg)(struct sock *sk, struct msghdr *msg, size_t len); int (*recvmsg)(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len); void (*splice_eof)(struct socket *sock); int (*bind)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*bind_add)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); bool (*bpf_bypass_getsockopt)(int level, int optname); void (*release_cb)(struct sock *sk); /* Keeping track of sk's, looking them up, and port selection methods. */ int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); void (*rehash)(struct sock *sk); int (*get_port)(struct sock *sk, unsigned short snum); void (*put_port)(struct sock *sk); #ifdef CONFIG_BPF_SYSCALL int (*psock_update_sk_prot)(struct sock *sk, struct sk_psock *psock, bool restore); #endif /* Keeping track of sockets in use */ #ifdef CONFIG_PROC_FS unsigned int inuse_idx; #endif bool (*stream_memory_free)(const struct sock *sk, int wake); bool (*sock_is_readable)(struct sock *sk); /* Memory pressure */ void (*enter_memory_pressure)(struct sock *sk); void (*leave_memory_pressure)(struct sock *sk); atomic_long_t *memory_allocated; /* Current allocated memory. */ int __percpu *per_cpu_fw_alloc; struct percpu_counter *sockets_allocated; /* Current number of sockets. */ /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long *memory_pressure; long *sysctl_mem; int *sysctl_wmem; int *sysctl_rmem; u32 sysctl_wmem_offset; u32 sysctl_rmem_offset; int max_header; bool no_autobind; struct kmem_cache *slab; unsigned int obj_size; unsigned int ipv6_pinfo_offset; slab_flags_t slab_flags; unsigned int useroffset; /* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ unsigned int __percpu *orphan_count; struct request_sock_ops *rsk_prot; struct timewait_sock_ops *twsk_prot; union { struct inet_hashinfo *hashinfo; struct udp_table *udp_table; struct raw_hashinfo *raw_hash; struct smc_hashinfo *smc_hash; } h; struct module *owner; char name[32]; struct list_head node; int (*diag_destroy)(struct sock *sk, int err); } __randomize_layout; int proto_register(struct proto *prot, int alloc_slab); void proto_unregister(struct proto *prot); int sock_load_diag_module(int family, int protocol); INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) { if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) return false; return sk->sk_prot->stream_memory_free ? INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, tcp_stream_memory_free, sk, wake) : true; } static inline bool sk_stream_memory_free(const struct sock *sk) { return __sk_stream_memory_free(sk, 0); } static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) { return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && __sk_stream_memory_free(sk, wake); } static inline bool sk_stream_is_writeable(const struct sock *sk) { return __sk_stream_is_writeable(sk, 0); } static inline int sk_under_cgroup_hierarchy(struct sock *sk, struct cgroup *ancestor) { #ifdef CONFIG_SOCK_CGROUP_DATA return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), ancestor); #else return -ENOTSUPP; #endif } #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 static inline void sk_sockets_allocated_dec(struct sock *sk) { percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, SK_ALLOC_PERCPU_COUNTER_BATCH); } static inline void sk_sockets_allocated_inc(struct sock *sk) { percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, SK_ALLOC_PERCPU_COUNTER_BATCH); } static inline u64 sk_sockets_allocated_read_positive(struct sock *sk) { return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); } static inline int proto_sockets_allocated_sum_positive(struct proto *prot) { return percpu_counter_sum_positive(prot->sockets_allocated); } #ifdef CONFIG_PROC_FS #define PROTO_INUSE_NR 64 /* should be enough for the first time */ struct prot_inuse { int all; int val[PROTO_INUSE_NR]; }; static inline void sock_prot_inuse_add(const struct net *net, const struct proto *prot, int val) { this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); } static inline void sock_inuse_add(const struct net *net, int val) { this_cpu_add(net->core.prot_inuse->all, val); } int sock_prot_inuse_get(struct net *net, struct proto *proto); int sock_inuse_get(struct net *net); #else static inline void sock_prot_inuse_add(const struct net *net, const struct proto *prot, int val) { } static inline void sock_inuse_add(const struct net *net, int val) { } #endif /* With per-bucket locks this operation is not-atomic, so that * this version is not worse. */ static inline int __sk_prot_rehash(struct sock *sk) { sk->sk_prot->unhash(sk); return sk->sk_prot->hash(sk); } /* About 10 seconds */ #define SOCK_DESTROY_TIME (10*HZ) /* Sockets 0-1023 can't be bound to unless you are superuser */ #define PROT_SOCK 1024 #define SHUTDOWN_MASK 3 #define RCV_SHUTDOWN 1 #define SEND_SHUTDOWN 2 #define SOCK_BINDADDR_LOCK 4 #define SOCK_BINDPORT_LOCK 8 struct socket_alloc { struct socket socket; struct inode vfs_inode; }; static inline struct socket *SOCKET_I(struct inode *inode) { return &container_of(inode, struct socket_alloc, vfs_inode)->socket; } static inline struct inode *SOCK_INODE(struct socket *socket) { return &container_of(socket, struct socket_alloc, socket)->vfs_inode; } /* * Functions for memory accounting */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); int __sk_mem_schedule(struct sock *sk, int size, int kind); void __sk_mem_reduce_allocated(struct sock *sk, int amount); void __sk_mem_reclaim(struct sock *sk, int amount); #define SK_MEM_SEND 0 #define SK_MEM_RECV 1 /* sysctl_mem values are in pages */ static inline long sk_prot_mem_limits(const struct sock *sk, int index) { return READ_ONCE(sk->sk_prot->sysctl_mem[index]); } static inline int sk_mem_pages(int amt) { return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; } static inline bool sk_has_account(struct sock *sk) { /* return true if protocol supports memory accounting */ return !!sk->sk_prot->memory_allocated; } static inline bool sk_wmem_schedule(struct sock *sk, int size) { int delta; if (!sk_has_account(sk)) return true; delta = size - sk->sk_forward_alloc; return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); } static inline bool __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) { int delta; if (!sk_has_account(sk)) return true; delta = size - sk->sk_forward_alloc; return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || pfmemalloc; } static inline bool sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) { return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); } static inline int sk_unused_reserved_mem(const struct sock *sk) { int unused_mem; if (likely(!sk->sk_reserved_mem)) return 0; unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - atomic_read(&sk->sk_rmem_alloc); return unused_mem > 0 ? unused_mem : 0; } static inline void sk_mem_reclaim(struct sock *sk) { int reclaimable; if (!sk_has_account(sk)) return; reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); if (reclaimable >= (int)PAGE_SIZE) __sk_mem_reclaim(sk, reclaimable); } static inline void sk_mem_reclaim_final(struct sock *sk) { sk->sk_reserved_mem = 0; sk_mem_reclaim(sk); } static inline void sk_mem_charge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk_forward_alloc_add(sk, -size); } static inline void sk_mem_uncharge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk_forward_alloc_add(sk, size); sk_mem_reclaim(sk); } #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) static inline void sk_owner_set(struct sock *sk, struct module *owner) { __module_get(owner); sk->sk_owner = owner; } static inline void sk_owner_clear(struct sock *sk) { sk->sk_owner = NULL; } static inline void sk_owner_put(struct sock *sk) { module_put(sk->sk_owner); } #else static inline void sk_owner_set(struct sock *sk, struct module *owner) { } static inline void sk_owner_clear(struct sock *sk) { } static inline void sk_owner_put(struct sock *sk) { } #endif /* * Macro so as to not evaluate some arguments when * lockdep is not enabled. * * Mark both the sk_lock and the sk_lock.slock as a * per-address-family lock class. */ #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ do { \ sk_owner_set(sk, THIS_MODULE); \ sk->sk_lock.owned = 0; \ init_waitqueue_head(&sk->sk_lock.wq); \ spin_lock_init(&(sk)->sk_lock.slock); \ debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ sizeof((sk)->sk_lock)); \ lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ (skey), (sname)); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ } while (0) static inline bool lockdep_sock_is_held(const struct sock *sk) { return lockdep_is_held(&sk->sk_lock) || lockdep_is_held(&sk->sk_lock.slock); } void lock_sock_nested(struct sock *sk, int subclass); static inline void lock_sock(struct sock *sk) { lock_sock_nested(sk, 0); } void __lock_sock(struct sock *sk); void __release_sock(struct sock *sk); void release_sock(struct sock *sk); /* BH context may only use the following locking interface. */ #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) #define bh_lock_sock_nested(__sk) \ spin_lock_nested(&((__sk)->sk_lock.slock), \ SINGLE_DEPTH_NESTING) #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); /** * lock_sock_fast - fast version of lock_sock * @sk: socket * * This version should be used for very small section, where process won't block * return false if fast path is taken: * * sk_lock.slock locked, owned = 0, BH disabled * * return true if slow path is taken: * * sk_lock.slock unlocked, owned = 1, BH enabled */ static inline bool lock_sock_fast(struct sock *sk) { /* The sk_lock has mutex_lock() semantics here. */ mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); return __lock_sock_fast(sk); } /* fast socket lock variant for caller already holding a [different] socket lock */ static inline bool lock_sock_fast_nested(struct sock *sk) { mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); return __lock_sock_fast(sk); } /** * unlock_sock_fast - complement of lock_sock_fast * @sk: socket * @slow: slow mode * * fast unlock socket for user context. * If slow mode is on, we call regular release_sock() */ static inline void unlock_sock_fast(struct sock *sk, bool slow) __releases(&sk->sk_lock.slock) { if (slow) { release_sock(sk); __release(&sk->sk_lock.slock); } else { mutex_release(&sk->sk_lock.dep_map, _RET_IP_); spin_unlock_bh(&sk->sk_lock.slock); } } void sockopt_lock_sock(struct sock *sk); void sockopt_release_sock(struct sock *sk); bool sockopt_ns_capable(struct user_namespace *ns, int cap); bool sockopt_capable(int cap); /* Used by processes to "lock" a socket state, so that * interrupts and bottom half handlers won't change it * from under us. It essentially blocks any incoming * packets, so that we won't get any new data or any * packets that change the state of the socket. * * While locked, BH processing will add new packets to * the backlog queue. This queue is processed by the * owner of the socket lock right before it is released. * * Since ~2.3.5 it is also exclusive sleep lock serializing * accesses from user process context. */ static inline void sock_owned_by_me(const struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); #endif } static inline void sock_not_owned_by_me(const struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); #endif } static inline bool sock_owned_by_user(const struct sock *sk) { sock_owned_by_me(sk); return sk->sk_lock.owned; } static inline bool sock_owned_by_user_nocheck(const struct sock *sk) { return sk->sk_lock.owned; } static inline void sock_release_ownership(struct sock *sk) { DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); sk->sk_lock.owned = 0; /* The sk_lock has mutex_unlock() semantics: */ mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } /* no reclassification while locks are held */ static inline bool sock_allow_reclassification(const struct sock *csk) { struct sock *sk = (struct sock *)csk; return !sock_owned_by_user_nocheck(sk) && !spin_is_locked(&sk->sk_lock.slock); } struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern); void sk_free(struct sock *sk); void sk_net_refcnt_upgrade(struct sock *sk); void sk_destruct(struct sock *sk); struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); void sk_free_unlock_clone(struct sock *sk); struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority); void __sock_wfree(struct sk_buff *skb); void sock_wfree(struct sk_buff *skb); struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority); void skb_orphan_partial(struct sk_buff *skb); void sock_rfree(struct sk_buff *skb); void sock_efree(struct sk_buff *skb); #ifdef CONFIG_INET void sock_edemux(struct sk_buff *skb); void sock_pfree(struct sk_buff *skb); static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); if (refcount_inc_not_zero(&sk->sk_refcnt)) { skb->sk = sk; skb->destructor = sock_edemux; } } #else #define sock_edemux sock_efree #endif int sk_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int sock_setsockopt(struct socket *sock, int level, int op, sockptr_t optval, unsigned int optlen); int do_sock_setsockopt(struct socket *sock, bool compat, int level, int optname, sockptr_t optval, int optlen); int do_sock_getsockopt(struct socket *sock, bool compat, int level, int optname, sockptr_t optval, sockptr_t optlen); int sk_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32); struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order); static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode) { return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); } void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void *sock_kmemdup(struct sock *sk, const void *src, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); void sock_kzfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); static inline void sock_replace_proto(struct sock *sk, struct proto *proto) { if (sk->sk_socket) clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); WRITE_ONCE(sk->sk_prot, proto); } struct sockcm_cookie { u64 transmit_time; u32 mark; u32 tsflags; u32 ts_opt_id; u32 priority; }; static inline void sockcm_init(struct sockcm_cookie *sockc, const struct sock *sk) { *sockc = (struct sockcm_cookie) { .mark = READ_ONCE(sk->sk_mark), .tsflags = READ_ONCE(sk->sk_tsflags), .priority = READ_ONCE(sk->sk_priority), }; } int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, struct sockcm_cookie *sockc); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc); /* * Functions to fill in entries in struct proto_ops when a protocol * does not implement a particular function. */ int sock_no_bind(struct socket *, struct sockaddr *, int); int sock_no_connect(struct socket *, struct sockaddr *, int, int); int sock_no_socketpair(struct socket *, struct socket *); int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); int sock_no_getname(struct socket *, struct sockaddr *, int); int sock_no_ioctl(struct socket *, unsigned int, unsigned long); int sock_no_listen(struct socket *, int); int sock_no_shutdown(struct socket *, int); int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); /* * Functions to fill in entries in struct proto_ops when a protocol * uses the inet style. */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags); int sock_common_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen); void sk_common_release(struct sock *sk); /* * Default socket callbacks and setup code */ /* Initialise core socket variables using an explicit uid. */ void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); /* Initialise core socket variables. * Assumes struct socket *sock is embedded in a struct socket_alloc. */ void sock_init_data(struct socket *sock, struct sock *sk); /* * Socket reference counting postulates. * * * Each user of socket SHOULD hold a reference count. * * Each access point to socket (an hash table bucket, reference from a list, * running timer, skb in flight MUST hold a reference count. * * When reference count hits 0, it means it will never increase back. * * When reference count hits 0, it means that no references from * outside exist to this socket and current process on current CPU * is last user and may/should destroy this socket. * * sk_free is called from any context: process, BH, IRQ. When * it is called, socket has no references from outside -> sk_free * may release descendant resources allocated by the socket, but * to the time when it is called, socket is NOT referenced by any * hash tables, lists etc. * * Packets, delivered from outside (from network or from another process) * and enqueued on receive/error queues SHOULD NOT grab reference count, * when they sit in queue. Otherwise, packets will leak to hole, when * socket is looked up by one cpu and unhasing is made by another CPU. * It is true for udp/raw, netlink (leak to receive and error queues), tcp * (leak to backlog). Packet socket does all the processing inside * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets * use separate SMP lock, so that they are prone too. */ /* Ungrab socket and destroy it, if it was the last reference. */ static inline void sock_put(struct sock *sk) { if (refcount_dec_and_test(&sk->sk_refcnt)) sk_free(sk); } /* Generic version of sock_put(), dealing with all sockets * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) */ void sock_gen_put(struct sock *sk); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted); static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) { return __sk_receive_skb(sk, skb, nested, 1, true); } static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) { /* sk_tx_queue_mapping accept only upto a 16-bit value */ if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) return; /* Paired with READ_ONCE() in sk_tx_queue_get() and * other WRITE_ONCE() because socket lock might be not held. */ WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); } #define NO_QUEUE_MAPPING USHRT_MAX static inline void sk_tx_queue_clear(struct sock *sk) { /* Paired with READ_ONCE() in sk_tx_queue_get() and * other WRITE_ONCE() because socket lock might be not held. */ WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); } static inline int sk_tx_queue_get(const struct sock *sk) { if (sk) { /* Paired with WRITE_ONCE() in sk_tx_queue_clear() * and sk_tx_queue_set(). */ int val = READ_ONCE(sk->sk_tx_queue_mapping); if (val != NO_QUEUE_MAPPING) return val; } return -1; } static inline void __sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb, bool force_set) { #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING if (skb_rx_queue_recorded(skb)) { u16 rx_queue = skb_get_rx_queue(skb); if (force_set || unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); } #endif } static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) { __sk_rx_queue_set(sk, skb, true); } static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) { __sk_rx_queue_set(sk, skb, false); } static inline void sk_rx_queue_clear(struct sock *sk) { #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); #endif } static inline int sk_rx_queue_get(const struct sock *sk) { #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING if (sk) { int res = READ_ONCE(sk->sk_rx_queue_mapping); if (res != NO_QUEUE_MAPPING) return res; } #endif return -1; } static inline void sk_set_socket(struct sock *sk, struct socket *sock) { sk->sk_socket = sock; } static inline wait_queue_head_t *sk_sleep(struct sock *sk) { BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); return &rcu_dereference_raw(sk->sk_wq)->wait; } /* Detach socket from process context. * Announce socket dead, detach it from wait queue and inode. * Note that parent inode held reference count on this struct sock, * we do not release it in this function, because protocol * probably wants some additional cleanups or even continuing * to work with this socket (TCP). */ static inline void sock_orphan(struct sock *sk) { write_lock_bh(&sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, NULL); sk->sk_wq = NULL; write_unlock_bh(&sk->sk_callback_lock); } static inline void sock_graft(struct sock *sk, struct socket *parent) { WARN_ON(parent->sk); write_lock_bh(&sk->sk_callback_lock); rcu_assign_pointer(sk->sk_wq, &parent->wq); parent->sk = sk; sk_set_socket(sk, parent); sk->sk_uid = SOCK_INODE(parent)->i_uid; security_sock_graft(sk, parent); write_unlock_bh(&sk->sk_callback_lock); } kuid_t sock_i_uid(struct sock *sk); unsigned long __sock_i_ino(struct sock *sk); unsigned long sock_i_ino(struct sock *sk); static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) { return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); } static inline u32 net_tx_rndhash(void) { u32 v = get_random_u32(); return v ?: 1; } static inline void sk_set_txhash(struct sock *sk) { /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); } static inline bool sk_rethink_txhash(struct sock *sk) { if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { sk_set_txhash(sk); return true; } return false; } static inline struct dst_entry * __sk_dst_get(const struct sock *sk) { return rcu_dereference_check(sk->sk_dst_cache, lockdep_sock_is_held(sk)); } static inline struct dst_entry * sk_dst_get(const struct sock *sk) { struct dst_entry *dst; rcu_read_lock(); dst = rcu_dereference(sk->sk_dst_cache); if (dst && !rcuref_get(&dst->__rcuref)) dst = NULL; rcu_read_unlock(); return dst; } static inline void __dst_negative_advice(struct sock *sk) { struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst->ops->negative_advice) dst->ops->negative_advice(sk, dst); } static inline void dst_negative_advice(struct sock *sk) { sk_rethink_txhash(sk); __dst_negative_advice(sk); } static inline void __sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); WRITE_ONCE(sk->sk_dst_pending_confirm, 0); old_dst = rcu_dereference_protected(sk->sk_dst_cache, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); WRITE_ONCE(sk->sk_dst_pending_confirm, 0); old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); dst_release(old_dst); } static inline void __sk_dst_reset(struct sock *sk) { __sk_dst_set(sk, NULL); } static inline void sk_dst_reset(struct sock *sk) { sk_dst_set(sk, NULL); } struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); static inline void sk_dst_confirm(struct sock *sk) { if (!READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 1); } static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) { if (skb_get_dst_pending_confirm(skb)) { struct sock *sk = skb->sk; if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 0); neigh_confirm(n); } } bool sk_mc_loop(const struct sock *sk); static inline bool sk_can_gso(const struct sock *sk) { return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst); static inline void sk_gso_disable(struct sock *sk) { sk->sk_gso_disabled = 1; sk->sk_route_caps &= ~NETIF_F_GSO_MASK; } static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, char *to, int copy, int offset) { if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, offset); } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { if (!copy_from_iter_full_nocache(to, copy, from)) return -EFAULT; } else if (!copy_from_iter_full(to, copy, from)) return -EFAULT; return 0; } static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, int copy) { int err, offset = skb->len; err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), copy, offset); if (err) __skb_trim(skb, offset); return err; } static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, struct sk_buff *skb, struct page *page, int off, int copy) { int err; err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, copy, skb->len); if (err) return err; skb_len_add(skb, copy); sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); return 0; } /** * sk_wmem_alloc_get - returns write allocations * @sk: socket * * Return: sk_wmem_alloc minus initial offset of one */ static inline int sk_wmem_alloc_get(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) - 1; } /** * sk_rmem_alloc_get - returns read allocations * @sk: socket * * Return: sk_rmem_alloc */ static inline int sk_rmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc); } /** * sk_has_allocations - check if allocations are outstanding * @sk: socket * * Return: true if socket has write or read allocations */ static inline bool sk_has_allocations(const struct sock *sk) { return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); } /** * skwq_has_sleeper - check if there are any waiting processes * @wq: struct socket_wq * * Return: true if socket_wq has waiting processes * * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory * barrier call. They were added due to the race found within the tcp code. * * Consider following tcp code paths:: * * CPU1 CPU2 * sys_select receive packet * ... ... * __add_wait_queue update tp->rcv_nxt * ... ... * tp->rcv_nxt check sock_def_readable * ... { * schedule rcu_read_lock(); * wq = rcu_dereference(sk->sk_wq); * if (wq && waitqueue_active(&wq->wait)) * wake_up_interruptible(&wq->wait) * ... * } * * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 * could then endup calling schedule and sleep forever if there are no more * data on the socket. * */ static inline bool skwq_has_sleeper(struct socket_wq *wq) { return wq && wq_has_sleeper(&wq->wait); } /** * sock_poll_wait - wrapper for the poll_wait call. * @filp: file * @sock: socket to wait on * @p: poll_table * * See the comments in the wq_has_sleeper function. */ static inline void sock_poll_wait(struct file *filp, struct socket *sock, poll_table *p) { /* Provides a barrier we need to be sure we are in sync * with the socket flags modification. * * This memory barrier is paired in the wq_has_sleeper. */ poll_wait(filp, &sock->wq.wait, p); } static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) { /* This pairs with WRITE_ONCE() in sk_set_txhash() */ u32 txhash = READ_ONCE(sk->sk_txhash); if (txhash) { skb->l4_hash = 1; skb->hash = txhash; } } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); /* * Queue a received datagram if it will fit. Stream and sequenced * protocols can't normally use this as they need to fit buffers in * and play with them. * * Inlined as it's very short and called for pretty much every * packet ever received. */ static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) { if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { skb_orphan(skb); skb->destructor = sock_efree; skb->sk = sk; return true; } return false; } static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) { skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); if (skb) { if (sk_rmem_schedule(sk, skb, skb->truesize)) { skb_set_owner_r(skb, sk); return skb; } __kfree_skb(skb); } return NULL; } static inline void skb_prepare_for_gro(struct sk_buff *skb) { if (skb->destructor != sock_wfree) { skb_orphan(skb); return; } skb->slow_gro = 1; } void sk_reset_timer(struct sock *sk, struct timer_list *timer, unsigned long expires); void sk_stop_timer(struct sock *sk, struct timer_list *timer); void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, struct sk_buff *skb, unsigned int flags, void (*destructor)(struct sock *sk, struct sk_buff *skb)); int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { return sock_queue_rcv_skb_reason(sk, skb, NULL); } int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk); /* * Recover an error report and clear atomically */ static inline int sock_error(struct sock *sk) { int err; /* Avoid an atomic operation for the common case. * This is racy since another cpu/thread can change sk_err under us. */ if (likely(data_race(!sk->sk_err))) return 0; err = xchg(&sk->sk_err, 0); return -err; } void sk_error_report(struct sock *sk); static inline unsigned long sock_wspace(struct sock *sk) { int amt = 0; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; } return amt; } /* Note: * We use sk->sk_wq_raw, from contexts knowing this * pointer is not NULL and cannot disappear/change. */ static inline void sk_set_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; set_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_clear_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; clear_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_wake_async(const struct sock *sk, int how, int band) { if (sock_flag(sk, SOCK_FASYNC)) { rcu_read_lock(); sock_wake_async(rcu_dereference(sk->sk_wq), how, band); rcu_read_unlock(); } } static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) { if (unlikely(sock_flag(sk, SOCK_FASYNC))) sock_wake_async(rcu_dereference(sk->sk_wq), how, band); } /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. * Note: for send buffers, TCP works better if we can build two skbs at * minimum. */ #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE static inline void sk_stream_moderate_sndbuf(struct sock *sk) { u32 val; if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) return; val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); val = max_t(u32, val, sk_unused_reserved_mem(sk)); WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); } /** * sk_page_frag - return an appropriate page_frag * @sk: socket * * Use the per task page_frag instead of the per socket one for * optimization when we know that we're in process context and own * everything that's associated with %current. * * Both direct reclaim and page faults can nest inside other * socket operations and end up recursing into sk_page_frag() * while it's already in use: explicitly avoid task page_frag * when users disable sk_use_task_frag. * * Return: a per task page_frag if context allows that, * otherwise a per socket one. */ static inline struct page_frag *sk_page_frag(struct sock *sk) { if (sk->sk_use_task_frag) return &current->task_frag; return &sk->sk_frag; } bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); /* * Default write policy as shown to user space via poll/select/SIGIO */ static inline bool sock_writeable(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); } static inline gfp_t gfp_any(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline gfp_t gfp_memcg_charge(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_rcvtimeo; } static inline long sock_sndtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_sndtimeo; } static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) { int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); return v ?: 1; } /* Alas, with timeout socket operations are not restartable. * Compare this to poll(). */ static inline int sock_intr_errno(long timeo) { return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; } struct sock_skb_cb { u32 dropcount; }; /* Store sock_skb_cb at the end of skb->cb[] so protocol families * using skb->cb[] would keep using it directly and utilize its * alignment guarantee. */ #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ sizeof(struct sock_skb_cb))) #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ SOCK_SKB_CB_OFFSET)) #define sock_skb_cb_check_size(size) \ BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) static inline void sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) { SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? atomic_read(&sk->sk_drops) : 0; } static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) { int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); atomic_add(segs, &sk->sk_drops); } static inline ktime_t sock_read_timestamp(struct sock *sk) { #if BITS_PER_LONG==32 unsigned int seq; ktime_t kt; do { seq = read_seqbegin(&sk->sk_stamp_seq); kt = sk->sk_stamp; } while (read_seqretry(&sk->sk_stamp_seq, seq)); return kt; #else return READ_ONCE(sk->sk_stamp); #endif } static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) { #if BITS_PER_LONG==32 write_seqlock(&sk->sk_stamp_seq); sk->sk_stamp = kt; write_sequnlock(&sk->sk_stamp_seq); #else WRITE_ONCE(sk->sk_stamp, kt); #endif } void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); u32 tsflags = READ_ONCE(sk->sk_tsflags); ktime_t kt = skb->tstamp; /* * generate control messages if * - receive time stamping in software requested * - software time stamp available and wanted * - hardware time stamps available and wanted */ if (sock_flag(sk, SOCK_RCVTSTAMP) || (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || (hwtstamps->hwtstamp && (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) __sock_recv_timestamp(msg, sk, skb); else sock_write_timestamp(sk, kt); if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) __sock_recv_wifi_status(msg, sk, skb); } void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_RCVTSTAMP) | \ (1UL << SOCK_RCVMARK) | \ (1UL << SOCK_RCVPRIORITY) | \ (1UL << SOCK_TIMESTAMPING_ANY)) #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) __sock_recv_cmsgs(msg, sk, skb); else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) sock_write_timestamp(sk, skb->tstamp); else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) sock_write_timestamp(sk, 0); } void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); /** * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped * @sk: socket sending this packet * @sockc: pointer to socket cmsg cookie to get timestamping info * @tx_flags: completed with instructions for time stamping * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) * * Note: callers should take care of initial ``*tx_flags`` value (usually 0) */ static inline void _sock_tx_timestamp(struct sock *sk, const struct sockcm_cookie *sockc, __u8 *tx_flags, __u32 *tskey) { __u32 tsflags = sockc->tsflags; if (unlikely(tsflags)) { __sock_tx_timestamp(tsflags, tx_flags); if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { if (tsflags & SOCKCM_FLAG_TS_OPT_ID) *tskey = sockc->ts_opt_id; else *tskey = atomic_inc_return(&sk->sk_tskey) - 1; } } if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) *tx_flags |= SKBTX_WIFI_STATUS; } static inline void sock_tx_timestamp(struct sock *sk, const struct sockcm_cookie *sockc, __u8 *tx_flags) { _sock_tx_timestamp(sk, sockc, tx_flags, NULL); } static inline void skb_setup_tx_timestamp(struct sk_buff *skb, const struct sockcm_cookie *sockc) { _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, &skb_shinfo(skb)->tskey); } static inline bool sk_is_inet(const struct sock *sk) { int family = READ_ONCE(sk->sk_family); return family == AF_INET || family == AF_INET6; } static inline bool sk_is_tcp(const struct sock *sk) { return sk_is_inet(sk) && sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP; } static inline bool sk_is_udp(const struct sock *sk) { return sk_is_inet(sk) && sk->sk_type == SOCK_DGRAM && sk->sk_protocol == IPPROTO_UDP; } static inline bool sk_is_stream_unix(const struct sock *sk) { return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM; } static inline bool sk_is_vsock(const struct sock *sk) { return sk->sk_family == AF_VSOCK; } /** * sk_eat_skb - Release a skb if it is no longer needed * @sk: socket to eat this skb from * @skb: socket buffer to eat * * This routine must be called with interrupts disabled or with the socket * locked so that the sk_buff queue operation is ok. */ static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); __kfree_skb(skb); } static inline bool skb_sk_is_prefetched(struct sk_buff *skb) { #ifdef CONFIG_INET return skb->destructor == sock_pfree; #else return false; #endif /* CONFIG_INET */ } /* This helper checks if a socket is a full socket, * ie _not_ a timewait or request socket. */ static inline bool sk_fullsock(const struct sock *sk) { return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); } static inline bool sk_is_refcounted(struct sock *sk) { /* Only full sockets have sk->sk_flags. */ return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); } /* Checks if this SKB belongs to an HW offloaded socket * and whether any SW fallbacks are required based on dev. * Check decrypted mark in case skb_orphan() cleared socket. */ static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) { #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sock *sk = skb->sk; if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { skb = sk->sk_validate_xmit_skb(sk, dev, skb); } else if (unlikely(skb_is_decrypted(skb))) { pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); kfree_skb(skb); skb = NULL; } #endif return skb; } /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) */ static inline bool sk_listener(const struct sock *sk) { return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); } /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) * TCP RST and ACK can be attached to TIME_WAIT. */ static inline bool sk_listener_or_tw(const struct sock *sk) { return (1 << READ_ONCE(sk->sk_state)) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); } void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type); bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap); bool sk_capable(const struct sock *sk, int cap); bool sk_net_capable(const struct sock *sk, int cap); void sk_get_meminfo(const struct sock *sk, u32 *meminfo); /* Take into consideration the size of the struct sk_buff overhead in the * determination of these values, since that is non-constant across * platforms. This makes socket queueing behavior and performance * not depend upon such differences. */ #define _SK_MEM_PACKETS 256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; extern __u32 sysctl_wmem_default; extern __u32 sysctl_rmem_default; #define SKB_FRAG_PAGE_ORDER get_order(32768) DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_wmem ? */ if (proto->sysctl_wmem_offset) return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); return READ_ONCE(*proto->sysctl_wmem); } static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_rmem ? */ if (proto->sysctl_rmem_offset) return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); return READ_ONCE(*proto->sysctl_rmem); } /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) * Some wifi drivers need to tweak it to get more chunks. * They can use this helper from their ndo_start_xmit() */ static inline void sk_pacing_shift_update(struct sock *sk, int val) { if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) return; WRITE_ONCE(sk->sk_pacing_shift, val); } /* if a socket is bound to a device, check that the given device * index is either the same or that the socket is bound to an L3 * master device and the given device index is also enslaved to * that L3 master */ static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) { int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); int mdif; if (!bound_dev_if || bound_dev_if == dif) return true; mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); if (mdif && mdif == bound_dev_if) return true; return false; } void sock_def_readable(struct sock *sk); int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); void sock_set_timestamp(struct sock *sk, int optname, bool valbool); int sock_set_timestamping(struct sock *sk, int optname, struct so_timestamping timestamping); void sock_enable_timestamps(struct sock *sk); #if defined(CONFIG_CGROUP_BPF) void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); #else static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) { } #endif void sock_no_linger(struct sock *sk); void sock_set_keepalive(struct sock *sk); void sock_set_priority(struct sock *sk, u32 priority); void sock_set_rcvbuf(struct sock *sk, int val); void sock_set_mark(struct sock *sk, u32 val); void sock_set_reuseaddr(struct sock *sk); void sock_set_reuseport(struct sock *sk); void sock_set_sndtimeo(struct sock *sk, s64 secs); int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); int sock_get_timeout(long timeo, void *optval, bool old_timeval); int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, sockptr_t optval, int optlen, bool old_timeval); int sock_ioctl_inout(struct sock *sk, unsigned int cmd, void __user *arg, void *karg, size_t size); int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); static inline bool sk_is_readable(struct sock *sk) { if (sk->sk_prot->sock_is_readable) return sk->sk_prot->sock_is_readable(sk); return false; } #endif /* _SOCK_H */
22 22 200 200 10 10 130 3 127 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 /* * Compatibility functions which bloat the callers too much to make inline. * All of the callers of these functions should be converted to use folios * eventually. */ #include <linux/migrate.h> #include <linux/pagemap.h> #include <linux/rmap.h> #include <linux/swap.h> #include "internal.h" void unlock_page(struct page *page) { return folio_unlock(page_folio(page)); } EXPORT_SYMBOL(unlock_page); void end_page_writeback(struct page *page) { return folio_end_writeback(page_folio(page)); } EXPORT_SYMBOL(end_page_writeback); void wait_on_page_writeback(struct page *page) { return folio_wait_writeback(page_folio(page)); } EXPORT_SYMBOL_GPL(wait_on_page_writeback); void mark_page_accessed(struct page *page) { folio_mark_accessed(page_folio(page)); } EXPORT_SYMBOL(mark_page_accessed); void set_page_writeback(struct page *page) { folio_start_writeback(page_folio(page)); } EXPORT_SYMBOL(set_page_writeback); bool set_page_dirty(struct page *page) { return folio_mark_dirty(page_folio(page)); } EXPORT_SYMBOL(set_page_dirty); int set_page_dirty_lock(struct page *page) { return folio_mark_dirty_lock(page_folio(page)); } EXPORT_SYMBOL(set_page_dirty_lock); bool clear_page_dirty_for_io(struct page *page) { return folio_clear_dirty_for_io(page_folio(page)); } EXPORT_SYMBOL(clear_page_dirty_for_io); bool redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) { return folio_redirty_for_writepage(wbc, page_folio(page)); } EXPORT_SYMBOL(redirty_page_for_writepage); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp) { return filemap_add_folio(mapping, page_folio(page), index, gfp); } EXPORT_SYMBOL(add_to_page_cache_lru); noinline struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, fgf_t fgp_flags, gfp_t gfp) { struct folio *folio; folio = __filemap_get_folio(mapping, index, fgp_flags, gfp); if (IS_ERR(folio)) return NULL; return folio_file_page(folio, index); } EXPORT_SYMBOL(pagecache_get_page);
3 1 2 3 1 2 1 1 21 22 11 12 2 1 1 1 2 1 1 1 1 2 1 1 2 1 44 2 4 5 7 35 42 42 35 5 40 4 35 1 35 1 3 3 10 1 2 2 4 3 2 1 3 9 8 1 4 1 1 1 1 3 73 60 13 2 2 2 2 2 12 2 14 14 80 80 80 81 81 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/nfs/fs_context.c * * Copyright (C) 1992 Rick Sladkey * Conversion to new mount api Copyright (C) David Howells * * NFS mount handling. * * Split from fs/nfs/super.c by David Howells <dhowells@redhat.com> */ #include <linux/compat.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/nfs_fs.h> #include <linux/nfs_mount.h> #include <linux/nfs4_mount.h> #include <net/handshake.h> #include "nfs.h" #include "internal.h" #include "nfstrace.h" #define NFSDBG_FACILITY NFSDBG_MOUNT #if IS_ENABLED(CONFIG_NFS_V3) #define NFS_DEFAULT_VERSION 3 #else #define NFS_DEFAULT_VERSION 2 #endif #define NFS_MAX_CONNECTIONS 16 enum nfs_param { Opt_ac, Opt_acdirmax, Opt_acdirmin, Opt_acl, Opt_acregmax, Opt_acregmin, Opt_actimeo, Opt_addr, Opt_bg, Opt_bsize, Opt_clientaddr, Opt_cto, Opt_alignwrite, Opt_fatal_neterrors, Opt_fg, Opt_fscache, Opt_fscache_flag, Opt_hard, Opt_intr, Opt_local_lock, Opt_lock, Opt_lookupcache, Opt_migration, Opt_minorversion, Opt_mountaddr, Opt_mounthost, Opt_mountport, Opt_mountproto, Opt_mountvers, Opt_namelen, Opt_nconnect, Opt_max_connect, Opt_port, Opt_posix, Opt_proto, Opt_rdirplus, Opt_rdirplus_none, Opt_rdirplus_force, Opt_rdma, Opt_resvport, Opt_retrans, Opt_retry, Opt_rsize, Opt_sec, Opt_sharecache, Opt_sloppy, Opt_soft, Opt_softerr, Opt_softreval, Opt_source, Opt_tcp, Opt_timeo, Opt_trunkdiscovery, Opt_udp, Opt_v, Opt_vers, Opt_wsize, Opt_write, Opt_xprtsec, }; enum { Opt_fatal_neterrors_default, Opt_fatal_neterrors_enetunreach, Opt_fatal_neterrors_none, }; static const struct constant_table nfs_param_enums_fatal_neterrors[] = { { "default", Opt_fatal_neterrors_default }, { "ENETDOWN:ENETUNREACH", Opt_fatal_neterrors_enetunreach }, { "ENETUNREACH:ENETDOWN", Opt_fatal_neterrors_enetunreach }, { "none", Opt_fatal_neterrors_none }, {} }; enum { Opt_local_lock_all, Opt_local_lock_flock, Opt_local_lock_none, Opt_local_lock_posix, }; static const struct constant_table nfs_param_enums_local_lock[] = { { "all", Opt_local_lock_all }, { "flock", Opt_local_lock_flock }, { "posix", Opt_local_lock_posix }, { "none", Opt_local_lock_none }, {} }; enum { Opt_lookupcache_all, Opt_lookupcache_none, Opt_lookupcache_positive, }; static const struct constant_table nfs_param_enums_lookupcache[] = { { "all", Opt_lookupcache_all }, { "none", Opt_lookupcache_none }, { "pos", Opt_lookupcache_positive }, { "positive", Opt_lookupcache_positive }, {} }; enum { Opt_write_lazy, Opt_write_eager, Opt_write_wait, }; static const struct constant_table nfs_param_enums_write[] = { { "lazy", Opt_write_lazy }, { "eager", Opt_write_eager }, { "wait", Opt_write_wait }, {} }; static const struct fs_parameter_spec nfs_fs_parameters[] = { fsparam_flag_no("ac", Opt_ac), fsparam_u32 ("acdirmax", Opt_acdirmax), fsparam_u32 ("acdirmin", Opt_acdirmin), fsparam_flag_no("acl", Opt_acl), fsparam_u32 ("acregmax", Opt_acregmax), fsparam_u32 ("acregmin", Opt_acregmin), fsparam_u32 ("actimeo", Opt_actimeo), fsparam_string("addr", Opt_addr), fsparam_flag ("bg", Opt_bg), fsparam_u32 ("bsize", Opt_bsize), fsparam_string("clientaddr", Opt_clientaddr), fsparam_flag_no("cto", Opt_cto), fsparam_flag_no("alignwrite", Opt_alignwrite), fsparam_enum("fatal_neterrors", Opt_fatal_neterrors, nfs_param_enums_fatal_neterrors), fsparam_flag ("fg", Opt_fg), fsparam_flag_no("fsc", Opt_fscache_flag), fsparam_string("fsc", Opt_fscache), fsparam_flag ("hard", Opt_hard), __fsparam(NULL, "intr", Opt_intr, fs_param_neg_with_no|fs_param_deprecated, NULL), fsparam_enum ("local_lock", Opt_local_lock, nfs_param_enums_local_lock), fsparam_flag_no("lock", Opt_lock), fsparam_enum ("lookupcache", Opt_lookupcache, nfs_param_enums_lookupcache), fsparam_flag_no("migration", Opt_migration), fsparam_u32 ("minorversion", Opt_minorversion), fsparam_string("mountaddr", Opt_mountaddr), fsparam_string("mounthost", Opt_mounthost), fsparam_u32 ("mountport", Opt_mountport), fsparam_string("mountproto", Opt_mountproto), fsparam_u32 ("mountvers", Opt_mountvers), fsparam_u32 ("namlen", Opt_namelen), fsparam_u32 ("nconnect", Opt_nconnect), fsparam_u32 ("max_connect", Opt_max_connect), fsparam_string("nfsvers", Opt_vers), fsparam_u32 ("port", Opt_port), fsparam_flag_no("posix", Opt_posix), fsparam_string("proto", Opt_proto), fsparam_flag_no("rdirplus", Opt_rdirplus), // rdirplus|nordirplus fsparam_string("rdirplus", Opt_rdirplus), // rdirplus=... fsparam_flag ("rdma", Opt_rdma), fsparam_flag_no("resvport", Opt_resvport), fsparam_u32 ("retrans", Opt_retrans), fsparam_string("retry", Opt_retry), fsparam_u32 ("rsize", Opt_rsize), fsparam_string("sec", Opt_sec), fsparam_flag_no("sharecache", Opt_sharecache), fsparam_flag ("sloppy", Opt_sloppy), fsparam_flag ("soft", Opt_soft), fsparam_flag ("softerr", Opt_softerr), fsparam_flag ("softreval", Opt_softreval), fsparam_string("source", Opt_source), fsparam_flag ("tcp", Opt_tcp), fsparam_u32 ("timeo", Opt_timeo), fsparam_flag_no("trunkdiscovery", Opt_trunkdiscovery), fsparam_flag ("udp", Opt_udp), fsparam_flag ("v2", Opt_v), fsparam_flag ("v3", Opt_v), fsparam_flag ("v4", Opt_v), fsparam_flag ("v4.0", Opt_v), fsparam_flag ("v4.1", Opt_v), fsparam_flag ("v4.2", Opt_v), fsparam_string("vers", Opt_vers), fsparam_enum ("write", Opt_write, nfs_param_enums_write), fsparam_u32 ("wsize", Opt_wsize), fsparam_string("xprtsec", Opt_xprtsec), {} }; enum { Opt_vers_2, Opt_vers_3, Opt_vers_4, Opt_vers_4_0, Opt_vers_4_1, Opt_vers_4_2, }; static const struct constant_table nfs_vers_tokens[] = { { "2", Opt_vers_2 }, { "3", Opt_vers_3 }, { "4", Opt_vers_4 }, { "4.0", Opt_vers_4_0 }, { "4.1", Opt_vers_4_1 }, { "4.2", Opt_vers_4_2 }, {} }; enum { Opt_xprt_rdma, Opt_xprt_rdma6, Opt_xprt_tcp, Opt_xprt_tcp6, Opt_xprt_udp, Opt_xprt_udp6, nr__Opt_xprt }; static const struct constant_table nfs_xprt_protocol_tokens[] = { { "rdma", Opt_xprt_rdma }, { "rdma6", Opt_xprt_rdma6 }, { "tcp", Opt_xprt_tcp }, { "tcp6", Opt_xprt_tcp6 }, { "udp", Opt_xprt_udp }, { "udp6", Opt_xprt_udp6 }, {} }; enum { Opt_sec_krb5, Opt_sec_krb5i, Opt_sec_krb5p, Opt_sec_lkey, Opt_sec_lkeyi, Opt_sec_lkeyp, Opt_sec_none, Opt_sec_spkm, Opt_sec_spkmi, Opt_sec_spkmp, Opt_sec_sys, nr__Opt_sec }; static const struct constant_table nfs_secflavor_tokens[] = { { "krb5", Opt_sec_krb5 }, { "krb5i", Opt_sec_krb5i }, { "krb5p", Opt_sec_krb5p }, { "lkey", Opt_sec_lkey }, { "lkeyi", Opt_sec_lkeyi }, { "lkeyp", Opt_sec_lkeyp }, { "none", Opt_sec_none }, { "null", Opt_sec_none }, { "spkm3", Opt_sec_spkm }, { "spkm3i", Opt_sec_spkmi }, { "spkm3p", Opt_sec_spkmp }, { "sys", Opt_sec_sys }, {} }; enum { Opt_xprtsec_none, Opt_xprtsec_tls, Opt_xprtsec_mtls, nr__Opt_xprtsec }; static const struct constant_table nfs_xprtsec_policies[] = { { "none", Opt_xprtsec_none }, { "tls", Opt_xprtsec_tls }, { "mtls", Opt_xprtsec_mtls }, {} }; static const struct constant_table nfs_rdirplus_tokens[] = { { "none", Opt_rdirplus_none }, { "force", Opt_rdirplus_force }, {} }; /* * Sanity-check a server address provided by the mount command. * * Address family must be initialized, and address must not be * the ANY address for that family. */ static int nfs_verify_server_address(struct sockaddr_storage *addr) { switch (addr->ss_family) { case AF_INET: { struct sockaddr_in *sa = (struct sockaddr_in *)addr; return sa->sin_addr.s_addr != htonl(INADDR_ANY); } case AF_INET6: { struct in6_addr *sa = &((struct sockaddr_in6 *)addr)->sin6_addr; return !ipv6_addr_any(sa); } } return 0; } #ifdef CONFIG_NFS_DISABLE_UDP_SUPPORT static bool nfs_server_transport_udp_invalid(const struct nfs_fs_context *ctx) { return true; } #else static bool nfs_server_transport_udp_invalid(const struct nfs_fs_context *ctx) { if (ctx->version == 4) return true; return false; } #endif /* * Sanity check the NFS transport protocol. */ static int nfs_validate_transport_protocol(struct fs_context *fc, struct nfs_fs_context *ctx) { switch (ctx->nfs_server.protocol) { case XPRT_TRANSPORT_UDP: if (nfs_server_transport_udp_invalid(ctx)) goto out_invalid_transport_udp; break; case XPRT_TRANSPORT_TCP: case XPRT_TRANSPORT_RDMA: break; default: ctx->nfs_server.protocol = XPRT_TRANSPORT_TCP; } if (ctx->xprtsec.policy != RPC_XPRTSEC_NONE) switch (ctx->nfs_server.protocol) { case XPRT_TRANSPORT_TCP: ctx->nfs_server.protocol = XPRT_TRANSPORT_TCP_TLS; break; default: goto out_invalid_xprtsec_policy; } return 0; out_invalid_transport_udp: return nfs_invalf(fc, "NFS: Unsupported transport protocol udp"); out_invalid_xprtsec_policy: return nfs_invalf(fc, "NFS: Transport does not support xprtsec"); } /* * For text based NFSv2/v3 mounts, the mount protocol transport default * settings should depend upon the specified NFS transport. */ static void nfs_set_mount_transport_protocol(struct nfs_fs_context *ctx) { if (ctx->mount_server.protocol == XPRT_TRANSPORT_UDP || ctx->mount_server.protocol == XPRT_TRANSPORT_TCP) return; switch (ctx->nfs_server.protocol) { case XPRT_TRANSPORT_UDP: ctx->mount_server.protocol = XPRT_TRANSPORT_UDP; break; case XPRT_TRANSPORT_TCP: case XPRT_TRANSPORT_RDMA: ctx->mount_server.protocol = XPRT_TRANSPORT_TCP; } } /* * Add 'flavor' to 'auth_info' if not already present. * Returns true if 'flavor' ends up in the list, false otherwise */ static int nfs_auth_info_add(struct fs_context *fc, struct nfs_auth_info *auth_info, rpc_authflavor_t flavor) { unsigned int i; unsigned int max_flavor_len = ARRAY_SIZE(auth_info->flavors); /* make sure this flavor isn't already in the list */ for (i = 0; i < auth_info->flavor_len; i++) { if (flavor == auth_info->flavors[i]) return 0; } if (auth_info->flavor_len + 1 >= max_flavor_len) return nfs_invalf(fc, "NFS: too many sec= flavors"); auth_info->flavors[auth_info->flavor_len++] = flavor; return 0; } /* * Parse the value of the 'sec=' option. */ static int nfs_parse_security_flavors(struct fs_context *fc, struct fs_parameter *param) { struct nfs_fs_context *ctx = nfs_fc2context(fc); rpc_authflavor_t pseudoflavor; char *string = param->string, *p; int ret; trace_nfs_mount_assign(param->key, string); while ((p = strsep(&string, ":")) != NULL) { if (!*p) continue; switch (lookup_constant(nfs_secflavor_tokens, p, -1)) { case Opt_sec_none: pseudoflavor = RPC_AUTH_NULL; break; case Opt_sec_sys: pseudoflavor = RPC_AUTH_UNIX; break; case Opt_sec_krb5: pseudoflavor = RPC_AUTH_GSS_KRB5; break; case Opt_sec_krb5i: pseudoflavor = RPC_AUTH_GSS_KRB5I; break; case Opt_sec_krb5p: pseudoflavor = RPC_AUTH_GSS_KRB5P; break; case Opt_sec_lkey: pseudoflavor = RPC_AUTH_GSS_LKEY; break; case Opt_sec_lkeyi: pseudoflavor = RPC_AUTH_GSS_LKEYI; break; case Opt_sec_lkeyp: pseudoflavor = RPC_AUTH_GSS_LKEYP; break; case Opt_sec_spkm: pseudoflavor = RPC_AUTH_GSS_SPKM; break; case Opt_sec_spkmi: pseudoflavor = RPC_AUTH_GSS_SPKMI; break; case Opt_sec_spkmp: pseudoflavor = RPC_AUTH_GSS_SPKMP; break; default: return nfs_invalf(fc, "NFS: sec=%s option not recognized", p); } ret = nfs_auth_info_add(fc, &ctx->auth_info, pseudoflavor); if (ret < 0) return ret; } return 0; } static int nfs_parse_xprtsec_policy(struct fs_context *fc, struct fs_parameter *param) { struct nfs_fs_context *ctx = nfs_fc2context(fc); trace_nfs_mount_assign(param->key, param->string); switch (lookup_constant(nfs_xprtsec_policies, param->string, -1)) { case Opt_xprtsec_none: ctx->xprtsec.policy = RPC_XPRTSEC_NONE; break; case Opt_xprtsec_tls: ctx->xprtsec.policy = RPC_XPRTSEC_TLS_ANON; break; case Opt_xprtsec_mtls: ctx->xprtsec.policy = RPC_XPRTSEC_TLS_X509; break; default: return nfs_invalf(fc, "NFS: Unrecognized transport security policy"); } return 0; } static int nfs_parse_version_string(struct fs_context *fc, const char *string) { struct nfs_fs_context *ctx = nfs_fc2context(fc); ctx->flags &= ~NFS_MOUNT_VER3; switch (lookup_constant(nfs_vers_tokens, string, -1)) { case Opt_vers_2: ctx->version = 2; break; case Opt_vers_3: ctx->flags |= NFS_MOUNT_VER3; ctx->version = 3; break; case Opt_vers_4: /* Backward compatibility option. In future, * the mount program should always supply * a NFSv4 minor version number. */ ctx->version = 4; break; case Opt_vers_4_0: ctx->version = 4; ctx->minorversion = 0; break; case Opt_vers_4_1: ctx->version = 4; ctx->minorversion = 1; break; case Opt_vers_4_2: ctx->version = 4; ctx->minorversion = 2; break; default: return nfs_invalf(fc, "NFS: Unsupported NFS version"); } return 0; } /* * Parse a single mount parameter. */ static int nfs_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result result; struct nfs_fs_context *ctx = nfs_fc2context(fc); unsigned short protofamily, mountfamily; unsigned int len; int ret, opt; trace_nfs_mount_option(param); opt = fs_parse(fc, nfs_fs_parameters, param, &result); if (opt < 0) return (opt == -ENOPARAM && ctx->sloppy) ? 1 : opt; if (fc->security) ctx->has_sec_mnt_opts = 1; switch (opt) { case Opt_source: if (fc->source) return nfs_invalf(fc, "NFS: Multiple sources not supported"); fc->source = param->string; param->string = NULL; break; /* * boolean options: foo/nofoo */ case Opt_soft: ctx->flags |= NFS_MOUNT_SOFT; ctx->flags &= ~NFS_MOUNT_SOFTERR; break; case Opt_softerr: ctx->flags |= NFS_MOUNT_SOFTERR | NFS_MOUNT_SOFTREVAL; ctx->flags &= ~NFS_MOUNT_SOFT; break; case Opt_hard: ctx->flags &= ~(NFS_MOUNT_SOFT | NFS_MOUNT_SOFTERR | NFS_MOUNT_SOFTREVAL); break; case Opt_softreval: if (result.negated) ctx->flags &= ~NFS_MOUNT_SOFTREVAL; else ctx->flags |= NFS_MOUNT_SOFTREVAL; break; case Opt_posix: if (result.negated) ctx->flags &= ~NFS_MOUNT_POSIX; else ctx->flags |= NFS_MOUNT_POSIX; break; case Opt_cto: if (result.negated) ctx->flags |= NFS_MOUNT_NOCTO; else ctx->flags &= ~NFS_MOUNT_NOCTO; break; case Opt_trunkdiscovery: if (result.negated) ctx->flags &= ~NFS_MOUNT_TRUNK_DISCOVERY; else ctx->flags |= NFS_MOUNT_TRUNK_DISCOVERY; break; case Opt_alignwrite: if (result.negated) ctx->flags |= NFS_MOUNT_NO_ALIGNWRITE; else ctx->flags &= ~NFS_MOUNT_NO_ALIGNWRITE; break; case Opt_ac: if (result.negated) ctx->flags |= NFS_MOUNT_NOAC; else ctx->flags &= ~NFS_MOUNT_NOAC; break; case Opt_lock: if (result.negated) { ctx->lock_status = NFS_LOCK_NOLOCK; ctx->flags |= NFS_MOUNT_NONLM; ctx->flags |= (NFS_MOUNT_LOCAL_FLOCK | NFS_MOUNT_LOCAL_FCNTL); } else { ctx->lock_status = NFS_LOCK_LOCK; ctx->flags &= ~NFS_MOUNT_NONLM; ctx->flags &= ~(NFS_MOUNT_LOCAL_FLOCK | NFS_MOUNT_LOCAL_FCNTL); } break; case Opt_udp: ctx->flags &= ~NFS_MOUNT_TCP; ctx->nfs_server.protocol = XPRT_TRANSPORT_UDP; break; case Opt_tcp: case Opt_rdma: ctx->flags |= NFS_MOUNT_TCP; /* for side protocols */ ret = xprt_find_transport_ident(param->key); if (ret < 0) goto out_bad_transport; ctx->nfs_server.protocol = ret; break; case Opt_acl: if (result.negated) ctx->flags |= NFS_MOUNT_NOACL; else ctx->flags &= ~NFS_MOUNT_NOACL; break; case Opt_rdirplus: if (result.negated) { ctx->flags &= ~NFS_MOUNT_FORCE_RDIRPLUS; ctx->flags |= NFS_MOUNT_NORDIRPLUS; } else if (!param->string) { ctx->flags &= ~(NFS_MOUNT_NORDIRPLUS | NFS_MOUNT_FORCE_RDIRPLUS); } else { switch (lookup_constant(nfs_rdirplus_tokens, param->string, -1)) { case Opt_rdirplus_none: ctx->flags &= ~NFS_MOUNT_FORCE_RDIRPLUS; ctx->flags |= NFS_MOUNT_NORDIRPLUS; break; case Opt_rdirplus_force: ctx->flags &= ~NFS_MOUNT_NORDIRPLUS; ctx->flags |= NFS_MOUNT_FORCE_RDIRPLUS; break; default: goto out_invalid_value; } } break; case Opt_sharecache: if (result.negated) ctx->flags |= NFS_MOUNT_UNSHARED; else ctx->flags &= ~NFS_MOUNT_UNSHARED; break; case Opt_resvport: if (result.negated) ctx->flags |= NFS_MOUNT_NORESVPORT; else ctx->flags &= ~NFS_MOUNT_NORESVPORT; break; case Opt_fscache_flag: if (result.negated) ctx->options &= ~NFS_OPTION_FSCACHE; else ctx->options |= NFS_OPTION_FSCACHE; kfree(ctx->fscache_uniq); ctx->fscache_uniq = NULL; break; case Opt_fscache: trace_nfs_mount_assign(param->key, param->string); ctx->options |= NFS_OPTION_FSCACHE; kfree(ctx->fscache_uniq); ctx->fscache_uniq = param->string; param->string = NULL; break; case Opt_migration: if (result.negated) ctx->options &= ~NFS_OPTION_MIGRATION; else ctx->options |= NFS_OPTION_MIGRATION; break; /* * options that take numeric values */ case Opt_port: if (result.uint_32 > USHRT_MAX) goto out_of_bounds; ctx->nfs_server.port = result.uint_32; break; case Opt_rsize: ctx->rsize = result.uint_32; break; case Opt_wsize: ctx->wsize = result.uint_32; break; case Opt_bsize: ctx->bsize = result.uint_32; break; case Opt_timeo: if (result.uint_32 < 1 || result.uint_32 > INT_MAX) goto out_of_bounds; ctx->timeo = result.uint_32; break; case Opt_retrans: if (result.uint_32 > INT_MAX) goto out_of_bounds; ctx->retrans = result.uint_32; break; case Opt_acregmin: ctx->acregmin = result.uint_32; break; case Opt_acregmax: ctx->acregmax = result.uint_32; break; case Opt_acdirmin: ctx->acdirmin = result.uint_32; break; case Opt_acdirmax: ctx->acdirmax = result.uint_32; break; case Opt_actimeo: ctx->acregmin = result.uint_32; ctx->acregmax = result.uint_32; ctx->acdirmin = result.uint_32; ctx->acdirmax = result.uint_32; break; case Opt_namelen: ctx->namlen = result.uint_32; break; case Opt_mountport: if (result.uint_32 > USHRT_MAX) goto out_of_bounds; ctx->mount_server.port = result.uint_32; break; case Opt_mountvers: if (result.uint_32 < NFS_MNT_VERSION || result.uint_32 > NFS_MNT3_VERSION) goto out_of_bounds; ctx->mount_server.version = result.uint_32; break; case Opt_minorversion: if (result.uint_32 > NFS4_MAX_MINOR_VERSION) goto out_of_bounds; ctx->minorversion = result.uint_32; break; /* * options that take text values */ case Opt_v: ret = nfs_parse_version_string(fc, param->key + 1); if (ret < 0) return ret; break; case Opt_vers: if (!param->string) goto out_invalid_value; trace_nfs_mount_assign(param->key, param->string); ret = nfs_parse_version_string(fc, param->string); if (ret < 0) return ret; break; case Opt_sec: ret = nfs_parse_security_flavors(fc, param); if (ret < 0) return ret; break; case Opt_xprtsec: ret = nfs_parse_xprtsec_policy(fc, param); if (ret < 0) return ret; break; case Opt_proto: if (!param->string) goto out_invalid_value; trace_nfs_mount_assign(param->key, param->string); protofamily = AF_INET; switch (lookup_constant(nfs_xprt_protocol_tokens, param->string, -1)) { case Opt_xprt_udp6: protofamily = AF_INET6; fallthrough; case Opt_xprt_udp: ctx->flags &= ~NFS_MOUNT_TCP; ctx->nfs_server.protocol = XPRT_TRANSPORT_UDP; break; case Opt_xprt_tcp6: protofamily = AF_INET6; fallthrough; case Opt_xprt_tcp: ctx->flags |= NFS_MOUNT_TCP; ctx->nfs_server.protocol = XPRT_TRANSPORT_TCP; break; case Opt_xprt_rdma6: protofamily = AF_INET6; fallthrough; case Opt_xprt_rdma: /* vector side protocols to TCP */ ctx->flags |= NFS_MOUNT_TCP; ret = xprt_find_transport_ident(param->string); if (ret < 0) goto out_bad_transport; ctx->nfs_server.protocol = ret; break; default: goto out_bad_transport; } ctx->protofamily = protofamily; break; case Opt_mountproto: if (!param->string) goto out_invalid_value; trace_nfs_mount_assign(param->key, param->string); mountfamily = AF_INET; switch (lookup_constant(nfs_xprt_protocol_tokens, param->string, -1)) { case Opt_xprt_udp6: mountfamily = AF_INET6; fallthrough; case Opt_xprt_udp: ctx->mount_server.protocol = XPRT_TRANSPORT_UDP; break; case Opt_xprt_tcp6: mountfamily = AF_INET6; fallthrough; case Opt_xprt_tcp: ctx->mount_server.protocol = XPRT_TRANSPORT_TCP; break; case Opt_xprt_rdma: /* not used for side protocols */ default: goto out_bad_transport; } ctx->mountfamily = mountfamily; break; case Opt_addr: trace_nfs_mount_assign(param->key, param->string); len = rpc_pton(fc->net_ns, param->string, param->size, &ctx->nfs_server.address, sizeof(ctx->nfs_server._address)); if (len == 0) goto out_invalid_address; ctx->nfs_server.addrlen = len; break; case Opt_clientaddr: trace_nfs_mount_assign(param->key, param->string); kfree(ctx->client_address); ctx->client_address = param->string; param->string = NULL; break; case Opt_mounthost: trace_nfs_mount_assign(param->key, param->string); kfree(ctx->mount_server.hostname); ctx->mount_server.hostname = param->string; param->string = NULL; break; case Opt_mountaddr: trace_nfs_mount_assign(param->key, param->string); len = rpc_pton(fc->net_ns, param->string, param->size, &ctx->mount_server.address, sizeof(ctx->mount_server._address)); if (len == 0) goto out_invalid_address; ctx->mount_server.addrlen = len; break; case Opt_nconnect: trace_nfs_mount_assign(param->key, param->string); if (result.uint_32 < 1 || result.uint_32 > NFS_MAX_CONNECTIONS) goto out_of_bounds; ctx->nfs_server.nconnect = result.uint_32; break; case Opt_max_connect: trace_nfs_mount_assign(param->key, param->string); if (result.uint_32 < 1 || result.uint_32 > NFS_MAX_TRANSPORTS) goto out_of_bounds; ctx->nfs_server.max_connect = result.uint_32; break; case Opt_fatal_neterrors: trace_nfs_mount_assign(param->key, param->string); switch (result.uint_32) { case Opt_fatal_neterrors_default: if (fc->net_ns != &init_net) ctx->flags |= NFS_MOUNT_NETUNREACH_FATAL; else ctx->flags &= ~NFS_MOUNT_NETUNREACH_FATAL; break; case Opt_fatal_neterrors_enetunreach: ctx->flags |= NFS_MOUNT_NETUNREACH_FATAL; break; case Opt_fatal_neterrors_none: ctx->flags &= ~NFS_MOUNT_NETUNREACH_FATAL; break; default: goto out_invalid_value; } break; case Opt_lookupcache: trace_nfs_mount_assign(param->key, param->string); switch (result.uint_32) { case Opt_lookupcache_all: ctx->flags &= ~(NFS_MOUNT_LOOKUP_CACHE_NONEG|NFS_MOUNT_LOOKUP_CACHE_NONE); break; case Opt_lookupcache_positive: ctx->flags &= ~NFS_MOUNT_LOOKUP_CACHE_NONE; ctx->flags |= NFS_MOUNT_LOOKUP_CACHE_NONEG; break; case Opt_lookupcache_none: ctx->flags |= NFS_MOUNT_LOOKUP_CACHE_NONEG|NFS_MOUNT_LOOKUP_CACHE_NONE; break; default: goto out_invalid_value; } break; case Opt_local_lock: trace_nfs_mount_assign(param->key, param->string); switch (result.uint_32) { case Opt_local_lock_all: ctx->flags |= (NFS_MOUNT_LOCAL_FLOCK | NFS_MOUNT_LOCAL_FCNTL); break; case Opt_local_lock_flock: ctx->flags |= NFS_MOUNT_LOCAL_FLOCK; break; case Opt_local_lock_posix: ctx->flags |= NFS_MOUNT_LOCAL_FCNTL; break; case Opt_local_lock_none: ctx->flags &= ~(NFS_MOUNT_LOCAL_FLOCK | NFS_MOUNT_LOCAL_FCNTL); break; default: goto out_invalid_value; } break; case Opt_write: trace_nfs_mount_assign(param->key, param->string); switch (result.uint_32) { case Opt_write_lazy: ctx->flags &= ~(NFS_MOUNT_WRITE_EAGER | NFS_MOUNT_WRITE_WAIT); break; case Opt_write_eager: ctx->flags |= NFS_MOUNT_WRITE_EAGER; ctx->flags &= ~NFS_MOUNT_WRITE_WAIT; break; case Opt_write_wait: ctx->flags |= NFS_MOUNT_WRITE_EAGER | NFS_MOUNT_WRITE_WAIT; break; default: goto out_invalid_value; } break; /* * Special options */ case Opt_sloppy: ctx->sloppy = true; break; } return 0; out_invalid_value: return nfs_invalf(fc, "NFS: Bad mount option value specified"); out_invalid_address: return nfs_invalf(fc, "NFS: Bad IP address specified"); out_of_bounds: return nfs_invalf(fc, "NFS: Value for '%s' out of range", param->key); out_bad_transport: return nfs_invalf(fc, "NFS: Unrecognized transport protocol"); } /* * Split fc->source into "hostname:export_path". * * The leftmost colon demarks the split between the server's hostname * and the export path. If the hostname starts with a left square * bracket, then it may contain colons. * * Note: caller frees hostname and export path, even on error. */ static int nfs_parse_source(struct fs_context *fc, size_t maxnamlen, size_t maxpathlen) { struct nfs_fs_context *ctx = nfs_fc2context(fc); const char *dev_name = fc->source; size_t len; const char *end; if (unlikely(!dev_name || !*dev_name)) return -EINVAL; /* Is the host name protected with square brakcets? */ if (*dev_name == '[') { end = strchr(++dev_name, ']'); if (end == NULL || end[1] != ':') goto out_bad_devname; len = end - dev_name; end++; } else { const char *comma; end = strchr(dev_name, ':'); if (end == NULL) goto out_bad_devname; len = end - dev_name; /* kill possible hostname list: not supported */ comma = memchr(dev_name, ',', len); if (comma) len = comma - dev_name; } if (len > maxnamlen) goto out_hostname; kfree(ctx->nfs_server.hostname); /* N.B. caller will free nfs_server.hostname in all cases */ ctx->nfs_server.hostname = kmemdup_nul(dev_name, len, GFP_KERNEL); if (!ctx->nfs_server.hostname) goto out_nomem; len = strlen(++end); if (len > maxpathlen) goto out_path; ctx->nfs_server.export_path = kmemdup_nul(end, len, GFP_KERNEL); if (!ctx->nfs_server.export_path) goto out_nomem; trace_nfs_mount_path(ctx->nfs_server.export_path); return 0; out_bad_devname: return nfs_invalf(fc, "NFS: device name not in host:path format"); out_nomem: nfs_errorf(fc, "NFS: not enough memory to parse device name"); return -ENOMEM; out_hostname: nfs_errorf(fc, "NFS: server hostname too long"); return -ENAMETOOLONG; out_path: nfs_errorf(fc, "NFS: export pathname too long"); return -ENAMETOOLONG; } static inline bool is_remount_fc(struct fs_context *fc) { return fc->root != NULL; } /* * Parse monolithic NFS2/NFS3 mount data * - fills in the mount root filehandle * * For option strings, user space handles the following behaviors: * * + DNS: mapping server host name to IP address ("addr=" option) * * + failure mode: how to behave if a mount request can't be handled * immediately ("fg/bg" option) * * + retry: how often to retry a mount request ("retry=" option) * * + breaking back: trying proto=udp after proto=tcp, v2 after v3, * mountproto=tcp after mountproto=udp, and so on */ static int nfs23_parse_monolithic(struct fs_context *fc, struct nfs_mount_data *data) { struct nfs_fs_context *ctx = nfs_fc2context(fc); struct nfs_fh *mntfh = ctx->mntfh; struct sockaddr_storage *sap = &ctx->nfs_server._address; int extra_flags = NFS_MOUNT_LEGACY_INTERFACE; int ret; if (data == NULL) goto out_no_data; ctx->version = NFS_DEFAULT_VERSION; switch (data->version) { case 1: data->namlen = 0; fallthrough; case 2: data->bsize = 0; fallthrough; case 3: if (data->flags & NFS_MOUNT_VER3) goto out_no_v3; data->root.size = NFS2_FHSIZE; memcpy(data->root.data, data->old_root.data, NFS2_FHSIZE); /* Turn off security negotiation */ extra_flags |= NFS_MOUNT_SECFLAVOUR; fallthrough; case 4: if (data->flags & NFS_MOUNT_SECFLAVOUR) goto out_no_sec; fallthrough; case 5: memset(data->context, 0, sizeof(data->context)); fallthrough; case 6: if (data->flags & NFS_MOUNT_VER3) { if (data->root.size > NFS3_FHSIZE || data->root.size == 0) goto out_invalid_fh; mntfh->size = data->root.size; ctx->version = 3; } else { mntfh->size = NFS2_FHSIZE; ctx->version = 2; } memcpy(mntfh->data, data->root.data, mntfh->size); if (mntfh->size < sizeof(mntfh->data)) memset(mntfh->data + mntfh->size, 0, sizeof(mntfh->data) - mntfh->size); /* * for proto == XPRT_TRANSPORT_UDP, which is what uses * to_exponential, implying shift: limit the shift value * to BITS_PER_LONG (majortimeo is unsigned long) */ if (!(data->flags & NFS_MOUNT_TCP)) /* this will be UDP */ if (data->retrans >= 64) /* shift value is too large */ goto out_invalid_data; /* * Translate to nfs_fs_context, which nfs_fill_super * can deal with. */ ctx->flags = data->flags & NFS_MOUNT_FLAGMASK; ctx->flags |= extra_flags; ctx->rsize = data->rsize; ctx->wsize = data->wsize; ctx->timeo = data->timeo; ctx->retrans = data->retrans; ctx->acregmin = data->acregmin; ctx->acregmax = data->acregmax; ctx->acdirmin = data->acdirmin; ctx->acdirmax = data->acdirmax; ctx->need_mount = false; if (!is_remount_fc(fc)) { memcpy(sap, &data->addr, sizeof(data->addr)); ctx->nfs_server.addrlen = sizeof(data->addr); ctx->nfs_server.port = ntohs(data->addr.sin_port); } if (sap->ss_family != AF_INET || !nfs_verify_server_address(sap)) goto out_no_address; if (!(data->flags & NFS_MOUNT_TCP)) ctx->nfs_server.protocol = XPRT_TRANSPORT_UDP; /* N.B. caller will free nfs_server.hostname in all cases */ ctx->nfs_server.hostname = kstrdup(data->hostname, GFP_KERNEL); if (!ctx->nfs_server.hostname) goto out_nomem; ctx->namlen = data->namlen; ctx->bsize = data->bsize; if (data->flags & NFS_MOUNT_SECFLAVOUR) ctx->selected_flavor = data->pseudoflavor; else ctx->selected_flavor = RPC_AUTH_UNIX; if (!(data->flags & NFS_MOUNT_NONLM)) ctx->flags &= ~(NFS_MOUNT_LOCAL_FLOCK| NFS_MOUNT_LOCAL_FCNTL); else ctx->flags |= (NFS_MOUNT_LOCAL_FLOCK| NFS_MOUNT_LOCAL_FCNTL); /* * The legacy version 6 binary mount data from userspace has a * field used only to transport selinux information into the * kernel. To continue to support that functionality we * have a touch of selinux knowledge here in the NFS code. The * userspace code converted context=blah to just blah so we are * converting back to the full string selinux understands. */ if (data->context[0]){ #ifdef CONFIG_SECURITY_SELINUX int ret; data->context[NFS_MAX_CONTEXT_LEN] = '\0'; ret = vfs_parse_fs_string(fc, "context", data->context, strlen(data->context)); if (ret < 0) return ret; #else return -EINVAL; #endif } break; default: goto generic; } ret = nfs_validate_transport_protocol(fc, ctx); if (ret) return ret; ctx->skip_reconfig_option_check = true; return 0; generic: return generic_parse_monolithic(fc, data); out_no_data: if (is_remount_fc(fc)) { ctx->skip_reconfig_option_check = true; return 0; } return nfs_invalf(fc, "NFS: mount program didn't pass any mount data"); out_no_v3: return nfs_invalf(fc, "NFS: nfs_mount_data version does not support v3"); out_no_sec: return nfs_invalf(fc, "NFS: nfs_mount_data version supports only AUTH_SYS"); out_nomem: return -ENOMEM; out_no_address: return nfs_invalf(fc, "NFS: mount program didn't pass remote address"); out_invalid_fh: return nfs_invalf(fc, "NFS: invalid root filehandle"); out_invalid_data: return nfs_invalf(fc, "NFS: invalid binary mount data"); } #if IS_ENABLED(CONFIG_NFS_V4) struct compat_nfs_string { compat_uint_t len; compat_uptr_t data; }; static inline void compat_nfs_string(struct nfs_string *dst, struct compat_nfs_string *src) { dst->data = compat_ptr(src->data); dst->len = src->len; } struct compat_nfs4_mount_data_v1 { compat_int_t version; compat_int_t flags; compat_int_t rsize; compat_int_t wsize; compat_int_t timeo; compat_int_t retrans; compat_int_t acregmin; compat_int_t acregmax; compat_int_t acdirmin; compat_int_t acdirmax; struct compat_nfs_string client_addr; struct compat_nfs_string mnt_path; struct compat_nfs_string hostname; compat_uint_t host_addrlen; compat_uptr_t host_addr; compat_int_t proto; compat_int_t auth_flavourlen; compat_uptr_t auth_flavours; }; static void nfs4_compat_mount_data_conv(struct nfs4_mount_data *data) { struct compat_nfs4_mount_data_v1 *compat = (struct compat_nfs4_mount_data_v1 *)data; /* copy the fields backwards */ data->auth_flavours = compat_ptr(compat->auth_flavours); data->auth_flavourlen = compat->auth_flavourlen; data->proto = compat->proto; data->host_addr = compat_ptr(compat->host_addr); data->host_addrlen = compat->host_addrlen; compat_nfs_string(&data->hostname, &compat->hostname); compat_nfs_string(&data->mnt_path, &compat->mnt_path); compat_nfs_string(&data->client_addr, &compat->client_addr); data->acdirmax = compat->acdirmax; data->acdirmin = compat->acdirmin; data->acregmax = compat->acregmax; data->acregmin = compat->acregmin; data->retrans = compat->retrans; data->timeo = compat->timeo; data->wsize = compat->wsize; data->rsize = compat->rsize; data->flags = compat->flags; data->version = compat->version; } /* * Validate NFSv4 mount options */ static int nfs4_parse_monolithic(struct fs_context *fc, struct nfs4_mount_data *data) { struct nfs_fs_context *ctx = nfs_fc2context(fc); struct sockaddr_storage *sap = &ctx->nfs_server._address; int ret; char *c; if (!data) { if (is_remount_fc(fc)) goto done; return nfs_invalf(fc, "NFS4: mount program didn't pass any mount data"); } ctx->version = 4; if (data->version != 1) return generic_parse_monolithic(fc, data); if (in_compat_syscall()) nfs4_compat_mount_data_conv(data); if (data->host_addrlen > sizeof(ctx->nfs_server.address)) goto out_no_address; if (data->host_addrlen == 0) goto out_no_address; ctx->nfs_server.addrlen = data->host_addrlen; if (copy_from_user(sap, data->host_addr, data->host_addrlen)) return -EFAULT; if (!nfs_verify_server_address(sap)) goto out_no_address; ctx->nfs_server.port = ntohs(((struct sockaddr_in *)sap)->sin_port); if (data->auth_flavourlen) { rpc_authflavor_t pseudoflavor; if (data->auth_flavourlen > 1) goto out_inval_auth; if (copy_from_user(&pseudoflavor, data->auth_flavours, sizeof(pseudoflavor))) return -EFAULT; ctx->selected_flavor = pseudoflavor; } else { ctx->selected_flavor = RPC_AUTH_UNIX; } c = strndup_user(data->hostname.data, NFS4_MAXNAMLEN); if (IS_ERR(c)) return PTR_ERR(c); ctx->nfs_server.hostname = c; c = strndup_user(data->mnt_path.data, NFS4_MAXPATHLEN); if (IS_ERR(c)) return PTR_ERR(c); ctx->nfs_server.export_path = c; trace_nfs_mount_path(c); c = strndup_user(data->client_addr.data, 16); if (IS_ERR(c)) return PTR_ERR(c); ctx->client_address = c; /* * Translate to nfs_fs_context, which nfs_fill_super * can deal with. */ ctx->flags = data->flags & NFS4_MOUNT_FLAGMASK; ctx->rsize = data->rsize; ctx->wsize = data->wsize; ctx->timeo = data->timeo; ctx->retrans = data->retrans; ctx->acregmin = data->acregmin; ctx->acregmax = data->acregmax; ctx->acdirmin = data->acdirmin; ctx->acdirmax = data->acdirmax; ctx->nfs_server.protocol = data->proto; ret = nfs_validate_transport_protocol(fc, ctx); if (ret) return ret; done: ctx->skip_reconfig_option_check = true; return 0; out_inval_auth: return nfs_invalf(fc, "NFS4: Invalid number of RPC auth flavours %d", data->auth_flavourlen); out_no_address: return nfs_invalf(fc, "NFS4: mount program didn't pass remote address"); } #endif /* * Parse a monolithic block of data from sys_mount(). */ static int nfs_fs_context_parse_monolithic(struct fs_context *fc, void *data) { if (fc->fs_type == &nfs_fs_type) return nfs23_parse_monolithic(fc, data); #if IS_ENABLED(CONFIG_NFS_V4) if (fc->fs_type == &nfs4_fs_type) return nfs4_parse_monolithic(fc, data); #endif return nfs_invalf(fc, "NFS: Unsupported monolithic data version"); } /* * Validate the preparsed information in the config. */ static int nfs_fs_context_validate(struct fs_context *fc) { struct nfs_fs_context *ctx = nfs_fc2context(fc); struct nfs_subversion *nfs_mod; struct sockaddr_storage *sap = &ctx->nfs_server._address; int max_namelen = PAGE_SIZE; int max_pathlen = NFS_MAXPATHLEN; int port = 0; int ret; if (!fc->source) goto out_no_device_name; /* Check for sanity first. */ if (ctx->minorversion && ctx->version != 4) goto out_minorversion_mismatch; if (ctx->options & NFS_OPTION_MIGRATION && (ctx->version != 4 || ctx->minorversion != 0)) goto out_migration_misuse; /* Verify that any proto=/mountproto= options match the address * families in the addr=/mountaddr= options. */ if (ctx->protofamily != AF_UNSPEC && ctx->protofamily != ctx->nfs_server.address.sa_family) goto out_proto_mismatch; if (ctx->mountfamily != AF_UNSPEC) { if (ctx->mount_server.addrlen) { if (ctx->mountfamily != ctx->mount_server.address.sa_family) goto out_mountproto_mismatch; } else { if (ctx->mountfamily != ctx->nfs_server.address.sa_family) goto out_mountproto_mismatch; } } if (!nfs_verify_server_address(sap)) goto out_no_address; ret = nfs_validate_transport_protocol(fc, ctx); if (ret) return ret; if (ctx->version == 4) { if (IS_ENABLED(CONFIG_NFS_V4)) { if (ctx->nfs_server.protocol == XPRT_TRANSPORT_RDMA) port = NFS_RDMA_PORT; else port = NFS_PORT; max_namelen = NFS4_MAXNAMLEN; max_pathlen = NFS4_MAXPATHLEN; ctx->flags &= ~(NFS_MOUNT_NONLM | NFS_MOUNT_NOACL | NFS_MOUNT_VER3 | NFS_MOUNT_LOCAL_FLOCK | NFS_MOUNT_LOCAL_FCNTL); } else { goto out_v4_not_compiled; } } else { nfs_set_mount_transport_protocol(ctx); if (ctx->nfs_server.protocol == XPRT_TRANSPORT_RDMA) port = NFS_RDMA_PORT; } nfs_set_port(sap, &ctx->nfs_server.port, port); ret = nfs_parse_source(fc, max_namelen, max_pathlen); if (ret < 0) return ret; /* Load the NFS protocol module if we haven't done so yet */ if (!ctx->nfs_mod) { nfs_mod = find_nfs_version(ctx->version); if (IS_ERR(nfs_mod)) { ret = PTR_ERR(nfs_mod); goto out_version_unavailable; } ctx->nfs_mod = nfs_mod; } /* Ensure the filesystem context has the correct fs_type */ if (fc->fs_type != ctx->nfs_mod->nfs_fs) { module_put(fc->fs_type->owner); __module_get(ctx->nfs_mod->nfs_fs->owner); fc->fs_type = ctx->nfs_mod->nfs_fs; } return 0; out_no_device_name: return nfs_invalf(fc, "NFS: Device name not specified"); out_v4_not_compiled: nfs_errorf(fc, "NFS: NFSv4 is not compiled into kernel"); return -EPROTONOSUPPORT; out_no_address: return nfs_invalf(fc, "NFS: mount program didn't pass remote address"); out_mountproto_mismatch: return nfs_invalf(fc, "NFS: Mount server address does not match mountproto= option"); out_proto_mismatch: return nfs_invalf(fc, "NFS: Server address does not match proto= option"); out_minorversion_mismatch: return nfs_invalf(fc, "NFS: Mount option vers=%u does not support minorversion=%u", ctx->version, ctx->minorversion); out_migration_misuse: return nfs_invalf(fc, "NFS: 'Migration' not supported for this NFS version"); out_version_unavailable: nfs_errorf(fc, "NFS: Version unavailable"); return ret; } /* * Create an NFS superblock by the appropriate method. */ static int nfs_get_tree(struct fs_context *fc) { struct nfs_fs_context *ctx = nfs_fc2context(fc); int err = nfs_fs_context_validate(fc); if (err) return err; if (!ctx->internal) return ctx->nfs_mod->rpc_ops->try_get_tree(fc); else return nfs_get_tree_common(fc); } /* * Handle duplication of a configuration. The caller copied *src into *sc, but * it can't deal with resource pointers in the filesystem context, so we have * to do that. We need to clear pointers, copy data or get extra refs as * appropriate. */ static int nfs_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { struct nfs_fs_context *src = nfs_fc2context(src_fc), *ctx; ctx = kmemdup(src, sizeof(struct nfs_fs_context), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->mntfh = nfs_alloc_fhandle(); if (!ctx->mntfh) { kfree(ctx); return -ENOMEM; } nfs_copy_fh(ctx->mntfh, src->mntfh); get_nfs_version(ctx->nfs_mod); ctx->client_address = NULL; ctx->mount_server.hostname = NULL; ctx->nfs_server.export_path = NULL; ctx->nfs_server.hostname = NULL; ctx->fscache_uniq = NULL; ctx->clone_data.fattr = NULL; fc->fs_private = ctx; return 0; } static void nfs_fs_context_free(struct fs_context *fc) { struct nfs_fs_context *ctx = nfs_fc2context(fc); if (ctx) { if (ctx->server) nfs_free_server(ctx->server); if (ctx->nfs_mod) put_nfs_version(ctx->nfs_mod); kfree(ctx->client_address); kfree(ctx->mount_server.hostname); kfree(ctx->nfs_server.export_path); kfree(ctx->nfs_server.hostname); kfree(ctx->fscache_uniq); nfs_free_fhandle(ctx->mntfh); nfs_free_fattr(ctx->clone_data.fattr); kfree(ctx); } } static const struct fs_context_operations nfs_fs_context_ops = { .free = nfs_fs_context_free, .dup = nfs_fs_context_dup, .parse_param = nfs_fs_context_parse_param, .parse_monolithic = nfs_fs_context_parse_monolithic, .get_tree = nfs_get_tree, .reconfigure = nfs_reconfigure, }; /* * Prepare superblock configuration. We use the namespaces attached to the * context. This may be the current process's namespaces, or it may be a * container's namespaces. */ static int nfs_init_fs_context(struct fs_context *fc) { struct nfs_fs_context *ctx; ctx = kzalloc(sizeof(struct nfs_fs_context), GFP_KERNEL); if (unlikely(!ctx)) return -ENOMEM; ctx->mntfh = nfs_alloc_fhandle(); if (unlikely(!ctx->mntfh)) { kfree(ctx); return -ENOMEM; } ctx->protofamily = AF_UNSPEC; ctx->mountfamily = AF_UNSPEC; ctx->mount_server.port = NFS_UNSPEC_PORT; if (fc->root) { /* reconfigure, start with the current config */ struct nfs_server *nfss = fc->root->d_sb->s_fs_info; struct net *net = nfss->nfs_client->cl_net; ctx->flags = nfss->flags; ctx->rsize = nfss->rsize; ctx->wsize = nfss->wsize; ctx->retrans = nfss->client->cl_timeout->to_retries; ctx->selected_flavor = nfss->client->cl_auth->au_flavor; ctx->acregmin = nfss->acregmin / HZ; ctx->acregmax = nfss->acregmax / HZ; ctx->acdirmin = nfss->acdirmin / HZ; ctx->acdirmax = nfss->acdirmax / HZ; ctx->timeo = 10U * nfss->client->cl_timeout->to_initval / HZ; ctx->nfs_server.port = nfss->port; ctx->nfs_server.addrlen = nfss->nfs_client->cl_addrlen; ctx->version = nfss->nfs_client->rpc_ops->version; ctx->minorversion = nfss->nfs_client->cl_minorversion; memcpy(&ctx->nfs_server._address, &nfss->nfs_client->cl_addr, ctx->nfs_server.addrlen); if (fc->net_ns != net) { put_net(fc->net_ns); fc->net_ns = get_net(net); } ctx->nfs_mod = nfss->nfs_client->cl_nfs_mod; get_nfs_version(ctx->nfs_mod); } else { /* defaults */ ctx->timeo = NFS_UNSPEC_TIMEO; ctx->retrans = NFS_UNSPEC_RETRANS; ctx->acregmin = NFS_DEF_ACREGMIN; ctx->acregmax = NFS_DEF_ACREGMAX; ctx->acdirmin = NFS_DEF_ACDIRMIN; ctx->acdirmax = NFS_DEF_ACDIRMAX; ctx->nfs_server.port = NFS_UNSPEC_PORT; ctx->nfs_server.protocol = XPRT_TRANSPORT_TCP; ctx->selected_flavor = RPC_AUTH_MAXFLAVOR; ctx->minorversion = 0; ctx->need_mount = true; ctx->xprtsec.policy = RPC_XPRTSEC_NONE; ctx->xprtsec.cert_serial = TLS_NO_CERT; ctx->xprtsec.privkey_serial = TLS_NO_PRIVKEY; if (fc->net_ns != &init_net) ctx->flags |= NFS_MOUNT_NETUNREACH_FATAL; fc->s_iflags |= SB_I_STABLE_WRITES; } fc->fs_private = ctx; fc->ops = &nfs_fs_context_ops; return 0; } struct file_system_type nfs_fs_type = { .owner = THIS_MODULE, .name = "nfs", .init_fs_context = nfs_init_fs_context, .parameters = nfs_fs_parameters, .kill_sb = nfs_kill_super, .fs_flags = FS_RENAME_DOES_D_MOVE|FS_BINARY_MOUNTDATA, }; MODULE_ALIAS_FS("nfs"); EXPORT_SYMBOL_GPL(nfs_fs_type); #if IS_ENABLED(CONFIG_NFS_V4) struct file_system_type nfs4_fs_type = { .owner = THIS_MODULE, .name = "nfs4", .init_fs_context = nfs_init_fs_context, .parameters = nfs_fs_parameters, .kill_sb = nfs_kill_super, .fs_flags = FS_RENAME_DOES_D_MOVE|FS_BINARY_MOUNTDATA, }; MODULE_ALIAS_FS("nfs4"); MODULE_ALIAS("nfs4"); EXPORT_SYMBOL_GPL(nfs4_fs_type); #endif /* CONFIG_NFS_V4 */
108 104 104 4 94 94 94 94 94 94 94 94 94 1 1 1 1 1 1 1 7 10 4 19 2 2 2 1 1 1 1 2 1 2 3 3 4 4 3 3 3 2 5 5 3 3 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Mellanox Technologies. All rights reserved. * Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com> */ #include <net/genetlink.h> #include <net/sock.h> #include <trace/events/devlink.h> #include "devl_internal.h" struct devlink_fmsg_item { struct list_head list; int attrtype; u8 nla_type; u16 len; int value[]; }; struct devlink_fmsg { struct list_head item_list; int err; /* first error encountered on some devlink_fmsg_XXX() call */ bool putting_binary; /* This flag forces enclosing of binary data * in an array brackets. It forces using * of designated API: * devlink_fmsg_binary_pair_nest_start() * devlink_fmsg_binary_pair_nest_end() */ }; static struct devlink_fmsg *devlink_fmsg_alloc(void) { struct devlink_fmsg *fmsg; fmsg = kzalloc(sizeof(*fmsg), GFP_KERNEL); if (!fmsg) return NULL; INIT_LIST_HEAD(&fmsg->item_list); return fmsg; } static void devlink_fmsg_free(struct devlink_fmsg *fmsg) { struct devlink_fmsg_item *item, *tmp; list_for_each_entry_safe(item, tmp, &fmsg->item_list, list) { list_del(&item->list); kfree(item); } kfree(fmsg); } struct devlink_health_reporter { struct list_head list; void *priv; const struct devlink_health_reporter_ops *ops; struct devlink *devlink; struct devlink_port *devlink_port; struct devlink_fmsg *dump_fmsg; u64 graceful_period; bool auto_recover; bool auto_dump; u8 health_state; u64 dump_ts; u64 dump_real_ts; u64 error_count; u64 recovery_count; u64 last_recovery_ts; }; void * devlink_health_reporter_priv(struct devlink_health_reporter *reporter) { return reporter->priv; } EXPORT_SYMBOL_GPL(devlink_health_reporter_priv); static struct devlink_health_reporter * __devlink_health_reporter_find_by_name(struct list_head *reporter_list, const char *reporter_name) { struct devlink_health_reporter *reporter; list_for_each_entry(reporter, reporter_list, list) if (!strcmp(reporter->ops->name, reporter_name)) return reporter; return NULL; } static struct devlink_health_reporter * devlink_health_reporter_find_by_name(struct devlink *devlink, const char *reporter_name) { return __devlink_health_reporter_find_by_name(&devlink->reporter_list, reporter_name); } static struct devlink_health_reporter * devlink_port_health_reporter_find_by_name(struct devlink_port *devlink_port, const char *reporter_name) { return __devlink_health_reporter_find_by_name(&devlink_port->reporter_list, reporter_name); } static struct devlink_health_reporter * __devlink_health_reporter_create(struct devlink *devlink, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; if (WARN_ON(graceful_period && !ops->recover)) return ERR_PTR(-EINVAL); reporter = kzalloc(sizeof(*reporter), GFP_KERNEL); if (!reporter) return ERR_PTR(-ENOMEM); reporter->priv = priv; reporter->ops = ops; reporter->devlink = devlink; reporter->graceful_period = graceful_period; reporter->auto_recover = !!ops->recover; reporter->auto_dump = !!ops->dump; return reporter; } /** * devl_port_health_reporter_create() - create devlink health reporter for * specified port instance * * @port: devlink_port to which health reports will relate * @ops: devlink health reporter ops * @graceful_period: min time (in msec) between recovery attempts * @priv: driver priv pointer */ struct devlink_health_reporter * devl_port_health_reporter_create(struct devlink_port *port, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; devl_assert_locked(port->devlink); if (__devlink_health_reporter_find_by_name(&port->reporter_list, ops->name)) return ERR_PTR(-EEXIST); reporter = __devlink_health_reporter_create(port->devlink, ops, graceful_period, priv); if (IS_ERR(reporter)) return reporter; reporter->devlink_port = port; list_add_tail(&reporter->list, &port->reporter_list); return reporter; } EXPORT_SYMBOL_GPL(devl_port_health_reporter_create); struct devlink_health_reporter * devlink_port_health_reporter_create(struct devlink_port *port, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; struct devlink *devlink = port->devlink; devl_lock(devlink); reporter = devl_port_health_reporter_create(port, ops, graceful_period, priv); devl_unlock(devlink); return reporter; } EXPORT_SYMBOL_GPL(devlink_port_health_reporter_create); /** * devl_health_reporter_create - create devlink health reporter * * @devlink: devlink instance which the health reports will relate * @ops: devlink health reporter ops * @graceful_period: min time (in msec) between recovery attempts * @priv: driver priv pointer */ struct devlink_health_reporter * devl_health_reporter_create(struct devlink *devlink, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; devl_assert_locked(devlink); if (devlink_health_reporter_find_by_name(devlink, ops->name)) return ERR_PTR(-EEXIST); reporter = __devlink_health_reporter_create(devlink, ops, graceful_period, priv); if (IS_ERR(reporter)) return reporter; list_add_tail(&reporter->list, &devlink->reporter_list); return reporter; } EXPORT_SYMBOL_GPL(devl_health_reporter_create); struct devlink_health_reporter * devlink_health_reporter_create(struct devlink *devlink, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; devl_lock(devlink); reporter = devl_health_reporter_create(devlink, ops, graceful_period, priv); devl_unlock(devlink); return reporter; } EXPORT_SYMBOL_GPL(devlink_health_reporter_create); static void devlink_health_reporter_free(struct devlink_health_reporter *reporter) { if (reporter->dump_fmsg) devlink_fmsg_free(reporter->dump_fmsg); kfree(reporter); } /** * devl_health_reporter_destroy() - destroy devlink health reporter * * @reporter: devlink health reporter to destroy */ void devl_health_reporter_destroy(struct devlink_health_reporter *reporter) { devl_assert_locked(reporter->devlink); list_del(&reporter->list); devlink_health_reporter_free(reporter); } EXPORT_SYMBOL_GPL(devl_health_reporter_destroy); void devlink_health_reporter_destroy(struct devlink_health_reporter *reporter) { struct devlink *devlink = reporter->devlink; devl_lock(devlink); devl_health_reporter_destroy(reporter); devl_unlock(devlink); } EXPORT_SYMBOL_GPL(devlink_health_reporter_destroy); static int devlink_nl_health_reporter_fill(struct sk_buff *msg, struct devlink_health_reporter *reporter, enum devlink_command cmd, u32 portid, u32 seq, int flags) { struct devlink *devlink = reporter->devlink; struct nlattr *reporter_attr; void *hdr; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto genlmsg_cancel; if (reporter->devlink_port) { if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, reporter->devlink_port->index)) goto genlmsg_cancel; } reporter_attr = nla_nest_start_noflag(msg, DEVLINK_ATTR_HEALTH_REPORTER); if (!reporter_attr) goto genlmsg_cancel; if (nla_put_string(msg, DEVLINK_ATTR_HEALTH_REPORTER_NAME, reporter->ops->name)) goto reporter_nest_cancel; if (nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_STATE, reporter->health_state)) goto reporter_nest_cancel; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_ERR_COUNT, reporter->error_count)) goto reporter_nest_cancel; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_RECOVER_COUNT, reporter->recovery_count)) goto reporter_nest_cancel; if (reporter->ops->recover && devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD, reporter->graceful_period)) goto reporter_nest_cancel; if (reporter->ops->recover && nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER, reporter->auto_recover)) goto reporter_nest_cancel; if (reporter->dump_fmsg && devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_DUMP_TS, jiffies_to_msecs(reporter->dump_ts))) goto reporter_nest_cancel; if (reporter->dump_fmsg && devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_DUMP_TS_NS, reporter->dump_real_ts)) goto reporter_nest_cancel; if (reporter->ops->dump && nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP, reporter->auto_dump)) goto reporter_nest_cancel; nla_nest_end(msg, reporter_attr); genlmsg_end(msg, hdr); return 0; reporter_nest_cancel: nla_nest_cancel(msg, reporter_attr); genlmsg_cancel: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static struct devlink_health_reporter * devlink_health_reporter_get_from_attrs(struct devlink *devlink, struct nlattr **attrs) { struct devlink_port *devlink_port; char *reporter_name; if (!attrs[DEVLINK_ATTR_HEALTH_REPORTER_NAME]) return NULL; reporter_name = nla_data(attrs[DEVLINK_ATTR_HEALTH_REPORTER_NAME]); devlink_port = devlink_port_get_from_attrs(devlink, attrs); if (IS_ERR(devlink_port)) return devlink_health_reporter_find_by_name(devlink, reporter_name); else return devlink_port_health_reporter_find_by_name(devlink_port, reporter_name); } static struct devlink_health_reporter * devlink_health_reporter_get_from_info(struct devlink *devlink, struct genl_info *info) { return devlink_health_reporter_get_from_attrs(devlink, info->attrs); } int devlink_nl_health_reporter_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; struct sk_buff *msg; int err; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_health_reporter_fill(msg, reporter, DEVLINK_CMD_HEALTH_REPORTER_GET, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_health_reporter_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); const struct genl_info *info = genl_info_dump(cb); struct devlink_health_reporter *reporter; unsigned long port_index_end = ULONG_MAX; struct nlattr **attrs = info->attrs; unsigned long port_index_start = 0; struct devlink_port *port; unsigned long port_index; int idx = 0; int err; if (attrs && attrs[DEVLINK_ATTR_PORT_INDEX]) { port_index_start = nla_get_u32(attrs[DEVLINK_ATTR_PORT_INDEX]); port_index_end = port_index_start; flags |= NLM_F_DUMP_FILTERED; goto per_port_dump; } list_for_each_entry(reporter, &devlink->reporter_list, list) { if (idx < state->idx) { idx++; continue; } err = devlink_nl_health_reporter_fill(msg, reporter, DEVLINK_CMD_HEALTH_REPORTER_GET, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) { state->idx = idx; return err; } idx++; } per_port_dump: xa_for_each_range(&devlink->ports, port_index, port, port_index_start, port_index_end) { list_for_each_entry(reporter, &port->reporter_list, list) { if (idx < state->idx) { idx++; continue; } err = devlink_nl_health_reporter_fill(msg, reporter, DEVLINK_CMD_HEALTH_REPORTER_GET, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) { state->idx = idx; return err; } idx++; } } return 0; } int devlink_nl_health_reporter_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_health_reporter_get_dump_one); } int devlink_nl_health_reporter_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->recover && (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD] || info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER])) return -EOPNOTSUPP; if (!reporter->ops->dump && info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]) return -EOPNOTSUPP; if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD]) reporter->graceful_period = nla_get_u64(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD]); if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER]) reporter->auto_recover = nla_get_u8(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER]); if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]) reporter->auto_dump = nla_get_u8(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]); return 0; } static void devlink_recover_notify(struct devlink_health_reporter *reporter, enum devlink_command cmd) { struct devlink *devlink = reporter->devlink; struct devlink_obj_desc desc; struct sk_buff *msg; int err; WARN_ON(cmd != DEVLINK_CMD_HEALTH_REPORTER_RECOVER); ASSERT_DEVLINK_REGISTERED(devlink); if (!devlink_nl_notify_need(devlink)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; err = devlink_nl_health_reporter_fill(msg, reporter, cmd, 0, 0, 0); if (err) { nlmsg_free(msg); return; } devlink_nl_obj_desc_init(&desc, devlink); if (reporter->devlink_port) devlink_nl_obj_desc_port_set(&desc, reporter->devlink_port); devlink_nl_notify_send_desc(devlink, msg, &desc); } void devlink_health_reporter_recovery_done(struct devlink_health_reporter *reporter) { reporter->recovery_count++; reporter->last_recovery_ts = jiffies; } EXPORT_SYMBOL_GPL(devlink_health_reporter_recovery_done); static int devlink_health_reporter_recover(struct devlink_health_reporter *reporter, void *priv_ctx, struct netlink_ext_ack *extack) { int err; if (reporter->health_state == DEVLINK_HEALTH_REPORTER_STATE_HEALTHY) return 0; if (!reporter->ops->recover) return -EOPNOTSUPP; err = reporter->ops->recover(reporter, priv_ctx, extack); if (err) return err; devlink_health_reporter_recovery_done(reporter); reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_HEALTHY; devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER); return 0; } static void devlink_health_dump_clear(struct devlink_health_reporter *reporter) { if (!reporter->dump_fmsg) return; devlink_fmsg_free(reporter->dump_fmsg); reporter->dump_fmsg = NULL; } static int devlink_health_do_dump(struct devlink_health_reporter *reporter, void *priv_ctx, struct netlink_ext_ack *extack) { int err; if (!reporter->ops->dump) return 0; if (reporter->dump_fmsg) return 0; reporter->dump_fmsg = devlink_fmsg_alloc(); if (!reporter->dump_fmsg) return -ENOMEM; devlink_fmsg_obj_nest_start(reporter->dump_fmsg); err = reporter->ops->dump(reporter, reporter->dump_fmsg, priv_ctx, extack); if (err) goto dump_err; devlink_fmsg_obj_nest_end(reporter->dump_fmsg); err = reporter->dump_fmsg->err; if (err) goto dump_err; reporter->dump_ts = jiffies; reporter->dump_real_ts = ktime_get_real_ns(); return 0; dump_err: devlink_health_dump_clear(reporter); return err; } int devlink_health_report(struct devlink_health_reporter *reporter, const char *msg, void *priv_ctx) { enum devlink_health_reporter_state prev_health_state; struct devlink *devlink = reporter->devlink; unsigned long recover_ts_threshold; int ret; /* write a log message of the current error */ WARN_ON(!msg); trace_devlink_health_report(devlink, reporter->ops->name, msg); reporter->error_count++; prev_health_state = reporter->health_state; reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_ERROR; devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER); /* abort if the previous error wasn't recovered */ recover_ts_threshold = reporter->last_recovery_ts + msecs_to_jiffies(reporter->graceful_period); if (reporter->auto_recover && (prev_health_state != DEVLINK_HEALTH_REPORTER_STATE_HEALTHY || (reporter->last_recovery_ts && reporter->recovery_count && time_is_after_jiffies(recover_ts_threshold)))) { trace_devlink_health_recover_aborted(devlink, reporter->ops->name, reporter->health_state, jiffies - reporter->last_recovery_ts); return -ECANCELED; } if (reporter->auto_dump) { devl_lock(devlink); /* store current dump of current error, for later analysis */ devlink_health_do_dump(reporter, priv_ctx, NULL); devl_unlock(devlink); } if (!reporter->auto_recover) return 0; devl_lock(devlink); ret = devlink_health_reporter_recover(reporter, priv_ctx, NULL); devl_unlock(devlink); return ret; } EXPORT_SYMBOL_GPL(devlink_health_report); void devlink_health_reporter_state_update(struct devlink_health_reporter *reporter, enum devlink_health_reporter_state state) { if (WARN_ON(state != DEVLINK_HEALTH_REPORTER_STATE_HEALTHY && state != DEVLINK_HEALTH_REPORTER_STATE_ERROR)) return; if (reporter->health_state == state) return; reporter->health_state = state; trace_devlink_health_reporter_state_update(reporter->devlink, reporter->ops->name, state); devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER); } EXPORT_SYMBOL_GPL(devlink_health_reporter_state_update); int devlink_nl_health_reporter_recover_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; return devlink_health_reporter_recover(reporter, NULL, info->extack); } static void devlink_fmsg_err_if_binary(struct devlink_fmsg *fmsg) { if (!fmsg->err && fmsg->putting_binary) fmsg->err = -EINVAL; } static void devlink_fmsg_nest_common(struct devlink_fmsg *fmsg, int attrtype) { struct devlink_fmsg_item *item; if (fmsg->err) return; item = kzalloc(sizeof(*item), GFP_KERNEL); if (!item) { fmsg->err = -ENOMEM; return; } item->attrtype = attrtype; list_add_tail(&item->list, &fmsg->item_list); } void devlink_fmsg_obj_nest_start(struct devlink_fmsg *fmsg) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_OBJ_NEST_START); } EXPORT_SYMBOL_GPL(devlink_fmsg_obj_nest_start); static void devlink_fmsg_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_NEST_END); } void devlink_fmsg_obj_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_obj_nest_end); #define DEVLINK_FMSG_MAX_SIZE (GENLMSG_DEFAULT_SIZE - GENL_HDRLEN - NLA_HDRLEN) static void devlink_fmsg_put_name(struct devlink_fmsg *fmsg, const char *name) { struct devlink_fmsg_item *item; devlink_fmsg_err_if_binary(fmsg); if (fmsg->err) return; if (strlen(name) + 1 > DEVLINK_FMSG_MAX_SIZE) { fmsg->err = -EMSGSIZE; return; } item = kzalloc(sizeof(*item) + strlen(name) + 1, GFP_KERNEL); if (!item) { fmsg->err = -ENOMEM; return; } item->nla_type = NLA_NUL_STRING; item->len = strlen(name) + 1; item->attrtype = DEVLINK_ATTR_FMSG_OBJ_NAME; memcpy(&item->value, name, item->len); list_add_tail(&item->list, &fmsg->item_list); } void devlink_fmsg_pair_nest_start(struct devlink_fmsg *fmsg, const char *name) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_PAIR_NEST_START); devlink_fmsg_put_name(fmsg, name); } EXPORT_SYMBOL_GPL(devlink_fmsg_pair_nest_start); void devlink_fmsg_pair_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_pair_nest_end); void devlink_fmsg_arr_pair_nest_start(struct devlink_fmsg *fmsg, const char *name) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_ARR_NEST_START); } EXPORT_SYMBOL_GPL(devlink_fmsg_arr_pair_nest_start); void devlink_fmsg_arr_pair_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_nest_end(fmsg); devlink_fmsg_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_arr_pair_nest_end); void devlink_fmsg_binary_pair_nest_start(struct devlink_fmsg *fmsg, const char *name) { devlink_fmsg_arr_pair_nest_start(fmsg, name); fmsg->putting_binary = true; } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_nest_start); void devlink_fmsg_binary_pair_nest_end(struct devlink_fmsg *fmsg) { if (fmsg->err) return; if (!fmsg->putting_binary) fmsg->err = -EINVAL; fmsg->putting_binary = false; devlink_fmsg_arr_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_nest_end); static void devlink_fmsg_put_value(struct devlink_fmsg *fmsg, const void *value, u16 value_len, u8 value_nla_type) { struct devlink_fmsg_item *item; if (fmsg->err) return; if (value_len > DEVLINK_FMSG_MAX_SIZE) { fmsg->err = -EMSGSIZE; return; } item = kzalloc(sizeof(*item) + value_len, GFP_KERNEL); if (!item) { fmsg->err = -ENOMEM; return; } item->nla_type = value_nla_type; item->len = value_len; item->attrtype = DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA; memcpy(&item->value, value, item->len); list_add_tail(&item->list, &fmsg->item_list); } static void devlink_fmsg_bool_put(struct devlink_fmsg *fmsg, bool value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_FLAG); } static void devlink_fmsg_u8_put(struct devlink_fmsg *fmsg, u8 value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U8); } void devlink_fmsg_u32_put(struct devlink_fmsg *fmsg, u32 value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U32); } EXPORT_SYMBOL_GPL(devlink_fmsg_u32_put); static void devlink_fmsg_u64_put(struct devlink_fmsg *fmsg, u64 value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U64); } void devlink_fmsg_string_put(struct devlink_fmsg *fmsg, const char *value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, value, strlen(value) + 1, NLA_NUL_STRING); } EXPORT_SYMBOL_GPL(devlink_fmsg_string_put); void devlink_fmsg_binary_put(struct devlink_fmsg *fmsg, const void *value, u16 value_len) { if (!fmsg->err && !fmsg->putting_binary) fmsg->err = -EINVAL; devlink_fmsg_put_value(fmsg, value, value_len, NLA_BINARY); } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_put); void devlink_fmsg_bool_pair_put(struct devlink_fmsg *fmsg, const char *name, bool value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_bool_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_bool_pair_put); void devlink_fmsg_u8_pair_put(struct devlink_fmsg *fmsg, const char *name, u8 value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_u8_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_u8_pair_put); void devlink_fmsg_u32_pair_put(struct devlink_fmsg *fmsg, const char *name, u32 value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_u32_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_u32_pair_put); void devlink_fmsg_u64_pair_put(struct devlink_fmsg *fmsg, const char *name, u64 value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_u64_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_u64_pair_put); void devlink_fmsg_string_pair_put(struct devlink_fmsg *fmsg, const char *name, const char *value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_string_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_string_pair_put); void devlink_fmsg_binary_pair_put(struct devlink_fmsg *fmsg, const char *name, const void *value, u32 value_len) { u32 data_size; u32 offset; devlink_fmsg_binary_pair_nest_start(fmsg, name); for (offset = 0; offset < value_len; offset += data_size) { data_size = value_len - offset; if (data_size > DEVLINK_FMSG_MAX_SIZE) data_size = DEVLINK_FMSG_MAX_SIZE; devlink_fmsg_binary_put(fmsg, value + offset, data_size); } devlink_fmsg_binary_pair_nest_end(fmsg); fmsg->putting_binary = false; } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_put); static int devlink_fmsg_item_fill_type(struct devlink_fmsg_item *msg, struct sk_buff *skb) { switch (msg->nla_type) { case NLA_FLAG: case NLA_U8: case NLA_U32: case NLA_U64: case NLA_NUL_STRING: case NLA_BINARY: return nla_put_u8(skb, DEVLINK_ATTR_FMSG_OBJ_VALUE_TYPE, msg->nla_type); default: return -EINVAL; } } static int devlink_fmsg_item_fill_data(struct devlink_fmsg_item *msg, struct sk_buff *skb) { int attrtype = DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA; u8 tmp; switch (msg->nla_type) { case NLA_FLAG: /* Always provide flag data, regardless of its value */ tmp = *(bool *)msg->value; return nla_put_u8(skb, attrtype, tmp); case NLA_U8: return nla_put_u8(skb, attrtype, *(u8 *)msg->value); case NLA_U32: return nla_put_u32(skb, attrtype, *(u32 *)msg->value); case NLA_U64: return devlink_nl_put_u64(skb, attrtype, *(u64 *)msg->value); case NLA_NUL_STRING: return nla_put_string(skb, attrtype, (char *)&msg->value); case NLA_BINARY: return nla_put(skb, attrtype, msg->len, (void *)&msg->value); default: return -EINVAL; } } static int devlink_fmsg_prepare_skb(struct devlink_fmsg *fmsg, struct sk_buff *skb, int *start) { struct devlink_fmsg_item *item; struct nlattr *fmsg_nlattr; int err = 0; int i = 0; fmsg_nlattr = nla_nest_start_noflag(skb, DEVLINK_ATTR_FMSG); if (!fmsg_nlattr) return -EMSGSIZE; list_for_each_entry(item, &fmsg->item_list, list) { if (i < *start) { i++; continue; } switch (item->attrtype) { case DEVLINK_ATTR_FMSG_OBJ_NEST_START: case DEVLINK_ATTR_FMSG_PAIR_NEST_START: case DEVLINK_ATTR_FMSG_ARR_NEST_START: case DEVLINK_ATTR_FMSG_NEST_END: err = nla_put_flag(skb, item->attrtype); break; case DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA: err = devlink_fmsg_item_fill_type(item, skb); if (err) break; err = devlink_fmsg_item_fill_data(item, skb); break; case DEVLINK_ATTR_FMSG_OBJ_NAME: err = nla_put_string(skb, item->attrtype, (char *)&item->value); break; default: err = -EINVAL; break; } if (!err) *start = ++i; else break; } nla_nest_end(skb, fmsg_nlattr); return err; } static int devlink_fmsg_snd(struct devlink_fmsg *fmsg, struct genl_info *info, enum devlink_command cmd, int flags) { struct nlmsghdr *nlh; struct sk_buff *skb; bool last = false; int index = 0; void *hdr; int err; if (fmsg->err) return fmsg->err; while (!last) { int tmp_index = index; skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq, &devlink_nl_family, flags | NLM_F_MULTI, cmd); if (!hdr) { err = -EMSGSIZE; goto nla_put_failure; } err = devlink_fmsg_prepare_skb(fmsg, skb, &index); if (!err) last = true; else if (err != -EMSGSIZE || tmp_index == index) goto nla_put_failure; genlmsg_end(skb, hdr); err = genlmsg_reply(skb, info); if (err) return err; } skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = -EMSGSIZE; goto nla_put_failure; } return genlmsg_reply(skb, info); nla_put_failure: nlmsg_free(skb); return err; } static int devlink_fmsg_dumpit(struct devlink_fmsg *fmsg, struct sk_buff *skb, struct netlink_callback *cb, enum devlink_command cmd) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); int index = state->idx; int tmp_index = index; void *hdr; int err; if (fmsg->err) return fmsg->err; hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &devlink_nl_family, NLM_F_ACK | NLM_F_MULTI, cmd); if (!hdr) { err = -EMSGSIZE; goto nla_put_failure; } err = devlink_fmsg_prepare_skb(fmsg, skb, &index); if ((err && err != -EMSGSIZE) || tmp_index == index) goto nla_put_failure; state->idx = index; genlmsg_end(skb, hdr); return skb->len; nla_put_failure: genlmsg_cancel(skb, hdr); return err; } int devlink_nl_health_reporter_diagnose_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; struct devlink_fmsg *fmsg; int err; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->diagnose) return -EOPNOTSUPP; fmsg = devlink_fmsg_alloc(); if (!fmsg) return -ENOMEM; devlink_fmsg_obj_nest_start(fmsg); err = reporter->ops->diagnose(reporter, fmsg, info->extack); if (err) goto out; devlink_fmsg_obj_nest_end(fmsg); err = devlink_fmsg_snd(fmsg, info, DEVLINK_CMD_HEALTH_REPORTER_DIAGNOSE, 0); out: devlink_fmsg_free(fmsg); return err; } static struct devlink_health_reporter * devlink_health_reporter_get_from_cb_lock(struct netlink_callback *cb) { const struct genl_info *info = genl_info_dump(cb); struct devlink_health_reporter *reporter; struct nlattr **attrs = info->attrs; struct devlink *devlink; devlink = devlink_get_from_attrs_lock(sock_net(cb->skb->sk), attrs, false); if (IS_ERR(devlink)) return NULL; reporter = devlink_health_reporter_get_from_attrs(devlink, attrs); if (!reporter) { devl_unlock(devlink); devlink_put(devlink); } return reporter; } int devlink_nl_health_reporter_dump_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_health_reporter *reporter; struct devlink *devlink; int err; reporter = devlink_health_reporter_get_from_cb_lock(cb); if (!reporter) return -EINVAL; devlink = reporter->devlink; if (!reporter->ops->dump) { devl_unlock(devlink); devlink_put(devlink); return -EOPNOTSUPP; } if (!state->idx) { err = devlink_health_do_dump(reporter, NULL, cb->extack); if (err) goto unlock; state->dump_ts = reporter->dump_ts; } if (!reporter->dump_fmsg || state->dump_ts != reporter->dump_ts) { NL_SET_ERR_MSG(cb->extack, "Dump trampled, please retry"); err = -EAGAIN; goto unlock; } err = devlink_fmsg_dumpit(reporter->dump_fmsg, skb, cb, DEVLINK_CMD_HEALTH_REPORTER_DUMP_GET); unlock: devl_unlock(devlink); devlink_put(devlink); return err; } int devlink_nl_health_reporter_dump_clear_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->dump) return -EOPNOTSUPP; devlink_health_dump_clear(reporter); return 0; } int devlink_nl_health_reporter_test_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->test) return -EOPNOTSUPP; return reporter->ops->test(reporter, info->extack); } /** * devlink_fmsg_dump_skb - Dump sk_buffer structure * @fmsg: devlink formatted message pointer * @skb: pointer to skb * * Dump diagnostic information about sk_buff structure, like headroom, length, * tailroom, MAC, etc. */ void devlink_fmsg_dump_skb(struct devlink_fmsg *fmsg, const struct sk_buff *skb) { struct skb_shared_info *sh = skb_shinfo(skb); struct sock *sk = skb->sk; bool has_mac, has_trans; has_mac = skb_mac_header_was_set(skb); has_trans = skb_transport_header_was_set(skb); devlink_fmsg_pair_nest_start(fmsg, "skb"); devlink_fmsg_obj_nest_start(fmsg); devlink_fmsg_put(fmsg, "actual len", skb->len); devlink_fmsg_put(fmsg, "head len", skb_headlen(skb)); devlink_fmsg_put(fmsg, "data len", skb->data_len); devlink_fmsg_put(fmsg, "tail len", skb_tailroom(skb)); devlink_fmsg_put(fmsg, "MAC", has_mac ? skb->mac_header : -1); devlink_fmsg_put(fmsg, "MAC len", has_mac ? skb_mac_header_len(skb) : -1); devlink_fmsg_put(fmsg, "network hdr", skb->network_header); devlink_fmsg_put(fmsg, "network hdr len", has_trans ? skb_network_header_len(skb) : -1); devlink_fmsg_put(fmsg, "transport hdr", has_trans ? skb->transport_header : -1); devlink_fmsg_put(fmsg, "csum", (__force u32)skb->csum); devlink_fmsg_put(fmsg, "csum_ip_summed", (u8)skb->ip_summed); devlink_fmsg_put(fmsg, "csum_complete_sw", !!skb->csum_complete_sw); devlink_fmsg_put(fmsg, "csum_valid", !!skb->csum_valid); devlink_fmsg_put(fmsg, "csum_level", (u8)skb->csum_level); devlink_fmsg_put(fmsg, "sw_hash", !!skb->sw_hash); devlink_fmsg_put(fmsg, "l4_hash", !!skb->l4_hash); devlink_fmsg_put(fmsg, "proto", ntohs(skb->protocol)); devlink_fmsg_put(fmsg, "pkt_type", (u8)skb->pkt_type); devlink_fmsg_put(fmsg, "iif", skb->skb_iif); if (sk) { devlink_fmsg_pair_nest_start(fmsg, "sk"); devlink_fmsg_obj_nest_start(fmsg); devlink_fmsg_put(fmsg, "family", sk->sk_type); devlink_fmsg_put(fmsg, "type", sk->sk_type); devlink_fmsg_put(fmsg, "proto", sk->sk_protocol); devlink_fmsg_obj_nest_end(fmsg); devlink_fmsg_pair_nest_end(fmsg); } devlink_fmsg_obj_nest_end(fmsg); devlink_fmsg_pair_nest_end(fmsg); devlink_fmsg_pair_nest_start(fmsg, "shinfo"); devlink_fmsg_obj_nest_start(fmsg); devlink_fmsg_put(fmsg, "tx_flags", sh->tx_flags); devlink_fmsg_put(fmsg, "nr_frags", sh->nr_frags); devlink_fmsg_put(fmsg, "gso_size", sh->gso_size); devlink_fmsg_put(fmsg, "gso_type", sh->gso_type); devlink_fmsg_put(fmsg, "gso_segs", sh->gso_segs); devlink_fmsg_obj_nest_end(fmsg); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_dump_skb);
4 4 4 4 4 4 4 4 4 4 4 4 4 4 788 789 3 1 4 4 4 3 1 4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 /* * Rusty Russell (C)2000 -- This code is GPL. * Patrick McHardy (c) 2006-2012 */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/skbuff.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_bridge.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/protocol.h> #include <net/netfilter/nf_queue.h> #include <net/dst.h> #include "nf_internals.h" static const struct nf_queue_handler __rcu *nf_queue_handler; /* * Hook for nfnetlink_queue to register its queue handler. * We do this so that most of the NFQUEUE code can be modular. * * Once the queue is registered it must reinject all packets it * receives, no matter what. */ void nf_register_queue_handler(const struct nf_queue_handler *qh) { /* should never happen, we only have one queueing backend in kernel */ WARN_ON(rcu_access_pointer(nf_queue_handler)); rcu_assign_pointer(nf_queue_handler, qh); } EXPORT_SYMBOL(nf_register_queue_handler); /* The caller must flush their queue before this */ void nf_unregister_queue_handler(void) { RCU_INIT_POINTER(nf_queue_handler, NULL); } EXPORT_SYMBOL(nf_unregister_queue_handler); static void nf_queue_sock_put(struct sock *sk) { #ifdef CONFIG_INET sock_gen_put(sk); #else sock_put(sk); #endif } static void nf_queue_entry_release_refs(struct nf_queue_entry *entry) { struct nf_hook_state *state = &entry->state; /* Release those devices we held, or Alexey will kill me. */ dev_put(state->in); dev_put(state->out); if (state->sk) nf_queue_sock_put(state->sk); #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) dev_put(entry->physin); dev_put(entry->physout); #endif } void nf_queue_entry_free(struct nf_queue_entry *entry) { nf_queue_entry_release_refs(entry); kfree(entry); } EXPORT_SYMBOL_GPL(nf_queue_entry_free); static void __nf_queue_entry_init_physdevs(struct nf_queue_entry *entry) { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) const struct sk_buff *skb = entry->skb; if (nf_bridge_info_exists(skb)) { entry->physin = nf_bridge_get_physindev(skb, entry->state.net); entry->physout = nf_bridge_get_physoutdev(skb); } else { entry->physin = NULL; entry->physout = NULL; } #endif } /* Bump dev refs so they don't vanish while packet is out */ bool nf_queue_entry_get_refs(struct nf_queue_entry *entry) { struct nf_hook_state *state = &entry->state; if (state->sk && !refcount_inc_not_zero(&state->sk->sk_refcnt)) return false; dev_hold(state->in); dev_hold(state->out); #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) dev_hold(entry->physin); dev_hold(entry->physout); #endif return true; } EXPORT_SYMBOL_GPL(nf_queue_entry_get_refs); void nf_queue_nf_hook_drop(struct net *net) { const struct nf_queue_handler *qh; rcu_read_lock(); qh = rcu_dereference(nf_queue_handler); if (qh) qh->nf_hook_drop(net); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(nf_queue_nf_hook_drop); static void nf_ip_saveroute(const struct sk_buff *skb, struct nf_queue_entry *entry) { struct ip_rt_info *rt_info = nf_queue_entry_reroute(entry); if (entry->state.hook == NF_INET_LOCAL_OUT) { const struct iphdr *iph = ip_hdr(skb); rt_info->tos = iph->tos; rt_info->daddr = iph->daddr; rt_info->saddr = iph->saddr; rt_info->mark = skb->mark; } } static void nf_ip6_saveroute(const struct sk_buff *skb, struct nf_queue_entry *entry) { struct ip6_rt_info *rt_info = nf_queue_entry_reroute(entry); if (entry->state.hook == NF_INET_LOCAL_OUT) { const struct ipv6hdr *iph = ipv6_hdr(skb); rt_info->daddr = iph->daddr; rt_info->saddr = iph->saddr; rt_info->mark = skb->mark; } } static int __nf_queue(struct sk_buff *skb, const struct nf_hook_state *state, unsigned int index, unsigned int queuenum) { struct nf_queue_entry *entry = NULL; const struct nf_queue_handler *qh; unsigned int route_key_size; int status; /* QUEUE == DROP if no one is waiting, to be safe. */ qh = rcu_dereference(nf_queue_handler); if (!qh) return -ESRCH; switch (state->pf) { case AF_INET: route_key_size = sizeof(struct ip_rt_info); break; case AF_INET6: route_key_size = sizeof(struct ip6_rt_info); break; default: route_key_size = 0; break; } if (skb_sk_is_prefetched(skb)) { struct sock *sk = skb->sk; if (!sk_is_refcounted(sk)) { if (!refcount_inc_not_zero(&sk->sk_refcnt)) return -ENOTCONN; /* drop refcount on skb_orphan */ skb->destructor = sock_edemux; } } entry = kmalloc(sizeof(*entry) + route_key_size, GFP_ATOMIC); if (!entry) return -ENOMEM; if (skb_dst(skb) && !skb_dst_force(skb)) { kfree(entry); return -ENETDOWN; } *entry = (struct nf_queue_entry) { .skb = skb, .state = *state, .hook_index = index, .size = sizeof(*entry) + route_key_size, }; __nf_queue_entry_init_physdevs(entry); if (!nf_queue_entry_get_refs(entry)) { kfree(entry); return -ENOTCONN; } switch (entry->state.pf) { case AF_INET: nf_ip_saveroute(skb, entry); break; case AF_INET6: nf_ip6_saveroute(skb, entry); break; } status = qh->outfn(entry, queuenum); if (status < 0) { nf_queue_entry_free(entry); return status; } return 0; } /* Packets leaving via this function must come back through nf_reinject(). */ int nf_queue(struct sk_buff *skb, struct nf_hook_state *state, unsigned int index, unsigned int verdict) { int ret; ret = __nf_queue(skb, state, index, verdict >> NF_VERDICT_QBITS); if (ret < 0) { if (ret == -ESRCH && (verdict & NF_VERDICT_FLAG_QUEUE_BYPASS)) return 1; kfree_skb(skb); } return 0; } EXPORT_SYMBOL_GPL(nf_queue);
1 207 199 197 3 903 901 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for diskquota-operations. When diskquota is configured these * macros expand to the right source-code. * * Author: Marco van Wieringen <mvw@planets.elm.net> */ #ifndef _LINUX_QUOTAOPS_ #define _LINUX_QUOTAOPS_ #include <linux/fs.h> #define DQUOT_SPACE_WARN 0x1 #define DQUOT_SPACE_RESERVE 0x2 #define DQUOT_SPACE_NOFAIL 0x4 static inline struct quota_info *sb_dqopt(struct super_block *sb) { return &sb->s_dquot; } /* i_mutex must being held */ static inline bool is_quota_modification(struct mnt_idmap *idmap, struct inode *inode, struct iattr *ia) { return ((ia->ia_valid & ATTR_SIZE) || i_uid_needs_update(idmap, ia, inode) || i_gid_needs_update(idmap, ia, inode)); } #if defined(CONFIG_QUOTA) #define quota_error(sb, fmt, args...) \ __quota_error((sb), __func__, fmt , ## args) extern __printf(3, 4) void __quota_error(struct super_block *sb, const char *func, const char *fmt, ...); /* * declaration of quota_function calls in kernel. */ int dquot_initialize(struct inode *inode); bool dquot_initialize_needed(struct inode *inode); void dquot_drop(struct inode *inode); struct dquot *dqget(struct super_block *sb, struct kqid qid); static inline struct dquot *dqgrab(struct dquot *dquot) { /* Make sure someone else has active reference to dquot */ WARN_ON_ONCE(!atomic_read(&dquot->dq_count)); WARN_ON_ONCE(!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)); atomic_inc(&dquot->dq_count); return dquot; } static inline bool dquot_is_busy(struct dquot *dquot) { if (test_bit(DQ_MOD_B, &dquot->dq_flags)) return true; if (atomic_read(&dquot->dq_count) > 0) return true; return false; } void dqput(struct dquot *dquot); int dquot_scan_active(struct super_block *sb, int (*fn)(struct dquot *dquot, unsigned long priv), unsigned long priv); struct dquot *dquot_alloc(struct super_block *sb, int type); void dquot_destroy(struct dquot *dquot); int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags); void __dquot_free_space(struct inode *inode, qsize_t number, int flags); int dquot_alloc_inode(struct inode *inode); void dquot_claim_space_nodirty(struct inode *inode, qsize_t number); void dquot_free_inode(struct inode *inode); void dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number); int dquot_disable(struct super_block *sb, int type, unsigned int flags); /* Suspend quotas on remount RO */ static inline int dquot_suspend(struct super_block *sb, int type) { return dquot_disable(sb, type, DQUOT_SUSPENDED); } int dquot_resume(struct super_block *sb, int type); int dquot_commit(struct dquot *dquot); int dquot_acquire(struct dquot *dquot); int dquot_release(struct dquot *dquot); int dquot_commit_info(struct super_block *sb, int type); int dquot_get_next_id(struct super_block *sb, struct kqid *qid); int dquot_mark_dquot_dirty(struct dquot *dquot); int dquot_file_open(struct inode *inode, struct file *file); int dquot_load_quota_sb(struct super_block *sb, int type, int format_id, unsigned int flags); int dquot_load_quota_inode(struct inode *inode, int type, int format_id, unsigned int flags); int dquot_quota_on(struct super_block *sb, int type, int format_id, const struct path *path); int dquot_quota_on_mount(struct super_block *sb, char *qf_name, int format_id, int type); int dquot_quota_off(struct super_block *sb, int type); int dquot_writeback_dquots(struct super_block *sb, int type); int dquot_quota_sync(struct super_block *sb, int type); int dquot_get_state(struct super_block *sb, struct qc_state *state); int dquot_set_dqinfo(struct super_block *sb, int type, struct qc_info *ii); int dquot_get_dqblk(struct super_block *sb, struct kqid id, struct qc_dqblk *di); int dquot_get_next_dqblk(struct super_block *sb, struct kqid *id, struct qc_dqblk *di); int dquot_set_dqblk(struct super_block *sb, struct kqid id, struct qc_dqblk *di); int __dquot_transfer(struct inode *inode, struct dquot **transfer_to); int dquot_transfer(struct mnt_idmap *idmap, struct inode *inode, struct iattr *iattr); static inline struct mem_dqinfo *sb_dqinfo(struct super_block *sb, int type) { return sb_dqopt(sb)->info + type; } /* * Functions for checking status of quota */ static inline bool sb_has_quota_usage_enabled(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_USAGE_ENABLED, type); } static inline bool sb_has_quota_limits_enabled(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_LIMITS_ENABLED, type); } static inline bool sb_has_quota_suspended(struct super_block *sb, int type) { return sb_dqopt(sb)->flags & dquot_state_flag(DQUOT_SUSPENDED, type); } static inline unsigned sb_any_quota_suspended(struct super_block *sb) { return dquot_state_types(sb_dqopt(sb)->flags, DQUOT_SUSPENDED); } /* Does kernel know about any quota information for given sb + type? */ static inline bool sb_has_quota_loaded(struct super_block *sb, int type) { /* Currently if anything is on, then quota usage is on as well */ return sb_has_quota_usage_enabled(sb, type); } static inline unsigned sb_any_quota_loaded(struct super_block *sb) { return dquot_state_types(sb_dqopt(sb)->flags, DQUOT_USAGE_ENABLED); } static inline bool sb_has_quota_active(struct super_block *sb, int type) { return sb_has_quota_loaded(sb, type) && !sb_has_quota_suspended(sb, type); } /* * Operations supported for diskquotas. */ extern const struct dquot_operations dquot_operations; extern const struct quotactl_ops dquot_quotactl_sysfile_ops; #else static inline int sb_has_quota_usage_enabled(struct super_block *sb, int type) { return 0; } static inline int sb_has_quota_limits_enabled(struct super_block *sb, int type) { return 0; } static inline int sb_has_quota_suspended(struct super_block *sb, int type) { return 0; } static inline int sb_any_quota_suspended(struct super_block *sb) { return 0; } /* Does kernel know about any quota information for given sb + type? */ static inline int sb_has_quota_loaded(struct super_block *sb, int type) { return 0; } static inline int sb_any_quota_loaded(struct super_block *sb) { return 0; } static inline int sb_has_quota_active(struct super_block *sb, int type) { return 0; } static inline int dquot_initialize(struct inode *inode) { return 0; } static inline bool dquot_initialize_needed(struct inode *inode) { return false; } static inline void dquot_drop(struct inode *inode) { } static inline int dquot_alloc_inode(struct inode *inode) { return 0; } static inline void dquot_free_inode(struct inode *inode) { } static inline int dquot_transfer(struct mnt_idmap *idmap, struct inode *inode, struct iattr *iattr) { return 0; } static inline int __dquot_alloc_space(struct inode *inode, qsize_t number, int flags) { if (!(flags & DQUOT_SPACE_RESERVE)) inode_add_bytes(inode, number); return 0; } static inline void __dquot_free_space(struct inode *inode, qsize_t number, int flags) { if (!(flags & DQUOT_SPACE_RESERVE)) inode_sub_bytes(inode, number); } static inline void dquot_claim_space_nodirty(struct inode *inode, qsize_t number) { inode_add_bytes(inode, number); } static inline int dquot_reclaim_space_nodirty(struct inode *inode, qsize_t number) { inode_sub_bytes(inode, number); return 0; } static inline int dquot_disable(struct super_block *sb, int type, unsigned int flags) { return 0; } static inline int dquot_suspend(struct super_block *sb, int type) { return 0; } static inline int dquot_resume(struct super_block *sb, int type) { return 0; } #define dquot_file_open generic_file_open static inline int dquot_writeback_dquots(struct super_block *sb, int type) { return 0; } #endif /* CONFIG_QUOTA */ static inline int dquot_alloc_space_nodirty(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr, DQUOT_SPACE_WARN); } static inline void dquot_alloc_space_nofail(struct inode *inode, qsize_t nr) { __dquot_alloc_space(inode, nr, DQUOT_SPACE_WARN|DQUOT_SPACE_NOFAIL); mark_inode_dirty_sync(inode); } static inline int dquot_alloc_space(struct inode *inode, qsize_t nr) { int ret; ret = dquot_alloc_space_nodirty(inode, nr); if (!ret) { /* * Mark inode fully dirty. Since we are allocating blocks, inode * would become fully dirty soon anyway and it reportedly * reduces lock contention. */ mark_inode_dirty(inode); } return ret; } static inline int dquot_alloc_block_nodirty(struct inode *inode, qsize_t nr) { return dquot_alloc_space_nodirty(inode, nr << inode->i_blkbits); } static inline void dquot_alloc_block_nofail(struct inode *inode, qsize_t nr) { dquot_alloc_space_nofail(inode, nr << inode->i_blkbits); } static inline int dquot_alloc_block(struct inode *inode, qsize_t nr) { return dquot_alloc_space(inode, nr << inode->i_blkbits); } static inline int dquot_prealloc_block_nodirty(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr << inode->i_blkbits, 0); } static inline int dquot_prealloc_block(struct inode *inode, qsize_t nr) { int ret; ret = dquot_prealloc_block_nodirty(inode, nr); if (!ret) mark_inode_dirty_sync(inode); return ret; } static inline int dquot_reserve_block(struct inode *inode, qsize_t nr) { return __dquot_alloc_space(inode, nr << inode->i_blkbits, DQUOT_SPACE_WARN|DQUOT_SPACE_RESERVE); } static inline void dquot_claim_block(struct inode *inode, qsize_t nr) { dquot_claim_space_nodirty(inode, nr << inode->i_blkbits); mark_inode_dirty_sync(inode); } static inline void dquot_reclaim_block(struct inode *inode, qsize_t nr) { dquot_reclaim_space_nodirty(inode, nr << inode->i_blkbits); mark_inode_dirty_sync(inode); } static inline void dquot_free_space_nodirty(struct inode *inode, qsize_t nr) { __dquot_free_space(inode, nr, 0); } static inline void dquot_free_space(struct inode *inode, qsize_t nr) { dquot_free_space_nodirty(inode, nr); mark_inode_dirty_sync(inode); } static inline void dquot_free_block_nodirty(struct inode *inode, qsize_t nr) { dquot_free_space_nodirty(inode, nr << inode->i_blkbits); } static inline void dquot_free_block(struct inode *inode, qsize_t nr) { dquot_free_space(inode, nr << inode->i_blkbits); } static inline void dquot_release_reservation_block(struct inode *inode, qsize_t nr) { __dquot_free_space(inode, nr << inode->i_blkbits, DQUOT_SPACE_RESERVE); } unsigned int qtype_enforce_flag(int type); #endif /* _LINUX_QUOTAOPS_ */
9 8 8 1 1 8 8 8 8 8 1 1 11 1 1 14 14 14 3 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 Syncookies implementation for the Linux kernel * * Authors: * Glenn Griffin <ggriffin.kernel@gmail.com> * * Based on IPv4 implementation by Andi Kleen * linux/net/ipv4/syncookies.c */ #include <linux/tcp.h> #include <linux/random.h> #include <linux/siphash.h> #include <linux/kernel.h> #include <net/secure_seq.h> #include <net/ipv6.h> #include <net/tcp.h> #define COOKIEBITS 24 /* Upper bits store count */ #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1) static siphash_aligned_key_t syncookie6_secret[2]; /* RFC 2460, Section 8.3: * [ipv6 tcp] MSS must be computed as the maximum packet size minus 60 [..] * * Due to IPV6_MIN_MTU=1280 the lowest possible MSS is 1220, which allows * using higher values than ipv4 tcp syncookies. * The other values are chosen based on ethernet (1500 and 9k MTU), plus * one that accounts for common encap (PPPoe) overhead. Table must be sorted. */ static __u16 const msstab[] = { 1280 - 60, /* IPV6_MIN_MTU - 60 */ 1480 - 60, 1500 - 60, 9000 - 60, }; static u32 cookie_hash(const struct in6_addr *saddr, const struct in6_addr *daddr, __be16 sport, __be16 dport, u32 count, int c) { const struct { struct in6_addr saddr; struct in6_addr daddr; u32 count; __be16 sport; __be16 dport; } __aligned(SIPHASH_ALIGNMENT) combined = { .saddr = *saddr, .daddr = *daddr, .count = count, .sport = sport, .dport = dport }; net_get_random_once(syncookie6_secret, sizeof(syncookie6_secret)); return siphash(&combined, offsetofend(typeof(combined), dport), &syncookie6_secret[c]); } static __u32 secure_tcp_syn_cookie(const struct in6_addr *saddr, const struct in6_addr *daddr, __be16 sport, __be16 dport, __u32 sseq, __u32 data) { u32 count = tcp_cookie_time(); return (cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq + (count << COOKIEBITS) + ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data) & COOKIEMASK)); } static __u32 check_tcp_syn_cookie(__u32 cookie, const struct in6_addr *saddr, const struct in6_addr *daddr, __be16 sport, __be16 dport, __u32 sseq) { __u32 diff, count = tcp_cookie_time(); cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq; diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS); if (diff >= MAX_SYNCOOKIE_AGE) return (__u32)-1; return (cookie - cookie_hash(saddr, daddr, sport, dport, count - diff, 1)) & COOKIEMASK; } u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, const struct tcphdr *th, __u16 *mssp) { int mssind; const __u16 mss = *mssp; for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--) if (mss >= msstab[mssind]) break; *mssp = msstab[mssind]; return secure_tcp_syn_cookie(&iph->saddr, &iph->daddr, th->source, th->dest, ntohl(th->seq), mssind); } EXPORT_SYMBOL_GPL(__cookie_v6_init_sequence); __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mssp) { const struct ipv6hdr *iph = ipv6_hdr(skb); const struct tcphdr *th = tcp_hdr(skb); return __cookie_v6_init_sequence(iph, th, mssp); } int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th) { __u32 cookie = ntohl(th->ack_seq) - 1; __u32 seq = ntohl(th->seq) - 1; __u32 mssind; mssind = check_tcp_syn_cookie(cookie, &iph->saddr, &iph->daddr, th->source, th->dest, seq); return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0; } EXPORT_SYMBOL_GPL(__cookie_v6_check); static struct request_sock *cookie_tcp_check(struct net *net, struct sock *sk, struct sk_buff *skb) { struct tcp_options_received tcp_opt; u32 tsoff = 0; int mss; if (tcp_synq_no_recent_overflow(sk)) goto out; mss = __cookie_v6_check(ipv6_hdr(skb), tcp_hdr(skb)); if (!mss) { __NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESFAILED); goto out; } __NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESRECV); /* check for timestamp cookie support */ memset(&tcp_opt, 0, sizeof(tcp_opt)); tcp_parse_options(net, skb, &tcp_opt, 0, NULL); if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) { tsoff = secure_tcpv6_ts_off(net, ipv6_hdr(skb)->daddr.s6_addr32, ipv6_hdr(skb)->saddr.s6_addr32); tcp_opt.rcv_tsecr -= tsoff; } if (!cookie_timestamp_decode(net, &tcp_opt)) goto out; return cookie_tcp_reqsk_alloc(&tcp6_request_sock_ops, sk, skb, &tcp_opt, mss, tsoff); out: return ERR_PTR(-EINVAL); } struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb) { const struct tcphdr *th = tcp_hdr(skb); struct ipv6_pinfo *np = inet6_sk(sk); struct tcp_sock *tp = tcp_sk(sk); struct inet_request_sock *ireq; struct net *net = sock_net(sk); struct request_sock *req; struct dst_entry *dst; struct sock *ret = sk; __u8 rcv_wscale; int full_space; SKB_DR(reason); if (!READ_ONCE(net->ipv4.sysctl_tcp_syncookies) || !th->ack || th->rst) goto out; if (cookie_bpf_ok(skb)) { req = cookie_bpf_check(sk, skb); } else { req = cookie_tcp_check(net, sk, skb); if (IS_ERR(req)) goto out; } if (!req) { SKB_DR_SET(reason, NO_SOCKET); goto out_drop; } ireq = inet_rsk(req); ireq->ir_v6_rmt_addr = ipv6_hdr(skb)->saddr; ireq->ir_v6_loc_addr = ipv6_hdr(skb)->daddr; if (security_inet_conn_request(sk, skb, req)) { SKB_DR_SET(reason, SECURITY_HOOK); goto out_free; } if (ipv6_opt_accepted(sk, skb, &TCP_SKB_CB(skb)->header.h6) || np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo || np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim) { refcount_inc(&skb->users); ireq->pktopts = skb; } /* So that link locals have meaning */ if (!sk->sk_bound_dev_if && ipv6_addr_type(&ireq->ir_v6_rmt_addr) & IPV6_ADDR_LINKLOCAL) ireq->ir_iif = tcp_v6_iif(skb); tcp_ao_syncookie(sk, skb, req, AF_INET6); /* * We need to lookup the dst_entry to get the correct window size. * This is taken from tcp_v6_syn_recv_sock. Somebody please enlighten * me if there is a preferred way. */ { struct in6_addr *final_p, final; struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = IPPROTO_TCP; fl6.daddr = ireq->ir_v6_rmt_addr; final_p = fl6_update_dst(&fl6, rcu_dereference(np->opt), &final); fl6.saddr = ireq->ir_v6_loc_addr; fl6.flowi6_oif = ireq->ir_iif; fl6.flowi6_mark = ireq->ir_mark; fl6.fl6_dport = ireq->ir_rmt_port; fl6.fl6_sport = inet_sk(sk)->inet_sport; fl6.flowi6_uid = sk->sk_uid; security_req_classify_flow(req, flowi6_to_flowi_common(&fl6)); dst = ip6_dst_lookup_flow(net, sk, &fl6, final_p); if (IS_ERR(dst)) { SKB_DR_SET(reason, IP_OUTNOROUTES); goto out_free; } } req->rsk_window_clamp = READ_ONCE(tp->window_clamp) ? :dst_metric(dst, RTAX_WINDOW); /* limit the window selection if the user enforce a smaller rx buffer */ full_space = tcp_full_space(sk); if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) req->rsk_window_clamp = full_space; tcp_select_initial_window(sk, full_space, req->mss, &req->rsk_rcv_wnd, &req->rsk_window_clamp, ireq->wscale_ok, &rcv_wscale, dst_metric(dst, RTAX_INITRWND)); /* req->syncookie is set true only if ACK is validated * by BPF kfunc, then, rcv_wscale is already configured. */ if (!req->syncookie) ireq->rcv_wscale = rcv_wscale; ireq->ecn_ok &= cookie_ecn_ok(net, dst); ret = tcp_get_cookie_sock(sk, skb, req, dst); if (!ret) { SKB_DR_SET(reason, NO_SOCKET); goto out_drop; } out: return ret; out_free: reqsk_free(req); out_drop: sk_skb_reason_drop(sk, skb, reason); return NULL; }
36 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Trace point definitions for core RDMA functions. * * Author: Chuck Lever <chuck.lever@oracle.com> * * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rdma_core #if !defined(_TRACE_RDMA_CORE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RDMA_CORE_H #include <linux/tracepoint.h> #include <rdma/ib_verbs.h> /* * enum ib_poll_context, from include/rdma/ib_verbs.h */ #define IB_POLL_CTX_LIST \ ib_poll_ctx(DIRECT) \ ib_poll_ctx(SOFTIRQ) \ ib_poll_ctx(WORKQUEUE) \ ib_poll_ctx_end(UNBOUND_WORKQUEUE) #undef ib_poll_ctx #undef ib_poll_ctx_end #define ib_poll_ctx(x) TRACE_DEFINE_ENUM(IB_POLL_##x); #define ib_poll_ctx_end(x) TRACE_DEFINE_ENUM(IB_POLL_##x); IB_POLL_CTX_LIST #undef ib_poll_ctx #undef ib_poll_ctx_end #define ib_poll_ctx(x) { IB_POLL_##x, #x }, #define ib_poll_ctx_end(x) { IB_POLL_##x, #x } #define rdma_show_ib_poll_ctx(x) \ __print_symbolic(x, IB_POLL_CTX_LIST) /** ** Completion Queue events **/ TRACE_EVENT(cq_schedule, TP_PROTO( struct ib_cq *cq ), TP_ARGS(cq), TP_STRUCT__entry( __field(u32, cq_id) ), TP_fast_assign( cq->timestamp = ktime_get(); cq->interrupt = true; __entry->cq_id = cq->res.id; ), TP_printk("cq.id=%u", __entry->cq_id) ); TRACE_EVENT(cq_reschedule, TP_PROTO( struct ib_cq *cq ), TP_ARGS(cq), TP_STRUCT__entry( __field(u32, cq_id) ), TP_fast_assign( cq->timestamp = ktime_get(); cq->interrupt = false; __entry->cq_id = cq->res.id; ), TP_printk("cq.id=%u", __entry->cq_id) ); TRACE_EVENT(cq_process, TP_PROTO( const struct ib_cq *cq ), TP_ARGS(cq), TP_STRUCT__entry( __field(u32, cq_id) __field(bool, interrupt) __field(s64, latency) ), TP_fast_assign( ktime_t latency = ktime_sub(ktime_get(), cq->timestamp); __entry->cq_id = cq->res.id; __entry->latency = ktime_to_us(latency); __entry->interrupt = cq->interrupt; ), TP_printk("cq.id=%u wake-up took %lld [us] from %s", __entry->cq_id, __entry->latency, __entry->interrupt ? "interrupt" : "reschedule" ) ); TRACE_EVENT(cq_poll, TP_PROTO( const struct ib_cq *cq, int requested, int rc ), TP_ARGS(cq, requested, rc), TP_STRUCT__entry( __field(u32, cq_id) __field(int, requested) __field(int, rc) ), TP_fast_assign( __entry->cq_id = cq->res.id; __entry->requested = requested; __entry->rc = rc; ), TP_printk("cq.id=%u requested %d, returned %d", __entry->cq_id, __entry->requested, __entry->rc ) ); TRACE_EVENT(cq_drain_complete, TP_PROTO( const struct ib_cq *cq ), TP_ARGS(cq), TP_STRUCT__entry( __field(u32, cq_id) ), TP_fast_assign( __entry->cq_id = cq->res.id; ), TP_printk("cq.id=%u", __entry->cq_id ) ); TRACE_EVENT(cq_modify, TP_PROTO( const struct ib_cq *cq, u16 comps, u16 usec ), TP_ARGS(cq, comps, usec), TP_STRUCT__entry( __field(u32, cq_id) __field(unsigned int, comps) __field(unsigned int, usec) ), TP_fast_assign( __entry->cq_id = cq->res.id; __entry->comps = comps; __entry->usec = usec; ), TP_printk("cq.id=%u comps=%u usec=%u", __entry->cq_id, __entry->comps, __entry->usec ) ); TRACE_EVENT(cq_alloc, TP_PROTO( const struct ib_cq *cq, int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx ), TP_ARGS(cq, nr_cqe, comp_vector, poll_ctx), TP_STRUCT__entry( __field(u32, cq_id) __field(int, nr_cqe) __field(int, comp_vector) __field(unsigned long, poll_ctx) ), TP_fast_assign( __entry->cq_id = cq->res.id; __entry->nr_cqe = nr_cqe; __entry->comp_vector = comp_vector; __entry->poll_ctx = poll_ctx; ), TP_printk("cq.id=%u nr_cqe=%d comp_vector=%d poll_ctx=%s", __entry->cq_id, __entry->nr_cqe, __entry->comp_vector, rdma_show_ib_poll_ctx(__entry->poll_ctx) ) ); TRACE_EVENT(cq_alloc_error, TP_PROTO( int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx, int rc ), TP_ARGS(nr_cqe, comp_vector, poll_ctx, rc), TP_STRUCT__entry( __field(int, rc) __field(int, nr_cqe) __field(int, comp_vector) __field(unsigned long, poll_ctx) ), TP_fast_assign( __entry->rc = rc; __entry->nr_cqe = nr_cqe; __entry->comp_vector = comp_vector; __entry->poll_ctx = poll_ctx; ), TP_printk("nr_cqe=%d comp_vector=%d poll_ctx=%s rc=%d", __entry->nr_cqe, __entry->comp_vector, rdma_show_ib_poll_ctx(__entry->poll_ctx), __entry->rc ) ); TRACE_EVENT(cq_free, TP_PROTO( const struct ib_cq *cq ), TP_ARGS(cq), TP_STRUCT__entry( __field(u32, cq_id) ), TP_fast_assign( __entry->cq_id = cq->res.id; ), TP_printk("cq.id=%u", __entry->cq_id) ); /** ** Memory Region events **/ /* * enum ib_mr_type, from include/rdma/ib_verbs.h */ #define IB_MR_TYPE_LIST \ ib_mr_type_item(MEM_REG) \ ib_mr_type_item(SG_GAPS) \ ib_mr_type_item(DM) \ ib_mr_type_item(USER) \ ib_mr_type_item(DMA) \ ib_mr_type_end(INTEGRITY) #undef ib_mr_type_item #undef ib_mr_type_end #define ib_mr_type_item(x) TRACE_DEFINE_ENUM(IB_MR_TYPE_##x); #define ib_mr_type_end(x) TRACE_DEFINE_ENUM(IB_MR_TYPE_##x); IB_MR_TYPE_LIST #undef ib_mr_type_item #undef ib_mr_type_end #define ib_mr_type_item(x) { IB_MR_TYPE_##x, #x }, #define ib_mr_type_end(x) { IB_MR_TYPE_##x, #x } #define rdma_show_ib_mr_type(x) \ __print_symbolic(x, IB_MR_TYPE_LIST) TRACE_EVENT(mr_alloc, TP_PROTO( const struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, const struct ib_mr *mr ), TP_ARGS(pd, mr_type, max_num_sg, mr), TP_STRUCT__entry( __field(u32, pd_id) __field(u32, mr_id) __field(u32, max_num_sg) __field(int, rc) __field(unsigned long, mr_type) ), TP_fast_assign( __entry->pd_id = pd->res.id; if (IS_ERR(mr)) { __entry->mr_id = 0; __entry->rc = PTR_ERR(mr); } else { __entry->mr_id = mr->res.id; __entry->rc = 0; } __entry->max_num_sg = max_num_sg; __entry->mr_type = mr_type; ), TP_printk("pd.id=%u mr.id=%u type=%s max_num_sg=%u rc=%d", __entry->pd_id, __entry->mr_id, rdma_show_ib_mr_type(__entry->mr_type), __entry->max_num_sg, __entry->rc) ); TRACE_EVENT(mr_integ_alloc, TP_PROTO( const struct ib_pd *pd, u32 max_num_data_sg, u32 max_num_meta_sg, const struct ib_mr *mr ), TP_ARGS(pd, max_num_data_sg, max_num_meta_sg, mr), TP_STRUCT__entry( __field(u32, pd_id) __field(u32, mr_id) __field(u32, max_num_data_sg) __field(u32, max_num_meta_sg) __field(int, rc) ), TP_fast_assign( __entry->pd_id = pd->res.id; if (IS_ERR(mr)) { __entry->mr_id = 0; __entry->rc = PTR_ERR(mr); } else { __entry->mr_id = mr->res.id; __entry->rc = 0; } __entry->max_num_data_sg = max_num_data_sg; __entry->max_num_meta_sg = max_num_meta_sg; ), TP_printk("pd.id=%u mr.id=%u max_num_data_sg=%u max_num_meta_sg=%u rc=%d", __entry->pd_id, __entry->mr_id, __entry->max_num_data_sg, __entry->max_num_meta_sg, __entry->rc) ); TRACE_EVENT(mr_dereg, TP_PROTO( const struct ib_mr *mr ), TP_ARGS(mr), TP_STRUCT__entry( __field(u32, id) ), TP_fast_assign( __entry->id = mr->res.id; ), TP_printk("mr.id=%u", __entry->id) ); #endif /* _TRACE_RDMA_CORE_H */ #include <trace/define_trace.h>
112 1 3 109 111 91 93 61 61 3 58 34 26 1 1 1 1 1 1 2 1 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 /* * Routines to compress and uncompress tcp packets (for transmission * over low speed serial lines). * * Copyright (c) 1989 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the University of California, Berkeley. The name of the * University may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * Van Jacobson (van@helios.ee.lbl.gov), Dec 31, 1989: * - Initial distribution. * * * modified for KA9Q Internet Software Package by * Katie Stevens (dkstevens@ucdavis.edu) * University of California, Davis * Computing Services * - 01-31-90 initial adaptation (from 1.19) * PPP.05 02-15-90 [ks] * PPP.08 05-02-90 [ks] use PPP protocol field to signal compression * PPP.15 09-90 [ks] improve mbuf handling * PPP.16 11-02 [karn] substantially rewritten to use NOS facilities * * - Feb 1991 Bill_Simpson@um.cc.umich.edu * variable number of conversation slots * allow zero or one slots * separate routines * status display * - Jul 1994 Dmitry Gorodchanin * Fixes for memory leaks. * - Oct 1994 Dmitry Gorodchanin * Modularization. * - Jan 1995 Bjorn Ekwall * Use ip_fast_csum from ip.h * - July 1995 Christos A. Polyzols * Spotted bug in tcp option checking * * * This module is a difficult issue. It's clearly inet code but it's also clearly * driver code belonging close to PPP and SLIP */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/kernel.h> #include <net/slhc_vj.h> #ifdef CONFIG_INET /* Entire module is for IP only */ #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/termios.h> #include <linux/in.h> #include <linux/fcntl.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <net/ip.h> #include <net/protocol.h> #include <net/icmp.h> #include <net/tcp.h> #include <linux/skbuff.h> #include <net/sock.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <net/checksum.h> #include <linux/unaligned.h> static unsigned char *encode(unsigned char *cp, unsigned short n); static long decode(unsigned char **cpp); static unsigned char * put16(unsigned char *cp, unsigned short x); static unsigned short pull16(unsigned char **cpp); /* Allocate compression data structure * slots must be in range 0 to 255 (zero meaning no compression) * Returns pointer to structure or ERR_PTR() on error. */ struct slcompress * slhc_init(int rslots, int tslots) { short i; struct cstate *ts; struct slcompress *comp; if (rslots < 0 || rslots > 255 || tslots < 0 || tslots > 255) return ERR_PTR(-EINVAL); comp = kzalloc(sizeof(struct slcompress), GFP_KERNEL); if (! comp) goto out_fail; if (rslots > 0) { size_t rsize = rslots * sizeof(struct cstate); comp->rstate = kzalloc(rsize, GFP_KERNEL); if (! comp->rstate) goto out_free; comp->rslot_limit = rslots - 1; } if (tslots > 0) { size_t tsize = tslots * sizeof(struct cstate); comp->tstate = kzalloc(tsize, GFP_KERNEL); if (! comp->tstate) goto out_free2; comp->tslot_limit = tslots - 1; } comp->xmit_oldest = 0; comp->xmit_current = 255; comp->recv_current = 255; /* * don't accept any packets with implicit index until we get * one with an explicit index. Otherwise the uncompress code * will try to use connection 255, which is almost certainly * out of range */ comp->flags |= SLF_TOSS; if ( tslots > 0 ) { ts = comp->tstate; for(i = comp->tslot_limit; i > 0; --i){ ts[i].cs_this = i; ts[i].next = &(ts[i - 1]); } ts[0].next = &(ts[comp->tslot_limit]); ts[0].cs_this = 0; } return comp; out_free2: kfree(comp->rstate); out_free: kfree(comp); out_fail: return ERR_PTR(-ENOMEM); } /* Free a compression data structure */ void slhc_free(struct slcompress *comp) { if ( IS_ERR_OR_NULL(comp) ) return; if ( comp->tstate != NULLSLSTATE ) kfree( comp->tstate ); if ( comp->rstate != NULLSLSTATE ) kfree( comp->rstate ); kfree( comp ); } /* Put a short in host order into a char array in network order */ static inline unsigned char * put16(unsigned char *cp, unsigned short x) { *cp++ = x >> 8; *cp++ = x; return cp; } /* Encode a number */ static unsigned char * encode(unsigned char *cp, unsigned short n) { if(n >= 256 || n == 0){ *cp++ = 0; cp = put16(cp,n); } else { *cp++ = n; } return cp; } /* Pull a 16-bit integer in host order from buffer in network byte order */ static unsigned short pull16(unsigned char **cpp) { short rval; rval = *(*cpp)++; rval <<= 8; rval |= *(*cpp)++; return rval; } /* Decode a number */ static long decode(unsigned char **cpp) { int x; x = *(*cpp)++; if(x == 0){ return pull16(cpp) & 0xffff; /* pull16 returns -1 on error */ } else { return x & 0xff; /* -1 if PULLCHAR returned error */ } } /* * icp and isize are the original packet. * ocp is a place to put a copy if necessary. * cpp is initially a pointer to icp. If the copy is used, * change it to ocp. */ int slhc_compress(struct slcompress *comp, unsigned char *icp, int isize, unsigned char *ocp, unsigned char **cpp, int compress_cid) { struct cstate *ocs = &(comp->tstate[comp->xmit_oldest]); struct cstate *lcs = ocs; struct cstate *cs = lcs->next; unsigned long deltaS, deltaA; short changes = 0; int nlen, hlen; unsigned char new_seq[16]; unsigned char *cp = new_seq; struct iphdr *ip; struct tcphdr *th, *oth; __sum16 csum; /* * Don't play with runt packets. */ if(isize<sizeof(struct iphdr)) return isize; ip = (struct iphdr *) icp; if (ip->version != 4 || ip->ihl < 5) return isize; /* Bail if this packet isn't TCP, or is an IP fragment */ if (ip->protocol != IPPROTO_TCP || (ntohs(ip->frag_off) & 0x3fff)) { /* Send as regular IP */ if(ip->protocol != IPPROTO_TCP) comp->sls_o_nontcp++; else comp->sls_o_tcp++; return isize; } nlen = ip->ihl * 4; if (isize < nlen + sizeof(*th)) return isize; th = (struct tcphdr *)(icp + nlen); if (th->doff < sizeof(struct tcphdr) / 4) return isize; hlen = nlen + th->doff * 4; /* Bail if the TCP packet isn't `compressible' (i.e., ACK isn't set or * some other control bit is set). Also uncompressible if * it's a runt. */ if(hlen > isize || th->syn || th->fin || th->rst || ! (th->ack)){ /* TCP connection stuff; send as regular IP */ comp->sls_o_tcp++; return isize; } /* * Packet is compressible -- we're going to send either a * COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way, * we need to locate (or create) the connection state. * * States are kept in a circularly linked list with * xmit_oldest pointing to the end of the list. The * list is kept in lru order by moving a state to the * head of the list whenever it is referenced. Since * the list is short and, empirically, the connection * we want is almost always near the front, we locate * states via linear search. If we don't find a state * for the datagram, the oldest state is (re-)used. */ for ( ; ; ) { if( ip->saddr == cs->cs_ip.saddr && ip->daddr == cs->cs_ip.daddr && th->source == cs->cs_tcp.source && th->dest == cs->cs_tcp.dest) goto found; /* if current equal oldest, at end of list */ if ( cs == ocs ) break; lcs = cs; cs = cs->next; comp->sls_o_searches++; } /* * Didn't find it -- re-use oldest cstate. Send an * uncompressed packet that tells the other side what * connection number we're using for this conversation. * * Note that since the state list is circular, the oldest * state points to the newest and we only need to set * xmit_oldest to update the lru linkage. */ comp->sls_o_misses++; comp->xmit_oldest = lcs->cs_this; goto uncompressed; found: /* * Found it -- move to the front on the connection list. */ if(lcs == ocs) { /* found at most recently used */ } else if (cs == ocs) { /* found at least recently used */ comp->xmit_oldest = lcs->cs_this; } else { /* more than 2 elements */ lcs->next = cs->next; cs->next = ocs->next; ocs->next = cs; } /* * Make sure that only what we expect to change changed. * Check the following: * IP protocol version, header length & type of service. * The "Don't fragment" bit. * The time-to-live field. * The TCP header length. * IP options, if any. * TCP options, if any. * If any of these things are different between the previous & * current datagram, we send the current datagram `uncompressed'. */ oth = &cs->cs_tcp; if(ip->version != cs->cs_ip.version || ip->ihl != cs->cs_ip.ihl || ip->tos != cs->cs_ip.tos || (ip->frag_off & htons(0x4000)) != (cs->cs_ip.frag_off & htons(0x4000)) || ip->ttl != cs->cs_ip.ttl || th->doff != cs->cs_tcp.doff || (ip->ihl > 5 && memcmp(ip+1,cs->cs_ipopt,((ip->ihl)-5)*4) != 0) || (th->doff > 5 && memcmp(th+1,cs->cs_tcpopt,((th->doff)-5)*4) != 0)){ goto uncompressed; } /* * Figure out which of the changing fields changed. The * receiver expects changes in the order: urgent, window, * ack, seq (the order minimizes the number of temporaries * needed in this section of code). */ if(th->urg){ deltaS = ntohs(th->urg_ptr); cp = encode(cp,deltaS); changes |= NEW_U; } else if(th->urg_ptr != oth->urg_ptr){ /* argh! URG not set but urp changed -- a sensible * implementation should never do this but RFC793 * doesn't prohibit the change so we have to deal * with it. */ goto uncompressed; } if((deltaS = ntohs(th->window) - ntohs(oth->window)) != 0){ cp = encode(cp,deltaS); changes |= NEW_W; } if((deltaA = ntohl(th->ack_seq) - ntohl(oth->ack_seq)) != 0L){ if(deltaA > 0x0000ffff) goto uncompressed; cp = encode(cp,deltaA); changes |= NEW_A; } if((deltaS = ntohl(th->seq) - ntohl(oth->seq)) != 0L){ if(deltaS > 0x0000ffff) goto uncompressed; cp = encode(cp,deltaS); changes |= NEW_S; } switch(changes){ case 0: /* Nothing changed. If this packet contains data and the * last one didn't, this is probably a data packet following * an ack (normal on an interactive connection) and we send * it compressed. Otherwise it's probably a retransmit, * retransmitted ack or window probe. Send it uncompressed * in case the other side missed the compressed version. */ if(ip->tot_len != cs->cs_ip.tot_len && ntohs(cs->cs_ip.tot_len) == hlen) break; goto uncompressed; case SPECIAL_I: case SPECIAL_D: /* actual changes match one of our special case encodings -- * send packet uncompressed. */ goto uncompressed; case NEW_S|NEW_A: if(deltaS == deltaA && deltaS == ntohs(cs->cs_ip.tot_len) - hlen){ /* special case for echoed terminal traffic */ changes = SPECIAL_I; cp = new_seq; } break; case NEW_S: if(deltaS == ntohs(cs->cs_ip.tot_len) - hlen){ /* special case for data xfer */ changes = SPECIAL_D; cp = new_seq; } break; } deltaS = ntohs(ip->id) - ntohs(cs->cs_ip.id); if(deltaS != 1){ cp = encode(cp,deltaS); changes |= NEW_I; } if(th->psh) changes |= TCP_PUSH_BIT; /* Grab the cksum before we overwrite it below. Then update our * state with this packet's header. */ csum = th->check; memcpy(&cs->cs_ip,ip,20); memcpy(&cs->cs_tcp,th,20); /* We want to use the original packet as our compressed packet. * (cp - new_seq) is the number of bytes we need for compressed * sequence numbers. In addition we need one byte for the change * mask, one for the connection id and two for the tcp checksum. * So, (cp - new_seq) + 4 bytes of header are needed. */ deltaS = cp - new_seq; if(compress_cid == 0 || comp->xmit_current != cs->cs_this){ cp = ocp; *cpp = ocp; *cp++ = changes | NEW_C; *cp++ = cs->cs_this; comp->xmit_current = cs->cs_this; } else { cp = ocp; *cpp = ocp; *cp++ = changes; } *(__sum16 *)cp = csum; cp += 2; /* deltaS is now the size of the change section of the compressed header */ memcpy(cp,new_seq,deltaS); /* Write list of deltas */ memcpy(cp+deltaS,icp+hlen,isize-hlen); comp->sls_o_compressed++; ocp[0] |= SL_TYPE_COMPRESSED_TCP; return isize - hlen + deltaS + (cp - ocp); /* Update connection state cs & send uncompressed packet (i.e., * a regular ip/tcp packet but with the 'conversation id' we hope * to use on future compressed packets in the protocol field). */ uncompressed: memcpy(&cs->cs_ip,ip,20); memcpy(&cs->cs_tcp,th,20); if (ip->ihl > 5) memcpy(cs->cs_ipopt, ip+1, ((ip->ihl) - 5) * 4); if (th->doff > 5) memcpy(cs->cs_tcpopt, th+1, ((th->doff) - 5) * 4); comp->xmit_current = cs->cs_this; comp->sls_o_uncompressed++; memcpy(ocp, icp, isize); *cpp = ocp; ocp[9] = cs->cs_this; ocp[0] |= SL_TYPE_UNCOMPRESSED_TCP; return isize; } int slhc_uncompress(struct slcompress *comp, unsigned char *icp, int isize) { int changes; long x; struct tcphdr *thp; struct iphdr *ip; struct cstate *cs; int len, hdrlen; unsigned char *cp = icp; /* We've got a compressed packet; read the change byte */ comp->sls_i_compressed++; if(isize < 3){ comp->sls_i_error++; return 0; } changes = *cp++; if(changes & NEW_C){ /* Make sure the state index is in range, then grab the state. * If we have a good state index, clear the 'discard' flag. */ x = *cp++; /* Read conn index */ if(x < 0 || x > comp->rslot_limit) goto bad; /* Check if the cstate is initialized */ if (!comp->rstate[x].initialized) goto bad; comp->flags &=~ SLF_TOSS; comp->recv_current = x; } else { /* this packet has an implicit state index. If we've * had a line error since the last time we got an * explicit state index, we have to toss the packet. */ if(comp->flags & SLF_TOSS){ comp->sls_i_tossed++; return 0; } } cs = &comp->rstate[comp->recv_current]; thp = &cs->cs_tcp; ip = &cs->cs_ip; thp->check = *(__sum16 *)cp; cp += 2; thp->psh = (changes & TCP_PUSH_BIT) ? 1 : 0; /* * we can use the same number for the length of the saved header and * the current one, because the packet wouldn't have been sent * as compressed unless the options were the same as the previous one */ hdrlen = ip->ihl * 4 + thp->doff * 4; switch(changes & SPECIALS_MASK){ case SPECIAL_I: /* Echoed terminal traffic */ { short i; i = ntohs(ip->tot_len) - hdrlen; thp->ack_seq = htonl( ntohl(thp->ack_seq) + i); thp->seq = htonl( ntohl(thp->seq) + i); } break; case SPECIAL_D: /* Unidirectional data */ thp->seq = htonl( ntohl(thp->seq) + ntohs(ip->tot_len) - hdrlen); break; default: if(changes & NEW_U){ thp->urg = 1; if((x = decode(&cp)) == -1) { goto bad; } thp->urg_ptr = htons(x); } else thp->urg = 0; if(changes & NEW_W){ if((x = decode(&cp)) == -1) { goto bad; } thp->window = htons( ntohs(thp->window) + x); } if(changes & NEW_A){ if((x = decode(&cp)) == -1) { goto bad; } thp->ack_seq = htonl( ntohl(thp->ack_seq) + x); } if(changes & NEW_S){ if((x = decode(&cp)) == -1) { goto bad; } thp->seq = htonl( ntohl(thp->seq) + x); } break; } if(changes & NEW_I){ if((x = decode(&cp)) == -1) { goto bad; } ip->id = htons (ntohs (ip->id) + x); } else ip->id = htons (ntohs (ip->id) + 1); /* * At this point, cp points to the first byte of data in the * packet. Put the reconstructed TCP and IP headers back on the * packet. Recalculate IP checksum (but not TCP checksum). */ len = isize - (cp - icp); if (len < 0) goto bad; len += hdrlen; ip->tot_len = htons(len); ip->check = 0; memmove(icp + hdrlen, cp, len - hdrlen); cp = icp; memcpy(cp, ip, 20); cp += 20; if (ip->ihl > 5) { memcpy(cp, cs->cs_ipopt, (ip->ihl - 5) * 4); cp += (ip->ihl - 5) * 4; } put_unaligned(ip_fast_csum(icp, ip->ihl), &((struct iphdr *)icp)->check); memcpy(cp, thp, 20); cp += 20; if (thp->doff > 5) { memcpy(cp, cs->cs_tcpopt, ((thp->doff) - 5) * 4); cp += ((thp->doff) - 5) * 4; } return len; bad: comp->sls_i_error++; return slhc_toss( comp ); } int slhc_remember(struct slcompress *comp, unsigned char *icp, int isize) { const struct tcphdr *th; unsigned char index; struct iphdr *iph; struct cstate *cs; unsigned int ihl; /* The packet is shorter than a legal IP header. * Also make sure isize is positive. */ if (isize < (int)sizeof(struct iphdr)) { runt: comp->sls_i_runt++; return slhc_toss(comp); } iph = (struct iphdr *)icp; /* Peek at the IP header's IHL field to find its length */ ihl = iph->ihl; /* The IP header length field is too small, * or packet is shorter than the IP header followed * by minimal tcp header. */ if (ihl < 5 || isize < ihl * 4 + sizeof(struct tcphdr)) goto runt; index = iph->protocol; iph->protocol = IPPROTO_TCP; if (ip_fast_csum(icp, ihl)) { /* Bad IP header checksum; discard */ comp->sls_i_badcheck++; return slhc_toss(comp); } if (index > comp->rslot_limit) { comp->sls_i_error++; return slhc_toss(comp); } th = (struct tcphdr *)(icp + ihl * 4); if (th->doff < sizeof(struct tcphdr) / 4) goto runt; if (isize < ihl * 4 + th->doff * 4) goto runt; /* Update local state */ cs = &comp->rstate[comp->recv_current = index]; comp->flags &=~ SLF_TOSS; memcpy(&cs->cs_ip, iph, sizeof(*iph)); memcpy(&cs->cs_tcp, th, sizeof(*th)); if (ihl > 5) memcpy(cs->cs_ipopt, &iph[1], (ihl - 5) * 4); if (th->doff > 5) memcpy(cs->cs_tcpopt, &th[1], (th->doff - 5) * 4); cs->cs_hsize = ihl*2 + th->doff*2; cs->initialized = true; /* Put headers back on packet * Neither header checksum is recalculated */ comp->sls_i_uncompressed++; return isize; } int slhc_toss(struct slcompress *comp) { if ( comp == NULLSLCOMPR ) return 0; comp->flags |= SLF_TOSS; return 0; } #else /* CONFIG_INET */ int slhc_toss(struct slcompress *comp) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_toss"); return -EINVAL; } int slhc_uncompress(struct slcompress *comp, unsigned char *icp, int isize) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_uncompress"); return -EINVAL; } int slhc_compress(struct slcompress *comp, unsigned char *icp, int isize, unsigned char *ocp, unsigned char **cpp, int compress_cid) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_compress"); return -EINVAL; } int slhc_remember(struct slcompress *comp, unsigned char *icp, int isize) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_remember"); return -EINVAL; } void slhc_free(struct slcompress *comp) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_free"); } struct slcompress * slhc_init(int rslots, int tslots) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_init"); return NULL; } #endif /* CONFIG_INET */ /* VJ header compression */ EXPORT_SYMBOL(slhc_init); EXPORT_SYMBOL(slhc_free); EXPORT_SYMBOL(slhc_remember); EXPORT_SYMBOL(slhc_compress); EXPORT_SYMBOL(slhc_uncompress); EXPORT_SYMBOL(slhc_toss); MODULE_DESCRIPTION("Compression helpers for SLIP (serial line)"); MODULE_LICENSE("Dual BSD/GPL");
693 173 34 472 21 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * * This file is part of the SCTP kernel implementation * * These functions implement the SCTP primitive functions from Section 10. * * Note that the descriptions from the specification are USER level * functions--this file is the functions which populate the struct proto * for SCTP which is the BOTTOM of the sockets interface. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Narasimha Budihal <narasimha@refcode.org> * Karl Knutson <karl@athena.chicago.il.us> * Ardelle Fan <ardelle.fan@intel.com> * Kevin Gao <kevin.gao@intel.com> */ #include <linux/types.h> #include <linux/list.h> /* For struct list_head */ #include <linux/socket.h> #include <linux/ip.h> #include <linux/time.h> /* For struct timeval */ #include <linux/gfp.h> #include <net/sock.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> #define DECLARE_PRIMITIVE(name) \ /* This is called in the code as sctp_primitive_ ## name. */ \ int sctp_primitive_ ## name(struct net *net, struct sctp_association *asoc, \ void *arg) { \ int error = 0; \ enum sctp_event_type event_type; union sctp_subtype subtype; \ enum sctp_state state; \ struct sctp_endpoint *ep; \ \ event_type = SCTP_EVENT_T_PRIMITIVE; \ subtype = SCTP_ST_PRIMITIVE(SCTP_PRIMITIVE_ ## name); \ state = asoc ? asoc->state : SCTP_STATE_CLOSED; \ ep = asoc ? asoc->ep : NULL; \ \ error = sctp_do_sm(net, event_type, subtype, state, ep, asoc, \ arg, GFP_KERNEL); \ return error; \ } /* 10.1 ULP-to-SCTP * B) Associate * * Format: ASSOCIATE(local SCTP instance name, destination transport addr, * outbound stream count) * -> association id [,destination transport addr list] [,outbound stream * count] * * This primitive allows the upper layer to initiate an association to a * specific peer endpoint. * * This version assumes that asoc is fully populated with the initial * parameters. We then return a traditional kernel indicator of * success or failure. */ /* This is called in the code as sctp_primitive_ASSOCIATE. */ DECLARE_PRIMITIVE(ASSOCIATE) /* 10.1 ULP-to-SCTP * C) Shutdown * * Format: SHUTDOWN(association id) * -> result * * Gracefully closes an association. Any locally queued user data * will be delivered to the peer. The association will be terminated only * after the peer acknowledges all the SCTP packets sent. A success code * will be returned on successful termination of the association. If * attempting to terminate the association results in a failure, an error * code shall be returned. */ DECLARE_PRIMITIVE(SHUTDOWN); /* 10.1 ULP-to-SCTP * C) Abort * * Format: Abort(association id [, cause code]) * -> result * * Ungracefully closes an association. Any locally queued user data * will be discarded and an ABORT chunk is sent to the peer. A success * code will be returned on successful abortion of the association. If * attempting to abort the association results in a failure, an error * code shall be returned. */ DECLARE_PRIMITIVE(ABORT); /* 10.1 ULP-to-SCTP * E) Send * * Format: SEND(association id, buffer address, byte count [,context] * [,stream id] [,life time] [,destination transport address] * [,unorder flag] [,no-bundle flag] [,payload protocol-id] ) * -> result * * This is the main method to send user data via SCTP. * * Mandatory attributes: * * o association id - local handle to the SCTP association * * o buffer address - the location where the user message to be * transmitted is stored; * * o byte count - The size of the user data in number of bytes; * * Optional attributes: * * o context - an optional 32 bit integer that will be carried in the * sending failure notification to the ULP if the transportation of * this User Message fails. * * o stream id - to indicate which stream to send the data on. If not * specified, stream 0 will be used. * * o life time - specifies the life time of the user data. The user data * will not be sent by SCTP after the life time expires. This * parameter can be used to avoid efforts to transmit stale * user messages. SCTP notifies the ULP if the data cannot be * initiated to transport (i.e. sent to the destination via SCTP's * send primitive) within the life time variable. However, the * user data will be transmitted if SCTP has attempted to transmit a * chunk before the life time expired. * * o destination transport address - specified as one of the destination * transport addresses of the peer endpoint to which this packet * should be sent. Whenever possible, SCTP should use this destination * transport address for sending the packets, instead of the current * primary path. * * o unorder flag - this flag, if present, indicates that the user * would like the data delivered in an unordered fashion to the peer * (i.e., the U flag is set to 1 on all DATA chunks carrying this * message). * * o no-bundle flag - instructs SCTP not to bundle this user data with * other outbound DATA chunks. SCTP MAY still bundle even when * this flag is present, when faced with network congestion. * * o payload protocol-id - A 32 bit unsigned integer that is to be * passed to the peer indicating the type of payload protocol data * being transmitted. This value is passed as opaque data by SCTP. */ DECLARE_PRIMITIVE(SEND); /* 10.1 ULP-to-SCTP * J) Request Heartbeat * * Format: REQUESTHEARTBEAT(association id, destination transport address) * * -> result * * Instructs the local endpoint to perform a HeartBeat on the specified * destination transport address of the given association. The returned * result should indicate whether the transmission of the HEARTBEAT * chunk to the destination address is successful. * * Mandatory attributes: * * o association id - local handle to the SCTP association * * o destination transport address - the transport address of the * association on which a heartbeat should be issued. */ DECLARE_PRIMITIVE(REQUESTHEARTBEAT); /* ADDIP * 3.1.1 Address Configuration Change Chunk (ASCONF) * * This chunk is used to communicate to the remote endpoint one of the * configuration change requests that MUST be acknowledged. The * information carried in the ASCONF Chunk uses the form of a * Type-Length-Value (TLV), as described in "3.2.1 Optional/ * Variable-length Parameter Format" in RFC2960 [5], forall variable * parameters. */ DECLARE_PRIMITIVE(ASCONF); /* RE-CONFIG 5.1 */ DECLARE_PRIMITIVE(RECONF);
175 175 50 70 572 9 6478 30 123 792 901 607 653 653 653 1738 14276 24 50 652 169 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 /* SPDX-License-Identifier: GPL-2.0 */ /* * Filesystem access notification for Linux * * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ #ifndef __LINUX_FSNOTIFY_BACKEND_H #define __LINUX_FSNOTIFY_BACKEND_H #ifdef __KERNEL__ #include <linux/idr.h> /* inotify uses this */ #include <linux/fs.h> /* struct inode */ #include <linux/list.h> #include <linux/path.h> /* struct path */ #include <linux/spinlock.h> #include <linux/types.h> #include <linux/atomic.h> #include <linux/user_namespace.h> #include <linux/refcount.h> #include <linux/mempool.h> #include <linux/sched/mm.h> /* * IN_* from inotfy.h lines up EXACTLY with FS_*, this is so we can easily * convert between them. dnotify only needs conversion at watch creation * so no perf loss there. fanotify isn't defined yet, so it can use the * wholes if it needs more events. */ #define FS_ACCESS 0x00000001 /* File was accessed */ #define FS_MODIFY 0x00000002 /* File was modified */ #define FS_ATTRIB 0x00000004 /* Metadata changed */ #define FS_CLOSE_WRITE 0x00000008 /* Writable file was closed */ #define FS_CLOSE_NOWRITE 0x00000010 /* Unwritable file closed */ #define FS_OPEN 0x00000020 /* File was opened */ #define FS_MOVED_FROM 0x00000040 /* File was moved from X */ #define FS_MOVED_TO 0x00000080 /* File was moved to Y */ #define FS_CREATE 0x00000100 /* Subfile was created */ #define FS_DELETE 0x00000200 /* Subfile was deleted */ #define FS_DELETE_SELF 0x00000400 /* Self was deleted */ #define FS_MOVE_SELF 0x00000800 /* Self was moved */ #define FS_OPEN_EXEC 0x00001000 /* File was opened for exec */ #define FS_UNMOUNT 0x00002000 /* inode on umount fs */ #define FS_Q_OVERFLOW 0x00004000 /* Event queued overflowed */ #define FS_ERROR 0x00008000 /* Filesystem Error (fanotify) */ /* * FS_IN_IGNORED overloads FS_ERROR. It is only used internally by inotify * which does not support FS_ERROR. */ #define FS_IN_IGNORED 0x00008000 /* last inotify event here */ #define FS_OPEN_PERM 0x00010000 /* open event in an permission hook */ #define FS_ACCESS_PERM 0x00020000 /* access event in a permissions hook */ #define FS_OPEN_EXEC_PERM 0x00040000 /* open/exec event in a permission hook */ /* #define FS_DIR_MODIFY 0x00080000 */ /* Deprecated (reserved) */ #define FS_PRE_ACCESS 0x00100000 /* Pre-content access hook */ #define FS_MNT_ATTACH 0x01000000 /* Mount was attached */ #define FS_MNT_DETACH 0x02000000 /* Mount was detached */ #define FS_MNT_MOVE (FS_MNT_ATTACH | FS_MNT_DETACH) /* * Set on inode mark that cares about things that happen to its children. * Always set for dnotify and inotify. * Set on inode/sb/mount marks that care about parent/name info. */ #define FS_EVENT_ON_CHILD 0x08000000 #define FS_RENAME 0x10000000 /* File was renamed */ #define FS_DN_MULTISHOT 0x20000000 /* dnotify multishot */ #define FS_ISDIR 0x40000000 /* event occurred against dir */ #define FS_MOVE (FS_MOVED_FROM | FS_MOVED_TO) /* * Directory entry modification events - reported only to directory * where entry is modified and not to a watching parent. * The watching parent may get an FS_ATTRIB|FS_EVENT_ON_CHILD event * when a directory entry inside a child subdir changes. */ #define ALL_FSNOTIFY_DIRENT_EVENTS (FS_CREATE | FS_DELETE | FS_MOVE | FS_RENAME) /* Mount namespace events */ #define FSNOTIFY_MNT_EVENTS (FS_MNT_ATTACH | FS_MNT_DETACH) /* Content events can be used to inspect file content */ #define FSNOTIFY_CONTENT_PERM_EVENTS (FS_OPEN_PERM | FS_OPEN_EXEC_PERM | \ FS_ACCESS_PERM) /* Pre-content events can be used to fill file content */ #define FSNOTIFY_PRE_CONTENT_EVENTS (FS_PRE_ACCESS) #define ALL_FSNOTIFY_PERM_EVENTS (FSNOTIFY_CONTENT_PERM_EVENTS | \ FSNOTIFY_PRE_CONTENT_EVENTS) /* * This is a list of all events that may get sent to a parent that is watching * with flag FS_EVENT_ON_CHILD based on fs event on a child of that directory. */ #define FS_EVENTS_POSS_ON_CHILD (ALL_FSNOTIFY_PERM_EVENTS | \ FS_ACCESS | FS_MODIFY | FS_ATTRIB | \ FS_CLOSE_WRITE | FS_CLOSE_NOWRITE | \ FS_OPEN | FS_OPEN_EXEC) /* * This is a list of all events that may get sent with the parent inode as the * @to_tell argument of fsnotify(). * It may include events that can be sent to an inode/sb/mount mark, but cannot * be sent to a parent watching children. */ #define FS_EVENTS_POSS_TO_PARENT (FS_EVENTS_POSS_ON_CHILD) /* Events that can be reported to backends */ #define ALL_FSNOTIFY_EVENTS (ALL_FSNOTIFY_DIRENT_EVENTS | \ FSNOTIFY_MNT_EVENTS | \ FS_EVENTS_POSS_ON_CHILD | \ FS_DELETE_SELF | FS_MOVE_SELF | \ FS_UNMOUNT | FS_Q_OVERFLOW | FS_IN_IGNORED | \ FS_ERROR) /* Extra flags that may be reported with event or control handling of events */ #define ALL_FSNOTIFY_FLAGS (FS_ISDIR | FS_EVENT_ON_CHILD | FS_DN_MULTISHOT) #define ALL_FSNOTIFY_BITS (ALL_FSNOTIFY_EVENTS | ALL_FSNOTIFY_FLAGS) struct fsnotify_group; struct fsnotify_event; struct fsnotify_mark; struct fsnotify_event_private_data; struct fsnotify_fname; struct fsnotify_iter_info; struct mem_cgroup; /* * Each group much define these ops. The fsnotify infrastructure will call * these operations for each relevant group. * * handle_event - main call for a group to handle an fs event * @group: group to notify * @mask: event type and flags * @data: object that event happened on * @data_type: type of object for fanotify_data_XXX() accessors * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to * @file_name: optional file name associated with event * @cookie: inotify rename cookie * @iter_info: array of marks from this group that are interested in the event * * handle_inode_event - simple variant of handle_event() for groups that only * have inode marks and don't have ignore mask * @mark: mark to notify * @mask: event type and flags * @inode: inode that event happened on * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to. * Either @inode or @dir must be non-NULL. * @file_name: optional file name associated with event * @cookie: inotify rename cookie * * free_group_priv - called when a group refcnt hits 0 to clean up the private union * freeing_mark - called when a mark is being destroyed for some reason. The group * MUST be holding a reference on each mark and that reference must be * dropped in this function. inotify uses this function to send * userspace messages that marks have been removed. */ struct fsnotify_ops { int (*handle_event)(struct fsnotify_group *group, u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, u32 cookie, struct fsnotify_iter_info *iter_info); int (*handle_inode_event)(struct fsnotify_mark *mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *file_name, u32 cookie); void (*free_group_priv)(struct fsnotify_group *group); void (*freeing_mark)(struct fsnotify_mark *mark, struct fsnotify_group *group); void (*free_event)(struct fsnotify_group *group, struct fsnotify_event *event); /* called on final put+free to free memory */ void (*free_mark)(struct fsnotify_mark *mark); }; /* * all of the information about the original object we want to now send to * a group. If you want to carry more info from the accessing task to the * listener this structure is where you need to be adding fields. */ struct fsnotify_event { struct list_head list; }; /* * fsnotify group priorities. * Events are sent in order from highest priority to lowest priority. */ enum fsnotify_group_prio { FSNOTIFY_PRIO_NORMAL = 0, /* normal notifiers, no permissions */ FSNOTIFY_PRIO_CONTENT, /* fanotify permission events */ FSNOTIFY_PRIO_PRE_CONTENT, /* fanotify pre-content events */ __FSNOTIFY_PRIO_NUM }; /* * A group is a "thing" that wants to receive notification about filesystem * events. The mask holds the subset of event types this group cares about. * refcnt on a group is up to the implementor and at any moment if it goes 0 * everything will be cleaned up. */ struct fsnotify_group { const struct fsnotify_ops *ops; /* how this group handles things */ /* * How the refcnt is used is up to each group. When the refcnt hits 0 * fsnotify will clean up all of the resources associated with this group. * As an example, the dnotify group will always have a refcnt=1 and that * will never change. Inotify, on the other hand, has a group per * inotify_init() and the refcnt will hit 0 only when that fd has been * closed. */ refcount_t refcnt; /* things with interest in this group */ /* needed to send notification to userspace */ spinlock_t notification_lock; /* protect the notification_list */ struct list_head notification_list; /* list of event_holder this group needs to send to userspace */ wait_queue_head_t notification_waitq; /* read() on the notification file blocks on this waitq */ unsigned int q_len; /* events on the queue */ unsigned int max_events; /* maximum events allowed on the list */ enum fsnotify_group_prio priority; /* priority for sending events */ bool shutdown; /* group is being shut down, don't queue more events */ #define FSNOTIFY_GROUP_USER 0x01 /* user allocated group */ #define FSNOTIFY_GROUP_DUPS 0x02 /* allow multiple marks per object */ int flags; unsigned int owner_flags; /* stored flags of mark_mutex owner */ /* stores all fastpath marks assoc with this group so they can be cleaned on unregister */ struct mutex mark_mutex; /* protect marks_list */ atomic_t user_waits; /* Number of tasks waiting for user * response */ struct list_head marks_list; /* all inode marks for this group */ struct fasync_struct *fsn_fa; /* async notification */ struct fsnotify_event *overflow_event; /* Event we queue when the * notification list is too * full */ struct mem_cgroup *memcg; /* memcg to charge allocations */ /* groups can define private fields here or use the void *private */ union { void *private; #ifdef CONFIG_INOTIFY_USER struct inotify_group_private_data { spinlock_t idr_lock; struct idr idr; struct ucounts *ucounts; } inotify_data; #endif #ifdef CONFIG_FANOTIFY struct fanotify_group_private_data { /* Hash table of events for merge */ struct hlist_head *merge_hash; /* allows a group to block waiting for a userspace response */ struct list_head access_list; wait_queue_head_t access_waitq; int flags; /* flags from fanotify_init() */ int f_flags; /* event_f_flags from fanotify_init() */ struct ucounts *ucounts; mempool_t error_events_pool; } fanotify_data; #endif /* CONFIG_FANOTIFY */ }; }; /* * These helpers are used to prevent deadlock when reclaiming inodes with * evictable marks of the same group that is allocating a new mark. */ static inline void fsnotify_group_lock(struct fsnotify_group *group) { mutex_lock(&group->mark_mutex); group->owner_flags = memalloc_nofs_save(); } static inline void fsnotify_group_unlock(struct fsnotify_group *group) { memalloc_nofs_restore(group->owner_flags); mutex_unlock(&group->mark_mutex); } static inline void fsnotify_group_assert_locked(struct fsnotify_group *group) { WARN_ON_ONCE(!mutex_is_locked(&group->mark_mutex)); WARN_ON_ONCE(!(current->flags & PF_MEMALLOC_NOFS)); } /* When calling fsnotify tell it if the data is a path or inode */ enum fsnotify_data_type { FSNOTIFY_EVENT_NONE, FSNOTIFY_EVENT_FILE_RANGE, FSNOTIFY_EVENT_PATH, FSNOTIFY_EVENT_INODE, FSNOTIFY_EVENT_DENTRY, FSNOTIFY_EVENT_MNT, FSNOTIFY_EVENT_ERROR, }; struct fs_error_report { int error; struct inode *inode; struct super_block *sb; }; struct file_range { const struct path *path; loff_t pos; size_t count; }; static inline const struct path *file_range_path(const struct file_range *range) { return range->path; } struct fsnotify_mnt { const struct mnt_namespace *ns; u64 mnt_id; }; static inline struct inode *fsnotify_data_inode(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_INODE: return (struct inode *)data; case FSNOTIFY_EVENT_DENTRY: return d_inode(data); case FSNOTIFY_EVENT_PATH: return d_inode(((const struct path *)data)->dentry); case FSNOTIFY_EVENT_FILE_RANGE: return d_inode(file_range_path(data)->dentry); case FSNOTIFY_EVENT_ERROR: return ((struct fs_error_report *)data)->inode; default: return NULL; } } static inline struct dentry *fsnotify_data_dentry(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_DENTRY: /* Non const is needed for dget() */ return (struct dentry *)data; case FSNOTIFY_EVENT_PATH: return ((const struct path *)data)->dentry; case FSNOTIFY_EVENT_FILE_RANGE: return file_range_path(data)->dentry; default: return NULL; } } static inline const struct path *fsnotify_data_path(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_PATH: return data; case FSNOTIFY_EVENT_FILE_RANGE: return file_range_path(data); default: return NULL; } } static inline struct super_block *fsnotify_data_sb(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_INODE: return ((struct inode *)data)->i_sb; case FSNOTIFY_EVENT_DENTRY: return ((struct dentry *)data)->d_sb; case FSNOTIFY_EVENT_PATH: return ((const struct path *)data)->dentry->d_sb; case FSNOTIFY_EVENT_FILE_RANGE: return file_range_path(data)->dentry->d_sb; case FSNOTIFY_EVENT_ERROR: return ((struct fs_error_report *) data)->sb; default: return NULL; } } static inline const struct fsnotify_mnt *fsnotify_data_mnt(const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_MNT: return data; default: return NULL; } } static inline u64 fsnotify_data_mnt_id(const void *data, int data_type) { const struct fsnotify_mnt *mnt_data = fsnotify_data_mnt(data, data_type); return mnt_data ? mnt_data->mnt_id : 0; } static inline struct fs_error_report *fsnotify_data_error_report( const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_ERROR: return (struct fs_error_report *) data; default: return NULL; } } static inline const struct file_range *fsnotify_data_file_range( const void *data, int data_type) { switch (data_type) { case FSNOTIFY_EVENT_FILE_RANGE: return (struct file_range *)data; default: return NULL; } } /* * Index to merged marks iterator array that correlates to a type of watch. * The type of watched object can be deduced from the iterator type, but not * the other way around, because an event can match different watched objects * of the same object type. * For example, both parent and child are watching an object of type inode. */ enum fsnotify_iter_type { FSNOTIFY_ITER_TYPE_INODE, FSNOTIFY_ITER_TYPE_VFSMOUNT, FSNOTIFY_ITER_TYPE_SB, FSNOTIFY_ITER_TYPE_PARENT, FSNOTIFY_ITER_TYPE_INODE2, FSNOTIFY_ITER_TYPE_MNTNS, FSNOTIFY_ITER_TYPE_COUNT }; /* The type of object that a mark is attached to */ enum fsnotify_obj_type { FSNOTIFY_OBJ_TYPE_ANY = -1, FSNOTIFY_OBJ_TYPE_INODE, FSNOTIFY_OBJ_TYPE_VFSMOUNT, FSNOTIFY_OBJ_TYPE_SB, FSNOTIFY_OBJ_TYPE_MNTNS, FSNOTIFY_OBJ_TYPE_COUNT, FSNOTIFY_OBJ_TYPE_DETACHED = FSNOTIFY_OBJ_TYPE_COUNT }; static inline bool fsnotify_valid_obj_type(unsigned int obj_type) { return (obj_type < FSNOTIFY_OBJ_TYPE_COUNT); } struct fsnotify_iter_info { struct fsnotify_mark *marks[FSNOTIFY_ITER_TYPE_COUNT]; struct fsnotify_group *current_group; unsigned int report_mask; int srcu_idx; }; static inline bool fsnotify_iter_should_report_type( struct fsnotify_iter_info *iter_info, int iter_type) { return (iter_info->report_mask & (1U << iter_type)); } static inline void fsnotify_iter_set_report_type( struct fsnotify_iter_info *iter_info, int iter_type) { iter_info->report_mask |= (1U << iter_type); } static inline struct fsnotify_mark *fsnotify_iter_mark( struct fsnotify_iter_info *iter_info, int iter_type) { if (fsnotify_iter_should_report_type(iter_info, iter_type)) return iter_info->marks[iter_type]; return NULL; } static inline int fsnotify_iter_step(struct fsnotify_iter_info *iter, int type, struct fsnotify_mark **markp) { while (type < FSNOTIFY_ITER_TYPE_COUNT) { *markp = fsnotify_iter_mark(iter, type); if (*markp) break; type++; } return type; } #define FSNOTIFY_ITER_FUNCS(name, NAME) \ static inline struct fsnotify_mark *fsnotify_iter_##name##_mark( \ struct fsnotify_iter_info *iter_info) \ { \ return fsnotify_iter_mark(iter_info, FSNOTIFY_ITER_TYPE_##NAME); \ } FSNOTIFY_ITER_FUNCS(inode, INODE) FSNOTIFY_ITER_FUNCS(parent, PARENT) FSNOTIFY_ITER_FUNCS(vfsmount, VFSMOUNT) FSNOTIFY_ITER_FUNCS(sb, SB) #define fsnotify_foreach_iter_type(type) \ for (type = 0; type < FSNOTIFY_ITER_TYPE_COUNT; type++) #define fsnotify_foreach_iter_mark_type(iter, mark, type) \ for (type = 0; \ type = fsnotify_iter_step(iter, type, &mark), \ type < FSNOTIFY_ITER_TYPE_COUNT; \ type++) /* * Inode/vfsmount/sb point to this structure which tracks all marks attached to * the inode/vfsmount/sb. The reference to inode/vfsmount/sb is held by this * structure. We destroy this structure when there are no more marks attached * to it. The structure is protected by fsnotify_mark_srcu. */ struct fsnotify_mark_connector { spinlock_t lock; unsigned char type; /* Type of object [lock] */ unsigned char prio; /* Highest priority group */ #define FSNOTIFY_CONN_FLAG_IS_WATCHED 0x01 #define FSNOTIFY_CONN_FLAG_HAS_IREF 0x02 unsigned short flags; /* flags [lock] */ union { /* Object pointer [lock] */ void *obj; /* Used listing heads to free after srcu period expires */ struct fsnotify_mark_connector *destroy_next; }; struct hlist_head list; }; /* * Container for per-sb fsnotify state (sb marks and more). * Attached lazily on first marked object on the sb and freed when killing sb. */ struct fsnotify_sb_info { struct fsnotify_mark_connector __rcu *sb_marks; /* * Number of inode/mount/sb objects that are being watched in this sb. * Note that inodes objects are currently double-accounted. * * The value in watched_objects[prio] is the number of objects that are * watched by groups of priority >= prio, so watched_objects[0] is the * total number of watched objects in this sb. */ atomic_long_t watched_objects[__FSNOTIFY_PRIO_NUM]; }; static inline struct fsnotify_sb_info *fsnotify_sb_info(struct super_block *sb) { #ifdef CONFIG_FSNOTIFY return READ_ONCE(sb->s_fsnotify_info); #else return NULL; #endif } static inline atomic_long_t *fsnotify_sb_watched_objects(struct super_block *sb) { return &fsnotify_sb_info(sb)->watched_objects[0]; } /* * A mark is simply an object attached to an in core inode which allows an * fsnotify listener to indicate they are either no longer interested in events * of a type matching mask or only interested in those events. * * These are flushed when an inode is evicted from core and may be flushed * when the inode is modified (as seen by fsnotify_access). Some fsnotify * users (such as dnotify) will flush these when the open fd is closed and not * at inode eviction or modification. * * Text in brackets is showing the lock(s) protecting modifications of a * particular entry. obj_lock means either inode->i_lock or * mnt->mnt_root->d_lock depending on the mark type. */ struct fsnotify_mark { /* Mask this mark is for [mark->lock, group->mark_mutex] */ __u32 mask; /* We hold one for presence in g_list. Also one ref for each 'thing' * in kernel that found and may be using this mark. */ refcount_t refcnt; /* Group this mark is for. Set on mark creation, stable until last ref * is dropped */ struct fsnotify_group *group; /* List of marks by group->marks_list. Also reused for queueing * mark into destroy_list when it's waiting for the end of SRCU period * before it can be freed. [group->mark_mutex] */ struct list_head g_list; /* Protects inode / mnt pointers, flags, masks */ spinlock_t lock; /* List of marks for inode / vfsmount [connector->lock, mark ref] */ struct hlist_node obj_list; /* Head of list of marks for an object [mark ref] */ struct fsnotify_mark_connector *connector; /* Events types and flags to ignore [mark->lock, group->mark_mutex] */ __u32 ignore_mask; /* General fsnotify mark flags */ #define FSNOTIFY_MARK_FLAG_ALIVE 0x0001 #define FSNOTIFY_MARK_FLAG_ATTACHED 0x0002 /* inotify mark flags */ #define FSNOTIFY_MARK_FLAG_EXCL_UNLINK 0x0010 #define FSNOTIFY_MARK_FLAG_IN_ONESHOT 0x0020 /* fanotify mark flags */ #define FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY 0x0100 #define FSNOTIFY_MARK_FLAG_NO_IREF 0x0200 #define FSNOTIFY_MARK_FLAG_HAS_IGNORE_FLAGS 0x0400 #define FSNOTIFY_MARK_FLAG_HAS_FSID 0x0800 #define FSNOTIFY_MARK_FLAG_WEAK_FSID 0x1000 unsigned int flags; /* flags [mark->lock] */ }; #ifdef CONFIG_FSNOTIFY /* called from the vfs helpers */ /* main fsnotify call to send events */ extern int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie); extern int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type); extern void __fsnotify_inode_delete(struct inode *inode); extern void __fsnotify_vfsmount_delete(struct vfsmount *mnt); extern void fsnotify_sb_delete(struct super_block *sb); extern void __fsnotify_mntns_delete(struct mnt_namespace *mntns); extern void fsnotify_sb_free(struct super_block *sb); extern u32 fsnotify_get_cookie(void); extern void fsnotify_mnt(__u32 mask, struct mnt_namespace *ns, struct vfsmount *mnt); static inline __u32 fsnotify_parent_needed_mask(__u32 mask) { /* FS_EVENT_ON_CHILD is set on marks that want parent/name info */ if (!(mask & FS_EVENT_ON_CHILD)) return 0; /* * This object might be watched by a mark that cares about parent/name * info, does it care about the specific set of events that can be * reported with parent/name info? */ return mask & FS_EVENTS_POSS_TO_PARENT; } static inline int fsnotify_inode_watches_children(struct inode *inode) { __u32 parent_mask = READ_ONCE(inode->i_fsnotify_mask); /* FS_EVENT_ON_CHILD is set if the inode may care */ if (!(parent_mask & FS_EVENT_ON_CHILD)) return 0; /* this inode might care about child events, does it care about the * specific set of events that can happen on a child? */ return parent_mask & FS_EVENTS_POSS_ON_CHILD; } /* * Update the dentry with a flag indicating the interest of its parent to receive * filesystem events when those events happens to this dentry->d_inode. */ static inline void fsnotify_update_flags(struct dentry *dentry) { assert_spin_locked(&dentry->d_lock); /* * Serialisation of setting PARENT_WATCHED on the dentries is provided * by d_lock. If inotify_inode_watched changes after we have taken * d_lock, the following fsnotify_set_children_dentry_flags call will * find our entry, so it will spin until we complete here, and update * us with the new state. */ if (fsnotify_inode_watches_children(dentry->d_parent->d_inode)) dentry->d_flags |= DCACHE_FSNOTIFY_PARENT_WATCHED; else dentry->d_flags &= ~DCACHE_FSNOTIFY_PARENT_WATCHED; } /* called from fsnotify listeners, such as fanotify or dnotify */ /* create a new group */ extern struct fsnotify_group *fsnotify_alloc_group( const struct fsnotify_ops *ops, int flags); /* get reference to a group */ extern void fsnotify_get_group(struct fsnotify_group *group); /* drop reference on a group from fsnotify_alloc_group */ extern void fsnotify_put_group(struct fsnotify_group *group); /* group destruction begins, stop queuing new events */ extern void fsnotify_group_stop_queueing(struct fsnotify_group *group); /* destroy group */ extern void fsnotify_destroy_group(struct fsnotify_group *group); /* fasync handler function */ extern int fsnotify_fasync(int fd, struct file *file, int on); /* Free event from memory */ extern void fsnotify_destroy_event(struct fsnotify_group *group, struct fsnotify_event *event); /* attach the event to the group notification queue */ extern int fsnotify_insert_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct fsnotify_group *, struct fsnotify_event *), void (*insert)(struct fsnotify_group *, struct fsnotify_event *)); static inline int fsnotify_add_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct fsnotify_group *, struct fsnotify_event *)) { return fsnotify_insert_event(group, event, merge, NULL); } /* Queue overflow event to a notification group */ static inline void fsnotify_queue_overflow(struct fsnotify_group *group) { fsnotify_add_event(group, group->overflow_event, NULL); } static inline bool fsnotify_is_overflow_event(u32 mask) { return mask & FS_Q_OVERFLOW; } static inline bool fsnotify_notify_queue_is_empty(struct fsnotify_group *group) { assert_spin_locked(&group->notification_lock); return list_empty(&group->notification_list); } extern bool fsnotify_notify_queue_is_empty(struct fsnotify_group *group); /* return, but do not dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_peek_first_event(struct fsnotify_group *group); /* return AND dequeue the first event on the notification queue */ extern struct fsnotify_event *fsnotify_remove_first_event(struct fsnotify_group *group); /* Remove event queued in the notification list */ extern void fsnotify_remove_queued_event(struct fsnotify_group *group, struct fsnotify_event *event); /* functions used to manipulate the marks attached to inodes */ /* * Canonical "ignore mask" including event flags. * * Note the subtle semantic difference from the legacy ->ignored_mask. * ->ignored_mask traditionally only meant which events should be ignored, * while ->ignore_mask also includes flags regarding the type of objects on * which events should be ignored. */ static inline __u32 fsnotify_ignore_mask(struct fsnotify_mark *mark) { __u32 ignore_mask = mark->ignore_mask; /* The event flags in ignore mask take effect */ if (mark->flags & FSNOTIFY_MARK_FLAG_HAS_IGNORE_FLAGS) return ignore_mask; /* * Legacy behavior: * - Always ignore events on dir * - Ignore events on child if parent is watching children */ ignore_mask |= FS_ISDIR; ignore_mask &= ~FS_EVENT_ON_CHILD; ignore_mask |= mark->mask & FS_EVENT_ON_CHILD; return ignore_mask; } /* Legacy ignored_mask - only event types to ignore */ static inline __u32 fsnotify_ignored_events(struct fsnotify_mark *mark) { return mark->ignore_mask & ALL_FSNOTIFY_EVENTS; } /* * Check if mask (or ignore mask) should be applied depending if victim is a * directory and whether it is reported to a watching parent. */ static inline bool fsnotify_mask_applicable(__u32 mask, bool is_dir, int iter_type) { /* Should mask be applied to a directory? */ if (is_dir && !(mask & FS_ISDIR)) return false; /* Should mask be applied to a child? */ if (iter_type == FSNOTIFY_ITER_TYPE_PARENT && !(mask & FS_EVENT_ON_CHILD)) return false; return true; } /* * Effective ignore mask taking into account if event victim is a * directory and whether it is reported to a watching parent. */ static inline __u32 fsnotify_effective_ignore_mask(struct fsnotify_mark *mark, bool is_dir, int iter_type) { __u32 ignore_mask = fsnotify_ignored_events(mark); if (!ignore_mask) return 0; /* For non-dir and non-child, no need to consult the event flags */ if (!is_dir && iter_type != FSNOTIFY_ITER_TYPE_PARENT) return ignore_mask; ignore_mask = fsnotify_ignore_mask(mark); if (!fsnotify_mask_applicable(ignore_mask, is_dir, iter_type)) return 0; return ignore_mask & ALL_FSNOTIFY_EVENTS; } /* Get mask for calculating object interest taking ignore mask into account */ static inline __u32 fsnotify_calc_mask(struct fsnotify_mark *mark) { __u32 mask = mark->mask; if (!fsnotify_ignored_events(mark)) return mask; /* Interest in FS_MODIFY may be needed for clearing ignore mask */ if (!(mark->flags & FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY)) mask |= FS_MODIFY; /* * If mark is interested in ignoring events on children, the object must * show interest in those events for fsnotify_parent() to notice it. */ return mask | mark->ignore_mask; } /* Get mask of events for a list of marks */ extern __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn); /* Calculate mask of events for a list of marks */ extern void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn); extern void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* Find mark belonging to given group in the list of marks */ struct fsnotify_mark *fsnotify_find_mark(void *obj, unsigned int obj_type, struct fsnotify_group *group); /* attach the mark to the object */ int fsnotify_add_mark(struct fsnotify_mark *mark, void *obj, unsigned int obj_type, int add_flags); int fsnotify_add_mark_locked(struct fsnotify_mark *mark, void *obj, unsigned int obj_type, int add_flags); /* attach the mark to the inode */ static inline int fsnotify_add_inode_mark(struct fsnotify_mark *mark, struct inode *inode, int add_flags) { return fsnotify_add_mark(mark, inode, FSNOTIFY_OBJ_TYPE_INODE, add_flags); } static inline int fsnotify_add_inode_mark_locked(struct fsnotify_mark *mark, struct inode *inode, int add_flags) { return fsnotify_add_mark_locked(mark, inode, FSNOTIFY_OBJ_TYPE_INODE, add_flags); } static inline struct fsnotify_mark *fsnotify_find_inode_mark( struct inode *inode, struct fsnotify_group *group) { return fsnotify_find_mark(inode, FSNOTIFY_OBJ_TYPE_INODE, group); } /* given a group and a mark, flag mark to be freed when all references are dropped */ extern void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group); /* detach mark from inode / mount list, group list, drop inode reference */ extern void fsnotify_detach_mark(struct fsnotify_mark *mark); /* free mark */ extern void fsnotify_free_mark(struct fsnotify_mark *mark); /* Wait until all marks queued for destruction are destroyed */ extern void fsnotify_wait_marks_destroyed(void); /* Clear all of the marks of a group attached to a given object type */ extern void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int obj_type); extern void fsnotify_get_mark(struct fsnotify_mark *mark); extern void fsnotify_put_mark(struct fsnotify_mark *mark); extern void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info); extern bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info); static inline void fsnotify_init_event(struct fsnotify_event *event) { INIT_LIST_HEAD(&event->list); } int fsnotify_pre_content(const struct path *path, const loff_t *ppos, size_t count); #else static inline int fsnotify_pre_content(const struct path *path, const loff_t *ppos, size_t count) { return 0; } static inline int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, struct inode *inode, u32 cookie) { return 0; } static inline int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { return 0; } static inline void __fsnotify_inode_delete(struct inode *inode) {} static inline void __fsnotify_vfsmount_delete(struct vfsmount *mnt) {} static inline void fsnotify_sb_delete(struct super_block *sb) {} static inline void __fsnotify_mntns_delete(struct mnt_namespace *mntns) {} static inline void fsnotify_sb_free(struct super_block *sb) {} static inline void fsnotify_update_flags(struct dentry *dentry) {} static inline u32 fsnotify_get_cookie(void) { return 0; } static inline void fsnotify_unmount_inodes(struct super_block *sb) {} static inline void fsnotify_mnt(__u32 mask, struct mnt_namespace *ns, struct vfsmount *mnt) {} #endif /* CONFIG_FSNOTIFY */ #endif /* __KERNEL __ */ #endif /* __LINUX_FSNOTIFY_BACKEND_H */
13026 13042 13037 13038 13032 9 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * internal.h - printk internal definitions */ #include <linux/console.h> #include <linux/percpu.h> #include <linux/types.h> #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) struct ctl_table; void __init printk_sysctl_init(void); int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); #else #define printk_sysctl_init() do { } while (0) #endif #define con_printk(lvl, con, fmt, ...) \ printk(lvl pr_fmt("%s%sconsole [%s%d] " fmt), \ (con->flags & CON_NBCON) ? "" : "legacy ", \ (con->flags & CON_BOOT) ? "boot" : "", \ con->name, con->index, ##__VA_ARGS__) /* * Identify if legacy printing is forced in a dedicated kthread. If * true, all printing via console lock occurs within a dedicated * legacy printer thread. The only exception is on panic, after the * nbcon consoles have had their chance to print the panic messages * first. */ #ifdef CONFIG_PREEMPT_RT # define force_legacy_kthread() (true) #else # define force_legacy_kthread() (false) #endif #ifdef CONFIG_PRINTK #ifdef CONFIG_PRINTK_CALLER #define PRINTK_PREFIX_MAX 48 #else #define PRINTK_PREFIX_MAX 32 #endif /* * the maximum size of a formatted record (i.e. with prefix added * per line and dropped messages or in extended message format) */ #define PRINTK_MESSAGE_MAX 2048 /* the maximum size allowed to be reserved for a record */ #define PRINTKRB_RECORD_MAX 1024 /* Flags for a single printk record. */ enum printk_info_flags { /* always show on console, ignore console_loglevel */ LOG_FORCE_CON = 1, LOG_NEWLINE = 2, /* text ended with a newline */ LOG_CONT = 8, /* text is a fragment of a continuation line */ }; struct printk_ringbuffer; struct dev_printk_info; extern struct printk_ringbuffer *prb; extern bool printk_kthreads_running; extern bool debug_non_panic_cpus; __printf(4, 0) int vprintk_store(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); __printf(1, 0) int vprintk_default(const char *fmt, va_list args); __printf(1, 0) int vprintk_deferred(const char *fmt, va_list args); void __printk_safe_enter(void); void __printk_safe_exit(void); bool printk_percpu_data_ready(void); #define printk_safe_enter_irqsave(flags) \ do { \ local_irq_save(flags); \ __printk_safe_enter(); \ } while (0) #define printk_safe_exit_irqrestore(flags) \ do { \ __printk_safe_exit(); \ local_irq_restore(flags); \ } while (0) void defer_console_output(void); bool is_printk_legacy_deferred(void); bool is_printk_force_console(void); u16 printk_parse_prefix(const char *text, int *level, enum printk_info_flags *flags); void console_lock_spinning_enable(void); int console_lock_spinning_disable_and_check(int cookie); u64 nbcon_seq_read(struct console *con); void nbcon_seq_force(struct console *con, u64 seq); bool nbcon_alloc(struct console *con); void nbcon_free(struct console *con); enum nbcon_prio nbcon_get_default_prio(void); void nbcon_atomic_flush_pending(void); bool nbcon_legacy_emit_next_record(struct console *con, bool *handover, int cookie, bool use_atomic); bool nbcon_kthread_create(struct console *con); void nbcon_kthread_stop(struct console *con); void nbcon_kthreads_wake(void); /* * Check if the given console is currently capable and allowed to print * records. Note that this function does not consider the current context, * which can also play a role in deciding if @con can be used to print * records. */ static inline bool console_is_usable(struct console *con, short flags, bool use_atomic) { if (!(flags & CON_ENABLED)) return false; if ((flags & CON_SUSPENDED)) return false; if (flags & CON_NBCON) { /* The write_atomic() callback is optional. */ if (use_atomic && !con->write_atomic) return false; /* * For the !use_atomic case, @printk_kthreads_running is not * checked because the write_thread() callback is also used * via the legacy loop when the printer threads are not * available. */ } else { if (!con->write) return false; } /* * Console drivers may assume that per-cpu resources have been * allocated. So unless they're explicitly marked as being able to * cope (CON_ANYTIME) don't call them until this CPU is officially up. */ if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) return false; return true; } /** * nbcon_kthread_wake - Wake up a console printing thread * @con: Console to operate on */ static inline void nbcon_kthread_wake(struct console *con) { /* * Guarantee any new records can be seen by tasks preparing to wait * before this context checks if the rcuwait is empty. * * The full memory barrier in rcuwait_wake_up() pairs with the full * memory barrier within set_current_state() of * ___rcuwait_wait_event(), which is called after prepare_to_rcuwait() * adds the waiter but before it has checked the wait condition. * * This pairs with nbcon_kthread_func:A. */ rcuwait_wake_up(&con->rcuwait); /* LMM(nbcon_kthread_wake:A) */ } #else #define PRINTK_PREFIX_MAX 0 #define PRINTK_MESSAGE_MAX 0 #define PRINTKRB_RECORD_MAX 0 #define printk_kthreads_running (false) /* * In !PRINTK builds we still export console_sem * semaphore and some of console functions (console_unlock()/etc.), so * printk-safe must preserve the existing local IRQ guarantees. */ #define printk_safe_enter_irqsave(flags) local_irq_save(flags) #define printk_safe_exit_irqrestore(flags) local_irq_restore(flags) static inline bool printk_percpu_data_ready(void) { return false; } static inline void defer_console_output(void) { } static inline bool is_printk_legacy_deferred(void) { return false; } static inline u64 nbcon_seq_read(struct console *con) { return 0; } static inline void nbcon_seq_force(struct console *con, u64 seq) { } static inline bool nbcon_alloc(struct console *con) { return false; } static inline void nbcon_free(struct console *con) { } static inline enum nbcon_prio nbcon_get_default_prio(void) { return NBCON_PRIO_NONE; } static inline void nbcon_atomic_flush_pending(void) { } static inline bool nbcon_legacy_emit_next_record(struct console *con, bool *handover, int cookie, bool use_atomic) { return false; } static inline void nbcon_kthread_wake(struct console *con) { } static inline void nbcon_kthreads_wake(void) { } static inline bool console_is_usable(struct console *con, short flags, bool use_atomic) { return false; } #endif /* CONFIG_PRINTK */ extern bool have_boot_console; extern bool have_nbcon_console; extern bool have_legacy_console; extern bool legacy_allow_panic_sync; /** * struct console_flush_type - Define available console flush methods * @nbcon_atomic: Flush directly using nbcon_atomic() callback * @nbcon_offload: Offload flush to printer thread * @legacy_direct: Call the legacy loop in this context * @legacy_offload: Offload the legacy loop into IRQ or legacy thread * * Note that the legacy loop also flushes the nbcon consoles. */ struct console_flush_type { bool nbcon_atomic; bool nbcon_offload; bool legacy_direct; bool legacy_offload; }; /* * Identify which console flushing methods should be used in the context of * the caller. */ static inline void printk_get_console_flush_type(struct console_flush_type *ft) { memset(ft, 0, sizeof(*ft)); switch (nbcon_get_default_prio()) { case NBCON_PRIO_NORMAL: if (have_nbcon_console && !have_boot_console) { if (printk_kthreads_running) ft->nbcon_offload = true; else ft->nbcon_atomic = true; } /* Legacy consoles are flushed directly when possible. */ if (have_legacy_console || have_boot_console) { if (!is_printk_legacy_deferred()) ft->legacy_direct = true; else ft->legacy_offload = true; } break; case NBCON_PRIO_EMERGENCY: if (have_nbcon_console && !have_boot_console) ft->nbcon_atomic = true; /* Legacy consoles are flushed directly when possible. */ if (have_legacy_console || have_boot_console) { if (!is_printk_legacy_deferred()) ft->legacy_direct = true; else ft->legacy_offload = true; } break; case NBCON_PRIO_PANIC: /* * In panic, the nbcon consoles will directly print. But * only allowed if there are no boot consoles. */ if (have_nbcon_console && !have_boot_console) ft->nbcon_atomic = true; if (have_legacy_console || have_boot_console) { /* * This is the same decision as NBCON_PRIO_NORMAL * except that offloading never occurs in panic. * * Note that console_flush_on_panic() will flush * legacy consoles anyway, even if unsafe. */ if (!is_printk_legacy_deferred()) ft->legacy_direct = true; /* * In panic, if nbcon atomic printing occurs, * the legacy consoles must remain silent until * explicitly allowed. */ if (ft->nbcon_atomic && !legacy_allow_panic_sync) ft->legacy_direct = false; } break; default: WARN_ON_ONCE(1); break; } } extern struct printk_buffers printk_shared_pbufs; /** * struct printk_buffers - Buffers to read/format/output printk messages. * @outbuf: After formatting, contains text to output. * @scratchbuf: Used as temporary ringbuffer reading and string-print space. */ struct printk_buffers { char outbuf[PRINTK_MESSAGE_MAX]; char scratchbuf[PRINTKRB_RECORD_MAX]; }; /** * struct printk_message - Container for a prepared printk message. * @pbufs: printk buffers used to prepare the message. * @outbuf_len: The length of prepared text in @pbufs->outbuf to output. This * does not count the terminator. A value of 0 means there is * nothing to output and this record should be skipped. * @seq: The sequence number of the record used for @pbufs->outbuf. * @dropped: The number of dropped records from reading @seq. */ struct printk_message { struct printk_buffers *pbufs; unsigned int outbuf_len; u64 seq; unsigned long dropped; }; bool other_cpu_in_panic(void); bool printk_get_next_message(struct printk_message *pmsg, u64 seq, bool is_extended, bool may_supress); #ifdef CONFIG_PRINTK void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped); void console_prepend_replay(struct printk_message *pmsg); #endif #ifdef CONFIG_SMP bool is_printk_cpu_sync_owner(void); #else static inline bool is_printk_cpu_sync_owner(void) { return false; } #endif
8 1 2 1 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 // SPDX-License-Identifier: GPL-2.0-only /* Kernel module to match ROUTING parameters. */ /* (C) 2001-2002 Andras Kis-Szabo <kisza@sch.bme.hu> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ipv6.h> #include <asm/byteorder.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_ipv6/ip6t_rt.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 Routing Header match"); MODULE_AUTHOR("Andras Kis-Szabo <kisza@sch.bme.hu>"); /* Returns 1 if the id is matched by the range, 0 otherwise */ static inline bool segsleft_match(u_int32_t min, u_int32_t max, u_int32_t id, bool invert) { return (id >= min && id <= max) ^ invert; } static bool rt_mt6(const struct sk_buff *skb, struct xt_action_param *par) { struct ipv6_rt_hdr _route; const struct ipv6_rt_hdr *rh; const struct ip6t_rt *rtinfo = par->matchinfo; unsigned int temp; unsigned int ptr = 0; unsigned int hdrlen = 0; bool ret = false; struct in6_addr _addr; const struct in6_addr *ap; int err; err = ipv6_find_hdr(skb, &ptr, NEXTHDR_ROUTING, NULL, NULL); if (err < 0) { if (err != -ENOENT) par->hotdrop = true; return false; } rh = skb_header_pointer(skb, ptr, sizeof(_route), &_route); if (rh == NULL) { par->hotdrop = true; return false; } hdrlen = ipv6_optlen(rh); if (skb->len - ptr < hdrlen) { /* Pcket smaller than its length field */ return false; } ret = (segsleft_match(rtinfo->segsleft[0], rtinfo->segsleft[1], rh->segments_left, !!(rtinfo->invflags & IP6T_RT_INV_SGS))) && (!(rtinfo->flags & IP6T_RT_LEN) || ((rtinfo->hdrlen == hdrlen) ^ !!(rtinfo->invflags & IP6T_RT_INV_LEN))) && (!(rtinfo->flags & IP6T_RT_TYP) || ((rtinfo->rt_type == rh->type) ^ !!(rtinfo->invflags & IP6T_RT_INV_TYP))); if (ret && (rtinfo->flags & IP6T_RT_RES)) { const u_int32_t *rp; u_int32_t _reserved; rp = skb_header_pointer(skb, ptr + offsetof(struct rt0_hdr, reserved), sizeof(_reserved), &_reserved); if (!rp) { par->hotdrop = true; return false; } ret = (*rp == 0); } if (!(rtinfo->flags & IP6T_RT_FST)) { return ret; } else if (rtinfo->flags & IP6T_RT_FST_NSTRICT) { if (rtinfo->addrnr > (unsigned int)((hdrlen - 8) / 16)) { return false; } else { unsigned int i = 0; for (temp = 0; temp < (unsigned int)((hdrlen - 8) / 16); temp++) { ap = skb_header_pointer(skb, ptr + sizeof(struct rt0_hdr) + temp * sizeof(_addr), sizeof(_addr), &_addr); if (ap == NULL) { par->hotdrop = true; return false; } if (ipv6_addr_equal(ap, &rtinfo->addrs[i])) i++; if (i == rtinfo->addrnr) break; } if (i == rtinfo->addrnr) return ret; else return false; } } else { if (rtinfo->addrnr > (unsigned int)((hdrlen - 8) / 16)) { return false; } else { for (temp = 0; temp < rtinfo->addrnr; temp++) { ap = skb_header_pointer(skb, ptr + sizeof(struct rt0_hdr) + temp * sizeof(_addr), sizeof(_addr), &_addr); if (ap == NULL) { par->hotdrop = true; return false; } if (!ipv6_addr_equal(ap, &rtinfo->addrs[temp])) break; } if (temp == rtinfo->addrnr && temp == (unsigned int)((hdrlen - 8) / 16)) return ret; else return false; } } return false; } static int rt_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_rt *rtinfo = par->matchinfo; if (rtinfo->invflags & ~IP6T_RT_INV_MASK) { pr_debug("unknown flags %X\n", rtinfo->invflags); return -EINVAL; } if ((rtinfo->flags & (IP6T_RT_RES | IP6T_RT_FST_MASK)) && (!(rtinfo->flags & IP6T_RT_TYP) || (rtinfo->rt_type != 0) || (rtinfo->invflags & IP6T_RT_INV_TYP))) { pr_debug("`--rt-type 0' required before `--rt-0-*'"); return -EINVAL; } return 0; } static struct xt_match rt_mt6_reg __read_mostly = { .name = "rt", .family = NFPROTO_IPV6, .match = rt_mt6, .matchsize = sizeof(struct ip6t_rt), .checkentry = rt_mt6_check, .me = THIS_MODULE, }; static int __init rt_mt6_init(void) { return xt_register_match(&rt_mt6_reg); } static void __exit rt_mt6_exit(void) { xt_unregister_match(&rt_mt6_reg); } module_init(rt_mt6_init); module_exit(rt_mt6_exit);
40 40 2 1 463 463 37 37 28 9 37 37 4 33 57 57 57 1 56 54 53 37 21 13 2 19 56 56 56 56 1 2 67 66 1 9 58 37 26 3 34 19 18 18 18 18 7 6 4 4 2 204 3 173 3 86 2 2 2 710 709 36 453 6 25 631 187 12 494 1 503 496 8 2 503 16 16 411 4 1 3 4 47 47 5 43 27 21 3 24 26 1 1 4 4 9 17 17 17 17 6 6 3 3 2 702 88 616 615 34 449 166 23 562 145 466 469 327 411 76 3 3 3 41 41 11 463 463 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS An implementation of the IP virtual server support for the * LINUX operating system. IPVS is now implemented as a module * over the Netfilter framework. IPVS can be used to build a * high-performance and highly available server based on a * cluster of servers. * * Authors: Wensong Zhang <wensong@linuxvirtualserver.org> * Peter Kese <peter.kese@ijs.si> * Julian Anastasov <ja@ssi.bg> * * The IPVS code for kernel 2.2 was done by Wensong Zhang and Peter Kese, * with changes/fixes from Julian Anastasov, Lars Marowsky-Bree, Horms * and others. * * Changes: * Paul `Rusty' Russell properly handle non-linear skbs * Harald Welte don't use nfcache */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/sctp.h> #include <linux/icmp.h> #include <linux/slab.h> #include <net/ip.h> #include <net/tcp.h> #include <net/udp.h> #include <net/icmp.h> /* for icmp_send */ #include <net/gue.h> #include <net/gre.h> #include <net/route.h> #include <net/ip6_checksum.h> #include <net/netns/generic.h> /* net_generic() */ #include <linux/netfilter.h> #include <linux/netfilter_ipv4.h> #ifdef CONFIG_IP_VS_IPV6 #include <net/ipv6.h> #include <linux/netfilter_ipv6.h> #include <net/ip6_route.h> #endif #include <net/ip_vs.h> #include <linux/indirect_call_wrapper.h> EXPORT_SYMBOL(register_ip_vs_scheduler); EXPORT_SYMBOL(unregister_ip_vs_scheduler); EXPORT_SYMBOL(ip_vs_proto_name); EXPORT_SYMBOL(ip_vs_conn_new); EXPORT_SYMBOL(ip_vs_conn_in_get); EXPORT_SYMBOL(ip_vs_conn_out_get); #ifdef CONFIG_IP_VS_PROTO_TCP EXPORT_SYMBOL(ip_vs_tcp_conn_listen); #endif EXPORT_SYMBOL(ip_vs_conn_put); #ifdef CONFIG_IP_VS_DEBUG EXPORT_SYMBOL(ip_vs_get_debug_level); #endif EXPORT_SYMBOL(ip_vs_new_conn_out); #if defined(CONFIG_IP_VS_PROTO_TCP) && defined(CONFIG_IP_VS_PROTO_UDP) #define SNAT_CALL(f, ...) \ INDIRECT_CALL_2(f, tcp_snat_handler, udp_snat_handler, __VA_ARGS__) #elif defined(CONFIG_IP_VS_PROTO_TCP) #define SNAT_CALL(f, ...) INDIRECT_CALL_1(f, tcp_snat_handler, __VA_ARGS__) #elif defined(CONFIG_IP_VS_PROTO_UDP) #define SNAT_CALL(f, ...) INDIRECT_CALL_1(f, udp_snat_handler, __VA_ARGS__) #else #define SNAT_CALL(f, ...) f(__VA_ARGS__) #endif static unsigned int ip_vs_net_id __read_mostly; /* netns cnt used for uniqueness */ static atomic_t ipvs_netns_cnt = ATOMIC_INIT(0); /* ID used in ICMP lookups */ #define icmp_id(icmph) (((icmph)->un).echo.id) #define icmpv6_id(icmph) (icmph->icmp6_dataun.u_echo.identifier) const char *ip_vs_proto_name(unsigned int proto) { static char buf[20]; switch (proto) { case IPPROTO_IP: return "IP"; case IPPROTO_UDP: return "UDP"; case IPPROTO_TCP: return "TCP"; case IPPROTO_SCTP: return "SCTP"; case IPPROTO_ICMP: return "ICMP"; #ifdef CONFIG_IP_VS_IPV6 case IPPROTO_ICMPV6: return "ICMPv6"; #endif default: sprintf(buf, "IP_%u", proto); return buf; } } void ip_vs_init_hash_table(struct list_head *table, int rows) { while (--rows >= 0) INIT_LIST_HEAD(&table[rows]); } static inline void ip_vs_in_stats(struct ip_vs_conn *cp, struct sk_buff *skb) { struct ip_vs_dest *dest = cp->dest; struct netns_ipvs *ipvs = cp->ipvs; if (dest && (dest->flags & IP_VS_DEST_F_AVAILABLE)) { struct ip_vs_cpu_stats *s; struct ip_vs_service *svc; local_bh_disable(); s = this_cpu_ptr(dest->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.inpkts); u64_stats_add(&s->cnt.inbytes, skb->len); u64_stats_update_end(&s->syncp); svc = rcu_dereference(dest->svc); s = this_cpu_ptr(svc->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.inpkts); u64_stats_add(&s->cnt.inbytes, skb->len); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(ipvs->tot_stats->s.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.inpkts); u64_stats_add(&s->cnt.inbytes, skb->len); u64_stats_update_end(&s->syncp); local_bh_enable(); } } static inline void ip_vs_out_stats(struct ip_vs_conn *cp, struct sk_buff *skb) { struct ip_vs_dest *dest = cp->dest; struct netns_ipvs *ipvs = cp->ipvs; if (dest && (dest->flags & IP_VS_DEST_F_AVAILABLE)) { struct ip_vs_cpu_stats *s; struct ip_vs_service *svc; local_bh_disable(); s = this_cpu_ptr(dest->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.outpkts); u64_stats_add(&s->cnt.outbytes, skb->len); u64_stats_update_end(&s->syncp); svc = rcu_dereference(dest->svc); s = this_cpu_ptr(svc->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.outpkts); u64_stats_add(&s->cnt.outbytes, skb->len); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(ipvs->tot_stats->s.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.outpkts); u64_stats_add(&s->cnt.outbytes, skb->len); u64_stats_update_end(&s->syncp); local_bh_enable(); } } static inline void ip_vs_conn_stats(struct ip_vs_conn *cp, struct ip_vs_service *svc) { struct netns_ipvs *ipvs = svc->ipvs; struct ip_vs_cpu_stats *s; local_bh_disable(); s = this_cpu_ptr(cp->dest->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.conns); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(svc->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.conns); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(ipvs->tot_stats->s.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.conns); u64_stats_update_end(&s->syncp); local_bh_enable(); } static inline void ip_vs_set_state(struct ip_vs_conn *cp, int direction, const struct sk_buff *skb, struct ip_vs_proto_data *pd) { if (likely(pd->pp->state_transition)) pd->pp->state_transition(cp, direction, skb, pd); } static inline int ip_vs_conn_fill_param_persist(const struct ip_vs_service *svc, struct sk_buff *skb, int protocol, const union nf_inet_addr *caddr, __be16 cport, const union nf_inet_addr *vaddr, __be16 vport, struct ip_vs_conn_param *p) { ip_vs_conn_fill_param(svc->ipvs, svc->af, protocol, caddr, cport, vaddr, vport, p); p->pe = rcu_dereference(svc->pe); if (p->pe && p->pe->fill_param) return p->pe->fill_param(p, skb); return 0; } /* * IPVS persistent scheduling function * It creates a connection entry according to its template if exists, * or selects a server and creates a connection entry plus a template. * Locking: we are svc user (svc->refcnt), so we hold all dests too * Protocols supported: TCP, UDP */ static struct ip_vs_conn * ip_vs_sched_persist(struct ip_vs_service *svc, struct sk_buff *skb, __be16 src_port, __be16 dst_port, int *ignored, struct ip_vs_iphdr *iph) { struct ip_vs_conn *cp = NULL; struct ip_vs_dest *dest; struct ip_vs_conn *ct; __be16 dport = 0; /* destination port to forward */ unsigned int flags; struct ip_vs_conn_param param; const union nf_inet_addr fwmark = { .ip = htonl(svc->fwmark) }; union nf_inet_addr snet; /* source network of the client, after masking */ const union nf_inet_addr *src_addr, *dst_addr; if (likely(!ip_vs_iph_inverse(iph))) { src_addr = &iph->saddr; dst_addr = &iph->daddr; } else { src_addr = &iph->daddr; dst_addr = &iph->saddr; } /* Mask saddr with the netmask to adjust template granularity */ #ifdef CONFIG_IP_VS_IPV6 if (svc->af == AF_INET6) ipv6_addr_prefix(&snet.in6, &src_addr->in6, (__force __u32) svc->netmask); else #endif snet.ip = src_addr->ip & svc->netmask; IP_VS_DBG_BUF(6, "p-schedule: src %s:%u dest %s:%u " "mnet %s\n", IP_VS_DBG_ADDR(svc->af, src_addr), ntohs(src_port), IP_VS_DBG_ADDR(svc->af, dst_addr), ntohs(dst_port), IP_VS_DBG_ADDR(svc->af, &snet)); /* * As far as we know, FTP is a very complicated network protocol, and * it uses control connection and data connections. For active FTP, * FTP server initialize data connection to the client, its source port * is often 20. For passive FTP, FTP server tells the clients the port * that it passively listens to, and the client issues the data * connection. In the tunneling or direct routing mode, the load * balancer is on the client-to-server half of connection, the port * number is unknown to the load balancer. So, a conn template like * <caddr, 0, vaddr, 0, daddr, 0> is created for persistent FTP * service, and a template like <caddr, 0, vaddr, vport, daddr, dport> * is created for other persistent services. */ { int protocol = iph->protocol; const union nf_inet_addr *vaddr = dst_addr; __be16 vport = 0; if (dst_port == svc->port) { /* non-FTP template: * <protocol, caddr, 0, vaddr, vport, daddr, dport> * FTP template: * <protocol, caddr, 0, vaddr, 0, daddr, 0> */ if (svc->port != FTPPORT) vport = dst_port; } else { /* Note: persistent fwmark-based services and * persistent port zero service are handled here. * fwmark template: * <IPPROTO_IP,caddr,0,fwmark,0,daddr,0> * port zero template: * <protocol,caddr,0,vaddr,0,daddr,0> */ if (svc->fwmark) { protocol = IPPROTO_IP; vaddr = &fwmark; } } /* return *ignored = -1 so NF_DROP can be used */ if (ip_vs_conn_fill_param_persist(svc, skb, protocol, &snet, 0, vaddr, vport, &param) < 0) { *ignored = -1; return NULL; } } /* Check if a template already exists */ ct = ip_vs_ct_in_get(&param); if (!ct || !ip_vs_check_template(ct, NULL)) { struct ip_vs_scheduler *sched; /* * No template found or the dest of the connection * template is not available. * return *ignored=0 i.e. ICMP and NF_DROP */ sched = rcu_dereference(svc->scheduler); if (sched) { /* read svc->sched_data after svc->scheduler */ smp_rmb(); dest = sched->schedule(svc, skb, iph); } else { dest = NULL; } if (!dest) { IP_VS_DBG(1, "p-schedule: no dest found.\n"); kfree(param.pe_data); *ignored = 0; return NULL; } if (dst_port == svc->port && svc->port != FTPPORT) dport = dest->port; /* Create a template * This adds param.pe_data to the template, * and thus param.pe_data will be destroyed * when the template expires */ ct = ip_vs_conn_new(&param, dest->af, &dest->addr, dport, IP_VS_CONN_F_TEMPLATE, dest, skb->mark); if (ct == NULL) { kfree(param.pe_data); *ignored = -1; return NULL; } ct->timeout = svc->timeout; } else { /* set destination with the found template */ dest = ct->dest; kfree(param.pe_data); } dport = dst_port; if (dport == svc->port && dest->port) dport = dest->port; flags = (svc->flags & IP_VS_SVC_F_ONEPACKET && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; /* * Create a new connection according to the template */ ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, src_addr, src_port, dst_addr, dst_port, &param); cp = ip_vs_conn_new(&param, dest->af, &dest->addr, dport, flags, dest, skb->mark); if (cp == NULL) { ip_vs_conn_put(ct); *ignored = -1; return NULL; } /* * Add its control */ ip_vs_control_add(cp, ct); ip_vs_conn_put(ct); ip_vs_conn_stats(cp, svc); return cp; } /* * IPVS main scheduling function * It selects a server according to the virtual service, and * creates a connection entry. * Protocols supported: TCP, UDP * * Usage of *ignored * * 1 : protocol tried to schedule (eg. on SYN), found svc but the * svc/scheduler decides that this packet should be accepted with * NF_ACCEPT because it must not be scheduled. * * 0 : scheduler can not find destination, so try bypass or * return ICMP and then NF_DROP (ip_vs_leave). * * -1 : scheduler tried to schedule but fatal error occurred, eg. * ip_vs_conn_new failure (ENOMEM) or ip_vs_sip_fill_param * failure such as missing Call-ID, ENOMEM on skb_linearize * or pe_data. In this case we should return NF_DROP without * any attempts to send ICMP with ip_vs_leave. */ struct ip_vs_conn * ip_vs_schedule(struct ip_vs_service *svc, struct sk_buff *skb, struct ip_vs_proto_data *pd, int *ignored, struct ip_vs_iphdr *iph) { struct ip_vs_protocol *pp = pd->pp; struct ip_vs_conn *cp = NULL; struct ip_vs_scheduler *sched; struct ip_vs_dest *dest; __be16 _ports[2], *pptr, cport, vport; const void *caddr, *vaddr; unsigned int flags; *ignored = 1; /* * IPv6 frags, only the first hit here. */ pptr = frag_safe_skb_hp(skb, iph->len, sizeof(_ports), _ports); if (pptr == NULL) return NULL; if (likely(!ip_vs_iph_inverse(iph))) { cport = pptr[0]; caddr = &iph->saddr; vport = pptr[1]; vaddr = &iph->daddr; } else { cport = pptr[1]; caddr = &iph->daddr; vport = pptr[0]; vaddr = &iph->saddr; } /* * FTPDATA needs this check when using local real server. * Never schedule Active FTPDATA connections from real server. * For LVS-NAT they must be already created. For other methods * with persistence the connection is created on SYN+ACK. */ if (cport == FTPDATA) { IP_VS_DBG_PKT(12, svc->af, pp, skb, iph->off, "Not scheduling FTPDATA"); return NULL; } /* * Do not schedule replies from local real server. */ if ((!skb->dev || skb->dev->flags & IFF_LOOPBACK)) { iph->hdr_flags ^= IP_VS_HDR_INVERSE; cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, svc->ipvs, svc->af, skb, iph); iph->hdr_flags ^= IP_VS_HDR_INVERSE; if (cp) { IP_VS_DBG_PKT(12, svc->af, pp, skb, iph->off, "Not scheduling reply for existing" " connection"); __ip_vs_conn_put(cp); return NULL; } } /* * Persistent service */ if (svc->flags & IP_VS_SVC_F_PERSISTENT) return ip_vs_sched_persist(svc, skb, cport, vport, ignored, iph); *ignored = 0; /* * Non-persistent service */ if (!svc->fwmark && vport != svc->port) { if (!svc->port) pr_err("Schedule: port zero only supported " "in persistent services, " "check your ipvs configuration\n"); return NULL; } sched = rcu_dereference(svc->scheduler); if (sched) { /* read svc->sched_data after svc->scheduler */ smp_rmb(); dest = sched->schedule(svc, skb, iph); } else { dest = NULL; } if (dest == NULL) { IP_VS_DBG(1, "Schedule: no dest found.\n"); return NULL; } flags = (svc->flags & IP_VS_SVC_F_ONEPACKET && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; /* * Create a connection entry. */ { struct ip_vs_conn_param p; ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, caddr, cport, vaddr, vport, &p); cp = ip_vs_conn_new(&p, dest->af, &dest->addr, dest->port ? dest->port : vport, flags, dest, skb->mark); if (!cp) { *ignored = -1; return NULL; } } IP_VS_DBG_BUF(6, "Schedule fwd:%c c:%s:%u v:%s:%u " "d:%s:%u conn->flags:%X conn->refcnt:%d\n", ip_vs_fwd_tag(cp), IP_VS_DBG_ADDR(cp->af, &cp->caddr), ntohs(cp->cport), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport), IP_VS_DBG_ADDR(cp->daf, &cp->daddr), ntohs(cp->dport), cp->flags, refcount_read(&cp->refcnt)); ip_vs_conn_stats(cp, svc); return cp; } static inline int ip_vs_addr_is_unicast(struct net *net, int af, union nf_inet_addr *addr) { #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) return ipv6_addr_type(&addr->in6) & IPV6_ADDR_UNICAST; #endif return (inet_addr_type(net, addr->ip) == RTN_UNICAST); } /* * Pass or drop the packet. * Called by ip_vs_in, when the virtual service is available but * no destination is available for a new connection. */ int ip_vs_leave(struct ip_vs_service *svc, struct sk_buff *skb, struct ip_vs_proto_data *pd, struct ip_vs_iphdr *iph) { __be16 _ports[2], *pptr, dport; struct netns_ipvs *ipvs = svc->ipvs; struct net *net = ipvs->net; pptr = frag_safe_skb_hp(skb, iph->len, sizeof(_ports), _ports); if (!pptr) return NF_DROP; dport = likely(!ip_vs_iph_inverse(iph)) ? pptr[1] : pptr[0]; /* if it is fwmark-based service, the cache_bypass sysctl is up and the destination is a non-local unicast, then create a cache_bypass connection entry */ if (sysctl_cache_bypass(ipvs) && svc->fwmark && !(iph->hdr_flags & (IP_VS_HDR_INVERSE | IP_VS_HDR_ICMP)) && ip_vs_addr_is_unicast(net, svc->af, &iph->daddr)) { int ret; struct ip_vs_conn *cp; unsigned int flags = (svc->flags & IP_VS_SVC_F_ONEPACKET && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; union nf_inet_addr daddr = { .all = { 0, 0, 0, 0 } }; /* create a new connection entry */ IP_VS_DBG(6, "%s(): create a cache_bypass entry\n", __func__); { struct ip_vs_conn_param p; ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, &iph->saddr, pptr[0], &iph->daddr, pptr[1], &p); cp = ip_vs_conn_new(&p, svc->af, &daddr, 0, IP_VS_CONN_F_BYPASS | flags, NULL, skb->mark); if (!cp) return NF_DROP; } /* statistics */ ip_vs_in_stats(cp, skb); /* set state */ ip_vs_set_state(cp, IP_VS_DIR_INPUT, skb, pd); /* transmit the first SYN packet */ ret = cp->packet_xmit(skb, cp, pd->pp, iph); /* do not touch skb anymore */ if ((cp->flags & IP_VS_CONN_F_ONE_PACKET) && cp->control) atomic_inc(&cp->control->in_pkts); else atomic_inc(&cp->in_pkts); ip_vs_conn_put(cp); return ret; } /* * When the virtual ftp service is presented, packets destined * for other services on the VIP may get here (except services * listed in the ipvs table), pass the packets, because it is * not ipvs job to decide to drop the packets. */ if (svc->port == FTPPORT && dport != FTPPORT) return NF_ACCEPT; if (unlikely(ip_vs_iph_icmp(iph))) return NF_DROP; /* * Notify the client that the destination is unreachable, and * release the socket buffer. * Since it is in IP layer, the TCP socket is not actually * created, the TCP RST packet cannot be sent, instead that * ICMP_PORT_UNREACH is sent here no matter it is TCP/UDP. --WZ */ #ifdef CONFIG_IP_VS_IPV6 if (svc->af == AF_INET6) { if (!skb->dev) skb->dev = net->loopback_dev; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); } else #endif icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); return NF_DROP; } #ifdef CONFIG_SYSCTL static int sysctl_snat_reroute(struct netns_ipvs *ipvs) { return ipvs->sysctl_snat_reroute; } static int sysctl_nat_icmp_send(struct netns_ipvs *ipvs) { return ipvs->sysctl_nat_icmp_send; } #else static int sysctl_snat_reroute(struct netns_ipvs *ipvs) { return 0; } static int sysctl_nat_icmp_send(struct netns_ipvs *ipvs) { return 0; } #endif __sum16 ip_vs_checksum_complete(struct sk_buff *skb, int offset) { return csum_fold(skb_checksum(skb, offset, skb->len - offset, 0)); } static inline enum ip_defrag_users ip_vs_defrag_user(unsigned int hooknum) { if (NF_INET_LOCAL_IN == hooknum) return IP_DEFRAG_VS_IN; if (NF_INET_FORWARD == hooknum) return IP_DEFRAG_VS_FWD; return IP_DEFRAG_VS_OUT; } static inline int ip_vs_gather_frags(struct netns_ipvs *ipvs, struct sk_buff *skb, u_int32_t user) { int err; local_bh_disable(); err = ip_defrag(ipvs->net, skb, user); local_bh_enable(); if (!err) ip_send_check(ip_hdr(skb)); return err; } static int ip_vs_route_me_harder(struct netns_ipvs *ipvs, int af, struct sk_buff *skb, unsigned int hooknum) { if (!sysctl_snat_reroute(ipvs)) return 0; /* Reroute replies only to remote clients (FORWARD and LOCAL_OUT) */ if (NF_INET_LOCAL_IN == hooknum) return 0; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { struct dst_entry *dst = skb_dst(skb); if (dst->dev && !(dst->dev->flags & IFF_LOOPBACK) && ip6_route_me_harder(ipvs->net, skb->sk, skb) != 0) return 1; } else #endif if (!(skb_rtable(skb)->rt_flags & RTCF_LOCAL) && ip_route_me_harder(ipvs->net, skb->sk, skb, RTN_LOCAL) != 0) return 1; return 0; } /* * Packet has been made sufficiently writable in caller * - inout: 1=in->out, 0=out->in */ void ip_vs_nat_icmp(struct sk_buff *skb, struct ip_vs_protocol *pp, struct ip_vs_conn *cp, int inout) { struct iphdr *iph = ip_hdr(skb); unsigned int icmp_offset = iph->ihl*4; struct icmphdr *icmph = (struct icmphdr *)(skb_network_header(skb) + icmp_offset); struct iphdr *ciph = (struct iphdr *)(icmph + 1); if (inout) { iph->saddr = cp->vaddr.ip; ip_send_check(iph); ciph->daddr = cp->vaddr.ip; ip_send_check(ciph); } else { iph->daddr = cp->daddr.ip; ip_send_check(iph); ciph->saddr = cp->daddr.ip; ip_send_check(ciph); } /* the TCP/UDP/SCTP port */ if (IPPROTO_TCP == ciph->protocol || IPPROTO_UDP == ciph->protocol || IPPROTO_SCTP == ciph->protocol) { __be16 *ports = (void *)ciph + ciph->ihl*4; if (inout) ports[1] = cp->vport; else ports[0] = cp->dport; } /* And finally the ICMP checksum */ icmph->checksum = 0; icmph->checksum = ip_vs_checksum_complete(skb, icmp_offset); skb->ip_summed = CHECKSUM_UNNECESSARY; if (inout) IP_VS_DBG_PKT(11, AF_INET, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered outgoing ICMP"); else IP_VS_DBG_PKT(11, AF_INET, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered incoming ICMP"); } #ifdef CONFIG_IP_VS_IPV6 void ip_vs_nat_icmp_v6(struct sk_buff *skb, struct ip_vs_protocol *pp, struct ip_vs_conn *cp, int inout) { struct ipv6hdr *iph = ipv6_hdr(skb); unsigned int icmp_offset = 0; unsigned int offs = 0; /* header offset*/ int protocol; struct icmp6hdr *icmph; struct ipv6hdr *ciph; unsigned short fragoffs; ipv6_find_hdr(skb, &icmp_offset, IPPROTO_ICMPV6, &fragoffs, NULL); icmph = (struct icmp6hdr *)(skb_network_header(skb) + icmp_offset); offs = icmp_offset + sizeof(struct icmp6hdr); ciph = (struct ipv6hdr *)(skb_network_header(skb) + offs); protocol = ipv6_find_hdr(skb, &offs, -1, &fragoffs, NULL); if (inout) { iph->saddr = cp->vaddr.in6; ciph->daddr = cp->vaddr.in6; } else { iph->daddr = cp->daddr.in6; ciph->saddr = cp->daddr.in6; } /* the TCP/UDP/SCTP port */ if (!fragoffs && (IPPROTO_TCP == protocol || IPPROTO_UDP == protocol || IPPROTO_SCTP == protocol)) { __be16 *ports = (void *)(skb_network_header(skb) + offs); IP_VS_DBG(11, "%s() changed port %d to %d\n", __func__, ntohs(inout ? ports[1] : ports[0]), ntohs(inout ? cp->vport : cp->dport)); if (inout) ports[1] = cp->vport; else ports[0] = cp->dport; } /* And finally the ICMP checksum */ icmph->icmp6_cksum = ~csum_ipv6_magic(&iph->saddr, &iph->daddr, skb->len - icmp_offset, IPPROTO_ICMPV6, 0); skb->csum_start = skb_network_header(skb) - skb->head + icmp_offset; skb->csum_offset = offsetof(struct icmp6hdr, icmp6_cksum); skb->ip_summed = CHECKSUM_PARTIAL; if (inout) IP_VS_DBG_PKT(11, AF_INET6, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered outgoing ICMPv6"); else IP_VS_DBG_PKT(11, AF_INET6, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered incoming ICMPv6"); } #endif /* Handle relevant response ICMP messages - forward to the right * destination host. */ static int handle_response_icmp(int af, struct sk_buff *skb, union nf_inet_addr *snet, __u8 protocol, struct ip_vs_conn *cp, struct ip_vs_protocol *pp, unsigned int offset, unsigned int ihl, unsigned int hooknum) { unsigned int verdict = NF_DROP; if (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ) goto after_nat; /* Ensure the checksum is correct */ if (!skb_csum_unnecessary(skb) && ip_vs_checksum_complete(skb, ihl)) { /* Failed checksum! */ IP_VS_DBG_BUF(1, "Forward ICMP: failed checksum from %s!\n", IP_VS_DBG_ADDR(af, snet)); goto out; } if (IPPROTO_TCP == protocol || IPPROTO_UDP == protocol || IPPROTO_SCTP == protocol) offset += 2 * sizeof(__u16); if (skb_ensure_writable(skb, offset)) goto out; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) ip_vs_nat_icmp_v6(skb, pp, cp, 1); else #endif ip_vs_nat_icmp(skb, pp, cp, 1); if (ip_vs_route_me_harder(cp->ipvs, af, skb, hooknum)) goto out; after_nat: /* do the statistics and put it back */ ip_vs_out_stats(cp, skb); skb->ipvs_property = 1; if (!(cp->flags & IP_VS_CONN_F_NFCT)) ip_vs_notrack(skb); else ip_vs_update_conntrack(skb, cp, 0); verdict = NF_ACCEPT; out: __ip_vs_conn_put(cp); return verdict; } /* * Handle ICMP messages in the inside-to-outside direction (outgoing). * Find any that might be relevant, check against existing connections. * Currently handles error types - unreachable, quench, ttl exceeded. */ static int ip_vs_out_icmp(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum) { struct iphdr *iph; struct icmphdr _icmph, *ic; struct iphdr _ciph, *cih; /* The ip header contained within the ICMP */ struct ip_vs_iphdr ciph; struct ip_vs_conn *cp; struct ip_vs_protocol *pp; unsigned int offset, ihl; union nf_inet_addr snet; *related = 1; /* reassemble IP fragments */ if (ip_is_fragment(ip_hdr(skb))) { if (ip_vs_gather_frags(ipvs, skb, ip_vs_defrag_user(hooknum))) return NF_STOLEN; } iph = ip_hdr(skb); offset = ihl = iph->ihl * 4; ic = skb_header_pointer(skb, offset, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; IP_VS_DBG(12, "Outgoing ICMP (%d,%d) %pI4->%pI4\n", ic->type, ntohs(icmp_id(ic)), &iph->saddr, &iph->daddr); /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if ((ic->type != ICMP_DEST_UNREACH) && (ic->type != ICMP_SOURCE_QUENCH) && (ic->type != ICMP_TIME_EXCEEDED)) { *related = 0; return NF_ACCEPT; } /* Now find the contained IP header */ offset += sizeof(_icmph); cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih == NULL) return NF_ACCEPT; /* The packet looks wrong, ignore */ pp = ip_vs_proto_get(cih->protocol); if (!pp) return NF_ACCEPT; /* Is the embedded protocol header present? */ if (unlikely(cih->frag_off & htons(IP_OFFSET) && pp->dont_defrag)) return NF_ACCEPT; IP_VS_DBG_PKT(11, AF_INET, pp, skb, offset, "Checking outgoing ICMP for"); ip_vs_fill_iph_skb_icmp(AF_INET, skb, offset, true, &ciph); /* The embedded headers contain source and dest in reverse order */ cp = INDIRECT_CALL_1(pp->conn_out_get, ip_vs_conn_out_get_proto, ipvs, AF_INET, skb, &ciph); if (!cp) return NF_ACCEPT; snet.ip = iph->saddr; return handle_response_icmp(AF_INET, skb, &snet, cih->protocol, cp, pp, ciph.len, ihl, hooknum); } #ifdef CONFIG_IP_VS_IPV6 static int ip_vs_out_icmp_v6(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum, struct ip_vs_iphdr *ipvsh) { struct icmp6hdr _icmph, *ic; struct ip_vs_iphdr ciph = {.flags = 0, .fragoffs = 0};/*Contained IP */ struct ip_vs_conn *cp; struct ip_vs_protocol *pp; union nf_inet_addr snet; unsigned int offset; *related = 1; ic = frag_safe_skb_hp(skb, ipvsh->len, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if (ic->icmp6_type & ICMPV6_INFOMSG_MASK) { *related = 0; return NF_ACCEPT; } /* Fragment header that is before ICMP header tells us that: * it's not an error message since they can't be fragmented. */ if (ipvsh->flags & IP6_FH_F_FRAG) return NF_DROP; IP_VS_DBG(8, "Outgoing ICMPv6 (%d,%d) %pI6c->%pI6c\n", ic->icmp6_type, ntohs(icmpv6_id(ic)), &ipvsh->saddr, &ipvsh->daddr); if (!ip_vs_fill_iph_skb_icmp(AF_INET6, skb, ipvsh->len + sizeof(_icmph), true, &ciph)) return NF_ACCEPT; /* The packet looks wrong, ignore */ pp = ip_vs_proto_get(ciph.protocol); if (!pp) return NF_ACCEPT; /* The embedded headers contain source and dest in reverse order */ cp = INDIRECT_CALL_1(pp->conn_out_get, ip_vs_conn_out_get_proto, ipvs, AF_INET6, skb, &ciph); if (!cp) return NF_ACCEPT; snet.in6 = ciph.saddr.in6; offset = ciph.len; return handle_response_icmp(AF_INET6, skb, &snet, ciph.protocol, cp, pp, offset, sizeof(struct ipv6hdr), hooknum); } #endif /* * Check if sctp chunc is ABORT chunk */ static inline int is_sctp_abort(const struct sk_buff *skb, int nh_len) { struct sctp_chunkhdr *sch, schunk; sch = skb_header_pointer(skb, nh_len + sizeof(struct sctphdr), sizeof(schunk), &schunk); if (sch == NULL) return 0; if (sch->type == SCTP_CID_ABORT) return 1; return 0; } static inline int is_tcp_reset(const struct sk_buff *skb, int nh_len) { struct tcphdr _tcph, *th; th = skb_header_pointer(skb, nh_len, sizeof(_tcph), &_tcph); if (th == NULL) return 0; return th->rst; } static inline bool is_new_conn(const struct sk_buff *skb, struct ip_vs_iphdr *iph) { switch (iph->protocol) { case IPPROTO_TCP: { struct tcphdr _tcph, *th; th = skb_header_pointer(skb, iph->len, sizeof(_tcph), &_tcph); if (th == NULL) return false; return th->syn; } case IPPROTO_SCTP: { struct sctp_chunkhdr *sch, schunk; sch = skb_header_pointer(skb, iph->len + sizeof(struct sctphdr), sizeof(schunk), &schunk); if (sch == NULL) return false; return sch->type == SCTP_CID_INIT; } default: return false; } } static inline bool is_new_conn_expected(const struct ip_vs_conn *cp, int conn_reuse_mode) { /* Controlled (FTP DATA or persistence)? */ if (cp->control) return false; switch (cp->protocol) { case IPPROTO_TCP: return (cp->state == IP_VS_TCP_S_TIME_WAIT) || (cp->state == IP_VS_TCP_S_CLOSE) || ((conn_reuse_mode & 2) && (cp->state == IP_VS_TCP_S_FIN_WAIT) && (cp->flags & IP_VS_CONN_F_NOOUTPUT)); case IPPROTO_SCTP: return cp->state == IP_VS_SCTP_S_CLOSED; default: return false; } } /* Generic function to create new connections for outgoing RS packets * * Pre-requisites for successful connection creation: * 1) Virtual Service is NOT fwmark based: * In fwmark-VS actual vaddr and vport are unknown to IPVS * 2) Real Server and Virtual Service were NOT configured without port: * This is to allow match of different VS to the same RS ip-addr */ struct ip_vs_conn *ip_vs_new_conn_out(struct ip_vs_service *svc, struct ip_vs_dest *dest, struct sk_buff *skb, const struct ip_vs_iphdr *iph, __be16 dport, __be16 cport) { struct ip_vs_conn_param param; struct ip_vs_conn *ct = NULL, *cp = NULL; const union nf_inet_addr *vaddr, *daddr, *caddr; union nf_inet_addr snet; __be16 vport; unsigned int flags; vaddr = &svc->addr; vport = svc->port; daddr = &iph->saddr; caddr = &iph->daddr; /* check pre-requisites are satisfied */ if (svc->fwmark) return NULL; if (!vport || !dport) return NULL; /* for persistent service first create connection template */ if (svc->flags & IP_VS_SVC_F_PERSISTENT) { /* apply netmask the same way ingress-side does */ #ifdef CONFIG_IP_VS_IPV6 if (svc->af == AF_INET6) ipv6_addr_prefix(&snet.in6, &caddr->in6, (__force __u32)svc->netmask); else #endif snet.ip = caddr->ip & svc->netmask; /* fill params and create template if not existent */ if (ip_vs_conn_fill_param_persist(svc, skb, iph->protocol, &snet, 0, vaddr, vport, &param) < 0) return NULL; ct = ip_vs_ct_in_get(&param); /* check if template exists and points to the same dest */ if (!ct || !ip_vs_check_template(ct, dest)) { ct = ip_vs_conn_new(&param, dest->af, daddr, dport, IP_VS_CONN_F_TEMPLATE, dest, 0); if (!ct) { kfree(param.pe_data); return NULL; } ct->timeout = svc->timeout; } else { kfree(param.pe_data); } } /* connection flags */ flags = ((svc->flags & IP_VS_SVC_F_ONEPACKET) && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; /* create connection */ ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, caddr, cport, vaddr, vport, &param); cp = ip_vs_conn_new(&param, dest->af, daddr, dport, flags, dest, 0); if (!cp) { if (ct) ip_vs_conn_put(ct); return NULL; } if (ct) { ip_vs_control_add(cp, ct); ip_vs_conn_put(ct); } ip_vs_conn_stats(cp, svc); /* return connection (will be used to handle outgoing packet) */ IP_VS_DBG_BUF(6, "New connection RS-initiated:%c c:%s:%u v:%s:%u " "d:%s:%u conn->flags:%X conn->refcnt:%d\n", ip_vs_fwd_tag(cp), IP_VS_DBG_ADDR(cp->af, &cp->caddr), ntohs(cp->cport), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport), IP_VS_DBG_ADDR(cp->af, &cp->daddr), ntohs(cp->dport), cp->flags, refcount_read(&cp->refcnt)); return cp; } /* Handle outgoing packets which are considered requests initiated by * real servers, so that subsequent responses from external client can be * routed to the right real server. * Used also for outgoing responses in OPS mode. * * Connection management is handled by persistent-engine specific callback. */ static struct ip_vs_conn *__ip_vs_rs_conn_out(unsigned int hooknum, struct netns_ipvs *ipvs, int af, struct sk_buff *skb, const struct ip_vs_iphdr *iph) { struct ip_vs_dest *dest; struct ip_vs_conn *cp = NULL; __be16 _ports[2], *pptr; if (hooknum == NF_INET_LOCAL_IN) return NULL; pptr = frag_safe_skb_hp(skb, iph->len, sizeof(_ports), _ports); if (!pptr) return NULL; dest = ip_vs_find_real_service(ipvs, af, iph->protocol, &iph->saddr, pptr[0]); if (dest) { struct ip_vs_service *svc; struct ip_vs_pe *pe; svc = rcu_dereference(dest->svc); if (svc) { pe = rcu_dereference(svc->pe); if (pe && pe->conn_out) cp = pe->conn_out(svc, dest, skb, iph, pptr[0], pptr[1]); } } return cp; } /* Handle response packets: rewrite addresses and send away... */ static unsigned int handle_response(int af, struct sk_buff *skb, struct ip_vs_proto_data *pd, struct ip_vs_conn *cp, struct ip_vs_iphdr *iph, unsigned int hooknum) { struct ip_vs_protocol *pp = pd->pp; if (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ) goto after_nat; IP_VS_DBG_PKT(11, af, pp, skb, iph->off, "Outgoing packet"); if (skb_ensure_writable(skb, iph->len)) goto drop; /* mangle the packet */ if (pp->snat_handler && !SNAT_CALL(pp->snat_handler, skb, pp, cp, iph)) goto drop; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) ipv6_hdr(skb)->saddr = cp->vaddr.in6; else #endif { ip_hdr(skb)->saddr = cp->vaddr.ip; ip_send_check(ip_hdr(skb)); } /* * nf_iterate does not expect change in the skb->dst->dev. * It looks like it is not fatal to enable this code for hooks * where our handlers are at the end of the chain list and * when all next handlers use skb->dst->dev and not outdev. * It will definitely route properly the inout NAT traffic * when multiple paths are used. */ /* For policy routing, packets originating from this * machine itself may be routed differently to packets * passing through. We want this packet to be routed as * if it came from this machine itself. So re-compute * the routing information. */ if (ip_vs_route_me_harder(cp->ipvs, af, skb, hooknum)) goto drop; IP_VS_DBG_PKT(10, af, pp, skb, iph->off, "After SNAT"); after_nat: ip_vs_out_stats(cp, skb); ip_vs_set_state(cp, IP_VS_DIR_OUTPUT, skb, pd); skb->ipvs_property = 1; if (!(cp->flags & IP_VS_CONN_F_NFCT)) ip_vs_notrack(skb); else ip_vs_update_conntrack(skb, cp, 0); ip_vs_conn_put(cp); return NF_ACCEPT; drop: ip_vs_conn_put(cp); kfree_skb(skb); return NF_STOLEN; } /* * Check if outgoing packet belongs to the established ip_vs_conn. */ static unsigned int ip_vs_out_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct netns_ipvs *ipvs = net_ipvs(state->net); unsigned int hooknum = state->hook; struct ip_vs_iphdr iph; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; struct ip_vs_conn *cp; int af = state->pf; struct sock *sk; /* Already marked as IPVS request or reply? */ if (skb->ipvs_property) return NF_ACCEPT; sk = skb_to_full_sk(skb); /* Bad... Do not break raw sockets */ if (unlikely(sk && hooknum == NF_INET_LOCAL_OUT && af == AF_INET)) { if (sk->sk_family == PF_INET && inet_test_bit(NODEFRAG, sk)) return NF_ACCEPT; } if (unlikely(!skb_dst(skb))) return NF_ACCEPT; if (!ipvs->enable) return NF_ACCEPT; ip_vs_fill_iph_skb(af, skb, false, &iph); #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { if (unlikely(iph.protocol == IPPROTO_ICMPV6)) { int related; int verdict = ip_vs_out_icmp_v6(ipvs, skb, &related, hooknum, &iph); if (related) return verdict; } } else #endif if (unlikely(iph.protocol == IPPROTO_ICMP)) { int related; int verdict = ip_vs_out_icmp(ipvs, skb, &related, hooknum); if (related) return verdict; } pd = ip_vs_proto_data_get(ipvs, iph.protocol); if (unlikely(!pd)) return NF_ACCEPT; pp = pd->pp; /* reassemble IP fragments */ #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET) #endif if (unlikely(ip_is_fragment(ip_hdr(skb)) && !pp->dont_defrag)) { if (ip_vs_gather_frags(ipvs, skb, ip_vs_defrag_user(hooknum))) return NF_STOLEN; ip_vs_fill_iph_skb(AF_INET, skb, false, &iph); } /* * Check if the packet belongs to an existing entry */ cp = INDIRECT_CALL_1(pp->conn_out_get, ip_vs_conn_out_get_proto, ipvs, af, skb, &iph); if (likely(cp)) return handle_response(af, skb, pd, cp, &iph, hooknum); /* Check for real-server-started requests */ if (atomic_read(&ipvs->conn_out_counter)) { /* Currently only for UDP: * connection oriented protocols typically use * ephemeral ports for outgoing connections, so * related incoming responses would not match any VS */ if (pp->protocol == IPPROTO_UDP) { cp = __ip_vs_rs_conn_out(hooknum, ipvs, af, skb, &iph); if (likely(cp)) return handle_response(af, skb, pd, cp, &iph, hooknum); } } if (sysctl_nat_icmp_send(ipvs) && (pp->protocol == IPPROTO_TCP || pp->protocol == IPPROTO_UDP || pp->protocol == IPPROTO_SCTP)) { __be16 _ports[2], *pptr; pptr = frag_safe_skb_hp(skb, iph.len, sizeof(_ports), _ports); if (pptr == NULL) return NF_ACCEPT; /* Not for me */ if (ip_vs_has_real_service(ipvs, af, iph.protocol, &iph.saddr, pptr[0])) { /* * Notify the real server: there is no * existing entry if it is not RST * packet or not TCP packet. */ if ((iph.protocol != IPPROTO_TCP && iph.protocol != IPPROTO_SCTP) || ((iph.protocol == IPPROTO_TCP && !is_tcp_reset(skb, iph.len)) || (iph.protocol == IPPROTO_SCTP && !is_sctp_abort(skb, iph.len)))) { #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { if (!skb->dev) skb->dev = ipvs->net->loopback_dev; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); } else #endif icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); return NF_DROP; } } } IP_VS_DBG_PKT(12, af, pp, skb, iph.off, "ip_vs_out: packet continues traversal as normal"); return NF_ACCEPT; } static unsigned int ip_vs_try_to_schedule(struct netns_ipvs *ipvs, int af, struct sk_buff *skb, struct ip_vs_proto_data *pd, int *verdict, struct ip_vs_conn **cpp, struct ip_vs_iphdr *iph) { struct ip_vs_protocol *pp = pd->pp; if (!iph->fragoffs) { /* No (second) fragments need to enter here, as nf_defrag_ipv6 * replayed fragment zero will already have created the cp */ /* Schedule and create new connection entry into cpp */ if (!pp->conn_schedule(ipvs, af, skb, pd, verdict, cpp, iph)) return 0; } if (unlikely(!*cpp)) { /* sorry, all this trouble for a no-hit :) */ IP_VS_DBG_PKT(12, af, pp, skb, iph->off, "ip_vs_in: packet continues traversal as normal"); /* Fragment couldn't be mapped to a conn entry */ if (iph->fragoffs) IP_VS_DBG_PKT(7, af, pp, skb, iph->off, "unhandled fragment"); *verdict = NF_ACCEPT; return 0; } return 1; } /* Check the UDP tunnel and return its header length */ static int ipvs_udp_decap(struct netns_ipvs *ipvs, struct sk_buff *skb, unsigned int offset, __u16 af, const union nf_inet_addr *daddr, __u8 *proto) { struct udphdr _udph, *udph; struct ip_vs_dest *dest; udph = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); if (!udph) goto unk; offset += sizeof(struct udphdr); dest = ip_vs_find_tunnel(ipvs, af, daddr, udph->dest); if (!dest) goto unk; if (dest->tun_type == IP_VS_CONN_F_TUNNEL_TYPE_GUE) { struct guehdr _gueh, *gueh; gueh = skb_header_pointer(skb, offset, sizeof(_gueh), &_gueh); if (!gueh) goto unk; if (gueh->control != 0 || gueh->version != 0) goto unk; /* Later we can support also IPPROTO_IPV6 */ if (gueh->proto_ctype != IPPROTO_IPIP) goto unk; *proto = gueh->proto_ctype; return sizeof(struct udphdr) + sizeof(struct guehdr) + (gueh->hlen << 2); } unk: return 0; } /* Check the GRE tunnel and return its header length */ static int ipvs_gre_decap(struct netns_ipvs *ipvs, struct sk_buff *skb, unsigned int offset, __u16 af, const union nf_inet_addr *daddr, __u8 *proto) { struct gre_base_hdr _greh, *greh; struct ip_vs_dest *dest; greh = skb_header_pointer(skb, offset, sizeof(_greh), &_greh); if (!greh) goto unk; dest = ip_vs_find_tunnel(ipvs, af, daddr, 0); if (!dest) goto unk; if (dest->tun_type == IP_VS_CONN_F_TUNNEL_TYPE_GRE) { IP_TUNNEL_DECLARE_FLAGS(flags); __be16 type; /* Only support version 0 and C (csum) */ if ((greh->flags & ~GRE_CSUM) != 0) goto unk; type = greh->protocol; /* Later we can support also IPPROTO_IPV6 */ if (type != htons(ETH_P_IP)) goto unk; *proto = IPPROTO_IPIP; gre_flags_to_tnl_flags(flags, greh->flags); return gre_calc_hlen(flags); } unk: return 0; } /* * Handle ICMP messages in the outside-to-inside direction (incoming). * Find any that might be relevant, check against existing connections, * forward to the right destination host if relevant. * Currently handles error types - unreachable, quench, ttl exceeded. */ static int ip_vs_in_icmp(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum) { struct iphdr *iph; struct icmphdr _icmph, *ic; struct iphdr _ciph, *cih; /* The ip header contained within the ICMP */ struct ip_vs_iphdr ciph; struct ip_vs_conn *cp; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; unsigned int offset, offset2, ihl, verdict; bool tunnel, new_cp = false; union nf_inet_addr *raddr; char *outer_proto = "IPIP"; *related = 1; /* reassemble IP fragments */ if (ip_is_fragment(ip_hdr(skb))) { if (ip_vs_gather_frags(ipvs, skb, ip_vs_defrag_user(hooknum))) return NF_STOLEN; } iph = ip_hdr(skb); offset = ihl = iph->ihl * 4; ic = skb_header_pointer(skb, offset, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; IP_VS_DBG(12, "Incoming ICMP (%d,%d) %pI4->%pI4\n", ic->type, ntohs(icmp_id(ic)), &iph->saddr, &iph->daddr); /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if ((ic->type != ICMP_DEST_UNREACH) && (ic->type != ICMP_SOURCE_QUENCH) && (ic->type != ICMP_TIME_EXCEEDED)) { *related = 0; return NF_ACCEPT; } /* Now find the contained IP header */ offset += sizeof(_icmph); cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih == NULL) return NF_ACCEPT; /* The packet looks wrong, ignore */ raddr = (union nf_inet_addr *)&cih->daddr; /* Special case for errors for IPIP/UDP/GRE tunnel packets */ tunnel = false; if (cih->protocol == IPPROTO_IPIP) { struct ip_vs_dest *dest; if (unlikely(cih->frag_off & htons(IP_OFFSET))) return NF_ACCEPT; /* Error for our IPIP must arrive at LOCAL_IN */ if (!(skb_rtable(skb)->rt_flags & RTCF_LOCAL)) return NF_ACCEPT; dest = ip_vs_find_tunnel(ipvs, AF_INET, raddr, 0); /* Only for known tunnel */ if (!dest || dest->tun_type != IP_VS_CONN_F_TUNNEL_TYPE_IPIP) return NF_ACCEPT; offset += cih->ihl * 4; cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih == NULL) return NF_ACCEPT; /* The packet looks wrong, ignore */ tunnel = true; } else if ((cih->protocol == IPPROTO_UDP || /* Can be UDP encap */ cih->protocol == IPPROTO_GRE) && /* Can be GRE encap */ /* Error for our tunnel must arrive at LOCAL_IN */ (skb_rtable(skb)->rt_flags & RTCF_LOCAL)) { __u8 iproto; int ulen; /* Non-first fragment has no UDP/GRE header */ if (unlikely(cih->frag_off & htons(IP_OFFSET))) return NF_ACCEPT; offset2 = offset + cih->ihl * 4; if (cih->protocol == IPPROTO_UDP) { ulen = ipvs_udp_decap(ipvs, skb, offset2, AF_INET, raddr, &iproto); outer_proto = "UDP"; } else { ulen = ipvs_gre_decap(ipvs, skb, offset2, AF_INET, raddr, &iproto); outer_proto = "GRE"; } if (ulen > 0) { /* Skip IP and UDP/GRE tunnel headers */ offset = offset2 + ulen; /* Now we should be at the original IP header */ cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih && cih->version == 4 && cih->ihl >= 5 && iproto == IPPROTO_IPIP) tunnel = true; else return NF_ACCEPT; } } pd = ip_vs_proto_data_get(ipvs, cih->protocol); if (!pd) return NF_ACCEPT; pp = pd->pp; /* Is the embedded protocol header present? */ if (unlikely(cih->frag_off & htons(IP_OFFSET) && pp->dont_defrag)) return NF_ACCEPT; IP_VS_DBG_PKT(11, AF_INET, pp, skb, offset, "Checking incoming ICMP for"); offset2 = offset; ip_vs_fill_iph_skb_icmp(AF_INET, skb, offset, !tunnel, &ciph); offset = ciph.len; /* The embedded headers contain source and dest in reverse order. * For IPIP/UDP/GRE tunnel this is error for request, not for reply. */ cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, ipvs, AF_INET, skb, &ciph); if (!cp) { int v; if (tunnel || !sysctl_schedule_icmp(ipvs)) return NF_ACCEPT; if (!ip_vs_try_to_schedule(ipvs, AF_INET, skb, pd, &v, &cp, &ciph)) return v; new_cp = true; } verdict = NF_DROP; /* Ensure the checksum is correct */ if (!skb_csum_unnecessary(skb) && ip_vs_checksum_complete(skb, ihl)) { /* Failed checksum! */ IP_VS_DBG(1, "Incoming ICMP: failed checksum from %pI4!\n", &iph->saddr); goto out; } if (tunnel) { __be32 info = ic->un.gateway; __u8 type = ic->type; __u8 code = ic->code; /* Update the MTU */ if (ic->type == ICMP_DEST_UNREACH && ic->code == ICMP_FRAG_NEEDED) { struct ip_vs_dest *dest = cp->dest; u32 mtu = ntohs(ic->un.frag.mtu); __be16 frag_off = cih->frag_off; /* Strip outer IP and ICMP, go to IPIP/UDP/GRE header */ if (pskb_pull(skb, ihl + sizeof(_icmph)) == NULL) goto ignore_tunnel; offset2 -= ihl + sizeof(_icmph); skb_reset_network_header(skb); IP_VS_DBG(12, "ICMP for %s %pI4->%pI4: mtu=%u\n", outer_proto, &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr, mtu); ipv4_update_pmtu(skb, ipvs->net, mtu, 0, 0); /* Client uses PMTUD? */ if (!(frag_off & htons(IP_DF))) goto ignore_tunnel; /* Prefer the resulting PMTU */ if (dest) { struct ip_vs_dest_dst *dest_dst; dest_dst = rcu_dereference(dest->dest_dst); if (dest_dst) mtu = dst_mtu(dest_dst->dst_cache); } if (mtu > 68 + sizeof(struct iphdr)) mtu -= sizeof(struct iphdr); info = htonl(mtu); } /* Strip outer IP, ICMP and IPIP/UDP/GRE, go to IP header of * original request. */ if (pskb_pull(skb, offset2) == NULL) goto ignore_tunnel; skb_reset_network_header(skb); IP_VS_DBG(12, "Sending ICMP for %pI4->%pI4: t=%u, c=%u, i=%u\n", &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr, type, code, ntohl(info)); icmp_send(skb, type, code, info); /* ICMP can be shorter but anyways, account it */ ip_vs_out_stats(cp, skb); ignore_tunnel: consume_skb(skb); verdict = NF_STOLEN; goto out; } /* do the statistics and put it back */ ip_vs_in_stats(cp, skb); if (IPPROTO_TCP == cih->protocol || IPPROTO_UDP == cih->protocol || IPPROTO_SCTP == cih->protocol) offset += 2 * sizeof(__u16); verdict = ip_vs_icmp_xmit(skb, cp, pp, offset, hooknum, &ciph); out: if (likely(!new_cp)) __ip_vs_conn_put(cp); else ip_vs_conn_put(cp); return verdict; } #ifdef CONFIG_IP_VS_IPV6 static int ip_vs_in_icmp_v6(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum, struct ip_vs_iphdr *iph) { struct icmp6hdr _icmph, *ic; struct ip_vs_iphdr ciph = {.flags = 0, .fragoffs = 0};/*Contained IP */ struct ip_vs_conn *cp; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; unsigned int offset, verdict; bool new_cp = false; *related = 1; ic = frag_safe_skb_hp(skb, iph->len, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if (ic->icmp6_type & ICMPV6_INFOMSG_MASK) { *related = 0; return NF_ACCEPT; } /* Fragment header that is before ICMP header tells us that: * it's not an error message since they can't be fragmented. */ if (iph->flags & IP6_FH_F_FRAG) return NF_DROP; IP_VS_DBG(8, "Incoming ICMPv6 (%d,%d) %pI6c->%pI6c\n", ic->icmp6_type, ntohs(icmpv6_id(ic)), &iph->saddr, &iph->daddr); offset = iph->len + sizeof(_icmph); if (!ip_vs_fill_iph_skb_icmp(AF_INET6, skb, offset, true, &ciph)) return NF_ACCEPT; pd = ip_vs_proto_data_get(ipvs, ciph.protocol); if (!pd) return NF_ACCEPT; pp = pd->pp; /* Cannot handle fragmented embedded protocol */ if (ciph.fragoffs) return NF_ACCEPT; IP_VS_DBG_PKT(11, AF_INET6, pp, skb, offset, "Checking incoming ICMPv6 for"); /* The embedded headers contain source and dest in reverse order * if not from localhost */ cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, ipvs, AF_INET6, skb, &ciph); if (!cp) { int v; if (!sysctl_schedule_icmp(ipvs)) return NF_ACCEPT; if (!ip_vs_try_to_schedule(ipvs, AF_INET6, skb, pd, &v, &cp, &ciph)) return v; new_cp = true; } /* VS/TUN, VS/DR and LOCALNODE just let it go */ if ((hooknum == NF_INET_LOCAL_OUT) && (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ)) { verdict = NF_ACCEPT; goto out; } /* do the statistics and put it back */ ip_vs_in_stats(cp, skb); /* Need to mangle contained IPv6 header in ICMPv6 packet */ offset = ciph.len; if (IPPROTO_TCP == ciph.protocol || IPPROTO_UDP == ciph.protocol || IPPROTO_SCTP == ciph.protocol) offset += 2 * sizeof(__u16); /* Also mangle ports */ verdict = ip_vs_icmp_xmit_v6(skb, cp, pp, offset, hooknum, &ciph); out: if (likely(!new_cp)) __ip_vs_conn_put(cp); else ip_vs_conn_put(cp); return verdict; } #endif /* * Check if it's for virtual services, look it up, * and send it on its way... */ static unsigned int ip_vs_in_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct netns_ipvs *ipvs = net_ipvs(state->net); unsigned int hooknum = state->hook; struct ip_vs_iphdr iph; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; struct ip_vs_conn *cp; int ret, pkts; struct sock *sk; int af = state->pf; /* Already marked as IPVS request or reply? */ if (skb->ipvs_property) return NF_ACCEPT; /* * Big tappo: * - remote client: only PACKET_HOST * - route: used for struct net when skb->dev is unset */ if (unlikely((skb->pkt_type != PACKET_HOST && hooknum != NF_INET_LOCAL_OUT) || !skb_dst(skb))) { ip_vs_fill_iph_skb(af, skb, false, &iph); IP_VS_DBG_BUF(12, "packet type=%d proto=%d daddr=%s" " ignored in hook %u\n", skb->pkt_type, iph.protocol, IP_VS_DBG_ADDR(af, &iph.daddr), hooknum); return NF_ACCEPT; } /* ipvs enabled in this netns ? */ if (unlikely(sysctl_backup_only(ipvs) || !ipvs->enable)) return NF_ACCEPT; ip_vs_fill_iph_skb(af, skb, false, &iph); /* Bad... Do not break raw sockets */ sk = skb_to_full_sk(skb); if (unlikely(sk && hooknum == NF_INET_LOCAL_OUT && af == AF_INET)) { if (sk->sk_family == PF_INET && inet_test_bit(NODEFRAG, sk)) return NF_ACCEPT; } #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { if (unlikely(iph.protocol == IPPROTO_ICMPV6)) { int related; int verdict = ip_vs_in_icmp_v6(ipvs, skb, &related, hooknum, &iph); if (related) return verdict; } } else #endif if (unlikely(iph.protocol == IPPROTO_ICMP)) { int related; int verdict = ip_vs_in_icmp(ipvs, skb, &related, hooknum); if (related) return verdict; } /* Protocol supported? */ pd = ip_vs_proto_data_get(ipvs, iph.protocol); if (unlikely(!pd)) { /* The only way we'll see this packet again is if it's * encapsulated, so mark it with ipvs_property=1 so we * skip it if we're ignoring tunneled packets */ if (sysctl_ignore_tunneled(ipvs)) skb->ipvs_property = 1; return NF_ACCEPT; } pp = pd->pp; /* * Check if the packet belongs to an existing connection entry */ cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, ipvs, af, skb, &iph); if (!iph.fragoffs && is_new_conn(skb, &iph) && cp) { int conn_reuse_mode = sysctl_conn_reuse_mode(ipvs); bool old_ct = false, resched = false; if (unlikely(sysctl_expire_nodest_conn(ipvs)) && cp->dest && unlikely(!atomic_read(&cp->dest->weight))) { resched = true; old_ct = ip_vs_conn_uses_old_conntrack(cp, skb); } else if (conn_reuse_mode && is_new_conn_expected(cp, conn_reuse_mode)) { old_ct = ip_vs_conn_uses_old_conntrack(cp, skb); if (!atomic_read(&cp->n_control)) { resched = true; } else { /* Do not reschedule controlling connection * that uses conntrack while it is still * referenced by controlled connection(s). */ resched = !old_ct; } } if (resched) { if (!old_ct) cp->flags &= ~IP_VS_CONN_F_NFCT; if (!atomic_read(&cp->n_control)) ip_vs_conn_expire_now(cp); __ip_vs_conn_put(cp); if (old_ct) return NF_DROP; cp = NULL; } } /* Check the server status */ if (cp && cp->dest && !(cp->dest->flags & IP_VS_DEST_F_AVAILABLE)) { /* the destination server is not available */ if (sysctl_expire_nodest_conn(ipvs)) { bool old_ct = ip_vs_conn_uses_old_conntrack(cp, skb); if (!old_ct) cp->flags &= ~IP_VS_CONN_F_NFCT; ip_vs_conn_expire_now(cp); __ip_vs_conn_put(cp); if (old_ct) return NF_DROP; cp = NULL; } else { __ip_vs_conn_put(cp); return NF_DROP; } } if (unlikely(!cp)) { int v; if (!ip_vs_try_to_schedule(ipvs, af, skb, pd, &v, &cp, &iph)) return v; } IP_VS_DBG_PKT(11, af, pp, skb, iph.off, "Incoming packet"); ip_vs_in_stats(cp, skb); ip_vs_set_state(cp, IP_VS_DIR_INPUT, skb, pd); if (cp->packet_xmit) ret = cp->packet_xmit(skb, cp, pp, &iph); /* do not touch skb anymore */ else { IP_VS_DBG_RL("warning: packet_xmit is null"); ret = NF_ACCEPT; } /* Increase its packet counter and check if it is needed * to be synchronized * * Sync connection if it is about to close to * encorage the standby servers to update the connections timeout * * For ONE_PKT let ip_vs_sync_conn() do the filter work. */ if (cp->flags & IP_VS_CONN_F_ONE_PACKET) pkts = sysctl_sync_threshold(ipvs); else pkts = atomic_inc_return(&cp->in_pkts); if (ipvs->sync_state & IP_VS_STATE_MASTER) ip_vs_sync_conn(ipvs, cp, pkts); else if ((cp->flags & IP_VS_CONN_F_ONE_PACKET) && cp->control) /* increment is done inside ip_vs_sync_conn too */ atomic_inc(&cp->control->in_pkts); ip_vs_conn_put(cp); return ret; } /* * It is hooked at the NF_INET_FORWARD chain, in order to catch ICMP * related packets destined for 0.0.0.0/0. * When fwmark-based virtual service is used, such as transparent * cache cluster, TCP packets can be marked and routed to ip_vs_in, * but ICMP destined for 0.0.0.0/0 cannot not be easily marked and * sent to ip_vs_in_icmp. So, catch them at the NF_INET_FORWARD chain * and send them to ip_vs_in_icmp. */ static unsigned int ip_vs_forward_icmp(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct netns_ipvs *ipvs = net_ipvs(state->net); int r; /* ipvs enabled in this netns ? */ if (unlikely(sysctl_backup_only(ipvs) || !ipvs->enable)) return NF_ACCEPT; if (state->pf == NFPROTO_IPV4) { if (ip_hdr(skb)->protocol != IPPROTO_ICMP) return NF_ACCEPT; #ifdef CONFIG_IP_VS_IPV6 } else { struct ip_vs_iphdr iphdr; ip_vs_fill_iph_skb(AF_INET6, skb, false, &iphdr); if (iphdr.protocol != IPPROTO_ICMPV6) return NF_ACCEPT; return ip_vs_in_icmp_v6(ipvs, skb, &r, state->hook, &iphdr); #endif } return ip_vs_in_icmp(ipvs, skb, &r, state->hook); } static const struct nf_hook_ops ip_vs_ops4[] = { /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP_PRI_NAT_SRC - 2, }, /* After packet filtering, forward packet through VS/DR, VS/TUN, * or VS/NAT(change destination), so that filtering rules can be * applied to IPVS. */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP_PRI_NAT_SRC - 1, }, /* Before ip_vs_in, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_NAT_DST + 1, }, /* After mangle, schedule and forward local requests */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_NAT_DST + 2, }, /* After packet filtering (but before ip_vs_out_icmp), catch icmp * destined for 0.0.0.0/0, which is for incoming IPVS connections */ { .hook = ip_vs_forward_icmp, .pf = NFPROTO_IPV4, .hooknum = NF_INET_FORWARD, .priority = 99, }, /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_FORWARD, .priority = 100, }, }; #ifdef CONFIG_IP_VS_IPV6 static const struct nf_hook_ops ip_vs_ops6[] = { /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP6_PRI_NAT_SRC - 2, }, /* After packet filtering, forward packet through VS/DR, VS/TUN, * or VS/NAT(change destination), so that filtering rules can be * applied to IPVS. */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP6_PRI_NAT_SRC - 1, }, /* Before ip_vs_in, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_NAT_DST + 1, }, /* After mangle, schedule and forward local requests */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_NAT_DST + 2, }, /* After packet filtering (but before ip_vs_out_icmp), catch icmp * destined for 0.0.0.0/0, which is for incoming IPVS connections */ { .hook = ip_vs_forward_icmp, .pf = NFPROTO_IPV6, .hooknum = NF_INET_FORWARD, .priority = 99, }, /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_FORWARD, .priority = 100, }, }; #endif int ip_vs_register_hooks(struct netns_ipvs *ipvs, unsigned int af) { const struct nf_hook_ops *ops; unsigned int count; unsigned int afmask; int ret = 0; if (af == AF_INET6) { #ifdef CONFIG_IP_VS_IPV6 ops = ip_vs_ops6; count = ARRAY_SIZE(ip_vs_ops6); afmask = 2; #else return -EINVAL; #endif } else { ops = ip_vs_ops4; count = ARRAY_SIZE(ip_vs_ops4); afmask = 1; } if (!(ipvs->hooks_afmask & afmask)) { ret = nf_register_net_hooks(ipvs->net, ops, count); if (ret >= 0) ipvs->hooks_afmask |= afmask; } return ret; } void ip_vs_unregister_hooks(struct netns_ipvs *ipvs, unsigned int af) { const struct nf_hook_ops *ops; unsigned int count; unsigned int afmask; if (af == AF_INET6) { #ifdef CONFIG_IP_VS_IPV6 ops = ip_vs_ops6; count = ARRAY_SIZE(ip_vs_ops6); afmask = 2; #else return; #endif } else { ops = ip_vs_ops4; count = ARRAY_SIZE(ip_vs_ops4); afmask = 1; } if (ipvs->hooks_afmask & afmask) { nf_unregister_net_hooks(ipvs->net, ops, count); ipvs->hooks_afmask &= ~afmask; } } /* * Initialize IP Virtual Server netns mem. */ static int __net_init __ip_vs_init(struct net *net) { struct netns_ipvs *ipvs; ipvs = net_generic(net, ip_vs_net_id); if (ipvs == NULL) return -ENOMEM; /* Hold the beast until a service is registered */ ipvs->enable = 0; ipvs->net = net; /* Counters used for creating unique names */ ipvs->gen = atomic_read(&ipvs_netns_cnt); atomic_inc(&ipvs_netns_cnt); net->ipvs = ipvs; if (ip_vs_estimator_net_init(ipvs) < 0) goto estimator_fail; if (ip_vs_control_net_init(ipvs) < 0) goto control_fail; if (ip_vs_protocol_net_init(ipvs) < 0) goto protocol_fail; if (ip_vs_app_net_init(ipvs) < 0) goto app_fail; if (ip_vs_conn_net_init(ipvs) < 0) goto conn_fail; if (ip_vs_sync_net_init(ipvs) < 0) goto sync_fail; return 0; /* * Error handling */ sync_fail: ip_vs_conn_net_cleanup(ipvs); conn_fail: ip_vs_app_net_cleanup(ipvs); app_fail: ip_vs_protocol_net_cleanup(ipvs); protocol_fail: ip_vs_control_net_cleanup(ipvs); control_fail: ip_vs_estimator_net_cleanup(ipvs); estimator_fail: net->ipvs = NULL; return -ENOMEM; } static void __net_exit __ip_vs_cleanup_batch(struct list_head *net_list) { struct netns_ipvs *ipvs; struct net *net; ip_vs_service_nets_cleanup(net_list); /* ip_vs_flush() with locks */ list_for_each_entry(net, net_list, exit_list) { ipvs = net_ipvs(net); ip_vs_conn_net_cleanup(ipvs); ip_vs_app_net_cleanup(ipvs); ip_vs_protocol_net_cleanup(ipvs); ip_vs_control_net_cleanup(ipvs); ip_vs_estimator_net_cleanup(ipvs); IP_VS_DBG(2, "ipvs netns %d released\n", ipvs->gen); net->ipvs = NULL; } } static void __net_exit __ip_vs_dev_cleanup_batch(struct list_head *net_list) { struct netns_ipvs *ipvs; struct net *net; list_for_each_entry(net, net_list, exit_list) { ipvs = net_ipvs(net); ip_vs_unregister_hooks(ipvs, AF_INET); ip_vs_unregister_hooks(ipvs, AF_INET6); ipvs->enable = 0; /* Disable packet reception */ smp_wmb(); ip_vs_sync_net_cleanup(ipvs); } } static struct pernet_operations ipvs_core_ops = { .init = __ip_vs_init, .exit_batch = __ip_vs_cleanup_batch, .id = &ip_vs_net_id, .size = sizeof(struct netns_ipvs), }; static struct pernet_operations ipvs_core_dev_ops = { .exit_batch = __ip_vs_dev_cleanup_batch, }; /* * Initialize IP Virtual Server */ static int __init ip_vs_init(void) { int ret; ret = ip_vs_control_init(); if (ret < 0) { pr_err("can't setup control.\n"); goto exit; } ip_vs_protocol_init(); ret = ip_vs_conn_init(); if (ret < 0) { pr_err("can't setup connection table.\n"); goto cleanup_protocol; } ret = register_pernet_subsys(&ipvs_core_ops); /* Alloc ip_vs struct */ if (ret < 0) goto cleanup_conn; ret = register_pernet_device(&ipvs_core_dev_ops); if (ret < 0) goto cleanup_sub; ret = ip_vs_register_nl_ioctl(); if (ret < 0) { pr_err("can't register netlink/ioctl.\n"); goto cleanup_dev; } pr_info("ipvs loaded.\n"); return ret; cleanup_dev: unregister_pernet_device(&ipvs_core_dev_ops); cleanup_sub: unregister_pernet_subsys(&ipvs_core_ops); cleanup_conn: ip_vs_conn_cleanup(); cleanup_protocol: ip_vs_protocol_cleanup(); ip_vs_control_cleanup(); exit: return ret; } static void __exit ip_vs_cleanup(void) { ip_vs_unregister_nl_ioctl(); unregister_pernet_device(&ipvs_core_dev_ops); unregister_pernet_subsys(&ipvs_core_ops); /* free ip_vs struct */ ip_vs_conn_cleanup(); ip_vs_protocol_cleanup(); ip_vs_control_cleanup(); /* common rcu_barrier() used by: * - ip_vs_control_cleanup() */ rcu_barrier(); pr_info("ipvs unloaded.\n"); } module_init(ip_vs_init); module_exit(ip_vs_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IP Virtual Server");
805 859 153 661 902 906 240 905 906 858 859 314 314 315 313 315 315 314 315 313 238 83 310 313 905 859 315 829 314 828 1 315 315 315 904 906 825 315 312 15 383 383 289 292 289 291 290 806 806 173 901 829 829 23 804 23 759 352 54 383 149 383 383 40 15 35 314 315 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 // SPDX-License-Identifier: GPL-2.0-or-later /* * Scatterlist Cryptographic API. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 David S. Miller (davem@redhat.com) * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> * * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> * and Nettle, by Niels Möller. */ #include <linux/err.h> #include <linux/errno.h> #include <linux/jump_label.h> #include <linux/kernel.h> #include <linux/kmod.h> #include <linux/module.h> #include <linux/param.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/completion.h> #include "internal.h" LIST_HEAD(crypto_alg_list); EXPORT_SYMBOL_GPL(crypto_alg_list); DECLARE_RWSEM(crypto_alg_sem); EXPORT_SYMBOL_GPL(crypto_alg_sem); BLOCKING_NOTIFIER_HEAD(crypto_chain); EXPORT_SYMBOL_GPL(crypto_chain); #if IS_BUILTIN(CONFIG_CRYPTO_ALGAPI) && \ !IS_ENABLED(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS) DEFINE_STATIC_KEY_FALSE(__crypto_boot_test_finished); #endif static struct crypto_alg *crypto_larval_wait(struct crypto_alg *alg, u32 type, u32 mask); static struct crypto_alg *crypto_alg_lookup(const char *name, u32 type, u32 mask); struct crypto_alg *crypto_mod_get(struct crypto_alg *alg) { return try_module_get(alg->cra_module) ? crypto_alg_get(alg) : NULL; } EXPORT_SYMBOL_GPL(crypto_mod_get); void crypto_mod_put(struct crypto_alg *alg) { struct module *module = alg->cra_module; crypto_alg_put(alg); module_put(module); } EXPORT_SYMBOL_GPL(crypto_mod_put); static struct crypto_alg *__crypto_alg_lookup(const char *name, u32 type, u32 mask) { struct crypto_alg *q, *alg = NULL; int best = -2; list_for_each_entry(q, &crypto_alg_list, cra_list) { int exact, fuzzy; if (crypto_is_moribund(q)) continue; if ((q->cra_flags ^ type) & mask) continue; exact = !strcmp(q->cra_driver_name, name); fuzzy = !strcmp(q->cra_name, name); if (!exact && !(fuzzy && q->cra_priority > best)) continue; if (unlikely(!crypto_mod_get(q))) continue; best = q->cra_priority; if (alg) crypto_mod_put(alg); alg = q; if (exact) break; } return alg; } static void crypto_larval_destroy(struct crypto_alg *alg) { struct crypto_larval *larval = (void *)alg; BUG_ON(!crypto_is_larval(alg)); if (!IS_ERR_OR_NULL(larval->adult)) crypto_mod_put(larval->adult); kfree(larval); } struct crypto_larval *crypto_larval_alloc(const char *name, u32 type, u32 mask) { struct crypto_larval *larval; larval = kzalloc(sizeof(*larval), GFP_KERNEL); if (!larval) return ERR_PTR(-ENOMEM); type &= ~CRYPTO_ALG_TYPE_MASK | (mask ?: CRYPTO_ALG_TYPE_MASK); larval->mask = mask; larval->alg.cra_flags = CRYPTO_ALG_LARVAL | type; larval->alg.cra_priority = -1; larval->alg.cra_destroy = crypto_larval_destroy; strscpy(larval->alg.cra_name, name, CRYPTO_MAX_ALG_NAME); init_completion(&larval->completion); return larval; } EXPORT_SYMBOL_GPL(crypto_larval_alloc); static struct crypto_alg *crypto_larval_add(const char *name, u32 type, u32 mask) { struct crypto_alg *alg; struct crypto_larval *larval; larval = crypto_larval_alloc(name, type, mask); if (IS_ERR(larval)) return ERR_CAST(larval); refcount_set(&larval->alg.cra_refcnt, 2); down_write(&crypto_alg_sem); alg = __crypto_alg_lookup(name, type, mask); if (!alg) { alg = &larval->alg; list_add(&alg->cra_list, &crypto_alg_list); } up_write(&crypto_alg_sem); if (alg != &larval->alg) { kfree(larval); if (crypto_is_larval(alg)) alg = crypto_larval_wait(alg, type, mask); } return alg; } static void crypto_larval_kill(struct crypto_larval *larval) { bool unlinked; down_write(&crypto_alg_sem); unlinked = list_empty(&larval->alg.cra_list); if (!unlinked) list_del_init(&larval->alg.cra_list); up_write(&crypto_alg_sem); if (unlinked) return; complete_all(&larval->completion); crypto_alg_put(&larval->alg); } void crypto_schedule_test(struct crypto_larval *larval) { int err; err = crypto_probing_notify(CRYPTO_MSG_ALG_REGISTER, larval->adult); WARN_ON_ONCE(err != NOTIFY_STOP); } EXPORT_SYMBOL_GPL(crypto_schedule_test); static void crypto_start_test(struct crypto_larval *larval) { if (!crypto_is_test_larval(larval)) return; if (larval->test_started) return; down_write(&crypto_alg_sem); if (larval->test_started) { up_write(&crypto_alg_sem); return; } larval->test_started = true; up_write(&crypto_alg_sem); crypto_schedule_test(larval); } static struct crypto_alg *crypto_larval_wait(struct crypto_alg *alg, u32 type, u32 mask) { struct crypto_larval *larval; long time_left; again: larval = container_of(alg, struct crypto_larval, alg); if (!crypto_boot_test_finished()) crypto_start_test(larval); time_left = wait_for_completion_killable_timeout( &larval->completion, 60 * HZ); alg = larval->adult; if (time_left < 0) alg = ERR_PTR(-EINTR); else if (!time_left) { if (crypto_is_test_larval(larval)) crypto_larval_kill(larval); alg = ERR_PTR(-ETIMEDOUT); } else if (!alg) { alg = &larval->alg; alg = crypto_alg_lookup(alg->cra_name, type, mask) ?: ERR_PTR(-EAGAIN); } else if (IS_ERR(alg)) ; else if (crypto_is_test_larval(larval) && !(alg->cra_flags & CRYPTO_ALG_TESTED)) alg = ERR_PTR(-EAGAIN); else if (alg->cra_flags & CRYPTO_ALG_FIPS_INTERNAL) alg = ERR_PTR(-EAGAIN); else if (!crypto_mod_get(alg)) alg = ERR_PTR(-EAGAIN); crypto_mod_put(&larval->alg); if (!IS_ERR(alg) && crypto_is_larval(alg)) goto again; return alg; } static struct crypto_alg *crypto_alg_lookup(const char *name, u32 type, u32 mask) { const u32 fips = CRYPTO_ALG_FIPS_INTERNAL; struct crypto_alg *alg; u32 test = 0; if (!((type | mask) & CRYPTO_ALG_TESTED)) test |= CRYPTO_ALG_TESTED; down_read(&crypto_alg_sem); alg = __crypto_alg_lookup(name, (type | test) & ~fips, (mask | test) & ~fips); if (alg) { if (((type | mask) ^ fips) & fips) mask |= fips; mask &= fips; if (!crypto_is_larval(alg) && ((type ^ alg->cra_flags) & mask)) { /* Algorithm is disallowed in FIPS mode. */ crypto_mod_put(alg); alg = ERR_PTR(-ENOENT); } } else if (test) { alg = __crypto_alg_lookup(name, type, mask); if (alg && !crypto_is_larval(alg)) { /* Test failed */ crypto_mod_put(alg); alg = ERR_PTR(-ELIBBAD); } } up_read(&crypto_alg_sem); return alg; } static struct crypto_alg *crypto_larval_lookup(const char *name, u32 type, u32 mask) { struct crypto_alg *alg; if (!name) return ERR_PTR(-ENOENT); type &= ~(CRYPTO_ALG_LARVAL | CRYPTO_ALG_DEAD); mask &= ~(CRYPTO_ALG_LARVAL | CRYPTO_ALG_DEAD); alg = crypto_alg_lookup(name, type, mask); if (!alg && !(mask & CRYPTO_NOLOAD)) { request_module("crypto-%s", name); if (!((type ^ CRYPTO_ALG_NEED_FALLBACK) & mask & CRYPTO_ALG_NEED_FALLBACK)) request_module("crypto-%s-all", name); alg = crypto_alg_lookup(name, type, mask); } if (!IS_ERR_OR_NULL(alg) && crypto_is_larval(alg)) alg = crypto_larval_wait(alg, type, mask); else if (alg) ; else if (!(mask & CRYPTO_ALG_TESTED)) alg = crypto_larval_add(name, type, mask); else alg = ERR_PTR(-ENOENT); return alg; } int crypto_probing_notify(unsigned long val, void *v) { int ok; ok = blocking_notifier_call_chain(&crypto_chain, val, v); if (ok == NOTIFY_DONE) { request_module("cryptomgr"); ok = blocking_notifier_call_chain(&crypto_chain, val, v); } return ok; } EXPORT_SYMBOL_GPL(crypto_probing_notify); struct crypto_alg *crypto_alg_mod_lookup(const char *name, u32 type, u32 mask) { struct crypto_alg *alg; struct crypto_alg *larval; int ok; /* * If the internal flag is set for a cipher, require a caller to * invoke the cipher with the internal flag to use that cipher. * Also, if a caller wants to allocate a cipher that may or may * not be an internal cipher, use type | CRYPTO_ALG_INTERNAL and * !(mask & CRYPTO_ALG_INTERNAL). */ if (!((type | mask) & CRYPTO_ALG_INTERNAL)) mask |= CRYPTO_ALG_INTERNAL; larval = crypto_larval_lookup(name, type, mask); if (IS_ERR(larval) || !crypto_is_larval(larval)) return larval; ok = crypto_probing_notify(CRYPTO_MSG_ALG_REQUEST, larval); if (ok == NOTIFY_STOP) alg = crypto_larval_wait(larval, type, mask); else { crypto_mod_put(larval); alg = ERR_PTR(-ENOENT); } crypto_larval_kill(container_of(larval, struct crypto_larval, alg)); return alg; } EXPORT_SYMBOL_GPL(crypto_alg_mod_lookup); static void crypto_exit_ops(struct crypto_tfm *tfm) { const struct crypto_type *type = tfm->__crt_alg->cra_type; if (type && tfm->exit) tfm->exit(tfm); } static unsigned int crypto_ctxsize(struct crypto_alg *alg, u32 type, u32 mask) { const struct crypto_type *type_obj = alg->cra_type; unsigned int len; len = alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1); if (type_obj) return len + type_obj->ctxsize(alg, type, mask); switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) { default: BUG(); case CRYPTO_ALG_TYPE_CIPHER: len += crypto_cipher_ctxsize(alg); break; } return len; } void crypto_shoot_alg(struct crypto_alg *alg) { down_write(&crypto_alg_sem); alg->cra_flags |= CRYPTO_ALG_DYING; up_write(&crypto_alg_sem); } EXPORT_SYMBOL_GPL(crypto_shoot_alg); struct crypto_tfm *__crypto_alloc_tfmgfp(struct crypto_alg *alg, u32 type, u32 mask, gfp_t gfp) { struct crypto_tfm *tfm; unsigned int tfm_size; int err = -ENOMEM; tfm_size = sizeof(*tfm) + crypto_ctxsize(alg, type, mask); tfm = kzalloc(tfm_size, gfp); if (tfm == NULL) goto out_err; tfm->__crt_alg = alg; refcount_set(&tfm->refcnt, 1); if (!tfm->exit && alg->cra_init && (err = alg->cra_init(tfm))) goto cra_init_failed; goto out; cra_init_failed: crypto_exit_ops(tfm); if (err == -EAGAIN) crypto_shoot_alg(alg); kfree(tfm); out_err: tfm = ERR_PTR(err); out: return tfm; } EXPORT_SYMBOL_GPL(__crypto_alloc_tfmgfp); struct crypto_tfm *__crypto_alloc_tfm(struct crypto_alg *alg, u32 type, u32 mask) { return __crypto_alloc_tfmgfp(alg, type, mask, GFP_KERNEL); } EXPORT_SYMBOL_GPL(__crypto_alloc_tfm); /* * crypto_alloc_base - Locate algorithm and allocate transform * @alg_name: Name of algorithm * @type: Type of algorithm * @mask: Mask for type comparison * * This function should not be used by new algorithm types. * Please use crypto_alloc_tfm instead. * * crypto_alloc_base() will first attempt to locate an already loaded * algorithm. If that fails and the kernel supports dynamically loadable * modules, it will then attempt to load a module of the same name or * alias. If that fails it will send a query to any loaded crypto manager * to construct an algorithm on the fly. A refcount is grabbed on the * algorithm which is then associated with the new transform. * * The returned transform is of a non-determinate type. Most people * should use one of the more specific allocation functions such as * crypto_alloc_skcipher(). * * In case of error the return value is an error pointer. */ struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask) { struct crypto_tfm *tfm; int err; for (;;) { struct crypto_alg *alg; alg = crypto_alg_mod_lookup(alg_name, type, mask); if (IS_ERR(alg)) { err = PTR_ERR(alg); goto err; } tfm = __crypto_alloc_tfm(alg, type, mask); if (!IS_ERR(tfm)) return tfm; crypto_mod_put(alg); err = PTR_ERR(tfm); err: if (err != -EAGAIN) break; if (fatal_signal_pending(current)) { err = -EINTR; break; } } return ERR_PTR(err); } EXPORT_SYMBOL_GPL(crypto_alloc_base); static void *crypto_alloc_tfmmem(struct crypto_alg *alg, const struct crypto_type *frontend, int node, gfp_t gfp) { struct crypto_tfm *tfm; unsigned int tfmsize; unsigned int total; char *mem; tfmsize = frontend->tfmsize; total = tfmsize + sizeof(*tfm) + frontend->extsize(alg); mem = kzalloc_node(total, gfp, node); if (mem == NULL) return ERR_PTR(-ENOMEM); tfm = (struct crypto_tfm *)(mem + tfmsize); tfm->__crt_alg = alg; tfm->node = node; refcount_set(&tfm->refcnt, 1); return mem; } void *crypto_create_tfm_node(struct crypto_alg *alg, const struct crypto_type *frontend, int node) { struct crypto_tfm *tfm; char *mem; int err; mem = crypto_alloc_tfmmem(alg, frontend, node, GFP_KERNEL); if (IS_ERR(mem)) goto out; tfm = (struct crypto_tfm *)(mem + frontend->tfmsize); err = frontend->init_tfm(tfm); if (err) goto out_free_tfm; if (!tfm->exit && alg->cra_init && (err = alg->cra_init(tfm))) goto cra_init_failed; goto out; cra_init_failed: crypto_exit_ops(tfm); out_free_tfm: if (err == -EAGAIN) crypto_shoot_alg(alg); kfree(mem); mem = ERR_PTR(err); out: return mem; } EXPORT_SYMBOL_GPL(crypto_create_tfm_node); void *crypto_clone_tfm(const struct crypto_type *frontend, struct crypto_tfm *otfm) { struct crypto_alg *alg = otfm->__crt_alg; struct crypto_tfm *tfm; char *mem; mem = ERR_PTR(-ESTALE); if (unlikely(!crypto_mod_get(alg))) goto out; mem = crypto_alloc_tfmmem(alg, frontend, otfm->node, GFP_ATOMIC); if (IS_ERR(mem)) { crypto_mod_put(alg); goto out; } tfm = (struct crypto_tfm *)(mem + frontend->tfmsize); tfm->crt_flags = otfm->crt_flags; tfm->exit = otfm->exit; out: return mem; } EXPORT_SYMBOL_GPL(crypto_clone_tfm); struct crypto_alg *crypto_find_alg(const char *alg_name, const struct crypto_type *frontend, u32 type, u32 mask) { if (frontend) { type &= frontend->maskclear; mask &= frontend->maskclear; type |= frontend->type; mask |= frontend->maskset; } return crypto_alg_mod_lookup(alg_name, type, mask); } EXPORT_SYMBOL_GPL(crypto_find_alg); /* * crypto_alloc_tfm_node - Locate algorithm and allocate transform * @alg_name: Name of algorithm * @frontend: Frontend algorithm type * @type: Type of algorithm * @mask: Mask for type comparison * @node: NUMA node in which users desire to put requests, if node is * NUMA_NO_NODE, it means users have no special requirement. * * crypto_alloc_tfm() will first attempt to locate an already loaded * algorithm. If that fails and the kernel supports dynamically loadable * modules, it will then attempt to load a module of the same name or * alias. If that fails it will send a query to any loaded crypto manager * to construct an algorithm on the fly. A refcount is grabbed on the * algorithm which is then associated with the new transform. * * The returned transform is of a non-determinate type. Most people * should use one of the more specific allocation functions such as * crypto_alloc_skcipher(). * * In case of error the return value is an error pointer. */ void *crypto_alloc_tfm_node(const char *alg_name, const struct crypto_type *frontend, u32 type, u32 mask, int node) { void *tfm; int err; for (;;) { struct crypto_alg *alg; alg = crypto_find_alg(alg_name, frontend, type, mask); if (IS_ERR(alg)) { err = PTR_ERR(alg); goto err; } tfm = crypto_create_tfm_node(alg, frontend, node); if (!IS_ERR(tfm)) return tfm; crypto_mod_put(alg); err = PTR_ERR(tfm); err: if (err != -EAGAIN) break; if (fatal_signal_pending(current)) { err = -EINTR; break; } } return ERR_PTR(err); } EXPORT_SYMBOL_GPL(crypto_alloc_tfm_node); /* * crypto_destroy_tfm - Free crypto transform * @mem: Start of tfm slab * @tfm: Transform to free * * This function frees up the transform and any associated resources, * then drops the refcount on the associated algorithm. */ void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm) { struct crypto_alg *alg; if (IS_ERR_OR_NULL(mem)) return; if (!refcount_dec_and_test(&tfm->refcnt)) return; alg = tfm->__crt_alg; if (!tfm->exit && alg->cra_exit) alg->cra_exit(tfm); crypto_exit_ops(tfm); crypto_mod_put(alg); kfree_sensitive(mem); } EXPORT_SYMBOL_GPL(crypto_destroy_tfm); int crypto_has_alg(const char *name, u32 type, u32 mask) { int ret = 0; struct crypto_alg *alg = crypto_alg_mod_lookup(name, type, mask); if (!IS_ERR(alg)) { crypto_mod_put(alg); ret = 1; } return ret; } EXPORT_SYMBOL_GPL(crypto_has_alg); void crypto_req_done(void *data, int err) { struct crypto_wait *wait = data; if (err == -EINPROGRESS) return; wait->err = err; complete(&wait->completion); } EXPORT_SYMBOL_GPL(crypto_req_done); void crypto_destroy_alg(struct crypto_alg *alg) { if (alg->cra_type && alg->cra_type->destroy) alg->cra_type->destroy(alg); if (alg->cra_destroy) alg->cra_destroy(alg); } EXPORT_SYMBOL_GPL(crypto_destroy_alg); MODULE_DESCRIPTION("Cryptographic core API"); MODULE_LICENSE("GPL");
40 40 66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Antonio Quartulli */ #include "bat_v_ogm.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/jiffies.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/minmax.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/types.h> #include <linux/workqueue.h> #include <uapi/linux/batadv_packet.h> #include "bat_algo.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "originator.h" #include "routing.h" #include "send.h" #include "translation-table.h" #include "tvlv.h" /** * batadv_v_ogm_orig_get() - retrieve and possibly create an originator node * @bat_priv: the bat priv with all the mesh interface information * @addr: the address of the originator * * Return: the orig_node corresponding to the specified address. If such an * object does not exist, it is allocated here. In case of allocation failure * returns NULL. */ struct batadv_orig_node *batadv_v_ogm_orig_get(struct batadv_priv *bat_priv, const u8 *addr) { struct batadv_orig_node *orig_node; int hash_added; orig_node = batadv_orig_hash_find(bat_priv, addr); if (orig_node) return orig_node; orig_node = batadv_orig_node_new(bat_priv, addr); if (!orig_node) return NULL; kref_get(&orig_node->refcount); hash_added = batadv_hash_add(bat_priv->orig_hash, batadv_compare_orig, batadv_choose_orig, orig_node, &orig_node->hash_entry); if (hash_added != 0) { /* remove refcnt for newly created orig_node and hash entry */ batadv_orig_node_put(orig_node); batadv_orig_node_put(orig_node); orig_node = NULL; } return orig_node; } /** * batadv_v_ogm_start_queue_timer() - restart the OGM aggregation timer * @hard_iface: the interface to use to send the OGM */ static void batadv_v_ogm_start_queue_timer(struct batadv_hard_iface *hard_iface) { unsigned int msecs = BATADV_MAX_AGGREGATION_MS * 1000; /* msecs * [0.9, 1.1] */ msecs += get_random_u32_below(msecs / 5) - (msecs / 10); queue_delayed_work(batadv_event_workqueue, &hard_iface->bat_v.aggr_wq, msecs_to_jiffies(msecs / 1000)); } /** * batadv_v_ogm_start_timer() - restart the OGM sending timer * @bat_priv: the bat priv with all the mesh interface information */ static void batadv_v_ogm_start_timer(struct batadv_priv *bat_priv) { unsigned long msecs; /* this function may be invoked in different contexts (ogm rescheduling * or hard_iface activation), but the work timer should not be reset */ if (delayed_work_pending(&bat_priv->bat_v.ogm_wq)) return; msecs = atomic_read(&bat_priv->orig_interval) - BATADV_JITTER; msecs += get_random_u32_below(2 * BATADV_JITTER); queue_delayed_work(batadv_event_workqueue, &bat_priv->bat_v.ogm_wq, msecs_to_jiffies(msecs)); } /** * batadv_v_ogm_send_to_if() - send a batman ogm using a given interface * @skb: the OGM to send * @hard_iface: the interface to use to send the OGM */ static void batadv_v_ogm_send_to_if(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->mesh_iface); if (hard_iface->if_status != BATADV_IF_ACTIVE) { kfree_skb(skb); return; } batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_TX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_TX_BYTES, skb->len + ETH_HLEN); batadv_send_broadcast_skb(skb, hard_iface); } /** * batadv_v_ogm_len() - OGMv2 packet length * @skb: the OGM to check * * Return: Length of the given OGMv2 packet, including tvlv length, excluding * ethernet header length. */ static unsigned int batadv_v_ogm_len(struct sk_buff *skb) { struct batadv_ogm2_packet *ogm_packet; ogm_packet = (struct batadv_ogm2_packet *)skb->data; return BATADV_OGM2_HLEN + ntohs(ogm_packet->tvlv_len); } /** * batadv_v_ogm_queue_left() - check if given OGM still fits aggregation queue * @skb: the OGM to check * @hard_iface: the interface to use to send the OGM * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. * * Return: True, if the given OGMv2 packet still fits, false otherwise. */ static bool batadv_v_ogm_queue_left(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { unsigned int max = min_t(unsigned int, hard_iface->net_dev->mtu, BATADV_MAX_AGGREGATION_BYTES); unsigned int ogm_len = batadv_v_ogm_len(skb); lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); return hard_iface->bat_v.aggr_len + ogm_len <= max; } /** * batadv_v_ogm_aggr_list_free - free all elements in an aggregation queue * @hard_iface: the interface holding the aggregation queue * * Empties the OGMv2 aggregation queue and frees all the skbs it contains. * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. */ static void batadv_v_ogm_aggr_list_free(struct batadv_hard_iface *hard_iface) { lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); __skb_queue_purge(&hard_iface->bat_v.aggr_list); hard_iface->bat_v.aggr_len = 0; } /** * batadv_v_ogm_aggr_send() - flush & send aggregation queue * @hard_iface: the interface with the aggregation queue to flush * * Aggregates all OGMv2 packets currently in the aggregation queue into a * single OGMv2 packet and transmits this aggregate. * * The aggregation queue is empty after this call. * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. */ static void batadv_v_ogm_aggr_send(struct batadv_hard_iface *hard_iface) { unsigned int aggr_len = hard_iface->bat_v.aggr_len; struct sk_buff *skb_aggr; unsigned int ogm_len; struct sk_buff *skb; lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); if (!aggr_len) return; skb_aggr = dev_alloc_skb(aggr_len + ETH_HLEN + NET_IP_ALIGN); if (!skb_aggr) { batadv_v_ogm_aggr_list_free(hard_iface); return; } skb_reserve(skb_aggr, ETH_HLEN + NET_IP_ALIGN); skb_reset_network_header(skb_aggr); while ((skb = __skb_dequeue(&hard_iface->bat_v.aggr_list))) { hard_iface->bat_v.aggr_len -= batadv_v_ogm_len(skb); ogm_len = batadv_v_ogm_len(skb); skb_put_data(skb_aggr, skb->data, ogm_len); consume_skb(skb); } batadv_v_ogm_send_to_if(skb_aggr, hard_iface); } /** * batadv_v_ogm_queue_on_if() - queue a batman ogm on a given interface * @skb: the OGM to queue * @hard_iface: the interface to queue the OGM on */ static void batadv_v_ogm_queue_on_if(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->mesh_iface); if (!atomic_read(&bat_priv->aggregated_ogms)) { batadv_v_ogm_send_to_if(skb, hard_iface); return; } spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); if (!batadv_v_ogm_queue_left(skb, hard_iface)) batadv_v_ogm_aggr_send(hard_iface); hard_iface->bat_v.aggr_len += batadv_v_ogm_len(skb); __skb_queue_tail(&hard_iface->bat_v.aggr_list, skb); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); } /** * batadv_v_ogm_send_meshif() - periodic worker broadcasting the own OGM * @bat_priv: the bat priv with all the mesh interface information */ static void batadv_v_ogm_send_meshif(struct batadv_priv *bat_priv) { struct batadv_hard_iface *hard_iface; struct batadv_ogm2_packet *ogm_packet; struct sk_buff *skb, *skb_tmp; unsigned char *ogm_buff; int ogm_buff_len; u16 tvlv_len = 0; int ret; lockdep_assert_held(&bat_priv->bat_v.ogm_buff_mutex); if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_DEACTIVATING) goto out; ogm_buff = bat_priv->bat_v.ogm_buff; ogm_buff_len = bat_priv->bat_v.ogm_buff_len; /* tt changes have to be committed before the tvlv data is * appended as it may alter the tt tvlv container */ batadv_tt_local_commit_changes(bat_priv); tvlv_len = batadv_tvlv_container_ogm_append(bat_priv, &ogm_buff, &ogm_buff_len, BATADV_OGM2_HLEN); bat_priv->bat_v.ogm_buff = ogm_buff; bat_priv->bat_v.ogm_buff_len = ogm_buff_len; skb = netdev_alloc_skb_ip_align(NULL, ETH_HLEN + ogm_buff_len); if (!skb) goto reschedule; skb_reserve(skb, ETH_HLEN); skb_put_data(skb, ogm_buff, ogm_buff_len); ogm_packet = (struct batadv_ogm2_packet *)skb->data; ogm_packet->seqno = htonl(atomic_read(&bat_priv->bat_v.ogm_seqno)); atomic_inc(&bat_priv->bat_v.ogm_seqno); ogm_packet->tvlv_len = htons(tvlv_len); /* broadcast on every interface */ rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->mesh_iface != bat_priv->mesh_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; ret = batadv_hardif_no_broadcast(hard_iface, NULL, NULL); if (ret) { char *type; switch (ret) { case BATADV_HARDIF_BCAST_NORECIPIENT: type = "no neighbor"; break; case BATADV_HARDIF_BCAST_DUPFWD: type = "single neighbor is source"; break; case BATADV_HARDIF_BCAST_DUPORIG: type = "single neighbor is originator"; break; default: type = "unknown"; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "OGM2 from ourselves on %s suppressed: %s\n", hard_iface->net_dev->name, type); batadv_hardif_put(hard_iface); continue; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Sending own OGM2 packet (originator %pM, seqno %u, throughput %u, TTL %d) on interface %s [%pM]\n", ogm_packet->orig, ntohl(ogm_packet->seqno), ntohl(ogm_packet->throughput), ogm_packet->ttl, hard_iface->net_dev->name, hard_iface->net_dev->dev_addr); /* this skb gets consumed by batadv_v_ogm_send_to_if() */ skb_tmp = skb_clone(skb, GFP_ATOMIC); if (!skb_tmp) { batadv_hardif_put(hard_iface); break; } batadv_v_ogm_queue_on_if(skb_tmp, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); consume_skb(skb); reschedule: batadv_v_ogm_start_timer(bat_priv); out: return; } /** * batadv_v_ogm_send() - periodic worker broadcasting the own OGM * @work: work queue item */ static void batadv_v_ogm_send(struct work_struct *work) { struct batadv_priv_bat_v *bat_v; struct batadv_priv *bat_priv; bat_v = container_of(work, struct batadv_priv_bat_v, ogm_wq.work); bat_priv = container_of(bat_v, struct batadv_priv, bat_v); mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); batadv_v_ogm_send_meshif(bat_priv); mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } /** * batadv_v_ogm_aggr_work() - OGM queue periodic task per interface * @work: work queue item * * Emits aggregated OGM messages in regular intervals. */ void batadv_v_ogm_aggr_work(struct work_struct *work) { struct batadv_hard_iface_bat_v *batv; struct batadv_hard_iface *hard_iface; batv = container_of(work, struct batadv_hard_iface_bat_v, aggr_wq.work); hard_iface = container_of(batv, struct batadv_hard_iface, bat_v); spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_aggr_send(hard_iface); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_start_queue_timer(hard_iface); } /** * batadv_v_ogm_iface_enable() - prepare an interface for B.A.T.M.A.N. V * @hard_iface: the interface to prepare * * Takes care of scheduling its own OGM sending routine for this interface. * * Return: 0 on success or a negative error code otherwise */ int batadv_v_ogm_iface_enable(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->mesh_iface); batadv_v_ogm_start_queue_timer(hard_iface); batadv_v_ogm_start_timer(bat_priv); return 0; } /** * batadv_v_ogm_iface_disable() - release OGM interface private resources * @hard_iface: interface for which the resources have to be released */ void batadv_v_ogm_iface_disable(struct batadv_hard_iface *hard_iface) { cancel_delayed_work_sync(&hard_iface->bat_v.aggr_wq); spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_aggr_list_free(hard_iface); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); } /** * batadv_v_ogm_primary_iface_set() - set a new primary interface * @primary_iface: the new primary interface */ void batadv_v_ogm_primary_iface_set(struct batadv_hard_iface *primary_iface) { struct batadv_priv *bat_priv = netdev_priv(primary_iface->mesh_iface); struct batadv_ogm2_packet *ogm_packet; mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); if (!bat_priv->bat_v.ogm_buff) goto unlock; ogm_packet = (struct batadv_ogm2_packet *)bat_priv->bat_v.ogm_buff; ether_addr_copy(ogm_packet->orig, primary_iface->net_dev->dev_addr); unlock: mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } /** * batadv_v_forward_penalty() - apply a penalty to the throughput metric * forwarded with B.A.T.M.A.N. V OGMs * @bat_priv: the bat priv with all the mesh interface information * @if_incoming: the interface where the OGM has been received * @if_outgoing: the interface where the OGM has to be forwarded to * @throughput: the current throughput * * Apply a penalty on the current throughput metric value based on the * characteristic of the interface where the OGM has been received. * * Initially the per hardif hop penalty is applied to the throughput. After * that the return value is then computed as follows: * - throughput * 50% if the incoming and outgoing interface are the * same WiFi interface and the throughput is above * 1MBit/s * - throughput if the outgoing interface is the default * interface (i.e. this OGM is processed for the * internal table and not forwarded) * - throughput * node hop penalty otherwise * * Return: the penalised throughput metric. */ static u32 batadv_v_forward_penalty(struct batadv_priv *bat_priv, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, u32 throughput) { int if_hop_penalty = atomic_read(&if_incoming->hop_penalty); int hop_penalty = atomic_read(&bat_priv->hop_penalty); int hop_penalty_max = BATADV_TQ_MAX_VALUE; /* Apply per hardif hop penalty */ throughput = throughput * (hop_penalty_max - if_hop_penalty) / hop_penalty_max; /* Don't apply hop penalty in default originator table. */ if (if_outgoing == BATADV_IF_DEFAULT) return throughput; /* Forwarding on the same WiFi interface cuts the throughput in half * due to the store & forward characteristics of WIFI. * Very low throughput values are the exception. */ if (throughput > 10 && if_incoming == if_outgoing && !(if_incoming->bat_v.flags & BATADV_FULL_DUPLEX)) return throughput / 2; /* hop penalty of 255 equals 100% */ return throughput * (hop_penalty_max - hop_penalty) / hop_penalty_max; } /** * batadv_v_ogm_forward() - check conditions and forward an OGM to the given * outgoing interface * @bat_priv: the bat priv with all the mesh interface information * @ogm_received: previously received OGM to be forwarded * @orig_node: the originator which has been updated * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface on which this OGM was received on * @if_outgoing: the interface to which the OGM has to be forwarded to * * Forward an OGM to an interface after having altered the throughput metric and * the TTL value contained in it. The original OGM isn't modified. */ static void batadv_v_ogm_forward(struct batadv_priv *bat_priv, const struct batadv_ogm2_packet *ogm_received, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; struct batadv_orig_ifinfo *orig_ifinfo = NULL; struct batadv_neigh_node *router = NULL; struct batadv_ogm2_packet *ogm_forward; unsigned char *skb_buff; struct sk_buff *skb; size_t packet_len; u16 tvlv_len; /* only forward for specific interfaces, not for the default one. */ if (if_outgoing == BATADV_IF_DEFAULT) goto out; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out; /* acquire possibly updated router */ router = batadv_orig_router_get(orig_node, if_outgoing); /* strict rule: forward packets coming from the best next hop only */ if (neigh_node != router) goto out; /* don't forward the same seqno twice on one interface */ if (orig_ifinfo->last_seqno_forwarded == ntohl(ogm_received->seqno)) goto out; orig_ifinfo->last_seqno_forwarded = ntohl(ogm_received->seqno); if (ogm_received->ttl <= 1) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "ttl exceeded\n"); goto out; } neigh_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; tvlv_len = ntohs(ogm_received->tvlv_len); packet_len = BATADV_OGM2_HLEN + tvlv_len; skb = netdev_alloc_skb_ip_align(if_outgoing->net_dev, ETH_HLEN + packet_len); if (!skb) goto out; skb_reserve(skb, ETH_HLEN); skb_buff = skb_put_data(skb, ogm_received, packet_len); /* apply forward penalty */ ogm_forward = (struct batadv_ogm2_packet *)skb_buff; ogm_forward->throughput = htonl(neigh_ifinfo->bat_v.throughput); ogm_forward->ttl--; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding OGM2 packet on %s: throughput %u, ttl %u, received via %s\n", if_outgoing->net_dev->name, ntohl(ogm_forward->throughput), ogm_forward->ttl, if_incoming->net_dev->name); batadv_v_ogm_queue_on_if(skb, if_outgoing); out: batadv_orig_ifinfo_put(orig_ifinfo); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(neigh_ifinfo); } /** * batadv_v_ogm_metric_update() - update route metric based on OGM * @bat_priv: the bat priv with all the mesh interface information * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered * * Return: * 1 if the OGM is new, * 0 if it is not new but valid, * <0 on error (e.g. old OGM) */ static int batadv_v_ogm_metric_update(struct batadv_priv *bat_priv, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; bool protection_started = false; int ret = -EINVAL; u32 path_throughput; s32 seq_diff; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out; seq_diff = ntohl(ogm2->seqno) - orig_ifinfo->last_real_seqno; if (!hlist_empty(&orig_node->neigh_list) && batadv_window_protected(bat_priv, seq_diff, BATADV_OGM_MAX_AGE, &orig_ifinfo->batman_seqno_reset, &protection_started)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: packet within window protection time from %pM\n", ogm2->orig); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Last reset: %ld, %ld\n", orig_ifinfo->batman_seqno_reset, jiffies); goto out; } /* drop packets with old seqnos, however accept the first packet after * a host has been rebooted. */ if (seq_diff < 0 && !protection_started) goto out; neigh_node->last_seen = jiffies; orig_node->last_seen = jiffies; orig_ifinfo->last_real_seqno = ntohl(ogm2->seqno); orig_ifinfo->last_ttl = ogm2->ttl; neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; path_throughput = batadv_v_forward_penalty(bat_priv, if_incoming, if_outgoing, ntohl(ogm2->throughput)); neigh_ifinfo->bat_v.throughput = path_throughput; neigh_ifinfo->bat_v.last_seqno = ntohl(ogm2->seqno); neigh_ifinfo->last_ttl = ogm2->ttl; if (seq_diff > 0 || protection_started) ret = 1; else ret = 0; out: batadv_orig_ifinfo_put(orig_ifinfo); batadv_neigh_ifinfo_put(neigh_ifinfo); return ret; } /** * batadv_v_ogm_route_update() - update routes based on OGM * @bat_priv: the bat priv with all the mesh interface information * @ethhdr: the Ethernet header of the OGM2 * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered * * Return: true if the packet should be forwarded, false otherwise */ static bool batadv_v_ogm_route_update(struct batadv_priv *bat_priv, const struct ethhdr *ethhdr, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_node *router = NULL; struct batadv_orig_node *orig_neigh_node; struct batadv_neigh_node *orig_neigh_router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL, *neigh_ifinfo = NULL; u32 router_throughput, neigh_throughput; u32 router_last_seqno; u32 neigh_last_seqno; s32 neigh_seq_diff; bool forward = false; orig_neigh_node = batadv_v_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) goto out; orig_neigh_router = batadv_orig_router_get(orig_neigh_node, if_outgoing); /* drop packet if sender is not a direct neighbor and if we * don't route towards it */ router = batadv_orig_router_get(orig_node, if_outgoing); if (router && router->orig_node != orig_node && !orig_neigh_router) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out; } /* Mark the OGM to be considered for forwarding, and update routes * if needed. */ forward = true; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Searching and updating originator entry of received packet\n"); /* if this neighbor already is our next hop there is nothing * to change */ if (router == neigh_node) goto out; /* don't consider neighbours with worse throughput. * also switch route if this seqno is BATADV_V_MAX_ORIGDIFF newer than * the last received seqno from our best next hop. */ if (router) { router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); neigh_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); /* if these are not allocated, something is wrong. */ if (!router_ifinfo || !neigh_ifinfo) goto out; neigh_last_seqno = neigh_ifinfo->bat_v.last_seqno; router_last_seqno = router_ifinfo->bat_v.last_seqno; neigh_seq_diff = neigh_last_seqno - router_last_seqno; router_throughput = router_ifinfo->bat_v.throughput; neigh_throughput = neigh_ifinfo->bat_v.throughput; if (neigh_seq_diff < BATADV_OGM_MAX_ORIGDIFF && router_throughput >= neigh_throughput) goto out; } batadv_update_route(bat_priv, orig_node, if_outgoing, neigh_node); out: batadv_neigh_node_put(router); batadv_neigh_node_put(orig_neigh_router); batadv_orig_node_put(orig_neigh_node); batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_ifinfo_put(neigh_ifinfo); return forward; } /** * batadv_v_ogm_process_per_outif() - process a batman v OGM for an outgoing if * @bat_priv: the bat priv with all the mesh interface information * @ethhdr: the Ethernet header of the OGM2 * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered */ static void batadv_v_ogm_process_per_outif(struct batadv_priv *bat_priv, const struct ethhdr *ethhdr, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { int seqno_age; bool forward; /* first, update the metric with according sanity checks */ seqno_age = batadv_v_ogm_metric_update(bat_priv, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); /* outdated sequence numbers are to be discarded */ if (seqno_age < 0) return; /* only unknown & newer OGMs contain TVLVs we are interested in */ if (seqno_age > 0 && if_outgoing == BATADV_IF_DEFAULT) batadv_tvlv_containers_process(bat_priv, BATADV_OGM2, orig_node, NULL, (unsigned char *)(ogm2 + 1), ntohs(ogm2->tvlv_len)); /* if the metric update went through, update routes if needed */ forward = batadv_v_ogm_route_update(bat_priv, ethhdr, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); /* if the routes have been processed correctly, check and forward */ if (forward) batadv_v_ogm_forward(bat_priv, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); } /** * batadv_v_ogm_aggr_packet() - checks if there is another OGM aggregated * @buff_pos: current position in the skb * @packet_len: total length of the skb * @ogm2_packet: potential OGM2 in buffer * * Return: true if there is enough space for another OGM, false otherwise. */ static bool batadv_v_ogm_aggr_packet(int buff_pos, int packet_len, const struct batadv_ogm2_packet *ogm2_packet) { int next_buff_pos = 0; /* check if there is enough space for the header */ next_buff_pos += buff_pos + sizeof(*ogm2_packet); if (next_buff_pos > packet_len) return false; /* check if there is enough space for the optional TVLV */ next_buff_pos += ntohs(ogm2_packet->tvlv_len); return next_buff_pos <= packet_len; } /** * batadv_v_ogm_process() - process an incoming batman v OGM * @skb: the skb containing the OGM * @ogm_offset: offset to the OGM which should be processed (for aggregates) * @if_incoming: the interface where this packet was received */ static void batadv_v_ogm_process(const struct sk_buff *skb, int ogm_offset, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct ethhdr *ethhdr; struct batadv_orig_node *orig_node = NULL; struct batadv_hardif_neigh_node *hardif_neigh = NULL; struct batadv_neigh_node *neigh_node = NULL; struct batadv_hard_iface *hard_iface; struct batadv_ogm2_packet *ogm_packet; u32 ogm_throughput, link_throughput, path_throughput; int ret; ethhdr = eth_hdr(skb); ogm_packet = (struct batadv_ogm2_packet *)(skb->data + ogm_offset); ogm_throughput = ntohl(ogm_packet->throughput); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Received OGM2 packet via NB: %pM, IF: %s [%pM] (from OG: %pM, seqno %u, throughput %u, TTL %u, V %u, tvlv_len %u)\n", ethhdr->h_source, if_incoming->net_dev->name, if_incoming->net_dev->dev_addr, ogm_packet->orig, ntohl(ogm_packet->seqno), ogm_throughput, ogm_packet->ttl, ogm_packet->version, ntohs(ogm_packet->tvlv_len)); if (batadv_is_my_mac(bat_priv, ogm_packet->orig)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet from ourself\n"); return; } /* If the throughput metric is 0, immediately drop the packet. No need * to create orig_node / neigh_node for an unusable route. */ if (ogm_throughput == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet with throughput metric of 0\n"); return; } /* require ELP packets be to received from this neighbor first */ hardif_neigh = batadv_hardif_neigh_get(if_incoming, ethhdr->h_source); if (!hardif_neigh) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out; } orig_node = batadv_v_ogm_orig_get(bat_priv, ogm_packet->orig); if (!orig_node) goto out; neigh_node = batadv_neigh_node_get_or_create(orig_node, if_incoming, ethhdr->h_source); if (!neigh_node) goto out; /* Update the received throughput metric to match the link * characteristic: * - If this OGM traveled one hop so far (emitted by single hop * neighbor) the path throughput metric equals the link throughput. * - For OGMs traversing more than hop the path throughput metric is * the smaller of the path throughput and the link throughput. */ link_throughput = ewma_throughput_read(&hardif_neigh->bat_v.throughput); path_throughput = min_t(u32, link_throughput, ogm_throughput); ogm_packet->throughput = htonl(path_throughput); batadv_v_ogm_process_per_outif(bat_priv, ethhdr, ogm_packet, orig_node, neigh_node, if_incoming, BATADV_IF_DEFAULT); rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->mesh_iface != bat_priv->mesh_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; ret = batadv_hardif_no_broadcast(hard_iface, ogm_packet->orig, hardif_neigh->orig); if (ret) { char *type; switch (ret) { case BATADV_HARDIF_BCAST_NORECIPIENT: type = "no neighbor"; break; case BATADV_HARDIF_BCAST_DUPFWD: type = "single neighbor is source"; break; case BATADV_HARDIF_BCAST_DUPORIG: type = "single neighbor is originator"; break; default: type = "unknown"; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "OGM2 packet from %pM on %s suppressed: %s\n", ogm_packet->orig, hard_iface->net_dev->name, type); batadv_hardif_put(hard_iface); continue; } batadv_v_ogm_process_per_outif(bat_priv, ethhdr, ogm_packet, orig_node, neigh_node, if_incoming, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); out: batadv_orig_node_put(orig_node); batadv_neigh_node_put(neigh_node); batadv_hardif_neigh_put(hardif_neigh); } /** * batadv_v_ogm_packet_recv() - OGM2 receiving handler * @skb: the received OGM * @if_incoming: the interface where this OGM has been received * * Return: NET_RX_SUCCESS and consume the skb on success or returns NET_RX_DROP * (without freeing the skb) on failure */ int batadv_v_ogm_packet_recv(struct sk_buff *skb, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_ogm2_packet *ogm_packet; struct ethhdr *ethhdr; int ogm_offset; u8 *packet_pos; int ret = NET_RX_DROP; /* did we receive a OGM2 packet on an interface that does not have * B.A.T.M.A.N. V enabled ? */ if (strcmp(bat_priv->algo_ops->name, "BATMAN_V") != 0) goto free_skb; if (!batadv_check_management_packet(skb, if_incoming, BATADV_OGM2_HLEN)) goto free_skb; ethhdr = eth_hdr(skb); if (batadv_is_my_mac(bat_priv, ethhdr->h_source)) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_RX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_RX_BYTES, skb->len + ETH_HLEN); ogm_offset = 0; ogm_packet = (struct batadv_ogm2_packet *)skb->data; while (batadv_v_ogm_aggr_packet(ogm_offset, skb_headlen(skb), ogm_packet)) { batadv_v_ogm_process(skb, ogm_offset, if_incoming); ogm_offset += BATADV_OGM2_HLEN; ogm_offset += ntohs(ogm_packet->tvlv_len); packet_pos = skb->data + ogm_offset; ogm_packet = (struct batadv_ogm2_packet *)packet_pos; } ret = NET_RX_SUCCESS; free_skb: if (ret == NET_RX_SUCCESS) consume_skb(skb); else kfree_skb(skb); return ret; } /** * batadv_v_ogm_init() - initialise the OGM2 engine * @bat_priv: the bat priv with all the mesh interface information * * Return: 0 on success or a negative error code in case of failure */ int batadv_v_ogm_init(struct batadv_priv *bat_priv) { struct batadv_ogm2_packet *ogm_packet; unsigned char *ogm_buff; u32 random_seqno; bat_priv->bat_v.ogm_buff_len = BATADV_OGM2_HLEN; ogm_buff = kzalloc(bat_priv->bat_v.ogm_buff_len, GFP_ATOMIC); if (!ogm_buff) return -ENOMEM; bat_priv->bat_v.ogm_buff = ogm_buff; ogm_packet = (struct batadv_ogm2_packet *)ogm_buff; ogm_packet->packet_type = BATADV_OGM2; ogm_packet->version = BATADV_COMPAT_VERSION; ogm_packet->ttl = BATADV_TTL; ogm_packet->flags = BATADV_NO_FLAGS; ogm_packet->throughput = htonl(BATADV_THROUGHPUT_MAX_VALUE); /* randomize initial seqno to avoid collision */ get_random_bytes(&random_seqno, sizeof(random_seqno)); atomic_set(&bat_priv->bat_v.ogm_seqno, random_seqno); INIT_DELAYED_WORK(&bat_priv->bat_v.ogm_wq, batadv_v_ogm_send); mutex_init(&bat_priv->bat_v.ogm_buff_mutex); return 0; } /** * batadv_v_ogm_free() - free OGM private resources * @bat_priv: the bat priv with all the mesh interface information */ void batadv_v_ogm_free(struct batadv_priv *bat_priv) { cancel_delayed_work_sync(&bat_priv->bat_v.ogm_wq); mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); kfree(bat_priv->bat_v.ogm_buff); bat_priv->bat_v.ogm_buff = NULL; bat_priv->bat_v.ogm_buff_len = 0; mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); }
124 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* * crc32.h * See linux/lib/crc32.c for license and changes */ #ifndef _LINUX_CRC32_H #define _LINUX_CRC32_H #include <linux/types.h> #include <linux/bitrev.h> u32 crc32_le_arch(u32 crc, const u8 *p, size_t len); u32 crc32_le_base(u32 crc, const u8 *p, size_t len); u32 crc32_be_arch(u32 crc, const u8 *p, size_t len); u32 crc32_be_base(u32 crc, const u8 *p, size_t len); u32 crc32c_arch(u32 crc, const u8 *p, size_t len); u32 crc32c_base(u32 crc, const u8 *p, size_t len); static inline u32 crc32_le(u32 crc, const void *p, size_t len) { if (IS_ENABLED(CONFIG_CRC32_ARCH)) return crc32_le_arch(crc, p, len); return crc32_le_base(crc, p, len); } static inline u32 crc32_be(u32 crc, const void *p, size_t len) { if (IS_ENABLED(CONFIG_CRC32_ARCH)) return crc32_be_arch(crc, p, len); return crc32_be_base(crc, p, len); } static inline u32 crc32c(u32 crc, const void *p, size_t len) { if (IS_ENABLED(CONFIG_CRC32_ARCH)) return crc32c_arch(crc, p, len); return crc32c_base(crc, p, len); } /* * crc32_optimizations() returns flags that indicate which CRC32 library * functions are using architecture-specific optimizations. Unlike * IS_ENABLED(CONFIG_CRC32_ARCH) it takes into account the different CRC32 * variants and also whether any needed CPU features are available at runtime. */ #define CRC32_LE_OPTIMIZATION BIT(0) /* crc32_le() is optimized */ #define CRC32_BE_OPTIMIZATION BIT(1) /* crc32_be() is optimized */ #define CRC32C_OPTIMIZATION BIT(2) /* crc32c() is optimized */ #if IS_ENABLED(CONFIG_CRC32_ARCH) u32 crc32_optimizations(void); #else static inline u32 crc32_optimizations(void) { return 0; } #endif /** * crc32_le_combine - Combine two crc32 check values into one. For two * sequences of bytes, seq1 and seq2 with lengths len1 * and len2, crc32_le() check values were calculated * for each, crc1 and crc2. * * @crc1: crc32 of the first block * @crc2: crc32 of the second block * @len2: length of the second block * * Return: The crc32_le() check value of seq1 and seq2 concatenated, * requiring only crc1, crc2, and len2. Note: If seq_full denotes * the concatenated memory area of seq1 with seq2, and crc_full * the crc32_le() value of seq_full, then crc_full == * crc32_le_combine(crc1, crc2, len2) when crc_full was seeded * with the same initializer as crc1, and crc2 seed was 0. See * also crc32_combine_test(). */ u32 crc32_le_shift(u32 crc, size_t len); static inline u32 crc32_le_combine(u32 crc1, u32 crc2, size_t len2) { return crc32_le_shift(crc1, len2) ^ crc2; } u32 crc32c_shift(u32 crc, size_t len); /** * crc32c_combine - Combine two crc32c check values into one. For two sequences * of bytes, seq1 and seq2 with lengths len1 and len2, crc32c() * check values were calculated for each, crc1 and crc2. * * @crc1: crc32c of the first block * @crc2: crc32c of the second block * @len2: length of the second block * * Return: The crc32c() check value of seq1 and seq2 concatenated, requiring * only crc1, crc2, and len2. Note: If seq_full denotes the concatenated * memory area of seq1 with seq2, and crc_full the crc32c() value of * seq_full, then crc_full == crc32c_combine(crc1, crc2, len2) when * crc_full was seeded with the same initializer as crc1, and crc2 seed * was 0. See also crc_combine_test(). */ static inline u32 crc32c_combine(u32 crc1, u32 crc2, size_t len2) { return crc32c_shift(crc1, len2) ^ crc2; } #define crc32(seed, data, length) crc32_le(seed, (unsigned char const *)(data), length) /* * Helpers for hash table generation of ethernet nics: * * Ethernet sends the least significant bit of a byte first, thus crc32_le * is used. The output of crc32_le is bit reversed [most significant bit * is in bit nr 0], thus it must be reversed before use. Except for * nics that bit swap the result internally... */ #define ether_crc(length, data) bitrev32(crc32_le(~0, data, length)) #define ether_crc_le(length, data) crc32_le(~0, data, length) #endif /* _LINUX_CRC32_H */
118 118 75 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 // SPDX-License-Identifier: GPL-2.0-or-later /* * Sysfs attributes of bridge * Linux ethernet bridge * * Authors: * Stephen Hemminger <shemminger@osdl.org> */ #include <linux/capability.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_bridge.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/times.h> #include <linux/sched/signal.h> #include "br_private.h" /* IMPORTANT: new bridge options must be added with netlink support only * please do not add new sysfs entries */ #define to_bridge(cd) ((struct net_bridge *)netdev_priv(to_net_dev(cd))) /* * Common code for storing bridge parameters. */ static ssize_t store_bridge_parm(struct device *d, const char *buf, size_t len, int (*set)(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack)) { struct net_bridge *br = to_bridge(d); struct netlink_ext_ack extack = {0}; unsigned long val; int err; if (!ns_capable(dev_net(br->dev)->user_ns, CAP_NET_ADMIN)) return -EPERM; err = kstrtoul(buf, 0, &val); if (err != 0) return err; if (!rtnl_trylock()) return restart_syscall(); err = (*set)(br, val, &extack); if (!err) netdev_state_change(br->dev); if (extack._msg) { if (err) br_err(br, "%s\n", extack._msg); else br_warn(br, "%s\n", extack._msg); } rtnl_unlock(); return err ? err : len; } static ssize_t forward_delay_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->forward_delay)); } static int set_forward_delay(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_forward_delay(br, val); } static ssize_t forward_delay_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_forward_delay); } static DEVICE_ATTR_RW(forward_delay); static ssize_t hello_time_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lu\n", jiffies_to_clock_t(to_bridge(d)->hello_time)); } static int set_hello_time(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_hello_time(br, val); } static ssize_t hello_time_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_hello_time); } static DEVICE_ATTR_RW(hello_time); static ssize_t max_age_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lu\n", jiffies_to_clock_t(to_bridge(d)->max_age)); } static int set_max_age(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_max_age(br, val); } static ssize_t max_age_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_max_age); } static DEVICE_ATTR_RW(max_age); static ssize_t ageing_time_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->ageing_time)); } static int set_ageing_time(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_ageing_time(br, val); } static ssize_t ageing_time_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_ageing_time); } static DEVICE_ATTR_RW(ageing_time); static ssize_t stp_state_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->stp_enabled); } static int set_stp_state(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_stp_set_enabled(br, val, extack); } static ssize_t stp_state_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_stp_state); } static DEVICE_ATTR_RW(stp_state); static ssize_t group_fwd_mask_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%#x\n", br->group_fwd_mask); } static int set_group_fwd_mask(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { if (val & BR_GROUPFWD_RESTRICTED) return -EINVAL; br->group_fwd_mask = val; return 0; } static ssize_t group_fwd_mask_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_group_fwd_mask); } static DEVICE_ATTR_RW(group_fwd_mask); static ssize_t priority_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", (br->bridge_id.prio[0] << 8) | br->bridge_id.prio[1]); } static int set_priority(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_stp_set_bridge_priority(br, (u16) val); return 0; } static ssize_t priority_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_priority); } static DEVICE_ATTR_RW(priority); static ssize_t root_id_show(struct device *d, struct device_attribute *attr, char *buf) { return br_show_bridge_id(buf, &to_bridge(d)->designated_root); } static DEVICE_ATTR_RO(root_id); static ssize_t bridge_id_show(struct device *d, struct device_attribute *attr, char *buf) { return br_show_bridge_id(buf, &to_bridge(d)->bridge_id); } static DEVICE_ATTR_RO(bridge_id); static ssize_t root_port_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_bridge(d)->root_port); } static DEVICE_ATTR_RO(root_port); static ssize_t root_path_cost_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_bridge(d)->root_path_cost); } static DEVICE_ATTR_RO(root_path_cost); static ssize_t topology_change_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_bridge(d)->topology_change); } static DEVICE_ATTR_RO(topology_change); static ssize_t topology_change_detected_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->topology_change_detected); } static DEVICE_ATTR_RO(topology_change_detected); static ssize_t hello_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->hello_timer)); } static DEVICE_ATTR_RO(hello_timer); static ssize_t tcn_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->tcn_timer)); } static DEVICE_ATTR_RO(tcn_timer); static ssize_t topology_change_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->topology_change_timer)); } static DEVICE_ATTR_RO(topology_change_timer); static ssize_t gc_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->gc_work.timer)); } static DEVICE_ATTR_RO(gc_timer); static ssize_t group_addr_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%pM\n", br->group_addr); } static ssize_t group_addr_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { struct net_bridge *br = to_bridge(d); u8 new_addr[6]; if (!ns_capable(dev_net(br->dev)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (!mac_pton(buf, new_addr)) return -EINVAL; if (!is_link_local_ether_addr(new_addr)) return -EINVAL; if (new_addr[5] == 1 || /* 802.3x Pause address */ new_addr[5] == 2 || /* 802.3ad Slow protocols */ new_addr[5] == 3) /* 802.1X PAE address */ return -EINVAL; if (!rtnl_trylock()) return restart_syscall(); spin_lock_bh(&br->lock); ether_addr_copy(br->group_addr, new_addr); spin_unlock_bh(&br->lock); br_opt_toggle(br, BROPT_GROUP_ADDR_SET, true); br_recalculate_fwd_mask(br); netdev_state_change(br->dev); rtnl_unlock(); return len; } static DEVICE_ATTR_RW(group_addr); static int set_flush(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { struct net_bridge_fdb_flush_desc desc = { .flags_mask = BIT(BR_FDB_STATIC) }; br_fdb_flush(br, &desc); return 0; } static ssize_t flush_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_flush); } static DEVICE_ATTR_WO(flush); static ssize_t no_linklocal_learn_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_boolopt_get(br, BR_BOOLOPT_NO_LL_LEARN)); } static int set_no_linklocal_learn(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_boolopt_toggle(br, BR_BOOLOPT_NO_LL_LEARN, !!val, extack); } static ssize_t no_linklocal_learn_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_no_linklocal_learn); } static DEVICE_ATTR_RW(no_linklocal_learn); #ifdef CONFIG_BRIDGE_IGMP_SNOOPING static ssize_t multicast_router_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->multicast_ctx.multicast_router); } static int set_multicast_router(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_router(&br->multicast_ctx, val); } static ssize_t multicast_router_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_router); } static DEVICE_ATTR_RW(multicast_router); static ssize_t multicast_snooping_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_MULTICAST_ENABLED)); } static ssize_t multicast_snooping_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_multicast_toggle); } static DEVICE_ATTR_RW(multicast_snooping); static ssize_t multicast_query_use_ifaddr_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_MULTICAST_QUERY_USE_IFADDR)); } static int set_query_use_ifaddr(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_MULTICAST_QUERY_USE_IFADDR, !!val); return 0; } static ssize_t multicast_query_use_ifaddr_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_query_use_ifaddr); } static DEVICE_ATTR_RW(multicast_query_use_ifaddr); static ssize_t multicast_querier_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->multicast_ctx.multicast_querier); } static int set_multicast_querier(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_querier(&br->multicast_ctx, val); } static ssize_t multicast_querier_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_querier); } static DEVICE_ATTR_RW(multicast_querier); static ssize_t hash_elasticity_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%u\n", RHT_ELASTICITY); } static int set_elasticity(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { /* 16 is RHT_ELASTICITY */ NL_SET_ERR_MSG_MOD(extack, "the hash_elasticity option has been deprecated and is always 16"); return 0; } static ssize_t hash_elasticity_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_elasticity); } static DEVICE_ATTR_RW(hash_elasticity); static ssize_t hash_max_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->hash_max); } static int set_hash_max(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->hash_max = val; return 0; } static ssize_t hash_max_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_hash_max); } static DEVICE_ATTR_RW(hash_max); static ssize_t multicast_igmp_version_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_igmp_version); } static int set_multicast_igmp_version(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_igmp_version(&br->multicast_ctx, val); } static ssize_t multicast_igmp_version_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_igmp_version); } static DEVICE_ATTR_RW(multicast_igmp_version); static ssize_t multicast_last_member_count_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_last_member_count); } static int set_last_member_count(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_last_member_count = val; return 0; } static ssize_t multicast_last_member_count_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_last_member_count); } static DEVICE_ATTR_RW(multicast_last_member_count); static ssize_t multicast_startup_query_count_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_startup_query_count); } static int set_startup_query_count(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_startup_query_count = val; return 0; } static ssize_t multicast_startup_query_count_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_startup_query_count); } static DEVICE_ATTR_RW(multicast_startup_query_count); static ssize_t multicast_last_member_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_last_member_interval)); } static int set_last_member_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_last_member_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_last_member_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_last_member_interval); } static DEVICE_ATTR_RW(multicast_last_member_interval); static ssize_t multicast_membership_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_membership_interval)); } static int set_membership_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_membership_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_membership_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_membership_interval); } static DEVICE_ATTR_RW(multicast_membership_interval); static ssize_t multicast_querier_interval_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_querier_interval)); } static int set_querier_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_querier_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_querier_interval_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_querier_interval); } static DEVICE_ATTR_RW(multicast_querier_interval); static ssize_t multicast_query_interval_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_query_interval)); } static int set_query_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_multicast_set_query_intvl(&br->multicast_ctx, val); return 0; } static ssize_t multicast_query_interval_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_query_interval); } static DEVICE_ATTR_RW(multicast_query_interval); static ssize_t multicast_query_response_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf( buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_query_response_interval)); } static int set_query_response_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_query_response_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_query_response_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_query_response_interval); } static DEVICE_ATTR_RW(multicast_query_response_interval); static ssize_t multicast_startup_query_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf( buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_startup_query_interval)); } static int set_startup_query_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_multicast_set_startup_query_intvl(&br->multicast_ctx, val); return 0; } static ssize_t multicast_startup_query_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_startup_query_interval); } static DEVICE_ATTR_RW(multicast_startup_query_interval); static ssize_t multicast_stats_enabled_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_MULTICAST_STATS_ENABLED)); } static int set_stats_enabled(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_MULTICAST_STATS_ENABLED, !!val); return 0; } static ssize_t multicast_stats_enabled_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_stats_enabled); } static DEVICE_ATTR_RW(multicast_stats_enabled); #if IS_ENABLED(CONFIG_IPV6) static ssize_t multicast_mld_version_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_mld_version); } static int set_multicast_mld_version(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_mld_version(&br->multicast_ctx, val); } static ssize_t multicast_mld_version_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_mld_version); } static DEVICE_ATTR_RW(multicast_mld_version); #endif #endif #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) static ssize_t nf_call_iptables_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_NF_CALL_IPTABLES)); } static int set_nf_call_iptables(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_NF_CALL_IPTABLES, !!val); return 0; } static ssize_t nf_call_iptables_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_nf_call_iptables); } static DEVICE_ATTR_RW(nf_call_iptables); static ssize_t nf_call_ip6tables_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_NF_CALL_IP6TABLES)); } static int set_nf_call_ip6tables(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_NF_CALL_IP6TABLES, !!val); return 0; } static ssize_t nf_call_ip6tables_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_nf_call_ip6tables); } static DEVICE_ATTR_RW(nf_call_ip6tables); static ssize_t nf_call_arptables_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_NF_CALL_ARPTABLES)); } static int set_nf_call_arptables(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_NF_CALL_ARPTABLES, !!val); return 0; } static ssize_t nf_call_arptables_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_nf_call_arptables); } static DEVICE_ATTR_RW(nf_call_arptables); #endif #ifdef CONFIG_BRIDGE_VLAN_FILTERING static ssize_t vlan_filtering_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_VLAN_ENABLED)); } static ssize_t vlan_filtering_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_vlan_filter_toggle); } static DEVICE_ATTR_RW(vlan_filtering); static ssize_t vlan_protocol_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%#06x\n", ntohs(br->vlan_proto)); } static ssize_t vlan_protocol_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_vlan_set_proto); } static DEVICE_ATTR_RW(vlan_protocol); static ssize_t default_pvid_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->default_pvid); } static ssize_t default_pvid_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_vlan_set_default_pvid); } static DEVICE_ATTR_RW(default_pvid); static ssize_t vlan_stats_enabled_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_VLAN_STATS_ENABLED)); } static int set_vlan_stats_enabled(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_vlan_set_stats(br, val); } static ssize_t vlan_stats_enabled_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_vlan_stats_enabled); } static DEVICE_ATTR_RW(vlan_stats_enabled); static ssize_t vlan_stats_per_port_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_VLAN_STATS_PER_PORT)); } static int set_vlan_stats_per_port(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_vlan_set_stats_per_port(br, val); } static ssize_t vlan_stats_per_port_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_vlan_stats_per_port); } static DEVICE_ATTR_RW(vlan_stats_per_port); #endif static struct attribute *bridge_attrs[] = { &dev_attr_forward_delay.attr, &dev_attr_hello_time.attr, &dev_attr_max_age.attr, &dev_attr_ageing_time.attr, &dev_attr_stp_state.attr, &dev_attr_group_fwd_mask.attr, &dev_attr_priority.attr, &dev_attr_bridge_id.attr, &dev_attr_root_id.attr, &dev_attr_root_path_cost.attr, &dev_attr_root_port.attr, &dev_attr_topology_change.attr, &dev_attr_topology_change_detected.attr, &dev_attr_hello_timer.attr, &dev_attr_tcn_timer.attr, &dev_attr_topology_change_timer.attr, &dev_attr_gc_timer.attr, &dev_attr_group_addr.attr, &dev_attr_flush.attr, &dev_attr_no_linklocal_learn.attr, #ifdef CONFIG_BRIDGE_IGMP_SNOOPING &dev_attr_multicast_router.attr, &dev_attr_multicast_snooping.attr, &dev_attr_multicast_querier.attr, &dev_attr_multicast_query_use_ifaddr.attr, &dev_attr_hash_elasticity.attr, &dev_attr_hash_max.attr, &dev_attr_multicast_last_member_count.attr, &dev_attr_multicast_startup_query_count.attr, &dev_attr_multicast_last_member_interval.attr, &dev_attr_multicast_membership_interval.attr, &dev_attr_multicast_querier_interval.attr, &dev_attr_multicast_query_interval.attr, &dev_attr_multicast_query_response_interval.attr, &dev_attr_multicast_startup_query_interval.attr, &dev_attr_multicast_stats_enabled.attr, &dev_attr_multicast_igmp_version.attr, #if IS_ENABLED(CONFIG_IPV6) &dev_attr_multicast_mld_version.attr, #endif #endif #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) &dev_attr_nf_call_iptables.attr, &dev_attr_nf_call_ip6tables.attr, &dev_attr_nf_call_arptables.attr, #endif #ifdef CONFIG_BRIDGE_VLAN_FILTERING &dev_attr_vlan_filtering.attr, &dev_attr_vlan_protocol.attr, &dev_attr_default_pvid.attr, &dev_attr_vlan_stats_enabled.attr, &dev_attr_vlan_stats_per_port.attr, #endif NULL }; static const struct attribute_group bridge_group = { .name = SYSFS_BRIDGE_ATTR, .attrs = bridge_attrs, }; /* * Export the forwarding information table as a binary file * The records are struct __fdb_entry. * * Returns the number of bytes read. */ static ssize_t brforward_read(struct file *filp, struct kobject *kobj, const struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct net_bridge *br = to_bridge(dev); int n; /* must read whole records */ if (off % sizeof(struct __fdb_entry) != 0) return -EINVAL; n = br_fdb_fillbuf(br, buf, count / sizeof(struct __fdb_entry), off / sizeof(struct __fdb_entry)); if (n > 0) n *= sizeof(struct __fdb_entry); return n; } static const struct bin_attribute bridge_forward = { .attr = { .name = SYSFS_BRIDGE_FDB, .mode = 0444, }, .read_new = brforward_read, }; /* * Add entries in sysfs onto the existing network class device * for the bridge. * Adds a attribute group "bridge" containing tuning parameters. * Binary attribute containing the forward table * Sub directory to hold links to interfaces. * * Note: the ifobj exists only to be a subdirectory * to hold links. The ifobj exists in same data structure * as it's parent the bridge so reference counting works. */ int br_sysfs_addbr(struct net_device *dev) { struct kobject *brobj = &dev->dev.kobj; struct net_bridge *br = netdev_priv(dev); int err; err = sysfs_create_group(brobj, &bridge_group); if (err) { pr_info("%s: can't create group %s/%s\n", __func__, dev->name, bridge_group.name); goto out1; } err = sysfs_create_bin_file(brobj, &bridge_forward); if (err) { pr_info("%s: can't create attribute file %s/%s\n", __func__, dev->name, bridge_forward.attr.name); goto out2; } br->ifobj = kobject_create_and_add(SYSFS_BRIDGE_PORT_SUBDIR, brobj); if (!br->ifobj) { pr_info("%s: can't add kobject (directory) %s/%s\n", __func__, dev->name, SYSFS_BRIDGE_PORT_SUBDIR); err = -ENOMEM; goto out3; } return 0; out3: sysfs_remove_bin_file(&dev->dev.kobj, &bridge_forward); out2: sysfs_remove_group(&dev->dev.kobj, &bridge_group); out1: return err; } void br_sysfs_delbr(struct net_device *dev) { struct kobject *kobj = &dev->dev.kobj; struct net_bridge *br = netdev_priv(dev); kobject_put(br->ifobj); sysfs_remove_bin_file(kobj, &bridge_forward); sysfs_remove_group(kobj, &bridge_group); }
21 8 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FILEATTR_H #define _LINUX_FILEATTR_H /* Flags shared betwen flags/xflags */ #define FS_COMMON_FL \ (FS_SYNC_FL | FS_IMMUTABLE_FL | FS_APPEND_FL | \ FS_NODUMP_FL | FS_NOATIME_FL | FS_DAX_FL | \ FS_PROJINHERIT_FL) #define FS_XFLAG_COMMON \ (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND | \ FS_XFLAG_NODUMP | FS_XFLAG_NOATIME | FS_XFLAG_DAX | \ FS_XFLAG_PROJINHERIT) /* * Merged interface for miscellaneous file attributes. 'flags' originates from * ext* and 'fsx_flags' from xfs. There's some overlap between the two, which * is handled by the VFS helpers, so filesystems are free to implement just one * or both of these sub-interfaces. */ struct fileattr { u32 flags; /* flags (FS_IOC_GETFLAGS/FS_IOC_SETFLAGS) */ /* struct fsxattr: */ u32 fsx_xflags; /* xflags field value (get/set) */ u32 fsx_extsize; /* extsize field value (get/set)*/ u32 fsx_nextents; /* nextents field value (get) */ u32 fsx_projid; /* project identifier (get/set) */ u32 fsx_cowextsize; /* CoW extsize field value (get/set)*/ /* selectors: */ bool flags_valid:1; bool fsx_valid:1; }; int copy_fsxattr_to_user(const struct fileattr *fa, struct fsxattr __user *ufa); void fileattr_fill_xflags(struct fileattr *fa, u32 xflags); void fileattr_fill_flags(struct fileattr *fa, u32 flags); /** * fileattr_has_fsx - check for extended flags/attributes * @fa: fileattr pointer * * Return: true if any attributes are present that are not represented in * ->flags. */ static inline bool fileattr_has_fsx(const struct fileattr *fa) { return fa->fsx_valid && ((fa->fsx_xflags & ~FS_XFLAG_COMMON) || fa->fsx_extsize != 0 || fa->fsx_projid != 0 || fa->fsx_cowextsize != 0); } int vfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); int vfs_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa); #endif /* _LINUX_FILEATTR_H */
21 15 15 20 21 9 9 15 6 9 9 1 8 9 1 8 2 2 2 14 2 14 14 14 13 7 6 4 3 6 5 1 9 1 2 7 9 9 12 3 9 9 5 3 5 5 5 5 3 1 3 3 15 14 15 3 13 2 1 11 14 14 2 11 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 // SPDX-License-Identifier: GPL-2.0 /* * RTC subsystem, interface functions * * Copyright (C) 2005 Tower Technologies * Author: Alessandro Zummo <a.zummo@towertech.it> * * based on arch/arm/common/rtctime.c */ #include <linux/rtc.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/log2.h> #include <linux/workqueue.h> #define CREATE_TRACE_POINTS #include <trace/events/rtc.h> static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) { time64_t secs; if (!rtc->offset_secs) return; secs = rtc_tm_to_time64(tm); /* * Since the reading time values from RTC device are always in the RTC * original valid range, but we need to skip the overlapped region * between expanded range and original range, which is no need to add * the offset. */ if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || (rtc->start_secs < rtc->range_min && secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) return; rtc_time64_to_tm(secs + rtc->offset_secs, tm); } static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) { time64_t secs; if (!rtc->offset_secs) return; secs = rtc_tm_to_time64(tm); /* * If the setting time values are in the valid range of RTC hardware * device, then no need to subtract the offset when setting time to RTC * device. Otherwise we need to subtract the offset to make the time * values are valid for RTC hardware device. */ if (secs >= rtc->range_min && secs <= rtc->range_max) return; rtc_time64_to_tm(secs - rtc->offset_secs, tm); } static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) { if (rtc->range_min != rtc->range_max) { time64_t time = rtc_tm_to_time64(tm); time64_t range_min = rtc->set_start_time ? rtc->start_secs : rtc->range_min; timeu64_t range_max = rtc->set_start_time ? (rtc->start_secs + rtc->range_max - rtc->range_min) : rtc->range_max; if (time < range_min || time > range_max) return -ERANGE; } return 0; } static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) { int err; if (!rtc->ops) { err = -ENODEV; } else if (!rtc->ops->read_time) { err = -EINVAL; } else { memset(tm, 0, sizeof(struct rtc_time)); err = rtc->ops->read_time(rtc->dev.parent, tm); if (err < 0) { dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", err); return err; } rtc_add_offset(rtc, tm); err = rtc_valid_tm(tm); if (err < 0) dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); } return err; } int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; err = __rtc_read_time(rtc, tm); mutex_unlock(&rtc->ops_lock); trace_rtc_read_time(rtc_tm_to_time64(tm), err); return err; } EXPORT_SYMBOL_GPL(rtc_read_time); int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) { int err, uie; err = rtc_valid_tm(tm); if (err != 0) return err; err = rtc_valid_range(rtc, tm); if (err) return err; rtc_subtract_offset(rtc, tm); #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active; #else uie = rtc->uie_rtctimer.enabled; #endif if (uie) { err = rtc_update_irq_enable(rtc, 0); if (err) return err; } err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (!rtc->ops) err = -ENODEV; else if (rtc->ops->set_time) err = rtc->ops->set_time(rtc->dev.parent, tm); else err = -EINVAL; pm_stay_awake(rtc->dev.parent); mutex_unlock(&rtc->ops_lock); /* A timer might have just expired */ schedule_work(&rtc->irqwork); if (uie) { err = rtc_update_irq_enable(rtc, 1); if (err) return err; } trace_rtc_set_time(rtc_tm_to_time64(tm), err); return err; } EXPORT_SYMBOL_GPL(rtc_set_time); static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (!rtc->ops) { err = -ENODEV; } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { err = -EINVAL; } else { alarm->enabled = 0; alarm->pending = 0; alarm->time.tm_sec = -1; alarm->time.tm_min = -1; alarm->time.tm_hour = -1; alarm->time.tm_mday = -1; alarm->time.tm_mon = -1; alarm->time.tm_year = -1; alarm->time.tm_wday = -1; alarm->time.tm_yday = -1; alarm->time.tm_isdst = -1; err = rtc->ops->read_alarm(rtc->dev.parent, alarm); } mutex_unlock(&rtc->ops_lock); trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); return err; } int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { int err; struct rtc_time before, now; int first_time = 1; time64_t t_now, t_alm; enum { none, day, month, year } missing = none; unsigned int days; /* The lower level RTC driver may return -1 in some fields, * creating invalid alarm->time values, for reasons like: * * - The hardware may not be capable of filling them in; * many alarms match only on time-of-day fields, not * day/month/year calendar data. * * - Some hardware uses illegal values as "wildcard" match * values, which non-Linux firmware (like a BIOS) may try * to set up as e.g. "alarm 15 minutes after each hour". * Linux uses only oneshot alarms. * * When we see that here, we deal with it by using values from * a current RTC timestamp for any missing (-1) values. The * RTC driver prevents "periodic alarm" modes. * * But this can be racey, because some fields of the RTC timestamp * may have wrapped in the interval since we read the RTC alarm, * which would lead to us inserting inconsistent values in place * of the -1 fields. * * Reading the alarm and timestamp in the reverse sequence * would have the same race condition, and not solve the issue. * * So, we must first read the RTC timestamp, * then read the RTC alarm value, * and then read a second RTC timestamp. * * If any fields of the second timestamp have changed * when compared with the first timestamp, then we know * our timestamp may be inconsistent with that used by * the low-level rtc_read_alarm_internal() function. * * So, when the two timestamps disagree, we just loop and do * the process again to get a fully consistent set of values. * * This could all instead be done in the lower level driver, * but since more than one lower level RTC implementation needs it, * then it's probably best to do it here instead of there.. */ /* Get the "before" timestamp */ err = rtc_read_time(rtc, &before); if (err < 0) return err; do { if (!first_time) memcpy(&before, &now, sizeof(struct rtc_time)); first_time = 0; /* get the RTC alarm values, which may be incomplete */ err = rtc_read_alarm_internal(rtc, alarm); if (err) return err; /* full-function RTCs won't have such missing fields */ err = rtc_valid_tm(&alarm->time); if (!err) goto done; /* get the "after" timestamp, to detect wrapped fields */ err = rtc_read_time(rtc, &now); if (err < 0) return err; /* note that tm_sec is a "don't care" value here: */ } while (before.tm_min != now.tm_min || before.tm_hour != now.tm_hour || before.tm_mon != now.tm_mon || before.tm_year != now.tm_year); /* Fill in the missing alarm fields using the timestamp; we * know there's at least one since alarm->time is invalid. */ if (alarm->time.tm_sec == -1) alarm->time.tm_sec = now.tm_sec; if (alarm->time.tm_min == -1) alarm->time.tm_min = now.tm_min; if (alarm->time.tm_hour == -1) alarm->time.tm_hour = now.tm_hour; /* For simplicity, only support date rollover for now */ if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { alarm->time.tm_mday = now.tm_mday; missing = day; } if ((unsigned int)alarm->time.tm_mon >= 12) { alarm->time.tm_mon = now.tm_mon; if (missing == none) missing = month; } if (alarm->time.tm_year == -1) { alarm->time.tm_year = now.tm_year; if (missing == none) missing = year; } /* Can't proceed if alarm is still invalid after replacing * missing fields. */ err = rtc_valid_tm(&alarm->time); if (err) goto done; /* with luck, no rollover is needed */ t_now = rtc_tm_to_time64(&now); t_alm = rtc_tm_to_time64(&alarm->time); if (t_now < t_alm) goto done; switch (missing) { /* 24 hour rollover ... if it's now 10am Monday, an alarm that * that will trigger at 5am will do so at 5am Tuesday, which * could also be in the next month or year. This is a common * case, especially for PCs. */ case day: dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); t_alm += 24 * 60 * 60; rtc_time64_to_tm(t_alm, &alarm->time); break; /* Month rollover ... if it's the 31th, an alarm on the 3rd will * be next month. An alarm matching on the 30th, 29th, or 28th * may end up in the month after that! Many newer PCs support * this type of alarm. */ case month: dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); do { if (alarm->time.tm_mon < 11) { alarm->time.tm_mon++; } else { alarm->time.tm_mon = 0; alarm->time.tm_year++; } days = rtc_month_days(alarm->time.tm_mon, alarm->time.tm_year); } while (days < alarm->time.tm_mday); break; /* Year rollover ... easy except for leap years! */ case year: dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); do { alarm->time.tm_year++; } while (!is_leap_year(alarm->time.tm_year + 1900) && rtc_valid_tm(&alarm->time) != 0); break; default: dev_warn(&rtc->dev, "alarm rollover not handled\n"); } err = rtc_valid_tm(&alarm->time); done: if (err && alarm->enabled) dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", &alarm->time); else rtc_add_offset(rtc, &alarm->time); return err; } int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (!rtc->ops) { err = -ENODEV; } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) { err = -EINVAL; } else { memset(alarm, 0, sizeof(struct rtc_wkalrm)); alarm->enabled = rtc->aie_timer.enabled; alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); } mutex_unlock(&rtc->ops_lock); trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); return err; } EXPORT_SYMBOL_GPL(rtc_read_alarm); static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { struct rtc_time tm; time64_t now, scheduled; int err; err = rtc_valid_tm(&alarm->time); if (err) return err; scheduled = rtc_tm_to_time64(&alarm->time); /* Make sure we're not setting alarms in the past */ err = __rtc_read_time(rtc, &tm); if (err) return err; now = rtc_tm_to_time64(&tm); if (scheduled <= now) return -ETIME; /* * XXX - We just checked to make sure the alarm time is not * in the past, but there is still a race window where if * the is alarm set for the next second and the second ticks * over right here, before we set the alarm. */ rtc_subtract_offset(rtc, &alarm->time); if (!rtc->ops) err = -ENODEV; else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) err = -EINVAL; else err = rtc->ops->set_alarm(rtc->dev.parent, alarm); trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); return err; } int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { ktime_t alarm_time; int err; if (!rtc->ops) return -ENODEV; else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) return -EINVAL; err = rtc_valid_tm(&alarm->time); if (err != 0) return err; err = rtc_valid_range(rtc, &alarm->time); if (err) return err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (rtc->aie_timer.enabled) rtc_timer_remove(rtc, &rtc->aie_timer); alarm_time = rtc_tm_to_ktime(alarm->time); /* * Round down so we never miss a deadline, checking for past deadline is * done in __rtc_set_alarm */ if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features)) alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC); rtc->aie_timer.node.expires = alarm_time; rtc->aie_timer.period = 0; if (alarm->enabled) err = rtc_timer_enqueue(rtc, &rtc->aie_timer); mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_set_alarm); /* Called once per device from rtc_device_register */ int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { int err; struct rtc_time now; err = rtc_valid_tm(&alarm->time); if (err != 0) return err; err = rtc_read_time(rtc, &now); if (err) return err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); rtc->aie_timer.period = 0; /* Alarm has to be enabled & in the future for us to enqueue it */ if (alarm->enabled && (rtc_tm_to_ktime(now) < rtc->aie_timer.node.expires)) { rtc->aie_timer.enabled = 1; timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); trace_rtc_timer_enqueue(&rtc->aie_timer); } mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_initialize_alarm); int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (rtc->aie_timer.enabled != enabled) { if (enabled) err = rtc_timer_enqueue(rtc, &rtc->aie_timer); else rtc_timer_remove(rtc, &rtc->aie_timer); } if (err) /* nothing */; else if (!rtc->ops) err = -ENODEV; else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) err = -EINVAL; else err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); mutex_unlock(&rtc->ops_lock); trace_rtc_alarm_irq_enable(enabled, err); return err; } EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL if (enabled == 0 && rtc->uie_irq_active) { mutex_unlock(&rtc->ops_lock); return rtc_dev_update_irq_enable_emul(rtc, 0); } #endif /* make sure we're changing state */ if (rtc->uie_rtctimer.enabled == enabled) goto out; if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) || !test_bit(RTC_FEATURE_ALARM, rtc->features)) { mutex_unlock(&rtc->ops_lock); #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL return rtc_dev_update_irq_enable_emul(rtc, enabled); #else return -EINVAL; #endif } if (enabled) { struct rtc_time tm; ktime_t now, onesec; err = __rtc_read_time(rtc, &tm); if (err) goto out; onesec = ktime_set(1, 0); now = rtc_tm_to_ktime(tm); rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); rtc->uie_rtctimer.period = ktime_set(1, 0); err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); } else { rtc_timer_remove(rtc, &rtc->uie_rtctimer); } out: mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_update_irq_enable); /** * rtc_handle_legacy_irq - AIE, UIE and PIE event hook * @rtc: pointer to the rtc device * @num: number of occurence of the event * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF * * This function is called when an AIE, UIE or PIE mode interrupt * has occurred (or been emulated). * */ void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) { unsigned long flags; /* mark one irq of the appropriate mode */ spin_lock_irqsave(&rtc->irq_lock, flags); rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode); spin_unlock_irqrestore(&rtc->irq_lock, flags); wake_up_interruptible(&rtc->irq_queue); kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); } /** * rtc_aie_update_irq - AIE mode rtctimer hook * @rtc: pointer to the rtc_device * * This functions is called when the aie_timer expires. */ void rtc_aie_update_irq(struct rtc_device *rtc) { rtc_handle_legacy_irq(rtc, 1, RTC_AF); } /** * rtc_uie_update_irq - UIE mode rtctimer hook * @rtc: pointer to the rtc_device * * This functions is called when the uie_timer expires. */ void rtc_uie_update_irq(struct rtc_device *rtc) { rtc_handle_legacy_irq(rtc, 1, RTC_UF); } /** * rtc_pie_update_irq - PIE mode hrtimer hook * @timer: pointer to the pie mode hrtimer * * This function is used to emulate PIE mode interrupts * using an hrtimer. This function is called when the periodic * hrtimer expires. */ enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) { struct rtc_device *rtc; ktime_t period; u64 count; rtc = container_of(timer, struct rtc_device, pie_timer); period = NSEC_PER_SEC / rtc->irq_freq; count = hrtimer_forward_now(timer, period); rtc_handle_legacy_irq(rtc, count, RTC_PF); return HRTIMER_RESTART; } /** * rtc_update_irq - Triggered when a RTC interrupt occurs. * @rtc: the rtc device * @num: how many irqs are being reported (usually one) * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF * Context: any */ void rtc_update_irq(struct rtc_device *rtc, unsigned long num, unsigned long events) { if (IS_ERR_OR_NULL(rtc)) return; pm_stay_awake(rtc->dev.parent); schedule_work(&rtc->irqwork); } EXPORT_SYMBOL_GPL(rtc_update_irq); struct rtc_device *rtc_class_open(const char *name) { struct device *dev; struct rtc_device *rtc = NULL; dev = class_find_device_by_name(&rtc_class, name); if (dev) rtc = to_rtc_device(dev); if (rtc) { if (!try_module_get(rtc->owner)) { put_device(dev); rtc = NULL; } } return rtc; } EXPORT_SYMBOL_GPL(rtc_class_open); void rtc_class_close(struct rtc_device *rtc) { module_put(rtc->owner); put_device(&rtc->dev); } EXPORT_SYMBOL_GPL(rtc_class_close); static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) { /* * We always cancel the timer here first, because otherwise * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); * when we manage to start the timer before the callback * returns HRTIMER_RESTART. * * We cannot use hrtimer_cancel() here as a running callback * could be blocked on rtc->irq_task_lock and hrtimer_cancel() * would spin forever. */ if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) return -1; if (enabled) { ktime_t period = NSEC_PER_SEC / rtc->irq_freq; hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); } return 0; } /** * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs * @rtc: the rtc device * @enabled: true to enable periodic IRQs * Context: any * * Note that rtc_irq_set_freq() should previously have been used to * specify the desired frequency of periodic IRQ. */ int rtc_irq_set_state(struct rtc_device *rtc, int enabled) { int err = 0; while (rtc_update_hrtimer(rtc, enabled) < 0) cpu_relax(); rtc->pie_enabled = enabled; trace_rtc_irq_set_state(enabled, err); return err; } /** * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ * @rtc: the rtc device * @freq: positive frequency * Context: any * * Note that rtc_irq_set_state() is used to enable or disable the * periodic IRQs. */ int rtc_irq_set_freq(struct rtc_device *rtc, int freq) { int err = 0; if (freq <= 0 || freq > RTC_MAX_FREQ) return -EINVAL; rtc->irq_freq = freq; while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) cpu_relax(); trace_rtc_irq_set_freq(freq, err); return err; } /** * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue * @rtc: rtc device * @timer: timer being added. * * Enqueues a timer onto the rtc devices timerqueue and sets * the next alarm event appropriately. * * Sets the enabled bit on the added timer. * * Must hold ops_lock for proper serialization of timerqueue */ static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) { struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); struct rtc_time tm; ktime_t now; int err; err = __rtc_read_time(rtc, &tm); if (err) return err; timer->enabled = 1; now = rtc_tm_to_ktime(tm); /* Skip over expired timers */ while (next) { if (next->expires >= now) break; next = timerqueue_iterate_next(next); } timerqueue_add(&rtc->timerqueue, &timer->node); trace_rtc_timer_enqueue(timer); if (!next || ktime_before(timer->node.expires, next->expires)) { struct rtc_wkalrm alarm; alarm.time = rtc_ktime_to_tm(timer->node.expires); alarm.enabled = 1; err = __rtc_set_alarm(rtc, &alarm); if (err == -ETIME) { pm_stay_awake(rtc->dev.parent); schedule_work(&rtc->irqwork); } else if (err) { timerqueue_del(&rtc->timerqueue, &timer->node); trace_rtc_timer_dequeue(timer); timer->enabled = 0; return err; } } return 0; } static void rtc_alarm_disable(struct rtc_device *rtc) { if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) return; rtc->ops->alarm_irq_enable(rtc->dev.parent, false); trace_rtc_alarm_irq_enable(0, 0); } /** * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue * @rtc: rtc device * @timer: timer being removed. * * Removes a timer onto the rtc devices timerqueue and sets * the next alarm event appropriately. * * Clears the enabled bit on the removed timer. * * Must hold ops_lock for proper serialization of timerqueue */ static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) { struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); timerqueue_del(&rtc->timerqueue, &timer->node); trace_rtc_timer_dequeue(timer); timer->enabled = 0; if (next == &timer->node) { struct rtc_wkalrm alarm; int err; next = timerqueue_getnext(&rtc->timerqueue); if (!next) { rtc_alarm_disable(rtc); return; } alarm.time = rtc_ktime_to_tm(next->expires); alarm.enabled = 1; err = __rtc_set_alarm(rtc, &alarm); if (err == -ETIME) { pm_stay_awake(rtc->dev.parent); schedule_work(&rtc->irqwork); } } } /** * rtc_timer_do_work - Expires rtc timers * @work: work item * * Expires rtc timers. Reprograms next alarm event if needed. * Called via worktask. * * Serializes access to timerqueue via ops_lock mutex */ void rtc_timer_do_work(struct work_struct *work) { struct rtc_timer *timer; struct timerqueue_node *next; ktime_t now; struct rtc_time tm; int err; struct rtc_device *rtc = container_of(work, struct rtc_device, irqwork); mutex_lock(&rtc->ops_lock); again: err = __rtc_read_time(rtc, &tm); if (err) { mutex_unlock(&rtc->ops_lock); return; } now = rtc_tm_to_ktime(tm); while ((next = timerqueue_getnext(&rtc->timerqueue))) { if (next->expires > now) break; /* expire timer */ timer = container_of(next, struct rtc_timer, node); timerqueue_del(&rtc->timerqueue, &timer->node); trace_rtc_timer_dequeue(timer); timer->enabled = 0; if (timer->func) timer->func(timer->rtc); trace_rtc_timer_fired(timer); /* Re-add/fwd periodic timers */ if (ktime_to_ns(timer->period)) { timer->node.expires = ktime_add(timer->node.expires, timer->period); timer->enabled = 1; timerqueue_add(&rtc->timerqueue, &timer->node); trace_rtc_timer_enqueue(timer); } } /* Set next alarm */ if (next) { struct rtc_wkalrm alarm; int err; int retry = 3; alarm.time = rtc_ktime_to_tm(next->expires); alarm.enabled = 1; reprogram: err = __rtc_set_alarm(rtc, &alarm); if (err == -ETIME) { goto again; } else if (err) { if (retry-- > 0) goto reprogram; timer = container_of(next, struct rtc_timer, node); timerqueue_del(&rtc->timerqueue, &timer->node); trace_rtc_timer_dequeue(timer); timer->enabled = 0; dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); goto again; } } else { rtc_alarm_disable(rtc); } pm_relax(rtc->dev.parent); mutex_unlock(&rtc->ops_lock); } /* rtc_timer_init - Initializes an rtc_timer * @timer: timer to be intiialized * @f: function pointer to be called when timer fires * @rtc: pointer to the rtc_device * * Kernel interface to initializing an rtc_timer. */ void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), struct rtc_device *rtc) { timerqueue_init(&timer->node); timer->enabled = 0; timer->func = f; timer->rtc = rtc; } /* rtc_timer_start - Sets an rtc_timer to fire in the future * @ rtc: rtc device to be used * @ timer: timer being set * @ expires: time at which to expire the timer * @ period: period that the timer will recur * * Kernel interface to set an rtc_timer */ int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, ktime_t expires, ktime_t period) { int ret = 0; mutex_lock(&rtc->ops_lock); if (timer->enabled) rtc_timer_remove(rtc, timer); timer->node.expires = expires; timer->period = period; ret = rtc_timer_enqueue(rtc, timer); mutex_unlock(&rtc->ops_lock); return ret; } /* rtc_timer_cancel - Stops an rtc_timer * @ rtc: rtc device to be used * @ timer: timer being set * * Kernel interface to cancel an rtc_timer */ void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) { mutex_lock(&rtc->ops_lock); if (timer->enabled) rtc_timer_remove(rtc, timer); mutex_unlock(&rtc->ops_lock); } /** * rtc_read_offset - Read the amount of rtc offset in parts per billion * @rtc: rtc device to be used * @offset: the offset in parts per billion * * see below for details. * * Kernel interface to read rtc clock offset * Returns 0 on success, or a negative number on error. * If read_offset() is not implemented for the rtc, return -EINVAL */ int rtc_read_offset(struct rtc_device *rtc, long *offset) { int ret; if (!rtc->ops) return -ENODEV; if (!rtc->ops->read_offset) return -EINVAL; mutex_lock(&rtc->ops_lock); ret = rtc->ops->read_offset(rtc->dev.parent, offset); mutex_unlock(&rtc->ops_lock); trace_rtc_read_offset(*offset, ret); return ret; } /** * rtc_set_offset - Adjusts the duration of the average second * @rtc: rtc device to be used * @offset: the offset in parts per billion * * Some rtc's allow an adjustment to the average duration of a second * to compensate for differences in the actual clock rate due to temperature, * the crystal, capacitor, etc. * * The adjustment applied is as follows: * t = t0 * (1 + offset * 1e-9) * where t0 is the measured length of 1 RTC second with offset = 0 * * Kernel interface to adjust an rtc clock offset. * Return 0 on success, or a negative number on error. * If the rtc offset is not setable (or not implemented), return -EINVAL */ int rtc_set_offset(struct rtc_device *rtc, long offset) { int ret; if (!rtc->ops) return -ENODEV; if (!rtc->ops->set_offset) return -EINVAL; mutex_lock(&rtc->ops_lock); ret = rtc->ops->set_offset(rtc->dev.parent, offset); mutex_unlock(&rtc->ops_lock); trace_rtc_set_offset(offset, ret); return ret; }
170 3998 2356 1026 76 2533 1619 2681 2696 671 2542 2554 3 2299 3 2297 2294 2294 2293 2293 2295 1 2297 2292 2297 440 187 254 2925 186 3006 10 10 9 1 9 9 322 321 3 223 2 2 321 321 321 1099 267 268 170 170 222 519 519 10 2410 1 2406 2411 3 2408 2411 2366 2364 2366 57 60 704 704 703 704 703 703 1024 1026 1026 1026 1026 409 1024 1117 2603 2604 807 2555 1410 2310 2 6 2557 2554 3 3 2677 72 60 2621 1751 2623 2603 2301 944 702 643 1098 2624 2367 2548 2624 6 2599 2606 880 555 1812 2578 23 1751 3 1807 1 555 2412 71 2360 2359 11 704 701 704 1119 11 408 1028 1120 1039 704 3 1118 702 701 2582 18 215 30 1 2385 910 908 910 910 83 83 83 83 83 183 2 181 2 183 2702 2296 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE * Copyright (C) 2016 - 2020 Christoph Hellwig */ #include <linux/init.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/major.h> #include <linux/device_cgroup.h> #include <linux/blkdev.h> #include <linux/blk-integrity.h> #include <linux/backing-dev.h> #include <linux/module.h> #include <linux/blkpg.h> #include <linux/magic.h> #include <linux/buffer_head.h> #include <linux/swap.h> #include <linux/writeback.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/uio.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/part_stat.h> #include <linux/uaccess.h> #include <linux/stat.h> #include "../fs/internal.h" #include "blk.h" /* Should we allow writing to mounted block devices? */ static bool bdev_allow_write_mounted = IS_ENABLED(CONFIG_BLK_DEV_WRITE_MOUNTED); struct bdev_inode { struct block_device bdev; struct inode vfs_inode; }; static inline struct bdev_inode *BDEV_I(struct inode *inode) { return container_of(inode, struct bdev_inode, vfs_inode); } static inline struct inode *BD_INODE(struct block_device *bdev) { return &container_of(bdev, struct bdev_inode, bdev)->vfs_inode; } struct block_device *I_BDEV(struct inode *inode) { return &BDEV_I(inode)->bdev; } EXPORT_SYMBOL(I_BDEV); struct block_device *file_bdev(struct file *bdev_file) { return I_BDEV(bdev_file->f_mapping->host); } EXPORT_SYMBOL(file_bdev); static void bdev_write_inode(struct block_device *bdev) { struct inode *inode = BD_INODE(bdev); int ret; spin_lock(&inode->i_lock); while (inode->i_state & I_DIRTY) { spin_unlock(&inode->i_lock); ret = write_inode_now(inode, true); if (ret) pr_warn_ratelimited( "VFS: Dirty inode writeback failed for block device %pg (err=%d).\n", bdev, ret); spin_lock(&inode->i_lock); } spin_unlock(&inode->i_lock); } /* Kill _all_ buffers and pagecache , dirty or not.. */ static void kill_bdev(struct block_device *bdev) { struct address_space *mapping = bdev->bd_mapping; if (mapping_empty(mapping)) return; invalidate_bh_lrus(); truncate_inode_pages(mapping, 0); } /* Invalidate clean unused buffers and pagecache. */ void invalidate_bdev(struct block_device *bdev) { struct address_space *mapping = bdev->bd_mapping; if (mapping->nrpages) { invalidate_bh_lrus(); lru_add_drain_all(); /* make sure all lru add caches are flushed */ invalidate_mapping_pages(mapping, 0, -1); } } EXPORT_SYMBOL(invalidate_bdev); /* * Drop all buffers & page cache for given bdev range. This function bails * with error if bdev has other exclusive owner (such as filesystem). */ int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, loff_t lstart, loff_t lend) { /* * If we don't hold exclusive handle for the device, upgrade to it * while we discard the buffer cache to avoid discarding buffers * under live filesystem. */ if (!(mode & BLK_OPEN_EXCL)) { int err = bd_prepare_to_claim(bdev, truncate_bdev_range, NULL); if (err) goto invalidate; } truncate_inode_pages_range(bdev->bd_mapping, lstart, lend); if (!(mode & BLK_OPEN_EXCL)) bd_abort_claiming(bdev, truncate_bdev_range); return 0; invalidate: /* * Someone else has handle exclusively open. Try invalidating instead. * The 'end' argument is inclusive so the rounding is safe. */ return invalidate_inode_pages2_range(bdev->bd_mapping, lstart >> PAGE_SHIFT, lend >> PAGE_SHIFT); } static void set_init_blocksize(struct block_device *bdev) { unsigned int bsize = bdev_logical_block_size(bdev); loff_t size = i_size_read(BD_INODE(bdev)); while (bsize < PAGE_SIZE) { if (size & bsize) break; bsize <<= 1; } BD_INODE(bdev)->i_blkbits = blksize_bits(bsize); mapping_set_folio_min_order(BD_INODE(bdev)->i_mapping, get_order(bsize)); } /** * bdev_validate_blocksize - check that this block size is acceptable * @bdev: blockdevice to check * @block_size: block size to check * * For block device users that do not use buffer heads or the block device * page cache, make sure that this block size can be used with the device. * * Return: On success zero is returned, negative error code on failure. */ int bdev_validate_blocksize(struct block_device *bdev, int block_size) { if (blk_validate_block_size(block_size)) return -EINVAL; /* Size cannot be smaller than the size supported by the device */ if (block_size < bdev_logical_block_size(bdev)) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(bdev_validate_blocksize); int set_blocksize(struct file *file, int size) { struct inode *inode = file->f_mapping->host; struct block_device *bdev = I_BDEV(inode); int ret; ret = bdev_validate_blocksize(bdev, size); if (ret) return ret; if (!file->private_data) return -EINVAL; /* Don't change the size if it is same as current */ if (inode->i_blkbits != blksize_bits(size)) { /* * Flush and truncate the pagecache before we reconfigure the * mapping geometry because folio sizes are variable now. If a * reader has already allocated a folio whose size is smaller * than the new min_order but invokes readahead after the new * min_order becomes visible, readahead will think there are * "zero" blocks per folio and crash. Take the inode and * invalidation locks to avoid racing with * read/write/fallocate. */ inode_lock(inode); filemap_invalidate_lock(inode->i_mapping); sync_blockdev(bdev); kill_bdev(bdev); inode->i_blkbits = blksize_bits(size); mapping_set_folio_min_order(inode->i_mapping, get_order(size)); kill_bdev(bdev); filemap_invalidate_unlock(inode->i_mapping); inode_unlock(inode); } return 0; } EXPORT_SYMBOL(set_blocksize); int sb_set_blocksize(struct super_block *sb, int size) { if (!(sb->s_type->fs_flags & FS_LBS) && size > PAGE_SIZE) return 0; if (set_blocksize(sb->s_bdev_file, size)) return 0; /* If we get here, we know size is validated */ sb->s_blocksize = size; sb->s_blocksize_bits = blksize_bits(size); return sb->s_blocksize; } EXPORT_SYMBOL(sb_set_blocksize); int sb_min_blocksize(struct super_block *sb, int size) { int minsize = bdev_logical_block_size(sb->s_bdev); if (size < minsize) size = minsize; return sb_set_blocksize(sb, size); } EXPORT_SYMBOL(sb_min_blocksize); int sync_blockdev_nowait(struct block_device *bdev) { if (!bdev) return 0; return filemap_flush(bdev->bd_mapping); } EXPORT_SYMBOL_GPL(sync_blockdev_nowait); /* * Write out and wait upon all the dirty data associated with a block * device via its mapping. Does not take the superblock lock. */ int sync_blockdev(struct block_device *bdev) { if (!bdev) return 0; return filemap_write_and_wait(bdev->bd_mapping); } EXPORT_SYMBOL(sync_blockdev); int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend) { return filemap_write_and_wait_range(bdev->bd_mapping, lstart, lend); } EXPORT_SYMBOL(sync_blockdev_range); /** * bdev_freeze - lock a filesystem and force it into a consistent state * @bdev: blockdevice to lock * * If a superblock is found on this device, we take the s_umount semaphore * on it to make sure nobody unmounts until the snapshot creation is done. * The reference counter (bd_fsfreeze_count) guarantees that only the last * unfreeze process can unfreeze the frozen filesystem actually when multiple * freeze requests arrive simultaneously. It counts up in bdev_freeze() and * count down in bdev_thaw(). When it becomes 0, thaw_bdev() will unfreeze * actually. * * Return: On success zero is returned, negative error code on failure. */ int bdev_freeze(struct block_device *bdev) { int error = 0; mutex_lock(&bdev->bd_fsfreeze_mutex); if (atomic_inc_return(&bdev->bd_fsfreeze_count) > 1) { mutex_unlock(&bdev->bd_fsfreeze_mutex); return 0; } mutex_lock(&bdev->bd_holder_lock); if (bdev->bd_holder_ops && bdev->bd_holder_ops->freeze) { error = bdev->bd_holder_ops->freeze(bdev); lockdep_assert_not_held(&bdev->bd_holder_lock); } else { mutex_unlock(&bdev->bd_holder_lock); error = sync_blockdev(bdev); } if (error) atomic_dec(&bdev->bd_fsfreeze_count); mutex_unlock(&bdev->bd_fsfreeze_mutex); return error; } EXPORT_SYMBOL(bdev_freeze); /** * bdev_thaw - unlock filesystem * @bdev: blockdevice to unlock * * Unlocks the filesystem and marks it writeable again after bdev_freeze(). * * Return: On success zero is returned, negative error code on failure. */ int bdev_thaw(struct block_device *bdev) { int error = -EINVAL, nr_freeze; mutex_lock(&bdev->bd_fsfreeze_mutex); /* * If this returns < 0 it means that @bd_fsfreeze_count was * already 0 and no decrement was performed. */ nr_freeze = atomic_dec_if_positive(&bdev->bd_fsfreeze_count); if (nr_freeze < 0) goto out; error = 0; if (nr_freeze > 0) goto out; mutex_lock(&bdev->bd_holder_lock); if (bdev->bd_holder_ops && bdev->bd_holder_ops->thaw) { error = bdev->bd_holder_ops->thaw(bdev); lockdep_assert_not_held(&bdev->bd_holder_lock); } else { mutex_unlock(&bdev->bd_holder_lock); } if (error) atomic_inc(&bdev->bd_fsfreeze_count); out: mutex_unlock(&bdev->bd_fsfreeze_mutex); return error; } EXPORT_SYMBOL(bdev_thaw); /* * pseudo-fs */ static __cacheline_aligned_in_smp DEFINE_MUTEX(bdev_lock); static struct kmem_cache *bdev_cachep __ro_after_init; static struct inode *bdev_alloc_inode(struct super_block *sb) { struct bdev_inode *ei = alloc_inode_sb(sb, bdev_cachep, GFP_KERNEL); if (!ei) return NULL; memset(&ei->bdev, 0, sizeof(ei->bdev)); if (security_bdev_alloc(&ei->bdev)) { kmem_cache_free(bdev_cachep, ei); return NULL; } return &ei->vfs_inode; } static void bdev_free_inode(struct inode *inode) { struct block_device *bdev = I_BDEV(inode); free_percpu(bdev->bd_stats); kfree(bdev->bd_meta_info); security_bdev_free(bdev); if (!bdev_is_partition(bdev)) { if (bdev->bd_disk && bdev->bd_disk->bdi) bdi_put(bdev->bd_disk->bdi); kfree(bdev->bd_disk); } if (MAJOR(bdev->bd_dev) == BLOCK_EXT_MAJOR) blk_free_ext_minor(MINOR(bdev->bd_dev)); kmem_cache_free(bdev_cachep, BDEV_I(inode)); } static void init_once(void *data) { struct bdev_inode *ei = data; inode_init_once(&ei->vfs_inode); } static void bdev_evict_inode(struct inode *inode) { truncate_inode_pages_final(&inode->i_data); invalidate_inode_buffers(inode); /* is it needed here? */ clear_inode(inode); } static const struct super_operations bdev_sops = { .statfs = simple_statfs, .alloc_inode = bdev_alloc_inode, .free_inode = bdev_free_inode, .drop_inode = generic_delete_inode, .evict_inode = bdev_evict_inode, }; static int bd_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); if (!ctx) return -ENOMEM; fc->s_iflags |= SB_I_CGROUPWB; ctx->ops = &bdev_sops; return 0; } static struct file_system_type bd_type = { .name = "bdev", .init_fs_context = bd_init_fs_context, .kill_sb = kill_anon_super, }; struct super_block *blockdev_superblock __ro_after_init; static struct vfsmount *blockdev_mnt __ro_after_init; EXPORT_SYMBOL_GPL(blockdev_superblock); void __init bdev_cache_init(void) { int err; bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_ACCOUNT|SLAB_PANIC), init_once); err = register_filesystem(&bd_type); if (err) panic("Cannot register bdev pseudo-fs"); blockdev_mnt = kern_mount(&bd_type); if (IS_ERR(blockdev_mnt)) panic("Cannot create bdev pseudo-fs"); blockdev_superblock = blockdev_mnt->mnt_sb; /* For writeback */ } struct block_device *bdev_alloc(struct gendisk *disk, u8 partno) { struct block_device *bdev; struct inode *inode; inode = new_inode(blockdev_superblock); if (!inode) return NULL; inode->i_mode = S_IFBLK; inode->i_rdev = 0; inode->i_data.a_ops = &def_blk_aops; mapping_set_gfp_mask(&inode->i_data, GFP_USER); bdev = I_BDEV(inode); mutex_init(&bdev->bd_fsfreeze_mutex); spin_lock_init(&bdev->bd_size_lock); mutex_init(&bdev->bd_holder_lock); atomic_set(&bdev->__bd_flags, partno); bdev->bd_mapping = &inode->i_data; bdev->bd_queue = disk->queue; if (partno && bdev_test_flag(disk->part0, BD_HAS_SUBMIT_BIO)) bdev_set_flag(bdev, BD_HAS_SUBMIT_BIO); bdev->bd_stats = alloc_percpu(struct disk_stats); if (!bdev->bd_stats) { iput(inode); return NULL; } bdev->bd_disk = disk; return bdev; } void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors) { spin_lock(&bdev->bd_size_lock); i_size_write(BD_INODE(bdev), (loff_t)sectors << SECTOR_SHIFT); bdev->bd_nr_sectors = sectors; spin_unlock(&bdev->bd_size_lock); } void bdev_add(struct block_device *bdev, dev_t dev) { struct inode *inode = BD_INODE(bdev); if (bdev_stable_writes(bdev)) mapping_set_stable_writes(bdev->bd_mapping); bdev->bd_dev = dev; inode->i_rdev = dev; inode->i_ino = dev; insert_inode_hash(inode); } void bdev_unhash(struct block_device *bdev) { remove_inode_hash(BD_INODE(bdev)); } void bdev_drop(struct block_device *bdev) { iput(BD_INODE(bdev)); } long nr_blockdev_pages(void) { struct inode *inode; long ret = 0; spin_lock(&blockdev_superblock->s_inode_list_lock); list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) ret += inode->i_mapping->nrpages; spin_unlock(&blockdev_superblock->s_inode_list_lock); return ret; } /** * bd_may_claim - test whether a block device can be claimed * @bdev: block device of interest * @holder: holder trying to claim @bdev * @hops: holder ops * * Test whether @bdev can be claimed by @holder. * * RETURNS: * %true if @bdev can be claimed, %false otherwise. */ static bool bd_may_claim(struct block_device *bdev, void *holder, const struct blk_holder_ops *hops) { struct block_device *whole = bdev_whole(bdev); lockdep_assert_held(&bdev_lock); if (bdev->bd_holder) { /* * The same holder can always re-claim. */ if (bdev->bd_holder == holder) { if (WARN_ON_ONCE(bdev->bd_holder_ops != hops)) return false; return true; } return false; } /* * If the whole devices holder is set to bd_may_claim, a partition on * the device is claimed, but not the whole device. */ if (whole != bdev && whole->bd_holder && whole->bd_holder != bd_may_claim) return false; return true; } /** * bd_prepare_to_claim - claim a block device * @bdev: block device of interest * @holder: holder trying to claim @bdev * @hops: holder ops. * * Claim @bdev. This function fails if @bdev is already claimed by another * holder and waits if another claiming is in progress. return, the caller * has ownership of bd_claiming and bd_holder[s]. * * RETURNS: * 0 if @bdev can be claimed, -EBUSY otherwise. */ int bd_prepare_to_claim(struct block_device *bdev, void *holder, const struct blk_holder_ops *hops) { struct block_device *whole = bdev_whole(bdev); if (WARN_ON_ONCE(!holder)) return -EINVAL; retry: mutex_lock(&bdev_lock); /* if someone else claimed, fail */ if (!bd_may_claim(bdev, holder, hops)) { mutex_unlock(&bdev_lock); return -EBUSY; } /* if claiming is already in progress, wait for it to finish */ if (whole->bd_claiming) { wait_queue_head_t *wq = __var_waitqueue(&whole->bd_claiming); DEFINE_WAIT(wait); prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); mutex_unlock(&bdev_lock); schedule(); finish_wait(wq, &wait); goto retry; } /* yay, all mine */ whole->bd_claiming = holder; mutex_unlock(&bdev_lock); return 0; } EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */ static void bd_clear_claiming(struct block_device *whole, void *holder) { lockdep_assert_held(&bdev_lock); /* tell others that we're done */ BUG_ON(whole->bd_claiming != holder); whole->bd_claiming = NULL; wake_up_var(&whole->bd_claiming); } /** * bd_finish_claiming - finish claiming of a block device * @bdev: block device of interest * @holder: holder that has claimed @bdev * @hops: block device holder operations * * Finish exclusive open of a block device. Mark the device as exlusively * open by the holder and wake up all waiters for exclusive open to finish. */ static void bd_finish_claiming(struct block_device *bdev, void *holder, const struct blk_holder_ops *hops) { struct block_device *whole = bdev_whole(bdev); mutex_lock(&bdev_lock); BUG_ON(!bd_may_claim(bdev, holder, hops)); /* * Note that for a whole device bd_holders will be incremented twice, * and bd_holder will be set to bd_may_claim before being set to holder */ whole->bd_holders++; whole->bd_holder = bd_may_claim; bdev->bd_holders++; mutex_lock(&bdev->bd_holder_lock); bdev->bd_holder = holder; bdev->bd_holder_ops = hops; mutex_unlock(&bdev->bd_holder_lock); bd_clear_claiming(whole, holder); mutex_unlock(&bdev_lock); } /** * bd_abort_claiming - abort claiming of a block device * @bdev: block device of interest * @holder: holder that has claimed @bdev * * Abort claiming of a block device when the exclusive open failed. This can be * also used when exclusive open is not actually desired and we just needed * to block other exclusive openers for a while. */ void bd_abort_claiming(struct block_device *bdev, void *holder) { mutex_lock(&bdev_lock); bd_clear_claiming(bdev_whole(bdev), holder); mutex_unlock(&bdev_lock); } EXPORT_SYMBOL(bd_abort_claiming); static void bd_end_claim(struct block_device *bdev, void *holder) { struct block_device *whole = bdev_whole(bdev); bool unblock = false; /* * Release a claim on the device. The holder fields are protected with * bdev_lock. open_mutex is used to synchronize disk_holder unlinking. */ mutex_lock(&bdev_lock); WARN_ON_ONCE(bdev->bd_holder != holder); WARN_ON_ONCE(--bdev->bd_holders < 0); WARN_ON_ONCE(--whole->bd_holders < 0); if (!bdev->bd_holders) { mutex_lock(&bdev->bd_holder_lock); bdev->bd_holder = NULL; bdev->bd_holder_ops = NULL; mutex_unlock(&bdev->bd_holder_lock); if (bdev_test_flag(bdev, BD_WRITE_HOLDER)) unblock = true; } if (!whole->bd_holders) whole->bd_holder = NULL; mutex_unlock(&bdev_lock); /* * If this was the last claim, remove holder link and unblock evpoll if * it was a write holder. */ if (unblock) { disk_unblock_events(bdev->bd_disk); bdev_clear_flag(bdev, BD_WRITE_HOLDER); } } static void blkdev_flush_mapping(struct block_device *bdev) { WARN_ON_ONCE(bdev->bd_holders); sync_blockdev(bdev); kill_bdev(bdev); bdev_write_inode(bdev); } static void blkdev_put_whole(struct block_device *bdev) { if (atomic_dec_and_test(&bdev->bd_openers)) blkdev_flush_mapping(bdev); if (bdev->bd_disk->fops->release) bdev->bd_disk->fops->release(bdev->bd_disk); } static int blkdev_get_whole(struct block_device *bdev, blk_mode_t mode) { struct gendisk *disk = bdev->bd_disk; int ret; if (disk->fops->open) { ret = disk->fops->open(disk, mode); if (ret) { /* avoid ghost partitions on a removed medium */ if (ret == -ENOMEDIUM && test_bit(GD_NEED_PART_SCAN, &disk->state)) bdev_disk_changed(disk, true); return ret; } } if (!atomic_read(&bdev->bd_openers)) set_init_blocksize(bdev); atomic_inc(&bdev->bd_openers); if (test_bit(GD_NEED_PART_SCAN, &disk->state)) { /* * Only return scanning errors if we are called from contexts * that explicitly want them, e.g. the BLKRRPART ioctl. */ ret = bdev_disk_changed(disk, false); if (ret && (mode & BLK_OPEN_STRICT_SCAN)) { blkdev_put_whole(bdev); return ret; } } return 0; } static int blkdev_get_part(struct block_device *part, blk_mode_t mode) { struct gendisk *disk = part->bd_disk; int ret; ret = blkdev_get_whole(bdev_whole(part), mode); if (ret) return ret; ret = -ENXIO; if (!bdev_nr_sectors(part)) goto out_blkdev_put; if (!atomic_read(&part->bd_openers)) { disk->open_partitions++; set_init_blocksize(part); } atomic_inc(&part->bd_openers); return 0; out_blkdev_put: blkdev_put_whole(bdev_whole(part)); return ret; } int bdev_permission(dev_t dev, blk_mode_t mode, void *holder) { int ret; ret = devcgroup_check_permission(DEVCG_DEV_BLOCK, MAJOR(dev), MINOR(dev), ((mode & BLK_OPEN_READ) ? DEVCG_ACC_READ : 0) | ((mode & BLK_OPEN_WRITE) ? DEVCG_ACC_WRITE : 0)); if (ret) return ret; /* Blocking writes requires exclusive opener */ if (mode & BLK_OPEN_RESTRICT_WRITES && !holder) return -EINVAL; /* * We're using error pointers to indicate to ->release() when we * failed to open that block device. Also this doesn't make sense. */ if (WARN_ON_ONCE(IS_ERR(holder))) return -EINVAL; return 0; } static void blkdev_put_part(struct block_device *part) { struct block_device *whole = bdev_whole(part); if (atomic_dec_and_test(&part->bd_openers)) { blkdev_flush_mapping(part); whole->bd_disk->open_partitions--; } blkdev_put_whole(whole); } struct block_device *blkdev_get_no_open(dev_t dev, bool autoload) { struct block_device *bdev; struct inode *inode; inode = ilookup(blockdev_superblock, dev); if (!inode && autoload && IS_ENABLED(CONFIG_BLOCK_LEGACY_AUTOLOAD)) { blk_request_module(dev); inode = ilookup(blockdev_superblock, dev); if (inode) pr_warn_ratelimited( "block device autoloading is deprecated and will be removed.\n"); } if (!inode) return NULL; /* switch from the inode reference to a device mode one: */ bdev = &BDEV_I(inode)->bdev; if (!kobject_get_unless_zero(&bdev->bd_device.kobj)) bdev = NULL; iput(inode); return bdev; } void blkdev_put_no_open(struct block_device *bdev) { put_device(&bdev->bd_device); } static bool bdev_writes_blocked(struct block_device *bdev) { return bdev->bd_writers < 0; } static void bdev_block_writes(struct block_device *bdev) { bdev->bd_writers--; } static void bdev_unblock_writes(struct block_device *bdev) { bdev->bd_writers++; } static bool bdev_may_open(struct block_device *bdev, blk_mode_t mode) { if (bdev_allow_write_mounted) return true; /* Writes blocked? */ if (mode & BLK_OPEN_WRITE && bdev_writes_blocked(bdev)) return false; if (mode & BLK_OPEN_RESTRICT_WRITES && bdev->bd_writers > 0) return false; return true; } static void bdev_claim_write_access(struct block_device *bdev, blk_mode_t mode) { if (bdev_allow_write_mounted) return; /* Claim exclusive or shared write access. */ if (mode & BLK_OPEN_RESTRICT_WRITES) bdev_block_writes(bdev); else if (mode & BLK_OPEN_WRITE) bdev->bd_writers++; } static inline bool bdev_unclaimed(const struct file *bdev_file) { return bdev_file->private_data == BDEV_I(bdev_file->f_mapping->host); } static void bdev_yield_write_access(struct file *bdev_file) { struct block_device *bdev; if (bdev_allow_write_mounted) return; if (bdev_unclaimed(bdev_file)) return; bdev = file_bdev(bdev_file); if (bdev_file->f_mode & FMODE_WRITE_RESTRICTED) bdev_unblock_writes(bdev); else if (bdev_file->f_mode & FMODE_WRITE) bdev->bd_writers--; } /** * bdev_open - open a block device * @bdev: block device to open * @mode: open mode (BLK_OPEN_*) * @holder: exclusive holder identifier * @hops: holder operations * @bdev_file: file for the block device * * Open the block device. If @holder is not %NULL, the block device is opened * with exclusive access. Exclusive opens may nest for the same @holder. * * CONTEXT: * Might sleep. * * RETURNS: * zero on success, -errno on failure. */ int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops, struct file *bdev_file) { bool unblock_events = true; struct gendisk *disk = bdev->bd_disk; int ret; if (holder) { mode |= BLK_OPEN_EXCL; ret = bd_prepare_to_claim(bdev, holder, hops); if (ret) return ret; } else { if (WARN_ON_ONCE(mode & BLK_OPEN_EXCL)) return -EIO; } disk_block_events(disk); mutex_lock(&disk->open_mutex); ret = -ENXIO; if (!disk_live(disk)) goto abort_claiming; if (!try_module_get(disk->fops->owner)) goto abort_claiming; ret = -EBUSY; if (!bdev_may_open(bdev, mode)) goto put_module; if (bdev_is_partition(bdev)) ret = blkdev_get_part(bdev, mode); else ret = blkdev_get_whole(bdev, mode); if (ret) goto put_module; bdev_claim_write_access(bdev, mode); if (holder) { bd_finish_claiming(bdev, holder, hops); /* * Block event polling for write claims if requested. Any write * holder makes the write_holder state stick until all are * released. This is good enough and tracking individual * writeable reference is too fragile given the way @mode is * used in blkdev_get/put(). */ if ((mode & BLK_OPEN_WRITE) && !bdev_test_flag(bdev, BD_WRITE_HOLDER) && (disk->event_flags & DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE)) { bdev_set_flag(bdev, BD_WRITE_HOLDER); unblock_events = false; } } mutex_unlock(&disk->open_mutex); if (unblock_events) disk_unblock_events(disk); bdev_file->f_flags |= O_LARGEFILE; bdev_file->f_mode |= FMODE_CAN_ODIRECT; if (bdev_nowait(bdev)) bdev_file->f_mode |= FMODE_NOWAIT; if (mode & BLK_OPEN_RESTRICT_WRITES) bdev_file->f_mode |= FMODE_WRITE_RESTRICTED; bdev_file->f_mapping = bdev->bd_mapping; bdev_file->f_wb_err = filemap_sample_wb_err(bdev_file->f_mapping); bdev_file->private_data = holder; return 0; put_module: module_put(disk->fops->owner); abort_claiming: if (holder) bd_abort_claiming(bdev, holder); mutex_unlock(&disk->open_mutex); disk_unblock_events(disk); return ret; } /* * If BLK_OPEN_WRITE_IOCTL is set then this is a historical quirk * associated with the floppy driver where it has allowed ioctls if the * file was opened for writing, but does not allow reads or writes. * Make sure that this quirk is reflected in @f_flags. * * It can also happen if a block device is opened as O_RDWR | O_WRONLY. */ static unsigned blk_to_file_flags(blk_mode_t mode) { unsigned int flags = 0; if ((mode & (BLK_OPEN_READ | BLK_OPEN_WRITE)) == (BLK_OPEN_READ | BLK_OPEN_WRITE)) flags |= O_RDWR; else if (mode & BLK_OPEN_WRITE_IOCTL) flags |= O_RDWR | O_WRONLY; else if (mode & BLK_OPEN_WRITE) flags |= O_WRONLY; else if (mode & BLK_OPEN_READ) flags |= O_RDONLY; /* homeopathic, because O_RDONLY is 0 */ else WARN_ON_ONCE(true); if (mode & BLK_OPEN_NDELAY) flags |= O_NDELAY; return flags; } struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops) { struct file *bdev_file; struct block_device *bdev; unsigned int flags; int ret; ret = bdev_permission(dev, mode, holder); if (ret) return ERR_PTR(ret); bdev = blkdev_get_no_open(dev, true); if (!bdev) return ERR_PTR(-ENXIO); flags = blk_to_file_flags(mode); bdev_file = alloc_file_pseudo_noaccount(BD_INODE(bdev), blockdev_mnt, "", flags | O_LARGEFILE, &def_blk_fops); if (IS_ERR(bdev_file)) { blkdev_put_no_open(bdev); return bdev_file; } ihold(BD_INODE(bdev)); ret = bdev_open(bdev, mode, holder, hops, bdev_file); if (ret) { /* We failed to open the block device. Let ->release() know. */ bdev_file->private_data = ERR_PTR(ret); fput(bdev_file); return ERR_PTR(ret); } return bdev_file; } EXPORT_SYMBOL(bdev_file_open_by_dev); struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops) { struct file *file; dev_t dev; int error; error = lookup_bdev(path, &dev); if (error) return ERR_PTR(error); file = bdev_file_open_by_dev(dev, mode, holder, hops); if (!IS_ERR(file) && (mode & BLK_OPEN_WRITE)) { if (bdev_read_only(file_bdev(file))) { fput(file); file = ERR_PTR(-EACCES); } } return file; } EXPORT_SYMBOL(bdev_file_open_by_path); static inline void bd_yield_claim(struct file *bdev_file) { struct block_device *bdev = file_bdev(bdev_file); void *holder = bdev_file->private_data; lockdep_assert_held(&bdev->bd_disk->open_mutex); if (WARN_ON_ONCE(IS_ERR_OR_NULL(holder))) return; if (!bdev_unclaimed(bdev_file)) bd_end_claim(bdev, holder); } void bdev_release(struct file *bdev_file) { struct block_device *bdev = file_bdev(bdev_file); void *holder = bdev_file->private_data; struct gendisk *disk = bdev->bd_disk; /* We failed to open that block device. */ if (IS_ERR(holder)) goto put_no_open; /* * Sync early if it looks like we're the last one. If someone else * opens the block device between now and the decrement of bd_openers * then we did a sync that we didn't need to, but that's not the end * of the world and we want to avoid long (could be several minute) * syncs while holding the mutex. */ if (atomic_read(&bdev->bd_openers) == 1) sync_blockdev(bdev); mutex_lock(&disk->open_mutex); bdev_yield_write_access(bdev_file); if (holder) bd_yield_claim(bdev_file); /* * Trigger event checking and tell drivers to flush MEDIA_CHANGE * event. This is to ensure detection of media removal commanded * from userland - e.g. eject(1). */ disk_flush_events(disk, DISK_EVENT_MEDIA_CHANGE); if (bdev_is_partition(bdev)) blkdev_put_part(bdev); else blkdev_put_whole(bdev); mutex_unlock(&disk->open_mutex); module_put(disk->fops->owner); put_no_open: blkdev_put_no_open(bdev); } /** * bdev_fput - yield claim to the block device and put the file * @bdev_file: open block device * * Yield claim on the block device and put the file. Ensure that the * block device can be reclaimed before the file is closed which is a * deferred operation. */ void bdev_fput(struct file *bdev_file) { if (WARN_ON_ONCE(bdev_file->f_op != &def_blk_fops)) return; if (bdev_file->private_data) { struct block_device *bdev = file_bdev(bdev_file); struct gendisk *disk = bdev->bd_disk; mutex_lock(&disk->open_mutex); bdev_yield_write_access(bdev_file); bd_yield_claim(bdev_file); /* * Tell release we already gave up our hold on the * device and if write restrictions are available that * we already gave up write access to the device. */ bdev_file->private_data = BDEV_I(bdev_file->f_mapping->host); mutex_unlock(&disk->open_mutex); } fput(bdev_file); } EXPORT_SYMBOL(bdev_fput); /** * lookup_bdev() - Look up a struct block_device by name. * @pathname: Name of the block device in the filesystem. * @dev: Pointer to the block device's dev_t, if found. * * Lookup the block device's dev_t at @pathname in the current * namespace if possible and return it in @dev. * * Context: May sleep. * Return: 0 if succeeded, negative errno otherwise. */ int lookup_bdev(const char *pathname, dev_t *dev) { struct inode *inode; struct path path; int error; if (!pathname || !*pathname) return -EINVAL; error = kern_path(pathname, LOOKUP_FOLLOW, &path); if (error) return error; inode = d_backing_inode(path.dentry); error = -ENOTBLK; if (!S_ISBLK(inode->i_mode)) goto out_path_put; error = -EACCES; if (!may_open_dev(&path)) goto out_path_put; *dev = inode->i_rdev; error = 0; out_path_put: path_put(&path); return error; } EXPORT_SYMBOL(lookup_bdev); /** * bdev_mark_dead - mark a block device as dead * @bdev: block device to operate on * @surprise: indicate a surprise removal * * Tell the file system that this devices or media is dead. If @surprise is set * to %true the device or media is already gone, if not we are preparing for an * orderly removal. * * This calls into the file system, which then typicall syncs out all dirty data * and writes back inodes and then invalidates any cached data in the inodes on * the file system. In addition we also invalidate the block device mapping. */ void bdev_mark_dead(struct block_device *bdev, bool surprise) { mutex_lock(&bdev->bd_holder_lock); if (bdev->bd_holder_ops && bdev->bd_holder_ops->mark_dead) bdev->bd_holder_ops->mark_dead(bdev, surprise); else { mutex_unlock(&bdev->bd_holder_lock); sync_blockdev(bdev); } invalidate_bdev(bdev); } /* * New drivers should not use this directly. There are some drivers however * that needs this for historical reasons. For example, the DASD driver has * historically had a shutdown to offline mode that doesn't actually remove the * gendisk that otherwise looks a lot like a safe device removal. */ EXPORT_SYMBOL_GPL(bdev_mark_dead); void sync_bdevs(bool wait) { struct inode *inode, *old_inode = NULL; spin_lock(&blockdev_superblock->s_inode_list_lock); list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { struct address_space *mapping = inode->i_mapping; struct block_device *bdev; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || mapping->nrpages == 0) { spin_unlock(&inode->i_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(&blockdev_superblock->s_inode_list_lock); /* * We hold a reference to 'inode' so it couldn't have been * removed from s_inodes list while we dropped the * s_inode_list_lock We cannot iput the inode now as we can * be holding the last reference and we cannot iput it under * s_inode_list_lock. So we keep the reference and iput it * later. */ iput(old_inode); old_inode = inode; bdev = I_BDEV(inode); mutex_lock(&bdev->bd_disk->open_mutex); if (!atomic_read(&bdev->bd_openers)) { ; /* skip */ } else if (wait) { /* * We keep the error status of individual mapping so * that applications can catch the writeback error using * fsync(2). See filemap_fdatawait_keep_errors() for * details. */ filemap_fdatawait_keep_errors(inode->i_mapping); } else { filemap_fdatawrite(inode->i_mapping); } mutex_unlock(&bdev->bd_disk->open_mutex); spin_lock(&blockdev_superblock->s_inode_list_lock); } spin_unlock(&blockdev_superblock->s_inode_list_lock); iput(old_inode); } /* * Handle STATX_{DIOALIGN, WRITE_ATOMIC} for block devices. */ void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask) { struct block_device *bdev; /* * Note that d_backing_inode() returns the block device node inode, not * the block device's internal inode. Therefore it is *not* valid to * use I_BDEV() here; the block device has to be looked up by i_rdev * instead. */ bdev = blkdev_get_no_open(d_backing_inode(path->dentry)->i_rdev, false); if (!bdev) return; if (request_mask & STATX_DIOALIGN) { stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; stat->dio_offset_align = bdev_logical_block_size(bdev); stat->result_mask |= STATX_DIOALIGN; } if (request_mask & STATX_WRITE_ATOMIC && bdev_can_atomic_write(bdev)) { struct request_queue *bd_queue = bdev->bd_queue; generic_fill_statx_atomic_writes(stat, queue_atomic_write_unit_min_bytes(bd_queue), queue_atomic_write_unit_max_bytes(bd_queue)); } stat->blksize = bdev_io_min(bdev); blkdev_put_no_open(bdev); } bool disk_live(struct gendisk *disk) { return !inode_unhashed(BD_INODE(disk->part0)); } EXPORT_SYMBOL_GPL(disk_live); unsigned int block_size(struct block_device *bdev) { return 1 << BD_INODE(bdev)->i_blkbits; } EXPORT_SYMBOL_GPL(block_size); static int __init setup_bdev_allow_write_mounted(char *str) { if (kstrtobool(str, &bdev_allow_write_mounted)) pr_warn("Invalid option string for bdev_allow_write_mounted:" " '%s'\n", str); return 1; } __setup("bdev_allow_write_mounted=", setup_bdev_allow_write_mounted);
7 2 6 20 130 149 118 26 5 144 163 9 150 3 29 75 54 117 5 5 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 // SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "IPsec: " fmt #include <crypto/aead.h> #include <crypto/authenc.h> #include <linux/err.h> #include <linux/module.h> #include <net/ip.h> #include <net/xfrm.h> #include <net/esp.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <linux/pfkeyv2.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/in6.h> #include <net/icmp.h> #include <net/protocol.h> #include <net/udp.h> #include <net/tcp.h> #include <net/espintcp.h> #include <linux/skbuff_ref.h> #include <linux/highmem.h> struct esp_skb_cb { struct xfrm_skb_cb xfrm; void *tmp; }; struct esp_output_extra { __be32 seqhi; u32 esphoff; }; #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0])) /* * Allocate an AEAD request structure with extra space for SG and IV. * * For alignment considerations the IV is placed at the front, followed * by the request and finally the SG list. * * TODO: Use spare space in skb for this where possible. */ static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int extralen) { unsigned int len; len = extralen; len += crypto_aead_ivsize(aead); if (len) { len += crypto_aead_alignmask(aead) & ~(crypto_tfm_ctx_alignment() - 1); len = ALIGN(len, crypto_tfm_ctx_alignment()); } len += sizeof(struct aead_request) + crypto_aead_reqsize(aead); len = ALIGN(len, __alignof__(struct scatterlist)); len += sizeof(struct scatterlist) * nfrags; return kmalloc(len, GFP_ATOMIC); } static inline void *esp_tmp_extra(void *tmp) { return PTR_ALIGN(tmp, __alignof__(struct esp_output_extra)); } static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int extralen) { return crypto_aead_ivsize(aead) ? PTR_ALIGN((u8 *)tmp + extralen, crypto_aead_alignmask(aead) + 1) : tmp + extralen; } static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv) { struct aead_request *req; req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead), crypto_tfm_ctx_alignment()); aead_request_set_tfm(req, aead); return req; } static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead, struct aead_request *req) { return (void *)ALIGN((unsigned long)(req + 1) + crypto_aead_reqsize(aead), __alignof__(struct scatterlist)); } static void esp_ssg_unref(struct xfrm_state *x, void *tmp, struct sk_buff *skb) { struct crypto_aead *aead = x->data; int extralen = 0; u8 *iv; struct aead_request *req; struct scatterlist *sg; if (x->props.flags & XFRM_STATE_ESN) extralen += sizeof(struct esp_output_extra); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); /* Unref skb_frag_pages in the src scatterlist if necessary. * Skip the first sg which comes from skb->data. */ if (req->src != req->dst) for (sg = sg_next(req->src); sg; sg = sg_next(sg)) skb_page_unref(page_to_netmem(sg_page(sg)), skb->pp_recycle); } #ifdef CONFIG_INET_ESPINTCP static struct sock *esp_find_tcp_sk(struct xfrm_state *x) { struct xfrm_encap_tmpl *encap = x->encap; struct net *net = xs_net(x); __be16 sport, dport; struct sock *sk; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; spin_unlock_bh(&x->lock); sk = inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, x->id.daddr.a4, dport, x->props.saddr.a4, sport, 0); if (!sk) return ERR_PTR(-ENOENT); if (!tcp_is_ulp_esp(sk)) { sock_put(sk); return ERR_PTR(-EINVAL); } return sk; } static int esp_output_tcp_finish(struct xfrm_state *x, struct sk_buff *skb) { struct sock *sk; int err; rcu_read_lock(); sk = esp_find_tcp_sk(x); err = PTR_ERR_OR_ZERO(sk); if (err) { kfree_skb(skb); goto out; } bh_lock_sock(sk); if (sock_owned_by_user(sk)) err = espintcp_queue_out(sk, skb); else err = espintcp_push_skb(sk, skb); bh_unlock_sock(sk); sock_put(sk); out: rcu_read_unlock(); return err; } static int esp_output_tcp_encap_cb(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct xfrm_state *x = dst->xfrm; return esp_output_tcp_finish(x, skb); } static int esp_output_tail_tcp(struct xfrm_state *x, struct sk_buff *skb) { int err; local_bh_disable(); err = xfrm_trans_queue_net(xs_net(x), skb, esp_output_tcp_encap_cb); local_bh_enable(); /* EINPROGRESS just happens to do the right thing. It * actually means that the skb has been consumed and * isn't coming back. */ return err ?: -EINPROGRESS; } #else static int esp_output_tail_tcp(struct xfrm_state *x, struct sk_buff *skb) { WARN_ON(1); return -EOPNOTSUPP; } #endif static void esp_output_done(void *data, int err) { struct sk_buff *skb = data; struct xfrm_offload *xo = xfrm_offload(skb); void *tmp; struct xfrm_state *x; if (xo && (xo->flags & XFRM_DEV_RESUME)) { struct sec_path *sp = skb_sec_path(skb); x = sp->xvec[sp->len - 1]; } else { x = skb_dst(skb)->xfrm; } tmp = ESP_SKB_CB(skb)->tmp; esp_ssg_unref(x, tmp, skb); kfree(tmp); if (xo && (xo->flags & XFRM_DEV_RESUME)) { if (err) { XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR); kfree_skb(skb); return; } skb_push(skb, skb->data - skb_mac_header(skb)); secpath_reset(skb); xfrm_dev_resume(skb); } else { if (!err && x->encap && x->encap->encap_type == TCP_ENCAP_ESPINTCP) esp_output_tail_tcp(x, skb); else xfrm_output_resume(skb_to_full_sk(skb), skb, err); } } /* Move ESP header back into place. */ static void esp_restore_header(struct sk_buff *skb, unsigned int offset) { struct ip_esp_hdr *esph = (void *)(skb->data + offset); void *tmp = ESP_SKB_CB(skb)->tmp; __be32 *seqhi = esp_tmp_extra(tmp); esph->seq_no = esph->spi; esph->spi = *seqhi; } static void esp_output_restore_header(struct sk_buff *skb) { void *tmp = ESP_SKB_CB(skb)->tmp; struct esp_output_extra *extra = esp_tmp_extra(tmp); esp_restore_header(skb, skb_transport_offset(skb) + extra->esphoff - sizeof(__be32)); } static struct ip_esp_hdr *esp_output_set_extra(struct sk_buff *skb, struct xfrm_state *x, struct ip_esp_hdr *esph, struct esp_output_extra *extra) { /* For ESN we move the header forward by 4 bytes to * accommodate the high bits. We will move it back after * encryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { __u32 seqhi; struct xfrm_offload *xo = xfrm_offload(skb); if (xo) seqhi = xo->seq.hi; else seqhi = XFRM_SKB_CB(skb)->seq.output.hi; extra->esphoff = (unsigned char *)esph - skb_transport_header(skb); esph = (struct ip_esp_hdr *)((unsigned char *)esph - 4); extra->seqhi = esph->spi; esph->seq_no = htonl(seqhi); } esph->spi = x->id.spi; return esph; } static void esp_output_done_esn(void *data, int err) { struct sk_buff *skb = data; esp_output_restore_header(skb); esp_output_done(data, err); } static struct ip_esp_hdr *esp_output_udp_encap(struct sk_buff *skb, int encap_type, struct esp_info *esp, __be16 sport, __be16 dport) { struct udphdr *uh; unsigned int len; struct xfrm_offload *xo = xfrm_offload(skb); len = skb->len + esp->tailen - skb_transport_offset(skb); if (len + sizeof(struct iphdr) > IP_MAX_MTU) return ERR_PTR(-EMSGSIZE); uh = (struct udphdr *)esp->esph; uh->source = sport; uh->dest = dport; uh->len = htons(len); uh->check = 0; /* For IPv4 ESP with UDP encapsulation, if xo is not null, the skb is in the crypto offload * data path, which means that esp_output_udp_encap is called outside of the XFRM stack. * In this case, the mac header doesn't point to the IPv4 protocol field, so don't set it. */ if (!xo || encap_type != UDP_ENCAP_ESPINUDP) *skb_mac_header(skb) = IPPROTO_UDP; return (struct ip_esp_hdr *)(uh + 1); } #ifdef CONFIG_INET_ESPINTCP static struct ip_esp_hdr *esp_output_tcp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { __be16 *lenp = (void *)esp->esph; struct ip_esp_hdr *esph; unsigned int len; struct sock *sk; len = skb->len + esp->tailen - skb_transport_offset(skb); if (len > IP_MAX_MTU) return ERR_PTR(-EMSGSIZE); rcu_read_lock(); sk = esp_find_tcp_sk(x); rcu_read_unlock(); if (IS_ERR(sk)) return ERR_CAST(sk); sock_put(sk); *lenp = htons(len); esph = (struct ip_esp_hdr *)(lenp + 1); return esph; } #else static struct ip_esp_hdr *esp_output_tcp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { return ERR_PTR(-EOPNOTSUPP); } #endif static int esp_output_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { struct xfrm_encap_tmpl *encap = x->encap; struct ip_esp_hdr *esph; __be16 sport, dport; int encap_type; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; encap_type = encap->encap_type; spin_unlock_bh(&x->lock); switch (encap_type) { default: case UDP_ENCAP_ESPINUDP: esph = esp_output_udp_encap(skb, encap_type, esp, sport, dport); break; case TCP_ENCAP_ESPINTCP: esph = esp_output_tcp_encap(x, skb, esp); break; } if (IS_ERR(esph)) return PTR_ERR(esph); esp->esph = esph; return 0; } int esp_output_head(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *tail; int nfrags; int esph_offset; struct page *page; struct sk_buff *trailer; int tailen = esp->tailen; /* this is non-NULL only with TCP/UDP Encapsulation */ if (x->encap) { int err = esp_output_encap(x, skb, esp); if (err < 0) return err; } if (ALIGN(tailen, L1_CACHE_BYTES) > PAGE_SIZE || ALIGN(skb->data_len, L1_CACHE_BYTES) > PAGE_SIZE) goto cow; if (!skb_cloned(skb)) { if (tailen <= skb_tailroom(skb)) { nfrags = 1; trailer = skb; tail = skb_tail_pointer(trailer); goto skip_cow; } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS) && !skb_has_frag_list(skb)) { int allocsize; struct sock *sk = skb->sk; struct page_frag *pfrag = &x->xfrag; esp->inplace = false; allocsize = ALIGN(tailen, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto cow; } page = pfrag->page; get_page(page); tail = page_address(page) + pfrag->offset; esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); nfrags = skb_shinfo(skb)->nr_frags; __skb_fill_page_desc(skb, nfrags, page, pfrag->offset, tailen); skb_shinfo(skb)->nr_frags = ++nfrags; pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); nfrags++; skb_len_add(skb, tailen); if (sk && sk_fullsock(sk)) refcount_add(tailen, &sk->sk_wmem_alloc); goto out; } } cow: esph_offset = (unsigned char *)esp->esph - skb_transport_header(skb); nfrags = skb_cow_data(skb, tailen, &trailer); if (nfrags < 0) goto out; tail = skb_tail_pointer(trailer); esp->esph = (struct ip_esp_hdr *)(skb_transport_header(skb) + esph_offset); skip_cow: esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); pskb_put(skb, trailer, tailen); out: return nfrags; } EXPORT_SYMBOL_GPL(esp_output_head); int esp_output_tail(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *iv; int alen; void *tmp; int ivlen; int assoclen; int extralen; struct page *page; struct ip_esp_hdr *esph; struct crypto_aead *aead; struct aead_request *req; struct scatterlist *sg, *dsg; struct esp_output_extra *extra; int err = -ENOMEM; assoclen = sizeof(struct ip_esp_hdr); extralen = 0; if (x->props.flags & XFRM_STATE_ESN) { extralen += sizeof(*extra); assoclen += sizeof(__be32); } aead = x->data; alen = crypto_aead_authsize(aead); ivlen = crypto_aead_ivsize(aead); tmp = esp_alloc_tmp(aead, esp->nfrags + 2, extralen); if (!tmp) goto error; extra = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); if (esp->inplace) dsg = sg; else dsg = &sg[esp->nfrags]; esph = esp_output_set_extra(skb, x, esp->esph, extra); esp->esph = esph; sg_init_table(sg, esp->nfrags); err = skb_to_sgvec(skb, sg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; if (!esp->inplace) { int allocsize; struct page_frag *pfrag = &x->xfrag; allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto error_free; } skb_shinfo(skb)->nr_frags = 1; page = pfrag->page; get_page(page); /* replace page frags in skb with new page */ __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len); pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1); err = skb_to_sgvec(skb, dsg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; } if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_output_done_esn, skb); else aead_request_set_callback(req, 0, esp_output_done, skb); aead_request_set_crypt(req, sg, dsg, ivlen + esp->clen, iv); aead_request_set_ad(req, assoclen); memset(iv, 0, ivlen); memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&esp->seqno + 8 - min(ivlen, 8), min(ivlen, 8)); ESP_SKB_CB(skb)->tmp = tmp; err = crypto_aead_encrypt(req); switch (err) { case -EINPROGRESS: goto error; case -ENOSPC: err = NET_XMIT_DROP; break; case 0: if ((x->props.flags & XFRM_STATE_ESN)) esp_output_restore_header(skb); } if (sg != dsg) esp_ssg_unref(x, tmp, skb); if (!err && x->encap && x->encap->encap_type == TCP_ENCAP_ESPINTCP) err = esp_output_tail_tcp(x, skb); error_free: kfree(tmp); error: return err; } EXPORT_SYMBOL_GPL(esp_output_tail); static int esp_output(struct xfrm_state *x, struct sk_buff *skb) { int alen; int blksize; struct ip_esp_hdr *esph; struct crypto_aead *aead; struct esp_info esp; esp.inplace = true; esp.proto = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_ESP; /* skb is pure payload to encrypt */ aead = x->data; alen = crypto_aead_authsize(aead); esp.tfclen = 0; if (x->tfcpad) { struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb); u32 padto; padto = min(x->tfcpad, xfrm_state_mtu(x, dst->child_mtu_cached)); if (skb->len < padto) esp.tfclen = padto - skb->len; } blksize = ALIGN(crypto_aead_blocksize(aead), 4); esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize); esp.plen = esp.clen - skb->len - esp.tfclen; esp.tailen = esp.tfclen + esp.plen + alen; esp.esph = ip_esp_hdr(skb); esp.nfrags = esp_output_head(x, skb, &esp); if (esp.nfrags < 0) return esp.nfrags; esph = esp.esph; esph->spi = x->id.spi; esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); esp.seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low + ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32)); skb_push(skb, -skb_network_offset(skb)); return esp_output_tail(x, skb, &esp); } static inline int esp_remove_trailer(struct sk_buff *skb) { struct xfrm_state *x = xfrm_input_state(skb); struct crypto_aead *aead = x->data; int alen, hlen, elen; int padlen, trimlen; __wsum csumdiff; u8 nexthdr[2]; int ret; alen = crypto_aead_authsize(aead); hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); elen = skb->len - hlen; if (skb_copy_bits(skb, skb->len - alen - 2, nexthdr, 2)) BUG(); ret = -EINVAL; padlen = nexthdr[0]; if (padlen + 2 + alen >= elen) { net_dbg_ratelimited("ipsec esp packet is garbage padlen=%d, elen=%d\n", padlen + 2, elen - alen); goto out; } trimlen = alen + padlen + 2; if (skb->ip_summed == CHECKSUM_COMPLETE) { csumdiff = skb_checksum(skb, skb->len - trimlen, trimlen, 0); skb->csum = csum_block_sub(skb->csum, csumdiff, skb->len - trimlen); } ret = pskb_trim(skb, skb->len - trimlen); if (unlikely(ret)) return ret; ret = nexthdr[1]; out: return ret; } int esp_input_done2(struct sk_buff *skb, int err) { const struct iphdr *iph; struct xfrm_state *x = xfrm_input_state(skb); struct xfrm_offload *xo = xfrm_offload(skb); struct crypto_aead *aead = x->data; int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); int ihl; if (!xo || !(xo->flags & CRYPTO_DONE)) kfree(ESP_SKB_CB(skb)->tmp); if (unlikely(err)) goto out; err = esp_remove_trailer(skb); if (unlikely(err < 0)) goto out; iph = ip_hdr(skb); ihl = iph->ihl * 4; if (x->encap) { struct xfrm_encap_tmpl *encap = x->encap; struct tcphdr *th = (void *)(skb_network_header(skb) + ihl); struct udphdr *uh = (void *)(skb_network_header(skb) + ihl); __be16 source; switch (x->encap->encap_type) { case TCP_ENCAP_ESPINTCP: source = th->source; break; case UDP_ENCAP_ESPINUDP: source = uh->source; break; default: WARN_ON_ONCE(1); err = -EINVAL; goto out; } /* * 1) if the NAT-T peer's IP or port changed then * advertise the change to the keying daemon. * This is an inbound SA, so just compare * SRC ports. */ if (iph->saddr != x->props.saddr.a4 || source != encap->encap_sport) { xfrm_address_t ipaddr; ipaddr.a4 = iph->saddr; km_new_mapping(x, &ipaddr, source); /* XXX: perhaps add an extra * policy check here, to see * if we should allow or * reject a packet from a * different source * address/port. */ } /* * 2) ignore UDP/TCP checksums in case * of NAT-T in Transport Mode, or * perform other post-processing fixes * as per draft-ietf-ipsec-udp-encaps-06, * section 3.1.2 */ if (x->props.mode == XFRM_MODE_TRANSPORT) skb->ip_summed = CHECKSUM_UNNECESSARY; } skb_pull_rcsum(skb, hlen); if (x->props.mode == XFRM_MODE_TUNNEL || x->props.mode == XFRM_MODE_IPTFS) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -ihl); /* RFC4303: Drop dummy packets without any error */ if (err == IPPROTO_NONE) err = -EINVAL; out: return err; } EXPORT_SYMBOL_GPL(esp_input_done2); static void esp_input_done(void *data, int err) { struct sk_buff *skb = data; xfrm_input_resume(skb, esp_input_done2(skb, err)); } static void esp_input_restore_header(struct sk_buff *skb) { esp_restore_header(skb, 0); __skb_pull(skb, 4); } static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi) { struct xfrm_state *x = xfrm_input_state(skb); struct ip_esp_hdr *esph; /* For ESN we move the header forward by 4 bytes to * accommodate the high bits. We will move it back after * decryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { esph = skb_push(skb, 4); *seqhi = esph->spi; esph->spi = esph->seq_no; esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi; } } static void esp_input_done_esn(void *data, int err) { struct sk_buff *skb = data; esp_input_restore_header(skb); esp_input_done(data, err); } /* * Note: detecting truncated vs. non-truncated authentication data is very * expensive, so we only support truncated data, which is the recommended * and common case. */ static int esp_input(struct xfrm_state *x, struct sk_buff *skb) { struct crypto_aead *aead = x->data; struct aead_request *req; struct sk_buff *trailer; int ivlen = crypto_aead_ivsize(aead); int elen = skb->len - sizeof(struct ip_esp_hdr) - ivlen; int nfrags; int assoclen; int seqhilen; __be32 *seqhi; void *tmp; u8 *iv; struct scatterlist *sg; int err = -EINVAL; if (!pskb_may_pull(skb, sizeof(struct ip_esp_hdr) + ivlen)) goto out; if (elen <= 0) goto out; assoclen = sizeof(struct ip_esp_hdr); seqhilen = 0; if (x->props.flags & XFRM_STATE_ESN) { seqhilen += sizeof(__be32); assoclen += seqhilen; } if (!skb_cloned(skb)) { if (!skb_is_nonlinear(skb)) { nfrags = 1; goto skip_cow; } else if (!skb_has_frag_list(skb)) { nfrags = skb_shinfo(skb)->nr_frags; nfrags++; goto skip_cow; } } err = skb_cow_data(skb, 0, &trailer); if (err < 0) goto out; nfrags = err; skip_cow: err = -ENOMEM; tmp = esp_alloc_tmp(aead, nfrags, seqhilen); if (!tmp) goto out; ESP_SKB_CB(skb)->tmp = tmp; seqhi = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, seqhilen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); esp_input_set_header(skb, seqhi); sg_init_table(sg, nfrags); err = skb_to_sgvec(skb, sg, 0, skb->len); if (unlikely(err < 0)) { kfree(tmp); goto out; } skb->ip_summed = CHECKSUM_NONE; if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_input_done_esn, skb); else aead_request_set_callback(req, 0, esp_input_done, skb); aead_request_set_crypt(req, sg, sg, elen + ivlen, iv); aead_request_set_ad(req, assoclen); err = crypto_aead_decrypt(req); if (err == -EINPROGRESS) goto out; if ((x->props.flags & XFRM_STATE_ESN)) esp_input_restore_header(skb); err = esp_input_done2(skb, err); out: return err; } static int esp4_err(struct sk_buff *skb, u32 info) { struct net *net = dev_net(skb->dev); const struct iphdr *iph = (const struct iphdr *)skb->data; struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data+(iph->ihl<<2)); struct xfrm_state *x; switch (icmp_hdr(skb)->type) { case ICMP_DEST_UNREACH: if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED) return 0; break; case ICMP_REDIRECT: break; default: return 0; } x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, esph->spi, IPPROTO_ESP, AF_INET); if (!x) return 0; if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH) ipv4_update_pmtu(skb, net, info, 0, IPPROTO_ESP); else ipv4_redirect(skb, net, 0, IPPROTO_ESP); xfrm_state_put(x); return 0; } static void esp_destroy(struct xfrm_state *x) { struct crypto_aead *aead = x->data; if (!aead) return; crypto_free_aead(aead); } static int esp_init_aead(struct xfrm_state *x, struct netlink_ext_ack *extack) { char aead_name[CRYPTO_MAX_ALG_NAME]; struct crypto_aead *aead; int err; if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); return -ENAMETOOLONG; } aead = crypto_alloc_aead(aead_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) goto error; x->data = aead; err = crypto_aead_setkey(aead, x->aead->alg_key, (x->aead->alg_key_len + 7) / 8); if (err) goto error; err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8); if (err) goto error; return 0; error: NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); return err; } static int esp_init_authenc(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct crypto_aead *aead; struct crypto_authenc_key_param *param; struct rtattr *rta; char *key; char *p; char authenc_name[CRYPTO_MAX_ALG_NAME]; unsigned int keylen; int err; err = -ENAMETOOLONG; if ((x->props.flags & XFRM_STATE_ESN)) { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthencesn(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); goto error; } } else { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthenc(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); goto error; } } aead = crypto_alloc_aead(authenc_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } x->data = aead; keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) + (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param)); err = -ENOMEM; key = kmalloc(keylen, GFP_KERNEL); if (!key) goto error; p = key; rta = (void *)p; rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; rta->rta_len = RTA_LENGTH(sizeof(*param)); param = RTA_DATA(rta); p += RTA_SPACE(sizeof(*param)); if (x->aalg) { struct xfrm_algo_desc *aalg_desc; memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8); p += (x->aalg->alg_key_len + 7) / 8; aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0); BUG_ON(!aalg_desc); err = -EINVAL; if (aalg_desc->uinfo.auth.icv_fullbits / 8 != crypto_aead_authsize(aead)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto free_key; } err = crypto_aead_setauthsize( aead, x->aalg->alg_trunc_len / 8); if (err) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto free_key; } } param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8); memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8); err = crypto_aead_setkey(aead, key, keylen); free_key: kfree_sensitive(key); error: return err; } static int esp_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct crypto_aead *aead; u32 align; int err; x->data = NULL; if (x->aead) { err = esp_init_aead(x, extack); } else if (x->ealg) { err = esp_init_authenc(x, extack); } else { NL_SET_ERR_MSG(extack, "ESP: AEAD or CRYPT must be provided"); err = -EINVAL; } if (err) goto error; aead = x->data; x->props.header_len = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); if (x->props.mode == XFRM_MODE_TUNNEL) x->props.header_len += sizeof(struct iphdr); else if (x->props.mode == XFRM_MODE_BEET && x->sel.family != AF_INET6) x->props.header_len += IPV4_BEET_PHMAXLEN; if (x->encap) { struct xfrm_encap_tmpl *encap = x->encap; switch (encap->encap_type) { default: NL_SET_ERR_MSG(extack, "Unsupported encapsulation type for ESP"); err = -EINVAL; goto error; case UDP_ENCAP_ESPINUDP: x->props.header_len += sizeof(struct udphdr); break; #ifdef CONFIG_INET_ESPINTCP case TCP_ENCAP_ESPINTCP: /* only the length field, TCP encap is done by * the socket */ x->props.header_len += 2; break; #endif } } align = ALIGN(crypto_aead_blocksize(aead), 4); x->props.trailer_len = align + 1 + crypto_aead_authsize(aead); error: return err; } static int esp4_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type esp_type = { .owner = THIS_MODULE, .proto = IPPROTO_ESP, .flags = XFRM_TYPE_REPLAY_PROT, .init_state = esp_init_state, .destructor = esp_destroy, .input = esp_input, .output = esp_output, }; static struct xfrm4_protocol esp4_protocol = { .handler = xfrm4_rcv, .input_handler = xfrm_input, .cb_handler = esp4_rcv_cb, .err_handler = esp4_err, .priority = 0, }; static int __init esp4_init(void) { if (xfrm_register_type(&esp_type, AF_INET) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm4_protocol_register(&esp4_protocol, IPPROTO_ESP) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&esp_type, AF_INET); return -EAGAIN; } return 0; } static void __exit esp4_fini(void) { if (xfrm4_protocol_deregister(&esp4_protocol, IPPROTO_ESP) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&esp_type, AF_INET); } module_init(esp4_init); module_exit(esp4_fini); MODULE_DESCRIPTION("IPv4 ESP transformation library"); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_ESP);
222 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HEX_H #define _LINUX_HEX_H #include <linux/types.h> extern const char hex_asc[]; #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] static inline char *hex_byte_pack(char *buf, u8 byte) { *buf++ = hex_asc_hi(byte); *buf++ = hex_asc_lo(byte); return buf; } extern const char hex_asc_upper[]; #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] static inline char *hex_byte_pack_upper(char *buf, u8 byte) { *buf++ = hex_asc_upper_hi(byte); *buf++ = hex_asc_upper_lo(byte); return buf; } extern int hex_to_bin(unsigned char ch); extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); extern char *bin2hex(char *dst, const void *src, size_t count); bool mac_pton(const char *s, u8 *mac); #endif
63238 2 53455 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 /* SPDX-License-Identifier: GPL-2.0 */ /* Perform sanity checking for object sizes for uaccess.h and uio.h. */ #ifndef __LINUX_UCOPYSIZE_H__ #define __LINUX_UCOPYSIZE_H__ #include <linux/bug.h> #ifdef CONFIG_HARDENED_USERCOPY #include <linux/jump_label.h> extern void __check_object_size(const void *ptr, unsigned long n, bool to_user); DECLARE_STATIC_KEY_MAYBE(CONFIG_HARDENED_USERCOPY_DEFAULT_ON, validate_usercopy_range); static __always_inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { if (!__builtin_constant_p(n) && static_branch_maybe(CONFIG_HARDENED_USERCOPY_DEFAULT_ON, &validate_usercopy_range)) { __check_object_size(ptr, n, to_user); } } #else static inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { } #endif /* CONFIG_HARDENED_USERCOPY */ extern void __compiletime_error("copy source size is too small") __bad_copy_from(void); extern void __compiletime_error("copy destination size is too small") __bad_copy_to(void); void __copy_overflow(int size, unsigned long count); static inline void copy_overflow(int size, unsigned long count) { if (IS_ENABLED(CONFIG_BUG)) __copy_overflow(size, count); } static __always_inline __must_check bool check_copy_size(const void *addr, size_t bytes, bool is_source) { int sz = __builtin_object_size(addr, 0); if (unlikely(sz >= 0 && sz < bytes)) { if (!__builtin_constant_p(bytes)) copy_overflow(sz, bytes); else if (is_source) __bad_copy_from(); else __bad_copy_to(); return false; } if (WARN_ON_ONCE(bytes > INT_MAX)) return false; check_object_size(addr, bytes, is_source); return true; } #endif /* __LINUX_UCOPYSIZE_H__ */
351 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PATH_H #define _LINUX_PATH_H struct dentry; struct vfsmount; struct path { struct vfsmount *mnt; struct dentry *dentry; } __randomize_layout; extern void path_get(const struct path *); extern void path_put(const struct path *); static inline int path_equal(const struct path *path1, const struct path *path2) { return path1->mnt == path2->mnt && path1->dentry == path2->dentry; } /* * Cleanup macro for use with __free(path_put). Avoids dereference and * copying @path unlike DEFINE_FREE(). path_put() will handle the empty * path correctly just ensure @path is initialized: * * struct path path __free(path_put) = {}; */ #define __free_path_put path_put #endif /* _LINUX_PATH_H */
open /syzkaller/managers/ci2-upstream-kcsan-gce/kernel/security/selinux/flask.h: no such file or directory
268 42 155 3 23 23 23 125 158 89 123 44 43 92 178 156 59 58 65 3 62 26 62 3 74 2 76 76 16 13 6 6 2 10 1 8 4 4 13 7 6 83 16 22 27 19 2 36 25 43 30 21 44 33 5 38 19 22 3 8 39 39 3 5 5 61 38 8 34 34 19 33 31 39 60 59 19 7 15 4 11 15 19 35 61 11 27 27 5 26 16 45 10 5 4 2 13 1 13 7 4 8 4 25 25 9 9 9 25 6 6 24 3 3 25 25 4 4 25 3 3 25 25 12 14 14 10 6 4 1 4 5 8 12 4 8 14 6 8 14 4 10 5 1 1 2 4 60 10 1 9 6 3 9 9 26 6 31 26 3 25 25 25 1 2 3 4 9 43 52 9 6 33 11 25 4 2 2 4 2 119 8 12 6 6 134 133 191 12 40 1 36 40 12 12 45 44 14 36 36 95 3 84 2 8 50 52 45 45 15 10 1 74 29 7 7 1 8 11 3 22 18 8 43 27 5 120 1 21 12 99 93 78 11 1 10 43 56 54 76 1392 1241 158 159 537 259 272 16 6 6 6 6 5 3 6 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 // SPDX-License-Identifier: GPL-2.0 /* * linux/ipc/sem.c * Copyright (C) 1992 Krishna Balasubramanian * Copyright (C) 1995 Eric Schenk, Bruno Haible * * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> * * SMP-threaded, sysctl's added * (c) 1999 Manfred Spraul <manfred@colorfullife.com> * Enforced range limit on SEM_UNDO * (c) 2001 Red Hat Inc * Lockless wakeup * (c) 2003 Manfred Spraul <manfred@colorfullife.com> * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> * Further wakeup optimizations, documentation * (c) 2010 Manfred Spraul <manfred@colorfullife.com> * * support for audit of ipc object properties and permission changes * Dustin Kirkland <dustin.kirkland@us.ibm.com> * * namespaces support * OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> * * Implementation notes: (May 2010) * This file implements System V semaphores. * * User space visible behavior: * - FIFO ordering for semop() operations (just FIFO, not starvation * protection) * - multiple semaphore operations that alter the same semaphore in * one semop() are handled. * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and * SETALL calls. * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. * - undo adjustments at process exit are limited to 0..SEMVMX. * - namespace are supported. * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing * to /proc/sys/kernel/sem. * - statistics about the usage are reported in /proc/sysvipc/sem. * * Internals: * - scalability: * - all global variables are read-mostly. * - semop() calls and semctl(RMID) are synchronized by RCU. * - most operations do write operations (actually: spin_lock calls) to * the per-semaphore array structure. * Thus: Perfect SMP scaling between independent semaphore arrays. * If multiple semaphores in one array are used, then cache line * trashing on the semaphore array spinlock will limit the scaling. * - semncnt and semzcnt are calculated on demand in count_semcnt() * - the task that performs a successful semop() scans the list of all * sleeping tasks and completes any pending operations that can be fulfilled. * Semaphores are actively given to waiting tasks (necessary for FIFO). * (see update_queue()) * - To improve the scalability, the actual wake-up calls are performed after * dropping all locks. (see wake_up_sem_queue_prepare()) * - All work is done by the waker, the woken up task does not have to do * anything - not even acquiring a lock or dropping a refcount. * - A woken up task may not even touch the semaphore array anymore, it may * have been destroyed already by a semctl(RMID). * - UNDO values are stored in an array (one per process and per * semaphore array, lazily allocated). For backwards compatibility, multiple * modes for the UNDO variables are supported (per process, per thread) * (see copy_semundo, CLONE_SYSVSEM) * - There are two lists of the pending operations: a per-array list * and per-semaphore list (stored in the array). This allows to achieve FIFO * ordering without always scanning all pending operations. * The worst-case behavior is nevertheless O(N^2) for N wakeups. */ #include <linux/compat.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/time.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/seq_file.h> #include <linux/rwsem.h> #include <linux/nsproxy.h> #include <linux/ipc_namespace.h> #include <linux/sched/wake_q.h> #include <linux/nospec.h> #include <linux/rhashtable.h> #include <linux/uaccess.h> #include "util.h" /* One semaphore structure for each semaphore in the system. */ struct sem { int semval; /* current value */ /* * PID of the process that last modified the semaphore. For * Linux, specifically these are: * - semop * - semctl, via SETVAL and SETALL. * - at task exit when performing undo adjustments (see exit_sem). */ struct pid *sempid; spinlock_t lock; /* spinlock for fine-grained semtimedop */ struct list_head pending_alter; /* pending single-sop operations */ /* that alter the semaphore */ struct list_head pending_const; /* pending single-sop operations */ /* that do not alter the semaphore*/ time64_t sem_otime; /* candidate for sem_otime */ } ____cacheline_aligned_in_smp; /* One sem_array data structure for each set of semaphores in the system. */ struct sem_array { struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ time64_t sem_ctime; /* create/last semctl() time */ struct list_head pending_alter; /* pending operations */ /* that alter the array */ struct list_head pending_const; /* pending complex operations */ /* that do not alter semvals */ struct list_head list_id; /* undo requests on this array */ int sem_nsems; /* no. of semaphores in array */ int complex_count; /* pending complex operations */ unsigned int use_global_lock;/* >0: global lock required */ struct sem sems[]; } __randomize_layout; /* One queue for each sleeping process in the system. */ struct sem_queue { struct list_head list; /* queue of pending operations */ struct task_struct *sleeper; /* this process */ struct sem_undo *undo; /* undo structure */ struct pid *pid; /* process id of requesting process */ int status; /* completion status of operation */ struct sembuf *sops; /* array of pending operations */ struct sembuf *blocking; /* the operation that blocked */ int nsops; /* number of operations */ bool alter; /* does *sops alter the array? */ bool dupsop; /* sops on more than one sem_num */ }; /* Each task has a list of undo requests. They are executed automatically * when the process exits. */ struct sem_undo { struct list_head list_proc; /* per-process list: * * all undos from one process * rcu protected */ struct rcu_head rcu; /* rcu struct for sem_undo */ struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ struct list_head list_id; /* per semaphore array list: * all undos for one array */ int semid; /* semaphore set identifier */ short semadj[]; /* array of adjustments */ /* one per semaphore */ }; /* sem_undo_list controls shared access to the list of sem_undo structures * that may be shared among all a CLONE_SYSVSEM task group. */ struct sem_undo_list { refcount_t refcnt; spinlock_t lock; struct list_head list_proc; }; #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) static int newary(struct ipc_namespace *, struct ipc_params *); static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); #ifdef CONFIG_PROC_FS static int sysvipc_sem_proc_show(struct seq_file *s, void *it); #endif #define SEMMSL_FAST 256 /* 512 bytes on stack */ #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ /* * Switching from the mode suitable for simple ops * to the mode for complex ops is costly. Therefore: * use some hysteresis */ #define USE_GLOBAL_LOCK_HYSTERESIS 10 /* * Locking: * a) global sem_lock() for read/write * sem_undo.id_next, * sem_array.complex_count, * sem_array.pending{_alter,_const}, * sem_array.sem_undo * * b) global or semaphore sem_lock() for read/write: * sem_array.sems[i].pending_{const,alter}: * * c) special: * sem_undo_list.list_proc: * * undo_list->lock for write * * rcu for read * use_global_lock: * * global sem_lock() for write * * either local or global sem_lock() for read. * * Memory ordering: * Most ordering is enforced by using spin_lock() and spin_unlock(). * * Exceptions: * 1) use_global_lock: (SEM_BARRIER_1) * Setting it from non-zero to 0 is a RELEASE, this is ensured by * using smp_store_release(): Immediately after setting it to 0, * a simple op can start. * Testing if it is non-zero is an ACQUIRE, this is ensured by using * smp_load_acquire(). * Setting it from 0 to non-zero must be ordered with regards to * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() * is inside a spin_lock() and after a write from 0 to non-zero a * spin_lock()+spin_unlock() is done. * To prevent the compiler/cpu temporarily writing 0 to use_global_lock, * READ_ONCE()/WRITE_ONCE() is used. * * 2) queue.status: (SEM_BARRIER_2) * Initialization is done while holding sem_lock(), so no further barrier is * required. * Setting it to a result code is a RELEASE, this is ensured by both a * smp_store_release() (for case a) and while holding sem_lock() * (for case b). * The ACQUIRE when reading the result code without holding sem_lock() is * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep(). * (case a above). * Reading the result code while holding sem_lock() needs no further barriers, * the locks inside sem_lock() enforce ordering (case b above) * * 3) current->state: * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock(). * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may * happen immediately after calling wake_q_add. As wake_q_add_safe() is called * when holding sem_lock(), no further barriers are required. * * See also ipc/mqueue.c for more details on the covered races. */ #define sc_semmsl sem_ctls[0] #define sc_semmns sem_ctls[1] #define sc_semopm sem_ctls[2] #define sc_semmni sem_ctls[3] void sem_init_ns(struct ipc_namespace *ns) { ns->sc_semmsl = SEMMSL; ns->sc_semmns = SEMMNS; ns->sc_semopm = SEMOPM; ns->sc_semmni = SEMMNI; ns->used_sems = 0; ipc_init_ids(&ns->ids[IPC_SEM_IDS]); } #ifdef CONFIG_IPC_NS void sem_exit_ns(struct ipc_namespace *ns) { free_ipcs(ns, &sem_ids(ns), freeary); idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); } #endif void __init sem_init(void) { sem_init_ns(&init_ipc_ns); ipc_init_proc_interface("sysvipc/sem", " key semid perms nsems uid gid cuid cgid otime ctime\n", IPC_SEM_IDS, sysvipc_sem_proc_show); } /** * unmerge_queues - unmerge queues, if possible. * @sma: semaphore array * * The function unmerges the wait queues if complex_count is 0. * It must be called prior to dropping the global semaphore array lock. */ static void unmerge_queues(struct sem_array *sma) { struct sem_queue *q, *tq; /* complex operations still around? */ if (sma->complex_count) return; /* * We will switch back to simple mode. * Move all pending operation back into the per-semaphore * queues. */ list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { struct sem *curr; curr = &sma->sems[q->sops[0].sem_num]; list_add_tail(&q->list, &curr->pending_alter); } INIT_LIST_HEAD(&sma->pending_alter); } /** * merge_queues - merge single semop queues into global queue * @sma: semaphore array * * This function merges all per-semaphore queues into the global queue. * It is necessary to achieve FIFO ordering for the pending single-sop * operations when a multi-semop operation must sleep. * Only the alter operations must be moved, the const operations can stay. */ static void merge_queues(struct sem_array *sma) { int i; for (i = 0; i < sma->sem_nsems; i++) { struct sem *sem = &sma->sems[i]; list_splice_init(&sem->pending_alter, &sma->pending_alter); } } static void sem_rcu_free(struct rcu_head *head) { struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); struct sem_array *sma = container_of(p, struct sem_array, sem_perm); security_sem_free(&sma->sem_perm); kvfree(sma); } /* * Enter the mode suitable for non-simple operations: * Caller must own sem_perm.lock. */ static void complexmode_enter(struct sem_array *sma) { int i; struct sem *sem; if (sma->use_global_lock > 0) { /* * We are already in global lock mode. * Nothing to do, just reset the * counter until we return to simple mode. */ WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS); return; } WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS); for (i = 0; i < sma->sem_nsems; i++) { sem = &sma->sems[i]; spin_lock(&sem->lock); spin_unlock(&sem->lock); } } /* * Try to leave the mode that disallows simple operations: * Caller must own sem_perm.lock. */ static void complexmode_tryleave(struct sem_array *sma) { if (sma->complex_count) { /* Complex ops are sleeping. * We must stay in complex mode */ return; } if (sma->use_global_lock == 1) { /* See SEM_BARRIER_1 for purpose/pairing */ smp_store_release(&sma->use_global_lock, 0); } else { WRITE_ONCE(sma->use_global_lock, sma->use_global_lock-1); } } #define SEM_GLOBAL_LOCK (-1) /* * If the request contains only one semaphore operation, and there are * no complex transactions pending, lock only the semaphore involved. * Otherwise, lock the entire semaphore array, since we either have * multiple semaphores in our own semops, or we need to look at * semaphores from other pending complex operations. */ static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, int nsops) { struct sem *sem; int idx; if (nsops != 1) { /* Complex operation - acquire a full lock */ ipc_lock_object(&sma->sem_perm); /* Prevent parallel simple ops */ complexmode_enter(sma); return SEM_GLOBAL_LOCK; } /* * Only one semaphore affected - try to optimize locking. * Optimized locking is possible if no complex operation * is either enqueued or processed right now. * * Both facts are tracked by use_global_mode. */ idx = array_index_nospec(sops->sem_num, sma->sem_nsems); sem = &sma->sems[idx]; /* * Initial check for use_global_lock. Just an optimization, * no locking, no memory barrier. */ if (!READ_ONCE(sma->use_global_lock)) { /* * It appears that no complex operation is around. * Acquire the per-semaphore lock. */ spin_lock(&sem->lock); /* see SEM_BARRIER_1 for purpose/pairing */ if (!smp_load_acquire(&sma->use_global_lock)) { /* fast path successful! */ return sops->sem_num; } spin_unlock(&sem->lock); } /* slow path: acquire the full lock */ ipc_lock_object(&sma->sem_perm); if (sma->use_global_lock == 0) { /* * The use_global_lock mode ended while we waited for * sma->sem_perm.lock. Thus we must switch to locking * with sem->lock. * Unlike in the fast path, there is no need to recheck * sma->use_global_lock after we have acquired sem->lock: * We own sma->sem_perm.lock, thus use_global_lock cannot * change. */ spin_lock(&sem->lock); ipc_unlock_object(&sma->sem_perm); return sops->sem_num; } else { /* * Not a false alarm, thus continue to use the global lock * mode. No need for complexmode_enter(), this was done by * the caller that has set use_global_mode to non-zero. */ return SEM_GLOBAL_LOCK; } } static inline void sem_unlock(struct sem_array *sma, int locknum) { if (locknum == SEM_GLOBAL_LOCK) { unmerge_queues(sma); complexmode_tryleave(sma); ipc_unlock_object(&sma->sem_perm); } else { struct sem *sem = &sma->sems[locknum]; spin_unlock(&sem->lock); } } /* * sem_lock_(check_) routines are called in the paths where the rwsem * is not held. * * The caller holds the RCU read lock. */ static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct sem_array, sem_perm); } static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct sem_array, sem_perm); } static inline void sem_lock_and_putref(struct sem_array *sma) { sem_lock(sma, NULL, -1); ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); } static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) { ipc_rmid(&sem_ids(ns), &s->sem_perm); } static struct sem_array *sem_alloc(size_t nsems) { struct sem_array *sma; if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) return NULL; sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT); if (unlikely(!sma)) return NULL; return sma; } /** * newary - Create a new semaphore set * @ns: namespace * @params: ptr to the structure that contains key, semflg and nsems * * Called with sem_ids.rwsem held (as a writer) */ static int newary(struct ipc_namespace *ns, struct ipc_params *params) { int retval; struct sem_array *sma; key_t key = params->key; int nsems = params->u.nsems; int semflg = params->flg; int i; if (!nsems) return -EINVAL; if (ns->used_sems + nsems > ns->sc_semmns) return -ENOSPC; sma = sem_alloc(nsems); if (!sma) return -ENOMEM; sma->sem_perm.mode = (semflg & S_IRWXUGO); sma->sem_perm.key = key; sma->sem_perm.security = NULL; retval = security_sem_alloc(&sma->sem_perm); if (retval) { kvfree(sma); return retval; } for (i = 0; i < nsems; i++) { INIT_LIST_HEAD(&sma->sems[i].pending_alter); INIT_LIST_HEAD(&sma->sems[i].pending_const); spin_lock_init(&sma->sems[i].lock); } sma->complex_count = 0; sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; INIT_LIST_HEAD(&sma->pending_alter); INIT_LIST_HEAD(&sma->pending_const); INIT_LIST_HEAD(&sma->list_id); sma->sem_nsems = nsems; sma->sem_ctime = ktime_get_real_seconds(); /* ipc_addid() locks sma upon success. */ retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); if (retval < 0) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return retval; } ns->used_sems += nsems; sem_unlock(sma, -1); rcu_read_unlock(); return sma->sem_perm.id; } /* * Called with sem_ids.rwsem and ipcp locked. */ static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params) { struct sem_array *sma; sma = container_of(ipcp, struct sem_array, sem_perm); if (params->u.nsems > sma->sem_nsems) return -EINVAL; return 0; } long ksys_semget(key_t key, int nsems, int semflg) { struct ipc_namespace *ns; static const struct ipc_ops sem_ops = { .getnew = newary, .associate = security_sem_associate, .more_checks = sem_more_checks, }; struct ipc_params sem_params; ns = current->nsproxy->ipc_ns; if (nsems < 0 || nsems > ns->sc_semmsl) return -EINVAL; sem_params.key = key; sem_params.flg = semflg; sem_params.u.nsems = nsems; return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); } SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) { return ksys_semget(key, nsems, semflg); } /** * perform_atomic_semop[_slow] - Attempt to perform semaphore * operations on a given array. * @sma: semaphore array * @q: struct sem_queue that describes the operation * * Caller blocking are as follows, based the value * indicated by the semaphore operation (sem_op): * * (1) >0 never blocks. * (2) 0 (wait-for-zero operation): semval is non-zero. * (3) <0 attempting to decrement semval to a value smaller than zero. * * Returns 0 if the operation was possible. * Returns 1 if the operation is impossible, the caller must sleep. * Returns <0 for error codes. */ static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) { int result, sem_op, nsops; struct pid *pid; struct sembuf *sop; struct sem *curr; struct sembuf *sops; struct sem_undo *un; sops = q->sops; nsops = q->nsops; un = q->undo; for (sop = sops; sop < sops + nsops; sop++) { int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); curr = &sma->sems[idx]; sem_op = sop->sem_op; result = curr->semval; if (!sem_op && result) goto would_block; result += sem_op; if (result < 0) goto would_block; if (result > SEMVMX) goto out_of_range; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; /* Exceeding the undo range is an error. */ if (undo < (-SEMAEM - 1) || undo > SEMAEM) goto out_of_range; un->semadj[sop->sem_num] = undo; } curr->semval = result; } sop--; pid = q->pid; while (sop >= sops) { ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); sop--; } return 0; out_of_range: result = -ERANGE; goto undo; would_block: q->blocking = sop; if (sop->sem_flg & IPC_NOWAIT) result = -EAGAIN; else result = 1; undo: sop--; while (sop >= sops) { sem_op = sop->sem_op; sma->sems[sop->sem_num].semval -= sem_op; if (sop->sem_flg & SEM_UNDO) un->semadj[sop->sem_num] += sem_op; sop--; } return result; } static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) { int result, sem_op, nsops; struct sembuf *sop; struct sem *curr; struct sembuf *sops; struct sem_undo *un; sops = q->sops; nsops = q->nsops; un = q->undo; if (unlikely(q->dupsop)) return perform_atomic_semop_slow(sma, q); /* * We scan the semaphore set twice, first to ensure that the entire * operation can succeed, therefore avoiding any pointless writes * to shared memory and having to undo such changes in order to block * until the operations can go through. */ for (sop = sops; sop < sops + nsops; sop++) { int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); curr = &sma->sems[idx]; sem_op = sop->sem_op; result = curr->semval; if (!sem_op && result) goto would_block; /* wait-for-zero */ result += sem_op; if (result < 0) goto would_block; if (result > SEMVMX) return -ERANGE; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; /* Exceeding the undo range is an error. */ if (undo < (-SEMAEM - 1) || undo > SEMAEM) return -ERANGE; } } for (sop = sops; sop < sops + nsops; sop++) { curr = &sma->sems[sop->sem_num]; sem_op = sop->sem_op; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; un->semadj[sop->sem_num] = undo; } curr->semval += sem_op; ipc_update_pid(&curr->sempid, q->pid); } return 0; would_block: q->blocking = sop; return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; } static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, struct wake_q_head *wake_q) { struct task_struct *sleeper; sleeper = get_task_struct(q->sleeper); /* see SEM_BARRIER_2 for purpose/pairing */ smp_store_release(&q->status, error); wake_q_add_safe(wake_q, sleeper); } static void unlink_queue(struct sem_array *sma, struct sem_queue *q) { list_del(&q->list); if (q->nsops > 1) sma->complex_count--; } /** check_restart(sma, q) * @sma: semaphore array * @q: the operation that just completed * * update_queue is O(N^2) when it restarts scanning the whole queue of * waiting operations. Therefore this function checks if the restart is * really necessary. It is called after a previously waiting operation * modified the array. * Note that wait-for-zero operations are handled without restart. */ static inline int check_restart(struct sem_array *sma, struct sem_queue *q) { /* pending complex alter operations are too difficult to analyse */ if (!list_empty(&sma->pending_alter)) return 1; /* we were a sleeping complex operation. Too difficult */ if (q->nsops > 1) return 1; /* It is impossible that someone waits for the new value: * - complex operations always restart. * - wait-for-zero are handled separately. * - q is a previously sleeping simple operation that * altered the array. It must be a decrement, because * simple increments never sleep. * - If there are older (higher priority) decrements * in the queue, then they have observed the original * semval value and couldn't proceed. The operation * decremented to value - thus they won't proceed either. */ return 0; } /** * wake_const_ops - wake up non-alter tasks * @sma: semaphore array. * @semnum: semaphore that was modified. * @wake_q: lockless wake-queue head. * * wake_const_ops must be called after a semaphore in a semaphore array * was set to 0. If complex const operations are pending, wake_const_ops must * be called with semnum = -1, as well as with the number of each modified * semaphore. * The tasks that must be woken up are added to @wake_q. The return code * is stored in q->pid. * The function returns 1 if at least one operation was completed successfully. */ static int wake_const_ops(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) { struct sem_queue *q, *tmp; struct list_head *pending_list; int semop_completed = 0; if (semnum == -1) pending_list = &sma->pending_const; else pending_list = &sma->sems[semnum].pending_const; list_for_each_entry_safe(q, tmp, pending_list, list) { int error = perform_atomic_semop(sma, q); if (error > 0) continue; /* operation completed, remove from queue & wakeup */ unlink_queue(sma, q); wake_up_sem_queue_prepare(q, error, wake_q); if (error == 0) semop_completed = 1; } return semop_completed; } /** * do_smart_wakeup_zero - wakeup all wait for zero tasks * @sma: semaphore array * @sops: operations that were performed * @nsops: number of operations * @wake_q: lockless wake-queue head * * Checks all required queue for wait-for-zero operations, based * on the actual changes that were performed on the semaphore array. * The function returns 1 if at least one operation was completed successfully. */ static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, int nsops, struct wake_q_head *wake_q) { int i; int semop_completed = 0; int got_zero = 0; /* first: the per-semaphore queues, if known */ if (sops) { for (i = 0; i < nsops; i++) { int num = sops[i].sem_num; if (sma->sems[num].semval == 0) { got_zero = 1; semop_completed |= wake_const_ops(sma, num, wake_q); } } } else { /* * No sops means modified semaphores not known. * Assume all were changed. */ for (i = 0; i < sma->sem_nsems; i++) { if (sma->sems[i].semval == 0) { got_zero = 1; semop_completed |= wake_const_ops(sma, i, wake_q); } } } /* * If one of the modified semaphores got 0, * then check the global queue, too. */ if (got_zero) semop_completed |= wake_const_ops(sma, -1, wake_q); return semop_completed; } /** * update_queue - look for tasks that can be completed. * @sma: semaphore array. * @semnum: semaphore that was modified. * @wake_q: lockless wake-queue head. * * update_queue must be called after a semaphore in a semaphore array * was modified. If multiple semaphores were modified, update_queue must * be called with semnum = -1, as well as with the number of each modified * semaphore. * The tasks that must be woken up are added to @wake_q. The return code * is stored in q->pid. * The function internally checks if const operations can now succeed. * * The function return 1 if at least one semop was completed successfully. */ static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) { struct sem_queue *q, *tmp; struct list_head *pending_list; int semop_completed = 0; if (semnum == -1) pending_list = &sma->pending_alter; else pending_list = &sma->sems[semnum].pending_alter; again: list_for_each_entry_safe(q, tmp, pending_list, list) { int error, restart; /* If we are scanning the single sop, per-semaphore list of * one semaphore and that semaphore is 0, then it is not * necessary to scan further: simple increments * that affect only one entry succeed immediately and cannot * be in the per semaphore pending queue, and decrements * cannot be successful if the value is already 0. */ if (semnum != -1 && sma->sems[semnum].semval == 0) break; error = perform_atomic_semop(sma, q); /* Does q->sleeper still need to sleep? */ if (error > 0) continue; unlink_queue(sma, q); if (error) { restart = 0; } else { semop_completed = 1; do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); restart = check_restart(sma, q); } wake_up_sem_queue_prepare(q, error, wake_q); if (restart) goto again; } return semop_completed; } /** * set_semotime - set sem_otime * @sma: semaphore array * @sops: operations that modified the array, may be NULL * * sem_otime is replicated to avoid cache line trashing. * This function sets one instance to the current time. */ static void set_semotime(struct sem_array *sma, struct sembuf *sops) { if (sops == NULL) { sma->sems[0].sem_otime = ktime_get_real_seconds(); } else { sma->sems[sops[0].sem_num].sem_otime = ktime_get_real_seconds(); } } /** * do_smart_update - optimized update_queue * @sma: semaphore array * @sops: operations that were performed * @nsops: number of operations * @otime: force setting otime * @wake_q: lockless wake-queue head * * do_smart_update() does the required calls to update_queue and wakeup_zero, * based on the actual changes that were performed on the semaphore array. * Note that the function does not do the actual wake-up: the caller is * responsible for calling wake_up_q(). * It is safe to perform this call after dropping all locks. */ static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, int otime, struct wake_q_head *wake_q) { int i; otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); if (!list_empty(&sma->pending_alter)) { /* semaphore array uses the global queue - just process it. */ otime |= update_queue(sma, -1, wake_q); } else { if (!sops) { /* * No sops, thus the modified semaphores are not * known. Check all. */ for (i = 0; i < sma->sem_nsems; i++) otime |= update_queue(sma, i, wake_q); } else { /* * Check the semaphores that were increased: * - No complex ops, thus all sleeping ops are * decrease. * - if we decreased the value, then any sleeping * semaphore ops won't be able to run: If the * previous value was too small, then the new * value will be too small, too. */ for (i = 0; i < nsops; i++) { if (sops[i].sem_op > 0) { otime |= update_queue(sma, sops[i].sem_num, wake_q); } } } } if (otime) set_semotime(sma, sops); } /* * check_qop: Test if a queued operation sleeps on the semaphore semnum */ static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, bool count_zero) { struct sembuf *sop = q->blocking; /* * Linux always (since 0.99.10) reported a task as sleeping on all * semaphores. This violates SUS, therefore it was changed to the * standard compliant behavior. * Give the administrators a chance to notice that an application * might misbehave because it relies on the Linux behavior. */ pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" "The task %s (%d) triggered the difference, watch for misbehavior.\n", current->comm, task_pid_nr(current)); if (sop->sem_num != semnum) return 0; if (count_zero && sop->sem_op == 0) return 1; if (!count_zero && sop->sem_op < 0) return 1; return 0; } /* The following counts are associated to each semaphore: * semncnt number of tasks waiting on semval being nonzero * semzcnt number of tasks waiting on semval being zero * * Per definition, a task waits only on the semaphore of the first semop * that cannot proceed, even if additional operation would block, too. */ static int count_semcnt(struct sem_array *sma, ushort semnum, bool count_zero) { struct list_head *l; struct sem_queue *q; int semcnt; semcnt = 0; /* First: check the simple operations. They are easy to evaluate */ if (count_zero) l = &sma->sems[semnum].pending_const; else l = &sma->sems[semnum].pending_alter; list_for_each_entry(q, l, list) { /* all task on a per-semaphore list sleep on exactly * that semaphore */ semcnt++; } /* Then: check the complex operations. */ list_for_each_entry(q, &sma->pending_alter, list) { semcnt += check_qop(sma, semnum, q, count_zero); } if (count_zero) { list_for_each_entry(q, &sma->pending_const, list) { semcnt += check_qop(sma, semnum, q, count_zero); } } return semcnt; } /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem * remains locked on exit. */ static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) { struct sem_undo *un, *tu; struct sem_queue *q, *tq; struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); int i; DEFINE_WAKE_Q(wake_q); /* Free the existing undo structures for this semaphore set. */ ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { list_del(&un->list_id); spin_lock(&un->ulp->lock); un->semid = -1; list_del_rcu(&un->list_proc); spin_unlock(&un->ulp->lock); kvfree_rcu(un, rcu); } /* Wake up all pending processes and let them fail with EIDRM. */ list_for_each_entry_safe(q, tq, &sma->pending_const, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } for (i = 0; i < sma->sem_nsems; i++) { struct sem *sem = &sma->sems[i]; list_for_each_entry_safe(q, tq, &sem->pending_const, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } ipc_update_pid(&sem->sempid, NULL); } /* Remove the semaphore set from the IDR */ sem_rmid(ns, sma); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_q(&wake_q); ns->used_sems -= sma->sem_nsems; ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); } static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) { switch (version) { case IPC_64: return copy_to_user(buf, in, sizeof(*in)); case IPC_OLD: { struct semid_ds out; memset(&out, 0, sizeof(out)); ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); out.sem_otime = in->sem_otime; out.sem_ctime = in->sem_ctime; out.sem_nsems = in->sem_nsems; return copy_to_user(buf, &out, sizeof(out)); } default: return -EINVAL; } } static time64_t get_semotime(struct sem_array *sma) { int i; time64_t res; res = sma->sems[0].sem_otime; for (i = 1; i < sma->sem_nsems; i++) { time64_t to = sma->sems[i].sem_otime; if (to > res) res = to; } return res; } static int semctl_stat(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64) { struct sem_array *sma; time64_t semotime; int err; memset(semid64, 0, sizeof(*semid64)); rcu_read_lock(); if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { sma = sem_obtain_object(ns, semid); if (IS_ERR(sma)) { err = PTR_ERR(sma); goto out_unlock; } } else { /* IPC_STAT */ sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { err = PTR_ERR(sma); goto out_unlock; } } /* see comment for SHM_STAT_ANY */ if (cmd == SEM_STAT_ANY) audit_ipc_obj(&sma->sem_perm); else { err = -EACCES; if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) goto out_unlock; } err = security_sem_semctl(&sma->sem_perm, cmd); if (err) goto out_unlock; ipc_lock_object(&sma->sem_perm); if (!ipc_valid_object(&sma->sem_perm)) { ipc_unlock_object(&sma->sem_perm); err = -EIDRM; goto out_unlock; } kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); semotime = get_semotime(sma); semid64->sem_otime = semotime; semid64->sem_ctime = sma->sem_ctime; #ifndef CONFIG_64BIT semid64->sem_otime_high = semotime >> 32; semid64->sem_ctime_high = sma->sem_ctime >> 32; #endif semid64->sem_nsems = sma->sem_nsems; if (cmd == IPC_STAT) { /* * As defined in SUS: * Return 0 on success */ err = 0; } else { /* * SEM_STAT and SEM_STAT_ANY (both Linux specific) * Return the full id, including the sequence number */ err = sma->sem_perm.id; } ipc_unlock_object(&sma->sem_perm); out_unlock: rcu_read_unlock(); return err; } static int semctl_info(struct ipc_namespace *ns, int semid, int cmd, void __user *p) { struct seminfo seminfo; int max_idx; int err; err = security_sem_semctl(NULL, cmd); if (err) return err; memset(&seminfo, 0, sizeof(seminfo)); seminfo.semmni = ns->sc_semmni; seminfo.semmns = ns->sc_semmns; seminfo.semmsl = ns->sc_semmsl; seminfo.semopm = ns->sc_semopm; seminfo.semvmx = SEMVMX; seminfo.semmnu = SEMMNU; seminfo.semmap = SEMMAP; seminfo.semume = SEMUME; down_read(&sem_ids(ns).rwsem); if (cmd == SEM_INFO) { seminfo.semusz = sem_ids(ns).in_use; seminfo.semaem = ns->used_sems; } else { seminfo.semusz = SEMUSZ; seminfo.semaem = SEMAEM; } max_idx = ipc_get_maxidx(&sem_ids(ns)); up_read(&sem_ids(ns).rwsem); if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) return -EFAULT; return (max_idx < 0) ? 0 : max_idx; } static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, int val) { struct sem_undo *un; struct sem_array *sma; struct sem *curr; int err; DEFINE_WAKE_Q(wake_q); if (val > SEMVMX || val < 0) return -ERANGE; rcu_read_lock(); sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return PTR_ERR(sma); } if (semnum < 0 || semnum >= sma->sem_nsems) { rcu_read_unlock(); return -EINVAL; } if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { rcu_read_unlock(); return -EACCES; } err = security_sem_semctl(&sma->sem_perm, SETVAL); if (err) { rcu_read_unlock(); return -EACCES; } sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); return -EIDRM; } semnum = array_index_nospec(semnum, sma->sem_nsems); curr = &sma->sems[semnum]; ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry(un, &sma->list_id, list_id) un->semadj[semnum] = 0; curr->semval = val; ipc_update_pid(&curr->sempid, task_tgid(current)); sma->sem_ctime = ktime_get_real_seconds(); /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 0, &wake_q); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_q(&wake_q); return 0; } static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, int cmd, void __user *p) { struct sem_array *sma; struct sem *curr; int err, nsems; ushort fast_sem_io[SEMMSL_FAST]; ushort *sem_io = fast_sem_io; DEFINE_WAKE_Q(wake_q); rcu_read_lock(); sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return PTR_ERR(sma); } nsems = sma->sem_nsems; err = -EACCES; if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) goto out_rcu_wakeup; err = security_sem_semctl(&sma->sem_perm, cmd); if (err) goto out_rcu_wakeup; switch (cmd) { case GETALL: { ushort __user *array = p; int i; sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } if (nsems > SEMMSL_FAST) { if (!ipc_rcu_getref(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } sem_unlock(sma, -1); rcu_read_unlock(); sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL); if (sem_io == NULL) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return -ENOMEM; } rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } } for (i = 0; i < sma->sem_nsems; i++) sem_io[i] = sma->sems[i].semval; sem_unlock(sma, -1); rcu_read_unlock(); err = 0; if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) err = -EFAULT; goto out_free; } case SETALL: { int i; struct sem_undo *un; if (!ipc_rcu_getref(&sma->sem_perm)) { err = -EIDRM; goto out_rcu_wakeup; } rcu_read_unlock(); if (nsems > SEMMSL_FAST) { sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL); if (sem_io == NULL) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return -ENOMEM; } } if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); err = -EFAULT; goto out_free; } for (i = 0; i < nsems; i++) { if (sem_io[i] > SEMVMX) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); err = -ERANGE; goto out_free; } } rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } for (i = 0; i < nsems; i++) { sma->sems[i].semval = sem_io[i]; ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); } ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry(un, &sma->list_id, list_id) { for (i = 0; i < nsems; i++) un->semadj[i] = 0; } sma->sem_ctime = ktime_get_real_seconds(); /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 0, &wake_q); err = 0; goto out_unlock; } /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ } err = -EINVAL; if (semnum < 0 || semnum >= nsems) goto out_rcu_wakeup; sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } semnum = array_index_nospec(semnum, nsems); curr = &sma->sems[semnum]; switch (cmd) { case GETVAL: err = curr->semval; goto out_unlock; case GETPID: err = pid_vnr(curr->sempid); goto out_unlock; case GETNCNT: err = count_semcnt(sma, semnum, 0); goto out_unlock; case GETZCNT: err = count_semcnt(sma, semnum, 1); goto out_unlock; } out_unlock: sem_unlock(sma, -1); out_rcu_wakeup: rcu_read_unlock(); wake_up_q(&wake_q); out_free: if (sem_io != fast_sem_io) kvfree(sem_io); return err; } static inline unsigned long copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) { switch (version) { case IPC_64: if (copy_from_user(out, buf, sizeof(*out))) return -EFAULT; return 0; case IPC_OLD: { struct semid_ds tbuf_old; if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) return -EFAULT; out->sem_perm.uid = tbuf_old.sem_perm.uid; out->sem_perm.gid = tbuf_old.sem_perm.gid; out->sem_perm.mode = tbuf_old.sem_perm.mode; return 0; } default: return -EINVAL; } } /* * This function handles some semctl commands which require the rwsem * to be held in write mode. * NOTE: no locks must be held, the rwsem is taken inside this function. */ static int semctl_down(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64) { struct sem_array *sma; int err; struct kern_ipc_perm *ipcp; down_write(&sem_ids(ns).rwsem); rcu_read_lock(); ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, &semid64->sem_perm, 0); if (IS_ERR(ipcp)) { err = PTR_ERR(ipcp); goto out_unlock1; } sma = container_of(ipcp, struct sem_array, sem_perm); err = security_sem_semctl(&sma->sem_perm, cmd); if (err) goto out_unlock1; switch (cmd) { case IPC_RMID: sem_lock(sma, NULL, -1); /* freeary unlocks the ipc object and rcu */ freeary(ns, ipcp); goto out_up; case IPC_SET: sem_lock(sma, NULL, -1); err = ipc_update_perm(&semid64->sem_perm, ipcp); if (err) goto out_unlock0; sma->sem_ctime = ktime_get_real_seconds(); break; default: err = -EINVAL; goto out_unlock1; } out_unlock0: sem_unlock(sma, -1); out_unlock1: rcu_read_unlock(); out_up: up_write(&sem_ids(ns).rwsem); return err; } static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) { struct ipc_namespace *ns; void __user *p = (void __user *)arg; struct semid64_ds semid64; int err; if (semid < 0) return -EINVAL; ns = current->nsproxy->ipc_ns; switch (cmd) { case IPC_INFO: case SEM_INFO: return semctl_info(ns, semid, cmd, p); case IPC_STAT: case SEM_STAT: case SEM_STAT_ANY: err = semctl_stat(ns, semid, cmd, &semid64); if (err < 0) return err; if (copy_semid_to_user(p, &semid64, version)) err = -EFAULT; return err; case GETALL: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case SETALL: return semctl_main(ns, semid, semnum, cmd, p); case SETVAL: { int val; #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) /* big-endian 64bit */ val = arg >> 32; #else /* 32bit or little-endian 64bit */ val = arg; #endif return semctl_setval(ns, semid, semnum, val); } case IPC_SET: if (copy_semid_from_user(&semid64, p, version)) return -EFAULT; fallthrough; case IPC_RMID: return semctl_down(ns, semid, cmd, &semid64); default: return -EINVAL; } } SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) { return ksys_semctl(semid, semnum, cmd, arg, IPC_64); } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) { int version = ipc_parse_version(&cmd); return ksys_semctl(semid, semnum, cmd, arg, version); } SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) { return ksys_old_semctl(semid, semnum, cmd, arg); } #endif #ifdef CONFIG_COMPAT struct compat_semid_ds { struct compat_ipc_perm sem_perm; old_time32_t sem_otime; old_time32_t sem_ctime; compat_uptr_t sem_base; compat_uptr_t sem_pending; compat_uptr_t sem_pending_last; compat_uptr_t undo; unsigned short sem_nsems; }; static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, int version) { memset(out, 0, sizeof(*out)); if (version == IPC_64) { struct compat_semid64_ds __user *p = buf; return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); } else { struct compat_semid_ds __user *p = buf; return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); } } static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, int version) { if (version == IPC_64) { struct compat_semid64_ds v; memset(&v, 0, sizeof(v)); to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); v.sem_otime = lower_32_bits(in->sem_otime); v.sem_otime_high = upper_32_bits(in->sem_otime); v.sem_ctime = lower_32_bits(in->sem_ctime); v.sem_ctime_high = upper_32_bits(in->sem_ctime); v.sem_nsems = in->sem_nsems; return copy_to_user(buf, &v, sizeof(v)); } else { struct compat_semid_ds v; memset(&v, 0, sizeof(v)); to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); v.sem_otime = in->sem_otime; v.sem_ctime = in->sem_ctime; v.sem_nsems = in->sem_nsems; return copy_to_user(buf, &v, sizeof(v)); } } static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) { void __user *p = compat_ptr(arg); struct ipc_namespace *ns; struct semid64_ds semid64; int err; ns = current->nsproxy->ipc_ns; if (semid < 0) return -EINVAL; switch (cmd & (~IPC_64)) { case IPC_INFO: case SEM_INFO: return semctl_info(ns, semid, cmd, p); case IPC_STAT: case SEM_STAT: case SEM_STAT_ANY: err = semctl_stat(ns, semid, cmd, &semid64); if (err < 0) return err; if (copy_compat_semid_to_user(p, &semid64, version)) err = -EFAULT; return err; case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETALL: return semctl_main(ns, semid, semnum, cmd, p); case SETVAL: return semctl_setval(ns, semid, semnum, arg); case IPC_SET: if (copy_compat_semid_from_user(&semid64, p, version)) return -EFAULT; fallthrough; case IPC_RMID: return semctl_down(ns, semid, cmd, &semid64); default: return -EINVAL; } } COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) { return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); } #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) { int version = compat_ipc_parse_version(&cmd); return compat_ksys_semctl(semid, semnum, cmd, arg, version); } COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) { return compat_ksys_old_semctl(semid, semnum, cmd, arg); } #endif #endif /* If the task doesn't already have a undo_list, then allocate one * here. We guarantee there is only one thread using this undo list, * and current is THE ONE * * If this allocation and assignment succeeds, but later * portions of this code fail, there is no need to free the sem_undo_list. * Just let it stay associated with the task, and it'll be freed later * at exit time. * * This can block, so callers must hold no locks. */ static inline int get_undo_list(struct sem_undo_list **undo_listp) { struct sem_undo_list *undo_list; undo_list = current->sysvsem.undo_list; if (!undo_list) { undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT); if (undo_list == NULL) return -ENOMEM; spin_lock_init(&undo_list->lock); refcount_set(&undo_list->refcnt, 1); INIT_LIST_HEAD(&undo_list->list_proc); current->sysvsem.undo_list = undo_list; } *undo_listp = undo_list; return 0; } static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) { struct sem_undo *un; list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, spin_is_locked(&ulp->lock)) { if (un->semid == semid) return un; } return NULL; } static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) { struct sem_undo *un; assert_spin_locked(&ulp->lock); un = __lookup_undo(ulp, semid); if (un) { list_del_rcu(&un->list_proc); list_add_rcu(&un->list_proc, &ulp->list_proc); } return un; } /** * find_alloc_undo - lookup (and if not present create) undo array * @ns: namespace * @semid: semaphore array id * * The function looks up (and if not present creates) the undo structure. * The size of the undo structure depends on the size of the semaphore * array, thus the alloc path is not that straightforward. * Lifetime-rules: sem_undo is rcu-protected, on success, the function * performs a rcu_read_lock(). */ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) { struct sem_array *sma; struct sem_undo_list *ulp; struct sem_undo *un, *new; int nsems, error; error = get_undo_list(&ulp); if (error) return ERR_PTR(error); rcu_read_lock(); spin_lock(&ulp->lock); un = lookup_undo(ulp, semid); spin_unlock(&ulp->lock); if (likely(un != NULL)) goto out; /* no undo structure around - allocate one. */ /* step 1: figure out the size of the semaphore array */ sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return ERR_CAST(sma); } nsems = sma->sem_nsems; if (!ipc_rcu_getref(&sma->sem_perm)) { rcu_read_unlock(); un = ERR_PTR(-EIDRM); goto out; } rcu_read_unlock(); /* step 2: allocate new undo structure */ new = kvzalloc(struct_size(new, semadj, nsems), GFP_KERNEL_ACCOUNT); if (!new) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return ERR_PTR(-ENOMEM); } /* step 3: Acquire the lock on semaphore array */ rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); kvfree(new); un = ERR_PTR(-EIDRM); goto out; } spin_lock(&ulp->lock); /* * step 4: check for races: did someone else allocate the undo struct? */ un = lookup_undo(ulp, semid); if (un) { spin_unlock(&ulp->lock); kvfree(new); goto success; } /* step 5: initialize & link new undo structure */ new->ulp = ulp; new->semid = semid; assert_spin_locked(&ulp->lock); list_add_rcu(&new->list_proc, &ulp->list_proc); ipc_assert_locked_object(&sma->sem_perm); list_add(&new->list_id, &sma->list_id); un = new; spin_unlock(&ulp->lock); success: sem_unlock(sma, -1); out: return un; } long __do_semtimedop(int semid, struct sembuf *sops, unsigned nsops, const struct timespec64 *timeout, struct ipc_namespace *ns) { int error = -EINVAL; struct sem_array *sma; struct sembuf *sop; struct sem_undo *un; int max, locknum; bool undos = false, alter = false, dupsop = false; struct sem_queue queue; unsigned long dup = 0; ktime_t expires, *exp = NULL; bool timed_out = false; if (nsops < 1 || semid < 0) return -EINVAL; if (nsops > ns->sc_semopm) return -E2BIG; if (timeout) { if (!timespec64_valid(timeout)) return -EINVAL; expires = ktime_add_safe(ktime_get(), timespec64_to_ktime(*timeout)); exp = &expires; } max = 0; for (sop = sops; sop < sops + nsops; sop++) { unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); if (sop->sem_num >= max) max = sop->sem_num; if (sop->sem_flg & SEM_UNDO) undos = true; if (dup & mask) { /* * There was a previous alter access that appears * to have accessed the same semaphore, thus use * the dupsop logic. "appears", because the detection * can only check % BITS_PER_LONG. */ dupsop = true; } if (sop->sem_op != 0) { alter = true; dup |= mask; } } if (undos) { /* On success, find_alloc_undo takes the rcu_read_lock */ un = find_alloc_undo(ns, semid); if (IS_ERR(un)) { error = PTR_ERR(un); goto out; } } else { un = NULL; rcu_read_lock(); } sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); error = PTR_ERR(sma); goto out; } error = -EFBIG; if (max >= sma->sem_nsems) { rcu_read_unlock(); goto out; } error = -EACCES; if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { rcu_read_unlock(); goto out; } error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); if (error) { rcu_read_unlock(); goto out; } error = -EIDRM; locknum = sem_lock(sma, sops, nsops); /* * We eventually might perform the following check in a lockless * fashion, considering ipc_valid_object() locking constraints. * If nsops == 1 and there is no contention for sem_perm.lock, then * only a per-semaphore lock is held and it's OK to proceed with the * check below. More details on the fine grained locking scheme * entangled here and why it's RMID race safe on comments at sem_lock() */ if (!ipc_valid_object(&sma->sem_perm)) goto out_unlock; /* * semid identifiers are not unique - find_alloc_undo may have * allocated an undo structure, it was invalidated by an RMID * and now a new array with received the same id. Check and fail. * This case can be detected checking un->semid. The existence of * "un" itself is guaranteed by rcu. */ if (un && un->semid == -1) goto out_unlock; queue.sops = sops; queue.nsops = nsops; queue.undo = un; queue.pid = task_tgid(current); queue.alter = alter; queue.dupsop = dupsop; error = perform_atomic_semop(sma, &queue); if (error == 0) { /* non-blocking successful path */ DEFINE_WAKE_Q(wake_q); /* * If the operation was successful, then do * the required updates. */ if (alter) do_smart_update(sma, sops, nsops, 1, &wake_q); else set_semotime(sma, sops); sem_unlock(sma, locknum); rcu_read_unlock(); wake_up_q(&wake_q); goto out; } if (error < 0) /* non-blocking error path */ goto out_unlock; /* * We need to sleep on this operation, so we put the current * task into the pending queue and go to sleep. */ if (nsops == 1) { struct sem *curr; int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); curr = &sma->sems[idx]; if (alter) { if (sma->complex_count) { list_add_tail(&queue.list, &sma->pending_alter); } else { list_add_tail(&queue.list, &curr->pending_alter); } } else { list_add_tail(&queue.list, &curr->pending_const); } } else { if (!sma->complex_count) merge_queues(sma); if (alter) list_add_tail(&queue.list, &sma->pending_alter); else list_add_tail(&queue.list, &sma->pending_const); sma->complex_count++; } do { /* memory ordering ensured by the lock in sem_lock() */ WRITE_ONCE(queue.status, -EINTR); queue.sleeper = current; /* memory ordering is ensured by the lock in sem_lock() */ __set_current_state(TASK_INTERRUPTIBLE); sem_unlock(sma, locknum); rcu_read_unlock(); timed_out = !schedule_hrtimeout_range(exp, current->timer_slack_ns, HRTIMER_MODE_ABS); /* * fastpath: the semop has completed, either successfully or * not, from the syscall pov, is quite irrelevant to us at this * point; we're done. * * We _do_ care, nonetheless, about being awoken by a signal or * spuriously. The queue.status is checked again in the * slowpath (aka after taking sem_lock), such that we can detect * scenarios where we were awakened externally, during the * window between wake_q_add() and wake_up_q(). */ rcu_read_lock(); error = READ_ONCE(queue.status); if (error != -EINTR) { /* see SEM_BARRIER_2 for purpose/pairing */ smp_acquire__after_ctrl_dep(); rcu_read_unlock(); goto out; } locknum = sem_lock(sma, sops, nsops); if (!ipc_valid_object(&sma->sem_perm)) goto out_unlock; /* * No necessity for any barrier: We are protect by sem_lock() */ error = READ_ONCE(queue.status); /* * If queue.status != -EINTR we are woken up by another process. * Leave without unlink_queue(), but with sem_unlock(). */ if (error != -EINTR) goto out_unlock; /* * If an interrupt occurred we have to clean up the queue. */ if (timed_out) error = -EAGAIN; } while (error == -EINTR && !signal_pending(current)); /* spurious */ unlink_queue(sma, &queue); out_unlock: sem_unlock(sma, locknum); rcu_read_unlock(); out: return error; } static long do_semtimedop(int semid, struct sembuf __user *tsops, unsigned nsops, const struct timespec64 *timeout) { struct sembuf fast_sops[SEMOPM_FAST]; struct sembuf *sops = fast_sops; struct ipc_namespace *ns; int ret; ns = current->nsproxy->ipc_ns; if (nsops > ns->sc_semopm) return -E2BIG; if (nsops < 1) return -EINVAL; if (nsops > SEMOPM_FAST) { sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); if (sops == NULL) return -ENOMEM; } if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { ret = -EFAULT; goto out_free; } ret = __do_semtimedop(semid, sops, nsops, timeout, ns); out_free: if (sops != fast_sops) kvfree(sops); return ret; } long ksys_semtimedop(int semid, struct sembuf __user *tsops, unsigned int nsops, const struct __kernel_timespec __user *timeout) { if (timeout) { struct timespec64 ts; if (get_timespec64(&ts, timeout)) return -EFAULT; return do_semtimedop(semid, tsops, nsops, &ts); } return do_semtimedop(semid, tsops, nsops, NULL); } SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, unsigned int, nsops, const struct __kernel_timespec __user *, timeout) { return ksys_semtimedop(semid, tsops, nsops, timeout); } #ifdef CONFIG_COMPAT_32BIT_TIME long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, unsigned int nsops, const struct old_timespec32 __user *timeout) { if (timeout) { struct timespec64 ts; if (get_old_timespec32(&ts, timeout)) return -EFAULT; return do_semtimedop(semid, tsems, nsops, &ts); } return do_semtimedop(semid, tsems, nsops, NULL); } SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, unsigned int, nsops, const struct old_timespec32 __user *, timeout) { return compat_ksys_semtimedop(semid, tsems, nsops, timeout); } #endif SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, unsigned, nsops) { return do_semtimedop(semid, tsops, nsops, NULL); } /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between * parent and child tasks. */ int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) { struct sem_undo_list *undo_list; int error; if (clone_flags & CLONE_SYSVSEM) { error = get_undo_list(&undo_list); if (error) return error; refcount_inc(&undo_list->refcnt); tsk->sysvsem.undo_list = undo_list; } else tsk->sysvsem.undo_list = NULL; return 0; } /* * add semadj values to semaphores, free undo structures. * undo structures are not freed when semaphore arrays are destroyed * so some of them may be out of date. * IMPLEMENTATION NOTE: There is some confusion over whether the * set of adjustments that needs to be done should be done in an atomic * manner or not. That is, if we are attempting to decrement the semval * should we queue up and wait until we can do so legally? * The original implementation attempted to do this (queue and wait). * The current implementation does not do so. The POSIX standard * and SVID should be consulted to determine what behavior is mandated. */ void exit_sem(struct task_struct *tsk) { struct sem_undo_list *ulp; ulp = tsk->sysvsem.undo_list; if (!ulp) return; tsk->sysvsem.undo_list = NULL; if (!refcount_dec_and_test(&ulp->refcnt)) return; for (;;) { struct sem_array *sma; struct sem_undo *un; int semid, i; DEFINE_WAKE_Q(wake_q); cond_resched(); rcu_read_lock(); un = list_entry_rcu(ulp->list_proc.next, struct sem_undo, list_proc); if (&un->list_proc == &ulp->list_proc) { /* * We must wait for freeary() before freeing this ulp, * in case we raced with last sem_undo. There is a small * possibility where we exit while freeary() didn't * finish unlocking sem_undo_list. */ spin_lock(&ulp->lock); spin_unlock(&ulp->lock); rcu_read_unlock(); break; } spin_lock(&ulp->lock); semid = un->semid; spin_unlock(&ulp->lock); /* exit_sem raced with IPC_RMID, nothing to do */ if (semid == -1) { rcu_read_unlock(); continue; } sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); /* exit_sem raced with IPC_RMID, nothing to do */ if (IS_ERR(sma)) { rcu_read_unlock(); continue; } sem_lock(sma, NULL, -1); /* exit_sem raced with IPC_RMID, nothing to do */ if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); continue; } un = __lookup_undo(ulp, semid); if (un == NULL) { /* exit_sem raced with IPC_RMID+semget() that created * exactly the same semid. Nothing to do. */ sem_unlock(sma, -1); rcu_read_unlock(); continue; } /* remove un from the linked lists */ ipc_assert_locked_object(&sma->sem_perm); list_del(&un->list_id); spin_lock(&ulp->lock); list_del_rcu(&un->list_proc); spin_unlock(&ulp->lock); /* perform adjustments registered in un */ for (i = 0; i < sma->sem_nsems; i++) { struct sem *semaphore = &sma->sems[i]; if (un->semadj[i]) { semaphore->semval += un->semadj[i]; /* * Range checks of the new semaphore value, * not defined by sus: * - Some unices ignore the undo entirely * (e.g. HP UX 11i 11.22, Tru64 V5.1) * - some cap the value (e.g. FreeBSD caps * at 0, but doesn't enforce SEMVMX) * * Linux caps the semaphore value, both at 0 * and at SEMVMX. * * Manfred <manfred@colorfullife.com> */ if (semaphore->semval < 0) semaphore->semval = 0; if (semaphore->semval > SEMVMX) semaphore->semval = SEMVMX; ipc_update_pid(&semaphore->sempid, task_tgid(current)); } } /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 1, &wake_q); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_q(&wake_q); kvfree_rcu(un, rcu); } kfree(ulp); } #ifdef CONFIG_PROC_FS static int sysvipc_sem_proc_show(struct seq_file *s, void *it) { struct user_namespace *user_ns = seq_user_ns(s); struct kern_ipc_perm *ipcp = it; struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); time64_t sem_otime; /* * The proc interface isn't aware of sem_lock(), it calls * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock). * (in sysvipc_find_ipc) * In order to stay compatible with sem_lock(), we must * enter / leave complex_mode. */ complexmode_enter(sma); sem_otime = get_semotime(sma); seq_printf(s, "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", sma->sem_perm.key, sma->sem_perm.id, sma->sem_perm.mode, sma->sem_nsems, from_kuid_munged(user_ns, sma->sem_perm.uid), from_kgid_munged(user_ns, sma->sem_perm.gid), from_kuid_munged(user_ns, sma->sem_perm.cuid), from_kgid_munged(user_ns, sma->sem_perm.cgid), sem_otime, sma->sem_ctime); complexmode_tryleave(sma); return 0; } #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Mellanox Technologies. All rights reserved. * Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com> */ #include "devl_internal.h" static struct devlink_dpipe_field devlink_dpipe_fields_ethernet[] = { { .name = "destination mac", .id = DEVLINK_DPIPE_FIELD_ETHERNET_DST_MAC, .bitwidth = 48, }, }; struct devlink_dpipe_header devlink_dpipe_header_ethernet = { .name = "ethernet", .id = DEVLINK_DPIPE_HEADER_ETHERNET, .fields = devlink_dpipe_fields_ethernet, .fields_count = ARRAY_SIZE(devlink_dpipe_fields_ethernet), .global = true, }; EXPORT_SYMBOL_GPL(devlink_dpipe_header_ethernet); static struct devlink_dpipe_field devlink_dpipe_fields_ipv4[] = { { .name = "destination ip", .id = DEVLINK_DPIPE_FIELD_IPV4_DST_IP, .bitwidth = 32, }, }; struct devlink_dpipe_header devlink_dpipe_header_ipv4 = { .name = "ipv4", .id = DEVLINK_DPIPE_HEADER_IPV4, .fields = devlink_dpipe_fields_ipv4, .fields_count = ARRAY_SIZE(devlink_dpipe_fields_ipv4), .global = true, }; EXPORT_SYMBOL_GPL(devlink_dpipe_header_ipv4); static struct devlink_dpipe_field devlink_dpipe_fields_ipv6[] = { { .name = "destination ip", .id = DEVLINK_DPIPE_FIELD_IPV6_DST_IP, .bitwidth = 128, }, }; struct devlink_dpipe_header devlink_dpipe_header_ipv6 = { .name = "ipv6", .id = DEVLINK_DPIPE_HEADER_IPV6, .fields = devlink_dpipe_fields_ipv6, .fields_count = ARRAY_SIZE(devlink_dpipe_fields_ipv6), .global = true, }; EXPORT_SYMBOL_GPL(devlink_dpipe_header_ipv6); int devlink_dpipe_match_put(struct sk_buff *skb, struct devlink_dpipe_match *match) { struct devlink_dpipe_header *header = match->header; struct devlink_dpipe_field *field = &header->fields[match->field_id]; struct nlattr *match_attr; match_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_MATCH); if (!match_attr) return -EMSGSIZE; if (nla_put_u32(skb, DEVLINK_ATTR_DPIPE_MATCH_TYPE, match->type) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_INDEX, match->header_index) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_ID, header->id) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_ID, field->id) || nla_put_u8(skb, DEVLINK_ATTR_DPIPE_HEADER_GLOBAL, header->global)) goto nla_put_failure; nla_nest_end(skb, match_attr); return 0; nla_put_failure: nla_nest_cancel(skb, match_attr); return -EMSGSIZE; } EXPORT_SYMBOL_GPL(devlink_dpipe_match_put); static int devlink_dpipe_matches_put(struct devlink_dpipe_table *table, struct sk_buff *skb) { struct nlattr *matches_attr; matches_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_TABLE_MATCHES); if (!matches_attr) return -EMSGSIZE; if (table->table_ops->matches_dump(table->priv, skb)) goto nla_put_failure; nla_nest_end(skb, matches_attr); return 0; nla_put_failure: nla_nest_cancel(skb, matches_attr); return -EMSGSIZE; } int devlink_dpipe_action_put(struct sk_buff *skb, struct devlink_dpipe_action *action) { struct devlink_dpipe_header *header = action->header; struct devlink_dpipe_field *field = &header->fields[action->field_id]; struct nlattr *action_attr; action_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ACTION); if (!action_attr) return -EMSGSIZE; if (nla_put_u32(skb, DEVLINK_ATTR_DPIPE_ACTION_TYPE, action->type) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_INDEX, action->header_index) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_ID, header->id) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_ID, field->id) || nla_put_u8(skb, DEVLINK_ATTR_DPIPE_HEADER_GLOBAL, header->global)) goto nla_put_failure; nla_nest_end(skb, action_attr); return 0; nla_put_failure: nla_nest_cancel(skb, action_attr); return -EMSGSIZE; } EXPORT_SYMBOL_GPL(devlink_dpipe_action_put); static int devlink_dpipe_actions_put(struct devlink_dpipe_table *table, struct sk_buff *skb) { struct nlattr *actions_attr; actions_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_TABLE_ACTIONS); if (!actions_attr) return -EMSGSIZE; if (table->table_ops->actions_dump(table->priv, skb)) goto nla_put_failure; nla_nest_end(skb, actions_attr); return 0; nla_put_failure: nla_nest_cancel(skb, actions_attr); return -EMSGSIZE; } static int devlink_dpipe_table_put(struct sk_buff *skb, struct devlink_dpipe_table *table) { struct nlattr *table_attr; u64 table_size; table_size = table->table_ops->size_get(table->priv); table_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_TABLE); if (!table_attr) return -EMSGSIZE; if (nla_put_string(skb, DEVLINK_ATTR_DPIPE_TABLE_NAME, table->name) || devlink_nl_put_u64(skb, DEVLINK_ATTR_DPIPE_TABLE_SIZE, table_size)) goto nla_put_failure; if (nla_put_u8(skb, DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED, table->counters_enabled)) goto nla_put_failure; if (table->resource_valid) { if (devlink_nl_put_u64(skb, DEVLINK_ATTR_DPIPE_TABLE_RESOURCE_ID, table->resource_id) || devlink_nl_put_u64(skb, DEVLINK_ATTR_DPIPE_TABLE_RESOURCE_UNITS, table->resource_units)) goto nla_put_failure; } if (devlink_dpipe_matches_put(table, skb)) goto nla_put_failure; if (devlink_dpipe_actions_put(table, skb)) goto nla_put_failure; nla_nest_end(skb, table_attr); return 0; nla_put_failure: nla_nest_cancel(skb, table_attr); return -EMSGSIZE; } static int devlink_dpipe_send_and_alloc_skb(struct sk_buff **pskb, struct genl_info *info) { int err; if (*pskb) { err = genlmsg_reply(*pskb, info); if (err) return err; } *pskb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!*pskb) return -ENOMEM; return 0; } static int devlink_dpipe_tables_fill(struct genl_info *info, enum devlink_command cmd, int flags, struct list_head *dpipe_tables, const char *table_name) { struct devlink *devlink = info->user_ptr[0]; struct devlink_dpipe_table *table; struct nlattr *tables_attr; struct sk_buff *skb = NULL; struct nlmsghdr *nlh; bool incomplete; void *hdr; int i; int err; table = list_first_entry(dpipe_tables, struct devlink_dpipe_table, list); start_again: err = devlink_dpipe_send_and_alloc_skb(&skb, info); if (err) return err; hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq, &devlink_nl_family, NLM_F_MULTI, cmd); if (!hdr) { nlmsg_free(skb); return -EMSGSIZE; } if (devlink_nl_put_handle(skb, devlink)) goto nla_put_failure; tables_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_TABLES); if (!tables_attr) goto nla_put_failure; i = 0; incomplete = false; list_for_each_entry_from(table, dpipe_tables, list) { if (!table_name) { err = devlink_dpipe_table_put(skb, table); if (err) { if (!i) goto err_table_put; incomplete = true; break; } } else { if (!strcmp(table->name, table_name)) { err = devlink_dpipe_table_put(skb, table); if (err) break; } } i++; } nla_nest_end(skb, tables_attr); genlmsg_end(skb, hdr); if (incomplete) goto start_again; send_done: nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = devlink_dpipe_send_and_alloc_skb(&skb, info); if (err) return err; goto send_done; } return genlmsg_reply(skb, info); nla_put_failure: err = -EMSGSIZE; err_table_put: nlmsg_free(skb); return err; } int devlink_nl_dpipe_table_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const char *table_name = NULL; if (info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]) table_name = nla_data(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]); return devlink_dpipe_tables_fill(info, DEVLINK_CMD_DPIPE_TABLE_GET, 0, &devlink->dpipe_table_list, table_name); } static int devlink_dpipe_value_put(struct sk_buff *skb, struct devlink_dpipe_value *value) { if (nla_put(skb, DEVLINK_ATTR_DPIPE_VALUE, value->value_size, value->value)) return -EMSGSIZE; if (value->mask) if (nla_put(skb, DEVLINK_ATTR_DPIPE_VALUE_MASK, value->value_size, value->mask)) return -EMSGSIZE; if (value->mapping_valid) if (nla_put_u32(skb, DEVLINK_ATTR_DPIPE_VALUE_MAPPING, value->mapping_value)) return -EMSGSIZE; return 0; } static int devlink_dpipe_action_value_put(struct sk_buff *skb, struct devlink_dpipe_value *value) { if (!value->action) return -EINVAL; if (devlink_dpipe_action_put(skb, value->action)) return -EMSGSIZE; if (devlink_dpipe_value_put(skb, value)) return -EMSGSIZE; return 0; } static int devlink_dpipe_action_values_put(struct sk_buff *skb, struct devlink_dpipe_value *values, unsigned int values_count) { struct nlattr *action_attr; int i; int err; for (i = 0; i < values_count; i++) { action_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ACTION_VALUE); if (!action_attr) return -EMSGSIZE; err = devlink_dpipe_action_value_put(skb, &values[i]); if (err) goto err_action_value_put; nla_nest_end(skb, action_attr); } return 0; err_action_value_put: nla_nest_cancel(skb, action_attr); return err; } static int devlink_dpipe_match_value_put(struct sk_buff *skb, struct devlink_dpipe_value *value) { if (!value->match) return -EINVAL; if (devlink_dpipe_match_put(skb, value->match)) return -EMSGSIZE; if (devlink_dpipe_value_put(skb, value)) return -EMSGSIZE; return 0; } static int devlink_dpipe_match_values_put(struct sk_buff *skb, struct devlink_dpipe_value *values, unsigned int values_count) { struct nlattr *match_attr; int i; int err; for (i = 0; i < values_count; i++) { match_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_MATCH_VALUE); if (!match_attr) return -EMSGSIZE; err = devlink_dpipe_match_value_put(skb, &values[i]); if (err) goto err_match_value_put; nla_nest_end(skb, match_attr); } return 0; err_match_value_put: nla_nest_cancel(skb, match_attr); return err; } static int devlink_dpipe_entry_put(struct sk_buff *skb, struct devlink_dpipe_entry *entry) { struct nlattr *entry_attr, *matches_attr, *actions_attr; int err; entry_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ENTRY); if (!entry_attr) return -EMSGSIZE; if (devlink_nl_put_u64(skb, DEVLINK_ATTR_DPIPE_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (entry->counter_valid) if (devlink_nl_put_u64(skb, DEVLINK_ATTR_DPIPE_ENTRY_COUNTER, entry->counter)) goto nla_put_failure; matches_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ENTRY_MATCH_VALUES); if (!matches_attr) goto nla_put_failure; err = devlink_dpipe_match_values_put(skb, entry->match_values, entry->match_values_count); if (err) { nla_nest_cancel(skb, matches_attr); goto err_match_values_put; } nla_nest_end(skb, matches_attr); actions_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_ENTRY_ACTION_VALUES); if (!actions_attr) goto nla_put_failure; err = devlink_dpipe_action_values_put(skb, entry->action_values, entry->action_values_count); if (err) { nla_nest_cancel(skb, actions_attr); goto err_action_values_put; } nla_nest_end(skb, actions_attr); nla_nest_end(skb, entry_attr); return 0; nla_put_failure: err = -EMSGSIZE; err_match_values_put: err_action_values_put: nla_nest_cancel(skb, entry_attr); return err; } static struct devlink_dpipe_table * devlink_dpipe_table_find(struct list_head *dpipe_tables, const char *table_name, struct devlink *devlink) { struct devlink_dpipe_table *table; list_for_each_entry_rcu(table, dpipe_tables, list, lockdep_is_held(&devlink->lock)) { if (!strcmp(table->name, table_name)) return table; } return NULL; } int devlink_dpipe_entry_ctx_prepare(struct devlink_dpipe_dump_ctx *dump_ctx) { struct devlink *devlink; int err; err = devlink_dpipe_send_and_alloc_skb(&dump_ctx->skb, dump_ctx->info); if (err) return err; dump_ctx->hdr = genlmsg_put(dump_ctx->skb, dump_ctx->info->snd_portid, dump_ctx->info->snd_seq, &devlink_nl_family, NLM_F_MULTI, dump_ctx->cmd); if (!dump_ctx->hdr) goto nla_put_failure; devlink = dump_ctx->info->user_ptr[0]; if (devlink_nl_put_handle(dump_ctx->skb, devlink)) goto nla_put_failure; dump_ctx->nest = nla_nest_start_noflag(dump_ctx->skb, DEVLINK_ATTR_DPIPE_ENTRIES); if (!dump_ctx->nest) goto nla_put_failure; return 0; nla_put_failure: nlmsg_free(dump_ctx->skb); return -EMSGSIZE; } EXPORT_SYMBOL_GPL(devlink_dpipe_entry_ctx_prepare); int devlink_dpipe_entry_ctx_append(struct devlink_dpipe_dump_ctx *dump_ctx, struct devlink_dpipe_entry *entry) { return devlink_dpipe_entry_put(dump_ctx->skb, entry); } EXPORT_SYMBOL_GPL(devlink_dpipe_entry_ctx_append); int devlink_dpipe_entry_ctx_close(struct devlink_dpipe_dump_ctx *dump_ctx) { nla_nest_end(dump_ctx->skb, dump_ctx->nest); genlmsg_end(dump_ctx->skb, dump_ctx->hdr); return 0; } EXPORT_SYMBOL_GPL(devlink_dpipe_entry_ctx_close); void devlink_dpipe_entry_clear(struct devlink_dpipe_entry *entry) { unsigned int value_count, value_index; struct devlink_dpipe_value *value; value = entry->action_values; value_count = entry->action_values_count; for (value_index = 0; value_index < value_count; value_index++) { kfree(value[value_index].value); kfree(value[value_index].mask); } value = entry->match_values; value_count = entry->match_values_count; for (value_index = 0; value_index < value_count; value_index++) { kfree(value[value_index].value); kfree(value[value_index].mask); } } EXPORT_SYMBOL_GPL(devlink_dpipe_entry_clear); static int devlink_dpipe_entries_fill(struct genl_info *info, enum devlink_command cmd, int flags, struct devlink_dpipe_table *table) { struct devlink_dpipe_dump_ctx dump_ctx; struct nlmsghdr *nlh; int err; dump_ctx.skb = NULL; dump_ctx.cmd = cmd; dump_ctx.info = info; err = table->table_ops->entries_dump(table->priv, table->counters_enabled, &dump_ctx); if (err) return err; send_done: nlh = nlmsg_put(dump_ctx.skb, info->snd_portid, info->snd_seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = devlink_dpipe_send_and_alloc_skb(&dump_ctx.skb, info); if (err) return err; goto send_done; } return genlmsg_reply(dump_ctx.skb, info); } int devlink_nl_dpipe_entries_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_dpipe_table *table; const char *table_name; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_DPIPE_TABLE_NAME)) return -EINVAL; table_name = nla_data(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]); table = devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name, devlink); if (!table) return -EINVAL; if (!table->table_ops->entries_dump) return -EINVAL; return devlink_dpipe_entries_fill(info, DEVLINK_CMD_DPIPE_ENTRIES_GET, 0, table); } static int devlink_dpipe_fields_put(struct sk_buff *skb, const struct devlink_dpipe_header *header) { struct devlink_dpipe_field *field; struct nlattr *field_attr; int i; for (i = 0; i < header->fields_count; i++) { field = &header->fields[i]; field_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_FIELD); if (!field_attr) return -EMSGSIZE; if (nla_put_string(skb, DEVLINK_ATTR_DPIPE_FIELD_NAME, field->name) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_ID, field->id) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_BITWIDTH, field->bitwidth) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_FIELD_MAPPING_TYPE, field->mapping_type)) goto nla_put_failure; nla_nest_end(skb, field_attr); } return 0; nla_put_failure: nla_nest_cancel(skb, field_attr); return -EMSGSIZE; } static int devlink_dpipe_header_put(struct sk_buff *skb, struct devlink_dpipe_header *header) { struct nlattr *fields_attr, *header_attr; int err; header_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_HEADER); if (!header_attr) return -EMSGSIZE; if (nla_put_string(skb, DEVLINK_ATTR_DPIPE_HEADER_NAME, header->name) || nla_put_u32(skb, DEVLINK_ATTR_DPIPE_HEADER_ID, header->id) || nla_put_u8(skb, DEVLINK_ATTR_DPIPE_HEADER_GLOBAL, header->global)) goto nla_put_failure; fields_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_HEADER_FIELDS); if (!fields_attr) goto nla_put_failure; err = devlink_dpipe_fields_put(skb, header); if (err) { nla_nest_cancel(skb, fields_attr); goto nla_put_failure; } nla_nest_end(skb, fields_attr); nla_nest_end(skb, header_attr); return 0; nla_put_failure: err = -EMSGSIZE; nla_nest_cancel(skb, header_attr); return err; } static int devlink_dpipe_headers_fill(struct genl_info *info, enum devlink_command cmd, int flags, struct devlink_dpipe_headers * dpipe_headers) { struct devlink *devlink = info->user_ptr[0]; struct nlattr *headers_attr; struct sk_buff *skb = NULL; struct nlmsghdr *nlh; void *hdr; int i, j; int err; i = 0; start_again: err = devlink_dpipe_send_and_alloc_skb(&skb, info); if (err) return err; hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq, &devlink_nl_family, NLM_F_MULTI, cmd); if (!hdr) { nlmsg_free(skb); return -EMSGSIZE; } if (devlink_nl_put_handle(skb, devlink)) goto nla_put_failure; headers_attr = nla_nest_start_noflag(skb, DEVLINK_ATTR_DPIPE_HEADERS); if (!headers_attr) goto nla_put_failure; j = 0; for (; i < dpipe_headers->headers_count; i++) { err = devlink_dpipe_header_put(skb, dpipe_headers->headers[i]); if (err) { if (!j) goto err_table_put; break; } j++; } nla_nest_end(skb, headers_attr); genlmsg_end(skb, hdr); if (i != dpipe_headers->headers_count) goto start_again; send_done: nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = devlink_dpipe_send_and_alloc_skb(&skb, info); if (err) return err; goto send_done; } return genlmsg_reply(skb, info); nla_put_failure: err = -EMSGSIZE; err_table_put: nlmsg_free(skb); return err; } int devlink_nl_dpipe_headers_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; if (!devlink->dpipe_headers) return -EOPNOTSUPP; return devlink_dpipe_headers_fill(info, DEVLINK_CMD_DPIPE_HEADERS_GET, 0, devlink->dpipe_headers); } static int devlink_dpipe_table_counters_set(struct devlink *devlink, const char *table_name, bool enable) { struct devlink_dpipe_table *table; table = devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name, devlink); if (!table) return -EINVAL; if (table->counter_control_extern) return -EOPNOTSUPP; if (!(table->counters_enabled ^ enable)) return 0; table->counters_enabled = enable; if (table->table_ops->counters_set_update) table->table_ops->counters_set_update(table->priv, enable); return 0; } int devlink_nl_dpipe_table_counters_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const char *table_name; bool counters_enable; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_DPIPE_TABLE_NAME) || GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED)) return -EINVAL; table_name = nla_data(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_NAME]); counters_enable = !!nla_get_u8(info->attrs[DEVLINK_ATTR_DPIPE_TABLE_COUNTERS_ENABLED]); return devlink_dpipe_table_counters_set(devlink, table_name, counters_enable); } /** * devl_dpipe_headers_register - register dpipe headers * * @devlink: devlink * @dpipe_headers: dpipe header array * * Register the headers supported by hardware. */ void devl_dpipe_headers_register(struct devlink *devlink, struct devlink_dpipe_headers *dpipe_headers) { lockdep_assert_held(&devlink->lock); devlink->dpipe_headers = dpipe_headers; } EXPORT_SYMBOL_GPL(devl_dpipe_headers_register); /** * devl_dpipe_headers_unregister - unregister dpipe headers * * @devlink: devlink * * Unregister the headers supported by hardware. */ void devl_dpipe_headers_unregister(struct devlink *devlink) { lockdep_assert_held(&devlink->lock); devlink->dpipe_headers = NULL; } EXPORT_SYMBOL_GPL(devl_dpipe_headers_unregister); /** * devlink_dpipe_table_counter_enabled - check if counter allocation * required * @devlink: devlink * @table_name: tables name * * Used by driver to check if counter allocation is required. * After counter allocation is turned on the table entries * are updated to include counter statistics. * * After that point on the driver must respect the counter * state so that each entry added to the table is added * with a counter. */ bool devlink_dpipe_table_counter_enabled(struct devlink *devlink, const char *table_name) { struct devlink_dpipe_table *table; bool enabled; rcu_read_lock(); table = devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name, devlink); enabled = false; if (table) enabled = table->counters_enabled; rcu_read_unlock(); return enabled; } EXPORT_SYMBOL_GPL(devlink_dpipe_table_counter_enabled); /** * devl_dpipe_table_register - register dpipe table * * @devlink: devlink * @table_name: table name * @table_ops: table ops * @priv: priv * @counter_control_extern: external control for counters */ int devl_dpipe_table_register(struct devlink *devlink, const char *table_name, const struct devlink_dpipe_table_ops *table_ops, void *priv, bool counter_control_extern) { struct devlink_dpipe_table *table; lockdep_assert_held(&devlink->lock); if (WARN_ON(!table_ops->size_get)) return -EINVAL; if (devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name, devlink)) return -EEXIST; table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; table->name = table_name; table->table_ops = table_ops; table->priv = priv; table->counter_control_extern = counter_control_extern; list_add_tail_rcu(&table->list, &devlink->dpipe_table_list); return 0; } EXPORT_SYMBOL_GPL(devl_dpipe_table_register); /** * devl_dpipe_table_unregister - unregister dpipe table * * @devlink: devlink * @table_name: table name */ void devl_dpipe_table_unregister(struct devlink *devlink, const char *table_name) { struct devlink_dpipe_table *table; lockdep_assert_held(&devlink->lock); table = devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name, devlink); if (!table) return; list_del_rcu(&table->list); kfree_rcu(table, rcu); } EXPORT_SYMBOL_GPL(devl_dpipe_table_unregister); /** * devl_dpipe_table_resource_set - set the resource id * * @devlink: devlink * @table_name: table name * @resource_id: resource id * @resource_units: number of resource's units consumed per table's entry */ int devl_dpipe_table_resource_set(struct devlink *devlink, const char *table_name, u64 resource_id, u64 resource_units) { struct devlink_dpipe_table *table; table = devlink_dpipe_table_find(&devlink->dpipe_table_list, table_name, devlink); if (!table) return -EINVAL; table->resource_id = resource_id; table->resource_units = resource_units; table->resource_valid = true; return 0; } EXPORT_SYMBOL_GPL(devl_dpipe_table_resource_set);
1 2 1 2 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 491 132 491 3 2 1 2 5 1 2 1 38 8 1 2 1 13 5 1 1 1 3 25 1 1136 524 274 175 46 491 491 471 1 303 173 231 245 49 401 25 426 390 390 390 390 1 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 // SPDX-License-Identifier: GPL-2.0-only /* * This file contains functions assisting in mapping VFS to 9P2000 * * Copyright (C) 2004-2008 by Eric Van Hensbergen <ericvh@gmail.com> * Copyright (C) 2002 by Ron Minnich <rminnich@lanl.gov> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/sched.h> #include <linux/cred.h> #include <linux/parser.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <net/9p/9p.h> #include <net/9p/client.h> #include <net/9p/transport.h> #include "v9fs.h" #include "v9fs_vfs.h" #include "cache.h" static DEFINE_SPINLOCK(v9fs_sessionlist_lock); static LIST_HEAD(v9fs_sessionlist); struct kmem_cache *v9fs_inode_cache; /* * Option Parsing (code inspired by NFS code) * NOTE: each transport will parse its own options */ enum { /* Options that take integer arguments */ Opt_debug, Opt_dfltuid, Opt_dfltgid, Opt_afid, /* String options */ Opt_uname, Opt_remotename, Opt_cache, Opt_cachetag, /* Options that take no arguments */ Opt_nodevmap, Opt_noxattr, Opt_directio, Opt_ignoreqv, /* Access options */ Opt_access, Opt_posixacl, /* Lock timeout option */ Opt_locktimeout, /* Error token */ Opt_err }; static const match_table_t tokens = { {Opt_debug, "debug=%x"}, {Opt_dfltuid, "dfltuid=%u"}, {Opt_dfltgid, "dfltgid=%u"}, {Opt_afid, "afid=%u"}, {Opt_uname, "uname=%s"}, {Opt_remotename, "aname=%s"}, {Opt_nodevmap, "nodevmap"}, {Opt_noxattr, "noxattr"}, {Opt_directio, "directio"}, {Opt_ignoreqv, "ignoreqv"}, {Opt_cache, "cache=%s"}, {Opt_cachetag, "cachetag=%s"}, {Opt_access, "access=%s"}, {Opt_posixacl, "posixacl"}, {Opt_locktimeout, "locktimeout=%u"}, {Opt_err, NULL} }; /* Interpret mount options for cache mode */ static int get_cache_mode(char *s) { int version = -EINVAL; if (!strcmp(s, "loose")) { version = CACHE_SC_LOOSE; p9_debug(P9_DEBUG_9P, "Cache mode: loose\n"); } else if (!strcmp(s, "fscache")) { version = CACHE_SC_FSCACHE; p9_debug(P9_DEBUG_9P, "Cache mode: fscache\n"); } else if (!strcmp(s, "mmap")) { version = CACHE_SC_MMAP; p9_debug(P9_DEBUG_9P, "Cache mode: mmap\n"); } else if (!strcmp(s, "readahead")) { version = CACHE_SC_READAHEAD; p9_debug(P9_DEBUG_9P, "Cache mode: readahead\n"); } else if (!strcmp(s, "none")) { version = CACHE_SC_NONE; p9_debug(P9_DEBUG_9P, "Cache mode: none\n"); } else if (kstrtoint(s, 0, &version) != 0) { version = -EINVAL; pr_info("Unknown Cache mode or invalid value %s\n", s); } return version; } /* * Display the mount options in /proc/mounts. */ int v9fs_show_options(struct seq_file *m, struct dentry *root) { struct v9fs_session_info *v9ses = root->d_sb->s_fs_info; if (v9ses->debug) seq_printf(m, ",debug=%x", v9ses->debug); if (!uid_eq(v9ses->dfltuid, V9FS_DEFUID)) seq_printf(m, ",dfltuid=%u", from_kuid_munged(&init_user_ns, v9ses->dfltuid)); if (!gid_eq(v9ses->dfltgid, V9FS_DEFGID)) seq_printf(m, ",dfltgid=%u", from_kgid_munged(&init_user_ns, v9ses->dfltgid)); if (v9ses->afid != ~0) seq_printf(m, ",afid=%u", v9ses->afid); if (strcmp(v9ses->uname, V9FS_DEFUSER) != 0) seq_printf(m, ",uname=%s", v9ses->uname); if (strcmp(v9ses->aname, V9FS_DEFANAME) != 0) seq_printf(m, ",aname=%s", v9ses->aname); if (v9ses->nodev) seq_puts(m, ",nodevmap"); if (v9ses->cache) seq_printf(m, ",cache=%x", v9ses->cache); #ifdef CONFIG_9P_FSCACHE if (v9ses->cachetag && (v9ses->cache & CACHE_FSCACHE)) seq_printf(m, ",cachetag=%s", v9ses->cachetag); #endif switch (v9ses->flags & V9FS_ACCESS_MASK) { case V9FS_ACCESS_USER: seq_puts(m, ",access=user"); break; case V9FS_ACCESS_ANY: seq_puts(m, ",access=any"); break; case V9FS_ACCESS_CLIENT: seq_puts(m, ",access=client"); break; case V9FS_ACCESS_SINGLE: seq_printf(m, ",access=%u", from_kuid_munged(&init_user_ns, v9ses->uid)); break; } if (v9ses->flags & V9FS_IGNORE_QV) seq_puts(m, ",ignoreqv"); if (v9ses->flags & V9FS_DIRECT_IO) seq_puts(m, ",directio"); if (v9ses->flags & V9FS_POSIX_ACL) seq_puts(m, ",posixacl"); if (v9ses->flags & V9FS_NO_XATTR) seq_puts(m, ",noxattr"); return p9_show_client_options(m, v9ses->clnt); } /** * v9fs_parse_options - parse mount options into session structure * @v9ses: existing v9fs session information * @opts: The mount option string * * Return 0 upon success, -ERRNO upon failure. */ static int v9fs_parse_options(struct v9fs_session_info *v9ses, char *opts) { char *options, *tmp_options; substring_t args[MAX_OPT_ARGS]; char *p; int option = 0; char *s; int ret = 0; /* setup defaults */ v9ses->afid = ~0; v9ses->debug = 0; v9ses->cache = CACHE_NONE; #ifdef CONFIG_9P_FSCACHE v9ses->cachetag = NULL; #endif v9ses->session_lock_timeout = P9_LOCK_TIMEOUT; if (!opts) return 0; tmp_options = kstrdup(opts, GFP_KERNEL); if (!tmp_options) { ret = -ENOMEM; goto fail_option_alloc; } options = tmp_options; while ((p = strsep(&options, ",")) != NULL) { int token, r; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_debug: r = match_int(&args[0], &option); if (r < 0) { p9_debug(P9_DEBUG_ERROR, "integer field, but no integer?\n"); ret = r; } else { v9ses->debug = option; #ifdef CONFIG_NET_9P_DEBUG p9_debug_level = option; #endif } break; case Opt_dfltuid: r = match_int(&args[0], &option); if (r < 0) { p9_debug(P9_DEBUG_ERROR, "integer field, but no integer?\n"); ret = r; continue; } v9ses->dfltuid = make_kuid(current_user_ns(), option); if (!uid_valid(v9ses->dfltuid)) { p9_debug(P9_DEBUG_ERROR, "uid field, but not a uid?\n"); ret = -EINVAL; } break; case Opt_dfltgid: r = match_int(&args[0], &option); if (r < 0) { p9_debug(P9_DEBUG_ERROR, "integer field, but no integer?\n"); ret = r; continue; } v9ses->dfltgid = make_kgid(current_user_ns(), option); if (!gid_valid(v9ses->dfltgid)) { p9_debug(P9_DEBUG_ERROR, "gid field, but not a gid?\n"); ret = -EINVAL; } break; case Opt_afid: r = match_int(&args[0], &option); if (r < 0) { p9_debug(P9_DEBUG_ERROR, "integer field, but no integer?\n"); ret = r; } else { v9ses->afid = option; } break; case Opt_uname: kfree(v9ses->uname); v9ses->uname = match_strdup(&args[0]); if (!v9ses->uname) { ret = -ENOMEM; goto free_and_return; } break; case Opt_remotename: kfree(v9ses->aname); v9ses->aname = match_strdup(&args[0]); if (!v9ses->aname) { ret = -ENOMEM; goto free_and_return; } break; case Opt_nodevmap: v9ses->nodev = 1; break; case Opt_noxattr: v9ses->flags |= V9FS_NO_XATTR; break; case Opt_directio: v9ses->flags |= V9FS_DIRECT_IO; break; case Opt_ignoreqv: v9ses->flags |= V9FS_IGNORE_QV; break; case Opt_cachetag: #ifdef CONFIG_9P_FSCACHE kfree(v9ses->cachetag); v9ses->cachetag = match_strdup(&args[0]); if (!v9ses->cachetag) { ret = -ENOMEM; goto free_and_return; } #endif break; case Opt_cache: s = match_strdup(&args[0]); if (!s) { ret = -ENOMEM; p9_debug(P9_DEBUG_ERROR, "problem allocating copy of cache arg\n"); goto free_and_return; } r = get_cache_mode(s); if (r < 0) ret = r; else v9ses->cache = r; kfree(s); break; case Opt_access: s = match_strdup(&args[0]); if (!s) { ret = -ENOMEM; p9_debug(P9_DEBUG_ERROR, "problem allocating copy of access arg\n"); goto free_and_return; } v9ses->flags &= ~V9FS_ACCESS_MASK; if (strcmp(s, "user") == 0) v9ses->flags |= V9FS_ACCESS_USER; else if (strcmp(s, "any") == 0) v9ses->flags |= V9FS_ACCESS_ANY; else if (strcmp(s, "client") == 0) { v9ses->flags |= V9FS_ACCESS_CLIENT; } else { uid_t uid; v9ses->flags |= V9FS_ACCESS_SINGLE; r = kstrtouint(s, 10, &uid); if (r) { ret = r; pr_info("Unknown access argument %s: %d\n", s, r); kfree(s); continue; } v9ses->uid = make_kuid(current_user_ns(), uid); if (!uid_valid(v9ses->uid)) { ret = -EINVAL; pr_info("Unknown uid %s\n", s); } } kfree(s); break; case Opt_posixacl: #ifdef CONFIG_9P_FS_POSIX_ACL v9ses->flags |= V9FS_POSIX_ACL; #else p9_debug(P9_DEBUG_ERROR, "Not defined CONFIG_9P_FS_POSIX_ACL. Ignoring posixacl option\n"); #endif break; case Opt_locktimeout: r = match_int(&args[0], &option); if (r < 0) { p9_debug(P9_DEBUG_ERROR, "integer field, but no integer?\n"); ret = r; continue; } if (option < 1) { p9_debug(P9_DEBUG_ERROR, "locktimeout must be a greater than zero integer.\n"); ret = -EINVAL; continue; } v9ses->session_lock_timeout = (long)option * HZ; break; default: continue; } } free_and_return: kfree(tmp_options); fail_option_alloc: return ret; } /** * v9fs_session_init - initialize session * @v9ses: session information structure * @dev_name: device being mounted * @data: options * */ struct p9_fid *v9fs_session_init(struct v9fs_session_info *v9ses, const char *dev_name, char *data) { struct p9_fid *fid; int rc = -ENOMEM; v9ses->uname = kstrdup(V9FS_DEFUSER, GFP_KERNEL); if (!v9ses->uname) goto err_names; v9ses->aname = kstrdup(V9FS_DEFANAME, GFP_KERNEL); if (!v9ses->aname) goto err_names; init_rwsem(&v9ses->rename_sem); v9ses->uid = INVALID_UID; v9ses->dfltuid = V9FS_DEFUID; v9ses->dfltgid = V9FS_DEFGID; v9ses->clnt = p9_client_create(dev_name, data); if (IS_ERR(v9ses->clnt)) { rc = PTR_ERR(v9ses->clnt); p9_debug(P9_DEBUG_ERROR, "problem initializing 9p client\n"); goto err_names; } v9ses->flags = V9FS_ACCESS_USER; if (p9_is_proto_dotl(v9ses->clnt)) { v9ses->flags = V9FS_ACCESS_CLIENT; v9ses->flags |= V9FS_PROTO_2000L; } else if (p9_is_proto_dotu(v9ses->clnt)) { v9ses->flags |= V9FS_PROTO_2000U; } rc = v9fs_parse_options(v9ses, data); if (rc < 0) goto err_clnt; v9ses->maxdata = v9ses->clnt->msize - P9_IOHDRSZ; if (!v9fs_proto_dotl(v9ses) && ((v9ses->flags & V9FS_ACCESS_MASK) == V9FS_ACCESS_CLIENT)) { /* * We support ACCESS_CLIENT only for dotl. * Fall back to ACCESS_USER */ v9ses->flags &= ~V9FS_ACCESS_MASK; v9ses->flags |= V9FS_ACCESS_USER; } /*FIXME !! */ /* for legacy mode, fall back to V9FS_ACCESS_ANY */ if (!(v9fs_proto_dotu(v9ses) || v9fs_proto_dotl(v9ses)) && ((v9ses->flags&V9FS_ACCESS_MASK) == V9FS_ACCESS_USER)) { v9ses->flags &= ~V9FS_ACCESS_MASK; v9ses->flags |= V9FS_ACCESS_ANY; v9ses->uid = INVALID_UID; } if (!v9fs_proto_dotl(v9ses) || !((v9ses->flags & V9FS_ACCESS_MASK) == V9FS_ACCESS_CLIENT)) { /* * We support ACL checks on clinet only if the protocol is * 9P2000.L and access is V9FS_ACCESS_CLIENT. */ v9ses->flags &= ~V9FS_ACL_MASK; } fid = p9_client_attach(v9ses->clnt, NULL, v9ses->uname, INVALID_UID, v9ses->aname); if (IS_ERR(fid)) { rc = PTR_ERR(fid); p9_debug(P9_DEBUG_ERROR, "cannot attach\n"); goto err_clnt; } if ((v9ses->flags & V9FS_ACCESS_MASK) == V9FS_ACCESS_SINGLE) fid->uid = v9ses->uid; else fid->uid = INVALID_UID; #ifdef CONFIG_9P_FSCACHE /* register the session for caching */ if (v9ses->cache & CACHE_FSCACHE) { rc = v9fs_cache_session_get_cookie(v9ses, dev_name); if (rc < 0) goto err_clnt; } #endif spin_lock(&v9fs_sessionlist_lock); list_add(&v9ses->slist, &v9fs_sessionlist); spin_unlock(&v9fs_sessionlist_lock); return fid; err_clnt: #ifdef CONFIG_9P_FSCACHE kfree(v9ses->cachetag); #endif p9_client_destroy(v9ses->clnt); err_names: kfree(v9ses->uname); kfree(v9ses->aname); return ERR_PTR(rc); } /** * v9fs_session_close - shutdown a session * @v9ses: session information structure * */ void v9fs_session_close(struct v9fs_session_info *v9ses) { if (v9ses->clnt) { p9_client_destroy(v9ses->clnt); v9ses->clnt = NULL; } #ifdef CONFIG_9P_FSCACHE fscache_relinquish_volume(v9fs_session_cache(v9ses), NULL, false); kfree(v9ses->cachetag); #endif kfree(v9ses->uname); kfree(v9ses->aname); spin_lock(&v9fs_sessionlist_lock); list_del(&v9ses->slist); spin_unlock(&v9fs_sessionlist_lock); } /** * v9fs_session_cancel - terminate a session * @v9ses: session to terminate * * mark transport as disconnected and cancel all pending requests. */ void v9fs_session_cancel(struct v9fs_session_info *v9ses) { p9_debug(P9_DEBUG_ERROR, "cancel session %p\n", v9ses); p9_client_disconnect(v9ses->clnt); } /** * v9fs_session_begin_cancel - Begin terminate of a session * @v9ses: session to terminate * * After this call we don't allow any request other than clunk. */ void v9fs_session_begin_cancel(struct v9fs_session_info *v9ses) { p9_debug(P9_DEBUG_ERROR, "begin cancel session %p\n", v9ses); p9_client_begin_disconnect(v9ses->clnt); } static struct kobject *v9fs_kobj; #ifdef CONFIG_9P_FSCACHE /* * List caches associated with a session */ static ssize_t caches_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t n = 0, count = 0, limit = PAGE_SIZE; struct v9fs_session_info *v9ses; spin_lock(&v9fs_sessionlist_lock); list_for_each_entry(v9ses, &v9fs_sessionlist, slist) { if (v9ses->cachetag) { n = snprintf(buf, limit, "%s\n", v9ses->cachetag); if (n < 0) { count = n; break; } count += n; limit -= n; } } spin_unlock(&v9fs_sessionlist_lock); return count; } static struct kobj_attribute v9fs_attr_cache = __ATTR_RO(caches); #endif /* CONFIG_9P_FSCACHE */ static struct attribute *v9fs_attrs[] = { #ifdef CONFIG_9P_FSCACHE &v9fs_attr_cache.attr, #endif NULL, }; static const struct attribute_group v9fs_attr_group = { .attrs = v9fs_attrs, }; /** * v9fs_sysfs_init - Initialize the v9fs sysfs interface * */ static int __init v9fs_sysfs_init(void) { v9fs_kobj = kobject_create_and_add("9p", fs_kobj); if (!v9fs_kobj) return -ENOMEM; if (sysfs_create_group(v9fs_kobj, &v9fs_attr_group)) { kobject_put(v9fs_kobj); return -ENOMEM; } return 0; } /** * v9fs_sysfs_cleanup - Unregister the v9fs sysfs interface * */ static void v9fs_sysfs_cleanup(void) { sysfs_remove_group(v9fs_kobj, &v9fs_attr_group); kobject_put(v9fs_kobj); } static void v9fs_inode_init_once(void *foo) { struct v9fs_inode *v9inode = (struct v9fs_inode *)foo; memset(&v9inode->qid, 0, sizeof(v9inode->qid)); inode_init_once(&v9inode->netfs.inode); } /** * v9fs_init_inode_cache - initialize a cache for 9P * Returns 0 on success. */ static int v9fs_init_inode_cache(void) { v9fs_inode_cache = kmem_cache_create("v9fs_inode_cache", sizeof(struct v9fs_inode), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_ACCOUNT), v9fs_inode_init_once); if (!v9fs_inode_cache) return -ENOMEM; return 0; } /** * v9fs_destroy_inode_cache - destroy the cache of 9P inode * */ static void v9fs_destroy_inode_cache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(v9fs_inode_cache); } /** * init_v9fs - Initialize module * */ static int __init init_v9fs(void) { int err; pr_info("Installing v9fs 9p2000 file system support\n"); /* TODO: Setup list of registered trasnport modules */ err = v9fs_init_inode_cache(); if (err < 0) { pr_err("Failed to register v9fs for caching\n"); return err; } err = v9fs_sysfs_init(); if (err < 0) { pr_err("Failed to register with sysfs\n"); goto out_cache; } err = register_filesystem(&v9fs_fs_type); if (err < 0) { pr_err("Failed to register filesystem\n"); goto out_sysfs_cleanup; } return 0; out_sysfs_cleanup: v9fs_sysfs_cleanup(); out_cache: v9fs_destroy_inode_cache(); return err; } /** * exit_v9fs - shutdown module * */ static void __exit exit_v9fs(void) { v9fs_sysfs_cleanup(); v9fs_destroy_inode_cache(); unregister_filesystem(&v9fs_fs_type); } module_init(init_v9fs) module_exit(exit_v9fs) MODULE_AUTHOR("Latchesar Ionkov <lucho@ionkov.net>"); MODULE_AUTHOR("Eric Van Hensbergen <ericvh@gmail.com>"); MODULE_AUTHOR("Ron Minnich <rminnich@lanl.gov>"); MODULE_DESCRIPTION("9P Client File System"); MODULE_LICENSE("GPL");
8 3 10 13 9 10 2 5 4 7 4 19 19 10 9 13 6 7 7 6 1 5 1 1 45 1 21 20 2 12 21 33 33 21 12 22 26 7 7 3 5 8 8 4 4 4 8 8 8 8 8 1 2 2 1 2 4 2 2 42 1 2 1 2 30 7 26 32 1 2 1 4 1 23 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 // SPDX-License-Identifier: GPL-2.0-only /* * (C) 2012-2013 by Pablo Neira Ayuso <pablo@netfilter.org> * * This software has been sponsored by Sophos Astaro <http://www.sophos.com> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nf_tables.h> #include <linux/netfilter/nf_tables_compat.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_bridge/ebtables.h> #include <linux/netfilter_arp/arp_tables.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nf_log.h> /* Used for matches where *info is larger than X byte */ #define NFT_MATCH_LARGE_THRESH 192 struct nft_xt_match_priv { void *info; }; static int nft_compat_chain_validate_dependency(const struct nft_ctx *ctx, const char *tablename) { enum nft_chain_types type = NFT_CHAIN_T_DEFAULT; const struct nft_chain *chain = ctx->chain; const struct nft_base_chain *basechain; if (!tablename || !nft_is_base_chain(chain)) return 0; basechain = nft_base_chain(chain); if (strcmp(tablename, "nat") == 0) { if (ctx->family != NFPROTO_BRIDGE) type = NFT_CHAIN_T_NAT; if (basechain->type->type != type) return -EINVAL; } return 0; } union nft_entry { struct ipt_entry e4; struct ip6t_entry e6; struct ebt_entry ebt; struct arpt_entry arp; }; static inline void nft_compat_set_par(struct xt_action_param *par, const struct nft_pktinfo *pkt, const void *xt, const void *xt_info) { par->state = pkt->state; par->thoff = nft_thoff(pkt); par->fragoff = pkt->fragoff; par->target = xt; par->targinfo = xt_info; par->hotdrop = false; } static void nft_target_eval_xt(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { void *info = nft_expr_priv(expr); struct xt_target *target = expr->ops->data; struct sk_buff *skb = pkt->skb; struct xt_action_param xt; int ret; nft_compat_set_par(&xt, pkt, target, info); ret = target->target(skb, &xt); if (xt.hotdrop) ret = NF_DROP; switch (ret) { case XT_CONTINUE: regs->verdict.code = NFT_CONTINUE; break; default: regs->verdict.code = ret; break; } } static void nft_target_eval_bridge(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { void *info = nft_expr_priv(expr); struct xt_target *target = expr->ops->data; struct sk_buff *skb = pkt->skb; struct xt_action_param xt; int ret; nft_compat_set_par(&xt, pkt, target, info); ret = target->target(skb, &xt); if (xt.hotdrop) ret = NF_DROP; switch (ret) { case EBT_ACCEPT: regs->verdict.code = NF_ACCEPT; break; case EBT_DROP: regs->verdict.code = NF_DROP; break; case EBT_CONTINUE: regs->verdict.code = NFT_CONTINUE; break; case EBT_RETURN: regs->verdict.code = NFT_RETURN; break; default: regs->verdict.code = ret; break; } } static const struct nla_policy nft_target_policy[NFTA_TARGET_MAX + 1] = { [NFTA_TARGET_NAME] = { .type = NLA_NUL_STRING }, [NFTA_TARGET_REV] = NLA_POLICY_MAX(NLA_BE32, 255), [NFTA_TARGET_INFO] = { .type = NLA_BINARY }, }; static void nft_target_set_tgchk_param(struct xt_tgchk_param *par, const struct nft_ctx *ctx, struct xt_target *target, void *info, union nft_entry *entry, u16 proto, bool inv) { par->net = ctx->net; par->table = ctx->table->name; switch (ctx->family) { case AF_INET: entry->e4.ip.proto = proto; entry->e4.ip.invflags = inv ? IPT_INV_PROTO : 0; break; case AF_INET6: if (proto) entry->e6.ipv6.flags |= IP6T_F_PROTO; entry->e6.ipv6.proto = proto; entry->e6.ipv6.invflags = inv ? IP6T_INV_PROTO : 0; break; case NFPROTO_BRIDGE: entry->ebt.ethproto = (__force __be16)proto; entry->ebt.invflags = inv ? EBT_IPROTO : 0; break; case NFPROTO_ARP: break; } par->entryinfo = entry; par->target = target; par->targinfo = info; if (nft_is_base_chain(ctx->chain)) { const struct nft_base_chain *basechain = nft_base_chain(ctx->chain); const struct nf_hook_ops *ops = &basechain->ops; par->hook_mask = 1 << ops->hooknum; } else { par->hook_mask = 0; } par->family = ctx->family; par->nft_compat = true; } static void target_compat_from_user(struct xt_target *t, void *in, void *out) { int pad; memcpy(out, in, t->targetsize); pad = XT_ALIGN(t->targetsize) - t->targetsize; if (pad > 0) memset(out + t->targetsize, 0, pad); } static const struct nla_policy nft_rule_compat_policy[NFTA_RULE_COMPAT_MAX + 1] = { [NFTA_RULE_COMPAT_PROTO] = { .type = NLA_U32 }, [NFTA_RULE_COMPAT_FLAGS] = { .type = NLA_U32 }, }; static int nft_parse_compat(const struct nlattr *attr, u16 *proto, bool *inv) { struct nlattr *tb[NFTA_RULE_COMPAT_MAX+1]; u32 l4proto; u32 flags; int err; err = nla_parse_nested_deprecated(tb, NFTA_RULE_COMPAT_MAX, attr, nft_rule_compat_policy, NULL); if (err < 0) return err; if (!tb[NFTA_RULE_COMPAT_PROTO] || !tb[NFTA_RULE_COMPAT_FLAGS]) return -EINVAL; flags = ntohl(nla_get_be32(tb[NFTA_RULE_COMPAT_FLAGS])); if (flags & NFT_RULE_COMPAT_F_UNUSED || flags & ~NFT_RULE_COMPAT_F_MASK) return -EINVAL; if (flags & NFT_RULE_COMPAT_F_INV) *inv = true; l4proto = ntohl(nla_get_be32(tb[NFTA_RULE_COMPAT_PROTO])); if (l4proto > U16_MAX) return -EINVAL; *proto = l4proto; return 0; } static void nft_compat_wait_for_destructors(struct net *net) { /* xtables matches or targets can have side effects, e.g. * creation/destruction of /proc files. * The xt ->destroy functions are run asynchronously from * work queue. If we have pending invocations we thus * need to wait for those to finish. */ nf_tables_trans_destroy_flush_work(net); } static int nft_target_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { void *info = nft_expr_priv(expr); struct xt_target *target = expr->ops->data; struct xt_tgchk_param par; size_t size = XT_ALIGN(nla_len(tb[NFTA_TARGET_INFO])); u16 proto = 0; bool inv = false; union nft_entry e = {}; int ret; target_compat_from_user(target, nla_data(tb[NFTA_TARGET_INFO]), info); if (ctx->nla[NFTA_RULE_COMPAT]) { ret = nft_parse_compat(ctx->nla[NFTA_RULE_COMPAT], &proto, &inv); if (ret < 0) return ret; } nft_target_set_tgchk_param(&par, ctx, target, info, &e, proto, inv); nft_compat_wait_for_destructors(ctx->net); ret = xt_check_target(&par, size, proto, inv); if (ret < 0) { if (ret == -ENOENT) { const char *modname = NULL; if (strcmp(target->name, "LOG") == 0) modname = "nf_log_syslog"; else if (strcmp(target->name, "NFLOG") == 0) modname = "nfnetlink_log"; if (modname && nft_request_module(ctx->net, "%s", modname) == -EAGAIN) return -EAGAIN; } return ret; } /* The standard target cannot be used */ if (!target->target) return -EINVAL; return 0; } static void __nft_mt_tg_destroy(struct module *me, const struct nft_expr *expr) { module_put(me); kfree(expr->ops); } static void nft_target_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct xt_target *target = expr->ops->data; void *info = nft_expr_priv(expr); struct module *me = target->me; struct xt_tgdtor_param par; par.net = ctx->net; par.target = target; par.targinfo = info; par.family = ctx->family; if (par.target->destroy != NULL) par.target->destroy(&par); __nft_mt_tg_destroy(me, expr); } static int nft_extension_dump_info(struct sk_buff *skb, int attr, const void *info, unsigned int size, unsigned int user_size) { unsigned int info_size, aligned_size = XT_ALIGN(size); struct nlattr *nla; nla = nla_reserve(skb, attr, aligned_size); if (!nla) return -1; info_size = user_size ? : size; memcpy(nla_data(nla), info, info_size); memset(nla_data(nla) + info_size, 0, aligned_size - info_size); return 0; } static int nft_target_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct xt_target *target = expr->ops->data; void *info = nft_expr_priv(expr); if (nla_put_string(skb, NFTA_TARGET_NAME, target->name) || nla_put_be32(skb, NFTA_TARGET_REV, htonl(target->revision)) || nft_extension_dump_info(skb, NFTA_TARGET_INFO, info, target->targetsize, target->usersize)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int nft_target_validate(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct xt_target *target = expr->ops->data; unsigned int hook_mask = 0; int ret; if (ctx->family != NFPROTO_IPV4 && ctx->family != NFPROTO_IPV6 && ctx->family != NFPROTO_INET && ctx->family != NFPROTO_BRIDGE && ctx->family != NFPROTO_ARP) return -EOPNOTSUPP; ret = nft_chain_validate_hooks(ctx->chain, (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_POST_ROUTING)); if (ret) return ret; if (nft_is_base_chain(ctx->chain)) { const struct nft_base_chain *basechain = nft_base_chain(ctx->chain); const struct nf_hook_ops *ops = &basechain->ops; hook_mask = 1 << ops->hooknum; if (target->hooks && !(hook_mask & target->hooks)) return -EINVAL; ret = nft_compat_chain_validate_dependency(ctx, target->table); if (ret < 0) return ret; } return 0; } static void __nft_match_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt, void *info) { struct xt_match *match = expr->ops->data; struct sk_buff *skb = pkt->skb; struct xt_action_param xt; bool ret; nft_compat_set_par(&xt, pkt, match, info); ret = match->match(skb, &xt); if (xt.hotdrop) { regs->verdict.code = NF_DROP; return; } switch (ret ? 1 : 0) { case 1: regs->verdict.code = NFT_CONTINUE; break; case 0: regs->verdict.code = NFT_BREAK; break; } } static void nft_match_large_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { struct nft_xt_match_priv *priv = nft_expr_priv(expr); __nft_match_eval(expr, regs, pkt, priv->info); } static void nft_match_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { __nft_match_eval(expr, regs, pkt, nft_expr_priv(expr)); } static const struct nla_policy nft_match_policy[NFTA_MATCH_MAX + 1] = { [NFTA_MATCH_NAME] = { .type = NLA_NUL_STRING }, [NFTA_MATCH_REV] = NLA_POLICY_MAX(NLA_BE32, 255), [NFTA_MATCH_INFO] = { .type = NLA_BINARY }, }; /* struct xt_mtchk_param and xt_tgchk_param look very similar */ static void nft_match_set_mtchk_param(struct xt_mtchk_param *par, const struct nft_ctx *ctx, struct xt_match *match, void *info, union nft_entry *entry, u16 proto, bool inv) { par->net = ctx->net; par->table = ctx->table->name; switch (ctx->family) { case AF_INET: entry->e4.ip.proto = proto; entry->e4.ip.invflags = inv ? IPT_INV_PROTO : 0; break; case AF_INET6: if (proto) entry->e6.ipv6.flags |= IP6T_F_PROTO; entry->e6.ipv6.proto = proto; entry->e6.ipv6.invflags = inv ? IP6T_INV_PROTO : 0; break; case NFPROTO_BRIDGE: entry->ebt.ethproto = (__force __be16)proto; entry->ebt.invflags = inv ? EBT_IPROTO : 0; break; case NFPROTO_ARP: break; } par->entryinfo = entry; par->match = match; par->matchinfo = info; if (nft_is_base_chain(ctx->chain)) { const struct nft_base_chain *basechain = nft_base_chain(ctx->chain); const struct nf_hook_ops *ops = &basechain->ops; par->hook_mask = 1 << ops->hooknum; } else { par->hook_mask = 0; } par->family = ctx->family; par->nft_compat = true; } static void match_compat_from_user(struct xt_match *m, void *in, void *out) { int pad; memcpy(out, in, m->matchsize); pad = XT_ALIGN(m->matchsize) - m->matchsize; if (pad > 0) memset(out + m->matchsize, 0, pad); } static int __nft_match_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[], void *info) { struct xt_match *match = expr->ops->data; struct xt_mtchk_param par; size_t size = XT_ALIGN(nla_len(tb[NFTA_MATCH_INFO])); u16 proto = 0; bool inv = false; union nft_entry e = {}; int ret; match_compat_from_user(match, nla_data(tb[NFTA_MATCH_INFO]), info); if (ctx->nla[NFTA_RULE_COMPAT]) { ret = nft_parse_compat(ctx->nla[NFTA_RULE_COMPAT], &proto, &inv); if (ret < 0) return ret; } nft_match_set_mtchk_param(&par, ctx, match, info, &e, proto, inv); nft_compat_wait_for_destructors(ctx->net); return xt_check_match(&par, size, proto, inv); } static int nft_match_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { return __nft_match_init(ctx, expr, tb, nft_expr_priv(expr)); } static int nft_match_large_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_xt_match_priv *priv = nft_expr_priv(expr); struct xt_match *m = expr->ops->data; int ret; priv->info = kmalloc(XT_ALIGN(m->matchsize), GFP_KERNEL_ACCOUNT); if (!priv->info) return -ENOMEM; ret = __nft_match_init(ctx, expr, tb, priv->info); if (ret) kfree(priv->info); return ret; } static void __nft_match_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr, void *info) { struct xt_match *match = expr->ops->data; struct module *me = match->me; struct xt_mtdtor_param par; par.net = ctx->net; par.match = match; par.matchinfo = info; par.family = ctx->family; if (par.match->destroy != NULL) par.match->destroy(&par); __nft_mt_tg_destroy(me, expr); } static void nft_match_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr) { __nft_match_destroy(ctx, expr, nft_expr_priv(expr)); } static void nft_match_large_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct nft_xt_match_priv *priv = nft_expr_priv(expr); __nft_match_destroy(ctx, expr, priv->info); kfree(priv->info); } static int __nft_match_dump(struct sk_buff *skb, const struct nft_expr *expr, void *info) { struct xt_match *match = expr->ops->data; if (nla_put_string(skb, NFTA_MATCH_NAME, match->name) || nla_put_be32(skb, NFTA_MATCH_REV, htonl(match->revision)) || nft_extension_dump_info(skb, NFTA_MATCH_INFO, info, match->matchsize, match->usersize)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int nft_match_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { return __nft_match_dump(skb, expr, nft_expr_priv(expr)); } static int nft_match_large_dump(struct sk_buff *skb, const struct nft_expr *e, bool reset) { struct nft_xt_match_priv *priv = nft_expr_priv(e); return __nft_match_dump(skb, e, priv->info); } static int nft_match_validate(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct xt_match *match = expr->ops->data; unsigned int hook_mask = 0; int ret; if (ctx->family != NFPROTO_IPV4 && ctx->family != NFPROTO_IPV6 && ctx->family != NFPROTO_INET && ctx->family != NFPROTO_BRIDGE && ctx->family != NFPROTO_ARP) return -EOPNOTSUPP; ret = nft_chain_validate_hooks(ctx->chain, (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_POST_ROUTING)); if (ret) return ret; if (nft_is_base_chain(ctx->chain)) { const struct nft_base_chain *basechain = nft_base_chain(ctx->chain); const struct nf_hook_ops *ops = &basechain->ops; hook_mask = 1 << ops->hooknum; if (match->hooks && !(hook_mask & match->hooks)) return -EINVAL; ret = nft_compat_chain_validate_dependency(ctx, match->table); if (ret < 0) return ret; } return 0; } static int nfnl_compat_fill_info(struct sk_buff *skb, u32 portid, u32 seq, u32 type, int event, u16 family, const char *name, int rev, int target) { struct nlmsghdr *nlh; unsigned int flags = portid ? NLM_F_MULTI : 0; event = nfnl_msg_type(NFNL_SUBSYS_NFT_COMPAT, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, family, NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; if (nla_put_string(skb, NFTA_COMPAT_NAME, name) || nla_put_be32(skb, NFTA_COMPAT_REV, htonl(rev)) || nla_put_be32(skb, NFTA_COMPAT_TYPE, htonl(target))) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nlmsg_failure: nla_put_failure: nlmsg_cancel(skb, nlh); return -1; } static int nfnl_compat_get_rcu(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { u8 family = info->nfmsg->nfgen_family; const char *name, *fmt; struct sk_buff *skb2; int ret = 0, target; u32 rev; if (tb[NFTA_COMPAT_NAME] == NULL || tb[NFTA_COMPAT_REV] == NULL || tb[NFTA_COMPAT_TYPE] == NULL) return -EINVAL; name = nla_data(tb[NFTA_COMPAT_NAME]); rev = ntohl(nla_get_be32(tb[NFTA_COMPAT_REV])); target = ntohl(nla_get_be32(tb[NFTA_COMPAT_TYPE])); switch(family) { case AF_INET: fmt = "ipt_%s"; break; case AF_INET6: fmt = "ip6t_%s"; break; case NFPROTO_BRIDGE: fmt = "ebt_%s"; break; case NFPROTO_ARP: fmt = "arpt_%s"; break; default: pr_err("nft_compat: unsupported protocol %d\n", family); return -EINVAL; } if (!try_module_get(THIS_MODULE)) return -EINVAL; rcu_read_unlock(); try_then_request_module(xt_find_revision(family, name, rev, target, &ret), fmt, name); if (ret < 0) goto out_put; skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (skb2 == NULL) { ret = -ENOMEM; goto out_put; } /* include the best revision for this extension in the message */ if (nfnl_compat_fill_info(skb2, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFNL_MSG_TYPE(info->nlh->nlmsg_type), NFNL_MSG_COMPAT_GET, family, name, ret, target) <= 0) { kfree_skb(skb2); goto out_put; } ret = nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); out_put: rcu_read_lock(); module_put(THIS_MODULE); return ret; } static const struct nla_policy nfnl_compat_policy_get[NFTA_COMPAT_MAX+1] = { [NFTA_COMPAT_NAME] = { .type = NLA_NUL_STRING, .len = NFT_COMPAT_NAME_MAX-1 }, [NFTA_COMPAT_REV] = NLA_POLICY_MAX(NLA_BE32, 255), [NFTA_COMPAT_TYPE] = { .type = NLA_U32 }, }; static const struct nfnl_callback nfnl_nft_compat_cb[NFNL_MSG_COMPAT_MAX] = { [NFNL_MSG_COMPAT_GET] = { .call = nfnl_compat_get_rcu, .type = NFNL_CB_RCU, .attr_count = NFTA_COMPAT_MAX, .policy = nfnl_compat_policy_get }, }; static const struct nfnetlink_subsystem nfnl_compat_subsys = { .name = "nft-compat", .subsys_id = NFNL_SUBSYS_NFT_COMPAT, .cb_count = NFNL_MSG_COMPAT_MAX, .cb = nfnl_nft_compat_cb, }; static struct nft_expr_type nft_match_type; static bool nft_match_reduce(struct nft_regs_track *track, const struct nft_expr *expr) { const struct xt_match *match = expr->ops->data; return strcmp(match->name, "comment") == 0; } static const struct nft_expr_ops * nft_match_select_ops(const struct nft_ctx *ctx, const struct nlattr * const tb[]) { struct nft_expr_ops *ops; struct xt_match *match; unsigned int matchsize; char *mt_name; u32 rev, family; int err; if (tb[NFTA_MATCH_NAME] == NULL || tb[NFTA_MATCH_REV] == NULL || tb[NFTA_MATCH_INFO] == NULL) return ERR_PTR(-EINVAL); mt_name = nla_data(tb[NFTA_MATCH_NAME]); rev = ntohl(nla_get_be32(tb[NFTA_MATCH_REV])); family = ctx->family; match = xt_request_find_match(family, mt_name, rev); if (IS_ERR(match)) return ERR_PTR(-ENOENT); if (match->matchsize > nla_len(tb[NFTA_MATCH_INFO])) { err = -EINVAL; goto err; } ops = kzalloc(sizeof(struct nft_expr_ops), GFP_KERNEL_ACCOUNT); if (!ops) { err = -ENOMEM; goto err; } ops->type = &nft_match_type; ops->eval = nft_match_eval; ops->init = nft_match_init; ops->destroy = nft_match_destroy; ops->dump = nft_match_dump; ops->validate = nft_match_validate; ops->data = match; ops->reduce = nft_match_reduce; matchsize = NFT_EXPR_SIZE(XT_ALIGN(match->matchsize)); if (matchsize > NFT_MATCH_LARGE_THRESH) { matchsize = NFT_EXPR_SIZE(sizeof(struct nft_xt_match_priv)); ops->eval = nft_match_large_eval; ops->init = nft_match_large_init; ops->destroy = nft_match_large_destroy; ops->dump = nft_match_large_dump; } ops->size = matchsize; return ops; err: module_put(match->me); return ERR_PTR(err); } static void nft_match_release_ops(const struct nft_expr_ops *ops) { struct xt_match *match = ops->data; module_put(match->me); kfree(ops); } static struct nft_expr_type nft_match_type __read_mostly = { .name = "match", .select_ops = nft_match_select_ops, .release_ops = nft_match_release_ops, .policy = nft_match_policy, .maxattr = NFTA_MATCH_MAX, .owner = THIS_MODULE, }; static struct nft_expr_type nft_target_type; static const struct nft_expr_ops * nft_target_select_ops(const struct nft_ctx *ctx, const struct nlattr * const tb[]) { struct nft_expr_ops *ops; struct xt_target *target; char *tg_name; u32 rev, family; int err; if (tb[NFTA_TARGET_NAME] == NULL || tb[NFTA_TARGET_REV] == NULL || tb[NFTA_TARGET_INFO] == NULL) return ERR_PTR(-EINVAL); tg_name = nla_data(tb[NFTA_TARGET_NAME]); rev = ntohl(nla_get_be32(tb[NFTA_TARGET_REV])); family = ctx->family; if (strcmp(tg_name, XT_ERROR_TARGET) == 0 || strcmp(tg_name, XT_STANDARD_TARGET) == 0 || strcmp(tg_name, "standard") == 0) return ERR_PTR(-EINVAL); target = xt_request_find_target(family, tg_name, rev); if (IS_ERR(target)) return ERR_PTR(-ENOENT); if (!target->target) { err = -EINVAL; goto err; } if (target->targetsize > nla_len(tb[NFTA_TARGET_INFO])) { err = -EINVAL; goto err; } ops = kzalloc(sizeof(struct nft_expr_ops), GFP_KERNEL_ACCOUNT); if (!ops) { err = -ENOMEM; goto err; } ops->type = &nft_target_type; ops->size = NFT_EXPR_SIZE(XT_ALIGN(target->targetsize)); ops->init = nft_target_init; ops->destroy = nft_target_destroy; ops->dump = nft_target_dump; ops->validate = nft_target_validate; ops->data = target; ops->reduce = NFT_REDUCE_READONLY; if (family == NFPROTO_BRIDGE) ops->eval = nft_target_eval_bridge; else ops->eval = nft_target_eval_xt; return ops; err: module_put(target->me); return ERR_PTR(err); } static void nft_target_release_ops(const struct nft_expr_ops *ops) { struct xt_target *target = ops->data; module_put(target->me); kfree(ops); } static struct nft_expr_type nft_target_type __read_mostly = { .name = "target", .select_ops = nft_target_select_ops, .release_ops = nft_target_release_ops, .policy = nft_target_policy, .maxattr = NFTA_TARGET_MAX, .owner = THIS_MODULE, }; static int __init nft_compat_module_init(void) { int ret; ret = nft_register_expr(&nft_match_type); if (ret < 0) return ret; ret = nft_register_expr(&nft_target_type); if (ret < 0) goto err_match; ret = nfnetlink_subsys_register(&nfnl_compat_subsys); if (ret < 0) { pr_err("nft_compat: cannot register with nfnetlink.\n"); goto err_target; } return ret; err_target: nft_unregister_expr(&nft_target_type); err_match: nft_unregister_expr(&nft_match_type); return ret; } static void __exit nft_compat_module_exit(void) { nfnetlink_subsys_unregister(&nfnl_compat_subsys); nft_unregister_expr(&nft_target_type); nft_unregister_expr(&nft_match_type); } MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_NFT_COMPAT); module_init(nft_compat_module_init); module_exit(nft_compat_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Pablo Neira Ayuso <pablo@netfilter.org>"); MODULE_ALIAS_NFT_EXPR("match"); MODULE_ALIAS_NFT_EXPR("target"); MODULE_DESCRIPTION("x_tables over nftables support");
11 9 11 13 13 13 900 691 91 2 24 882 868 12 13 7 13 986 992 994 12 2 986 11 998 947 1066 1036 192 2 996 50 998 1066 1063 3 1068 1067 1069 6 1015 82 1 1 64 83 550 674 5 3 1110 1106 2 84 1062 1072 700 603 831 433 1219 1224 39 104 51 1192 1190 226 425 1053 1141 1214 1208 55 5 56 56 63 63 2 61 32 43 8 8 38 1 3 3 1 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 // SPDX-License-Identifier: GPL-2.0 #include <linux/pagewalk.h> #include <linux/highmem.h> #include <linux/sched.h> #include <linux/hugetlb.h> #include <linux/mmu_context.h> #include <linux/swap.h> #include <linux/swapops.h> #include <asm/tlbflush.h> #include "internal.h" /* * We want to know the real level where a entry is located ignoring any * folding of levels which may be happening. For example if p4d is folded then * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). */ static int real_depth(int depth) { if (depth == 3 && PTRS_PER_PMD == 1) depth = 2; if (depth == 2 && PTRS_PER_PUD == 1) depth = 1; if (depth == 1 && PTRS_PER_P4D == 1) depth = 0; return depth; } static int walk_pte_range_inner(pte_t *pte, unsigned long addr, unsigned long end, struct mm_walk *walk) { const struct mm_walk_ops *ops = walk->ops; int err = 0; for (;;) { if (ops->install_pte && pte_none(ptep_get(pte))) { pte_t new_pte; err = ops->install_pte(addr, addr + PAGE_SIZE, &new_pte, walk); if (err) break; set_pte_at(walk->mm, addr, pte, new_pte); /* Non-present before, so for arches that need it. */ if (!WARN_ON_ONCE(walk->no_vma)) update_mmu_cache(walk->vma, addr, pte); } else { err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); if (err) break; } if (addr >= end - PAGE_SIZE) break; addr += PAGE_SIZE; pte++; } return err; } static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { pte_t *pte; int err = 0; spinlock_t *ptl; if (walk->no_vma) { /* * pte_offset_map() might apply user-specific validation. * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. */ if (walk->mm == &init_mm || addr >= TASK_SIZE) pte = pte_offset_kernel(pmd, addr); else pte = pte_offset_map(pmd, addr); if (pte) { err = walk_pte_range_inner(pte, addr, end, walk); if (walk->mm != &init_mm && addr < TASK_SIZE) pte_unmap(pte); } } else { pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); if (pte) { err = walk_pte_range_inner(pte, addr, end, walk); pte_unmap_unlock(pte, ptl); } } if (!pte) walk->action = ACTION_AGAIN; return err; } static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, struct mm_walk *walk) { pmd_t *pmd; unsigned long next; const struct mm_walk_ops *ops = walk->ops; bool has_handler = ops->pte_entry; bool has_install = ops->install_pte; int err = 0; int depth = real_depth(3); pmd = pmd_offset(pud, addr); do { again: next = pmd_addr_end(addr, end); if (pmd_none(*pmd)) { if (has_install) err = __pte_alloc(walk->mm, pmd); else if (ops->pte_hole) err = ops->pte_hole(addr, next, depth, walk); if (err) break; if (!has_install) continue; } walk->action = ACTION_SUBTREE; /* * This implies that each ->pmd_entry() handler * needs to know about pmd_trans_huge() pmds */ if (ops->pmd_entry) err = ops->pmd_entry(pmd, addr, next, walk); if (err) break; if (walk->action == ACTION_AGAIN) goto again; if (walk->action == ACTION_CONTINUE) continue; if (!has_handler) { /* No handlers for lower page tables. */ if (!has_install) continue; /* Nothing to do. */ /* * We are ONLY installing, so avoid unnecessarily * splitting a present huge page. */ if (pmd_present(*pmd) && (pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) continue; } if (walk->vma) split_huge_pmd(walk->vma, pmd, addr); else if (pmd_leaf(*pmd) || !pmd_present(*pmd)) continue; /* Nothing to do. */ err = walk_pte_range(pmd, addr, next, walk); if (err) break; if (walk->action == ACTION_AGAIN) goto again; } while (pmd++, addr = next, addr != end); return err; } static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, struct mm_walk *walk) { pud_t *pud; unsigned long next; const struct mm_walk_ops *ops = walk->ops; bool has_handler = ops->pmd_entry || ops->pte_entry; bool has_install = ops->install_pte; int err = 0; int depth = real_depth(2); pud = pud_offset(p4d, addr); do { again: next = pud_addr_end(addr, end); if (pud_none(*pud)) { if (has_install) err = __pmd_alloc(walk->mm, pud, addr); else if (ops->pte_hole) err = ops->pte_hole(addr, next, depth, walk); if (err) break; if (!has_install) continue; } walk->action = ACTION_SUBTREE; if (ops->pud_entry) err = ops->pud_entry(pud, addr, next, walk); if (err) break; if (walk->action == ACTION_AGAIN) goto again; if (walk->action == ACTION_CONTINUE) continue; if (!has_handler) { /* No handlers for lower page tables. */ if (!has_install) continue; /* Nothing to do. */ /* * We are ONLY installing, so avoid unnecessarily * splitting a present huge page. */ if (pud_present(*pud) && (pud_trans_huge(*pud) || pud_devmap(*pud))) continue; } if (walk->vma) split_huge_pud(walk->vma, pud, addr); else if (pud_leaf(*pud) || !pud_present(*pud)) continue; /* Nothing to do. */ if (pud_none(*pud)) goto again; err = walk_pmd_range(pud, addr, next, walk); if (err) break; } while (pud++, addr = next, addr != end); return err; } static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, struct mm_walk *walk) { p4d_t *p4d; unsigned long next; const struct mm_walk_ops *ops = walk->ops; bool has_handler = ops->pud_entry || ops->pmd_entry || ops->pte_entry; bool has_install = ops->install_pte; int err = 0; int depth = real_depth(1); p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) { if (has_install) err = __pud_alloc(walk->mm, p4d, addr); else if (ops->pte_hole) err = ops->pte_hole(addr, next, depth, walk); if (err) break; if (!has_install) continue; } if (ops->p4d_entry) { err = ops->p4d_entry(p4d, addr, next, walk); if (err) break; } if (has_handler || has_install) err = walk_pud_range(p4d, addr, next, walk); if (err) break; } while (p4d++, addr = next, addr != end); return err; } static int walk_pgd_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { pgd_t *pgd; unsigned long next; const struct mm_walk_ops *ops = walk->ops; bool has_handler = ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry; bool has_install = ops->install_pte; int err = 0; if (walk->pgd) pgd = walk->pgd + pgd_index(addr); else pgd = pgd_offset(walk->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) { if (has_install) err = __p4d_alloc(walk->mm, pgd, addr); else if (ops->pte_hole) err = ops->pte_hole(addr, next, 0, walk); if (err) break; if (!has_install) continue; } if (ops->pgd_entry) { err = ops->pgd_entry(pgd, addr, next, walk); if (err) break; } if (has_handler || has_install) err = walk_p4d_range(pgd, addr, next, walk); if (err) break; } while (pgd++, addr = next, addr != end); return err; } #ifdef CONFIG_HUGETLB_PAGE static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, unsigned long end) { unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); return boundary < end ? boundary : end; } static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct hstate *h = hstate_vma(vma); unsigned long next; unsigned long hmask = huge_page_mask(h); unsigned long sz = huge_page_size(h); pte_t *pte; const struct mm_walk_ops *ops = walk->ops; int err = 0; hugetlb_vma_lock_read(vma); do { next = hugetlb_entry_end(h, addr, end); pte = hugetlb_walk(vma, addr & hmask, sz); if (pte) err = ops->hugetlb_entry(pte, hmask, addr, next, walk); else if (ops->pte_hole) err = ops->pte_hole(addr, next, -1, walk); if (err) break; } while (addr = next, addr != end); hugetlb_vma_unlock_read(vma); return err; } #else /* CONFIG_HUGETLB_PAGE */ static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { return 0; } #endif /* CONFIG_HUGETLB_PAGE */ /* * Decide whether we really walk over the current vma on [@start, @end) * or skip it via the returned value. Return 0 if we do walk over the * current vma, and return 1 if we skip the vma. Negative values means * error, where we abort the current walk. */ static int walk_page_test(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; const struct mm_walk_ops *ops = walk->ops; if (ops->test_walk) return ops->test_walk(start, end, walk); /* * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP * range, so we don't walk over it as we do for normal vmas. However, * Some callers are interested in handling hole range and they don't * want to just ignore any single address range. Such users certainly * define their ->pte_hole() callbacks, so let's delegate them to handle * vma(VM_PFNMAP). */ if (vma->vm_flags & VM_PFNMAP) { int err = 1; if (ops->pte_hole) err = ops->pte_hole(start, end, -1, walk); return err ? err : 1; } return 0; } static int __walk_page_range(unsigned long start, unsigned long end, struct mm_walk *walk) { int err = 0; struct vm_area_struct *vma = walk->vma; const struct mm_walk_ops *ops = walk->ops; bool is_hugetlb = is_vm_hugetlb_page(vma); /* We do not support hugetlb PTE installation. */ if (ops->install_pte && is_hugetlb) return -EINVAL; if (ops->pre_vma) { err = ops->pre_vma(start, end, walk); if (err) return err; } if (is_hugetlb) { if (ops->hugetlb_entry) err = walk_hugetlb_range(start, end, walk); } else err = walk_pgd_range(start, end, walk); if (ops->post_vma) ops->post_vma(walk); return err; } static inline void process_mm_walk_lock(struct mm_struct *mm, enum page_walk_lock walk_lock) { if (walk_lock == PGWALK_RDLOCK) mmap_assert_locked(mm); else mmap_assert_write_locked(mm); } static inline void process_vma_walk_lock(struct vm_area_struct *vma, enum page_walk_lock walk_lock) { #ifdef CONFIG_PER_VMA_LOCK switch (walk_lock) { case PGWALK_WRLOCK: vma_start_write(vma); break; case PGWALK_WRLOCK_VERIFY: vma_assert_write_locked(vma); break; case PGWALK_RDLOCK: /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ break; } #endif } /* * See the comment for walk_page_range(), this performs the heavy lifting of the * operation, only sets no restrictions on how the walk proceeds. * * We usually restrict the ability to install PTEs, but this functionality is * available to internal memory management code and provided in mm/internal.h. */ int walk_page_range_mm(struct mm_struct *mm, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, void *private) { int err = 0; unsigned long next; struct vm_area_struct *vma; struct mm_walk walk = { .ops = ops, .mm = mm, .private = private, }; if (start >= end) return -EINVAL; if (!walk.mm) return -EINVAL; process_mm_walk_lock(walk.mm, ops->walk_lock); vma = find_vma(walk.mm, start); do { if (!vma) { /* after the last vma */ walk.vma = NULL; next = end; if (ops->pte_hole) err = ops->pte_hole(start, next, -1, &walk); } else if (start < vma->vm_start) { /* outside vma */ walk.vma = NULL; next = min(end, vma->vm_start); if (ops->pte_hole) err = ops->pte_hole(start, next, -1, &walk); } else { /* inside vma */ process_vma_walk_lock(vma, ops->walk_lock); walk.vma = vma; next = min(end, vma->vm_end); vma = find_vma(mm, vma->vm_end); err = walk_page_test(start, next, &walk); if (err > 0) { /* * positive return values are purely for * controlling the pagewalk, so should never * be passed to the callers. */ err = 0; continue; } if (err < 0) break; err = __walk_page_range(start, next, &walk); } if (err) break; } while (start = next, start < end); return err; } /* * Determine if the walk operations specified are permitted to be used for a * page table walk. * * This check is performed on all functions which are parameterised by walk * operations and exposed in include/linux/pagewalk.h. * * Internal memory management code can use the walk_page_range_mm() function to * be able to use all page walking operations. */ static bool check_ops_valid(const struct mm_walk_ops *ops) { /* * The installation of PTEs is solely under the control of memory * management logic and subject to many subtle locking, security and * cache considerations so we cannot permit other users to do so, and * certainly not for exported symbols. */ if (ops->install_pte) return false; return true; } /** * walk_page_range - walk page table with caller specific callbacks * @mm: mm_struct representing the target process of page table walk * @start: start address of the virtual address range * @end: end address of the virtual address range * @ops: operation to call during the walk * @private: private data for callbacks' usage * * Recursively walk the page table tree of the process represented by @mm * within the virtual address range [@start, @end). During walking, we can do * some caller-specific works for each entry, by setting up pmd_entry(), * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these * callbacks, the associated entries/pages are just ignored. * The return values of these callbacks are commonly defined like below: * * - 0 : succeeded to handle the current entry, and if you don't reach the * end address yet, continue to walk. * - >0 : succeeded to handle the current entry, and return to the caller * with caller specific value. * - <0 : failed to handle the current entry, and return to the caller * with error code. * * Before starting to walk page table, some callers want to check whether * they really want to walk over the current vma, typically by checking * its vm_flags. walk_page_test() and @ops->test_walk() are used for this * purpose. * * If operations need to be staged before and committed after a vma is walked, * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), * since it is intended to handle commit-type operations, can't return any * errors. * * struct mm_walk keeps current values of some common data like vma and pmd, * which are useful for the access from callbacks. If you want to pass some * caller-specific data to callbacks, @private should be helpful. * * Locking: * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, * because these function traverse vma list and/or access to vma's data. */ int walk_page_range(struct mm_struct *mm, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, void *private) { if (!check_ops_valid(ops)) return -EINVAL; return walk_page_range_mm(mm, start, end, ops, private); } /** * walk_page_range_novma - walk a range of pagetables not backed by a vma * @mm: mm_struct representing the target process of page table walk * @start: start address of the virtual address range * @end: end address of the virtual address range * @ops: operation to call during the walk * @pgd: pgd to walk if different from mm->pgd * @private: private data for callbacks' usage * * Similar to walk_page_range() but can walk any page tables even if they are * not backed by VMAs. Because 'unusual' entries may be walked this function * will also not lock the PTEs for the pte_entry() callback. This is useful for * walking the kernel pages tables or page tables for firmware. * * Note: Be careful to walk the kernel pages tables, the caller may be need to * take other effective approaches (mmap lock may be insufficient) to prevent * the intermediate kernel page tables belonging to the specified address range * from being freed (e.g. memory hot-remove). */ int walk_page_range_novma(struct mm_struct *mm, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, pgd_t *pgd, void *private) { struct mm_walk walk = { .ops = ops, .mm = mm, .pgd = pgd, .private = private, .no_vma = true }; if (start >= end || !walk.mm) return -EINVAL; if (!check_ops_valid(ops)) return -EINVAL; /* * 1) For walking the user virtual address space: * * The mmap lock protects the page walker from changes to the page * tables during the walk. However a read lock is insufficient to * protect those areas which don't have a VMA as munmap() detaches * the VMAs before downgrading to a read lock and actually tearing * down PTEs/page tables. In which case, the mmap write lock should * be hold. * * 2) For walking the kernel virtual address space: * * The kernel intermediate page tables usually do not be freed, so * the mmap map read lock is sufficient. But there are some exceptions. * E.g. memory hot-remove. In which case, the mmap lock is insufficient * to prevent the intermediate kernel pages tables belonging to the * specified address range from being freed. The caller should take * other actions to prevent this race. */ if (mm == &init_mm) mmap_assert_locked(walk.mm); else mmap_assert_write_locked(walk.mm); return walk_pgd_range(start, end, &walk); } int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, void *private) { struct mm_walk walk = { .ops = ops, .mm = vma->vm_mm, .vma = vma, .private = private, }; if (start >= end || !walk.mm) return -EINVAL; if (start < vma->vm_start || end > vma->vm_end) return -EINVAL; if (!check_ops_valid(ops)) return -EINVAL; process_mm_walk_lock(walk.mm, ops->walk_lock); process_vma_walk_lock(vma, ops->walk_lock); return __walk_page_range(start, end, &walk); } int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, void *private) { struct mm_walk walk = { .ops = ops, .mm = vma->vm_mm, .vma = vma, .private = private, }; if (!walk.mm) return -EINVAL; if (!check_ops_valid(ops)) return -EINVAL; process_mm_walk_lock(walk.mm, ops->walk_lock); process_vma_walk_lock(vma, ops->walk_lock); return __walk_page_range(vma->vm_start, vma->vm_end, &walk); } /** * walk_page_mapping - walk all memory areas mapped into a struct address_space. * @mapping: Pointer to the struct address_space * @first_index: First page offset in the address_space * @nr: Number of incremental page offsets to cover * @ops: operation to call during the walk * @private: private data for callbacks' usage * * This function walks all memory areas mapped into a struct address_space. * The walk is limited to only the given page-size index range, but if * the index boundaries cross a huge page-table entry, that entry will be * included. * * Also see walk_page_range() for additional information. * * Locking: * This function can't require that the struct mm_struct::mmap_lock is held, * since @mapping may be mapped by multiple processes. Instead * @mapping->i_mmap_rwsem must be held. This might have implications in the * callbacks, and it's up tho the caller to ensure that the * struct mm_struct::mmap_lock is not needed. * * Also this means that a caller can't rely on the struct * vm_area_struct::vm_flags to be constant across a call, * except for immutable flags. Callers requiring this shouldn't use * this function. * * Return: 0 on success, negative error code on failure, positive number on * caller defined premature termination. */ int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, pgoff_t nr, const struct mm_walk_ops *ops, void *private) { struct mm_walk walk = { .ops = ops, .private = private, }; struct vm_area_struct *vma; pgoff_t vba, vea, cba, cea; unsigned long start_addr, end_addr; int err = 0; if (!check_ops_valid(ops)) return -EINVAL; lockdep_assert_held(&mapping->i_mmap_rwsem); vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, first_index + nr - 1) { /* Clip to the vma */ vba = vma->vm_pgoff; vea = vba + vma_pages(vma); cba = first_index; cba = max(cba, vba); cea = first_index + nr; cea = min(cea, vea); start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; if (start_addr >= end_addr) continue; walk.vma = vma; walk.mm = vma->vm_mm; err = walk_page_test(vma->vm_start, vma->vm_end, &walk); if (err > 0) { err = 0; break; } else if (err < 0) break; err = __walk_page_range(start_addr, end_addr, &walk); if (err) break; } return err; } /** * folio_walk_start - walk the page tables to a folio * @fw: filled with information on success. * @vma: the VMA. * @addr: the virtual address to use for the page table walk. * @flags: flags modifying which folios to walk to. * * Walk the page tables using @addr in a given @vma to a mapped folio and * return the folio, making sure that the page table entry referenced by * @addr cannot change until folio_walk_end() was called. * * As default, this function returns only folios that are not special (e.g., not * the zeropage) and never returns folios that are supposed to be ignored by the * VM as documented by vm_normal_page(). If requested, zeropages will be * returned as well. * * As default, this function only considers present page table entries. * If requested, it will also consider migration entries. * * If this function returns NULL it might either indicate "there is nothing" or * "there is nothing suitable". * * On success, @fw is filled and the function returns the folio while the PTL * is still held and folio_walk_end() must be called to clean up, * releasing any held locks. The returned folio must *not* be used after the * call to folio_walk_end(), unless a short-term folio reference is taken before * that call. * * @fw->page will correspond to the page that is effectively referenced by * @addr. However, for migration entries and shared zeropages @fw->page is * set to NULL. Note that large folios might be mapped by multiple page table * entries, and this function will always only lookup a single entry as * specified by @addr, which might or might not cover more than a single page of * the returned folio. * * This function must *not* be used as a naive replacement for * get_user_pages() / pin_user_pages(), especially not to perform DMA or * to carelessly modify page content. This function may *only* be used to grab * short-term folio references, never to grab long-term folio references. * * Using the page table entry pointers in @fw for reading or modifying the * entry should be avoided where possible: however, there might be valid * use cases. * * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care. * For example, PMD page table sharing might require prior unsharing. Also, * logical hugetlb entries might span multiple physical page table entries, * which *must* be modified in a single operation (set_huge_pte_at(), * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might * not correspond to the first physical entry of a logical hugetlb entry. * * The mmap lock must be held in read mode. * * Return: folio pointer on success, otherwise NULL. */ struct folio *folio_walk_start(struct folio_walk *fw, struct vm_area_struct *vma, unsigned long addr, folio_walk_flags_t flags) { unsigned long entry_size; bool expose_page = true; struct page *page; pud_t *pudp, pud; pmd_t *pmdp, pmd; pte_t *ptep, pte; spinlock_t *ptl; pgd_t *pgdp; p4d_t *p4dp; mmap_assert_locked(vma->vm_mm); vma_pgtable_walk_begin(vma); if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end)) goto not_found; pgdp = pgd_offset(vma->vm_mm, addr); if (pgd_none_or_clear_bad(pgdp)) goto not_found; p4dp = p4d_offset(pgdp, addr); if (p4d_none_or_clear_bad(p4dp)) goto not_found; pudp = pud_offset(p4dp, addr); pud = pudp_get(pudp); if (pud_none(pud)) goto not_found; if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && (!pud_present(pud) || pud_leaf(pud))) { ptl = pud_lock(vma->vm_mm, pudp); pud = pudp_get(pudp); entry_size = PUD_SIZE; fw->level = FW_LEVEL_PUD; fw->pudp = pudp; fw->pud = pud; /* * TODO: FW_MIGRATION support for PUD migration entries * once there are relevant users. */ if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) { spin_unlock(ptl); goto not_found; } else if (!pud_leaf(pud)) { spin_unlock(ptl); goto pmd_table; } /* * TODO: vm_normal_page_pud() will be handy once we want to * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs. */ page = pud_page(pud); goto found; } pmd_table: VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud)); pmdp = pmd_offset(pudp, addr); pmd = pmdp_get_lockless(pmdp); if (pmd_none(pmd)) goto not_found; if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && (!pmd_present(pmd) || pmd_leaf(pmd))) { ptl = pmd_lock(vma->vm_mm, pmdp); pmd = pmdp_get(pmdp); entry_size = PMD_SIZE; fw->level = FW_LEVEL_PMD; fw->pmdp = pmdp; fw->pmd = pmd; if (pmd_none(pmd)) { spin_unlock(ptl); goto not_found; } else if (pmd_present(pmd) && !pmd_leaf(pmd)) { spin_unlock(ptl); goto pte_table; } else if (pmd_present(pmd)) { page = vm_normal_page_pmd(vma, addr, pmd); if (page) { goto found; } else if ((flags & FW_ZEROPAGE) && is_huge_zero_pmd(pmd)) { page = pfn_to_page(pmd_pfn(pmd)); expose_page = false; goto found; } } else if ((flags & FW_MIGRATION) && is_pmd_migration_entry(pmd)) { swp_entry_t entry = pmd_to_swp_entry(pmd); page = pfn_swap_entry_to_page(entry); expose_page = false; goto found; } spin_unlock(ptl); goto not_found; } pte_table: VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd)); ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl); if (!ptep) goto not_found; pte = ptep_get(ptep); entry_size = PAGE_SIZE; fw->level = FW_LEVEL_PTE; fw->ptep = ptep; fw->pte = pte; if (pte_present(pte)) { page = vm_normal_page(vma, addr, pte); if (page) goto found; if ((flags & FW_ZEROPAGE) && is_zero_pfn(pte_pfn(pte))) { page = pfn_to_page(pte_pfn(pte)); expose_page = false; goto found; } } else if (!pte_none(pte)) { swp_entry_t entry = pte_to_swp_entry(pte); if ((flags & FW_MIGRATION) && is_migration_entry(entry)) { page = pfn_swap_entry_to_page(entry); expose_page = false; goto found; } } pte_unmap_unlock(ptep, ptl); not_found: vma_pgtable_walk_end(vma); return NULL; found: if (expose_page) /* Note: Offset from the mapped page, not the folio start. */ fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT); else fw->page = NULL; fw->ptl = ptl; return page_folio(page); }
12 12 2 1 1 2 6 3 1 4055 4049 1248 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2011, Intel Corporation. * * Description: Data Center Bridging netlink interface * Author: Lucy Liu <lucy.liu@intel.com> */ #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/slab.h> #include <net/netlink.h> #include <net/rtnetlink.h> #include <linux/dcbnl.h> #include <net/dcbevent.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <net/sock.h> /* Data Center Bridging (DCB) is a collection of Ethernet enhancements * intended to allow network traffic with differing requirements * (highly reliable, no drops vs. best effort vs. low latency) to operate * and co-exist on Ethernet. Current DCB features are: * * Enhanced Transmission Selection (aka Priority Grouping [PG]) - provides a * framework for assigning bandwidth guarantees to traffic classes. * * Priority-based Flow Control (PFC) - provides a flow control mechanism which * can work independently for each 802.1p priority. * * Congestion Notification - provides a mechanism for end-to-end congestion * control for protocols which do not have built-in congestion management. * * More information about the emerging standards for these Ethernet features * can be found at: http://www.ieee802.org/1/pages/dcbridges.html * * This file implements an rtnetlink interface to allow configuration of DCB * features for capable devices. */ /**************** DCB attribute policies *************************************/ /* DCB netlink attributes policy */ static const struct nla_policy dcbnl_rtnl_policy[DCB_ATTR_MAX + 1] = { [DCB_ATTR_IFNAME] = {.type = NLA_NUL_STRING, .len = IFNAMSIZ - 1}, [DCB_ATTR_STATE] = {.type = NLA_U8}, [DCB_ATTR_PFC_CFG] = {.type = NLA_NESTED}, [DCB_ATTR_PG_CFG] = {.type = NLA_NESTED}, [DCB_ATTR_SET_ALL] = {.type = NLA_U8}, [DCB_ATTR_PERM_HWADDR] = {.type = NLA_FLAG}, [DCB_ATTR_CAP] = {.type = NLA_NESTED}, [DCB_ATTR_PFC_STATE] = {.type = NLA_U8}, [DCB_ATTR_BCN] = {.type = NLA_NESTED}, [DCB_ATTR_APP] = {.type = NLA_NESTED}, [DCB_ATTR_IEEE] = {.type = NLA_NESTED}, [DCB_ATTR_DCBX] = {.type = NLA_U8}, [DCB_ATTR_FEATCFG] = {.type = NLA_NESTED}, }; /* DCB priority flow control to User Priority nested attributes */ static const struct nla_policy dcbnl_pfc_up_nest[DCB_PFC_UP_ATTR_MAX + 1] = { [DCB_PFC_UP_ATTR_0] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_1] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_2] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_3] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_4] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_5] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_6] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_7] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_ALL] = {.type = NLA_FLAG}, }; /* DCB priority grouping nested attributes */ static const struct nla_policy dcbnl_pg_nest[DCB_PG_ATTR_MAX + 1] = { [DCB_PG_ATTR_TC_0] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_1] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_2] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_3] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_4] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_5] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_6] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_7] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_ALL] = {.type = NLA_NESTED}, [DCB_PG_ATTR_BW_ID_0] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_1] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_2] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_3] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_4] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_5] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_6] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_7] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_ALL] = {.type = NLA_FLAG}, }; /* DCB traffic class nested attributes. */ static const struct nla_policy dcbnl_tc_param_nest[DCB_TC_ATTR_PARAM_MAX + 1] = { [DCB_TC_ATTR_PARAM_PGID] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_UP_MAPPING] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_STRICT_PRIO] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_BW_PCT] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_ALL] = {.type = NLA_FLAG}, }; /* DCB capabilities nested attributes. */ static const struct nla_policy dcbnl_cap_nest[DCB_CAP_ATTR_MAX + 1] = { [DCB_CAP_ATTR_ALL] = {.type = NLA_FLAG}, [DCB_CAP_ATTR_PG] = {.type = NLA_U8}, [DCB_CAP_ATTR_PFC] = {.type = NLA_U8}, [DCB_CAP_ATTR_UP2TC] = {.type = NLA_U8}, [DCB_CAP_ATTR_PG_TCS] = {.type = NLA_U8}, [DCB_CAP_ATTR_PFC_TCS] = {.type = NLA_U8}, [DCB_CAP_ATTR_GSP] = {.type = NLA_U8}, [DCB_CAP_ATTR_BCN] = {.type = NLA_U8}, [DCB_CAP_ATTR_DCBX] = {.type = NLA_U8}, }; /* DCB capabilities nested attributes. */ static const struct nla_policy dcbnl_numtcs_nest[DCB_NUMTCS_ATTR_MAX + 1] = { [DCB_NUMTCS_ATTR_ALL] = {.type = NLA_FLAG}, [DCB_NUMTCS_ATTR_PG] = {.type = NLA_U8}, [DCB_NUMTCS_ATTR_PFC] = {.type = NLA_U8}, }; /* DCB BCN nested attributes. */ static const struct nla_policy dcbnl_bcn_nest[DCB_BCN_ATTR_MAX + 1] = { [DCB_BCN_ATTR_RP_0] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_1] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_2] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_3] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_4] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_5] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_6] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_7] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_ALL] = {.type = NLA_FLAG}, [DCB_BCN_ATTR_BCNA_0] = {.type = NLA_U32}, [DCB_BCN_ATTR_BCNA_1] = {.type = NLA_U32}, [DCB_BCN_ATTR_ALPHA] = {.type = NLA_U32}, [DCB_BCN_ATTR_BETA] = {.type = NLA_U32}, [DCB_BCN_ATTR_GD] = {.type = NLA_U32}, [DCB_BCN_ATTR_GI] = {.type = NLA_U32}, [DCB_BCN_ATTR_TMAX] = {.type = NLA_U32}, [DCB_BCN_ATTR_TD] = {.type = NLA_U32}, [DCB_BCN_ATTR_RMIN] = {.type = NLA_U32}, [DCB_BCN_ATTR_W] = {.type = NLA_U32}, [DCB_BCN_ATTR_RD] = {.type = NLA_U32}, [DCB_BCN_ATTR_RU] = {.type = NLA_U32}, [DCB_BCN_ATTR_WRTT] = {.type = NLA_U32}, [DCB_BCN_ATTR_RI] = {.type = NLA_U32}, [DCB_BCN_ATTR_C] = {.type = NLA_U32}, [DCB_BCN_ATTR_ALL] = {.type = NLA_FLAG}, }; /* DCB APP nested attributes. */ static const struct nla_policy dcbnl_app_nest[DCB_APP_ATTR_MAX + 1] = { [DCB_APP_ATTR_IDTYPE] = {.type = NLA_U8}, [DCB_APP_ATTR_ID] = {.type = NLA_U16}, [DCB_APP_ATTR_PRIORITY] = {.type = NLA_U8}, }; /* IEEE 802.1Qaz nested attributes. */ static const struct nla_policy dcbnl_ieee_policy[DCB_ATTR_IEEE_MAX + 1] = { [DCB_ATTR_IEEE_ETS] = {.len = sizeof(struct ieee_ets)}, [DCB_ATTR_IEEE_PFC] = {.len = sizeof(struct ieee_pfc)}, [DCB_ATTR_IEEE_APP_TABLE] = {.type = NLA_NESTED}, [DCB_ATTR_IEEE_MAXRATE] = {.len = sizeof(struct ieee_maxrate)}, [DCB_ATTR_IEEE_QCN] = {.len = sizeof(struct ieee_qcn)}, [DCB_ATTR_IEEE_QCN_STATS] = {.len = sizeof(struct ieee_qcn_stats)}, [DCB_ATTR_DCB_BUFFER] = {.len = sizeof(struct dcbnl_buffer)}, [DCB_ATTR_DCB_APP_TRUST_TABLE] = {.type = NLA_NESTED}, }; /* DCB number of traffic classes nested attributes. */ static const struct nla_policy dcbnl_featcfg_nest[DCB_FEATCFG_ATTR_MAX + 1] = { [DCB_FEATCFG_ATTR_ALL] = {.type = NLA_FLAG}, [DCB_FEATCFG_ATTR_PG] = {.type = NLA_U8}, [DCB_FEATCFG_ATTR_PFC] = {.type = NLA_U8}, [DCB_FEATCFG_ATTR_APP] = {.type = NLA_U8}, }; static LIST_HEAD(dcb_app_list); static LIST_HEAD(dcb_rewr_list); static DEFINE_SPINLOCK(dcb_lock); static enum ieee_attrs_app dcbnl_app_attr_type_get(u8 selector) { switch (selector) { case IEEE_8021QAZ_APP_SEL_ETHERTYPE: case IEEE_8021QAZ_APP_SEL_STREAM: case IEEE_8021QAZ_APP_SEL_DGRAM: case IEEE_8021QAZ_APP_SEL_ANY: case IEEE_8021QAZ_APP_SEL_DSCP: return DCB_ATTR_IEEE_APP; case DCB_APP_SEL_PCP: return DCB_ATTR_DCB_APP; default: return DCB_ATTR_IEEE_APP_UNSPEC; } } static bool dcbnl_app_attr_type_validate(enum ieee_attrs_app type) { switch (type) { case DCB_ATTR_IEEE_APP: case DCB_ATTR_DCB_APP: return true; default: return false; } } static bool dcbnl_app_selector_validate(enum ieee_attrs_app type, u8 selector) { return dcbnl_app_attr_type_get(selector) == type; } static struct sk_buff *dcbnl_newmsg(int type, u8 cmd, u32 port, u32 seq, u32 flags, struct nlmsghdr **nlhp) { struct sk_buff *skb; struct dcbmsg *dcb; struct nlmsghdr *nlh; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return NULL; nlh = nlmsg_put(skb, port, seq, type, sizeof(*dcb), flags); BUG_ON(!nlh); dcb = nlmsg_data(nlh); dcb->dcb_family = AF_UNSPEC; dcb->cmd = cmd; dcb->dcb_pad = 0; if (nlhp) *nlhp = nlh; return skb; } static int dcbnl_getstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { /* if (!tb[DCB_ATTR_STATE] || !netdev->dcbnl_ops->getstate) */ if (!netdev->dcbnl_ops->getstate) return -EOPNOTSUPP; return nla_put_u8(skb, DCB_ATTR_STATE, netdev->dcbnl_ops->getstate(netdev)); } static int dcbnl_getpfccfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_PFC_UP_ATTR_MAX + 1], *nest; u8 value; int ret; int i; int getall = 0; if (!tb[DCB_ATTR_PFC_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->getpfccfg) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_PFC_UP_ATTR_MAX, tb[DCB_ATTR_PFC_CFG], dcbnl_pfc_up_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_PFC_CFG); if (!nest) return -EMSGSIZE; if (data[DCB_PFC_UP_ATTR_ALL]) getall = 1; for (i = DCB_PFC_UP_ATTR_0; i <= DCB_PFC_UP_ATTR_7; i++) { if (!getall && !data[i]) continue; netdev->dcbnl_ops->getpfccfg(netdev, i - DCB_PFC_UP_ATTR_0, &value); ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); return ret; } } nla_nest_end(skb, nest); return 0; } static int dcbnl_getperm_hwaddr(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 perm_addr[MAX_ADDR_LEN]; if (!netdev->dcbnl_ops->getpermhwaddr) return -EOPNOTSUPP; memset(perm_addr, 0, sizeof(perm_addr)); netdev->dcbnl_ops->getpermhwaddr(netdev, perm_addr); return nla_put(skb, DCB_ATTR_PERM_HWADDR, sizeof(perm_addr), perm_addr); } static int dcbnl_getcap(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_CAP_ATTR_MAX + 1], *nest; u8 value; int ret; int i; int getall = 0; if (!tb[DCB_ATTR_CAP]) return -EINVAL; if (!netdev->dcbnl_ops->getcap) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_CAP_ATTR_MAX, tb[DCB_ATTR_CAP], dcbnl_cap_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_CAP); if (!nest) return -EMSGSIZE; if (data[DCB_CAP_ATTR_ALL]) getall = 1; for (i = DCB_CAP_ATTR_ALL+1; i <= DCB_CAP_ATTR_MAX; i++) { if (!getall && !data[i]) continue; if (!netdev->dcbnl_ops->getcap(netdev, i, &value)) { ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); return ret; } } } nla_nest_end(skb, nest); return 0; } static int dcbnl_getnumtcs(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_NUMTCS_ATTR_MAX + 1], *nest; u8 value; int ret; int i; int getall = 0; if (!tb[DCB_ATTR_NUMTCS]) return -EINVAL; if (!netdev->dcbnl_ops->getnumtcs) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_NUMTCS_ATTR_MAX, tb[DCB_ATTR_NUMTCS], dcbnl_numtcs_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_NUMTCS); if (!nest) return -EMSGSIZE; if (data[DCB_NUMTCS_ATTR_ALL]) getall = 1; for (i = DCB_NUMTCS_ATTR_ALL+1; i <= DCB_NUMTCS_ATTR_MAX; i++) { if (!getall && !data[i]) continue; ret = netdev->dcbnl_ops->getnumtcs(netdev, i, &value); if (!ret) { ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); return ret; } } else return -EINVAL; } nla_nest_end(skb, nest); return 0; } static int dcbnl_setnumtcs(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_NUMTCS_ATTR_MAX + 1]; int ret; u8 value; int i; if (!tb[DCB_ATTR_NUMTCS]) return -EINVAL; if (!netdev->dcbnl_ops->setnumtcs) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_NUMTCS_ATTR_MAX, tb[DCB_ATTR_NUMTCS], dcbnl_numtcs_nest, NULL); if (ret) return ret; for (i = DCB_NUMTCS_ATTR_ALL+1; i <= DCB_NUMTCS_ATTR_MAX; i++) { if (data[i] == NULL) continue; value = nla_get_u8(data[i]); ret = netdev->dcbnl_ops->setnumtcs(netdev, i, value); if (ret) break; } return nla_put_u8(skb, DCB_ATTR_NUMTCS, !!ret); } static int dcbnl_getpfcstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { if (!netdev->dcbnl_ops->getpfcstate) return -EOPNOTSUPP; return nla_put_u8(skb, DCB_ATTR_PFC_STATE, netdev->dcbnl_ops->getpfcstate(netdev)); } static int dcbnl_setpfcstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 value; if (!tb[DCB_ATTR_PFC_STATE]) return -EINVAL; if (!netdev->dcbnl_ops->setpfcstate) return -EOPNOTSUPP; value = nla_get_u8(tb[DCB_ATTR_PFC_STATE]); netdev->dcbnl_ops->setpfcstate(netdev, value); return nla_put_u8(skb, DCB_ATTR_PFC_STATE, 0); } static int dcbnl_getapp(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *app_nest; struct nlattr *app_tb[DCB_APP_ATTR_MAX + 1]; u16 id; u8 up, idtype; int ret; if (!tb[DCB_ATTR_APP]) return -EINVAL; ret = nla_parse_nested_deprecated(app_tb, DCB_APP_ATTR_MAX, tb[DCB_ATTR_APP], dcbnl_app_nest, NULL); if (ret) return ret; /* all must be non-null */ if ((!app_tb[DCB_APP_ATTR_IDTYPE]) || (!app_tb[DCB_APP_ATTR_ID])) return -EINVAL; /* either by eth type or by socket number */ idtype = nla_get_u8(app_tb[DCB_APP_ATTR_IDTYPE]); if ((idtype != DCB_APP_IDTYPE_ETHTYPE) && (idtype != DCB_APP_IDTYPE_PORTNUM)) return -EINVAL; id = nla_get_u16(app_tb[DCB_APP_ATTR_ID]); if (netdev->dcbnl_ops->getapp) { ret = netdev->dcbnl_ops->getapp(netdev, idtype, id); if (ret < 0) return ret; else up = ret; } else { struct dcb_app app = { .selector = idtype, .protocol = id, }; up = dcb_getapp(netdev, &app); } app_nest = nla_nest_start_noflag(skb, DCB_ATTR_APP); if (!app_nest) return -EMSGSIZE; ret = nla_put_u8(skb, DCB_APP_ATTR_IDTYPE, idtype); if (ret) goto out_cancel; ret = nla_put_u16(skb, DCB_APP_ATTR_ID, id); if (ret) goto out_cancel; ret = nla_put_u8(skb, DCB_APP_ATTR_PRIORITY, up); if (ret) goto out_cancel; nla_nest_end(skb, app_nest); return 0; out_cancel: nla_nest_cancel(skb, app_nest); return ret; } static int dcbnl_setapp(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { int ret; u16 id; u8 up, idtype; struct nlattr *app_tb[DCB_APP_ATTR_MAX + 1]; if (!tb[DCB_ATTR_APP]) return -EINVAL; ret = nla_parse_nested_deprecated(app_tb, DCB_APP_ATTR_MAX, tb[DCB_ATTR_APP], dcbnl_app_nest, NULL); if (ret) return ret; /* all must be non-null */ if ((!app_tb[DCB_APP_ATTR_IDTYPE]) || (!app_tb[DCB_APP_ATTR_ID]) || (!app_tb[DCB_APP_ATTR_PRIORITY])) return -EINVAL; /* either by eth type or by socket number */ idtype = nla_get_u8(app_tb[DCB_APP_ATTR_IDTYPE]); if ((idtype != DCB_APP_IDTYPE_ETHTYPE) && (idtype != DCB_APP_IDTYPE_PORTNUM)) return -EINVAL; id = nla_get_u16(app_tb[DCB_APP_ATTR_ID]); up = nla_get_u8(app_tb[DCB_APP_ATTR_PRIORITY]); if (netdev->dcbnl_ops->setapp) { ret = netdev->dcbnl_ops->setapp(netdev, idtype, id, up); if (ret < 0) return ret; } else { struct dcb_app app; app.selector = idtype; app.protocol = id; app.priority = up; ret = dcb_setapp(netdev, &app); } ret = nla_put_u8(skb, DCB_ATTR_APP, ret); dcbnl_cee_notify(netdev, RTM_SETDCB, DCB_CMD_SAPP, seq, 0); return ret; } static int __dcbnl_pg_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, struct nlattr **tb, struct sk_buff *skb, int dir) { struct nlattr *pg_nest, *param_nest, *data; struct nlattr *pg_tb[DCB_PG_ATTR_MAX + 1]; struct nlattr *param_tb[DCB_TC_ATTR_PARAM_MAX + 1]; u8 prio, pgid, tc_pct, up_map; int ret; int getall = 0; int i; if (!tb[DCB_ATTR_PG_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->getpgtccfgtx || !netdev->dcbnl_ops->getpgtccfgrx || !netdev->dcbnl_ops->getpgbwgcfgtx || !netdev->dcbnl_ops->getpgbwgcfgrx) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(pg_tb, DCB_PG_ATTR_MAX, tb[DCB_ATTR_PG_CFG], dcbnl_pg_nest, NULL); if (ret) return ret; pg_nest = nla_nest_start_noflag(skb, DCB_ATTR_PG_CFG); if (!pg_nest) return -EMSGSIZE; if (pg_tb[DCB_PG_ATTR_TC_ALL]) getall = 1; for (i = DCB_PG_ATTR_TC_0; i <= DCB_PG_ATTR_TC_7; i++) { if (!getall && !pg_tb[i]) continue; if (pg_tb[DCB_PG_ATTR_TC_ALL]) data = pg_tb[DCB_PG_ATTR_TC_ALL]; else data = pg_tb[i]; ret = nla_parse_nested_deprecated(param_tb, DCB_TC_ATTR_PARAM_MAX, data, dcbnl_tc_param_nest, NULL); if (ret) goto err_pg; param_nest = nla_nest_start_noflag(skb, i); if (!param_nest) goto err_pg; pgid = DCB_ATTR_VALUE_UNDEFINED; prio = DCB_ATTR_VALUE_UNDEFINED; tc_pct = DCB_ATTR_VALUE_UNDEFINED; up_map = DCB_ATTR_VALUE_UNDEFINED; if (dir) { /* Rx */ netdev->dcbnl_ops->getpgtccfgrx(netdev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); } else { /* Tx */ netdev->dcbnl_ops->getpgtccfgtx(netdev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); } if (param_tb[DCB_TC_ATTR_PARAM_PGID] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_PGID, pgid); if (ret) goto err_param; } if (param_tb[DCB_TC_ATTR_PARAM_UP_MAPPING] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_UP_MAPPING, up_map); if (ret) goto err_param; } if (param_tb[DCB_TC_ATTR_PARAM_STRICT_PRIO] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_STRICT_PRIO, prio); if (ret) goto err_param; } if (param_tb[DCB_TC_ATTR_PARAM_BW_PCT] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_BW_PCT, tc_pct); if (ret) goto err_param; } nla_nest_end(skb, param_nest); } if (pg_tb[DCB_PG_ATTR_BW_ID_ALL]) getall = 1; else getall = 0; for (i = DCB_PG_ATTR_BW_ID_0; i <= DCB_PG_ATTR_BW_ID_7; i++) { if (!getall && !pg_tb[i]) continue; tc_pct = DCB_ATTR_VALUE_UNDEFINED; if (dir) { /* Rx */ netdev->dcbnl_ops->getpgbwgcfgrx(netdev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); } else { /* Tx */ netdev->dcbnl_ops->getpgbwgcfgtx(netdev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); } ret = nla_put_u8(skb, i, tc_pct); if (ret) goto err_pg; } nla_nest_end(skb, pg_nest); return 0; err_param: nla_nest_cancel(skb, param_nest); err_pg: nla_nest_cancel(skb, pg_nest); return -EMSGSIZE; } static int dcbnl_pgtx_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_getcfg(netdev, nlh, tb, skb, 0); } static int dcbnl_pgrx_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_getcfg(netdev, nlh, tb, skb, 1); } static int dcbnl_setstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 value; if (!tb[DCB_ATTR_STATE]) return -EINVAL; if (!netdev->dcbnl_ops->setstate) return -EOPNOTSUPP; value = nla_get_u8(tb[DCB_ATTR_STATE]); return nla_put_u8(skb, DCB_ATTR_STATE, netdev->dcbnl_ops->setstate(netdev, value)); } static int dcbnl_setpfccfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_PFC_UP_ATTR_MAX + 1]; int i; int ret; u8 value; if (!tb[DCB_ATTR_PFC_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->setpfccfg) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_PFC_UP_ATTR_MAX, tb[DCB_ATTR_PFC_CFG], dcbnl_pfc_up_nest, NULL); if (ret) return ret; for (i = DCB_PFC_UP_ATTR_0; i <= DCB_PFC_UP_ATTR_7; i++) { if (data[i] == NULL) continue; value = nla_get_u8(data[i]); netdev->dcbnl_ops->setpfccfg(netdev, data[i]->nla_type - DCB_PFC_UP_ATTR_0, value); } return nla_put_u8(skb, DCB_ATTR_PFC_CFG, 0); } static int dcbnl_setall(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { int ret; if (!tb[DCB_ATTR_SET_ALL]) return -EINVAL; if (!netdev->dcbnl_ops->setall) return -EOPNOTSUPP; ret = nla_put_u8(skb, DCB_ATTR_SET_ALL, netdev->dcbnl_ops->setall(netdev)); dcbnl_cee_notify(netdev, RTM_SETDCB, DCB_CMD_SET_ALL, seq, 0); return ret; } static int __dcbnl_pg_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb, int dir) { struct nlattr *pg_tb[DCB_PG_ATTR_MAX + 1]; struct nlattr *param_tb[DCB_TC_ATTR_PARAM_MAX + 1]; int ret; int i; u8 pgid; u8 up_map; u8 prio; u8 tc_pct; if (!tb[DCB_ATTR_PG_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->setpgtccfgtx || !netdev->dcbnl_ops->setpgtccfgrx || !netdev->dcbnl_ops->setpgbwgcfgtx || !netdev->dcbnl_ops->setpgbwgcfgrx) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(pg_tb, DCB_PG_ATTR_MAX, tb[DCB_ATTR_PG_CFG], dcbnl_pg_nest, NULL); if (ret) return ret; for (i = DCB_PG_ATTR_TC_0; i <= DCB_PG_ATTR_TC_7; i++) { if (!pg_tb[i]) continue; ret = nla_parse_nested_deprecated(param_tb, DCB_TC_ATTR_PARAM_MAX, pg_tb[i], dcbnl_tc_param_nest, NULL); if (ret) return ret; pgid = DCB_ATTR_VALUE_UNDEFINED; prio = DCB_ATTR_VALUE_UNDEFINED; tc_pct = DCB_ATTR_VALUE_UNDEFINED; up_map = DCB_ATTR_VALUE_UNDEFINED; if (param_tb[DCB_TC_ATTR_PARAM_STRICT_PRIO]) prio = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_STRICT_PRIO]); if (param_tb[DCB_TC_ATTR_PARAM_PGID]) pgid = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_PGID]); if (param_tb[DCB_TC_ATTR_PARAM_BW_PCT]) tc_pct = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_BW_PCT]); if (param_tb[DCB_TC_ATTR_PARAM_UP_MAPPING]) up_map = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_UP_MAPPING]); /* dir: Tx = 0, Rx = 1 */ if (dir) { /* Rx */ netdev->dcbnl_ops->setpgtccfgrx(netdev, i - DCB_PG_ATTR_TC_0, prio, pgid, tc_pct, up_map); } else { /* Tx */ netdev->dcbnl_ops->setpgtccfgtx(netdev, i - DCB_PG_ATTR_TC_0, prio, pgid, tc_pct, up_map); } } for (i = DCB_PG_ATTR_BW_ID_0; i <= DCB_PG_ATTR_BW_ID_7; i++) { if (!pg_tb[i]) continue; tc_pct = nla_get_u8(pg_tb[i]); /* dir: Tx = 0, Rx = 1 */ if (dir) { /* Rx */ netdev->dcbnl_ops->setpgbwgcfgrx(netdev, i - DCB_PG_ATTR_BW_ID_0, tc_pct); } else { /* Tx */ netdev->dcbnl_ops->setpgbwgcfgtx(netdev, i - DCB_PG_ATTR_BW_ID_0, tc_pct); } } return nla_put_u8(skb, DCB_ATTR_PG_CFG, 0); } static int dcbnl_pgtx_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_setcfg(netdev, nlh, seq, tb, skb, 0); } static int dcbnl_pgrx_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_setcfg(netdev, nlh, seq, tb, skb, 1); } static int dcbnl_bcn_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *bcn_nest; struct nlattr *bcn_tb[DCB_BCN_ATTR_MAX + 1]; u8 value_byte; u32 value_integer; int ret; bool getall = false; int i; if (!tb[DCB_ATTR_BCN]) return -EINVAL; if (!netdev->dcbnl_ops->getbcnrp || !netdev->dcbnl_ops->getbcncfg) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(bcn_tb, DCB_BCN_ATTR_MAX, tb[DCB_ATTR_BCN], dcbnl_bcn_nest, NULL); if (ret) return ret; bcn_nest = nla_nest_start_noflag(skb, DCB_ATTR_BCN); if (!bcn_nest) return -EMSGSIZE; if (bcn_tb[DCB_BCN_ATTR_ALL]) getall = true; for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) { if (!getall && !bcn_tb[i]) continue; netdev->dcbnl_ops->getbcnrp(netdev, i - DCB_BCN_ATTR_RP_0, &value_byte); ret = nla_put_u8(skb, i, value_byte); if (ret) goto err_bcn; } for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) { if (!getall && !bcn_tb[i]) continue; netdev->dcbnl_ops->getbcncfg(netdev, i, &value_integer); ret = nla_put_u32(skb, i, value_integer); if (ret) goto err_bcn; } nla_nest_end(skb, bcn_nest); return 0; err_bcn: nla_nest_cancel(skb, bcn_nest); return ret; } static int dcbnl_bcn_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_BCN_ATTR_MAX + 1]; int i; int ret; u8 value_byte; u32 value_int; if (!tb[DCB_ATTR_BCN]) return -EINVAL; if (!netdev->dcbnl_ops->setbcncfg || !netdev->dcbnl_ops->setbcnrp) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_BCN_ATTR_MAX, tb[DCB_ATTR_BCN], dcbnl_bcn_nest, NULL); if (ret) return ret; for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) { if (data[i] == NULL) continue; value_byte = nla_get_u8(data[i]); netdev->dcbnl_ops->setbcnrp(netdev, data[i]->nla_type - DCB_BCN_ATTR_RP_0, value_byte); } for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) { if (data[i] == NULL) continue; value_int = nla_get_u32(data[i]); netdev->dcbnl_ops->setbcncfg(netdev, i, value_int); } return nla_put_u8(skb, DCB_ATTR_BCN, 0); } static int dcbnl_build_peer_app(struct net_device *netdev, struct sk_buff* skb, int app_nested_type, int app_info_type, int app_entry_type) { struct dcb_peer_app_info info; struct dcb_app *table = NULL; const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; u16 app_count; int err; /** * retrieve the peer app configuration form the driver. If the driver * handlers fail exit without doing anything */ err = ops->peer_getappinfo(netdev, &info, &app_count); if (!err && app_count) { table = kmalloc_array(app_count, sizeof(struct dcb_app), GFP_KERNEL); if (!table) return -ENOMEM; err = ops->peer_getapptable(netdev, table); } if (!err) { u16 i; struct nlattr *app; /** * build the message, from here on the only possible failure * is due to the skb size */ err = -EMSGSIZE; app = nla_nest_start_noflag(skb, app_nested_type); if (!app) goto nla_put_failure; if (app_info_type && nla_put(skb, app_info_type, sizeof(info), &info)) goto nla_put_failure; for (i = 0; i < app_count; i++) { if (nla_put(skb, app_entry_type, sizeof(struct dcb_app), &table[i])) goto nla_put_failure; } nla_nest_end(skb, app); } err = 0; nla_put_failure: kfree(table); return err; } static int dcbnl_getapptrust(struct net_device *netdev, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; enum ieee_attrs_app type; struct nlattr *apptrust; int nselectors, err, i; u8 *selectors; selectors = kzalloc(IEEE_8021QAZ_APP_SEL_MAX + 1, GFP_KERNEL); if (!selectors) return -ENOMEM; err = ops->dcbnl_getapptrust(netdev, selectors, &nselectors); if (err) { err = 0; goto out; } apptrust = nla_nest_start(skb, DCB_ATTR_DCB_APP_TRUST_TABLE); if (!apptrust) { err = -EMSGSIZE; goto out; } for (i = 0; i < nselectors; i++) { type = dcbnl_app_attr_type_get(selectors[i]); err = nla_put_u8(skb, type, selectors[i]); if (err) { nla_nest_cancel(skb, apptrust); goto out; } } nla_nest_end(skb, apptrust); out: kfree(selectors); return err; } /* Set or delete APP table or rewrite table entries. The APP struct is validated * and the appropriate callback function is called. */ static int dcbnl_app_table_setdel(struct nlattr *attr, struct net_device *netdev, int (*setdel)(struct net_device *dev, struct dcb_app *app)) { struct dcb_app *app_data; enum ieee_attrs_app type; struct nlattr *attr_itr; int rem, err; nla_for_each_nested(attr_itr, attr, rem) { type = nla_type(attr_itr); if (!dcbnl_app_attr_type_validate(type)) continue; if (nla_len(attr_itr) < sizeof(struct dcb_app)) return -ERANGE; app_data = nla_data(attr_itr); if (!dcbnl_app_selector_validate(type, app_data->selector)) return -EINVAL; err = setdel(netdev, app_data); if (err) return err; } return 0; } /* Handle IEEE 802.1Qaz/802.1Qau/802.1Qbb GET commands. */ static int dcbnl_ieee_fill(struct sk_buff *skb, struct net_device *netdev) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; struct nlattr *ieee, *app, *rewr; struct dcb_app_type *itr; int dcbx; int err; if (nla_put_string(skb, DCB_ATTR_IFNAME, netdev->name)) return -EMSGSIZE; ieee = nla_nest_start_noflag(skb, DCB_ATTR_IEEE); if (!ieee) return -EMSGSIZE; if (ops->ieee_getets) { struct ieee_ets ets; memset(&ets, 0, sizeof(ets)); err = ops->ieee_getets(netdev, &ets); if (!err && nla_put(skb, DCB_ATTR_IEEE_ETS, sizeof(ets), &ets)) return -EMSGSIZE; } if (ops->ieee_getmaxrate) { struct ieee_maxrate maxrate; memset(&maxrate, 0, sizeof(maxrate)); err = ops->ieee_getmaxrate(netdev, &maxrate); if (!err) { err = nla_put(skb, DCB_ATTR_IEEE_MAXRATE, sizeof(maxrate), &maxrate); if (err) return -EMSGSIZE; } } if (ops->ieee_getqcn) { struct ieee_qcn qcn; memset(&qcn, 0, sizeof(qcn)); err = ops->ieee_getqcn(netdev, &qcn); if (!err) { err = nla_put(skb, DCB_ATTR_IEEE_QCN, sizeof(qcn), &qcn); if (err) return -EMSGSIZE; } } if (ops->ieee_getqcnstats) { struct ieee_qcn_stats qcn_stats; memset(&qcn_stats, 0, sizeof(qcn_stats)); err = ops->ieee_getqcnstats(netdev, &qcn_stats); if (!err) { err = nla_put(skb, DCB_ATTR_IEEE_QCN_STATS, sizeof(qcn_stats), &qcn_stats); if (err) return -EMSGSIZE; } } if (ops->ieee_getpfc) { struct ieee_pfc pfc; memset(&pfc, 0, sizeof(pfc)); err = ops->ieee_getpfc(netdev, &pfc); if (!err && nla_put(skb, DCB_ATTR_IEEE_PFC, sizeof(pfc), &pfc)) return -EMSGSIZE; } if (ops->dcbnl_getbuffer) { struct dcbnl_buffer buffer; memset(&buffer, 0, sizeof(buffer)); err = ops->dcbnl_getbuffer(netdev, &buffer); if (!err && nla_put(skb, DCB_ATTR_DCB_BUFFER, sizeof(buffer), &buffer)) return -EMSGSIZE; } app = nla_nest_start_noflag(skb, DCB_ATTR_IEEE_APP_TABLE); if (!app) return -EMSGSIZE; spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == netdev->ifindex) { enum ieee_attrs_app type = dcbnl_app_attr_type_get(itr->app.selector); err = nla_put(skb, type, sizeof(itr->app), &itr->app); if (err) { spin_unlock_bh(&dcb_lock); return -EMSGSIZE; } } } if (netdev->dcbnl_ops->getdcbx) dcbx = netdev->dcbnl_ops->getdcbx(netdev); else dcbx = -EOPNOTSUPP; spin_unlock_bh(&dcb_lock); nla_nest_end(skb, app); rewr = nla_nest_start(skb, DCB_ATTR_DCB_REWR_TABLE); if (!rewr) return -EMSGSIZE; spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->ifindex == netdev->ifindex) { enum ieee_attrs_app type = dcbnl_app_attr_type_get(itr->app.selector); err = nla_put(skb, type, sizeof(itr->app), &itr->app); if (err) { spin_unlock_bh(&dcb_lock); nla_nest_cancel(skb, rewr); return -EMSGSIZE; } } } spin_unlock_bh(&dcb_lock); nla_nest_end(skb, rewr); if (ops->dcbnl_getapptrust) { err = dcbnl_getapptrust(netdev, skb); if (err) return err; } /* get peer info if available */ if (ops->ieee_peer_getets) { struct ieee_ets ets; memset(&ets, 0, sizeof(ets)); err = ops->ieee_peer_getets(netdev, &ets); if (!err && nla_put(skb, DCB_ATTR_IEEE_PEER_ETS, sizeof(ets), &ets)) return -EMSGSIZE; } if (ops->ieee_peer_getpfc) { struct ieee_pfc pfc; memset(&pfc, 0, sizeof(pfc)); err = ops->ieee_peer_getpfc(netdev, &pfc); if (!err && nla_put(skb, DCB_ATTR_IEEE_PEER_PFC, sizeof(pfc), &pfc)) return -EMSGSIZE; } if (ops->peer_getappinfo && ops->peer_getapptable) { err = dcbnl_build_peer_app(netdev, skb, DCB_ATTR_IEEE_PEER_APP, DCB_ATTR_IEEE_APP_UNSPEC, DCB_ATTR_IEEE_APP); if (err) return -EMSGSIZE; } nla_nest_end(skb, ieee); if (dcbx >= 0) { err = nla_put_u8(skb, DCB_ATTR_DCBX, dcbx); if (err) return -EMSGSIZE; } return 0; } static int dcbnl_cee_pg_fill(struct sk_buff *skb, struct net_device *dev, int dir) { u8 pgid, up_map, prio, tc_pct; const struct dcbnl_rtnl_ops *ops = dev->dcbnl_ops; int i = dir ? DCB_ATTR_CEE_TX_PG : DCB_ATTR_CEE_RX_PG; struct nlattr *pg = nla_nest_start_noflag(skb, i); if (!pg) return -EMSGSIZE; for (i = DCB_PG_ATTR_TC_0; i <= DCB_PG_ATTR_TC_7; i++) { struct nlattr *tc_nest = nla_nest_start_noflag(skb, i); if (!tc_nest) return -EMSGSIZE; pgid = DCB_ATTR_VALUE_UNDEFINED; prio = DCB_ATTR_VALUE_UNDEFINED; tc_pct = DCB_ATTR_VALUE_UNDEFINED; up_map = DCB_ATTR_VALUE_UNDEFINED; if (!dir) ops->getpgtccfgrx(dev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); else ops->getpgtccfgtx(dev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); if (nla_put_u8(skb, DCB_TC_ATTR_PARAM_PGID, pgid) || nla_put_u8(skb, DCB_TC_ATTR_PARAM_UP_MAPPING, up_map) || nla_put_u8(skb, DCB_TC_ATTR_PARAM_STRICT_PRIO, prio) || nla_put_u8(skb, DCB_TC_ATTR_PARAM_BW_PCT, tc_pct)) return -EMSGSIZE; nla_nest_end(skb, tc_nest); } for (i = DCB_PG_ATTR_BW_ID_0; i <= DCB_PG_ATTR_BW_ID_7; i++) { tc_pct = DCB_ATTR_VALUE_UNDEFINED; if (!dir) ops->getpgbwgcfgrx(dev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); else ops->getpgbwgcfgtx(dev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); if (nla_put_u8(skb, i, tc_pct)) return -EMSGSIZE; } nla_nest_end(skb, pg); return 0; } static int dcbnl_cee_fill(struct sk_buff *skb, struct net_device *netdev) { struct nlattr *cee, *app; struct dcb_app_type *itr; const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; int dcbx, i, err = -EMSGSIZE; u8 value; if (nla_put_string(skb, DCB_ATTR_IFNAME, netdev->name)) goto nla_put_failure; cee = nla_nest_start_noflag(skb, DCB_ATTR_CEE); if (!cee) goto nla_put_failure; /* local pg */ if (ops->getpgtccfgtx && ops->getpgbwgcfgtx) { err = dcbnl_cee_pg_fill(skb, netdev, 1); if (err) goto nla_put_failure; } if (ops->getpgtccfgrx && ops->getpgbwgcfgrx) { err = dcbnl_cee_pg_fill(skb, netdev, 0); if (err) goto nla_put_failure; } /* local pfc */ if (ops->getpfccfg) { struct nlattr *pfc_nest = nla_nest_start_noflag(skb, DCB_ATTR_CEE_PFC); if (!pfc_nest) goto nla_put_failure; for (i = DCB_PFC_UP_ATTR_0; i <= DCB_PFC_UP_ATTR_7; i++) { ops->getpfccfg(netdev, i - DCB_PFC_UP_ATTR_0, &value); if (nla_put_u8(skb, i, value)) goto nla_put_failure; } nla_nest_end(skb, pfc_nest); } /* local app */ spin_lock_bh(&dcb_lock); app = nla_nest_start_noflag(skb, DCB_ATTR_CEE_APP_TABLE); if (!app) goto dcb_unlock; list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == netdev->ifindex) { struct nlattr *app_nest = nla_nest_start_noflag(skb, DCB_ATTR_APP); if (!app_nest) goto dcb_unlock; err = nla_put_u8(skb, DCB_APP_ATTR_IDTYPE, itr->app.selector); if (err) goto dcb_unlock; err = nla_put_u16(skb, DCB_APP_ATTR_ID, itr->app.protocol); if (err) goto dcb_unlock; err = nla_put_u8(skb, DCB_APP_ATTR_PRIORITY, itr->app.priority); if (err) goto dcb_unlock; nla_nest_end(skb, app_nest); } } nla_nest_end(skb, app); if (netdev->dcbnl_ops->getdcbx) dcbx = netdev->dcbnl_ops->getdcbx(netdev); else dcbx = -EOPNOTSUPP; spin_unlock_bh(&dcb_lock); /* features flags */ if (ops->getfeatcfg) { struct nlattr *feat = nla_nest_start_noflag(skb, DCB_ATTR_CEE_FEAT); if (!feat) goto nla_put_failure; for (i = DCB_FEATCFG_ATTR_ALL + 1; i <= DCB_FEATCFG_ATTR_MAX; i++) if (!ops->getfeatcfg(netdev, i, &value) && nla_put_u8(skb, i, value)) goto nla_put_failure; nla_nest_end(skb, feat); } /* peer info if available */ if (ops->cee_peer_getpg) { struct cee_pg pg; memset(&pg, 0, sizeof(pg)); err = ops->cee_peer_getpg(netdev, &pg); if (!err && nla_put(skb, DCB_ATTR_CEE_PEER_PG, sizeof(pg), &pg)) goto nla_put_failure; } if (ops->cee_peer_getpfc) { struct cee_pfc pfc; memset(&pfc, 0, sizeof(pfc)); err = ops->cee_peer_getpfc(netdev, &pfc); if (!err && nla_put(skb, DCB_ATTR_CEE_PEER_PFC, sizeof(pfc), &pfc)) goto nla_put_failure; } if (ops->peer_getappinfo && ops->peer_getapptable) { err = dcbnl_build_peer_app(netdev, skb, DCB_ATTR_CEE_PEER_APP_TABLE, DCB_ATTR_CEE_PEER_APP_INFO, DCB_ATTR_CEE_PEER_APP); if (err) goto nla_put_failure; } nla_nest_end(skb, cee); /* DCBX state */ if (dcbx >= 0) { err = nla_put_u8(skb, DCB_ATTR_DCBX, dcbx); if (err) goto nla_put_failure; } return 0; dcb_unlock: spin_unlock_bh(&dcb_lock); nla_put_failure: err = -EMSGSIZE; return err; } static int dcbnl_notify(struct net_device *dev, int event, int cmd, u32 seq, u32 portid, int dcbx_ver) { struct net *net = dev_net(dev); struct sk_buff *skb; struct nlmsghdr *nlh; const struct dcbnl_rtnl_ops *ops = dev->dcbnl_ops; int err; if (!ops) return -EOPNOTSUPP; skb = dcbnl_newmsg(event, cmd, portid, seq, 0, &nlh); if (!skb) return -ENOMEM; if (dcbx_ver == DCB_CAP_DCBX_VER_IEEE) err = dcbnl_ieee_fill(skb, dev); else err = dcbnl_cee_fill(skb, dev); if (err < 0) { /* Report error to broadcast listeners */ nlmsg_free(skb); rtnl_set_sk_err(net, RTNLGRP_DCB, err); } else { /* End nlmsg and notify broadcast listeners */ nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_DCB, NULL, GFP_KERNEL); } return err; } int dcbnl_ieee_notify(struct net_device *dev, int event, int cmd, u32 seq, u32 portid) { return dcbnl_notify(dev, event, cmd, seq, portid, DCB_CAP_DCBX_VER_IEEE); } EXPORT_SYMBOL(dcbnl_ieee_notify); int dcbnl_cee_notify(struct net_device *dev, int event, int cmd, u32 seq, u32 portid) { return dcbnl_notify(dev, event, cmd, seq, portid, DCB_CAP_DCBX_VER_CEE); } EXPORT_SYMBOL(dcbnl_cee_notify); /* Handle IEEE 802.1Qaz/802.1Qau/802.1Qbb SET commands. * If any requested operation can not be completed * the entire msg is aborted and error value is returned. * No attempt is made to reconcile the case where only part of the * cmd can be completed. */ static int dcbnl_ieee_set(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; struct nlattr *ieee[DCB_ATTR_IEEE_MAX + 1]; int prio; int err; if (!ops) return -EOPNOTSUPP; if (!tb[DCB_ATTR_IEEE]) return -EINVAL; err = nla_parse_nested_deprecated(ieee, DCB_ATTR_IEEE_MAX, tb[DCB_ATTR_IEEE], dcbnl_ieee_policy, NULL); if (err) return err; if (ieee[DCB_ATTR_IEEE_ETS] && ops->ieee_setets) { struct ieee_ets *ets = nla_data(ieee[DCB_ATTR_IEEE_ETS]); err = ops->ieee_setets(netdev, ets); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_MAXRATE] && ops->ieee_setmaxrate) { struct ieee_maxrate *maxrate = nla_data(ieee[DCB_ATTR_IEEE_MAXRATE]); err = ops->ieee_setmaxrate(netdev, maxrate); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_QCN] && ops->ieee_setqcn) { struct ieee_qcn *qcn = nla_data(ieee[DCB_ATTR_IEEE_QCN]); err = ops->ieee_setqcn(netdev, qcn); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_PFC] && ops->ieee_setpfc) { struct ieee_pfc *pfc = nla_data(ieee[DCB_ATTR_IEEE_PFC]); err = ops->ieee_setpfc(netdev, pfc); if (err) goto err; } if (ieee[DCB_ATTR_DCB_BUFFER] && ops->dcbnl_setbuffer) { struct dcbnl_buffer *buffer = nla_data(ieee[DCB_ATTR_DCB_BUFFER]); for (prio = 0; prio < ARRAY_SIZE(buffer->prio2buffer); prio++) { if (buffer->prio2buffer[prio] >= DCBX_MAX_BUFFERS) { err = -EINVAL; goto err; } } err = ops->dcbnl_setbuffer(netdev, buffer); if (err) goto err; } if (ieee[DCB_ATTR_DCB_REWR_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_DCB_REWR_TABLE], netdev, ops->dcbnl_setrewr ?: dcb_setrewr); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_APP_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_IEEE_APP_TABLE], netdev, ops->ieee_setapp ?: dcb_ieee_setapp); if (err) goto err; } if (ieee[DCB_ATTR_DCB_APP_TRUST_TABLE]) { u8 selectors[IEEE_8021QAZ_APP_SEL_MAX + 1] = {0}; struct nlattr *attr; int nselectors = 0; int rem; if (!ops->dcbnl_setapptrust) { err = -EOPNOTSUPP; goto err; } nla_for_each_nested(attr, ieee[DCB_ATTR_DCB_APP_TRUST_TABLE], rem) { enum ieee_attrs_app type = nla_type(attr); u8 selector; int i; if (!dcbnl_app_attr_type_validate(type) || nla_len(attr) != 1 || nselectors >= sizeof(selectors)) { err = -EINVAL; goto err; } selector = nla_get_u8(attr); if (!dcbnl_app_selector_validate(type, selector)) { err = -EINVAL; goto err; } /* Duplicate selector ? */ for (i = 0; i < nselectors; i++) { if (selectors[i] == selector) { err = -EINVAL; goto err; } } selectors[nselectors++] = selector; } err = ops->dcbnl_setapptrust(netdev, selectors, nselectors); if (err) goto err; } err: err = nla_put_u8(skb, DCB_ATTR_IEEE, err); dcbnl_ieee_notify(netdev, RTM_SETDCB, DCB_CMD_IEEE_SET, seq, 0); return err; } static int dcbnl_ieee_get(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; if (!ops) return -EOPNOTSUPP; return dcbnl_ieee_fill(skb, netdev); } static int dcbnl_ieee_del(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; struct nlattr *ieee[DCB_ATTR_IEEE_MAX + 1]; int err; if (!ops) return -EOPNOTSUPP; if (!tb[DCB_ATTR_IEEE]) return -EINVAL; err = nla_parse_nested_deprecated(ieee, DCB_ATTR_IEEE_MAX, tb[DCB_ATTR_IEEE], dcbnl_ieee_policy, NULL); if (err) return err; if (ieee[DCB_ATTR_IEEE_APP_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_IEEE_APP_TABLE], netdev, ops->ieee_delapp ?: dcb_ieee_delapp); if (err) goto err; } if (ieee[DCB_ATTR_DCB_REWR_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_DCB_REWR_TABLE], netdev, ops->dcbnl_delrewr ?: dcb_delrewr); if (err) goto err; } err: err = nla_put_u8(skb, DCB_ATTR_IEEE, err); dcbnl_ieee_notify(netdev, RTM_SETDCB, DCB_CMD_IEEE_DEL, seq, 0); return err; } /* DCBX configuration */ static int dcbnl_getdcbx(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { if (!netdev->dcbnl_ops->getdcbx) return -EOPNOTSUPP; return nla_put_u8(skb, DCB_ATTR_DCBX, netdev->dcbnl_ops->getdcbx(netdev)); } static int dcbnl_setdcbx(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 value; if (!netdev->dcbnl_ops->setdcbx) return -EOPNOTSUPP; if (!tb[DCB_ATTR_DCBX]) return -EINVAL; value = nla_get_u8(tb[DCB_ATTR_DCBX]); return nla_put_u8(skb, DCB_ATTR_DCBX, netdev->dcbnl_ops->setdcbx(netdev, value)); } static int dcbnl_getfeatcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_FEATCFG_ATTR_MAX + 1], *nest; u8 value; int ret, i; int getall = 0; if (!netdev->dcbnl_ops->getfeatcfg) return -EOPNOTSUPP; if (!tb[DCB_ATTR_FEATCFG]) return -EINVAL; ret = nla_parse_nested_deprecated(data, DCB_FEATCFG_ATTR_MAX, tb[DCB_ATTR_FEATCFG], dcbnl_featcfg_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_FEATCFG); if (!nest) return -EMSGSIZE; if (data[DCB_FEATCFG_ATTR_ALL]) getall = 1; for (i = DCB_FEATCFG_ATTR_ALL+1; i <= DCB_FEATCFG_ATTR_MAX; i++) { if (!getall && !data[i]) continue; ret = netdev->dcbnl_ops->getfeatcfg(netdev, i, &value); if (!ret) ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); goto nla_put_failure; } } nla_nest_end(skb, nest); nla_put_failure: return ret; } static int dcbnl_setfeatcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_FEATCFG_ATTR_MAX + 1]; int ret, i; u8 value; if (!netdev->dcbnl_ops->setfeatcfg) return -ENOTSUPP; if (!tb[DCB_ATTR_FEATCFG]) return -EINVAL; ret = nla_parse_nested_deprecated(data, DCB_FEATCFG_ATTR_MAX, tb[DCB_ATTR_FEATCFG], dcbnl_featcfg_nest, NULL); if (ret) goto err; for (i = DCB_FEATCFG_ATTR_ALL+1; i <= DCB_FEATCFG_ATTR_MAX; i++) { if (data[i] == NULL) continue; value = nla_get_u8(data[i]); ret = netdev->dcbnl_ops->setfeatcfg(netdev, i, value); if (ret) goto err; } err: ret = nla_put_u8(skb, DCB_ATTR_FEATCFG, ret); return ret; } /* Handle CEE DCBX GET commands. */ static int dcbnl_cee_get(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; if (!ops) return -EOPNOTSUPP; return dcbnl_cee_fill(skb, netdev); } struct reply_func { /* reply netlink message type */ int type; /* function to fill message contents */ int (*cb)(struct net_device *, struct nlmsghdr *, u32, struct nlattr **, struct sk_buff *); }; static const struct reply_func reply_funcs[DCB_CMD_MAX+1] = { [DCB_CMD_GSTATE] = { RTM_GETDCB, dcbnl_getstate }, [DCB_CMD_SSTATE] = { RTM_SETDCB, dcbnl_setstate }, [DCB_CMD_PFC_GCFG] = { RTM_GETDCB, dcbnl_getpfccfg }, [DCB_CMD_PFC_SCFG] = { RTM_SETDCB, dcbnl_setpfccfg }, [DCB_CMD_GPERM_HWADDR] = { RTM_GETDCB, dcbnl_getperm_hwaddr }, [DCB_CMD_GCAP] = { RTM_GETDCB, dcbnl_getcap }, [DCB_CMD_GNUMTCS] = { RTM_GETDCB, dcbnl_getnumtcs }, [DCB_CMD_SNUMTCS] = { RTM_SETDCB, dcbnl_setnumtcs }, [DCB_CMD_PFC_GSTATE] = { RTM_GETDCB, dcbnl_getpfcstate }, [DCB_CMD_PFC_SSTATE] = { RTM_SETDCB, dcbnl_setpfcstate }, [DCB_CMD_GAPP] = { RTM_GETDCB, dcbnl_getapp }, [DCB_CMD_SAPP] = { RTM_SETDCB, dcbnl_setapp }, [DCB_CMD_PGTX_GCFG] = { RTM_GETDCB, dcbnl_pgtx_getcfg }, [DCB_CMD_PGTX_SCFG] = { RTM_SETDCB, dcbnl_pgtx_setcfg }, [DCB_CMD_PGRX_GCFG] = { RTM_GETDCB, dcbnl_pgrx_getcfg }, [DCB_CMD_PGRX_SCFG] = { RTM_SETDCB, dcbnl_pgrx_setcfg }, [DCB_CMD_SET_ALL] = { RTM_SETDCB, dcbnl_setall }, [DCB_CMD_BCN_GCFG] = { RTM_GETDCB, dcbnl_bcn_getcfg }, [DCB_CMD_BCN_SCFG] = { RTM_SETDCB, dcbnl_bcn_setcfg }, [DCB_CMD_IEEE_GET] = { RTM_GETDCB, dcbnl_ieee_get }, [DCB_CMD_IEEE_SET] = { RTM_SETDCB, dcbnl_ieee_set }, [DCB_CMD_IEEE_DEL] = { RTM_SETDCB, dcbnl_ieee_del }, [DCB_CMD_GDCBX] = { RTM_GETDCB, dcbnl_getdcbx }, [DCB_CMD_SDCBX] = { RTM_SETDCB, dcbnl_setdcbx }, [DCB_CMD_GFEATCFG] = { RTM_GETDCB, dcbnl_getfeatcfg }, [DCB_CMD_SFEATCFG] = { RTM_SETDCB, dcbnl_setfeatcfg }, [DCB_CMD_CEE_GET] = { RTM_GETDCB, dcbnl_cee_get }, }; static int dcb_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct net_device *netdev; struct dcbmsg *dcb = nlmsg_data(nlh); struct nlattr *tb[DCB_ATTR_MAX + 1]; u32 portid = NETLINK_CB(skb).portid; int ret = -EINVAL; struct sk_buff *reply_skb; struct nlmsghdr *reply_nlh = NULL; const struct reply_func *fn; if ((nlh->nlmsg_type == RTM_SETDCB) && !netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; ret = nlmsg_parse_deprecated(nlh, sizeof(*dcb), tb, DCB_ATTR_MAX, dcbnl_rtnl_policy, extack); if (ret < 0) return ret; if (dcb->cmd > DCB_CMD_MAX) return -EINVAL; /* check if a reply function has been defined for the command */ fn = &reply_funcs[dcb->cmd]; if (!fn->cb) return -EOPNOTSUPP; if (fn->type == RTM_SETDCB && !netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; if (!tb[DCB_ATTR_IFNAME]) return -EINVAL; netdev = __dev_get_by_name(net, nla_data(tb[DCB_ATTR_IFNAME])); if (!netdev) return -ENODEV; if (!netdev->dcbnl_ops) return -EOPNOTSUPP; reply_skb = dcbnl_newmsg(fn->type, dcb->cmd, portid, nlh->nlmsg_seq, nlh->nlmsg_flags, &reply_nlh); if (!reply_skb) return -ENOMEM; ret = fn->cb(netdev, nlh, nlh->nlmsg_seq, tb, reply_skb); if (ret < 0) { nlmsg_free(reply_skb); goto out; } nlmsg_end(reply_skb, reply_nlh); ret = rtnl_unicast(reply_skb, net, portid); out: return ret; } static struct dcb_app_type *dcb_rewr_lookup(const struct dcb_app *app, int ifindex, int proto) { struct dcb_app_type *itr; list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->app.selector == app->selector && itr->app.priority == app->priority && itr->ifindex == ifindex && ((proto == -1) || itr->app.protocol == proto)) return itr; } return NULL; } static struct dcb_app_type *dcb_app_lookup(const struct dcb_app *app, int ifindex, int prio) { struct dcb_app_type *itr; list_for_each_entry(itr, &dcb_app_list, list) { if (itr->app.selector == app->selector && itr->app.protocol == app->protocol && itr->ifindex == ifindex && ((prio == -1) || itr->app.priority == prio)) return itr; } return NULL; } static int dcb_app_add(struct list_head *list, const struct dcb_app *app, int ifindex) { struct dcb_app_type *entry; entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return -ENOMEM; memcpy(&entry->app, app, sizeof(*app)); entry->ifindex = ifindex; list_add(&entry->list, list); return 0; } /** * dcb_getapp - retrieve the DCBX application user priority * @dev: network interface * @app: application to get user priority of * * On success returns a non-zero 802.1p user priority bitmap * otherwise returns 0 as the invalid user priority bitmap to * indicate an error. */ u8 dcb_getapp(struct net_device *dev, struct dcb_app *app) { struct dcb_app_type *itr; u8 prio = 0; spin_lock_bh(&dcb_lock); itr = dcb_app_lookup(app, dev->ifindex, -1); if (itr) prio = itr->app.priority; spin_unlock_bh(&dcb_lock); return prio; } EXPORT_SYMBOL(dcb_getapp); /** * dcb_setapp - add CEE dcb application data to app list * @dev: network interface * @new: application data to add * * Priority 0 is an invalid priority in CEE spec. This routine * removes applications from the app list if the priority is * set to zero. Priority is expected to be 8-bit 802.1p user priority bitmap */ int dcb_setapp(struct net_device *dev, struct dcb_app *new) { struct dcb_app_type *itr; struct dcb_app_type event; int err = 0; event.ifindex = dev->ifindex; memcpy(&event.app, new, sizeof(event.app)); if (dev->dcbnl_ops->getdcbx) event.dcbx = dev->dcbnl_ops->getdcbx(dev); spin_lock_bh(&dcb_lock); /* Search for existing match and replace */ itr = dcb_app_lookup(new, dev->ifindex, -1); if (itr) { if (new->priority) itr->app.priority = new->priority; else { list_del(&itr->list); kfree(itr); } goto out; } /* App type does not exist add new application type */ if (new->priority) err = dcb_app_add(&dcb_app_list, new, dev->ifindex); out: spin_unlock_bh(&dcb_lock); if (!err) call_dcbevent_notifiers(DCB_APP_EVENT, &event); return err; } EXPORT_SYMBOL(dcb_setapp); /** * dcb_ieee_getapp_mask - retrieve the IEEE DCB application priority * @dev: network interface * @app: where to store the retrieve application data * * Helper routine which on success returns a non-zero 802.1Qaz user * priority bitmap otherwise returns 0 to indicate the dcb_app was * not found in APP list. */ u8 dcb_ieee_getapp_mask(struct net_device *dev, struct dcb_app *app) { struct dcb_app_type *itr; u8 prio = 0; spin_lock_bh(&dcb_lock); itr = dcb_app_lookup(app, dev->ifindex, -1); if (itr) prio |= 1 << itr->app.priority; spin_unlock_bh(&dcb_lock); return prio; } EXPORT_SYMBOL(dcb_ieee_getapp_mask); /* Get protocol value from rewrite entry. */ u16 dcb_getrewr(struct net_device *dev, struct dcb_app *app) { struct dcb_app_type *itr; u16 proto = 0; spin_lock_bh(&dcb_lock); itr = dcb_rewr_lookup(app, dev->ifindex, -1); if (itr) proto = itr->app.protocol; spin_unlock_bh(&dcb_lock); return proto; } EXPORT_SYMBOL(dcb_getrewr); /* Add rewrite entry to the rewrite list. */ int dcb_setrewr(struct net_device *dev, struct dcb_app *new) { int err; spin_lock_bh(&dcb_lock); /* Search for existing match and abort if found. */ if (dcb_rewr_lookup(new, dev->ifindex, new->protocol)) { err = -EEXIST; goto out; } err = dcb_app_add(&dcb_rewr_list, new, dev->ifindex); out: spin_unlock_bh(&dcb_lock); return err; } EXPORT_SYMBOL(dcb_setrewr); /* Delete rewrite entry from the rewrite list. */ int dcb_delrewr(struct net_device *dev, struct dcb_app *del) { struct dcb_app_type *itr; int err = -ENOENT; spin_lock_bh(&dcb_lock); /* Search for existing match and remove it. */ itr = dcb_rewr_lookup(del, dev->ifindex, del->protocol); if (itr) { list_del(&itr->list); kfree(itr); err = 0; } spin_unlock_bh(&dcb_lock); return err; } EXPORT_SYMBOL(dcb_delrewr); /** * dcb_ieee_setapp - add IEEE dcb application data to app list * @dev: network interface * @new: application data to add * * This adds Application data to the list. Multiple application * entries may exists for the same selector and protocol as long * as the priorities are different. Priority is expected to be a * 3-bit unsigned integer */ int dcb_ieee_setapp(struct net_device *dev, struct dcb_app *new) { struct dcb_app_type event; int err = 0; event.ifindex = dev->ifindex; memcpy(&event.app, new, sizeof(event.app)); if (dev->dcbnl_ops->getdcbx) event.dcbx = dev->dcbnl_ops->getdcbx(dev); spin_lock_bh(&dcb_lock); /* Search for existing match and abort if found */ if (dcb_app_lookup(new, dev->ifindex, new->priority)) { err = -EEXIST; goto out; } err = dcb_app_add(&dcb_app_list, new, dev->ifindex); out: spin_unlock_bh(&dcb_lock); if (!err) call_dcbevent_notifiers(DCB_APP_EVENT, &event); return err; } EXPORT_SYMBOL(dcb_ieee_setapp); /** * dcb_ieee_delapp - delete IEEE dcb application data from list * @dev: network interface * @del: application data to delete * * This removes a matching APP data from the APP list */ int dcb_ieee_delapp(struct net_device *dev, struct dcb_app *del) { struct dcb_app_type *itr; struct dcb_app_type event; int err = -ENOENT; event.ifindex = dev->ifindex; memcpy(&event.app, del, sizeof(event.app)); if (dev->dcbnl_ops->getdcbx) event.dcbx = dev->dcbnl_ops->getdcbx(dev); spin_lock_bh(&dcb_lock); /* Search for existing match and remove it. */ if ((itr = dcb_app_lookup(del, dev->ifindex, del->priority))) { list_del(&itr->list); kfree(itr); err = 0; } spin_unlock_bh(&dcb_lock); if (!err) call_dcbevent_notifiers(DCB_APP_EVENT, &event); return err; } EXPORT_SYMBOL(dcb_ieee_delapp); /* dcb_getrewr_prio_pcp_mask_map - For a given device, find mapping from * priorities to the PCP and DEI values assigned to that priority. */ void dcb_getrewr_prio_pcp_mask_map(const struct net_device *dev, struct dcb_rewr_prio_pcp_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 prio; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->ifindex == ifindex && itr->app.selector == DCB_APP_SEL_PCP && itr->app.protocol < 16 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) { prio = itr->app.priority; p_map->map[prio] |= 1 << itr->app.protocol; } } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_getrewr_prio_pcp_mask_map); /* dcb_getrewr_prio_dscp_mask_map - For a given device, find mapping from * priorities to the DSCP values assigned to that priority. */ void dcb_getrewr_prio_dscp_mask_map(const struct net_device *dev, struct dcb_ieee_app_prio_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 prio; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_DSCP && itr->app.protocol < 64 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) { prio = itr->app.priority; p_map->map[prio] |= 1ULL << itr->app.protocol; } } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_getrewr_prio_dscp_mask_map); /* * dcb_ieee_getapp_prio_dscp_mask_map - For a given device, find mapping from * priorities to the DSCP values assigned to that priority. Initialize p_map * such that each map element holds a bit mask of DSCP values configured for * that priority by APP entries. */ void dcb_ieee_getapp_prio_dscp_mask_map(const struct net_device *dev, struct dcb_ieee_app_prio_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 prio; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_DSCP && itr->app.protocol < 64 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) { prio = itr->app.priority; p_map->map[prio] |= 1ULL << itr->app.protocol; } } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_ieee_getapp_prio_dscp_mask_map); /* * dcb_ieee_getapp_dscp_prio_mask_map - For a given device, find mapping from * DSCP values to the priorities assigned to that DSCP value. Initialize p_map * such that each map element holds a bit mask of priorities configured for a * given DSCP value by APP entries. */ void dcb_ieee_getapp_dscp_prio_mask_map(const struct net_device *dev, struct dcb_ieee_app_dscp_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_DSCP && itr->app.protocol < 64 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) p_map->map[itr->app.protocol] |= 1 << itr->app.priority; } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_ieee_getapp_dscp_prio_mask_map); /* * Per 802.1Q-2014, the selector value of 1 is used for matching on Ethernet * type, with valid PID values >= 1536. A special meaning is then assigned to * protocol value of 0: "default priority. For use when priority is not * otherwise specified". * * dcb_ieee_getapp_default_prio_mask - For a given device, find all APP entries * of the form {$PRIO, ETHERTYPE, 0} and construct a bit mask of all default * priorities set by these entries. */ u8 dcb_ieee_getapp_default_prio_mask(const struct net_device *dev) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 mask = 0; spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_ETHERTYPE && itr->app.protocol == 0 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) mask |= 1 << itr->app.priority; } spin_unlock_bh(&dcb_lock); return mask; } EXPORT_SYMBOL(dcb_ieee_getapp_default_prio_mask); static void dcbnl_flush_dev(struct net_device *dev) { struct dcb_app_type *itr, *tmp; spin_lock_bh(&dcb_lock); list_for_each_entry_safe(itr, tmp, &dcb_app_list, list) { if (itr->ifindex == dev->ifindex) { list_del(&itr->list); kfree(itr); } } spin_unlock_bh(&dcb_lock); } static int dcbnl_netdevice_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); switch (event) { case NETDEV_UNREGISTER: if (!dev->dcbnl_ops) return NOTIFY_DONE; dcbnl_flush_dev(dev); return NOTIFY_OK; default: return NOTIFY_DONE; } } static struct notifier_block dcbnl_nb __read_mostly = { .notifier_call = dcbnl_netdevice_event, }; static const struct rtnl_msg_handler dcbnl_rtnl_msg_handlers[] __initconst = { {.msgtype = RTM_GETDCB, .doit = dcb_doit}, {.msgtype = RTM_SETDCB, .doit = dcb_doit}, }; static int __init dcbnl_init(void) { int err; err = register_netdevice_notifier(&dcbnl_nb); if (err) return err; rtnl_register_many(dcbnl_rtnl_msg_handlers); return 0; } device_initcall(dcbnl_init);
382 153 28 28 12 833 833 636 509 508 7 95 2919 214 2720 1 4 84 1684 1365 3154 30430 4234 20195 1323 21024 2530 3543 774 49 7 6 4 6 39 27 362 38 174 2654 1839 1 557 8 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 /* SPDX-License-Identifier: GPL-2.0 */ /* * net/dst.h Protocol independent destination cache definitions. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * */ #ifndef _NET_DST_H #define _NET_DST_H #include <net/dst_ops.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/rcupdate.h> #include <linux/bug.h> #include <linux/jiffies.h> #include <linux/refcount.h> #include <linux/rcuref.h> #include <net/neighbour.h> #include <asm/processor.h> #include <linux/indirect_call_wrapper.h> struct sk_buff; struct dst_entry { struct net_device *dev; struct dst_ops *ops; unsigned long _metrics; unsigned long expires; #ifdef CONFIG_XFRM struct xfrm_state *xfrm; #else void *__pad1; #endif int (*input)(struct sk_buff *); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); unsigned short flags; #define DST_NOXFRM 0x0002 #define DST_NOPOLICY 0x0004 #define DST_NOCOUNT 0x0008 #define DST_FAKE_RTABLE 0x0010 #define DST_XFRM_TUNNEL 0x0020 #define DST_XFRM_QUEUE 0x0040 #define DST_METADATA 0x0080 /* A non-zero value of dst->obsolete forces by-hand validation * of the route entry. Positive values are set by the generic * dst layer to indicate that the entry has been forcefully * destroyed. * * Negative values are used by the implementation layer code to * force invocation of the dst_ops->check() method. */ short obsolete; #define DST_OBSOLETE_NONE 0 #define DST_OBSOLETE_DEAD 2 #define DST_OBSOLETE_FORCE_CHK -1 #define DST_OBSOLETE_KILL -2 unsigned short header_len; /* more space at head required */ unsigned short trailer_len; /* space to reserve at tail */ /* * __rcuref wants to be on a different cache line from * input/output/ops or performance tanks badly */ #ifdef CONFIG_64BIT rcuref_t __rcuref; /* 64-bit offset 64 */ #endif int __use; unsigned long lastuse; struct rcu_head rcu_head; short error; short __pad; __u32 tclassid; #ifndef CONFIG_64BIT struct lwtunnel_state *lwtstate; rcuref_t __rcuref; /* 32-bit offset 64 */ #endif netdevice_tracker dev_tracker; /* * Used by rtable and rt6_info. Moves lwtstate into the next cache * line on 64bit so that lwtstate does not cause false sharing with * __rcuref under contention of __rcuref. This also puts the * frequently accessed members of rtable and rt6_info out of the * __rcuref cache line. */ struct list_head rt_uncached; struct uncached_list *rt_uncached_list; #ifdef CONFIG_64BIT struct lwtunnel_state *lwtstate; #endif }; struct dst_metrics { u32 metrics[RTAX_MAX]; refcount_t refcnt; } __aligned(4); /* Low pointer bits contain DST_METRICS_FLAGS */ extern const struct dst_metrics dst_default_metrics; u32 *dst_cow_metrics_generic(struct dst_entry *dst, unsigned long old); #define DST_METRICS_READ_ONLY 0x1UL #define DST_METRICS_REFCOUNTED 0x2UL #define DST_METRICS_FLAGS 0x3UL #define __DST_METRICS_PTR(Y) \ ((u32 *)((Y) & ~DST_METRICS_FLAGS)) #define DST_METRICS_PTR(X) __DST_METRICS_PTR((X)->_metrics) static inline bool dst_metrics_read_only(const struct dst_entry *dst) { return dst->_metrics & DST_METRICS_READ_ONLY; } void __dst_destroy_metrics_generic(struct dst_entry *dst, unsigned long old); static inline void dst_destroy_metrics_generic(struct dst_entry *dst) { unsigned long val = dst->_metrics; if (!(val & DST_METRICS_READ_ONLY)) __dst_destroy_metrics_generic(dst, val); } static inline u32 *dst_metrics_write_ptr(struct dst_entry *dst) { unsigned long p = dst->_metrics; BUG_ON(!p); if (p & DST_METRICS_READ_ONLY) return dst->ops->cow_metrics(dst, p); return __DST_METRICS_PTR(p); } /* This may only be invoked before the entry has reached global * visibility. */ static inline void dst_init_metrics(struct dst_entry *dst, const u32 *src_metrics, bool read_only) { dst->_metrics = ((unsigned long) src_metrics) | (read_only ? DST_METRICS_READ_ONLY : 0); } static inline void dst_copy_metrics(struct dst_entry *dest, const struct dst_entry *src) { u32 *dst_metrics = dst_metrics_write_ptr(dest); if (dst_metrics) { u32 *src_metrics = DST_METRICS_PTR(src); memcpy(dst_metrics, src_metrics, RTAX_MAX * sizeof(u32)); } } static inline u32 *dst_metrics_ptr(struct dst_entry *dst) { return DST_METRICS_PTR(dst); } static inline u32 dst_metric_raw(const struct dst_entry *dst, const int metric) { u32 *p = DST_METRICS_PTR(dst); return p[metric-1]; } static inline u32 dst_metric(const struct dst_entry *dst, const int metric) { WARN_ON_ONCE(metric == RTAX_HOPLIMIT || metric == RTAX_ADVMSS || metric == RTAX_MTU); return dst_metric_raw(dst, metric); } static inline u32 dst_metric_advmss(const struct dst_entry *dst) { u32 advmss = dst_metric_raw(dst, RTAX_ADVMSS); if (!advmss) advmss = dst->ops->default_advmss(dst); return advmss; } static inline void dst_metric_set(struct dst_entry *dst, int metric, u32 val) { u32 *p = dst_metrics_write_ptr(dst); if (p) p[metric-1] = val; } /* Kernel-internal feature bits that are unallocated in user space. */ #define DST_FEATURE_ECN_CA (1U << 31) #define DST_FEATURE_MASK (DST_FEATURE_ECN_CA) #define DST_FEATURE_ECN_MASK (DST_FEATURE_ECN_CA | RTAX_FEATURE_ECN) static inline u32 dst_feature(const struct dst_entry *dst, u32 feature) { return dst_metric(dst, RTAX_FEATURES) & feature; } INDIRECT_CALLABLE_DECLARE(unsigned int ip6_mtu(const struct dst_entry *)); INDIRECT_CALLABLE_DECLARE(unsigned int ipv4_mtu(const struct dst_entry *)); static inline u32 dst_mtu(const struct dst_entry *dst) { return INDIRECT_CALL_INET(dst->ops->mtu, ip6_mtu, ipv4_mtu, dst); } /* RTT metrics are stored in milliseconds for user ABI, but used as jiffies */ static inline unsigned long dst_metric_rtt(const struct dst_entry *dst, int metric) { return msecs_to_jiffies(dst_metric(dst, metric)); } static inline int dst_metric_locked(const struct dst_entry *dst, int metric) { return dst_metric(dst, RTAX_LOCK) & (1 << metric); } static inline void dst_hold(struct dst_entry *dst) { /* * If your kernel compilation stops here, please check * the placement of __rcuref in struct dst_entry */ BUILD_BUG_ON(offsetof(struct dst_entry, __rcuref) & 63); WARN_ON(!rcuref_get(&dst->__rcuref)); } static inline void dst_use_noref(struct dst_entry *dst, unsigned long time) { if (unlikely(time != dst->lastuse)) { dst->__use++; dst->lastuse = time; } } static inline struct dst_entry *dst_clone(struct dst_entry *dst) { if (dst) dst_hold(dst); return dst; } void dst_release(struct dst_entry *dst); void dst_release_immediate(struct dst_entry *dst); static inline void refdst_drop(unsigned long refdst) { if (!(refdst & SKB_DST_NOREF)) dst_release((struct dst_entry *)(refdst & SKB_DST_PTRMASK)); } /** * skb_dst_drop - drops skb dst * @skb: buffer * * Drops dst reference count if a reference was taken. */ static inline void skb_dst_drop(struct sk_buff *skb) { if (skb->_skb_refdst) { refdst_drop(skb->_skb_refdst); skb->_skb_refdst = 0UL; } } static inline void __skb_dst_copy(struct sk_buff *nskb, unsigned long refdst) { nskb->slow_gro |= !!refdst; nskb->_skb_refdst = refdst; if (!(nskb->_skb_refdst & SKB_DST_NOREF)) dst_clone(skb_dst(nskb)); } static inline void skb_dst_copy(struct sk_buff *nskb, const struct sk_buff *oskb) { __skb_dst_copy(nskb, oskb->_skb_refdst); } /** * dst_hold_safe - Take a reference on a dst if possible * @dst: pointer to dst entry * * This helper returns false if it could not safely * take a reference on a dst. */ static inline bool dst_hold_safe(struct dst_entry *dst) { return rcuref_get(&dst->__rcuref); } /** * skb_dst_force - makes sure skb dst is refcounted * @skb: buffer * * If dst is not yet refcounted and not destroyed, grab a ref on it. * Returns: true if dst is refcounted. */ static inline bool skb_dst_force(struct sk_buff *skb) { if (skb_dst_is_noref(skb)) { struct dst_entry *dst = skb_dst(skb); WARN_ON(!rcu_read_lock_held()); if (!dst_hold_safe(dst)) dst = NULL; skb->_skb_refdst = (unsigned long)dst; skb->slow_gro |= !!dst; } return skb->_skb_refdst != 0UL; } /** * __skb_tunnel_rx - prepare skb for rx reinsert * @skb: buffer * @dev: tunnel device * @net: netns for packet i/o * * After decapsulation, packet is going to re-enter (netif_rx()) our stack, * so make some cleanups. (no accounting done) */ static inline void __skb_tunnel_rx(struct sk_buff *skb, struct net_device *dev, struct net *net) { skb->dev = dev; /* * Clear hash so that we can recalculate the hash for the * encapsulated packet, unless we have already determine the hash * over the L4 4-tuple. */ skb_clear_hash_if_not_l4(skb); skb_set_queue_mapping(skb, 0); skb_scrub_packet(skb, !net_eq(net, dev_net(dev))); } /** * skb_tunnel_rx - prepare skb for rx reinsert * @skb: buffer * @dev: tunnel device * @net: netns for packet i/o * * After decapsulation, packet is going to re-enter (netif_rx()) our stack, * so make some cleanups, and perform accounting. * Note: this accounting is not SMP safe. */ static inline void skb_tunnel_rx(struct sk_buff *skb, struct net_device *dev, struct net *net) { DEV_STATS_INC(dev, rx_packets); DEV_STATS_ADD(dev, rx_bytes, skb->len); __skb_tunnel_rx(skb, dev, net); } static inline u32 dst_tclassid(const struct sk_buff *skb) { #ifdef CONFIG_IP_ROUTE_CLASSID const struct dst_entry *dst; dst = skb_dst(skb); if (dst) return dst->tclassid; #endif return 0; } int dst_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); static inline int dst_discard(struct sk_buff *skb) { return dst_discard_out(&init_net, skb->sk, skb); } void *dst_alloc(struct dst_ops *ops, struct net_device *dev, int initial_obsolete, unsigned short flags); void dst_init(struct dst_entry *dst, struct dst_ops *ops, struct net_device *dev, int initial_obsolete, unsigned short flags); void dst_dev_put(struct dst_entry *dst); static inline void dst_confirm(struct dst_entry *dst) { } static inline struct neighbour *dst_neigh_lookup(const struct dst_entry *dst, const void *daddr) { struct neighbour *n = dst->ops->neigh_lookup(dst, NULL, daddr); return IS_ERR(n) ? NULL : n; } static inline struct neighbour *dst_neigh_lookup_skb(const struct dst_entry *dst, struct sk_buff *skb) { struct neighbour *n; if (WARN_ON_ONCE(!dst->ops->neigh_lookup)) return NULL; n = dst->ops->neigh_lookup(dst, skb, NULL); return IS_ERR(n) ? NULL : n; } static inline void dst_confirm_neigh(const struct dst_entry *dst, const void *daddr) { if (dst->ops->confirm_neigh) dst->ops->confirm_neigh(dst, daddr); } static inline void dst_link_failure(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); if (dst && dst->ops && dst->ops->link_failure) dst->ops->link_failure(skb); } static inline void dst_set_expires(struct dst_entry *dst, int timeout) { unsigned long expires = jiffies + timeout; if (expires == 0) expires = 1; if (dst->expires == 0 || time_before(expires, dst->expires)) dst->expires = expires; } static inline unsigned int dst_dev_overhead(struct dst_entry *dst, struct sk_buff *skb) { if (likely(dst)) return LL_RESERVED_SPACE(dst->dev); return skb->mac_len; } INDIRECT_CALLABLE_DECLARE(int ip6_output(struct net *, struct sock *, struct sk_buff *)); INDIRECT_CALLABLE_DECLARE(int ip_output(struct net *, struct sock *, struct sk_buff *)); /* Output packet to network from transport. */ static inline int dst_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return INDIRECT_CALL_INET(skb_dst(skb)->output, ip6_output, ip_output, net, sk, skb); } INDIRECT_CALLABLE_DECLARE(int ip6_input(struct sk_buff *)); INDIRECT_CALLABLE_DECLARE(int ip_local_deliver(struct sk_buff *)); /* Input packet from network to transport. */ static inline int dst_input(struct sk_buff *skb) { return INDIRECT_CALL_INET(skb_dst(skb)->input, ip6_input, ip_local_deliver, skb); } INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, u32)); INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, u32)); static inline struct dst_entry *dst_check(struct dst_entry *dst, u32 cookie) { if (dst->obsolete) dst = INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, dst, cookie); return dst; } /* Flags for xfrm_lookup flags argument. */ enum { XFRM_LOOKUP_ICMP = 1 << 0, XFRM_LOOKUP_QUEUE = 1 << 1, XFRM_LOOKUP_KEEP_DST_REF = 1 << 2, }; struct flowi; #ifndef CONFIG_XFRM static inline struct dst_entry *xfrm_lookup(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags) { return dst_orig; } static inline struct dst_entry * xfrm_lookup_with_ifid(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags, u32 if_id) { return dst_orig; } static inline struct dst_entry *xfrm_lookup_route(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags) { return dst_orig; } static inline struct xfrm_state *dst_xfrm(const struct dst_entry *dst) { return NULL; } #else struct dst_entry *xfrm_lookup(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags); struct dst_entry *xfrm_lookup_with_ifid(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags, u32 if_id); struct dst_entry *xfrm_lookup_route(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags); /* skb attached with this dst needs transformation if dst->xfrm is valid */ static inline struct xfrm_state *dst_xfrm(const struct dst_entry *dst) { return dst->xfrm; } #endif static inline void skb_dst_update_pmtu(struct sk_buff *skb, u32 mtu) { struct dst_entry *dst = skb_dst(skb); if (dst && dst->ops->update_pmtu) dst->ops->update_pmtu(dst, NULL, skb, mtu, true); } /* update dst pmtu but not do neighbor confirm */ static inline void skb_dst_update_pmtu_no_confirm(struct sk_buff *skb, u32 mtu) { struct dst_entry *dst = skb_dst(skb); if (dst && dst->ops->update_pmtu) dst->ops->update_pmtu(dst, NULL, skb, mtu, false); } struct dst_entry *dst_blackhole_check(struct dst_entry *dst, u32 cookie); void dst_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh); void dst_blackhole_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb); u32 *dst_blackhole_cow_metrics(struct dst_entry *dst, unsigned long old); struct neighbour *dst_blackhole_neigh_lookup(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr); unsigned int dst_blackhole_mtu(const struct dst_entry *dst); #endif /* _NET_DST_H */
1527 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 // SPDX-License-Identifier: GPL-2.0 struct io_tctx_node { struct list_head ctx_node; struct task_struct *task; struct io_ring_ctx *ctx; }; int io_uring_alloc_task_context(struct task_struct *task, struct io_ring_ctx *ctx); void io_uring_del_tctx_node(unsigned long index); int __io_uring_add_tctx_node(struct io_ring_ctx *ctx); int __io_uring_add_tctx_node_from_submit(struct io_ring_ctx *ctx); void io_uring_clean_tctx(struct io_uring_task *tctx); void io_uring_unreg_ringfd(void); int io_ringfd_register(struct io_ring_ctx *ctx, void __user *__arg, unsigned nr_args); int io_ringfd_unregister(struct io_ring_ctx *ctx, void __user *__arg, unsigned nr_args); /* * Note that this task has used io_uring. We use it for cancelation purposes. */ static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx) { struct io_uring_task *tctx = current->io_uring; if (likely(tctx && tctx->last == ctx)) return 0; return __io_uring_add_tctx_node_from_submit(ctx); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 /* SPDX-License-Identifier: GPL-2.0 */ /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * Definitions for LLC (link layer control) message handling * * Copyright IBM Corp. 2016 * * Author(s): Klaus Wacker <Klaus.Wacker@de.ibm.com> * Ursula Braun <ubraun@linux.vnet.ibm.com> */ #ifndef SMC_LLC_H #define SMC_LLC_H #include "smc_wr.h" #define SMC_LLC_FLAG_RESP 0x80 #define SMC_LLC_WAIT_FIRST_TIME (5 * HZ) #define SMC_LLC_WAIT_TIME (2 * HZ) #define SMC_LLC_TESTLINK_DEFAULT_TIME (30 * HZ) enum smc_llc_reqresp { SMC_LLC_REQ, SMC_LLC_RESP }; enum smc_llc_msg_type { SMC_LLC_CONFIRM_LINK = 0x01, SMC_LLC_ADD_LINK = 0x02, SMC_LLC_ADD_LINK_CONT = 0x03, SMC_LLC_DELETE_LINK = 0x04, SMC_LLC_REQ_ADD_LINK = 0x05, SMC_LLC_CONFIRM_RKEY = 0x06, SMC_LLC_TEST_LINK = 0x07, SMC_LLC_CONFIRM_RKEY_CONT = 0x08, SMC_LLC_DELETE_RKEY = 0x09, /* V2 types */ SMC_LLC_CONFIRM_LINK_V2 = 0x21, SMC_LLC_ADD_LINK_V2 = 0x22, SMC_LLC_DELETE_LINK_V2 = 0x24, SMC_LLC_REQ_ADD_LINK_V2 = 0x25, SMC_LLC_CONFIRM_RKEY_V2 = 0x26, SMC_LLC_TEST_LINK_V2 = 0x27, SMC_LLC_DELETE_RKEY_V2 = 0x29, }; #define smc_link_downing(state) \ (cmpxchg(state, SMC_LNK_ACTIVE, SMC_LNK_INACTIVE) == SMC_LNK_ACTIVE) /* LLC DELETE LINK Request Reason Codes */ #define SMC_LLC_DEL_LOST_PATH 0x00010000 #define SMC_LLC_DEL_OP_INIT_TERM 0x00020000 #define SMC_LLC_DEL_PROG_INIT_TERM 0x00030000 #define SMC_LLC_DEL_PROT_VIOL 0x00040000 #define SMC_LLC_DEL_NO_ASYM_NEEDED 0x00050000 /* LLC DELETE LINK Response Reason Codes */ #define SMC_LLC_DEL_NOLNK 0x00100000 /* Unknown Link ID (no link) */ #define SMC_LLC_DEL_NOLGR 0x00200000 /* Unknown Link Group */ /* returns a usable link of the link group, or NULL */ static inline struct smc_link *smc_llc_usable_link(struct smc_link_group *lgr) { int i; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) if (smc_link_usable(&lgr->lnk[i])) return &lgr->lnk[i]; return NULL; } /* set the termination reason code for the link group */ static inline void smc_llc_set_termination_rsn(struct smc_link_group *lgr, u32 rsn) { if (!lgr->llc_termination_rsn) lgr->llc_termination_rsn = rsn; } /* transmit */ int smc_llc_send_confirm_link(struct smc_link *lnk, enum smc_llc_reqresp reqresp); int smc_llc_send_add_link(struct smc_link *link, u8 mac[], u8 gid[], struct smc_link *link_new, enum smc_llc_reqresp reqresp); int smc_llc_send_delete_link(struct smc_link *link, u8 link_del_id, enum smc_llc_reqresp reqresp, bool orderly, u32 reason); void smc_llc_srv_delete_link_local(struct smc_link *link, u8 del_link_id); void smc_llc_lgr_init(struct smc_link_group *lgr, struct smc_sock *smc); void smc_llc_lgr_clear(struct smc_link_group *lgr); int smc_llc_link_init(struct smc_link *link); void smc_llc_link_active(struct smc_link *link); void smc_llc_link_clear(struct smc_link *link, bool log); int smc_llc_do_confirm_rkey(struct smc_link *send_link, struct smc_buf_desc *rmb_desc); int smc_llc_do_delete_rkey(struct smc_link_group *lgr, struct smc_buf_desc *rmb_desc); int smc_llc_flow_initiate(struct smc_link_group *lgr, enum smc_llc_flowtype type); void smc_llc_flow_stop(struct smc_link_group *lgr, struct smc_llc_flow *flow); int smc_llc_eval_conf_link(struct smc_llc_qentry *qentry, enum smc_llc_reqresp type); void smc_llc_link_set_uid(struct smc_link *link); void smc_llc_save_peer_uid(struct smc_llc_qentry *qentry); struct smc_llc_qentry *smc_llc_wait(struct smc_link_group *lgr, struct smc_link *lnk, int time_out, u8 exp_msg); struct smc_llc_qentry *smc_llc_flow_qentry_clr(struct smc_llc_flow *flow); void smc_llc_flow_qentry_del(struct smc_llc_flow *flow); void smc_llc_send_link_delete_all(struct smc_link_group *lgr, bool ord, u32 rsn); int smc_llc_cli_add_link(struct smc_link *link, struct smc_llc_qentry *qentry); int smc_llc_srv_add_link(struct smc_link *link, struct smc_llc_qentry *req_qentry); void smc_llc_add_link_local(struct smc_link *link); int smc_llc_init(void) __init; #endif /* SMC_LLC_H */
1 1 1 1 1 1 1 1 1 1 188 189 189 188 129 129 155 154 154 154 155 154 154 1 1 1 1 1 188 188 65 60 60 1231 1230 188 1 188 188 189 188 189 189 189 189 188 22 6 16 1082 505 505 504 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 // SPDX-License-Identifier: GPL-2.0-or-later #include <net/gro.h> #include <net/dst_metadata.h> #include <net/busy_poll.h> #include <trace/events/net.h> #include <linux/skbuff_ref.h> #define MAX_GRO_SKBS 8 static DEFINE_SPINLOCK(offload_lock); /** * dev_add_offload - register offload handlers * @po: protocol offload declaration * * Add protocol offload handlers to the networking stack. The passed * &proto_offload is linked into kernel lists and may not be freed until * it has been removed from the kernel lists. * * This call does not sleep therefore it can not * guarantee all CPU's that are in middle of receiving packets * will see the new offload handlers (until the next received packet). */ void dev_add_offload(struct packet_offload *po) { struct packet_offload *elem; spin_lock(&offload_lock); list_for_each_entry(elem, &net_hotdata.offload_base, list) { if (po->priority < elem->priority) break; } list_add_rcu(&po->list, elem->list.prev); spin_unlock(&offload_lock); } EXPORT_SYMBOL(dev_add_offload); /** * __dev_remove_offload - remove offload handler * @po: packet offload declaration * * Remove a protocol offload handler that was previously added to the * kernel offload handlers by dev_add_offload(). The passed &offload_type * is removed from the kernel lists and can be freed or reused once this * function returns. * * The packet type might still be in use by receivers * and must not be freed until after all the CPU's have gone * through a quiescent state. */ static void __dev_remove_offload(struct packet_offload *po) { struct list_head *head = &net_hotdata.offload_base; struct packet_offload *po1; spin_lock(&offload_lock); list_for_each_entry(po1, head, list) { if (po == po1) { list_del_rcu(&po->list); goto out; } } pr_warn("dev_remove_offload: %p not found\n", po); out: spin_unlock(&offload_lock); } /** * dev_remove_offload - remove packet offload handler * @po: packet offload declaration * * Remove a packet offload handler that was previously added to the kernel * offload handlers by dev_add_offload(). The passed &offload_type is * removed from the kernel lists and can be freed or reused once this * function returns. * * This call sleeps to guarantee that no CPU is looking at the packet * type after return. */ void dev_remove_offload(struct packet_offload *po) { __dev_remove_offload(po); synchronize_net(); } EXPORT_SYMBOL(dev_remove_offload); int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) { struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); unsigned int offset = skb_gro_offset(skb); unsigned int headlen = skb_headlen(skb); unsigned int len = skb_gro_len(skb); unsigned int delta_truesize; unsigned int new_truesize; struct sk_buff *lp; int segs; /* Do not splice page pool based packets w/ non-page pool * packets. This can result in reference count issues as page * pool pages will not decrement the reference count and will * instead be immediately returned to the pool or have frag * count decremented. */ if (p->pp_recycle != skb->pp_recycle) return -ETOOMANYREFS; if (unlikely(p->len + len >= netif_get_gro_max_size(p->dev, p) || NAPI_GRO_CB(skb)->flush)) return -E2BIG; if (unlikely(p->len + len >= GRO_LEGACY_MAX_SIZE)) { if (NAPI_GRO_CB(skb)->proto != IPPROTO_TCP || (p->protocol == htons(ETH_P_IPV6) && skb_headroom(p) < sizeof(struct hop_jumbo_hdr)) || p->encapsulation) return -E2BIG; } segs = NAPI_GRO_CB(skb)->count; lp = NAPI_GRO_CB(p)->last; pinfo = skb_shinfo(lp); if (headlen <= offset) { skb_frag_t *frag; skb_frag_t *frag2; int i = skbinfo->nr_frags; int nr_frags = pinfo->nr_frags + i; if (nr_frags > MAX_SKB_FRAGS) goto merge; offset -= headlen; pinfo->nr_frags = nr_frags; skbinfo->nr_frags = 0; frag = pinfo->frags + nr_frags; frag2 = skbinfo->frags + i; do { *--frag = *--frag2; } while (--i); skb_frag_off_add(frag, offset); skb_frag_size_sub(frag, offset); /* all fragments truesize : remove (head size + sk_buff) */ new_truesize = SKB_TRUESIZE(skb_end_offset(skb)); delta_truesize = skb->truesize - new_truesize; skb->truesize = new_truesize; skb->len -= skb->data_len; skb->data_len = 0; NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; goto done; } else if (skb->head_frag) { int nr_frags = pinfo->nr_frags; skb_frag_t *frag = pinfo->frags + nr_frags; struct page *page = virt_to_head_page(skb->head); unsigned int first_size = headlen - offset; unsigned int first_offset; if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) goto merge; first_offset = skb->data - (unsigned char *)page_address(page) + offset; pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; skb_frag_fill_page_desc(frag, page, first_offset, first_size); memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); /* We dont need to clear skbinfo->nr_frags here */ new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff)); delta_truesize = skb->truesize - new_truesize; skb->truesize = new_truesize; NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; goto done; } merge: /* sk ownership - if any - completely transferred to the aggregated packet */ skb->destructor = NULL; skb->sk = NULL; delta_truesize = skb->truesize; if (offset > headlen) { unsigned int eat = offset - headlen; skb_frag_off_add(&skbinfo->frags[0], eat); skb_frag_size_sub(&skbinfo->frags[0], eat); skb->data_len -= eat; skb->len -= eat; offset = headlen; } __skb_pull(skb, offset); if (NAPI_GRO_CB(p)->last == p) skb_shinfo(p)->frag_list = skb; else NAPI_GRO_CB(p)->last->next = skb; NAPI_GRO_CB(p)->last = skb; __skb_header_release(skb); lp = p; done: NAPI_GRO_CB(p)->count += segs; p->data_len += len; p->truesize += delta_truesize; p->len += len; if (lp != p) { lp->data_len += len; lp->truesize += delta_truesize; lp->len += len; } NAPI_GRO_CB(skb)->same_flow = 1; return 0; } int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) { if (unlikely(p->len + skb->len >= 65536)) return -E2BIG; if (NAPI_GRO_CB(p)->last == p) skb_shinfo(p)->frag_list = skb; else NAPI_GRO_CB(p)->last->next = skb; skb_pull(skb, skb_gro_offset(skb)); NAPI_GRO_CB(p)->last = skb; NAPI_GRO_CB(p)->count++; p->data_len += skb->len; /* sk ownership - if any - completely transferred to the aggregated packet */ skb->destructor = NULL; skb->sk = NULL; p->truesize += skb->truesize; p->len += skb->len; NAPI_GRO_CB(skb)->same_flow = 1; return 0; } static void gro_complete(struct gro_node *gro, struct sk_buff *skb) { struct list_head *head = &net_hotdata.offload_base; struct packet_offload *ptype; __be16 type = skb->protocol; int err = -ENOENT; BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); if (NAPI_GRO_CB(skb)->count == 1) { skb_shinfo(skb)->gso_size = 0; goto out; } rcu_read_lock(); list_for_each_entry_rcu(ptype, head, list) { if (ptype->type != type || !ptype->callbacks.gro_complete) continue; err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, ipv6_gro_complete, inet_gro_complete, skb, 0); break; } rcu_read_unlock(); if (err) { WARN_ON(&ptype->list == head); kfree_skb(skb); return; } out: gro_normal_one(gro, skb, NAPI_GRO_CB(skb)->count); } static void __gro_flush_chain(struct gro_node *gro, u32 index, bool flush_old) { struct list_head *head = &gro->hash[index].list; struct sk_buff *skb, *p; list_for_each_entry_safe_reverse(skb, p, head, list) { if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) return; skb_list_del_init(skb); gro_complete(gro, skb); gro->hash[index].count--; } if (!gro->hash[index].count) __clear_bit(index, &gro->bitmask); } /* * gro->hash[].list contains packets ordered by age. * youngest packets at the head of it. * Complete skbs in reverse order to reduce latencies. */ void __gro_flush(struct gro_node *gro, bool flush_old) { unsigned long bitmask = gro->bitmask; unsigned int i, base = ~0U; while ((i = ffs(bitmask)) != 0) { bitmask >>= i; base += i; __gro_flush_chain(gro, base, flush_old); } } EXPORT_SYMBOL(__gro_flush); static unsigned long gro_list_prepare_tc_ext(const struct sk_buff *skb, const struct sk_buff *p, unsigned long diffs) { #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) struct tc_skb_ext *skb_ext; struct tc_skb_ext *p_ext; skb_ext = skb_ext_find(skb, TC_SKB_EXT); p_ext = skb_ext_find(p, TC_SKB_EXT); diffs |= (!!p_ext) ^ (!!skb_ext); if (!diffs && unlikely(skb_ext)) diffs |= p_ext->chain ^ skb_ext->chain; #endif return diffs; } static void gro_list_prepare(const struct list_head *head, const struct sk_buff *skb) { unsigned int maclen = skb->dev->hard_header_len; u32 hash = skb_get_hash_raw(skb); struct sk_buff *p; list_for_each_entry(p, head, list) { unsigned long diffs; if (hash != skb_get_hash_raw(p)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; diffs |= p->vlan_all ^ skb->vlan_all; diffs |= skb_metadata_differs(p, skb); if (maclen == ETH_HLEN) diffs |= compare_ether_header(skb_mac_header(p), skb_mac_header(skb)); else if (!diffs) diffs = memcmp(skb_mac_header(p), skb_mac_header(skb), maclen); /* in most common scenarios 'slow_gro' is 0 * otherwise we are already on some slower paths * either skip all the infrequent tests altogether or * avoid trying too hard to skip each of them individually */ if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) { diffs |= p->sk != skb->sk; diffs |= skb_metadata_dst_cmp(p, skb); diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb); diffs |= gro_list_prepare_tc_ext(skb, p, diffs); } NAPI_GRO_CB(p)->same_flow = !diffs; } } static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff) { const struct skb_shared_info *pinfo; const skb_frag_t *frag0; unsigned int headlen; NAPI_GRO_CB(skb)->network_offset = 0; NAPI_GRO_CB(skb)->data_offset = 0; headlen = skb_headlen(skb); NAPI_GRO_CB(skb)->frag0 = skb->data; NAPI_GRO_CB(skb)->frag0_len = headlen; if (headlen) return; pinfo = skb_shinfo(skb); frag0 = &pinfo->frags[0]; if (pinfo->nr_frags && skb_frag_page(frag0) && !PageHighMem(skb_frag_page(frag0)) && (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) { NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, skb_frag_size(frag0), skb->end - skb->tail); } } static void gro_pull_from_frag0(struct sk_buff *skb, int grow) { struct skb_shared_info *pinfo = skb_shinfo(skb); BUG_ON(skb->end - skb->tail < grow); memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); skb->data_len -= grow; skb->tail += grow; skb_frag_off_add(&pinfo->frags[0], grow); skb_frag_size_sub(&pinfo->frags[0], grow); if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { skb_frag_unref(skb, 0); memmove(pinfo->frags, pinfo->frags + 1, --pinfo->nr_frags * sizeof(pinfo->frags[0])); } } static void gro_try_pull_from_frag0(struct sk_buff *skb) { int grow = skb_gro_offset(skb) - skb_headlen(skb); if (grow > 0) gro_pull_from_frag0(skb, grow); } static void gro_flush_oldest(struct gro_node *gro, struct list_head *head) { struct sk_buff *oldest; oldest = list_last_entry(head, struct sk_buff, list); /* We are called with head length >= MAX_GRO_SKBS, so this is * impossible. */ if (WARN_ON_ONCE(!oldest)) return; /* Do not adjust napi->gro_hash[].count, caller is adding a new * SKB to the chain. */ skb_list_del_init(oldest); gro_complete(gro, oldest); } static enum gro_result dev_gro_receive(struct gro_node *gro, struct sk_buff *skb) { u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); struct list_head *head = &net_hotdata.offload_base; struct gro_list *gro_list = &gro->hash[bucket]; struct packet_offload *ptype; __be16 type = skb->protocol; struct sk_buff *pp = NULL; enum gro_result ret; int same_flow; if (netif_elide_gro(skb->dev)) goto normal; gro_list_prepare(&gro_list->list, skb); rcu_read_lock(); list_for_each_entry_rcu(ptype, head, list) { if (ptype->type == type && ptype->callbacks.gro_receive) goto found_ptype; } rcu_read_unlock(); goto normal; found_ptype: skb_set_network_header(skb, skb_gro_offset(skb)); skb_reset_mac_len(skb); BUILD_BUG_ON(sizeof_field(struct napi_gro_cb, zeroed) != sizeof(u32)); BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct napi_gro_cb, zeroed), sizeof(u32))); /* Avoid slow unaligned acc */ *(u32 *)&NAPI_GRO_CB(skb)->zeroed = 0; NAPI_GRO_CB(skb)->flush = skb_has_frag_list(skb); NAPI_GRO_CB(skb)->count = 1; if (unlikely(skb_is_gso(skb))) { NAPI_GRO_CB(skb)->count = skb_shinfo(skb)->gso_segs; /* Only support TCP and non DODGY users. */ if (!skb_is_gso_tcp(skb) || (skb_shinfo(skb)->gso_type & SKB_GSO_DODGY)) NAPI_GRO_CB(skb)->flush = 1; } /* Setup for GRO checksum validation */ switch (skb->ip_summed) { case CHECKSUM_COMPLETE: NAPI_GRO_CB(skb)->csum = skb->csum; NAPI_GRO_CB(skb)->csum_valid = 1; break; case CHECKSUM_UNNECESSARY: NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; break; } pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, ipv6_gro_receive, inet_gro_receive, &gro_list->list, skb); rcu_read_unlock(); if (PTR_ERR(pp) == -EINPROGRESS) { ret = GRO_CONSUMED; goto ok; } same_flow = NAPI_GRO_CB(skb)->same_flow; ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; if (pp) { skb_list_del_init(pp); gro_complete(gro, pp); gro_list->count--; } if (same_flow) goto ok; if (NAPI_GRO_CB(skb)->flush) goto normal; if (unlikely(gro_list->count >= MAX_GRO_SKBS)) gro_flush_oldest(gro, &gro_list->list); else gro_list->count++; /* Must be called before setting NAPI_GRO_CB(skb)->{age|last} */ gro_try_pull_from_frag0(skb); NAPI_GRO_CB(skb)->age = jiffies; NAPI_GRO_CB(skb)->last = skb; if (!skb_is_gso(skb)) skb_shinfo(skb)->gso_size = skb_gro_len(skb); list_add(&skb->list, &gro_list->list); ret = GRO_HELD; ok: if (gro_list->count) { if (!test_bit(bucket, &gro->bitmask)) __set_bit(bucket, &gro->bitmask); } else if (test_bit(bucket, &gro->bitmask)) { __clear_bit(bucket, &gro->bitmask); } return ret; normal: ret = GRO_NORMAL; gro_try_pull_from_frag0(skb); goto ok; } struct packet_offload *gro_find_receive_by_type(__be16 type) { struct list_head *offload_head = &net_hotdata.offload_base; struct packet_offload *ptype; list_for_each_entry_rcu(ptype, offload_head, list) { if (ptype->type != type || !ptype->callbacks.gro_receive) continue; return ptype; } return NULL; } EXPORT_SYMBOL(gro_find_receive_by_type); struct packet_offload *gro_find_complete_by_type(__be16 type) { struct list_head *offload_head = &net_hotdata.offload_base; struct packet_offload *ptype; list_for_each_entry_rcu(ptype, offload_head, list) { if (ptype->type != type || !ptype->callbacks.gro_complete) continue; return ptype; } return NULL; } EXPORT_SYMBOL(gro_find_complete_by_type); static gro_result_t gro_skb_finish(struct gro_node *gro, struct sk_buff *skb, gro_result_t ret) { switch (ret) { case GRO_NORMAL: gro_normal_one(gro, skb, 1); break; case GRO_MERGED_FREE: if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) napi_skb_free_stolen_head(skb); else if (skb->fclone != SKB_FCLONE_UNAVAILABLE) __kfree_skb(skb); else __napi_kfree_skb(skb, SKB_CONSUMED); break; case GRO_HELD: case GRO_MERGED: case GRO_CONSUMED: break; } return ret; } gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb) { gro_result_t ret; __skb_mark_napi_id(skb, gro); trace_napi_gro_receive_entry(skb); skb_gro_reset_offset(skb, 0); ret = gro_skb_finish(gro, skb, dev_gro_receive(gro, skb)); trace_napi_gro_receive_exit(ret); return ret; } EXPORT_SYMBOL(gro_receive_skb); static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) { if (unlikely(skb->pfmemalloc)) { consume_skb(skb); return; } __skb_pull(skb, skb_headlen(skb)); /* restore the reserve we had after netdev_alloc_skb_ip_align() */ skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); __vlan_hwaccel_clear_tag(skb); skb->dev = napi->dev; skb->skb_iif = 0; /* eth_type_trans() assumes pkt_type is PACKET_HOST */ skb->pkt_type = PACKET_HOST; skb->encapsulation = 0; skb->ip_summed = CHECKSUM_NONE; skb_shinfo(skb)->gso_type = 0; skb_shinfo(skb)->gso_size = 0; if (unlikely(skb->slow_gro)) { skb_orphan(skb); skb_ext_reset(skb); nf_reset_ct(skb); skb->slow_gro = 0; } napi->skb = skb; } struct sk_buff *napi_get_frags(struct napi_struct *napi) { struct sk_buff *skb = napi->skb; if (!skb) { skb = napi_alloc_skb(napi, GRO_MAX_HEAD); if (skb) { napi->skb = skb; skb_mark_napi_id(skb, napi); } } return skb; } EXPORT_SYMBOL(napi_get_frags); static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, gro_result_t ret) { switch (ret) { case GRO_NORMAL: case GRO_HELD: __skb_push(skb, ETH_HLEN); skb->protocol = eth_type_trans(skb, skb->dev); if (ret == GRO_NORMAL) gro_normal_one(&napi->gro, skb, 1); break; case GRO_MERGED_FREE: if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) napi_skb_free_stolen_head(skb); else napi_reuse_skb(napi, skb); break; case GRO_MERGED: case GRO_CONSUMED: break; } return ret; } /* Upper GRO stack assumes network header starts at gro_offset=0 * Drivers could call both napi_gro_frags() and napi_gro_receive() * We copy ethernet header into skb->data to have a common layout. */ static struct sk_buff *napi_frags_skb(struct napi_struct *napi) { struct sk_buff *skb = napi->skb; const struct ethhdr *eth; unsigned int hlen = sizeof(*eth); napi->skb = NULL; skb_reset_mac_header(skb); skb_gro_reset_offset(skb, hlen); if (unlikely(!skb_gro_may_pull(skb, hlen))) { eth = skb_gro_header_slow(skb, hlen, 0); if (unlikely(!eth)) { net_warn_ratelimited("%s: dropping impossible skb from %s\n", __func__, napi->dev->name); napi_reuse_skb(napi, skb); return NULL; } } else { eth = (const struct ethhdr *)skb->data; if (NAPI_GRO_CB(skb)->frag0 != skb->data) gro_pull_from_frag0(skb, hlen); NAPI_GRO_CB(skb)->frag0 += hlen; NAPI_GRO_CB(skb)->frag0_len -= hlen; } __skb_pull(skb, hlen); /* * This works because the only protocols we care about don't require * special handling. * We'll fix it up properly in napi_frags_finish() */ skb->protocol = eth->h_proto; return skb; } gro_result_t napi_gro_frags(struct napi_struct *napi) { gro_result_t ret; struct sk_buff *skb = napi_frags_skb(napi); trace_napi_gro_frags_entry(skb); ret = napi_frags_finish(napi, skb, dev_gro_receive(&napi->gro, skb)); trace_napi_gro_frags_exit(ret); return ret; } EXPORT_SYMBOL(napi_gro_frags); /* Compute the checksum from gro_offset and return the folded value * after adding in any pseudo checksum. */ __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) { __wsum wsum; __sum16 sum; wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); /* See comments in __skb_checksum_complete(). */ if (likely(!sum)) { if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && !skb->csum_complete_sw) netdev_rx_csum_fault(skb->dev, skb); } NAPI_GRO_CB(skb)->csum = wsum; NAPI_GRO_CB(skb)->csum_valid = 1; return sum; } EXPORT_SYMBOL(__skb_gro_checksum_complete); void gro_init(struct gro_node *gro) { for (u32 i = 0; i < GRO_HASH_BUCKETS; i++) { INIT_LIST_HEAD(&gro->hash[i].list); gro->hash[i].count = 0; } gro->bitmask = 0; gro->cached_napi_id = 0; INIT_LIST_HEAD(&gro->rx_list); gro->rx_count = 0; } void gro_cleanup(struct gro_node *gro) { struct sk_buff *skb, *n; for (u32 i = 0; i < GRO_HASH_BUCKETS; i++) { list_for_each_entry_safe(skb, n, &gro->hash[i].list, list) kfree_skb(skb); gro->hash[i].count = 0; } gro->bitmask = 0; gro->cached_napi_id = 0; list_for_each_entry_safe(skb, n, &gro->rx_list, list) kfree_skb(skb); gro->rx_count = 0; }
190 64 256 1 63 192 237 58 180 257 1 254 250 66 66 66 63 66 325 261 66 598 273 325 599 595 1 588 229 394 596 1 1 10 155 158 111 47 93 53 40 40 93 93 13 88 161 1 160 47 24 90 53 58 122 35 158 35 123 158 111 47 1 70 93 53 40 3545 3549 3549 31 31 31 31 31 6 61 63 62 2 6 55 9 2 8 88 86 1 7 87 5294 149 5296 5299 5201 109 5297 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 // SPDX-License-Identifier: GPL-2.0-only /* * fs/kernfs/file.c - kernfs file implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> */ #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/pagemap.h> #include <linux/sched/mm.h> #include <linux/fsnotify.h> #include <linux/uio.h> #include "kernfs-internal.h" struct kernfs_open_node { struct rcu_head rcu_head; atomic_t event; wait_queue_head_t poll; struct list_head files; /* goes through kernfs_open_file.list */ unsigned int nr_mmapped; unsigned int nr_to_release; }; /* * kernfs_notify() may be called from any context and bounces notifications * through a work item. To minimize space overhead in kernfs_node, the * pending queue is implemented as a singly linked list of kernfs_nodes. * The list is terminated with the self pointer so that whether a * kernfs_node is on the list or not can be determined by testing the next * pointer for %NULL. */ #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list) static DEFINE_SPINLOCK(kernfs_notify_lock); static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL; static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn) { int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS); return &kernfs_locks->open_file_mutex[idx]; } static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn) { struct mutex *lock; lock = kernfs_open_file_mutex_ptr(kn); mutex_lock(lock); return lock; } /** * of_on - Get the kernfs_open_node of the specified kernfs_open_file * @of: target kernfs_open_file * * Return: the kernfs_open_node of the kernfs_open_file */ static struct kernfs_open_node *of_on(struct kernfs_open_file *of) { return rcu_dereference_protected(of->kn->attr.open, !list_empty(&of->list)); } /** * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn * * @kn: target kernfs_node. * * Fetch and return ->attr.open of @kn when caller holds the * kernfs_open_file_mutex_ptr(kn). * * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when * the caller guarantees that this mutex is being held, other updaters can't * change ->attr.open and this means that we can safely deref ->attr.open * outside RCU read-side critical section. * * The caller needs to make sure that kernfs_open_file_mutex is held. * * Return: @kn->attr.open when kernfs_open_file_mutex is held. */ static struct kernfs_open_node * kernfs_deref_open_node_locked(struct kernfs_node *kn) { return rcu_dereference_protected(kn->attr.open, lockdep_is_held(kernfs_open_file_mutex_ptr(kn))); } static struct kernfs_open_file *kernfs_of(struct file *file) { return ((struct seq_file *)file->private_data)->private; } /* * Determine the kernfs_ops for the given kernfs_node. This function must * be called while holding an active reference. */ static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) { if (kn->flags & KERNFS_LOCKDEP) lockdep_assert_held(kn); return kn->attr.ops; } /* * As kernfs_seq_stop() is also called after kernfs_seq_start() or * kernfs_seq_next() failure, it needs to distinguish whether it's stopping * a seq_file iteration which is fully initialized with an active reference * or an aborted kernfs_seq_start() due to get_active failure. The * position pointer is the only context for each seq_file iteration and * thus the stop condition should be encoded in it. As the return value is * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable * choice to indicate get_active failure. * * Unfortunately, this is complicated due to the optional custom seq_file * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or * custom seq_file operations and thus can't decide whether put_active * should be performed or not only on ERR_PTR(-ENODEV). * * This is worked around by factoring out the custom seq_stop() and * put_active part into kernfs_seq_stop_active(), skipping it from * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures * that kernfs_seq_stop_active() is skipped only after get_active failure. */ static void kernfs_seq_stop_active(struct seq_file *sf, void *v) { struct kernfs_open_file *of = sf->private; const struct kernfs_ops *ops = kernfs_ops(of->kn); if (ops->seq_stop) ops->seq_stop(sf, v); kernfs_put_active(of->kn); } static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) { struct kernfs_open_file *of = sf->private; const struct kernfs_ops *ops; /* * @of->mutex nests outside active ref and is primarily to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) return ERR_PTR(-ENODEV); ops = kernfs_ops(of->kn); if (ops->seq_start) { void *next = ops->seq_start(sf, ppos); /* see the comment above kernfs_seq_stop_active() */ if (next == ERR_PTR(-ENODEV)) kernfs_seq_stop_active(sf, next); return next; } return single_start(sf, ppos); } static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) { struct kernfs_open_file *of = sf->private; const struct kernfs_ops *ops = kernfs_ops(of->kn); if (ops->seq_next) { void *next = ops->seq_next(sf, v, ppos); /* see the comment above kernfs_seq_stop_active() */ if (next == ERR_PTR(-ENODEV)) kernfs_seq_stop_active(sf, next); return next; } else { /* * The same behavior and code as single_open(), always * terminate after the initial read. */ ++*ppos; return NULL; } } static void kernfs_seq_stop(struct seq_file *sf, void *v) { struct kernfs_open_file *of = sf->private; if (v != ERR_PTR(-ENODEV)) kernfs_seq_stop_active(sf, v); mutex_unlock(&of->mutex); } static int kernfs_seq_show(struct seq_file *sf, void *v) { struct kernfs_open_file *of = sf->private; of->event = atomic_read(&of_on(of)->event); return of->kn->attr.ops->seq_show(sf, v); } static const struct seq_operations kernfs_seq_ops = { .start = kernfs_seq_start, .next = kernfs_seq_next, .stop = kernfs_seq_stop, .show = kernfs_seq_show, }; /* * As reading a bin file can have side-effects, the exact offset and bytes * specified in read(2) call should be passed to the read callback making * it difficult to use seq_file. Implement simplistic custom buffering for * bin files. */ static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE); const struct kernfs_ops *ops; char *buf; buf = of->prealloc_buf; if (buf) mutex_lock(&of->prealloc_mutex); else buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; /* * @of->mutex nests outside active ref and is used both to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) { len = -ENODEV; mutex_unlock(&of->mutex); goto out_free; } of->event = atomic_read(&of_on(of)->event); ops = kernfs_ops(of->kn); if (ops->read) len = ops->read(of, buf, len, iocb->ki_pos); else len = -EINVAL; kernfs_put_active(of->kn); mutex_unlock(&of->mutex); if (len < 0) goto out_free; if (copy_to_iter(buf, len, iter) != len) { len = -EFAULT; goto out_free; } iocb->ki_pos += len; out_free: if (buf == of->prealloc_buf) mutex_unlock(&of->prealloc_mutex); else kfree(buf); return len; } static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter) { if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW) return seq_read_iter(iocb, iter); return kernfs_file_read_iter(iocb, iter); } /* * Copy data in from userland and pass it to the matching kernfs write * operation. * * There is no easy way for us to know if userspace is only doing a partial * write, so we don't support them. We expect the entire buffer to come on * the first write. Hint: if you're writing a value, first read the file, * modify only the value you're changing, then write entire buffer * back. */ static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter) { struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); ssize_t len = iov_iter_count(iter); const struct kernfs_ops *ops; char *buf; if (of->atomic_write_len) { if (len > of->atomic_write_len) return -E2BIG; } else { len = min_t(size_t, len, PAGE_SIZE); } buf = of->prealloc_buf; if (buf) mutex_lock(&of->prealloc_mutex); else buf = kmalloc(len + 1, GFP_KERNEL); if (!buf) return -ENOMEM; if (copy_from_iter(buf, len, iter) != len) { len = -EFAULT; goto out_free; } buf[len] = '\0'; /* guarantee string termination */ /* * @of->mutex nests outside active ref and is used both to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) { mutex_unlock(&of->mutex); len = -ENODEV; goto out_free; } ops = kernfs_ops(of->kn); if (ops->write) len = ops->write(of, buf, len, iocb->ki_pos); else len = -EINVAL; kernfs_put_active(of->kn); mutex_unlock(&of->mutex); if (len > 0) iocb->ki_pos += len; out_free: if (buf == of->prealloc_buf) mutex_unlock(&of->prealloc_mutex); else kfree(buf); return len; } static void kernfs_vma_open(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); if (!of->vm_ops) return; if (!kernfs_get_active(of->kn)) return; if (of->vm_ops->open) of->vm_ops->open(vma); kernfs_put_active(of->kn); } static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); vm_fault_t ret; if (!of->vm_ops) return VM_FAULT_SIGBUS; if (!kernfs_get_active(of->kn)) return VM_FAULT_SIGBUS; ret = VM_FAULT_SIGBUS; if (of->vm_ops->fault) ret = of->vm_ops->fault(vmf); kernfs_put_active(of->kn); return ret; } static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); vm_fault_t ret; if (!of->vm_ops) return VM_FAULT_SIGBUS; if (!kernfs_get_active(of->kn)) return VM_FAULT_SIGBUS; ret = 0; if (of->vm_ops->page_mkwrite) ret = of->vm_ops->page_mkwrite(vmf); else file_update_time(file); kernfs_put_active(of->kn); return ret; } static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); int ret; if (!of->vm_ops) return -EINVAL; if (!kernfs_get_active(of->kn)) return -EINVAL; ret = -EINVAL; if (of->vm_ops->access) ret = of->vm_ops->access(vma, addr, buf, len, write); kernfs_put_active(of->kn); return ret; } static const struct vm_operations_struct kernfs_vm_ops = { .open = kernfs_vma_open, .fault = kernfs_vma_fault, .page_mkwrite = kernfs_vma_page_mkwrite, .access = kernfs_vma_access, }; static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) { struct kernfs_open_file *of = kernfs_of(file); const struct kernfs_ops *ops; int rc; /* * mmap path and of->mutex are prone to triggering spurious lockdep * warnings and we don't want to add spurious locking dependency * between the two. Check whether mmap is actually implemented * without grabbing @of->mutex by testing HAS_MMAP flag. See the * comment in kernfs_fop_open() for more details. */ if (!(of->kn->flags & KERNFS_HAS_MMAP)) return -ENODEV; mutex_lock(&of->mutex); rc = -ENODEV; if (!kernfs_get_active(of->kn)) goto out_unlock; ops = kernfs_ops(of->kn); rc = ops->mmap(of, vma); if (rc) goto out_put; /* * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() * to satisfy versions of X which crash if the mmap fails: that * substitutes a new vm_file, and we don't then want bin_vm_ops. */ if (vma->vm_file != file) goto out_put; rc = -EINVAL; if (of->mmapped && of->vm_ops != vma->vm_ops) goto out_put; /* * It is not possible to successfully wrap close. * So error if someone is trying to use close. */ if (vma->vm_ops && vma->vm_ops->close) goto out_put; rc = 0; if (!of->mmapped) { of->mmapped = true; of_on(of)->nr_mmapped++; of->vm_ops = vma->vm_ops; } vma->vm_ops = &kernfs_vm_ops; out_put: kernfs_put_active(of->kn); out_unlock: mutex_unlock(&of->mutex); return rc; } /** * kernfs_get_open_node - get or create kernfs_open_node * @kn: target kernfs_node * @of: kernfs_open_file for this instance of open * * If @kn->attr.open exists, increment its reference count; otherwise, * create one. @of is chained to the files list. * * Locking: * Kernel thread context (may sleep). * * Return: * %0 on success, -errno on failure. */ static int kernfs_get_open_node(struct kernfs_node *kn, struct kernfs_open_file *of) { struct kernfs_open_node *on; struct mutex *mutex; mutex = kernfs_open_file_mutex_lock(kn); on = kernfs_deref_open_node_locked(kn); if (!on) { /* not there, initialize a new one */ on = kzalloc(sizeof(*on), GFP_KERNEL); if (!on) { mutex_unlock(mutex); return -ENOMEM; } atomic_set(&on->event, 1); init_waitqueue_head(&on->poll); INIT_LIST_HEAD(&on->files); rcu_assign_pointer(kn->attr.open, on); } list_add_tail(&of->list, &on->files); if (kn->flags & KERNFS_HAS_RELEASE) on->nr_to_release++; mutex_unlock(mutex); return 0; } /** * kernfs_unlink_open_file - Unlink @of from @kn. * * @kn: target kernfs_node * @of: associated kernfs_open_file * @open_failed: ->open() failed, cancel ->release() * * Unlink @of from list of @kn's associated open files. If list of * associated open files becomes empty, disassociate and free * kernfs_open_node. * * LOCKING: * None. */ static void kernfs_unlink_open_file(struct kernfs_node *kn, struct kernfs_open_file *of, bool open_failed) { struct kernfs_open_node *on; struct mutex *mutex; mutex = kernfs_open_file_mutex_lock(kn); on = kernfs_deref_open_node_locked(kn); if (!on) { mutex_unlock(mutex); return; } if (of) { if (kn->flags & KERNFS_HAS_RELEASE) { WARN_ON_ONCE(of->released == open_failed); if (open_failed) on->nr_to_release--; } if (of->mmapped) on->nr_mmapped--; list_del(&of->list); } if (list_empty(&on->files)) { rcu_assign_pointer(kn->attr.open, NULL); kfree_rcu(on, rcu_head); } mutex_unlock(mutex); } static int kernfs_fop_open(struct inode *inode, struct file *file) { struct kernfs_node *kn = inode->i_private; struct kernfs_root *root = kernfs_root(kn); const struct kernfs_ops *ops; struct kernfs_open_file *of; bool has_read, has_write, has_mmap; int error = -EACCES; if (!kernfs_get_active(kn)) return -ENODEV; ops = kernfs_ops(kn); has_read = ops->seq_show || ops->read || ops->mmap; has_write = ops->write || ops->mmap; has_mmap = ops->mmap; /* see the flag definition for details */ if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) { if ((file->f_mode & FMODE_WRITE) && (!(inode->i_mode & S_IWUGO) || !has_write)) goto err_out; if ((file->f_mode & FMODE_READ) && (!(inode->i_mode & S_IRUGO) || !has_read)) goto err_out; } /* allocate a kernfs_open_file for the file */ error = -ENOMEM; of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); if (!of) goto err_out; /* * The following is done to give a different lockdep key to * @of->mutex for files which implement mmap. This is a rather * crude way to avoid false positive lockdep warning around * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under * which mm->mmap_lock nests, while holding @of->mutex. As each * open file has a separate mutex, it's okay as long as those don't * happen on the same file. At this point, we can't easily give * each file a separate locking class. Let's differentiate on * whether the file has mmap or not for now. * * For similar reasons, writable and readonly files are given different * lockdep key, because the writable file /sys/power/resume may call vfs * lookup helpers for arbitrary paths and readonly files can be read by * overlayfs from vfs helpers when sysfs is a lower layer of overalyfs. * * All three cases look the same. They're supposed to * look that way and give @of->mutex different static lockdep keys. */ if (has_mmap) mutex_init(&of->mutex); else if (file->f_mode & FMODE_WRITE) mutex_init(&of->mutex); else mutex_init(&of->mutex); of->kn = kn; of->file = file; /* * Write path needs to atomic_write_len outside active reference. * Cache it in open_file. See kernfs_fop_write_iter() for details. */ of->atomic_write_len = ops->atomic_write_len; error = -EINVAL; /* * ->seq_show is incompatible with ->prealloc, * as seq_read does its own allocation. * ->read must be used instead. */ if (ops->prealloc && ops->seq_show) goto err_free; if (ops->prealloc) { int len = of->atomic_write_len ?: PAGE_SIZE; of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL); error = -ENOMEM; if (!of->prealloc_buf) goto err_free; mutex_init(&of->prealloc_mutex); } /* * Always instantiate seq_file even if read access doesn't use * seq_file or is not requested. This unifies private data access * and readable regular files are the vast majority anyway. */ if (ops->seq_show) error = seq_open(file, &kernfs_seq_ops); else error = seq_open(file, NULL); if (error) goto err_free; of->seq_file = file->private_data; of->seq_file->private = of; /* seq_file clears PWRITE unconditionally, restore it if WRITE */ if (file->f_mode & FMODE_WRITE) file->f_mode |= FMODE_PWRITE; /* make sure we have open node struct */ error = kernfs_get_open_node(kn, of); if (error) goto err_seq_release; if (ops->open) { /* nobody has access to @of yet, skip @of->mutex */ error = ops->open(of); if (error) goto err_put_node; } /* open succeeded, put active references */ kernfs_put_active(kn); return 0; err_put_node: kernfs_unlink_open_file(kn, of, true); err_seq_release: seq_release(inode, file); err_free: kfree(of->prealloc_buf); kfree(of); err_out: kernfs_put_active(kn); return error; } /* used from release/drain to ensure that ->release() is called exactly once */ static void kernfs_release_file(struct kernfs_node *kn, struct kernfs_open_file *of) { /* * @of is guaranteed to have no other file operations in flight and * we just want to synchronize release and drain paths. * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used * here because drain path may be called from places which can * cause circular dependency. */ lockdep_assert_held(kernfs_open_file_mutex_ptr(kn)); if (!of->released) { /* * A file is never detached without being released and we * need to be able to release files which are deactivated * and being drained. Don't use kernfs_ops(). */ kn->attr.ops->release(of); of->released = true; of_on(of)->nr_to_release--; } } static int kernfs_fop_release(struct inode *inode, struct file *filp) { struct kernfs_node *kn = inode->i_private; struct kernfs_open_file *of = kernfs_of(filp); if (kn->flags & KERNFS_HAS_RELEASE) { struct mutex *mutex; mutex = kernfs_open_file_mutex_lock(kn); kernfs_release_file(kn, of); mutex_unlock(mutex); } kernfs_unlink_open_file(kn, of, false); seq_release(inode, filp); kfree(of->prealloc_buf); kfree(of); return 0; } bool kernfs_should_drain_open_files(struct kernfs_node *kn) { struct kernfs_open_node *on; bool ret; /* * @kn being deactivated guarantees that @kn->attr.open can't change * beneath us making the lockless test below safe. */ WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); rcu_read_lock(); on = rcu_dereference(kn->attr.open); ret = on && (on->nr_mmapped || on->nr_to_release); rcu_read_unlock(); return ret; } void kernfs_drain_open_files(struct kernfs_node *kn) { struct kernfs_open_node *on; struct kernfs_open_file *of; struct mutex *mutex; mutex = kernfs_open_file_mutex_lock(kn); on = kernfs_deref_open_node_locked(kn); if (!on) { mutex_unlock(mutex); return; } list_for_each_entry(of, &on->files, list) { struct inode *inode = file_inode(of->file); if (of->mmapped) { unmap_mapping_range(inode->i_mapping, 0, 0, 1); of->mmapped = false; on->nr_mmapped--; } if (kn->flags & KERNFS_HAS_RELEASE) kernfs_release_file(kn, of); } WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release); mutex_unlock(mutex); } /* * Kernfs attribute files are pollable. The idea is that you read * the content and then you use 'poll' or 'select' to wait for * the content to change. When the content changes (assuming the * manager for the kobject supports notification), poll will * return EPOLLERR|EPOLLPRI, and select will return the fd whether * it is waiting for read, write, or exceptions. * Once poll/select indicates that the value has changed, you * need to close and re-open the file, or seek to 0 and read again. * Reminder: this only works for attributes which actively support * it, and it is not possible to test an attribute from userspace * to see if it supports poll (Neither 'poll' nor 'select' return * an appropriate error code). When in doubt, set a suitable timeout value. */ __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait) { struct kernfs_open_node *on = of_on(of); poll_wait(of->file, &on->poll, wait); if (of->event != atomic_read(&on->event)) return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; return DEFAULT_POLLMASK; } static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait) { struct kernfs_open_file *of = kernfs_of(filp); struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry); __poll_t ret; if (!kernfs_get_active(kn)) return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; if (kn->attr.ops->poll) ret = kn->attr.ops->poll(of, wait); else ret = kernfs_generic_poll(of, wait); kernfs_put_active(kn); return ret; } static loff_t kernfs_fop_llseek(struct file *file, loff_t offset, int whence) { struct kernfs_open_file *of = kernfs_of(file); const struct kernfs_ops *ops; loff_t ret; /* * @of->mutex nests outside active ref and is primarily to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) { mutex_unlock(&of->mutex); return -ENODEV; } ops = kernfs_ops(of->kn); if (ops->llseek) ret = ops->llseek(of, offset, whence); else ret = generic_file_llseek(file, offset, whence); kernfs_put_active(of->kn); mutex_unlock(&of->mutex); return ret; } static void kernfs_notify_workfn(struct work_struct *work) { struct kernfs_node *kn; struct kernfs_super_info *info; struct kernfs_root *root; repeat: /* pop one off the notify_list */ spin_lock_irq(&kernfs_notify_lock); kn = kernfs_notify_list; if (kn == KERNFS_NOTIFY_EOL) { spin_unlock_irq(&kernfs_notify_lock); return; } kernfs_notify_list = kn->attr.notify_next; kn->attr.notify_next = NULL; spin_unlock_irq(&kernfs_notify_lock); root = kernfs_root(kn); /* kick fsnotify */ down_read(&root->kernfs_supers_rwsem); down_read(&root->kernfs_rwsem); list_for_each_entry(info, &kernfs_root(kn)->supers, node) { struct kernfs_node *parent; struct inode *p_inode = NULL; const char *kn_name; struct inode *inode; struct qstr name; /* * We want fsnotify_modify() on @kn but as the * modifications aren't originating from userland don't * have the matching @file available. Look up the inodes * and generate the events manually. */ inode = ilookup(info->sb, kernfs_ino(kn)); if (!inode) continue; kn_name = kernfs_rcu_name(kn); name = QSTR(kn_name); parent = kernfs_get_parent(kn); if (parent) { p_inode = ilookup(info->sb, kernfs_ino(parent)); if (p_inode) { fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD, inode, FSNOTIFY_EVENT_INODE, p_inode, &name, inode, 0); iput(p_inode); } kernfs_put(parent); } if (!p_inode) fsnotify_inode(inode, FS_MODIFY); iput(inode); } up_read(&root->kernfs_rwsem); up_read(&root->kernfs_supers_rwsem); kernfs_put(kn); goto repeat; } /** * kernfs_notify - notify a kernfs file * @kn: file to notify * * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any * context. */ void kernfs_notify(struct kernfs_node *kn) { static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn); unsigned long flags; struct kernfs_open_node *on; if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) return; /* kick poll immediately */ rcu_read_lock(); on = rcu_dereference(kn->attr.open); if (on) { atomic_inc(&on->event); wake_up_interruptible(&on->poll); } rcu_read_unlock(); /* schedule work to kick fsnotify */ spin_lock_irqsave(&kernfs_notify_lock, flags); if (!kn->attr.notify_next) { kernfs_get(kn); kn->attr.notify_next = kernfs_notify_list; kernfs_notify_list = kn; schedule_work(&kernfs_notify_work); } spin_unlock_irqrestore(&kernfs_notify_lock, flags); } EXPORT_SYMBOL_GPL(kernfs_notify); const struct file_operations kernfs_file_fops = { .read_iter = kernfs_fop_read_iter, .write_iter = kernfs_fop_write_iter, .llseek = kernfs_fop_llseek, .mmap = kernfs_fop_mmap, .open = kernfs_fop_open, .release = kernfs_fop_release, .poll = kernfs_fop_poll, .fsync = noop_fsync, .splice_read = copy_splice_read, .splice_write = iter_file_splice_write, }; /** * __kernfs_create_file - kernfs internal function to create a file * @parent: directory to create the file in * @name: name of the file * @mode: mode of the file * @uid: uid of the file * @gid: gid of the file * @size: size of the file * @ops: kernfs operations for the file * @priv: private data for the file * @ns: optional namespace tag of the file * @key: lockdep key for the file's active_ref, %NULL to disable lockdep * * Return: the created node on success, ERR_PTR() value on error. */ struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns, struct lock_class_key *key) { struct kernfs_node *kn; unsigned flags; int rc; flags = KERNFS_FILE; kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, uid, gid, flags); if (!kn) return ERR_PTR(-ENOMEM); kn->attr.ops = ops; kn->attr.size = size; kn->ns = ns; kn->priv = priv; #ifdef CONFIG_DEBUG_LOCK_ALLOC if (key) { lockdep_init_map(&kn->dep_map, "kn->active", key, 0); kn->flags |= KERNFS_LOCKDEP; } #endif /* * kn->attr.ops is accessible only while holding active ref. We * need to know whether some ops are implemented outside active * ref. Cache their existence in flags. */ if (ops->seq_show) kn->flags |= KERNFS_HAS_SEQ_SHOW; if (ops->mmap) kn->flags |= KERNFS_HAS_MMAP; if (ops->release) kn->flags |= KERNFS_HAS_RELEASE; rc = kernfs_add_one(kn); if (rc) { kernfs_put(kn); return ERR_PTR(rc); } return kn; }
7 1 5 1 20 1 18 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 // SPDX-License-Identifier: GPL-2.0-or-later /* Kernel module to match Segment Routing Header (SRH) parameters. */ /* Author: * Ahmed Abdelsalam <amsalam20@gmail.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/ipv6.h> #include <net/seg6.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6t_srh.h> #include <linux/netfilter_ipv6/ip6_tables.h> /* Test a struct->mt_invflags and a boolean for inequality */ #define NF_SRH_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->mt_invflags & (flag))) static bool srh_mt6(const struct sk_buff *skb, struct xt_action_param *par) { const struct ip6t_srh *srhinfo = par->matchinfo; struct ipv6_sr_hdr *srh; struct ipv6_sr_hdr _srh; int hdrlen, srhoff = 0; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return false; srh = skb_header_pointer(skb, srhoff, sizeof(_srh), &_srh); if (!srh) return false; hdrlen = ipv6_optlen(srh); if (skb->len - srhoff < hdrlen) return false; if (srh->type != IPV6_SRCRT_TYPE_4) return false; if (srh->segments_left > srh->first_segment) return false; /* Next Header matching */ if (srhinfo->mt_flags & IP6T_SRH_NEXTHDR) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_NEXTHDR, !(srh->nexthdr == srhinfo->next_hdr))) return false; /* Header Extension Length matching */ if (srhinfo->mt_flags & IP6T_SRH_LEN_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_EQ, !(srh->hdrlen == srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_GT, !(srh->hdrlen > srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_LT, !(srh->hdrlen < srhinfo->hdr_len))) return false; /* Segments Left matching */ if (srhinfo->mt_flags & IP6T_SRH_SEGS_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_EQ, !(srh->segments_left == srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_GT, !(srh->segments_left > srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_LT, !(srh->segments_left < srhinfo->segs_left))) return false; /** * Last Entry matching * Last_Entry field was introduced in revision 6 of the SRH draft. * It was called First_Segment in the previous revision */ if (srhinfo->mt_flags & IP6T_SRH_LAST_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_EQ, !(srh->first_segment == srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_GT, !(srh->first_segment > srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_LT, !(srh->first_segment < srhinfo->last_entry))) return false; /** * Tag matchig * Tag field was introduced in revision 6 of the SRH draft. */ if (srhinfo->mt_flags & IP6T_SRH_TAG) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_TAG, !(srh->tag == srhinfo->tag))) return false; return true; } static bool srh1_mt6(const struct sk_buff *skb, struct xt_action_param *par) { int hdrlen, psidoff, nsidoff, lsidoff, srhoff = 0; const struct ip6t_srh1 *srhinfo = par->matchinfo; struct in6_addr *psid, *nsid, *lsid; struct in6_addr _psid, _nsid, _lsid; struct ipv6_sr_hdr *srh; struct ipv6_sr_hdr _srh; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return false; srh = skb_header_pointer(skb, srhoff, sizeof(_srh), &_srh); if (!srh) return false; hdrlen = ipv6_optlen(srh); if (skb->len - srhoff < hdrlen) return false; if (srh->type != IPV6_SRCRT_TYPE_4) return false; if (srh->segments_left > srh->first_segment) return false; /* Next Header matching */ if (srhinfo->mt_flags & IP6T_SRH_NEXTHDR) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_NEXTHDR, !(srh->nexthdr == srhinfo->next_hdr))) return false; /* Header Extension Length matching */ if (srhinfo->mt_flags & IP6T_SRH_LEN_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_EQ, !(srh->hdrlen == srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_GT, !(srh->hdrlen > srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_LT, !(srh->hdrlen < srhinfo->hdr_len))) return false; /* Segments Left matching */ if (srhinfo->mt_flags & IP6T_SRH_SEGS_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_EQ, !(srh->segments_left == srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_GT, !(srh->segments_left > srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_LT, !(srh->segments_left < srhinfo->segs_left))) return false; /** * Last Entry matching * Last_Entry field was introduced in revision 6 of the SRH draft. * It was called First_Segment in the previous revision */ if (srhinfo->mt_flags & IP6T_SRH_LAST_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_EQ, !(srh->first_segment == srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_GT, !(srh->first_segment > srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_LT, !(srh->first_segment < srhinfo->last_entry))) return false; /** * Tag matchig * Tag field was introduced in revision 6 of the SRH draft */ if (srhinfo->mt_flags & IP6T_SRH_TAG) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_TAG, !(srh->tag == srhinfo->tag))) return false; /* Previous SID matching */ if (srhinfo->mt_flags & IP6T_SRH_PSID) { if (srh->segments_left == srh->first_segment) return false; psidoff = srhoff + sizeof(struct ipv6_sr_hdr) + ((srh->segments_left + 1) * sizeof(struct in6_addr)); psid = skb_header_pointer(skb, psidoff, sizeof(_psid), &_psid); if (!psid) return false; if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_PSID, ipv6_masked_addr_cmp(psid, &srhinfo->psid_msk, &srhinfo->psid_addr))) return false; } /* Next SID matching */ if (srhinfo->mt_flags & IP6T_SRH_NSID) { if (srh->segments_left == 0) return false; nsidoff = srhoff + sizeof(struct ipv6_sr_hdr) + ((srh->segments_left - 1) * sizeof(struct in6_addr)); nsid = skb_header_pointer(skb, nsidoff, sizeof(_nsid), &_nsid); if (!nsid) return false; if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_NSID, ipv6_masked_addr_cmp(nsid, &srhinfo->nsid_msk, &srhinfo->nsid_addr))) return false; } /* Last SID matching */ if (srhinfo->mt_flags & IP6T_SRH_LSID) { lsidoff = srhoff + sizeof(struct ipv6_sr_hdr); lsid = skb_header_pointer(skb, lsidoff, sizeof(_lsid), &_lsid); if (!lsid) return false; if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LSID, ipv6_masked_addr_cmp(lsid, &srhinfo->lsid_msk, &srhinfo->lsid_addr))) return false; } return true; } static int srh_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_srh *srhinfo = par->matchinfo; if (srhinfo->mt_flags & ~IP6T_SRH_MASK) { pr_info_ratelimited("unknown srh match flags %X\n", srhinfo->mt_flags); return -EINVAL; } if (srhinfo->mt_invflags & ~IP6T_SRH_INV_MASK) { pr_info_ratelimited("unknown srh invflags %X\n", srhinfo->mt_invflags); return -EINVAL; } return 0; } static int srh1_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_srh1 *srhinfo = par->matchinfo; if (srhinfo->mt_flags & ~IP6T_SRH_MASK) { pr_info_ratelimited("unknown srh match flags %X\n", srhinfo->mt_flags); return -EINVAL; } if (srhinfo->mt_invflags & ~IP6T_SRH_INV_MASK) { pr_info_ratelimited("unknown srh invflags %X\n", srhinfo->mt_invflags); return -EINVAL; } return 0; } static struct xt_match srh_mt6_reg[] __read_mostly = { { .name = "srh", .revision = 0, .family = NFPROTO_IPV6, .match = srh_mt6, .matchsize = sizeof(struct ip6t_srh), .checkentry = srh_mt6_check, .me = THIS_MODULE, }, { .name = "srh", .revision = 1, .family = NFPROTO_IPV6, .match = srh1_mt6, .matchsize = sizeof(struct ip6t_srh1), .checkentry = srh1_mt6_check, .me = THIS_MODULE, } }; static int __init srh_mt6_init(void) { return xt_register_matches(srh_mt6_reg, ARRAY_SIZE(srh_mt6_reg)); } static void __exit srh_mt6_exit(void) { xt_unregister_matches(srh_mt6_reg, ARRAY_SIZE(srh_mt6_reg)); } module_init(srh_mt6_init); module_exit(srh_mt6_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 Segment Routing Header match"); MODULE_AUTHOR("Ahmed Abdelsalam <amsalam20@gmail.com>");
1040 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 /* SPDX-License-Identifier: GPL-2.0 */ /* * fscrypt.h: declarations for per-file encryption * * Filesystems that implement per-file encryption must include this header * file. * * Copyright (C) 2015, Google, Inc. * * Written by Michael Halcrow, 2015. * Modified by Jaegeuk Kim, 2015. */ #ifndef _LINUX_FSCRYPT_H #define _LINUX_FSCRYPT_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/slab.h> #include <uapi/linux/fscrypt.h> /* * The lengths of all file contents blocks must be divisible by this value. * This is needed to ensure that all contents encryption modes will work, as * some of the supported modes don't support arbitrarily byte-aligned messages. * * Since the needed alignment is 16 bytes, most filesystems will meet this * requirement naturally, as typical block sizes are powers of 2. However, if a * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via * compression), then it will need to pad to this alignment before encryption. */ #define FSCRYPT_CONTENTS_ALIGNMENT 16 union fscrypt_policy; struct fscrypt_inode_info; struct fs_parameter; struct seq_file; struct fscrypt_str { unsigned char *name; u32 len; }; struct fscrypt_name { const struct qstr *usr_fname; struct fscrypt_str disk_name; u32 hash; u32 minor_hash; struct fscrypt_str crypto_buf; bool is_nokey_name; }; #define FSTR_INIT(n, l) { .name = n, .len = l } #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) #define fname_name(p) ((p)->disk_name.name) #define fname_len(p) ((p)->disk_name.len) /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 #ifdef CONFIG_FS_ENCRYPTION /* Crypto operations for filesystems */ struct fscrypt_operations { /* * If set, then fs/crypto/ will allocate a global bounce page pool the * first time an encryption key is set up for a file. The bounce page * pool is required by the following functions: * * - fscrypt_encrypt_pagecache_blocks() * - fscrypt_zeroout_range() for files not using inline crypto * * If the filesystem doesn't use those, it doesn't need to set this. */ unsigned int needs_bounce_pages : 1; /* * If set, then fs/crypto/ will allow the use of encryption settings * that assume inode numbers fit in 32 bits (i.e. * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other * prerequisites for these settings are also met. This is only useful * if the filesystem wants to support inline encryption hardware that is * limited to 32-bit or 64-bit data unit numbers and where programming * keyslots is very slow. */ unsigned int has_32bit_inodes : 1; /* * If set, then fs/crypto/ will allow users to select a crypto data unit * size that is less than the filesystem block size. This is done via * the log2_data_unit_size field of the fscrypt policy. This flag is * not compatible with filesystems that encrypt variable-length blocks * (i.e. blocks that aren't all equal to filesystem's block size), for * example as a result of compression. It's also not compatible with * the fscrypt_encrypt_block_inplace() and * fscrypt_decrypt_block_inplace() functions. */ unsigned int supports_subblock_data_units : 1; /* * This field exists only for backwards compatibility reasons and should * only be set by the filesystems that are setting it already. It * contains the filesystem-specific key description prefix that is * accepted for "logon" keys for v1 fscrypt policies. This * functionality is deprecated in favor of the generic prefix * "fscrypt:", which itself is deprecated in favor of the filesystem * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that * are newly adding fscrypt support should not set this field. */ const char *legacy_key_prefix; /* * Get the fscrypt context of the given inode. * * @inode: the inode whose context to get * @ctx: the buffer into which to get the context * @len: length of the @ctx buffer in bytes * * Return: On success, returns the length of the context in bytes; this * may be less than @len. On failure, returns -ENODATA if the * inode doesn't have a context, -ERANGE if the context is * longer than @len, or another -errno code. */ int (*get_context)(struct inode *inode, void *ctx, size_t len); /* * Set an fscrypt context on the given inode. * * @inode: the inode whose context to set. The inode won't already have * an fscrypt context. * @ctx: the context to set * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) * @fs_data: If called from fscrypt_set_context(), this will be the * value the filesystem passed to fscrypt_set_context(). * Otherwise (i.e. when called from * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. * * i_rwsem will be held for write. * * Return: 0 on success, -errno on failure. */ int (*set_context)(struct inode *inode, const void *ctx, size_t len, void *fs_data); /* * Get the dummy fscrypt policy in use on the filesystem (if any). * * Filesystems only need to implement this function if they support the * test_dummy_encryption mount option. * * Return: A pointer to the dummy fscrypt policy, if the filesystem is * mounted with test_dummy_encryption; otherwise NULL. */ const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); /* * Check whether a directory is empty. i_rwsem will be held for write. */ bool (*empty_dir)(struct inode *inode); /* * Check whether the filesystem's inode numbers and UUID are stable, * meaning that they will never be changed even by offline operations * such as filesystem shrinking and therefore can be used in the * encryption without the possibility of files becoming unreadable. * * Filesystems only need to implement this function if they want to * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These * flags are designed to work around the limitations of UFS and eMMC * inline crypto hardware, and they shouldn't be used in scenarios where * such hardware isn't being used. * * Leaving this NULL is equivalent to always returning false. */ bool (*has_stable_inodes)(struct super_block *sb); /* * Return an array of pointers to the block devices to which the * filesystem may write encrypted file contents, NULL if the filesystem * only has a single such block device, or an ERR_PTR() on error. * * On successful non-NULL return, *num_devs is set to the number of * devices in the returned array. The caller must free the returned * array using kfree(). * * If the filesystem can use multiple block devices (other than block * devices that aren't used for encrypted file contents, such as * external journal devices), and wants to support inline encryption, * then it must implement this function. Otherwise it's not needed. */ struct block_device **(*get_devices)(struct super_block *sb, unsigned int *num_devs); }; int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name, struct dentry *dentry, unsigned int flags); static inline struct fscrypt_inode_info * fscrypt_get_inode_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). * I.e., another task may publish ->i_crypt_info concurrently, executing * a RELEASE barrier. We need to use smp_load_acquire() here to safely * ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_crypt_info); } /** * fscrypt_needs_contents_encryption() - check whether an inode needs * contents encryption * @inode: the inode to check * * Return: %true iff the inode is an encrypted regular file and the kernel was * built with fscrypt support. * * If you need to know whether the encrypt bit is set even when the kernel was * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. */ static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); } /* * When d_splice_alias() moves a directory's no-key alias to its * plaintext alias as a result of the encryption key being added, * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity * to disable d_revalidate. Note that we don't have to support the * inverse operation because fscrypt doesn't allow no-key names to be * the source or target of a rename(). */ static inline void fscrypt_handle_d_move(struct dentry *dentry) { /* * VFS calls fscrypt_handle_d_move even for non-fscrypt * filesystems. */ if (dentry->d_flags & DCACHE_NOKEY_NAME) { dentry->d_flags &= ~DCACHE_NOKEY_NAME; /* * Other filesystem features might be handling dentry * revalidation, in which case it cannot be disabled. */ if (dentry->d_op->d_revalidate == fscrypt_d_revalidate) dentry->d_flags &= ~DCACHE_OP_REVALIDATE; } } /** * fscrypt_is_nokey_name() - test whether a dentry is a no-key name * @dentry: the dentry to check * * This returns true if the dentry is a no-key dentry. A no-key dentry is a * dentry that was created in an encrypted directory that hasn't had its * encryption key added yet. Such dentries may be either positive or negative. * * When a filesystem is asked to create a new filename in an encrypted directory * and the new filename's dentry is a no-key dentry, it must fail the operation * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), * ->rename(), and ->link(). (However, ->rename() and ->link() are already * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) * * This is necessary because creating a filename requires the directory's * encryption key, but just checking for the key on the directory inode during * the final filesystem operation doesn't guarantee that the key was available * during the preceding dentry lookup. And the key must have already been * available during the dentry lookup in order for it to have been checked * whether the filename already exists in the directory and for the new file's * dentry not to be invalidated due to it incorrectly having the no-key flag. * * Return: %true if the dentry is a no-key name */ static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return dentry->d_flags & DCACHE_NOKEY_NAME; } static inline void fscrypt_prepare_dentry(struct dentry *dentry, bool is_nokey_name) { /* * This code tries to only take ->d_lock when necessary to write * to ->d_flags. We shouldn't be peeking on d_flags for * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case * there is a race, the worst it can happen is that we fail to * unset DCACHE_OP_REVALIDATE and pay the cost of an extra * d_revalidate. */ if (is_nokey_name) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_NOKEY_NAME; spin_unlock(&dentry->d_lock); } else if (dentry->d_flags & DCACHE_OP_REVALIDATE && dentry->d_op->d_revalidate == fscrypt_d_revalidate) { /* * Unencrypted dentries and encrypted dentries where the * key is available are always valid from fscrypt * perspective. Avoid the cost of calling * fscrypt_d_revalidate unnecessarily. */ spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_OP_REVALIDATE; spin_unlock(&dentry->d_lock); } } /* crypto.c */ void fscrypt_enqueue_decrypt_work(struct work_struct *); struct page *fscrypt_encrypt_pagecache_blocks(struct folio *folio, size_t len, size_t offs, gfp_t gfp_flags); int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags); int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, size_t offs); int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num); static inline bool fscrypt_is_bounce_page(struct page *page) { return page->mapping == NULL; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { return (struct page *)page_private(bounce_page); } static inline bool fscrypt_is_bounce_folio(struct folio *folio) { return folio->mapping == NULL; } static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) { return bounce_folio->private; } void fscrypt_free_bounce_page(struct page *bounce_page); /* policy.c */ int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); int fscrypt_set_context(struct inode *inode, void *fs_data); struct fscrypt_dummy_policy { const union fscrypt_policy *policy; }; int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, struct fscrypt_dummy_policy *dummy_policy); bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, const struct fscrypt_dummy_policy *p2); void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb); static inline bool fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) { return dummy_policy->policy != NULL; } static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { kfree(dummy_policy->policy); dummy_policy->policy = NULL; } /* keyring.c */ void fscrypt_destroy_keyring(struct super_block *sb); int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); /* keysetup.c */ int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret); void fscrypt_put_encryption_info(struct inode *inode); void fscrypt_free_inode(struct inode *inode); int fscrypt_drop_inode(struct inode *inode); /* fname.c */ int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, u8 *out, unsigned int olen); bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, u32 max_len, u32 *encrypted_len_ret); int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, int lookup, struct fscrypt_name *fname); static inline void fscrypt_free_filename(struct fscrypt_name *fname) { kfree(fname->crypto_buf.name); } int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str); void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname); bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len); u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); /* bio.c */ bool fscrypt_decrypt_bio(struct bio *bio); int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len); /* hooks.c */ int fscrypt_file_open(struct inode *inode, struct file *filp); int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry); int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname); int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry); int __fscrypt_prepare_readdir(struct inode *dir); int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags); int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link); int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link); const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done); int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { sb->s_cop = s_cop; } #else /* !CONFIG_FS_ENCRYPTION */ static inline struct fscrypt_inode_info * fscrypt_get_inode_info(const struct inode *inode) { return NULL; } static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return false; } static inline void fscrypt_handle_d_move(struct dentry *dentry) { } static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return false; } static inline void fscrypt_prepare_dentry(struct dentry *dentry, bool is_nokey_name) { } /* crypto.c */ static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) { } static inline struct page *fscrypt_encrypt_pagecache_blocks(struct folio *folio, size_t len, size_t offs, gfp_t gfp_flags) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, size_t offs) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num) { return -EOPNOTSUPP; } static inline bool fscrypt_is_bounce_page(struct page *page) { return false; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { WARN_ON_ONCE(1); return ERR_PTR(-EINVAL); } static inline bool fscrypt_is_bounce_folio(struct folio *folio) { return false; } static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) { WARN_ON_ONCE(1); return ERR_PTR(-EINVAL); } static inline void fscrypt_free_bounce_page(struct page *bounce_page) { } /* policy.c */ static inline int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_has_permitted_context(struct inode *parent, struct inode *child) { return 0; } static inline int fscrypt_set_context(struct inode *inode, void *fs_data) { return -EOPNOTSUPP; } struct fscrypt_dummy_policy { }; static inline int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, struct fscrypt_dummy_policy *dummy_policy) { return -EINVAL; } static inline bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, const struct fscrypt_dummy_policy *p2) { return true; } static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb) { } static inline bool fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) { return false; } static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { } /* keyring.c */ static inline void fscrypt_destroy_keyring(struct super_block *sb) { } static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* keysetup.c */ static inline int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; return 0; } static inline void fscrypt_put_encryption_info(struct inode *inode) { return; } static inline void fscrypt_free_inode(struct inode *inode) { } static inline int fscrypt_drop_inode(struct inode *inode) { return 0; } /* fname.c */ static inline int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; memset(fname, 0, sizeof(*fname)); fname->usr_fname = iname; fname->disk_name.name = (unsigned char *)iname->name; fname->disk_name.len = iname->len; return 0; } static inline void fscrypt_free_filename(struct fscrypt_name *fname) { return; } static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str) { return -EOPNOTSUPP; } static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) { return; } static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname) { return -EOPNOTSUPP; } static inline bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len) { /* Encryption support disabled; use standard comparison */ if (de_name_len != fname->disk_name.len) return false; return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); } static inline u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) { WARN_ON_ONCE(1); return 0; } static inline int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name, struct dentry *dentry, unsigned int flags) { return 1; } /* bio.c */ static inline bool fscrypt_decrypt_bio(struct bio *bio) { return true; } static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len) { return -EOPNOTSUPP; } /* hooks.c */ static inline int fscrypt_file_open(struct inode *inode, struct file *filp) { if (IS_ENCRYPTED(inode)) return -EOPNOTSUPP; return 0; } static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_readdir(struct inode *dir) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags) { return 0; } static inline int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; disk_link->name = (unsigned char *)target; disk_link->len = len + 1; if (disk_link->len > max_len) return -ENAMETOOLONG; return 0; } static inline int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { return -EOPNOTSUPP; } static inline const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) { return -EOPNOTSUPP; } static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { } #endif /* !CONFIG_FS_ENCRYPTION */ /* inline_crypt.c */ #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask); void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask); bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk); bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh); bool fscrypt_dio_supported(struct inode *inode); u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return false; } static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask) { } static inline void fscrypt_set_bio_crypt_ctx_bh( struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask) { } static inline bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk) { return true; } static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh) { return true; } static inline bool fscrypt_dio_supported(struct inode *inode) { return !fscrypt_needs_contents_encryption(inode); } static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks) { return nr_blocks; } #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ /** * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the block layer via blk-crypto rather * than in the filesystem layer. */ static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && __fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the filesystem layer rather than in the * block layer via blk-crypto. */ static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && !__fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_has_encryption_key() - check whether an inode has had its key set up * @inode: the inode to check * * Return: %true if the inode has had its encryption key set up, else %false. * * Usually this should be preceded by fscrypt_get_encryption_info() to try to * set up the key first. */ static inline bool fscrypt_has_encryption_key(const struct inode *inode) { return fscrypt_get_inode_info(inode) != NULL; } /** * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted * directory * @old_dentry: an existing dentry for the inode being linked * @dir: the target directory * @dentry: negative dentry for the target filename * * A new link can only be added to an encrypted directory if the directory's * encryption key is available --- since otherwise we'd have no way to encrypt * the filename. * * We also verify that the link will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, * -EXDEV if the link would result in an inconsistent encryption policy, or * another -errno code. */ static inline int fscrypt_prepare_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); return 0; } /** * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted * directories * @old_dir: source directory * @old_dentry: dentry for source file * @new_dir: target directory * @new_dentry: dentry for target location (may be negative unless exchanging) * @flags: rename flags (we care at least about %RENAME_EXCHANGE) * * Prepare for ->rename() where the source and/or target directories may be * encrypted. A new link can only be added to an encrypted directory if the * directory's encryption key is available --- since otherwise we'd have no way * to encrypt the filename. A rename to an existing name, on the other hand, * *is* cryptographically possible without the key. However, we take the more * conservative approach and just forbid all no-key renames. * * We also verify that the rename will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the * rename would cause inconsistent encryption policies, or another -errno code. */ static inline int fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) return __fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, flags); return 0; } /** * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted * directory * @dir: directory being searched * @dentry: filename being looked up * @fname: (output) the name to use to search the on-disk directory * * Prepare for ->lookup() in a directory which may be encrypted by determining * the name that will actually be used to search the directory on-disk. If the * directory's encryption policy is supported by this kernel and its encryption * key is available, then the lookup is assumed to be by plaintext name; * otherwise, it is assumed to be by no-key name. * * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key * name. In this case the filesystem must assign the dentry a dentry_operations * which contains fscrypt_d_revalidate (or contains a d_revalidate method that * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the * directory's encryption key is later added. * * Return: 0 on success; -ENOENT if the directory's key is unavailable but the * filename isn't a valid no-key name, so a negative dentry should be created; * or another -errno code. */ static inline int fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_lookup(dir, dentry, fname); memset(fname, 0, sizeof(*fname)); fname->usr_fname = &dentry->d_name; fname->disk_name.name = (unsigned char *)dentry->d_name.name; fname->disk_name.len = dentry->d_name.len; fscrypt_prepare_dentry(dentry, false); return 0; } /** * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory * @dir: the directory inode * * If the directory is encrypted and it doesn't already have its encryption key * set up, try to set it up so that the filenames will be listed in plaintext * form rather than in no-key form. * * Return: 0 on success; -errno on error. Note that the encryption key being * unavailable is not considered an error. It is also not an error if * the encryption policy is unsupported by this kernel; that is treated * like the key being unavailable, so that files can still be deleted. */ static inline int fscrypt_prepare_readdir(struct inode *dir) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_readdir(dir); return 0; } /** * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's * attributes * @dentry: dentry through which the inode is being changed * @attr: attributes to change * * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, * most attribute changes are allowed even without the encryption key. However, * without the encryption key we do have to forbid truncates. This is needed * because the size being truncated to may not be a multiple of the filesystem * block size, and in that case we'd have to decrypt the final block, zero the * portion past i_size, and re-encrypt it. (We *could* allow truncating to a * filesystem block boundary, but it's simpler to just forbid all truncates --- * and we already forbid all other contents modifications without the key.) * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) { if (IS_ENCRYPTED(d_inode(dentry))) return __fscrypt_prepare_setattr(dentry, attr); return 0; } /** * fscrypt_encrypt_symlink() - encrypt the symlink target if needed * @inode: symlink inode * @target: plaintext symlink target * @len: length of @target excluding null terminator * @disk_link: (in/out) the on-disk symlink target being prepared * * If the symlink target needs to be encrypted, then this function encrypts it * into @disk_link->name. fscrypt_prepare_symlink() must have been called * previously to compute @disk_link->len. If the filesystem did not allocate a * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one * will be kmalloc()'ed and the filesystem will be responsible for freeing it. * * Return: 0 on success, -errno on failure */ static inline int fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(inode)) return __fscrypt_encrypt_symlink(inode, target, len, disk_link); return 0; } /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ static inline void fscrypt_finalize_bounce_page(struct page **pagep) { struct page *page = *pagep; if (fscrypt_is_bounce_page(page)) { *pagep = fscrypt_pagecache_page(page); fscrypt_free_bounce_page(page); } } #endif /* _LINUX_FSCRYPT_H */
20 17 2 50 50 3 30 20 57 30 20 25 37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 /* * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TLS_INT_H #define _TLS_INT_H #include <asm/byteorder.h> #include <linux/types.h> #include <linux/skmsg.h> #include <net/tls.h> #include <net/tls_prot.h> #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) #define __TLS_INC_STATS(net, field) \ __SNMP_INC_STATS((net)->mib.tls_statistics, field) #define TLS_INC_STATS(net, field) \ SNMP_INC_STATS((net)->mib.tls_statistics, field) #define TLS_DEC_STATS(net, field) \ SNMP_DEC_STATS((net)->mib.tls_statistics, field) struct tls_cipher_desc { unsigned int nonce; unsigned int iv; unsigned int key; unsigned int salt; unsigned int tag; unsigned int rec_seq; unsigned int iv_offset; unsigned int key_offset; unsigned int salt_offset; unsigned int rec_seq_offset; char *cipher_name; bool offloadable; size_t crypto_info; }; #define TLS_CIPHER_MIN TLS_CIPHER_AES_GCM_128 #define TLS_CIPHER_MAX TLS_CIPHER_ARIA_GCM_256 extern const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN]; static inline const struct tls_cipher_desc *get_cipher_desc(u16 cipher_type) { if (cipher_type < TLS_CIPHER_MIN || cipher_type > TLS_CIPHER_MAX) return NULL; return &tls_cipher_desc[cipher_type - TLS_CIPHER_MIN]; } static inline char *crypto_info_iv(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->iv_offset; } static inline char *crypto_info_key(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->key_offset; } static inline char *crypto_info_salt(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->salt_offset; } static inline char *crypto_info_rec_seq(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->rec_seq_offset; } /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages * allocated or mapped for each TLS record. After encryption, the records are * stores in a linked list. */ struct tls_rec { struct list_head list; int tx_ready; int tx_flags; struct sk_msg msg_plaintext; struct sk_msg msg_encrypted; /* AAD | msg_plaintext.sg.data | sg_tag */ struct scatterlist sg_aead_in[2]; /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ struct scatterlist sg_aead_out[2]; char content_type; struct scatterlist sg_content_type; struct sock *sk; char aad_space[TLS_AAD_SPACE_SIZE]; u8 iv_data[TLS_MAX_IV_SIZE]; struct aead_request aead_req; u8 aead_req_ctx[]; }; int __net_init tls_proc_init(struct net *net); void __net_exit tls_proc_fini(struct net *net); struct tls_context *tls_ctx_create(struct sock *sk); void tls_ctx_free(struct sock *sk, struct tls_context *ctx); void update_sk_prot(struct sock *sk, struct tls_context *ctx); int wait_on_pending_writer(struct sock *sk, long *timeo); void tls_err_abort(struct sock *sk, int err); int init_prot_info(struct tls_prot_info *prot, const struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc); int tls_set_sw_offload(struct sock *sk, int tx, struct tls_crypto_info *new_crypto_info); void tls_update_rx_zc_capable(struct tls_context *tls_ctx); void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); void tls_sw_strparser_done(struct tls_context *tls_ctx); int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); void tls_sw_splice_eof(struct socket *sock); void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); void tls_sw_release_resources_tx(struct sock *sk); void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); void tls_sw_free_resources_rx(struct sock *sk); void tls_sw_release_resources_rx(struct sock *sk); void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len); bool tls_sw_sock_is_readable(struct sock *sk); ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t read_actor); int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); void tls_device_splice_eof(struct socket *sock); int tls_tx_records(struct sock *sk, int flags); void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); void tls_device_write_space(struct sock *sk, struct tls_context *ctx); int tls_process_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type); int decrypt_skb(struct sock *sk, struct scatterlist *sgout); int tls_sw_fallback_init(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct tls_crypto_info *crypto_info); int tls_strp_dev_init(void); void tls_strp_dev_exit(void); void tls_strp_done(struct tls_strparser *strp); void tls_strp_stop(struct tls_strparser *strp); int tls_strp_init(struct tls_strparser *strp, struct sock *sk); void tls_strp_data_ready(struct tls_strparser *strp); void tls_strp_check_rcv(struct tls_strparser *strp); void tls_strp_msg_done(struct tls_strparser *strp); int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); void tls_rx_msg_ready(struct tls_strparser *strp); void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); static inline struct tls_msg *tls_msg(struct sk_buff *skb) { struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; return &scb->tls; } static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) { DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); return ctx->strp.anchor; } static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) { return READ_ONCE(ctx->strp.msg_ready); } static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) { return ctx->strp.mixed_decrypted; } #ifdef CONFIG_TLS_DEVICE int tls_device_init(void); void tls_device_cleanup(void); int tls_set_device_offload(struct sock *sk); void tls_device_free_resources_tx(struct sock *sk); int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); void tls_device_offload_cleanup_rx(struct sock *sk); void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); #else static inline int tls_device_init(void) { return 0; } static inline void tls_device_cleanup(void) {} static inline int tls_set_device_offload(struct sock *sk) { return -EOPNOTSUPP; } static inline void tls_device_free_resources_tx(struct sock *sk) {} static inline int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) { return -EOPNOTSUPP; } static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} static inline void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} static inline int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) { return 0; } #endif int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags); int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags); void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); static inline bool tls_is_partially_sent_record(struct tls_context *ctx) { return !!ctx->partially_sent_record; } static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) { return tls_ctx->pending_open_record_frags; } static inline bool tls_bigint_increment(unsigned char *seq, int len) { int i; for (i = len - 1; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } return (i == -1); } static inline void tls_bigint_subtract(unsigned char *seq, int n) { u64 rcd_sn; __be64 *p; BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); p = (__be64 *)seq; rcd_sn = be64_to_cpu(*p); *p = cpu_to_be64(rcd_sn - n); } static inline void tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, struct cipher_context *ctx) { if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) tls_err_abort(sk, -EBADMSG); if (prot->version != TLS_1_3_VERSION && prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) tls_bigint_increment(ctx->iv + prot->salt_size, prot->iv_size); } static inline void tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) { int i; if (prot->version == TLS_1_3_VERSION || prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { for (i = 0; i < 8; i++) iv[i + 4] ^= seq[i]; } } static inline void tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, unsigned char record_type) { struct tls_prot_info *prot = &ctx->prot_info; size_t pkt_len, iv_size = prot->iv_size; pkt_len = plaintext_len + prot->tag_size; if (prot->version != TLS_1_3_VERSION && prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { pkt_len += iv_size; memcpy(buf + TLS_NONCE_OFFSET, ctx->tx.iv + prot->salt_size, iv_size); } /* we cover nonce explicit here as well, so buf should be of * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE */ buf[0] = prot->version == TLS_1_3_VERSION ? TLS_RECORD_TYPE_DATA : record_type; /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ buf[1] = TLS_1_2_VERSION_MINOR; buf[2] = TLS_1_2_VERSION_MAJOR; /* we can use IV for nonce explicit according to spec */ buf[3] = pkt_len >> 8; buf[4] = pkt_len & 0xFF; } static inline void tls_make_aad(char *buf, size_t size, char *record_sequence, unsigned char record_type, struct tls_prot_info *prot) { if (prot->version != TLS_1_3_VERSION) { memcpy(buf, record_sequence, prot->rec_seq_size); buf += 8; } else { size += prot->tag_size; } buf[0] = prot->version == TLS_1_3_VERSION ? TLS_RECORD_TYPE_DATA : record_type; buf[1] = TLS_1_2_VERSION_MAJOR; buf[2] = TLS_1_2_VERSION_MINOR; buf[3] = size >> 8; buf[4] = size & 0xFF; } #endif
3 4721 120 4793 4 3900 4186 844 4721 164 1 3 1 846 564 151 4726 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_H #define INT_BLK_MQ_H #include <linux/blk-mq.h> #include "blk-stat.h" struct blk_mq_tag_set; struct blk_mq_ctxs { struct kobject kobj; struct blk_mq_ctx __percpu *queue_ctx; }; /** * struct blk_mq_ctx - State for a software queue facing the submitting CPUs */ struct blk_mq_ctx { struct { spinlock_t lock; struct list_head rq_lists[HCTX_MAX_TYPES]; } ____cacheline_aligned_in_smp; unsigned int cpu; unsigned short index_hw[HCTX_MAX_TYPES]; struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES]; struct request_queue *queue; struct blk_mq_ctxs *ctxs; struct kobject kobj; } ____cacheline_aligned_in_smp; enum { BLK_MQ_NO_TAG = -1U, BLK_MQ_TAG_MIN = 1, BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1, }; #define BLK_MQ_CPU_WORK_BATCH (8) typedef unsigned int __bitwise blk_insert_t; #define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01) void blk_mq_submit_bio(struct bio *bio); int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, unsigned int flags); void blk_mq_exit_queue(struct request_queue *q); int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); void blk_mq_wake_waiters(struct request_queue *q); bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *, unsigned int); void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *start); void blk_mq_put_rq_ref(struct request *rq); /* * Internal helpers for allocating/freeing the request map */ void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx); void blk_mq_free_rq_map(struct blk_mq_tags *tags); struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, unsigned int hctx_idx, unsigned int depth); void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx); /* * CPU -> queue mappings */ extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); /* * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue * @q: request queue * @type: the hctx type index * @cpu: CPU */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, enum hctx_type type, unsigned int cpu) { return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]); } static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf) { enum hctx_type type = HCTX_TYPE_DEFAULT; /* * The caller ensure that if REQ_POLLED, poll must be enabled. */ if (opf & REQ_POLLED) type = HCTX_TYPE_POLL; else if ((opf & REQ_OP_MASK) == REQ_OP_READ) type = HCTX_TYPE_READ; return type; } /* * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED). * @ctx: software queue cpu ctx */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue(blk_opf_t opf, struct blk_mq_ctx *ctx) { return ctx->hctxs[blk_mq_get_hctx_type(opf)]; } /* * sysfs helpers */ extern void blk_mq_sysfs_init(struct request_queue *q); extern void blk_mq_sysfs_deinit(struct request_queue *q); int blk_mq_sysfs_register(struct gendisk *disk); void blk_mq_sysfs_unregister(struct gendisk *disk); int blk_mq_sysfs_register_hctxs(struct request_queue *q); void blk_mq_sysfs_unregister_hctxs(struct request_queue *q); extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); void blk_mq_free_plug_rqs(struct blk_plug *plug); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_cancel_work_sync(struct request_queue *q); void blk_mq_release(struct request_queue *q); static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, unsigned int cpu) { return per_cpu_ptr(q->queue_ctx, cpu); } /* * This assumes per-cpu software queueing queues. They could be per-node * as well, for instance. For now this is hardcoded as-is. Note that we don't * care about preemption, since we know the ctx's are persistent. This does * mean that we can't rely on ctx always matching the currently running CPU. */ static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) { return __blk_mq_get_ctx(q, raw_smp_processor_id()); } struct blk_mq_alloc_data { /* input parameter */ struct request_queue *q; blk_mq_req_flags_t flags; unsigned int shallow_depth; blk_opf_t cmd_flags; req_flags_t rq_flags; /* allocate multiple requests/tags in one go */ unsigned int nr_tags; struct rq_list *cached_rqs; /* input & output parameter */ struct blk_mq_ctx *ctx; struct blk_mq_hw_ctx *hctx; }; struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, unsigned int flags, int node); void blk_mq_free_tags(struct blk_mq_tags *tags); unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data); unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, unsigned int *offset); void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag); void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags); int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tags, unsigned int depth, bool can_grow); void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size); void blk_mq_tag_update_sched_shared_tags(struct request_queue *q); void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool); void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, void *priv); void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv); static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt, struct blk_mq_hw_ctx *hctx) { if (!hctx) return &bt->ws[0]; return sbq_wait_ptr(bt, &hctx->wait_index); } void __blk_mq_tag_busy(struct blk_mq_hw_ctx *); void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_tag_busy(hctx); } static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_tag_idle(hctx); } static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags, unsigned int tag) { return tag < tags->nr_reserved_tags; } static inline bool blk_mq_is_shared_tags(unsigned int flags) { return flags & BLK_MQ_F_TAG_HCTX_SHARED; } static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) { if (data->rq_flags & RQF_SCHED_TAGS) return data->hctx->sched_tags; return data->hctx->tags; } static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) { /* Fast path: hardware queue is not stopped most of the time. */ if (likely(!test_bit(BLK_MQ_S_STOPPED, &hctx->state))) return false; /* * This barrier is used to order adding of dispatch list before and * the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier * in blk_mq_start_stopped_hw_queue() so that dispatch code could * either see BLK_MQ_S_STOPPED is cleared or dispatch list is not * empty to avoid missing dispatching requests. */ smp_mb(); return test_bit(BLK_MQ_S_STOPPED, &hctx->state); } static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) { return hctx->nr_ctx && hctx->tags; } unsigned int blk_mq_in_flight(struct request_queue *q, struct block_device *part); void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, unsigned int inflight[2]); static inline void blk_mq_put_dispatch_budget(struct request_queue *q, int budget_token) { if (q->mq_ops->put_budget) q->mq_ops->put_budget(q, budget_token); } static inline int blk_mq_get_dispatch_budget(struct request_queue *q) { if (q->mq_ops->get_budget) return q->mq_ops->get_budget(q); return 0; } static inline void blk_mq_set_rq_budget_token(struct request *rq, int token) { if (token < 0) return; if (rq->q->mq_ops->set_rq_budget_token) rq->q->mq_ops->set_rq_budget_token(rq, token); } static inline int blk_mq_get_rq_budget_token(struct request *rq) { if (rq->q->mq_ops->get_rq_budget_token) return rq->q->mq_ops->get_rq_budget_token(rq); return -1; } static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx, int val) { if (blk_mq_is_shared_tags(hctx->flags)) atomic_add(val, &hctx->queue->nr_active_requests_shared_tags); else atomic_add(val, &hctx->nr_active); } static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx) { __blk_mq_add_active_requests(hctx, 1); } static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx, int val) { if (blk_mq_is_shared_tags(hctx->flags)) atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags); else atomic_sub(val, &hctx->nr_active); } static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx) { __blk_mq_sub_active_requests(hctx, 1); } static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx, int val) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_add_active_requests(hctx, val); } static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_inc_active_requests(hctx); } static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx, int val) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_sub_active_requests(hctx, val); } static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_dec_active_requests(hctx); } static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_shared_tags(hctx->flags)) return atomic_read(&hctx->queue->nr_active_requests_shared_tags); return atomic_read(&hctx->nr_active); } static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) { blk_mq_dec_active_requests(hctx); blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag); rq->tag = BLK_MQ_NO_TAG; } static inline void blk_mq_put_driver_tag(struct request *rq) { if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG) return; __blk_mq_put_driver_tag(rq->mq_hctx, rq); } bool __blk_mq_alloc_driver_tag(struct request *rq); static inline bool blk_mq_get_driver_tag(struct request *rq) { if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) return false; return true; } static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) { int cpu; for_each_possible_cpu(cpu) qmap->mq_map[cpu] = 0; } /* Free all requests on the list */ static inline void blk_mq_free_requests(struct list_head *list) { while (!list_empty(list)) { struct request *rq = list_entry_rq(list->next); list_del_init(&rq->queuelist); blk_mq_free_request(rq); } } /* * For shared tag users, we track the number of currently active users * and attempt to provide a fair share of the tag depth for each of them. */ static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt) { unsigned int depth, users; if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return true; /* * Don't try dividing an ant */ if (bt->sb.depth == 1) return true; if (blk_mq_is_shared_tags(hctx->flags)) { struct request_queue *q = hctx->queue; if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) return true; } else { if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return true; } users = READ_ONCE(hctx->tags->active_queues); if (!users) return true; /* * Allow at least some tags */ depth = max((bt->sb.depth + users - 1) / users, 4U); return __blk_mq_active_requests(hctx) < depth; } /* run the code block in @dispatch_ops with rcu/srcu read lock held */ #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \ do { \ if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \ struct blk_mq_tag_set *__tag_set = (q)->tag_set; \ int srcu_idx; \ \ might_sleep_if(check_sleep); \ srcu_idx = srcu_read_lock(__tag_set->srcu); \ (dispatch_ops); \ srcu_read_unlock(__tag_set->srcu, srcu_idx); \ } else { \ rcu_read_lock(); \ (dispatch_ops); \ rcu_read_unlock(); \ } \ } while (0) #define blk_mq_run_dispatch_ops(q, dispatch_ops) \ __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \ static inline bool blk_mq_can_poll(struct request_queue *q) { return (q->limits.features & BLK_FEAT_POLL) && q->tag_set->map[HCTX_TYPE_POLL].nr_queues; } #endif
151 2 30 179 178 14 14 14 14 14 180 14 179 14 178 115 115 114 65 92 92 1 35 93 18 71 15 34 1 4 4 4 4 115 3 4 82 23 9 5 27 32 4 36 77 110 3 4 113 114 114 114 114 6 1 1 28 2 2 3 3 23 1 22 4 5 11 11 7 1 4 1 18 18 49 49 8 3 3 8 6 3 5 5 5 4 4 4 3 3 101 3 5 5 4 1 103 103 2 103 103 5 20 86 101 19 2 17 19 76 76 76 76 4 4 1 75 9 76 76 76 76 4 5 1 76 74 5 5 77 95 7 19 2 78 14 80 3 1 82 78 82 76 1754 2 2 61 17 5 5 4 1 5 5 4 1 5 1 4 4 1 5 45 1 2 35 28 82 4 10 77 109 22 46 85 45 86 114 39 22 92 100 34 34 5 131 39 118 20 4 4 1 1 9 2 3 1 2 1 5 5 2 2 1 154 33 3 76 107 150 4 1 5 1 27 1 16 12 1 10 9 9 17 2 1 3 85 58 2 1 8 1 6 40 2 1 19 33 1 49 1 13 107 24 3 7 24 1 198 1 8 189 18 145 2 145 135 135 12 12 5 3 1 32 1 4 7 11 17 11 1 3 7 1 1 1 1 1 1 19 3 2 2 11 5 2 6 14 14 1 7 11 11 6 2 1 19 19 3 3 2 16 4 2 1 7 20 12 3 4 15 1 28 28 2 3 3 1 1 5 7 1 1 15 15 283 29 8 4052 3927 1669 967 173 286 34 555 555 65 555 555 94 94 94 176 38 175 17 17 17 17 17 464 465 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 // SPDX-License-Identifier: GPL-2.0 /* Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #include <linux/nexthop.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <net/arp.h> #include <net/ipv6_stubs.h> #include <net/lwtunnel.h> #include <net/ndisc.h> #include <net/nexthop.h> #include <net/route.h> #include <net/sock.h> #define NH_RES_DEFAULT_IDLE_TIMER (120 * HZ) #define NH_RES_DEFAULT_UNBALANCED_TIMER 0 /* No forced rebalancing. */ static void remove_nexthop(struct net *net, struct nexthop *nh, struct nl_info *nlinfo); #define NH_DEV_HASHBITS 8 #define NH_DEV_HASHSIZE (1U << NH_DEV_HASHBITS) #define NHA_OP_FLAGS_DUMP_ALL (NHA_OP_FLAG_DUMP_STATS | \ NHA_OP_FLAG_DUMP_HW_STATS) static const struct nla_policy rtm_nh_policy_new[] = { [NHA_ID] = { .type = NLA_U32 }, [NHA_GROUP] = { .type = NLA_BINARY }, [NHA_GROUP_TYPE] = { .type = NLA_U16 }, [NHA_BLACKHOLE] = { .type = NLA_FLAG }, [NHA_OIF] = { .type = NLA_U32 }, [NHA_GATEWAY] = { .type = NLA_BINARY }, [NHA_ENCAP_TYPE] = { .type = NLA_U16 }, [NHA_ENCAP] = { .type = NLA_NESTED }, [NHA_FDB] = { .type = NLA_FLAG }, [NHA_RES_GROUP] = { .type = NLA_NESTED }, [NHA_HW_STATS_ENABLE] = NLA_POLICY_MAX(NLA_U32, true), }; static const struct nla_policy rtm_nh_policy_get[] = { [NHA_ID] = { .type = NLA_U32 }, [NHA_OP_FLAGS] = NLA_POLICY_MASK(NLA_U32, NHA_OP_FLAGS_DUMP_ALL), }; static const struct nla_policy rtm_nh_policy_del[] = { [NHA_ID] = { .type = NLA_U32 }, }; static const struct nla_policy rtm_nh_policy_dump[] = { [NHA_OIF] = { .type = NLA_U32 }, [NHA_GROUPS] = { .type = NLA_FLAG }, [NHA_MASTER] = { .type = NLA_U32 }, [NHA_FDB] = { .type = NLA_FLAG }, [NHA_OP_FLAGS] = NLA_POLICY_MASK(NLA_U32, NHA_OP_FLAGS_DUMP_ALL), }; static const struct nla_policy rtm_nh_res_policy_new[] = { [NHA_RES_GROUP_BUCKETS] = { .type = NLA_U16 }, [NHA_RES_GROUP_IDLE_TIMER] = { .type = NLA_U32 }, [NHA_RES_GROUP_UNBALANCED_TIMER] = { .type = NLA_U32 }, }; static const struct nla_policy rtm_nh_policy_dump_bucket[] = { [NHA_ID] = { .type = NLA_U32 }, [NHA_OIF] = { .type = NLA_U32 }, [NHA_MASTER] = { .type = NLA_U32 }, [NHA_RES_BUCKET] = { .type = NLA_NESTED }, }; static const struct nla_policy rtm_nh_res_bucket_policy_dump[] = { [NHA_RES_BUCKET_NH_ID] = { .type = NLA_U32 }, }; static const struct nla_policy rtm_nh_policy_get_bucket[] = { [NHA_ID] = { .type = NLA_U32 }, [NHA_RES_BUCKET] = { .type = NLA_NESTED }, }; static const struct nla_policy rtm_nh_res_bucket_policy_get[] = { [NHA_RES_BUCKET_INDEX] = { .type = NLA_U16 }, }; static bool nexthop_notifiers_is_empty(struct net *net) { return !net->nexthop.notifier_chain.head; } static void __nh_notifier_single_info_init(struct nh_notifier_single_info *nh_info, const struct nh_info *nhi) { nh_info->dev = nhi->fib_nhc.nhc_dev; nh_info->gw_family = nhi->fib_nhc.nhc_gw_family; if (nh_info->gw_family == AF_INET) nh_info->ipv4 = nhi->fib_nhc.nhc_gw.ipv4; else if (nh_info->gw_family == AF_INET6) nh_info->ipv6 = nhi->fib_nhc.nhc_gw.ipv6; nh_info->id = nhi->nh_parent->id; nh_info->is_reject = nhi->reject_nh; nh_info->is_fdb = nhi->fdb_nh; nh_info->has_encap = !!nhi->fib_nhc.nhc_lwtstate; } static int nh_notifier_single_info_init(struct nh_notifier_info *info, const struct nexthop *nh) { struct nh_info *nhi = rtnl_dereference(nh->nh_info); info->type = NH_NOTIFIER_INFO_TYPE_SINGLE; info->nh = kzalloc(sizeof(*info->nh), GFP_KERNEL); if (!info->nh) return -ENOMEM; __nh_notifier_single_info_init(info->nh, nhi); return 0; } static void nh_notifier_single_info_fini(struct nh_notifier_info *info) { kfree(info->nh); } static int nh_notifier_mpath_info_init(struct nh_notifier_info *info, struct nh_group *nhg) { u16 num_nh = nhg->num_nh; int i; info->type = NH_NOTIFIER_INFO_TYPE_GRP; info->nh_grp = kzalloc(struct_size(info->nh_grp, nh_entries, num_nh), GFP_KERNEL); if (!info->nh_grp) return -ENOMEM; info->nh_grp->num_nh = num_nh; info->nh_grp->is_fdb = nhg->fdb_nh; info->nh_grp->hw_stats = nhg->hw_stats; for (i = 0; i < num_nh; i++) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; struct nh_info *nhi; nhi = rtnl_dereference(nhge->nh->nh_info); info->nh_grp->nh_entries[i].weight = nhge->weight; __nh_notifier_single_info_init(&info->nh_grp->nh_entries[i].nh, nhi); } return 0; } static int nh_notifier_res_table_info_init(struct nh_notifier_info *info, struct nh_group *nhg) { struct nh_res_table *res_table = rtnl_dereference(nhg->res_table); u16 num_nh_buckets = res_table->num_nh_buckets; unsigned long size; u16 i; info->type = NH_NOTIFIER_INFO_TYPE_RES_TABLE; size = struct_size(info->nh_res_table, nhs, num_nh_buckets); info->nh_res_table = __vmalloc(size, GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN); if (!info->nh_res_table) return -ENOMEM; info->nh_res_table->num_nh_buckets = num_nh_buckets; info->nh_res_table->hw_stats = nhg->hw_stats; for (i = 0; i < num_nh_buckets; i++) { struct nh_res_bucket *bucket = &res_table->nh_buckets[i]; struct nh_grp_entry *nhge; struct nh_info *nhi; nhge = rtnl_dereference(bucket->nh_entry); nhi = rtnl_dereference(nhge->nh->nh_info); __nh_notifier_single_info_init(&info->nh_res_table->nhs[i], nhi); } return 0; } static int nh_notifier_grp_info_init(struct nh_notifier_info *info, const struct nexthop *nh) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); if (nhg->hash_threshold) return nh_notifier_mpath_info_init(info, nhg); else if (nhg->resilient) return nh_notifier_res_table_info_init(info, nhg); return -EINVAL; } static void nh_notifier_grp_info_fini(struct nh_notifier_info *info, const struct nexthop *nh) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); if (nhg->hash_threshold) kfree(info->nh_grp); else if (nhg->resilient) vfree(info->nh_res_table); } static int nh_notifier_info_init(struct nh_notifier_info *info, const struct nexthop *nh) { info->id = nh->id; if (nh->is_group) return nh_notifier_grp_info_init(info, nh); else return nh_notifier_single_info_init(info, nh); } static void nh_notifier_info_fini(struct nh_notifier_info *info, const struct nexthop *nh) { if (nh->is_group) nh_notifier_grp_info_fini(info, nh); else nh_notifier_single_info_fini(info); } static int call_nexthop_notifiers(struct net *net, enum nexthop_event_type event_type, struct nexthop *nh, struct netlink_ext_ack *extack) { struct nh_notifier_info info = { .net = net, .extack = extack, }; int err; ASSERT_RTNL(); if (nexthop_notifiers_is_empty(net)) return 0; err = nh_notifier_info_init(&info, nh); if (err) { NL_SET_ERR_MSG(extack, "Failed to initialize nexthop notifier info"); return err; } err = blocking_notifier_call_chain(&net->nexthop.notifier_chain, event_type, &info); nh_notifier_info_fini(&info, nh); return notifier_to_errno(err); } static int nh_notifier_res_bucket_idle_timer_get(const struct nh_notifier_info *info, bool force, unsigned int *p_idle_timer_ms) { struct nh_res_table *res_table; struct nh_group *nhg; struct nexthop *nh; int err = 0; /* When 'force' is false, nexthop bucket replacement is performed * because the bucket was deemed to be idle. In this case, capable * listeners can choose to perform an atomic replacement: The bucket is * only replaced if it is inactive. However, if the idle timer interval * is smaller than the interval in which a listener is querying * buckets' activity from the device, then atomic replacement should * not be tried. Pass the idle timer value to listeners, so that they * could determine which type of replacement to perform. */ if (force) { *p_idle_timer_ms = 0; return 0; } rcu_read_lock(); nh = nexthop_find_by_id(info->net, info->id); if (!nh) { err = -EINVAL; goto out; } nhg = rcu_dereference(nh->nh_grp); res_table = rcu_dereference(nhg->res_table); *p_idle_timer_ms = jiffies_to_msecs(res_table->idle_timer); out: rcu_read_unlock(); return err; } static int nh_notifier_res_bucket_info_init(struct nh_notifier_info *info, u16 bucket_index, bool force, struct nh_info *oldi, struct nh_info *newi) { unsigned int idle_timer_ms; int err; err = nh_notifier_res_bucket_idle_timer_get(info, force, &idle_timer_ms); if (err) return err; info->type = NH_NOTIFIER_INFO_TYPE_RES_BUCKET; info->nh_res_bucket = kzalloc(sizeof(*info->nh_res_bucket), GFP_KERNEL); if (!info->nh_res_bucket) return -ENOMEM; info->nh_res_bucket->bucket_index = bucket_index; info->nh_res_bucket->idle_timer_ms = idle_timer_ms; info->nh_res_bucket->force = force; __nh_notifier_single_info_init(&info->nh_res_bucket->old_nh, oldi); __nh_notifier_single_info_init(&info->nh_res_bucket->new_nh, newi); return 0; } static void nh_notifier_res_bucket_info_fini(struct nh_notifier_info *info) { kfree(info->nh_res_bucket); } static int __call_nexthop_res_bucket_notifiers(struct net *net, u32 nhg_id, u16 bucket_index, bool force, struct nh_info *oldi, struct nh_info *newi, struct netlink_ext_ack *extack) { struct nh_notifier_info info = { .net = net, .extack = extack, .id = nhg_id, }; int err; if (nexthop_notifiers_is_empty(net)) return 0; err = nh_notifier_res_bucket_info_init(&info, bucket_index, force, oldi, newi); if (err) return err; err = blocking_notifier_call_chain(&net->nexthop.notifier_chain, NEXTHOP_EVENT_BUCKET_REPLACE, &info); nh_notifier_res_bucket_info_fini(&info); return notifier_to_errno(err); } /* There are three users of RES_TABLE, and NHs etc. referenced from there: * * 1) a collection of callbacks for NH maintenance. This operates under * RTNL, * 2) the delayed work that gradually balances the resilient table, * 3) and nexthop_select_path(), operating under RCU. * * Both the delayed work and the RTNL block are writers, and need to * maintain mutual exclusion. Since there are only two and well-known * writers for each table, the RTNL code can make sure it has exclusive * access thus: * * - Have the DW operate without locking; * - synchronously cancel the DW; * - do the writing; * - if the write was not actually a delete, call upkeep, which schedules * DW again if necessary. * * The functions that are always called from the RTNL context use * rtnl_dereference(). The functions that can also be called from the DW do * a raw dereference and rely on the above mutual exclusion scheme. */ #define nh_res_dereference(p) (rcu_dereference_raw(p)) static int call_nexthop_res_bucket_notifiers(struct net *net, u32 nhg_id, u16 bucket_index, bool force, struct nexthop *old_nh, struct nexthop *new_nh, struct netlink_ext_ack *extack) { struct nh_info *oldi = nh_res_dereference(old_nh->nh_info); struct nh_info *newi = nh_res_dereference(new_nh->nh_info); return __call_nexthop_res_bucket_notifiers(net, nhg_id, bucket_index, force, oldi, newi, extack); } static int call_nexthop_res_table_notifiers(struct net *net, struct nexthop *nh, struct netlink_ext_ack *extack) { struct nh_notifier_info info = { .net = net, .extack = extack, .id = nh->id, }; struct nh_group *nhg; int err; ASSERT_RTNL(); if (nexthop_notifiers_is_empty(net)) return 0; /* At this point, the nexthop buckets are still not populated. Only * emit a notification with the logical nexthops, so that a listener * could potentially veto it in case of unsupported configuration. */ nhg = rtnl_dereference(nh->nh_grp); err = nh_notifier_mpath_info_init(&info, nhg); if (err) { NL_SET_ERR_MSG(extack, "Failed to initialize nexthop notifier info"); return err; } err = blocking_notifier_call_chain(&net->nexthop.notifier_chain, NEXTHOP_EVENT_RES_TABLE_PRE_REPLACE, &info); kfree(info.nh_grp); return notifier_to_errno(err); } static int call_nexthop_notifier(struct notifier_block *nb, struct net *net, enum nexthop_event_type event_type, struct nexthop *nh, struct netlink_ext_ack *extack) { struct nh_notifier_info info = { .net = net, .extack = extack, }; int err; err = nh_notifier_info_init(&info, nh); if (err) return err; err = nb->notifier_call(nb, event_type, &info); nh_notifier_info_fini(&info, nh); return notifier_to_errno(err); } static unsigned int nh_dev_hashfn(unsigned int val) { unsigned int mask = NH_DEV_HASHSIZE - 1; return (val ^ (val >> NH_DEV_HASHBITS) ^ (val >> (NH_DEV_HASHBITS * 2))) & mask; } static void nexthop_devhash_add(struct net *net, struct nh_info *nhi) { struct net_device *dev = nhi->fib_nhc.nhc_dev; struct hlist_head *head; unsigned int hash; WARN_ON(!dev); hash = nh_dev_hashfn(dev->ifindex); head = &net->nexthop.devhash[hash]; hlist_add_head(&nhi->dev_hash, head); } static void nexthop_free_group(struct nexthop *nh) { struct nh_group *nhg; int i; nhg = rcu_dereference_raw(nh->nh_grp); for (i = 0; i < nhg->num_nh; ++i) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; WARN_ON(!list_empty(&nhge->nh_list)); free_percpu(nhge->stats); nexthop_put(nhge->nh); } WARN_ON(nhg->spare == nhg); if (nhg->resilient) vfree(rcu_dereference_raw(nhg->res_table)); kfree(nhg->spare); kfree(nhg); } static void nexthop_free_single(struct nexthop *nh) { struct nh_info *nhi; nhi = rcu_dereference_raw(nh->nh_info); switch (nhi->family) { case AF_INET: fib_nh_release(nh->net, &nhi->fib_nh); break; case AF_INET6: ipv6_stub->fib6_nh_release(&nhi->fib6_nh); break; } kfree(nhi); } void nexthop_free_rcu(struct rcu_head *head) { struct nexthop *nh = container_of(head, struct nexthop, rcu); if (nh->is_group) nexthop_free_group(nh); else nexthop_free_single(nh); kfree(nh); } EXPORT_SYMBOL_GPL(nexthop_free_rcu); static struct nexthop *nexthop_alloc(void) { struct nexthop *nh; nh = kzalloc(sizeof(struct nexthop), GFP_KERNEL); if (nh) { INIT_LIST_HEAD(&nh->fi_list); INIT_LIST_HEAD(&nh->f6i_list); INIT_LIST_HEAD(&nh->grp_list); INIT_LIST_HEAD(&nh->fdb_list); } return nh; } static struct nh_group *nexthop_grp_alloc(u16 num_nh) { struct nh_group *nhg; nhg = kzalloc(struct_size(nhg, nh_entries, num_nh), GFP_KERNEL); if (nhg) nhg->num_nh = num_nh; return nhg; } static void nh_res_table_upkeep_dw(struct work_struct *work); static struct nh_res_table * nexthop_res_table_alloc(struct net *net, u32 nhg_id, struct nh_config *cfg) { const u16 num_nh_buckets = cfg->nh_grp_res_num_buckets; struct nh_res_table *res_table; unsigned long size; size = struct_size(res_table, nh_buckets, num_nh_buckets); res_table = __vmalloc(size, GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN); if (!res_table) return NULL; res_table->net = net; res_table->nhg_id = nhg_id; INIT_DELAYED_WORK(&res_table->upkeep_dw, &nh_res_table_upkeep_dw); INIT_LIST_HEAD(&res_table->uw_nh_entries); res_table->idle_timer = cfg->nh_grp_res_idle_timer; res_table->unbalanced_timer = cfg->nh_grp_res_unbalanced_timer; res_table->num_nh_buckets = num_nh_buckets; return res_table; } static void nh_base_seq_inc(struct net *net) { while (++net->nexthop.seq == 0) ; } /* no reference taken; rcu lock or rtnl must be held */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id) { struct rb_node **pp, *parent = NULL, *next; pp = &net->nexthop.rb_root.rb_node; while (1) { struct nexthop *nh; next = rcu_dereference_raw(*pp); if (!next) break; parent = next; nh = rb_entry(parent, struct nexthop, rb_node); if (id < nh->id) pp = &next->rb_left; else if (id > nh->id) pp = &next->rb_right; else return nh; } return NULL; } EXPORT_SYMBOL_GPL(nexthop_find_by_id); /* used for auto id allocation; called with rtnl held */ static u32 nh_find_unused_id(struct net *net) { u32 id_start = net->nexthop.last_id_allocated; while (1) { net->nexthop.last_id_allocated++; if (net->nexthop.last_id_allocated == id_start) break; if (!nexthop_find_by_id(net, net->nexthop.last_id_allocated)) return net->nexthop.last_id_allocated; } return 0; } static void nh_res_time_set_deadline(unsigned long next_time, unsigned long *deadline) { if (time_before(next_time, *deadline)) *deadline = next_time; } static clock_t nh_res_table_unbalanced_time(struct nh_res_table *res_table) { if (list_empty(&res_table->uw_nh_entries)) return 0; return jiffies_delta_to_clock_t(jiffies - res_table->unbalanced_since); } static int nla_put_nh_group_res(struct sk_buff *skb, struct nh_group *nhg) { struct nh_res_table *res_table = rtnl_dereference(nhg->res_table); struct nlattr *nest; nest = nla_nest_start(skb, NHA_RES_GROUP); if (!nest) return -EMSGSIZE; if (nla_put_u16(skb, NHA_RES_GROUP_BUCKETS, res_table->num_nh_buckets) || nla_put_u32(skb, NHA_RES_GROUP_IDLE_TIMER, jiffies_to_clock_t(res_table->idle_timer)) || nla_put_u32(skb, NHA_RES_GROUP_UNBALANCED_TIMER, jiffies_to_clock_t(res_table->unbalanced_timer)) || nla_put_u64_64bit(skb, NHA_RES_GROUP_UNBALANCED_TIME, nh_res_table_unbalanced_time(res_table), NHA_RES_GROUP_PAD)) goto nla_put_failure; nla_nest_end(skb, nest); return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static void nh_grp_entry_stats_inc(struct nh_grp_entry *nhge) { struct nh_grp_entry_stats *cpu_stats; cpu_stats = get_cpu_ptr(nhge->stats); u64_stats_update_begin(&cpu_stats->syncp); u64_stats_inc(&cpu_stats->packets); u64_stats_update_end(&cpu_stats->syncp); put_cpu_ptr(cpu_stats); } static void nh_grp_entry_stats_read(struct nh_grp_entry *nhge, u64 *ret_packets) { int i; *ret_packets = 0; for_each_possible_cpu(i) { struct nh_grp_entry_stats *cpu_stats; unsigned int start; u64 packets; cpu_stats = per_cpu_ptr(nhge->stats, i); do { start = u64_stats_fetch_begin(&cpu_stats->syncp); packets = u64_stats_read(&cpu_stats->packets); } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); *ret_packets += packets; } } static int nh_notifier_grp_hw_stats_init(struct nh_notifier_info *info, const struct nexthop *nh) { struct nh_group *nhg; int i; ASSERT_RTNL(); nhg = rtnl_dereference(nh->nh_grp); info->id = nh->id; info->type = NH_NOTIFIER_INFO_TYPE_GRP_HW_STATS; info->nh_grp_hw_stats = kzalloc(struct_size(info->nh_grp_hw_stats, stats, nhg->num_nh), GFP_KERNEL); if (!info->nh_grp_hw_stats) return -ENOMEM; info->nh_grp_hw_stats->num_nh = nhg->num_nh; for (i = 0; i < nhg->num_nh; i++) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; info->nh_grp_hw_stats->stats[i].id = nhge->nh->id; } return 0; } static void nh_notifier_grp_hw_stats_fini(struct nh_notifier_info *info) { kfree(info->nh_grp_hw_stats); } void nh_grp_hw_stats_report_delta(struct nh_notifier_grp_hw_stats_info *info, unsigned int nh_idx, u64 delta_packets) { info->hw_stats_used = true; info->stats[nh_idx].packets += delta_packets; } EXPORT_SYMBOL(nh_grp_hw_stats_report_delta); static void nh_grp_hw_stats_apply_update(struct nexthop *nh, struct nh_notifier_info *info) { struct nh_group *nhg; int i; ASSERT_RTNL(); nhg = rtnl_dereference(nh->nh_grp); for (i = 0; i < nhg->num_nh; i++) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; nhge->packets_hw += info->nh_grp_hw_stats->stats[i].packets; } } static int nh_grp_hw_stats_update(struct nexthop *nh, bool *hw_stats_used) { struct nh_notifier_info info = { .net = nh->net, }; struct net *net = nh->net; int err; if (nexthop_notifiers_is_empty(net)) { *hw_stats_used = false; return 0; } err = nh_notifier_grp_hw_stats_init(&info, nh); if (err) return err; err = blocking_notifier_call_chain(&net->nexthop.notifier_chain, NEXTHOP_EVENT_HW_STATS_REPORT_DELTA, &info); /* Cache whatever we got, even if there was an error, otherwise the * successful stats retrievals would get lost. */ nh_grp_hw_stats_apply_update(nh, &info); *hw_stats_used = info.nh_grp_hw_stats->hw_stats_used; nh_notifier_grp_hw_stats_fini(&info); return notifier_to_errno(err); } static int nla_put_nh_group_stats_entry(struct sk_buff *skb, struct nh_grp_entry *nhge, u32 op_flags) { struct nlattr *nest; u64 packets; nh_grp_entry_stats_read(nhge, &packets); nest = nla_nest_start(skb, NHA_GROUP_STATS_ENTRY); if (!nest) return -EMSGSIZE; if (nla_put_u32(skb, NHA_GROUP_STATS_ENTRY_ID, nhge->nh->id) || nla_put_uint(skb, NHA_GROUP_STATS_ENTRY_PACKETS, packets + nhge->packets_hw)) goto nla_put_failure; if (op_flags & NHA_OP_FLAG_DUMP_HW_STATS && nla_put_uint(skb, NHA_GROUP_STATS_ENTRY_PACKETS_HW, nhge->packets_hw)) goto nla_put_failure; nla_nest_end(skb, nest); return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int nla_put_nh_group_stats(struct sk_buff *skb, struct nexthop *nh, u32 op_flags) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); struct nlattr *nest; bool hw_stats_used; int err; int i; if (nla_put_u32(skb, NHA_HW_STATS_ENABLE, nhg->hw_stats)) goto err_out; if (op_flags & NHA_OP_FLAG_DUMP_HW_STATS && nhg->hw_stats) { err = nh_grp_hw_stats_update(nh, &hw_stats_used); if (err) goto out; if (nla_put_u32(skb, NHA_HW_STATS_USED, hw_stats_used)) goto err_out; } nest = nla_nest_start(skb, NHA_GROUP_STATS); if (!nest) goto err_out; for (i = 0; i < nhg->num_nh; i++) if (nla_put_nh_group_stats_entry(skb, &nhg->nh_entries[i], op_flags)) goto cancel_out; nla_nest_end(skb, nest); return 0; cancel_out: nla_nest_cancel(skb, nest); err_out: err = -EMSGSIZE; out: return err; } static int nla_put_nh_group(struct sk_buff *skb, struct nexthop *nh, u32 op_flags, u32 *resp_op_flags) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); struct nexthop_grp *p; size_t len = nhg->num_nh * sizeof(*p); struct nlattr *nla; u16 group_type = 0; u16 weight; int i; *resp_op_flags |= NHA_OP_FLAG_RESP_GRP_RESVD_0; if (nhg->hash_threshold) group_type = NEXTHOP_GRP_TYPE_MPATH; else if (nhg->resilient) group_type = NEXTHOP_GRP_TYPE_RES; if (nla_put_u16(skb, NHA_GROUP_TYPE, group_type)) goto nla_put_failure; nla = nla_reserve(skb, NHA_GROUP, len); if (!nla) goto nla_put_failure; p = nla_data(nla); for (i = 0; i < nhg->num_nh; ++i) { weight = nhg->nh_entries[i].weight - 1; *p++ = (struct nexthop_grp) { .id = nhg->nh_entries[i].nh->id, .weight = weight, .weight_high = weight >> 8, }; } if (nhg->resilient && nla_put_nh_group_res(skb, nhg)) goto nla_put_failure; if (op_flags & NHA_OP_FLAG_DUMP_STATS && (nla_put_u32(skb, NHA_HW_STATS_ENABLE, nhg->hw_stats) || nla_put_nh_group_stats(skb, nh, op_flags))) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static int nh_fill_node(struct sk_buff *skb, struct nexthop *nh, int event, u32 portid, u32 seq, unsigned int nlflags, u32 op_flags) { struct fib6_nh *fib6_nh; struct fib_nh *fib_nh; struct nlmsghdr *nlh; struct nh_info *nhi; struct nhmsg *nhm; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*nhm), nlflags); if (!nlh) return -EMSGSIZE; nhm = nlmsg_data(nlh); nhm->nh_family = AF_UNSPEC; nhm->nh_flags = nh->nh_flags; nhm->nh_protocol = nh->protocol; nhm->nh_scope = 0; nhm->resvd = 0; if (nla_put_u32(skb, NHA_ID, nh->id)) goto nla_put_failure; if (nh->is_group) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); u32 resp_op_flags = 0; if (nhg->fdb_nh && nla_put_flag(skb, NHA_FDB)) goto nla_put_failure; if (nla_put_nh_group(skb, nh, op_flags, &resp_op_flags) || nla_put_u32(skb, NHA_OP_FLAGS, resp_op_flags)) goto nla_put_failure; goto out; } nhi = rtnl_dereference(nh->nh_info); nhm->nh_family = nhi->family; if (nhi->reject_nh) { if (nla_put_flag(skb, NHA_BLACKHOLE)) goto nla_put_failure; goto out; } else if (nhi->fdb_nh) { if (nla_put_flag(skb, NHA_FDB)) goto nla_put_failure; } else { const struct net_device *dev; dev = nhi->fib_nhc.nhc_dev; if (dev && nla_put_u32(skb, NHA_OIF, dev->ifindex)) goto nla_put_failure; } nhm->nh_scope = nhi->fib_nhc.nhc_scope; switch (nhi->family) { case AF_INET: fib_nh = &nhi->fib_nh; if (fib_nh->fib_nh_gw_family && nla_put_be32(skb, NHA_GATEWAY, fib_nh->fib_nh_gw4)) goto nla_put_failure; break; case AF_INET6: fib6_nh = &nhi->fib6_nh; if (fib6_nh->fib_nh_gw_family && nla_put_in6_addr(skb, NHA_GATEWAY, &fib6_nh->fib_nh_gw6)) goto nla_put_failure; break; } if (nhi->fib_nhc.nhc_lwtstate && lwtunnel_fill_encap(skb, nhi->fib_nhc.nhc_lwtstate, NHA_ENCAP, NHA_ENCAP_TYPE) < 0) goto nla_put_failure; out: nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static size_t nh_nlmsg_size_grp_res(struct nh_group *nhg) { return nla_total_size(0) + /* NHA_RES_GROUP */ nla_total_size(2) + /* NHA_RES_GROUP_BUCKETS */ nla_total_size(4) + /* NHA_RES_GROUP_IDLE_TIMER */ nla_total_size(4) + /* NHA_RES_GROUP_UNBALANCED_TIMER */ nla_total_size_64bit(8);/* NHA_RES_GROUP_UNBALANCED_TIME */ } static size_t nh_nlmsg_size_grp(struct nexthop *nh) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); size_t sz = sizeof(struct nexthop_grp) * nhg->num_nh; size_t tot = nla_total_size(sz) + nla_total_size(2); /* NHA_GROUP_TYPE */ if (nhg->resilient) tot += nh_nlmsg_size_grp_res(nhg); return tot; } static size_t nh_nlmsg_size_single(struct nexthop *nh) { struct nh_info *nhi = rtnl_dereference(nh->nh_info); size_t sz; /* covers NHA_BLACKHOLE since NHA_OIF and BLACKHOLE * are mutually exclusive */ sz = nla_total_size(4); /* NHA_OIF */ switch (nhi->family) { case AF_INET: if (nhi->fib_nh.fib_nh_gw_family) sz += nla_total_size(4); /* NHA_GATEWAY */ break; case AF_INET6: /* NHA_GATEWAY */ if (nhi->fib6_nh.fib_nh_gw_family) sz += nla_total_size(sizeof(const struct in6_addr)); break; } if (nhi->fib_nhc.nhc_lwtstate) { sz += lwtunnel_get_encap_size(nhi->fib_nhc.nhc_lwtstate); sz += nla_total_size(2); /* NHA_ENCAP_TYPE */ } return sz; } static size_t nh_nlmsg_size(struct nexthop *nh) { size_t sz = NLMSG_ALIGN(sizeof(struct nhmsg)); sz += nla_total_size(4); /* NHA_ID */ if (nh->is_group) sz += nh_nlmsg_size_grp(nh) + nla_total_size(4) + /* NHA_OP_FLAGS */ 0; else sz += nh_nlmsg_size_single(nh); return sz; } static void nexthop_notify(int event, struct nexthop *nh, struct nl_info *info) { unsigned int nlflags = info->nlh ? info->nlh->nlmsg_flags : 0; u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(nh_nlmsg_size(nh), gfp_any()); if (!skb) goto errout; err = nh_fill_node(skb, nh, event, info->portid, seq, nlflags, 0); if (err < 0) { /* -EMSGSIZE implies BUG in nh_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, info->nl_net, info->portid, RTNLGRP_NEXTHOP, info->nlh, gfp_any()); return; errout: rtnl_set_sk_err(info->nl_net, RTNLGRP_NEXTHOP, err); } static unsigned long nh_res_bucket_used_time(const struct nh_res_bucket *bucket) { return (unsigned long)atomic_long_read(&bucket->used_time); } static unsigned long nh_res_bucket_idle_point(const struct nh_res_table *res_table, const struct nh_res_bucket *bucket, unsigned long now) { unsigned long time = nh_res_bucket_used_time(bucket); /* Bucket was not used since it was migrated. The idle time is now. */ if (time == bucket->migrated_time) return now; return time + res_table->idle_timer; } static unsigned long nh_res_table_unb_point(const struct nh_res_table *res_table) { return res_table->unbalanced_since + res_table->unbalanced_timer; } static void nh_res_bucket_set_idle(const struct nh_res_table *res_table, struct nh_res_bucket *bucket) { unsigned long now = jiffies; atomic_long_set(&bucket->used_time, (long)now); bucket->migrated_time = now; } static void nh_res_bucket_set_busy(struct nh_res_bucket *bucket) { atomic_long_set(&bucket->used_time, (long)jiffies); } static clock_t nh_res_bucket_idle_time(const struct nh_res_bucket *bucket) { unsigned long used_time = nh_res_bucket_used_time(bucket); return jiffies_delta_to_clock_t(jiffies - used_time); } static int nh_fill_res_bucket(struct sk_buff *skb, struct nexthop *nh, struct nh_res_bucket *bucket, u16 bucket_index, int event, u32 portid, u32 seq, unsigned int nlflags, struct netlink_ext_ack *extack) { struct nh_grp_entry *nhge = nh_res_dereference(bucket->nh_entry); struct nlmsghdr *nlh; struct nlattr *nest; struct nhmsg *nhm; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*nhm), nlflags); if (!nlh) return -EMSGSIZE; nhm = nlmsg_data(nlh); nhm->nh_family = AF_UNSPEC; nhm->nh_flags = bucket->nh_flags; nhm->nh_protocol = nh->protocol; nhm->nh_scope = 0; nhm->resvd = 0; if (nla_put_u32(skb, NHA_ID, nh->id)) goto nla_put_failure; nest = nla_nest_start(skb, NHA_RES_BUCKET); if (!nest) goto nla_put_failure; if (nla_put_u16(skb, NHA_RES_BUCKET_INDEX, bucket_index) || nla_put_u32(skb, NHA_RES_BUCKET_NH_ID, nhge->nh->id) || nla_put_u64_64bit(skb, NHA_RES_BUCKET_IDLE_TIME, nh_res_bucket_idle_time(bucket), NHA_RES_BUCKET_PAD)) goto nla_put_failure_nest; nla_nest_end(skb, nest); nlmsg_end(skb, nlh); return 0; nla_put_failure_nest: nla_nest_cancel(skb, nest); nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static void nexthop_bucket_notify(struct nh_res_table *res_table, u16 bucket_index) { struct nh_res_bucket *bucket = &res_table->nh_buckets[bucket_index]; struct nh_grp_entry *nhge = nh_res_dereference(bucket->nh_entry); struct nexthop *nh = nhge->nh_parent; struct sk_buff *skb; int err = -ENOBUFS; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) goto errout; err = nh_fill_res_bucket(skb, nh, bucket, bucket_index, RTM_NEWNEXTHOPBUCKET, 0, 0, NLM_F_REPLACE, NULL); if (err < 0) { kfree_skb(skb); goto errout; } rtnl_notify(skb, nh->net, 0, RTNLGRP_NEXTHOP, NULL, GFP_KERNEL); return; errout: rtnl_set_sk_err(nh->net, RTNLGRP_NEXTHOP, err); } static bool valid_group_nh(struct nexthop *nh, unsigned int npaths, bool *is_fdb, struct netlink_ext_ack *extack) { if (nh->is_group) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); /* Nesting groups within groups is not supported. */ if (nhg->hash_threshold) { NL_SET_ERR_MSG(extack, "Hash-threshold group can not be a nexthop within a group"); return false; } if (nhg->resilient) { NL_SET_ERR_MSG(extack, "Resilient group can not be a nexthop within a group"); return false; } *is_fdb = nhg->fdb_nh; } else { struct nh_info *nhi = rtnl_dereference(nh->nh_info); if (nhi->reject_nh && npaths > 1) { NL_SET_ERR_MSG(extack, "Blackhole nexthop can not be used in a group with more than 1 path"); return false; } *is_fdb = nhi->fdb_nh; } return true; } static int nh_check_attr_fdb_group(struct nexthop *nh, u8 *nh_family, struct netlink_ext_ack *extack) { struct nh_info *nhi; nhi = rtnl_dereference(nh->nh_info); if (!nhi->fdb_nh) { NL_SET_ERR_MSG(extack, "FDB nexthop group can only have fdb nexthops"); return -EINVAL; } if (*nh_family == AF_UNSPEC) { *nh_family = nhi->family; } else if (*nh_family != nhi->family) { NL_SET_ERR_MSG(extack, "FDB nexthop group cannot have mixed family nexthops"); return -EINVAL; } return 0; } static int nh_check_attr_group(struct net *net, struct nlattr *tb[], size_t tb_size, u16 nh_grp_type, struct netlink_ext_ack *extack) { unsigned int len = nla_len(tb[NHA_GROUP]); struct nexthop_grp *nhg; unsigned int i, j; if (!len || len & (sizeof(struct nexthop_grp) - 1)) { NL_SET_ERR_MSG(extack, "Invalid length for nexthop group attribute"); return -EINVAL; } /* convert len to number of nexthop ids */ len /= sizeof(*nhg); nhg = nla_data(tb[NHA_GROUP]); for (i = 0; i < len; ++i) { if (nhg[i].resvd2) { NL_SET_ERR_MSG(extack, "Reserved field in nexthop_grp must be 0"); return -EINVAL; } if (nexthop_grp_weight(&nhg[i]) == 0) { /* 0xffff got passed in, representing weight of 0x10000, * which is too heavy. */ NL_SET_ERR_MSG(extack, "Invalid value for weight"); return -EINVAL; } for (j = i + 1; j < len; ++j) { if (nhg[i].id == nhg[j].id) { NL_SET_ERR_MSG(extack, "Nexthop id can not be used twice in a group"); return -EINVAL; } } } nhg = nla_data(tb[NHA_GROUP]); for (i = NHA_GROUP_TYPE + 1; i < tb_size; ++i) { if (!tb[i]) continue; switch (i) { case NHA_HW_STATS_ENABLE: case NHA_FDB: continue; case NHA_RES_GROUP: if (nh_grp_type == NEXTHOP_GRP_TYPE_RES) continue; break; } NL_SET_ERR_MSG(extack, "No other attributes can be set in nexthop groups"); return -EINVAL; } return 0; } static int nh_check_attr_group_rtnl(struct net *net, struct nlattr *tb[], struct netlink_ext_ack *extack) { u8 nh_family = AF_UNSPEC; struct nexthop_grp *nhg; unsigned int len; unsigned int i; u8 nhg_fdb; len = nla_len(tb[NHA_GROUP]) / sizeof(*nhg); nhg = nla_data(tb[NHA_GROUP]); nhg_fdb = !!tb[NHA_FDB]; for (i = 0; i < len; i++) { struct nexthop *nh; bool is_fdb_nh; nh = nexthop_find_by_id(net, nhg[i].id); if (!nh) { NL_SET_ERR_MSG(extack, "Invalid nexthop id"); return -EINVAL; } if (!valid_group_nh(nh, len, &is_fdb_nh, extack)) return -EINVAL; if (nhg_fdb && nh_check_attr_fdb_group(nh, &nh_family, extack)) return -EINVAL; if (!nhg_fdb && is_fdb_nh) { NL_SET_ERR_MSG(extack, "Non FDB nexthop group cannot have fdb nexthops"); return -EINVAL; } } return 0; } static bool ipv6_good_nh(const struct fib6_nh *nh) { int state = NUD_REACHABLE; struct neighbour *n; rcu_read_lock(); n = __ipv6_neigh_lookup_noref_stub(nh->fib_nh_dev, &nh->fib_nh_gw6); if (n) state = READ_ONCE(n->nud_state); rcu_read_unlock(); return !!(state & NUD_VALID); } static bool ipv4_good_nh(const struct fib_nh *nh) { int state = NUD_REACHABLE; struct neighbour *n; rcu_read_lock(); n = __ipv4_neigh_lookup_noref(nh->fib_nh_dev, (__force u32)nh->fib_nh_gw4); if (n) state = READ_ONCE(n->nud_state); rcu_read_unlock(); return !!(state & NUD_VALID); } static bool nexthop_is_good_nh(const struct nexthop *nh) { struct nh_info *nhi = rcu_dereference(nh->nh_info); switch (nhi->family) { case AF_INET: return ipv4_good_nh(&nhi->fib_nh); case AF_INET6: return ipv6_good_nh(&nhi->fib6_nh); } return false; } static struct nexthop *nexthop_select_path_fdb(struct nh_group *nhg, int hash) { int i; for (i = 0; i < nhg->num_nh; i++) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; if (hash > atomic_read(&nhge->hthr.upper_bound)) continue; nh_grp_entry_stats_inc(nhge); return nhge->nh; } WARN_ON_ONCE(1); return NULL; } static struct nexthop *nexthop_select_path_hthr(struct nh_group *nhg, int hash) { struct nh_grp_entry *nhge0 = NULL; int i; if (nhg->fdb_nh) return nexthop_select_path_fdb(nhg, hash); for (i = 0; i < nhg->num_nh; ++i) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; /* nexthops always check if it is good and does * not rely on a sysctl for this behavior */ if (!nexthop_is_good_nh(nhge->nh)) continue; if (!nhge0) nhge0 = nhge; if (hash > atomic_read(&nhge->hthr.upper_bound)) continue; nh_grp_entry_stats_inc(nhge); return nhge->nh; } if (!nhge0) nhge0 = &nhg->nh_entries[0]; nh_grp_entry_stats_inc(nhge0); return nhge0->nh; } static struct nexthop *nexthop_select_path_res(struct nh_group *nhg, int hash) { struct nh_res_table *res_table = rcu_dereference(nhg->res_table); u16 bucket_index = hash % res_table->num_nh_buckets; struct nh_res_bucket *bucket; struct nh_grp_entry *nhge; /* nexthop_select_path() is expected to return a non-NULL value, so * skip protocol validation and just hand out whatever there is. */ bucket = &res_table->nh_buckets[bucket_index]; nh_res_bucket_set_busy(bucket); nhge = rcu_dereference(bucket->nh_entry); nh_grp_entry_stats_inc(nhge); return nhge->nh; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash) { struct nh_group *nhg; if (!nh->is_group) return nh; nhg = rcu_dereference(nh->nh_grp); if (nhg->hash_threshold) return nexthop_select_path_hthr(nhg, hash); else if (nhg->resilient) return nexthop_select_path_res(nhg, hash); /* Unreachable. */ return NULL; } EXPORT_SYMBOL_GPL(nexthop_select_path); int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg) { struct nh_info *nhi; int err; if (nh->is_group) { struct nh_group *nhg; int i; nhg = rcu_dereference_rtnl(nh->nh_grp); for (i = 0; i < nhg->num_nh; i++) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; nhi = rcu_dereference_rtnl(nhge->nh->nh_info); err = cb(&nhi->fib6_nh, arg); if (err) return err; } } else { nhi = rcu_dereference_rtnl(nh->nh_info); err = cb(&nhi->fib6_nh, arg); if (err) return err; } return 0; } EXPORT_SYMBOL_GPL(nexthop_for_each_fib6_nh); static int check_src_addr(const struct in6_addr *saddr, struct netlink_ext_ack *extack) { if (!ipv6_addr_any(saddr)) { NL_SET_ERR_MSG(extack, "IPv6 routes using source address can not use nexthop objects"); return -EINVAL; } return 0; } int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct nh_info *nhi; bool is_fdb_nh; /* fib6_src is unique to a fib6_info and limits the ability to cache * routes in fib6_nh within a nexthop that is potentially shared * across multiple fib entries. If the config wants to use source * routing it can not use nexthop objects. mlxsw also does not allow * fib6_src on routes. */ if (cfg && check_src_addr(&cfg->fc_src, extack) < 0) return -EINVAL; if (nh->is_group) { struct nh_group *nhg; nhg = rtnl_dereference(nh->nh_grp); if (nhg->has_v4) goto no_v4_nh; is_fdb_nh = nhg->fdb_nh; } else { nhi = rtnl_dereference(nh->nh_info); if (nhi->family == AF_INET) goto no_v4_nh; is_fdb_nh = nhi->fdb_nh; } if (is_fdb_nh) { NL_SET_ERR_MSG(extack, "Route cannot point to a fdb nexthop"); return -EINVAL; } return 0; no_v4_nh: NL_SET_ERR_MSG(extack, "IPv6 routes can not use an IPv4 nexthop"); return -EINVAL; } EXPORT_SYMBOL_GPL(fib6_check_nexthop); /* if existing nexthop has ipv6 routes linked to it, need * to verify this new spec works with ipv6 */ static int fib6_check_nh_list(struct nexthop *old, struct nexthop *new, struct netlink_ext_ack *extack) { struct fib6_info *f6i; if (list_empty(&old->f6i_list)) return 0; list_for_each_entry(f6i, &old->f6i_list, nh_list) { if (check_src_addr(&f6i->fib6_src.addr, extack) < 0) return -EINVAL; } return fib6_check_nexthop(new, NULL, extack); } static int nexthop_check_scope(struct nh_info *nhi, u8 scope, struct netlink_ext_ack *extack) { if (scope == RT_SCOPE_HOST && nhi->fib_nhc.nhc_gw_family) { NL_SET_ERR_MSG(extack, "Route with host scope can not have a gateway"); return -EINVAL; } if (nhi->fib_nhc.nhc_flags & RTNH_F_ONLINK && scope >= RT_SCOPE_LINK) { NL_SET_ERR_MSG(extack, "Scope mismatch with nexthop"); return -EINVAL; } return 0; } /* Invoked by fib add code to verify nexthop by id is ok with * config for prefix; parts of fib_check_nh not done when nexthop * object is used. */ int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack) { struct nh_info *nhi; int err = 0; if (nh->is_group) { struct nh_group *nhg; nhg = rtnl_dereference(nh->nh_grp); if (nhg->fdb_nh) { NL_SET_ERR_MSG(extack, "Route cannot point to a fdb nexthop"); err = -EINVAL; goto out; } if (scope == RT_SCOPE_HOST) { NL_SET_ERR_MSG(extack, "Route with host scope can not have multiple nexthops"); err = -EINVAL; goto out; } /* all nexthops in a group have the same scope */ nhi = rtnl_dereference(nhg->nh_entries[0].nh->nh_info); err = nexthop_check_scope(nhi, scope, extack); } else { nhi = rtnl_dereference(nh->nh_info); if (nhi->fdb_nh) { NL_SET_ERR_MSG(extack, "Route cannot point to a fdb nexthop"); err = -EINVAL; goto out; } err = nexthop_check_scope(nhi, scope, extack); } out: return err; } static int fib_check_nh_list(struct nexthop *old, struct nexthop *new, struct netlink_ext_ack *extack) { struct fib_info *fi; list_for_each_entry(fi, &old->fi_list, nh_list) { int err; err = fib_check_nexthop(new, fi->fib_scope, extack); if (err) return err; } return 0; } static bool nh_res_nhge_is_balanced(const struct nh_grp_entry *nhge) { return nhge->res.count_buckets == nhge->res.wants_buckets; } static bool nh_res_nhge_is_ow(const struct nh_grp_entry *nhge) { return nhge->res.count_buckets > nhge->res.wants_buckets; } static bool nh_res_nhge_is_uw(const struct nh_grp_entry *nhge) { return nhge->res.count_buckets < nhge->res.wants_buckets; } static bool nh_res_table_is_balanced(const struct nh_res_table *res_table) { return list_empty(&res_table->uw_nh_entries); } static void nh_res_bucket_unset_nh(struct nh_res_bucket *bucket) { struct nh_grp_entry *nhge; if (bucket->occupied) { nhge = nh_res_dereference(bucket->nh_entry); nhge->res.count_buckets--; bucket->occupied = false; } } static void nh_res_bucket_set_nh(struct nh_res_bucket *bucket, struct nh_grp_entry *nhge) { nh_res_bucket_unset_nh(bucket); bucket->occupied = true; rcu_assign_pointer(bucket->nh_entry, nhge); nhge->res.count_buckets++; } static bool nh_res_bucket_should_migrate(struct nh_res_table *res_table, struct nh_res_bucket *bucket, unsigned long *deadline, bool *force) { unsigned long now = jiffies; struct nh_grp_entry *nhge; unsigned long idle_point; if (!bucket->occupied) { /* The bucket is not occupied, its NHGE pointer is either * NULL or obsolete. We _have to_ migrate: set force. */ *force = true; return true; } nhge = nh_res_dereference(bucket->nh_entry); /* If the bucket is populated by an underweight or balanced * nexthop, do not migrate. */ if (!nh_res_nhge_is_ow(nhge)) return false; /* At this point we know that the bucket is populated with an * overweight nexthop. It needs to be migrated to a new nexthop if * the idle timer of unbalanced timer expired. */ idle_point = nh_res_bucket_idle_point(res_table, bucket, now); if (time_after_eq(now, idle_point)) { /* The bucket is idle. We _can_ migrate: unset force. */ *force = false; return true; } /* Unbalanced timer of 0 means "never force". */ if (res_table->unbalanced_timer) { unsigned long unb_point; unb_point = nh_res_table_unb_point(res_table); if (time_after(now, unb_point)) { /* The bucket is not idle, but the unbalanced timer * expired. We _can_ migrate, but set force anyway, * so that drivers know to ignore activity reports * from the HW. */ *force = true; return true; } nh_res_time_set_deadline(unb_point, deadline); } nh_res_time_set_deadline(idle_point, deadline); return false; } static bool nh_res_bucket_migrate(struct nh_res_table *res_table, u16 bucket_index, bool notify, bool notify_nl, bool force) { struct nh_res_bucket *bucket = &res_table->nh_buckets[bucket_index]; struct nh_grp_entry *new_nhge; struct netlink_ext_ack extack; int err; new_nhge = list_first_entry_or_null(&res_table->uw_nh_entries, struct nh_grp_entry, res.uw_nh_entry); if (WARN_ON_ONCE(!new_nhge)) /* If this function is called, "bucket" is either not * occupied, or it belongs to a next hop that is * overweight. In either case, there ought to be a * corresponding underweight next hop. */ return false; if (notify) { struct nh_grp_entry *old_nhge; old_nhge = nh_res_dereference(bucket->nh_entry); err = call_nexthop_res_bucket_notifiers(res_table->net, res_table->nhg_id, bucket_index, force, old_nhge->nh, new_nhge->nh, &extack); if (err) { pr_err_ratelimited("%s\n", extack._msg); if (!force) return false; /* It is not possible to veto a forced replacement, so * just clear the hardware flags from the nexthop * bucket to indicate to user space that this bucket is * not correctly populated in hardware. */ bucket->nh_flags &= ~(RTNH_F_OFFLOAD | RTNH_F_TRAP); } } nh_res_bucket_set_nh(bucket, new_nhge); nh_res_bucket_set_idle(res_table, bucket); if (notify_nl) nexthop_bucket_notify(res_table, bucket_index); if (nh_res_nhge_is_balanced(new_nhge)) list_del(&new_nhge->res.uw_nh_entry); return true; } #define NH_RES_UPKEEP_DW_MINIMUM_INTERVAL (HZ / 2) static void nh_res_table_upkeep(struct nh_res_table *res_table, bool notify, bool notify_nl) { unsigned long now = jiffies; unsigned long deadline; u16 i; /* Deadline is the next time that upkeep should be run. It is the * earliest time at which one of the buckets might be migrated. * Start at the most pessimistic estimate: either unbalanced_timer * from now, or if there is none, idle_timer from now. For each * encountered time point, call nh_res_time_set_deadline() to * refine the estimate. */ if (res_table->unbalanced_timer) deadline = now + res_table->unbalanced_timer; else deadline = now + res_table->idle_timer; for (i = 0; i < res_table->num_nh_buckets; i++) { struct nh_res_bucket *bucket = &res_table->nh_buckets[i]; bool force; if (nh_res_bucket_should_migrate(res_table, bucket, &deadline, &force)) { if (!nh_res_bucket_migrate(res_table, i, notify, notify_nl, force)) { unsigned long idle_point; /* A driver can override the migration * decision if the HW reports that the * bucket is actually not idle. Therefore * remark the bucket as busy again and * update the deadline. */ nh_res_bucket_set_busy(bucket); idle_point = nh_res_bucket_idle_point(res_table, bucket, now); nh_res_time_set_deadline(idle_point, &deadline); } } } /* If the group is still unbalanced, schedule the next upkeep to * either the deadline computed above, or the minimum deadline, * whichever comes later. */ if (!nh_res_table_is_balanced(res_table)) { unsigned long now = jiffies; unsigned long min_deadline; min_deadline = now + NH_RES_UPKEEP_DW_MINIMUM_INTERVAL; if (time_before(deadline, min_deadline)) deadline = min_deadline; queue_delayed_work(system_power_efficient_wq, &res_table->upkeep_dw, deadline - now); } } static void nh_res_table_upkeep_dw(struct work_struct *work) { struct delayed_work *dw = to_delayed_work(work); struct nh_res_table *res_table; res_table = container_of(dw, struct nh_res_table, upkeep_dw); nh_res_table_upkeep(res_table, true, true); } static void nh_res_table_cancel_upkeep(struct nh_res_table *res_table) { cancel_delayed_work_sync(&res_table->upkeep_dw); } static void nh_res_group_rebalance(struct nh_group *nhg, struct nh_res_table *res_table) { u16 prev_upper_bound = 0; u32 total = 0; u32 w = 0; int i; INIT_LIST_HEAD(&res_table->uw_nh_entries); for (i = 0; i < nhg->num_nh; ++i) total += nhg->nh_entries[i].weight; for (i = 0; i < nhg->num_nh; ++i) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; u16 upper_bound; u64 btw; w += nhge->weight; btw = ((u64)res_table->num_nh_buckets) * w; upper_bound = DIV_ROUND_CLOSEST_ULL(btw, total); nhge->res.wants_buckets = upper_bound - prev_upper_bound; prev_upper_bound = upper_bound; if (nh_res_nhge_is_uw(nhge)) { if (list_empty(&res_table->uw_nh_entries)) res_table->unbalanced_since = jiffies; list_add(&nhge->res.uw_nh_entry, &res_table->uw_nh_entries); } } } /* Migrate buckets in res_table so that they reference NHGE's from NHG with * the right NH ID. Set those buckets that do not have a corresponding NHGE * entry in NHG as not occupied. */ static void nh_res_table_migrate_buckets(struct nh_res_table *res_table, struct nh_group *nhg) { u16 i; for (i = 0; i < res_table->num_nh_buckets; i++) { struct nh_res_bucket *bucket = &res_table->nh_buckets[i]; u32 id = rtnl_dereference(bucket->nh_entry)->nh->id; bool found = false; int j; for (j = 0; j < nhg->num_nh; j++) { struct nh_grp_entry *nhge = &nhg->nh_entries[j]; if (nhge->nh->id == id) { nh_res_bucket_set_nh(bucket, nhge); found = true; break; } } if (!found) nh_res_bucket_unset_nh(bucket); } } static void replace_nexthop_grp_res(struct nh_group *oldg, struct nh_group *newg) { /* For NH group replacement, the new NHG might only have a stub * hash table with 0 buckets, because the number of buckets was not * specified. For NH removal, oldg and newg both reference the same * res_table. So in any case, in the following, we want to work * with oldg->res_table. */ struct nh_res_table *old_res_table = rtnl_dereference(oldg->res_table); unsigned long prev_unbalanced_since = old_res_table->unbalanced_since; bool prev_has_uw = !list_empty(&old_res_table->uw_nh_entries); nh_res_table_cancel_upkeep(old_res_table); nh_res_table_migrate_buckets(old_res_table, newg); nh_res_group_rebalance(newg, old_res_table); if (prev_has_uw && !list_empty(&old_res_table->uw_nh_entries)) old_res_table->unbalanced_since = prev_unbalanced_since; nh_res_table_upkeep(old_res_table, true, false); } static void nh_hthr_group_rebalance(struct nh_group *nhg) { u32 total = 0; u32 w = 0; int i; for (i = 0; i < nhg->num_nh; ++i) total += nhg->nh_entries[i].weight; for (i = 0; i < nhg->num_nh; ++i) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; u32 upper_bound; w += nhge->weight; upper_bound = DIV_ROUND_CLOSEST_ULL((u64)w << 31, total) - 1; atomic_set(&nhge->hthr.upper_bound, upper_bound); } } static void remove_nh_grp_entry(struct net *net, struct nh_grp_entry *nhge, struct nl_info *nlinfo) { struct nh_grp_entry *nhges, *new_nhges; struct nexthop *nhp = nhge->nh_parent; struct netlink_ext_ack extack; struct nexthop *nh = nhge->nh; struct nh_group *nhg, *newg; int i, j, err; WARN_ON(!nh); nhg = rtnl_dereference(nhp->nh_grp); newg = nhg->spare; /* last entry, keep it visible and remove the parent */ if (nhg->num_nh == 1) { remove_nexthop(net, nhp, nlinfo); return; } newg->has_v4 = false; newg->is_multipath = nhg->is_multipath; newg->hash_threshold = nhg->hash_threshold; newg->resilient = nhg->resilient; newg->fdb_nh = nhg->fdb_nh; newg->num_nh = nhg->num_nh; /* copy old entries to new except the one getting removed */ nhges = nhg->nh_entries; new_nhges = newg->nh_entries; for (i = 0, j = 0; i < nhg->num_nh; ++i) { struct nh_info *nhi; /* current nexthop getting removed */ if (nhg->nh_entries[i].nh == nh) { newg->num_nh--; continue; } nhi = rtnl_dereference(nhges[i].nh->nh_info); if (nhi->family == AF_INET) newg->has_v4 = true; list_del(&nhges[i].nh_list); new_nhges[j].stats = nhges[i].stats; new_nhges[j].nh_parent = nhges[i].nh_parent; new_nhges[j].nh = nhges[i].nh; new_nhges[j].weight = nhges[i].weight; list_add(&new_nhges[j].nh_list, &new_nhges[j].nh->grp_list); j++; } if (newg->hash_threshold) nh_hthr_group_rebalance(newg); else if (newg->resilient) replace_nexthop_grp_res(nhg, newg); rcu_assign_pointer(nhp->nh_grp, newg); list_del(&nhge->nh_list); free_percpu(nhge->stats); nexthop_put(nhge->nh); /* Removal of a NH from a resilient group is notified through * bucket notifications. */ if (newg->hash_threshold) { err = call_nexthop_notifiers(net, NEXTHOP_EVENT_REPLACE, nhp, &extack); if (err) pr_err("%s\n", extack._msg); } if (nlinfo) nexthop_notify(RTM_NEWNEXTHOP, nhp, nlinfo); } static void remove_nexthop_from_groups(struct net *net, struct nexthop *nh, struct nl_info *nlinfo) { struct nh_grp_entry *nhge, *tmp; list_for_each_entry_safe(nhge, tmp, &nh->grp_list, nh_list) remove_nh_grp_entry(net, nhge, nlinfo); /* make sure all see the newly published array before releasing rtnl */ synchronize_net(); } static void remove_nexthop_group(struct nexthop *nh, struct nl_info *nlinfo) { struct nh_group *nhg = rcu_dereference_rtnl(nh->nh_grp); struct nh_res_table *res_table; int i, num_nh = nhg->num_nh; for (i = 0; i < num_nh; ++i) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; if (WARN_ON(!nhge->nh)) continue; list_del_init(&nhge->nh_list); } if (nhg->resilient) { res_table = rtnl_dereference(nhg->res_table); nh_res_table_cancel_upkeep(res_table); } } /* not called for nexthop replace */ static void __remove_nexthop_fib(struct net *net, struct nexthop *nh) { struct fib6_info *f6i, *tmp; bool do_flush = false; struct fib_info *fi; list_for_each_entry(fi, &nh->fi_list, nh_list) { fi->fib_flags |= RTNH_F_DEAD; do_flush = true; } if (do_flush) fib_flush(net); /* ip6_del_rt removes the entry from this list hence the _safe */ list_for_each_entry_safe(f6i, tmp, &nh->f6i_list, nh_list) { /* __ip6_del_rt does a release, so do a hold here */ fib6_info_hold(f6i); ipv6_stub->ip6_del_rt(net, f6i, !READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode)); } } static void __remove_nexthop(struct net *net, struct nexthop *nh, struct nl_info *nlinfo) { __remove_nexthop_fib(net, nh); if (nh->is_group) { remove_nexthop_group(nh, nlinfo); } else { struct nh_info *nhi; nhi = rtnl_dereference(nh->nh_info); if (nhi->fib_nhc.nhc_dev) hlist_del(&nhi->dev_hash); remove_nexthop_from_groups(net, nh, nlinfo); } } static void remove_nexthop(struct net *net, struct nexthop *nh, struct nl_info *nlinfo) { call_nexthop_notifiers(net, NEXTHOP_EVENT_DEL, nh, NULL); /* remove from the tree */ rb_erase(&nh->rb_node, &net->nexthop.rb_root); if (nlinfo) nexthop_notify(RTM_DELNEXTHOP, nh, nlinfo); __remove_nexthop(net, nh, nlinfo); nh_base_seq_inc(net); nexthop_put(nh); } /* if any FIB entries reference this nexthop, any dst entries * need to be regenerated */ static void nh_rt_cache_flush(struct net *net, struct nexthop *nh, struct nexthop *replaced_nh) { struct fib6_info *f6i; struct nh_group *nhg; int i; if (!list_empty(&nh->fi_list)) rt_cache_flush(net); list_for_each_entry(f6i, &nh->f6i_list, nh_list) ipv6_stub->fib6_update_sernum(net, f6i); /* if an IPv6 group was replaced, we have to release all old * dsts to make sure all refcounts are released */ if (!replaced_nh->is_group) return; nhg = rtnl_dereference(replaced_nh->nh_grp); for (i = 0; i < nhg->num_nh; i++) { struct nh_grp_entry *nhge = &nhg->nh_entries[i]; struct nh_info *nhi = rtnl_dereference(nhge->nh->nh_info); if (nhi->family == AF_INET6) ipv6_stub->fib6_nh_release_dsts(&nhi->fib6_nh); } } static int replace_nexthop_grp(struct net *net, struct nexthop *old, struct nexthop *new, const struct nh_config *cfg, struct netlink_ext_ack *extack) { struct nh_res_table *tmp_table = NULL; struct nh_res_table *new_res_table; struct nh_res_table *old_res_table; struct nh_group *oldg, *newg; int i, err; if (!new->is_group) { NL_SET_ERR_MSG(extack, "Can not replace a nexthop group with a nexthop."); return -EINVAL; } oldg = rtnl_dereference(old->nh_grp); newg = rtnl_dereference(new->nh_grp); if (newg->hash_threshold != oldg->hash_threshold) { NL_SET_ERR_MSG(extack, "Can not replace a nexthop group with one of a different type."); return -EINVAL; } if (newg->hash_threshold) { err = call_nexthop_notifiers(net, NEXTHOP_EVENT_REPLACE, new, extack); if (err) return err; } else if (newg->resilient) { new_res_table = rtnl_dereference(newg->res_table); old_res_table = rtnl_dereference(oldg->res_table); /* Accept if num_nh_buckets was not given, but if it was * given, demand that the value be correct. */ if (cfg->nh_grp_res_has_num_buckets && cfg->nh_grp_res_num_buckets != old_res_table->num_nh_buckets) { NL_SET_ERR_MSG(extack, "Can not change number of buckets of a resilient nexthop group."); return -EINVAL; } /* Emit a pre-replace notification so that listeners could veto * a potentially unsupported configuration. Otherwise, * individual bucket replacement notifications would need to be * vetoed, which is something that should only happen if the * bucket is currently active. */ err = call_nexthop_res_table_notifiers(net, new, extack); if (err) return err; if (cfg->nh_grp_res_has_idle_timer) old_res_table->idle_timer = cfg->nh_grp_res_idle_timer; if (cfg->nh_grp_res_has_unbalanced_timer) old_res_table->unbalanced_timer = cfg->nh_grp_res_unbalanced_timer; replace_nexthop_grp_res(oldg, newg); tmp_table = new_res_table; rcu_assign_pointer(newg->res_table, old_res_table); rcu_assign_pointer(newg->spare->res_table, old_res_table); } /* update parents - used by nexthop code for cleanup */ for (i = 0; i < newg->num_nh; i++) newg->nh_entries[i].nh_parent = old; rcu_assign_pointer(old->nh_grp, newg); /* Make sure concurrent readers are not using 'oldg' anymore. */ synchronize_net(); if (newg->resilient) { rcu_assign_pointer(oldg->res_table, tmp_table); rcu_assign_pointer(oldg->spare->res_table, tmp_table); } for (i = 0; i < oldg->num_nh; i++) oldg->nh_entries[i].nh_parent = new; rcu_assign_pointer(new->nh_grp, oldg); return 0; } static void nh_group_v4_update(struct nh_group *nhg) { struct nh_grp_entry *nhges; bool has_v4 = false; int i; nhges = nhg->nh_entries; for (i = 0; i < nhg->num_nh; i++) { struct nh_info *nhi; nhi = rtnl_dereference(nhges[i].nh->nh_info); if (nhi->family == AF_INET) has_v4 = true; } nhg->has_v4 = has_v4; } static int replace_nexthop_single_notify_res(struct net *net, struct nh_res_table *res_table, struct nexthop *old, struct nh_info *oldi, struct nh_info *newi, struct netlink_ext_ack *extack) { u32 nhg_id = res_table->nhg_id; int err; u16 i; for (i = 0; i < res_table->num_nh_buckets; i++) { struct nh_res_bucket *bucket = &res_table->nh_buckets[i]; struct nh_grp_entry *nhge; nhge = rtnl_dereference(bucket->nh_entry); if (nhge->nh == old) { err = __call_nexthop_res_bucket_notifiers(net, nhg_id, i, true, oldi, newi, extack); if (err) goto err_notify; } } return 0; err_notify: while (i-- > 0) { struct nh_res_bucket *bucket = &res_table->nh_buckets[i]; struct nh_grp_entry *nhge; nhge = rtnl_dereference(bucket->nh_entry); if (nhge->nh == old) __call_nexthop_res_bucket_notifiers(net, nhg_id, i, true, newi, oldi, extack); } return err; } static int replace_nexthop_single_notify(struct net *net, struct nexthop *group_nh, struct nexthop *old, struct nh_info *oldi, struct nh_info *newi, struct netlink_ext_ack *extack) { struct nh_group *nhg = rtnl_dereference(group_nh->nh_grp); struct nh_res_table *res_table; if (nhg->hash_threshold) { return call_nexthop_notifiers(net, NEXTHOP_EVENT_REPLACE, group_nh, extack); } else if (nhg->resilient) { res_table = rtnl_dereference(nhg->res_table); return replace_nexthop_single_notify_res(net, res_table, old, oldi, newi, extack); } return -EINVAL; } static int replace_nexthop_single(struct net *net, struct nexthop *old, struct nexthop *new, struct netlink_ext_ack *extack) { u8 old_protocol, old_nh_flags; struct nh_info *oldi, *newi; struct nh_grp_entry *nhge; int err; if (new->is_group) { NL_SET_ERR_MSG(extack, "Can not replace a nexthop with a nexthop group."); return -EINVAL; } err = call_nexthop_notifiers(net, NEXTHOP_EVENT_REPLACE, new, extack); if (err) return err; /* Hardware flags were set on 'old' as 'new' is not in the red-black * tree. Therefore, inherit the flags from 'old' to 'new'. */ new->nh_flags |= old->nh_flags & (RTNH_F_OFFLOAD | RTNH_F_TRAP); oldi = rtnl_dereference(old->nh_info); newi = rtnl_dereference(new->nh_info); newi->nh_parent = old; oldi->nh_parent = new; old_protocol = old->protocol; old_nh_flags = old->nh_flags; old->protocol = new->protocol; old->nh_flags = new->nh_flags; rcu_assign_pointer(old->nh_info, newi); rcu_assign_pointer(new->nh_info, oldi); /* Send a replace notification for all the groups using the nexthop. */ list_for_each_entry(nhge, &old->grp_list, nh_list) { struct nexthop *nhp = nhge->nh_parent; err = replace_nexthop_single_notify(net, nhp, old, oldi, newi, extack); if (err) goto err_notify; } /* When replacing an IPv4 nexthop with an IPv6 nexthop, potentially * update IPv4 indication in all the groups using the nexthop. */ if (oldi->family == AF_INET && newi->family == AF_INET6) { list_for_each_entry(nhge, &old->grp_list, nh_list) { struct nexthop *nhp = nhge->nh_parent; struct nh_group *nhg; nhg = rtnl_dereference(nhp->nh_grp); nh_group_v4_update(nhg); } } return 0; err_notify: rcu_assign_pointer(new->nh_info, newi); rcu_assign_pointer(old->nh_info, oldi); old->nh_flags = old_nh_flags; old->protocol = old_protocol; oldi->nh_parent = old; newi->nh_parent = new; list_for_each_entry_continue_reverse(nhge, &old->grp_list, nh_list) { struct nexthop *nhp = nhge->nh_parent; replace_nexthop_single_notify(net, nhp, old, newi, oldi, NULL); } call_nexthop_notifiers(net, NEXTHOP_EVENT_REPLACE, old, extack); return err; } static void __nexthop_replace_notify(struct net *net, struct nexthop *nh, struct nl_info *info) { struct fib6_info *f6i; if (!list_empty(&nh->fi_list)) { struct fib_info *fi; /* expectation is a few fib_info per nexthop and then * a lot of routes per fib_info. So mark the fib_info * and then walk the fib tables once */ list_for_each_entry(fi, &nh->fi_list, nh_list) fi->nh_updated = true; fib_info_notify_update(net, info); list_for_each_entry(fi, &nh->fi_list, nh_list) fi->nh_updated = false; } list_for_each_entry(f6i, &nh->f6i_list, nh_list) ipv6_stub->fib6_rt_update(net, f6i, info); } /* send RTM_NEWROUTE with REPLACE flag set for all FIB entries * linked to this nexthop and for all groups that the nexthop * is a member of */ static void nexthop_replace_notify(struct net *net, struct nexthop *nh, struct nl_info *info) { struct nh_grp_entry *nhge; __nexthop_replace_notify(net, nh, info); list_for_each_entry(nhge, &nh->grp_list, nh_list) __nexthop_replace_notify(net, nhge->nh_parent, info); } static int replace_nexthop(struct net *net, struct nexthop *old, struct nexthop *new, const struct nh_config *cfg, struct netlink_ext_ack *extack) { bool new_is_reject = false; struct nh_grp_entry *nhge; int err; /* check that existing FIB entries are ok with the * new nexthop definition */ err = fib_check_nh_list(old, new, extack); if (err) return err; err = fib6_check_nh_list(old, new, extack); if (err) return err; if (!new->is_group) { struct nh_info *nhi = rtnl_dereference(new->nh_info); new_is_reject = nhi->reject_nh; } list_for_each_entry(nhge, &old->grp_list, nh_list) { /* if new nexthop is a blackhole, any groups using this * nexthop cannot have more than 1 path */ if (new_is_reject && nexthop_num_path(nhge->nh_parent) > 1) { NL_SET_ERR_MSG(extack, "Blackhole nexthop can not be a member of a group with more than one path"); return -EINVAL; } err = fib_check_nh_list(nhge->nh_parent, new, extack); if (err) return err; err = fib6_check_nh_list(nhge->nh_parent, new, extack); if (err) return err; } if (old->is_group) err = replace_nexthop_grp(net, old, new, cfg, extack); else err = replace_nexthop_single(net, old, new, extack); if (!err) { nh_rt_cache_flush(net, old, new); __remove_nexthop(net, new, NULL); nexthop_put(new); } return err; } /* called with rtnl_lock held */ static int insert_nexthop(struct net *net, struct nexthop *new_nh, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct rb_node **pp, *parent = NULL, *next; struct rb_root *root = &net->nexthop.rb_root; bool replace = !!(cfg->nlflags & NLM_F_REPLACE); bool create = !!(cfg->nlflags & NLM_F_CREATE); u32 new_id = new_nh->id; int replace_notify = 0; int rc = -EEXIST; pp = &root->rb_node; while (1) { struct nexthop *nh; next = *pp; if (!next) break; parent = next; nh = rb_entry(parent, struct nexthop, rb_node); if (new_id < nh->id) { pp = &next->rb_left; } else if (new_id > nh->id) { pp = &next->rb_right; } else if (replace) { rc = replace_nexthop(net, nh, new_nh, cfg, extack); if (!rc) { new_nh = nh; /* send notification with old nh */ replace_notify = 1; } goto out; } else { /* id already exists and not a replace */ goto out; } } if (replace && !create) { NL_SET_ERR_MSG(extack, "Replace specified without create and no entry exists"); rc = -ENOENT; goto out; } if (new_nh->is_group) { struct nh_group *nhg = rtnl_dereference(new_nh->nh_grp); struct nh_res_table *res_table; if (nhg->resilient) { res_table = rtnl_dereference(nhg->res_table); /* Not passing the number of buckets is OK when * replacing, but not when creating a new group. */ if (!cfg->nh_grp_res_has_num_buckets) { NL_SET_ERR_MSG(extack, "Number of buckets not specified for nexthop group insertion"); rc = -EINVAL; goto out; } nh_res_group_rebalance(nhg, res_table); /* Do not send bucket notifications, we do full * notification below. */ nh_res_table_upkeep(res_table, false, false); } } rb_link_node_rcu(&new_nh->rb_node, parent, pp); rb_insert_color(&new_nh->rb_node, root); /* The initial insertion is a full notification for hash-threshold as * well as resilient groups. */ rc = call_nexthop_notifiers(net, NEXTHOP_EVENT_REPLACE, new_nh, extack); if (rc) rb_erase(&new_nh->rb_node, &net->nexthop.rb_root); out: if (!rc) { nh_base_seq_inc(net); nexthop_notify(RTM_NEWNEXTHOP, new_nh, &cfg->nlinfo); if (replace_notify && READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode)) nexthop_replace_notify(net, new_nh, &cfg->nlinfo); } return rc; } /* rtnl */ /* remove all nexthops tied to a device being deleted */ static void nexthop_flush_dev(struct net_device *dev, unsigned long event) { unsigned int hash = nh_dev_hashfn(dev->ifindex); struct net *net = dev_net(dev); struct hlist_head *head = &net->nexthop.devhash[hash]; struct hlist_node *n; struct nh_info *nhi; hlist_for_each_entry_safe(nhi, n, head, dev_hash) { if (nhi->fib_nhc.nhc_dev != dev) continue; if (nhi->reject_nh && (event == NETDEV_DOWN || event == NETDEV_CHANGE)) continue; remove_nexthop(net, nhi->nh_parent, NULL); } } /* rtnl; called when net namespace is deleted */ static void flush_all_nexthops(struct net *net) { struct rb_root *root = &net->nexthop.rb_root; struct rb_node *node; struct nexthop *nh; while ((node = rb_first(root))) { nh = rb_entry(node, struct nexthop, rb_node); remove_nexthop(net, nh, NULL); cond_resched(); } } static struct nexthop *nexthop_create_group(struct net *net, struct nh_config *cfg) { struct nlattr *grps_attr = cfg->nh_grp; struct nexthop_grp *entry = nla_data(grps_attr); u16 num_nh = nla_len(grps_attr) / sizeof(*entry); struct nh_group *nhg; struct nexthop *nh; int err; int i; nh = nexthop_alloc(); if (!nh) return ERR_PTR(-ENOMEM); nh->is_group = 1; nhg = nexthop_grp_alloc(num_nh); if (!nhg) { kfree(nh); return ERR_PTR(-ENOMEM); } /* spare group used for removals */ nhg->spare = nexthop_grp_alloc(num_nh); if (!nhg->spare) { kfree(nhg); kfree(nh); return ERR_PTR(-ENOMEM); } nhg->spare->spare = nhg; for (i = 0; i < nhg->num_nh; ++i) { struct nexthop *nhe; struct nh_info *nhi; nhe = nexthop_find_by_id(net, entry[i].id); if (!nexthop_get(nhe)) { err = -ENOENT; goto out_no_nh; } nhi = rtnl_dereference(nhe->nh_info); if (nhi->family == AF_INET) nhg->has_v4 = true; nhg->nh_entries[i].stats = netdev_alloc_pcpu_stats(struct nh_grp_entry_stats); if (!nhg->nh_entries[i].stats) { err = -ENOMEM; nexthop_put(nhe); goto out_no_nh; } nhg->nh_entries[i].nh = nhe; nhg->nh_entries[i].weight = nexthop_grp_weight(&entry[i]); list_add(&nhg->nh_entries[i].nh_list, &nhe->grp_list); nhg->nh_entries[i].nh_parent = nh; } if (cfg->nh_grp_type == NEXTHOP_GRP_TYPE_MPATH) { nhg->hash_threshold = 1; nhg->is_multipath = true; } else if (cfg->nh_grp_type == NEXTHOP_GRP_TYPE_RES) { struct nh_res_table *res_table; res_table = nexthop_res_table_alloc(net, cfg->nh_id, cfg); if (!res_table) { err = -ENOMEM; goto out_no_nh; } rcu_assign_pointer(nhg->spare->res_table, res_table); rcu_assign_pointer(nhg->res_table, res_table); nhg->resilient = true; nhg->is_multipath = true; } WARN_ON_ONCE(nhg->hash_threshold + nhg->resilient != 1); if (nhg->hash_threshold) nh_hthr_group_rebalance(nhg); if (cfg->nh_fdb) nhg->fdb_nh = 1; if (cfg->nh_hw_stats) nhg->hw_stats = true; rcu_assign_pointer(nh->nh_grp, nhg); return nh; out_no_nh: for (i--; i >= 0; --i) { list_del(&nhg->nh_entries[i].nh_list); free_percpu(nhg->nh_entries[i].stats); nexthop_put(nhg->nh_entries[i].nh); } kfree(nhg->spare); kfree(nhg); kfree(nh); return ERR_PTR(err); } static int nh_create_ipv4(struct net *net, struct nexthop *nh, struct nh_info *nhi, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct fib_nh *fib_nh = &nhi->fib_nh; struct fib_config fib_cfg = { .fc_oif = cfg->nh_ifindex, .fc_gw4 = cfg->gw.ipv4, .fc_gw_family = cfg->gw.ipv4 ? AF_INET : 0, .fc_flags = cfg->nh_flags, .fc_nlinfo = cfg->nlinfo, .fc_encap = cfg->nh_encap, .fc_encap_type = cfg->nh_encap_type, }; u32 tb_id = (cfg->dev ? l3mdev_fib_table(cfg->dev) : RT_TABLE_MAIN); int err; err = fib_nh_init(net, fib_nh, &fib_cfg, 1, extack); if (err) { fib_nh_release(net, fib_nh); goto out; } if (nhi->fdb_nh) goto out; /* sets nh_dev if successful */ err = fib_check_nh(net, fib_nh, tb_id, 0, extack); if (!err) { nh->nh_flags = fib_nh->fib_nh_flags; fib_info_update_nhc_saddr(net, &fib_nh->nh_common, !fib_nh->fib_nh_scope ? 0 : fib_nh->fib_nh_scope - 1); } else { fib_nh_release(net, fib_nh); } out: return err; } static int nh_create_ipv6(struct net *net, struct nexthop *nh, struct nh_info *nhi, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct fib6_nh *fib6_nh = &nhi->fib6_nh; struct fib6_config fib6_cfg = { .fc_table = l3mdev_fib_table(cfg->dev), .fc_ifindex = cfg->nh_ifindex, .fc_gateway = cfg->gw.ipv6, .fc_flags = cfg->nh_flags, .fc_nlinfo = cfg->nlinfo, .fc_encap = cfg->nh_encap, .fc_encap_type = cfg->nh_encap_type, .fc_is_fdb = cfg->nh_fdb, }; int err; if (!ipv6_addr_any(&cfg->gw.ipv6)) fib6_cfg.fc_flags |= RTF_GATEWAY; /* sets nh_dev if successful */ err = ipv6_stub->fib6_nh_init(net, fib6_nh, &fib6_cfg, GFP_KERNEL, extack); if (err) { /* IPv6 is not enabled, don't call fib6_nh_release */ if (err == -EAFNOSUPPORT) goto out; ipv6_stub->fib6_nh_release(fib6_nh); } else { nh->nh_flags = fib6_nh->fib_nh_flags; } out: return err; } static struct nexthop *nexthop_create(struct net *net, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct nh_info *nhi; struct nexthop *nh; int err = 0; nh = nexthop_alloc(); if (!nh) return ERR_PTR(-ENOMEM); nhi = kzalloc(sizeof(*nhi), GFP_KERNEL); if (!nhi) { kfree(nh); return ERR_PTR(-ENOMEM); } nh->nh_flags = cfg->nh_flags; nh->net = net; nhi->nh_parent = nh; nhi->family = cfg->nh_family; nhi->fib_nhc.nhc_scope = RT_SCOPE_LINK; if (cfg->nh_fdb) nhi->fdb_nh = 1; if (cfg->nh_blackhole) { nhi->reject_nh = 1; cfg->nh_ifindex = net->loopback_dev->ifindex; } switch (cfg->nh_family) { case AF_INET: err = nh_create_ipv4(net, nh, nhi, cfg, extack); break; case AF_INET6: err = nh_create_ipv6(net, nh, nhi, cfg, extack); break; } if (err) { kfree(nhi); kfree(nh); return ERR_PTR(err); } /* add the entry to the device based hash */ if (!nhi->fdb_nh) nexthop_devhash_add(net, nhi); rcu_assign_pointer(nh->nh_info, nhi); return nh; } /* called with rtnl lock held */ static struct nexthop *nexthop_add(struct net *net, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct nexthop *nh; int err; if (!cfg->nh_id) { cfg->nh_id = nh_find_unused_id(net); if (!cfg->nh_id) { NL_SET_ERR_MSG(extack, "No unused id"); return ERR_PTR(-EINVAL); } } if (cfg->nh_grp) nh = nexthop_create_group(net, cfg); else nh = nexthop_create(net, cfg, extack); if (IS_ERR(nh)) return nh; refcount_set(&nh->refcnt, 1); nh->id = cfg->nh_id; nh->protocol = cfg->nh_protocol; nh->net = net; err = insert_nexthop(net, nh, cfg, extack); if (err) { __remove_nexthop(net, nh, NULL); nexthop_put(nh); nh = ERR_PTR(err); } return nh; } static int rtm_nh_get_timer(struct nlattr *attr, unsigned long fallback, unsigned long *timer_p, bool *has_p, struct netlink_ext_ack *extack) { unsigned long timer; u32 value; if (!attr) { *timer_p = fallback; *has_p = false; return 0; } value = nla_get_u32(attr); timer = clock_t_to_jiffies(value); if (timer == ~0UL) { NL_SET_ERR_MSG(extack, "Timer value too large"); return -EINVAL; } *timer_p = timer; *has_p = true; return 0; } static int rtm_to_nh_config_grp_res(struct nlattr *res, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_res_policy_new)] = {}; int err; if (res) { err = nla_parse_nested(tb, ARRAY_SIZE(rtm_nh_res_policy_new) - 1, res, rtm_nh_res_policy_new, extack); if (err < 0) return err; } if (tb[NHA_RES_GROUP_BUCKETS]) { cfg->nh_grp_res_num_buckets = nla_get_u16(tb[NHA_RES_GROUP_BUCKETS]); cfg->nh_grp_res_has_num_buckets = true; if (!cfg->nh_grp_res_num_buckets) { NL_SET_ERR_MSG(extack, "Number of buckets needs to be non-0"); return -EINVAL; } } err = rtm_nh_get_timer(tb[NHA_RES_GROUP_IDLE_TIMER], NH_RES_DEFAULT_IDLE_TIMER, &cfg->nh_grp_res_idle_timer, &cfg->nh_grp_res_has_idle_timer, extack); if (err) return err; return rtm_nh_get_timer(tb[NHA_RES_GROUP_UNBALANCED_TIMER], NH_RES_DEFAULT_UNBALANCED_TIMER, &cfg->nh_grp_res_unbalanced_timer, &cfg->nh_grp_res_has_unbalanced_timer, extack); } static int rtm_to_nh_config(struct net *net, struct sk_buff *skb, struct nlmsghdr *nlh, struct nlattr **tb, struct nh_config *cfg, struct netlink_ext_ack *extack) { struct nhmsg *nhm = nlmsg_data(nlh); int err; err = -EINVAL; if (nhm->resvd || nhm->nh_scope) { NL_SET_ERR_MSG(extack, "Invalid values in ancillary header"); goto out; } if (nhm->nh_flags & ~NEXTHOP_VALID_USER_FLAGS) { NL_SET_ERR_MSG(extack, "Invalid nexthop flags in ancillary header"); goto out; } switch (nhm->nh_family) { case AF_INET: case AF_INET6: break; case AF_UNSPEC: if (tb[NHA_GROUP]) break; fallthrough; default: NL_SET_ERR_MSG(extack, "Invalid address family"); goto out; } memset(cfg, 0, sizeof(*cfg)); cfg->nlflags = nlh->nlmsg_flags; cfg->nlinfo.portid = NETLINK_CB(skb).portid; cfg->nlinfo.nlh = nlh; cfg->nlinfo.nl_net = net; cfg->nh_family = nhm->nh_family; cfg->nh_protocol = nhm->nh_protocol; cfg->nh_flags = nhm->nh_flags; if (tb[NHA_ID]) cfg->nh_id = nla_get_u32(tb[NHA_ID]); if (tb[NHA_FDB]) { if (tb[NHA_OIF] || tb[NHA_BLACKHOLE] || tb[NHA_ENCAP] || tb[NHA_ENCAP_TYPE]) { NL_SET_ERR_MSG(extack, "Fdb attribute can not be used with encap, oif or blackhole"); goto out; } if (nhm->nh_flags) { NL_SET_ERR_MSG(extack, "Unsupported nexthop flags in ancillary header"); goto out; } cfg->nh_fdb = nla_get_flag(tb[NHA_FDB]); } if (tb[NHA_GROUP]) { if (nhm->nh_family != AF_UNSPEC) { NL_SET_ERR_MSG(extack, "Invalid family for group"); goto out; } cfg->nh_grp = tb[NHA_GROUP]; cfg->nh_grp_type = NEXTHOP_GRP_TYPE_MPATH; if (tb[NHA_GROUP_TYPE]) cfg->nh_grp_type = nla_get_u16(tb[NHA_GROUP_TYPE]); if (cfg->nh_grp_type > NEXTHOP_GRP_TYPE_MAX) { NL_SET_ERR_MSG(extack, "Invalid group type"); goto out; } err = nh_check_attr_group(net, tb, ARRAY_SIZE(rtm_nh_policy_new), cfg->nh_grp_type, extack); if (err) goto out; if (cfg->nh_grp_type == NEXTHOP_GRP_TYPE_RES) err = rtm_to_nh_config_grp_res(tb[NHA_RES_GROUP], cfg, extack); if (tb[NHA_HW_STATS_ENABLE]) cfg->nh_hw_stats = nla_get_u32(tb[NHA_HW_STATS_ENABLE]); /* no other attributes should be set */ goto out; } if (tb[NHA_BLACKHOLE]) { if (tb[NHA_GATEWAY] || tb[NHA_OIF] || tb[NHA_ENCAP] || tb[NHA_ENCAP_TYPE] || tb[NHA_FDB]) { NL_SET_ERR_MSG(extack, "Blackhole attribute can not be used with gateway, oif, encap or fdb"); goto out; } cfg->nh_blackhole = 1; err = 0; goto out; } if (!cfg->nh_fdb && !tb[NHA_OIF]) { NL_SET_ERR_MSG(extack, "Device attribute required for non-blackhole and non-fdb nexthops"); goto out; } err = -EINVAL; if (tb[NHA_GATEWAY]) { struct nlattr *gwa = tb[NHA_GATEWAY]; switch (cfg->nh_family) { case AF_INET: if (nla_len(gwa) != sizeof(u32)) { NL_SET_ERR_MSG(extack, "Invalid gateway"); goto out; } cfg->gw.ipv4 = nla_get_be32(gwa); break; case AF_INET6: if (nla_len(gwa) != sizeof(struct in6_addr)) { NL_SET_ERR_MSG(extack, "Invalid gateway"); goto out; } cfg->gw.ipv6 = nla_get_in6_addr(gwa); break; default: NL_SET_ERR_MSG(extack, "Unknown address family for gateway"); goto out; } } else { /* device only nexthop (no gateway) */ if (cfg->nh_flags & RTNH_F_ONLINK) { NL_SET_ERR_MSG(extack, "ONLINK flag can not be set for nexthop without a gateway"); goto out; } } if (tb[NHA_ENCAP]) { cfg->nh_encap = tb[NHA_ENCAP]; if (!tb[NHA_ENCAP_TYPE]) { NL_SET_ERR_MSG(extack, "LWT encapsulation type is missing"); goto out; } cfg->nh_encap_type = nla_get_u16(tb[NHA_ENCAP_TYPE]); err = lwtunnel_valid_encap_type(cfg->nh_encap_type, extack, false); if (err < 0) goto out; } else if (tb[NHA_ENCAP_TYPE]) { NL_SET_ERR_MSG(extack, "LWT encapsulation attribute is missing"); goto out; } if (tb[NHA_HW_STATS_ENABLE]) { NL_SET_ERR_MSG(extack, "Cannot enable nexthop hardware statistics for non-group nexthops"); goto out; } err = 0; out: return err; } static int rtm_to_nh_config_rtnl(struct net *net, struct nlattr **tb, struct nh_config *cfg, struct netlink_ext_ack *extack) { if (tb[NHA_GROUP]) return nh_check_attr_group_rtnl(net, tb, extack); if (tb[NHA_OIF]) { cfg->nh_ifindex = nla_get_u32(tb[NHA_OIF]); if (cfg->nh_ifindex) cfg->dev = __dev_get_by_index(net, cfg->nh_ifindex); if (!cfg->dev) { NL_SET_ERR_MSG(extack, "Invalid device index"); return -EINVAL; } if (!(cfg->dev->flags & IFF_UP)) { NL_SET_ERR_MSG(extack, "Nexthop device is not up"); return -ENETDOWN; } if (!netif_carrier_ok(cfg->dev)) { NL_SET_ERR_MSG(extack, "Carrier for nexthop device is down"); return -ENETDOWN; } } return 0; } /* rtnl */ static int rtm_new_nexthop(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_policy_new)]; struct net *net = sock_net(skb->sk); struct nh_config cfg; struct nexthop *nh; int err; err = nlmsg_parse(nlh, sizeof(struct nhmsg), tb, ARRAY_SIZE(rtm_nh_policy_new) - 1, rtm_nh_policy_new, extack); if (err < 0) goto out; err = rtm_to_nh_config(net, skb, nlh, tb, &cfg, extack); if (err) goto out; if (cfg.nlflags & NLM_F_REPLACE && !cfg.nh_id) { NL_SET_ERR_MSG(extack, "Replace requires nexthop id"); err = -EINVAL; goto out; } rtnl_net_lock(net); err = rtm_to_nh_config_rtnl(net, tb, &cfg, extack); if (err) goto unlock; nh = nexthop_add(net, &cfg, extack); if (IS_ERR(nh)) err = PTR_ERR(nh); unlock: rtnl_net_unlock(net); out: return err; } static int nh_valid_get_del_req(const struct nlmsghdr *nlh, struct nlattr **tb, u32 *id, u32 *op_flags, struct netlink_ext_ack *extack) { struct nhmsg *nhm = nlmsg_data(nlh); if (nhm->nh_protocol || nhm->resvd || nhm->nh_scope || nhm->nh_flags) { NL_SET_ERR_MSG(extack, "Invalid values in header"); return -EINVAL; } if (!tb[NHA_ID]) { NL_SET_ERR_MSG(extack, "Nexthop id is missing"); return -EINVAL; } *id = nla_get_u32(tb[NHA_ID]); if (!(*id)) { NL_SET_ERR_MSG(extack, "Invalid nexthop id"); return -EINVAL; } if (op_flags) *op_flags = nla_get_u32_default(tb[NHA_OP_FLAGS], 0); return 0; } /* rtnl */ static int rtm_del_nexthop(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_policy_del)]; struct net *net = sock_net(skb->sk); struct nl_info nlinfo = { .nlh = nlh, .nl_net = net, .portid = NETLINK_CB(skb).portid, }; struct nexthop *nh; int err; u32 id; err = nlmsg_parse(nlh, sizeof(struct nhmsg), tb, ARRAY_SIZE(rtm_nh_policy_del) - 1, rtm_nh_policy_del, extack); if (err < 0) return err; err = nh_valid_get_del_req(nlh, tb, &id, NULL, extack); if (err) return err; rtnl_net_lock(net); nh = nexthop_find_by_id(net, id); if (nh) remove_nexthop(net, nh, &nlinfo); else err = -ENOENT; rtnl_net_unlock(net); return err; } /* rtnl */ static int rtm_get_nexthop(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_policy_get)]; struct net *net = sock_net(in_skb->sk); struct sk_buff *skb = NULL; struct nexthop *nh; u32 op_flags; int err; u32 id; err = nlmsg_parse(nlh, sizeof(struct nhmsg), tb, ARRAY_SIZE(rtm_nh_policy_get) - 1, rtm_nh_policy_get, extack); if (err < 0) return err; err = nh_valid_get_del_req(nlh, tb, &id, &op_flags, extack); if (err) return err; err = -ENOBUFS; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) goto out; err = -ENOENT; nh = nexthop_find_by_id(net, id); if (!nh) goto errout_free; err = nh_fill_node(skb, nh, RTM_NEWNEXTHOP, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0, op_flags); if (err < 0) { WARN_ON(err == -EMSGSIZE); goto errout_free; } err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); out: return err; errout_free: kfree_skb(skb); goto out; } struct nh_dump_filter { u32 nh_id; int dev_idx; int master_idx; bool group_filter; bool fdb_filter; u32 res_bucket_nh_id; u32 op_flags; }; static bool nh_dump_filtered(struct nexthop *nh, struct nh_dump_filter *filter, u8 family) { const struct net_device *dev; const struct nh_info *nhi; if (filter->group_filter && !nh->is_group) return true; if (!filter->dev_idx && !filter->master_idx && !family) return false; if (nh->is_group) return true; nhi = rtnl_dereference(nh->nh_info); if (family && nhi->family != family) return true; dev = nhi->fib_nhc.nhc_dev; if (filter->dev_idx && (!dev || dev->ifindex != filter->dev_idx)) return true; if (filter->master_idx) { struct net_device *master; if (!dev) return true; master = netdev_master_upper_dev_get((struct net_device *)dev); if (!master || master->ifindex != filter->master_idx) return true; } return false; } static int __nh_valid_dump_req(const struct nlmsghdr *nlh, struct nlattr **tb, struct nh_dump_filter *filter, struct netlink_ext_ack *extack) { struct nhmsg *nhm; u32 idx; if (tb[NHA_OIF]) { idx = nla_get_u32(tb[NHA_OIF]); if (idx > INT_MAX) { NL_SET_ERR_MSG(extack, "Invalid device index"); return -EINVAL; } filter->dev_idx = idx; } if (tb[NHA_MASTER]) { idx = nla_get_u32(tb[NHA_MASTER]); if (idx > INT_MAX) { NL_SET_ERR_MSG(extack, "Invalid master device index"); return -EINVAL; } filter->master_idx = idx; } filter->group_filter = nla_get_flag(tb[NHA_GROUPS]); filter->fdb_filter = nla_get_flag(tb[NHA_FDB]); nhm = nlmsg_data(nlh); if (nhm->nh_protocol || nhm->resvd || nhm->nh_scope || nhm->nh_flags) { NL_SET_ERR_MSG(extack, "Invalid values in header for nexthop dump request"); return -EINVAL; } return 0; } static int nh_valid_dump_req(const struct nlmsghdr *nlh, struct nh_dump_filter *filter, struct netlink_callback *cb) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_policy_dump)]; int err; err = nlmsg_parse(nlh, sizeof(struct nhmsg), tb, ARRAY_SIZE(rtm_nh_policy_dump) - 1, rtm_nh_policy_dump, cb->extack); if (err < 0) return err; filter->op_flags = nla_get_u32_default(tb[NHA_OP_FLAGS], 0); return __nh_valid_dump_req(nlh, tb, filter, cb->extack); } struct rtm_dump_nh_ctx { u32 idx; }; static struct rtm_dump_nh_ctx * rtm_dump_nh_ctx(struct netlink_callback *cb) { struct rtm_dump_nh_ctx *ctx = (void *)cb->ctx; BUILD_BUG_ON(sizeof(*ctx) > sizeof(cb->ctx)); return ctx; } static int rtm_dump_walk_nexthops(struct sk_buff *skb, struct netlink_callback *cb, struct rb_root *root, struct rtm_dump_nh_ctx *ctx, int (*nh_cb)(struct sk_buff *skb, struct netlink_callback *cb, struct nexthop *nh, void *data), void *data) { struct rb_node *node; int s_idx; int err; s_idx = ctx->idx; for (node = rb_first(root); node; node = rb_next(node)) { struct nexthop *nh; nh = rb_entry(node, struct nexthop, rb_node); if (nh->id < s_idx) continue; ctx->idx = nh->id; err = nh_cb(skb, cb, nh, data); if (err) return err; } return 0; } static int rtm_dump_nexthop_cb(struct sk_buff *skb, struct netlink_callback *cb, struct nexthop *nh, void *data) { struct nhmsg *nhm = nlmsg_data(cb->nlh); struct nh_dump_filter *filter = data; if (nh_dump_filtered(nh, filter, nhm->nh_family)) return 0; return nh_fill_node(skb, nh, RTM_NEWNEXTHOP, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, filter->op_flags); } /* rtnl */ static int rtm_dump_nexthop(struct sk_buff *skb, struct netlink_callback *cb) { struct rtm_dump_nh_ctx *ctx = rtm_dump_nh_ctx(cb); struct net *net = sock_net(skb->sk); struct rb_root *root = &net->nexthop.rb_root; struct nh_dump_filter filter = {}; int err; err = nh_valid_dump_req(cb->nlh, &filter, cb); if (err < 0) return err; err = rtm_dump_walk_nexthops(skb, cb, root, ctx, &rtm_dump_nexthop_cb, &filter); cb->seq = net->nexthop.seq; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); return err; } static struct nexthop * nexthop_find_group_resilient(struct net *net, u32 id, struct netlink_ext_ack *extack) { struct nh_group *nhg; struct nexthop *nh; nh = nexthop_find_by_id(net, id); if (!nh) return ERR_PTR(-ENOENT); if (!nh->is_group) { NL_SET_ERR_MSG(extack, "Not a nexthop group"); return ERR_PTR(-EINVAL); } nhg = rtnl_dereference(nh->nh_grp); if (!nhg->resilient) { NL_SET_ERR_MSG(extack, "Nexthop group not of type resilient"); return ERR_PTR(-EINVAL); } return nh; } static int nh_valid_dump_nhid(struct nlattr *attr, u32 *nh_id_p, struct netlink_ext_ack *extack) { u32 idx; if (attr) { idx = nla_get_u32(attr); if (!idx) { NL_SET_ERR_MSG(extack, "Invalid nexthop id"); return -EINVAL; } *nh_id_p = idx; } else { *nh_id_p = 0; } return 0; } static int nh_valid_dump_bucket_req(const struct nlmsghdr *nlh, struct nh_dump_filter *filter, struct netlink_callback *cb) { struct nlattr *res_tb[ARRAY_SIZE(rtm_nh_res_bucket_policy_dump)]; struct nlattr *tb[ARRAY_SIZE(rtm_nh_policy_dump_bucket)]; int err; err = nlmsg_parse(nlh, sizeof(struct nhmsg), tb, ARRAY_SIZE(rtm_nh_policy_dump_bucket) - 1, rtm_nh_policy_dump_bucket, NULL); if (err < 0) return err; err = nh_valid_dump_nhid(tb[NHA_ID], &filter->nh_id, cb->extack); if (err) return err; if (tb[NHA_RES_BUCKET]) { size_t max = ARRAY_SIZE(rtm_nh_res_bucket_policy_dump) - 1; err = nla_parse_nested(res_tb, max, tb[NHA_RES_BUCKET], rtm_nh_res_bucket_policy_dump, cb->extack); if (err < 0) return err; err = nh_valid_dump_nhid(res_tb[NHA_RES_BUCKET_NH_ID], &filter->res_bucket_nh_id, cb->extack); if (err) return err; } return __nh_valid_dump_req(nlh, tb, filter, cb->extack); } struct rtm_dump_res_bucket_ctx { struct rtm_dump_nh_ctx nh; u16 bucket_index; }; static struct rtm_dump_res_bucket_ctx * rtm_dump_res_bucket_ctx(struct netlink_callback *cb) { struct rtm_dump_res_bucket_ctx *ctx = (void *)cb->ctx; BUILD_BUG_ON(sizeof(*ctx) > sizeof(cb->ctx)); return ctx; } struct rtm_dump_nexthop_bucket_data { struct rtm_dump_res_bucket_ctx *ctx; struct nh_dump_filter filter; }; static int rtm_dump_nexthop_bucket_nh(struct sk_buff *skb, struct netlink_callback *cb, struct nexthop *nh, struct rtm_dump_nexthop_bucket_data *dd) { u32 portid = NETLINK_CB(cb->skb).portid; struct nhmsg *nhm = nlmsg_data(cb->nlh); struct nh_res_table *res_table; struct nh_group *nhg; u16 bucket_index; int err; nhg = rtnl_dereference(nh->nh_grp); res_table = rtnl_dereference(nhg->res_table); for (bucket_index = dd->ctx->bucket_index; bucket_index < res_table->num_nh_buckets; bucket_index++) { struct nh_res_bucket *bucket; struct nh_grp_entry *nhge; bucket = &res_table->nh_buckets[bucket_index]; nhge = rtnl_dereference(bucket->nh_entry); if (nh_dump_filtered(nhge->nh, &dd->filter, nhm->nh_family)) continue; if (dd->filter.res_bucket_nh_id && dd->filter.res_bucket_nh_id != nhge->nh->id) continue; dd->ctx->bucket_index = bucket_index; err = nh_fill_res_bucket(skb, nh, bucket, bucket_index, RTM_NEWNEXTHOPBUCKET, portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, cb->extack); if (err) return err; } dd->ctx->bucket_index = 0; return 0; } static int rtm_dump_nexthop_bucket_cb(struct sk_buff *skb, struct netlink_callback *cb, struct nexthop *nh, void *data) { struct rtm_dump_nexthop_bucket_data *dd = data; struct nh_group *nhg; if (!nh->is_group) return 0; nhg = rtnl_dereference(nh->nh_grp); if (!nhg->resilient) return 0; return rtm_dump_nexthop_bucket_nh(skb, cb, nh, dd); } /* rtnl */ static int rtm_dump_nexthop_bucket(struct sk_buff *skb, struct netlink_callback *cb) { struct rtm_dump_res_bucket_ctx *ctx = rtm_dump_res_bucket_ctx(cb); struct rtm_dump_nexthop_bucket_data dd = { .ctx = ctx }; struct net *net = sock_net(skb->sk); struct nexthop *nh; int err; err = nh_valid_dump_bucket_req(cb->nlh, &dd.filter, cb); if (err) return err; if (dd.filter.nh_id) { nh = nexthop_find_group_resilient(net, dd.filter.nh_id, cb->extack); if (IS_ERR(nh)) return PTR_ERR(nh); err = rtm_dump_nexthop_bucket_nh(skb, cb, nh, &dd); } else { struct rb_root *root = &net->nexthop.rb_root; err = rtm_dump_walk_nexthops(skb, cb, root, &ctx->nh, &rtm_dump_nexthop_bucket_cb, &dd); } cb->seq = net->nexthop.seq; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); return err; } static int nh_valid_get_bucket_req_res_bucket(struct nlattr *res, u16 *bucket_index, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_res_bucket_policy_get)]; int err; err = nla_parse_nested(tb, ARRAY_SIZE(rtm_nh_res_bucket_policy_get) - 1, res, rtm_nh_res_bucket_policy_get, extack); if (err < 0) return err; if (!tb[NHA_RES_BUCKET_INDEX]) { NL_SET_ERR_MSG(extack, "Bucket index is missing"); return -EINVAL; } *bucket_index = nla_get_u16(tb[NHA_RES_BUCKET_INDEX]); return 0; } static int nh_valid_get_bucket_req(const struct nlmsghdr *nlh, u32 *id, u16 *bucket_index, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(rtm_nh_policy_get_bucket)]; int err; err = nlmsg_parse(nlh, sizeof(struct nhmsg), tb, ARRAY_SIZE(rtm_nh_policy_get_bucket) - 1, rtm_nh_policy_get_bucket, extack); if (err < 0) return err; err = nh_valid_get_del_req(nlh, tb, id, NULL, extack); if (err) return err; if (!tb[NHA_RES_BUCKET]) { NL_SET_ERR_MSG(extack, "Bucket information is missing"); return -EINVAL; } err = nh_valid_get_bucket_req_res_bucket(tb[NHA_RES_BUCKET], bucket_index, extack); if (err) return err; return 0; } /* rtnl */ static int rtm_get_nexthop_bucket(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct nh_res_table *res_table; struct sk_buff *skb = NULL; struct nh_group *nhg; struct nexthop *nh; u16 bucket_index; int err; u32 id; err = nh_valid_get_bucket_req(nlh, &id, &bucket_index, extack); if (err) return err; nh = nexthop_find_group_resilient(net, id, extack); if (IS_ERR(nh)) return PTR_ERR(nh); nhg = rtnl_dereference(nh->nh_grp); res_table = rtnl_dereference(nhg->res_table); if (bucket_index >= res_table->num_nh_buckets) { NL_SET_ERR_MSG(extack, "Bucket index out of bounds"); return -ENOENT; } skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; err = nh_fill_res_bucket(skb, nh, &res_table->nh_buckets[bucket_index], bucket_index, RTM_NEWNEXTHOPBUCKET, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0, extack); if (err < 0) { WARN_ON(err == -EMSGSIZE); goto errout_free; } return rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); errout_free: kfree_skb(skb); return err; } static void nexthop_sync_mtu(struct net_device *dev, u32 orig_mtu) { unsigned int hash = nh_dev_hashfn(dev->ifindex); struct net *net = dev_net(dev); struct hlist_head *head = &net->nexthop.devhash[hash]; struct hlist_node *n; struct nh_info *nhi; hlist_for_each_entry_safe(nhi, n, head, dev_hash) { if (nhi->fib_nhc.nhc_dev == dev) { if (nhi->family == AF_INET) fib_nhc_update_mtu(&nhi->fib_nhc, dev->mtu, orig_mtu); } } } /* rtnl */ static int nh_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_info_ext *info_ext; switch (event) { case NETDEV_DOWN: case NETDEV_UNREGISTER: nexthop_flush_dev(dev, event); break; case NETDEV_CHANGE: if (!(dev_get_flags(dev) & (IFF_RUNNING | IFF_LOWER_UP))) nexthop_flush_dev(dev, event); break; case NETDEV_CHANGEMTU: info_ext = ptr; nexthop_sync_mtu(dev, info_ext->ext.mtu); rt_cache_flush(dev_net(dev)); break; } return NOTIFY_DONE; } static struct notifier_block nh_netdev_notifier = { .notifier_call = nh_netdev_event, }; static int nexthops_dump(struct net *net, struct notifier_block *nb, enum nexthop_event_type event_type, struct netlink_ext_ack *extack) { struct rb_root *root = &net->nexthop.rb_root; struct rb_node *node; int err = 0; for (node = rb_first(root); node; node = rb_next(node)) { struct nexthop *nh; nh = rb_entry(node, struct nexthop, rb_node); err = call_nexthop_notifier(nb, net, event_type, nh, extack); if (err) break; } return err; } int register_nexthop_notifier(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { int err; rtnl_lock(); err = nexthops_dump(net, nb, NEXTHOP_EVENT_REPLACE, extack); if (err) goto unlock; err = blocking_notifier_chain_register(&net->nexthop.notifier_chain, nb); unlock: rtnl_unlock(); return err; } EXPORT_SYMBOL(register_nexthop_notifier); int __unregister_nexthop_notifier(struct net *net, struct notifier_block *nb) { int err; err = blocking_notifier_chain_unregister(&net->nexthop.notifier_chain, nb); if (!err) nexthops_dump(net, nb, NEXTHOP_EVENT_DEL, NULL); return err; } EXPORT_SYMBOL(__unregister_nexthop_notifier); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb) { int err; rtnl_lock(); err = __unregister_nexthop_notifier(net, nb); rtnl_unlock(); return err; } EXPORT_SYMBOL(unregister_nexthop_notifier); void nexthop_set_hw_flags(struct net *net, u32 id, bool offload, bool trap) { struct nexthop *nexthop; rcu_read_lock(); nexthop = nexthop_find_by_id(net, id); if (!nexthop) goto out; nexthop->nh_flags &= ~(RTNH_F_OFFLOAD | RTNH_F_TRAP); if (offload) nexthop->nh_flags |= RTNH_F_OFFLOAD; if (trap) nexthop->nh_flags |= RTNH_F_TRAP; out: rcu_read_unlock(); } EXPORT_SYMBOL(nexthop_set_hw_flags); void nexthop_bucket_set_hw_flags(struct net *net, u32 id, u16 bucket_index, bool offload, bool trap) { struct nh_res_table *res_table; struct nh_res_bucket *bucket; struct nexthop *nexthop; struct nh_group *nhg; rcu_read_lock(); nexthop = nexthop_find_by_id(net, id); if (!nexthop || !nexthop->is_group) goto out; nhg = rcu_dereference(nexthop->nh_grp); if (!nhg->resilient) goto out; if (bucket_index >= nhg->res_table->num_nh_buckets) goto out; res_table = rcu_dereference(nhg->res_table); bucket = &res_table->nh_buckets[bucket_index]; bucket->nh_flags &= ~(RTNH_F_OFFLOAD | RTNH_F_TRAP); if (offload) bucket->nh_flags |= RTNH_F_OFFLOAD; if (trap) bucket->nh_flags |= RTNH_F_TRAP; out: rcu_read_unlock(); } EXPORT_SYMBOL(nexthop_bucket_set_hw_flags); void nexthop_res_grp_activity_update(struct net *net, u32 id, u16 num_buckets, unsigned long *activity) { struct nh_res_table *res_table; struct nexthop *nexthop; struct nh_group *nhg; u16 i; rcu_read_lock(); nexthop = nexthop_find_by_id(net, id); if (!nexthop || !nexthop->is_group) goto out; nhg = rcu_dereference(nexthop->nh_grp); if (!nhg->resilient) goto out; /* Instead of silently ignoring some buckets, demand that the sizes * be the same. */ res_table = rcu_dereference(nhg->res_table); if (num_buckets != res_table->num_nh_buckets) goto out; for (i = 0; i < num_buckets; i++) { if (test_bit(i, activity)) nh_res_bucket_set_busy(&res_table->nh_buckets[i]); } out: rcu_read_unlock(); } EXPORT_SYMBOL(nexthop_res_grp_activity_update); static void __net_exit nexthop_net_exit_batch_rtnl(struct list_head *net_list, struct list_head *dev_to_kill) { struct net *net; ASSERT_RTNL(); list_for_each_entry(net, net_list, exit_list) flush_all_nexthops(net); } static void __net_exit nexthop_net_exit(struct net *net) { kfree(net->nexthop.devhash); net->nexthop.devhash = NULL; } static int __net_init nexthop_net_init(struct net *net) { size_t sz = sizeof(struct hlist_head) * NH_DEV_HASHSIZE; net->nexthop.rb_root = RB_ROOT; net->nexthop.devhash = kzalloc(sz, GFP_KERNEL); if (!net->nexthop.devhash) return -ENOMEM; BLOCKING_INIT_NOTIFIER_HEAD(&net->nexthop.notifier_chain); return 0; } static struct pernet_operations nexthop_net_ops = { .init = nexthop_net_init, .exit = nexthop_net_exit, .exit_batch_rtnl = nexthop_net_exit_batch_rtnl, }; static const struct rtnl_msg_handler nexthop_rtnl_msg_handlers[] __initconst = { {.msgtype = RTM_NEWNEXTHOP, .doit = rtm_new_nexthop, .flags = RTNL_FLAG_DOIT_PERNET}, {.msgtype = RTM_DELNEXTHOP, .doit = rtm_del_nexthop, .flags = RTNL_FLAG_DOIT_PERNET}, {.msgtype = RTM_GETNEXTHOP, .doit = rtm_get_nexthop, .dumpit = rtm_dump_nexthop}, {.msgtype = RTM_GETNEXTHOPBUCKET, .doit = rtm_get_nexthop_bucket, .dumpit = rtm_dump_nexthop_bucket}, {.protocol = PF_INET, .msgtype = RTM_NEWNEXTHOP, .doit = rtm_new_nexthop, .flags = RTNL_FLAG_DOIT_PERNET}, {.protocol = PF_INET, .msgtype = RTM_GETNEXTHOP, .dumpit = rtm_dump_nexthop}, {.protocol = PF_INET6, .msgtype = RTM_NEWNEXTHOP, .doit = rtm_new_nexthop, .flags = RTNL_FLAG_DOIT_PERNET}, {.protocol = PF_INET6, .msgtype = RTM_GETNEXTHOP, .dumpit = rtm_dump_nexthop}, }; static int __init nexthop_init(void) { register_pernet_subsys(&nexthop_net_ops); register_netdevice_notifier(&nh_netdev_notifier); rtnl_register_many(nexthop_rtnl_msg_handlers); return 0; } subsys_initcall(nexthop_init);
62 3 2 1 109 35 40 28 6 65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 // SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix * Copyright (C) 2006 Andrey Volkov, Varma Electronics * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> */ #include <linux/can/dev.h> #include <linux/module.h> #define MOD_DESC "CAN device driver interface" MODULE_DESCRIPTION(MOD_DESC); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); /* Local echo of CAN messages * * CAN network devices *should* support a local echo functionality * (see Documentation/networking/can.rst). To test the handling of CAN * interfaces that do not support the local echo both driver types are * implemented. In the case that the driver does not support the echo * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core * to perform the echo as a fallback solution. */ void can_flush_echo_skb(struct net_device *dev) { struct can_priv *priv = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; int i; for (i = 0; i < priv->echo_skb_max; i++) { if (priv->echo_skb[i]) { kfree_skb(priv->echo_skb[i]); priv->echo_skb[i] = NULL; stats->tx_dropped++; stats->tx_aborted_errors++; } } } /* Put the skb on the stack to be looped backed locally lateron * * The function is typically called in the start_xmit function * of the device driver. The driver must protect access to * priv->echo_skb, if necessary. */ int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, unsigned int idx, unsigned int frame_len) { struct can_priv *priv = netdev_priv(dev); if (idx >= priv->echo_skb_max) { netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", __func__, idx, priv->echo_skb_max); return -EINVAL; } /* check flag whether this packet has to be looped back */ if (!(dev->flags & IFF_ECHO) || (skb->protocol != htons(ETH_P_CAN) && skb->protocol != htons(ETH_P_CANFD) && skb->protocol != htons(ETH_P_CANXL))) { kfree_skb(skb); return 0; } if (!priv->echo_skb[idx]) { skb = can_create_echo_skb(skb); if (!skb) return -ENOMEM; /* make settings for echo to reduce code in irq context */ skb->ip_summed = CHECKSUM_UNNECESSARY; skb->dev = dev; /* save frame_len to reuse it when transmission is completed */ can_skb_prv(skb)->frame_len = frame_len; if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; skb_tx_timestamp(skb); /* save this skb for tx interrupt echo handling */ priv->echo_skb[idx] = skb; } else { /* locking problem with netif_stop_queue() ?? */ netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx); kfree_skb(skb); return -EBUSY; } return 0; } EXPORT_SYMBOL_GPL(can_put_echo_skb); struct sk_buff * __can_get_echo_skb(struct net_device *dev, unsigned int idx, unsigned int *len_ptr, unsigned int *frame_len_ptr) { struct can_priv *priv = netdev_priv(dev); if (idx >= priv->echo_skb_max) { netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", __func__, idx, priv->echo_skb_max); return NULL; } if (priv->echo_skb[idx]) { /* Using "struct canfd_frame::len" for the frame * length is supported on both CAN and CANFD frames. */ struct sk_buff *skb = priv->echo_skb[idx]; struct can_skb_priv *can_skb_priv = can_skb_prv(skb); if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) skb_tstamp_tx(skb, skb_hwtstamps(skb)); /* get the real payload length for netdev statistics */ *len_ptr = can_skb_get_data_len(skb); if (frame_len_ptr) *frame_len_ptr = can_skb_priv->frame_len; priv->echo_skb[idx] = NULL; if (skb->pkt_type == PACKET_LOOPBACK) { skb->pkt_type = PACKET_BROADCAST; } else { dev_consume_skb_any(skb); return NULL; } return skb; } return NULL; } /* Get the skb from the stack and loop it back locally * * The function is typically called when the TX done interrupt * is handled in the device driver. The driver must protect * access to priv->echo_skb, if necessary. */ unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx, unsigned int *frame_len_ptr) { struct sk_buff *skb; unsigned int len; skb = __can_get_echo_skb(dev, idx, &len, frame_len_ptr); if (!skb) return 0; skb_get(skb); if (netif_rx(skb) == NET_RX_SUCCESS) dev_consume_skb_any(skb); else dev_kfree_skb_any(skb); return len; } EXPORT_SYMBOL_GPL(can_get_echo_skb); /* Remove the skb from the stack and free it. * * The function is typically called when TX failed. */ void can_free_echo_skb(struct net_device *dev, unsigned int idx, unsigned int *frame_len_ptr) { struct can_priv *priv = netdev_priv(dev); if (idx >= priv->echo_skb_max) { netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", __func__, idx, priv->echo_skb_max); return; } if (priv->echo_skb[idx]) { struct sk_buff *skb = priv->echo_skb[idx]; struct can_skb_priv *can_skb_priv = can_skb_prv(skb); if (frame_len_ptr) *frame_len_ptr = can_skb_priv->frame_len; dev_kfree_skb_any(skb); priv->echo_skb[idx] = NULL; } } EXPORT_SYMBOL_GPL(can_free_echo_skb); /* fill common values for CAN sk_buffs */ static void init_can_skb_reserve(struct sk_buff *skb) { skb->pkt_type = PACKET_BROADCAST; skb->ip_summed = CHECKSUM_UNNECESSARY; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); can_skb_reserve(skb); can_skb_prv(skb)->skbcnt = 0; } struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) { struct sk_buff *skb; skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + sizeof(struct can_frame)); if (unlikely(!skb)) { *cf = NULL; return NULL; } skb->protocol = htons(ETH_P_CAN); init_can_skb_reserve(skb); can_skb_prv(skb)->ifindex = dev->ifindex; *cf = skb_put_zero(skb, sizeof(struct can_frame)); return skb; } EXPORT_SYMBOL_GPL(alloc_can_skb); struct sk_buff *alloc_canfd_skb(struct net_device *dev, struct canfd_frame **cfd) { struct sk_buff *skb; skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + sizeof(struct canfd_frame)); if (unlikely(!skb)) { *cfd = NULL; return NULL; } skb->protocol = htons(ETH_P_CANFD); init_can_skb_reserve(skb); can_skb_prv(skb)->ifindex = dev->ifindex; *cfd = skb_put_zero(skb, sizeof(struct canfd_frame)); /* set CAN FD flag by default */ (*cfd)->flags = CANFD_FDF; return skb; } EXPORT_SYMBOL_GPL(alloc_canfd_skb); struct sk_buff *alloc_canxl_skb(struct net_device *dev, struct canxl_frame **cxl, unsigned int data_len) { struct sk_buff *skb; if (data_len < CANXL_MIN_DLEN || data_len > CANXL_MAX_DLEN) goto out_error; skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + CANXL_HDR_SIZE + data_len); if (unlikely(!skb)) goto out_error; skb->protocol = htons(ETH_P_CANXL); init_can_skb_reserve(skb); can_skb_prv(skb)->ifindex = dev->ifindex; *cxl = skb_put_zero(skb, CANXL_HDR_SIZE + data_len); /* set CAN XL flag and length information by default */ (*cxl)->flags = CANXL_XLF; (*cxl)->len = data_len; return skb; out_error: *cxl = NULL; return NULL; } EXPORT_SYMBOL_GPL(alloc_canxl_skb); struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) { struct sk_buff *skb; skb = alloc_can_skb(dev, cf); if (unlikely(!skb)) return NULL; (*cf)->can_id = CAN_ERR_FLAG; (*cf)->len = CAN_ERR_DLC; return skb; } EXPORT_SYMBOL_GPL(alloc_can_err_skb); /* Check for outgoing skbs that have not been created by the CAN subsystem */ static bool can_skb_headroom_valid(struct net_device *dev, struct sk_buff *skb) { /* af_packet creates a headroom of HH_DATA_MOD bytes which is fine */ if (WARN_ON_ONCE(skb_headroom(skb) < sizeof(struct can_skb_priv))) return false; /* af_packet does not apply CAN skb specific settings */ if (skb->ip_summed == CHECKSUM_NONE) { /* init headroom */ can_skb_prv(skb)->ifindex = dev->ifindex; can_skb_prv(skb)->skbcnt = 0; skb->ip_summed = CHECKSUM_UNNECESSARY; /* perform proper loopback on capable devices */ if (dev->flags & IFF_ECHO) skb->pkt_type = PACKET_LOOPBACK; else skb->pkt_type = PACKET_HOST; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); /* set CANFD_FDF flag for CAN FD frames */ if (can_is_canfd_skb(skb)) { struct canfd_frame *cfd; cfd = (struct canfd_frame *)skb->data; cfd->flags |= CANFD_FDF; } } return true; } /* Drop a given socketbuffer if it does not contain a valid CAN frame. */ bool can_dropped_invalid_skb(struct net_device *dev, struct sk_buff *skb) { switch (ntohs(skb->protocol)) { case ETH_P_CAN: if (!can_is_can_skb(skb)) goto inval_skb; break; case ETH_P_CANFD: if (!can_is_canfd_skb(skb)) goto inval_skb; break; case ETH_P_CANXL: if (!can_is_canxl_skb(skb)) goto inval_skb; break; default: goto inval_skb; } if (!can_skb_headroom_valid(dev, skb)) goto inval_skb; return false; inval_skb: kfree_skb(skb); dev->stats.tx_dropped++; return true; } EXPORT_SYMBOL_GPL(can_dropped_invalid_skb);
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */ /* Copyright (c) 2008-2019, IBM Corporation */ #ifndef _SIW_MEM_H #define _SIW_MEM_H struct siw_umem *siw_umem_get(struct ib_device *base_dave, u64 start, u64 len, int rights); void siw_umem_release(struct siw_umem *umem); struct siw_pbl *siw_pbl_alloc(u32 num_buf); dma_addr_t siw_pbl_get_buffer(struct siw_pbl *pbl, u64 off, int *len, int *idx); struct siw_mem *siw_mem_id2obj(struct siw_device *sdev, int stag_index); int siw_mem_add(struct siw_device *sdev, struct siw_mem *m); int siw_invalidate_stag(struct ib_pd *pd, u32 stag); int siw_check_mem(struct ib_pd *pd, struct siw_mem *mem, u64 addr, enum ib_access_flags perms, int len); int siw_check_sge(struct ib_pd *pd, struct siw_sge *sge, struct siw_mem *mem[], enum ib_access_flags perms, u32 off, int len); void siw_wqe_put_mem(struct siw_wqe *wqe, enum siw_opcode op); int siw_mr_add_mem(struct siw_mr *mr, struct ib_pd *pd, void *mem_obj, u64 start, u64 len, int rights); void siw_mr_drop_mem(struct siw_mr *mr); void siw_free_mem(struct kref *ref); static inline void siw_mem_put(struct siw_mem *mem) { kref_put(&mem->ref, siw_free_mem); } static inline void siw_unref_mem_sgl(struct siw_mem **mem, unsigned int num_sge) { while (num_sge) { if (*mem == NULL) break; siw_mem_put(*mem); *mem = NULL; mem++; num_sge--; } } #define CHUNK_SHIFT 9 /* sets number of pages per chunk */ #define PAGES_PER_CHUNK (_AC(1, UL) << CHUNK_SHIFT) #define CHUNK_MASK (~(PAGES_PER_CHUNK - 1)) #define PAGE_CHUNK_SIZE (PAGES_PER_CHUNK * sizeof(struct page *)) /* * siw_get_upage() * * Get page pointer for address on given umem. * * @umem: two dimensional list of page pointers * @addr: user virtual address */ static inline struct page *siw_get_upage(struct siw_umem *umem, u64 addr) { unsigned int page_idx = (addr - umem->fp_addr) >> PAGE_SHIFT, chunk_idx = page_idx >> CHUNK_SHIFT, page_in_chunk = page_idx & ~CHUNK_MASK; if (likely(page_idx < umem->num_pages)) return umem->page_chunk[chunk_idx].plist[page_in_chunk]; return NULL; } #endif
276 158 6 7 318 721 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_SCHED_H #define BLK_MQ_SCHED_H #include "elevator.h" #include "blk-mq.h" #define MAX_SCHED_RQ (16 * BLKDEV_DEFAULT_RQ) bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request); bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, struct list_head *free); void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx); void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx); void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx); int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e); void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e); void blk_mq_sched_free_rqs(struct request_queue *q); static inline void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) { if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) __blk_mq_sched_restart(hctx); } static inline bool bio_mergeable(struct bio *bio) { return !(bio->bi_opf & REQ_NOMERGE_FLAGS); } static inline bool blk_mq_sched_allow_merge(struct request_queue *q, struct request *rq, struct bio *bio) { if (rq->rq_flags & RQF_USE_SCHED) { struct elevator_queue *e = q->elevator; if (e->type->ops.allow_merge) return e->type->ops.allow_merge(q, rq, bio); } return true; } static inline void blk_mq_sched_completed_request(struct request *rq, u64 now) { if (rq->rq_flags & RQF_USE_SCHED) { struct elevator_queue *e = rq->q->elevator; if (e->type->ops.completed_request) e->type->ops.completed_request(rq, now); } } static inline void blk_mq_sched_requeue_request(struct request *rq) { if (rq->rq_flags & RQF_USE_SCHED) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if (e->type->ops.requeue_request) e->type->ops.requeue_request(rq); } } static inline bool blk_mq_sched_has_work(struct blk_mq_hw_ctx *hctx) { struct elevator_queue *e = hctx->queue->elevator; if (e && e->type->ops.has_work) return e->type->ops.has_work(hctx); return false; } static inline bool blk_mq_sched_needs_restart(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); } #endif
13 5 18 1 18 18 13 12 1 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 // SPDX-License-Identifier: GPL-2.0-only /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> */ #include <linux/module.h> #include <net/ip.h> #include <net/tcp.h> #include <net/route.h> #include <net/dst.h> #include <net/netfilter/ipv4/nf_reject.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_bridge.h> static int nf_reject_iphdr_validate(struct sk_buff *skb) { struct iphdr *iph; u32 len; if (!pskb_may_pull(skb, sizeof(struct iphdr))) return 0; iph = ip_hdr(skb); if (iph->ihl < 5 || iph->version != 4) return 0; len = ntohs(iph->tot_len); if (skb->len < len) return 0; else if (len < (iph->ihl*4)) return 0; if (!pskb_may_pull(skb, iph->ihl*4)) return 0; return 1; } struct sk_buff *nf_reject_skb_v4_tcp_reset(struct net *net, struct sk_buff *oldskb, const struct net_device *dev, int hook) { const struct tcphdr *oth; struct sk_buff *nskb; struct iphdr *niph; struct tcphdr _oth; if (!nf_reject_iphdr_validate(oldskb)) return NULL; oth = nf_reject_ip_tcphdr_get(oldskb, &_oth, hook); if (!oth) return NULL; nskb = alloc_skb(sizeof(struct iphdr) + sizeof(struct tcphdr) + LL_MAX_HEADER, GFP_ATOMIC); if (!nskb) return NULL; nskb->dev = (struct net_device *)dev; skb_reserve(nskb, LL_MAX_HEADER); niph = nf_reject_iphdr_put(nskb, oldskb, IPPROTO_TCP, READ_ONCE(net->ipv4.sysctl_ip_default_ttl)); nf_reject_ip_tcphdr_put(nskb, oldskb, oth); niph->tot_len = htons(nskb->len); ip_send_check(niph); return nskb; } EXPORT_SYMBOL_GPL(nf_reject_skb_v4_tcp_reset); struct sk_buff *nf_reject_skb_v4_unreach(struct net *net, struct sk_buff *oldskb, const struct net_device *dev, int hook, u8 code) { struct sk_buff *nskb; struct iphdr *niph; struct icmphdr *icmph; unsigned int len; int dataoff; __wsum csum; u8 proto; if (!nf_reject_iphdr_validate(oldskb)) return NULL; /* IP header checks: fragment. */ if (ip_hdr(oldskb)->frag_off & htons(IP_OFFSET)) return NULL; /* RFC says return as much as we can without exceeding 576 bytes. */ len = min_t(unsigned int, 536, oldskb->len); if (!pskb_may_pull(oldskb, len)) return NULL; if (pskb_trim_rcsum(oldskb, ntohs(ip_hdr(oldskb)->tot_len))) return NULL; dataoff = ip_hdrlen(oldskb); proto = ip_hdr(oldskb)->protocol; if (!skb_csum_unnecessary(oldskb) && nf_reject_verify_csum(oldskb, dataoff, proto) && nf_ip_checksum(oldskb, hook, ip_hdrlen(oldskb), proto)) return NULL; nskb = alloc_skb(sizeof(struct iphdr) + sizeof(struct icmphdr) + LL_MAX_HEADER + len, GFP_ATOMIC); if (!nskb) return NULL; nskb->dev = (struct net_device *)dev; skb_reserve(nskb, LL_MAX_HEADER); niph = nf_reject_iphdr_put(nskb, oldskb, IPPROTO_ICMP, READ_ONCE(net->ipv4.sysctl_ip_default_ttl)); skb_reset_transport_header(nskb); icmph = skb_put_zero(nskb, sizeof(struct icmphdr)); icmph->type = ICMP_DEST_UNREACH; icmph->code = code; skb_put_data(nskb, skb_network_header(oldskb), len); csum = csum_partial((void *)icmph, len + sizeof(struct icmphdr), 0); icmph->checksum = csum_fold(csum); niph->tot_len = htons(nskb->len); ip_send_check(niph); return nskb; } EXPORT_SYMBOL_GPL(nf_reject_skb_v4_unreach); const struct tcphdr *nf_reject_ip_tcphdr_get(struct sk_buff *oldskb, struct tcphdr *_oth, int hook) { const struct tcphdr *oth; /* IP header checks: fragment. */ if (ip_hdr(oldskb)->frag_off & htons(IP_OFFSET)) return NULL; if (ip_hdr(oldskb)->protocol != IPPROTO_TCP) return NULL; oth = skb_header_pointer(oldskb, ip_hdrlen(oldskb), sizeof(struct tcphdr), _oth); if (oth == NULL) return NULL; /* No RST for RST. */ if (oth->rst) return NULL; /* Check checksum */ if (nf_ip_checksum(oldskb, hook, ip_hdrlen(oldskb), IPPROTO_TCP)) return NULL; return oth; } EXPORT_SYMBOL_GPL(nf_reject_ip_tcphdr_get); struct iphdr *nf_reject_iphdr_put(struct sk_buff *nskb, const struct sk_buff *oldskb, __u8 protocol, int ttl) { struct iphdr *niph, *oiph = ip_hdr(oldskb); skb_reset_network_header(nskb); niph = skb_put(nskb, sizeof(struct iphdr)); niph->version = 4; niph->ihl = sizeof(struct iphdr) / 4; niph->tos = 0; niph->id = 0; niph->frag_off = htons(IP_DF); niph->protocol = protocol; niph->check = 0; niph->saddr = oiph->daddr; niph->daddr = oiph->saddr; niph->ttl = ttl; nskb->protocol = htons(ETH_P_IP); return niph; } EXPORT_SYMBOL_GPL(nf_reject_iphdr_put); void nf_reject_ip_tcphdr_put(struct sk_buff *nskb, const struct sk_buff *oldskb, const struct tcphdr *oth) { struct iphdr *niph = ip_hdr(nskb); struct tcphdr *tcph; skb_reset_transport_header(nskb); tcph = skb_put_zero(nskb, sizeof(struct tcphdr)); tcph->source = oth->dest; tcph->dest = oth->source; tcph->doff = sizeof(struct tcphdr) / 4; if (oth->ack) { tcph->seq = oth->ack_seq; } else { tcph->ack_seq = htonl(ntohl(oth->seq) + oth->syn + oth->fin + oldskb->len - ip_hdrlen(oldskb) - (oth->doff << 2)); tcph->ack = 1; } tcph->rst = 1; tcph->check = ~tcp_v4_check(sizeof(struct tcphdr), niph->saddr, niph->daddr, 0); nskb->ip_summed = CHECKSUM_PARTIAL; nskb->csum_start = (unsigned char *)tcph - nskb->head; nskb->csum_offset = offsetof(struct tcphdr, check); } EXPORT_SYMBOL_GPL(nf_reject_ip_tcphdr_put); static int nf_reject_fill_skb_dst(struct sk_buff *skb_in) { struct dst_entry *dst = NULL; struct flowi fl; memset(&fl, 0, sizeof(struct flowi)); fl.u.ip4.daddr = ip_hdr(skb_in)->saddr; nf_ip_route(dev_net(skb_in->dev), &dst, &fl, false); if (!dst) return -1; skb_dst_set(skb_in, dst); return 0; } /* Send RST reply */ void nf_send_reset(struct net *net, struct sock *sk, struct sk_buff *oldskb, int hook) { const struct tcphdr *oth; struct sk_buff *nskb; struct tcphdr _oth; oth = nf_reject_ip_tcphdr_get(oldskb, &_oth, hook); if (!oth) return; if ((hook == NF_INET_PRE_ROUTING || hook == NF_INET_INGRESS) && nf_reject_fill_skb_dst(oldskb) < 0) return; if (skb_rtable(oldskb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) return; nskb = alloc_skb(sizeof(struct iphdr) + sizeof(struct tcphdr) + LL_MAX_HEADER, GFP_ATOMIC); if (!nskb) return; /* ip_route_me_harder expects skb->dst to be set */ skb_dst_set_noref(nskb, skb_dst(oldskb)); nskb->mark = IP4_REPLY_MARK(net, oldskb->mark); skb_reserve(nskb, LL_MAX_HEADER); nf_reject_iphdr_put(nskb, oldskb, IPPROTO_TCP, ip4_dst_hoplimit(skb_dst(nskb))); nf_reject_ip_tcphdr_put(nskb, oldskb, oth); if (ip_route_me_harder(net, sk, nskb, RTN_UNSPEC)) goto free_nskb; /* "Never happens" */ if (nskb->len > dst_mtu(skb_dst(nskb))) goto free_nskb; nf_ct_attach(nskb, oldskb); nf_ct_set_closing(skb_nfct(oldskb)); #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) /* If we use ip_local_out for bridged traffic, the MAC source on * the RST will be ours, instead of the destination's. This confuses * some routers/firewalls, and they drop the packet. So we need to * build the eth header using the original destination's MAC as the * source, and send the RST packet directly. */ if (nf_bridge_info_exists(oldskb)) { struct ethhdr *oeth = eth_hdr(oldskb); struct iphdr *niph = ip_hdr(nskb); struct net_device *br_indev; br_indev = nf_bridge_get_physindev(oldskb, net); if (!br_indev) goto free_nskb; nskb->dev = br_indev; niph->tot_len = htons(nskb->len); ip_send_check(niph); if (dev_hard_header(nskb, nskb->dev, ntohs(nskb->protocol), oeth->h_source, oeth->h_dest, nskb->len) < 0) goto free_nskb; dev_queue_xmit(nskb); } else #endif ip_local_out(net, nskb->sk, nskb); return; free_nskb: kfree_skb(nskb); } EXPORT_SYMBOL_GPL(nf_send_reset); void nf_send_unreach(struct sk_buff *skb_in, int code, int hook) { struct iphdr *iph = ip_hdr(skb_in); int dataoff = ip_hdrlen(skb_in); u8 proto = iph->protocol; if (iph->frag_off & htons(IP_OFFSET)) return; if ((hook == NF_INET_PRE_ROUTING || hook == NF_INET_INGRESS) && nf_reject_fill_skb_dst(skb_in) < 0) return; if (skb_csum_unnecessary(skb_in) || !nf_reject_verify_csum(skb_in, dataoff, proto)) { icmp_send(skb_in, ICMP_DEST_UNREACH, code, 0); return; } if (nf_ip_checksum(skb_in, hook, dataoff, proto) == 0) icmp_send(skb_in, ICMP_DEST_UNREACH, code, 0); } EXPORT_SYMBOL_GPL(nf_send_unreach); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IPv4 packet rejection core");
29 28 31 27 5 5 5 7 18 19 16 9 7 1 1 18 7 37 38 19 34 29 19 27 27 23 1 1 15 2 12 16 35 47 61 61 61 104 1 50 70 7 32 23 27 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Neil Brown 2002 * Copyright (C) Christoph Hellwig 2007 * * This file contains the code mapping from inodes to NFS file handles, * and for mapping back from file handles to dentries. * * For details on why we do all the strange and hairy things in here * take a look at Documentation/filesystems/nfs/exporting.rst. */ #include <linux/exportfs.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/module.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/sched.h> #include <linux/cred.h> #define dprintk(fmt, args...) pr_debug(fmt, ##args) static int get_name(const struct path *path, char *name, struct dentry *child); static int exportfs_get_name(struct vfsmount *mnt, struct dentry *dir, char *name, struct dentry *child) { const struct export_operations *nop = dir->d_sb->s_export_op; struct path path = {.mnt = mnt, .dentry = dir}; if (nop->get_name) return nop->get_name(dir, name, child); else return get_name(&path, name, child); } /* * Check if the dentry or any of it's aliases is acceptable. */ static struct dentry * find_acceptable_alias(struct dentry *result, int (*acceptable)(void *context, struct dentry *dentry), void *context) { struct dentry *dentry, *toput = NULL; struct inode *inode; if (acceptable(context, result)) return result; inode = result->d_inode; spin_lock(&inode->i_lock); hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { dget(dentry); spin_unlock(&inode->i_lock); if (toput) dput(toput); if (dentry != result && acceptable(context, dentry)) { dput(result); return dentry; } spin_lock(&inode->i_lock); toput = dentry; } spin_unlock(&inode->i_lock); if (toput) dput(toput); return NULL; } static bool dentry_connected(struct dentry *dentry) { dget(dentry); while (dentry->d_flags & DCACHE_DISCONNECTED) { struct dentry *parent = dget_parent(dentry); dput(dentry); if (dentry == parent) { dput(parent); return false; } dentry = parent; } dput(dentry); return true; } static void clear_disconnected(struct dentry *dentry) { dget(dentry); while (dentry->d_flags & DCACHE_DISCONNECTED) { struct dentry *parent = dget_parent(dentry); WARN_ON_ONCE(IS_ROOT(dentry)); spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_DISCONNECTED; spin_unlock(&dentry->d_lock); dput(dentry); dentry = parent; } dput(dentry); } /* * Reconnect a directory dentry with its parent. * * This can return a dentry, or NULL, or an error. * * In the first case the returned dentry is the parent of the given * dentry, and may itself need to be reconnected to its parent. * * In the NULL case, a concurrent VFS operation has either renamed or * removed this directory. The concurrent operation has reconnected our * dentry, so we no longer need to. */ static struct dentry *reconnect_one(struct vfsmount *mnt, struct dentry *dentry, char *nbuf) { struct dentry *parent; struct dentry *tmp; int err; parent = ERR_PTR(-EACCES); if (mnt->mnt_sb->s_export_op->get_parent) parent = mnt->mnt_sb->s_export_op->get_parent(dentry); if (IS_ERR(parent)) { dprintk("get_parent of %lu failed, err %ld\n", dentry->d_inode->i_ino, PTR_ERR(parent)); return parent; } dprintk("%s: find name of %lu in %lu\n", __func__, dentry->d_inode->i_ino, parent->d_inode->i_ino); err = exportfs_get_name(mnt, parent, nbuf, dentry); if (err == -ENOENT) goto out_reconnected; if (err) goto out_err; dprintk("%s: found name: %s\n", __func__, nbuf); tmp = lookup_one_unlocked(mnt_idmap(mnt), nbuf, parent, strlen(nbuf)); if (IS_ERR(tmp)) { dprintk("lookup failed: %ld\n", PTR_ERR(tmp)); err = PTR_ERR(tmp); goto out_err; } if (tmp != dentry) { /* * Somebody has renamed it since exportfs_get_name(); * great, since it could've only been renamed if it * got looked up and thus connected, and it would * remain connected afterwards. We are done. */ dput(tmp); goto out_reconnected; } dput(tmp); if (IS_ROOT(dentry)) { err = -ESTALE; goto out_err; } return parent; out_err: dput(parent); return ERR_PTR(err); out_reconnected: dput(parent); /* * Someone must have renamed our entry into another parent, in * which case it has been reconnected by the rename. * * Or someone removed it entirely, in which case filehandle * lookup will succeed but the directory is now IS_DEAD and * subsequent operations on it will fail. * * Alternatively, maybe there was no race at all, and the * filesystem is just corrupt and gave us a parent that doesn't * actually contain any entry pointing to this inode. So, * double check that this worked and return -ESTALE if not: */ if (!dentry_connected(dentry)) return ERR_PTR(-ESTALE); return NULL; } /* * Make sure target_dir is fully connected to the dentry tree. * * On successful return, DCACHE_DISCONNECTED will be cleared on * target_dir, and target_dir->d_parent->...->d_parent will reach the * root of the filesystem. * * Whenever DCACHE_DISCONNECTED is unset, target_dir is fully connected. * But the converse is not true: target_dir may have DCACHE_DISCONNECTED * set but already be connected. In that case we'll verify the * connection to root and then clear the flag. * * Note that target_dir could be removed by a concurrent operation. In * that case reconnect_path may still succeed with target_dir fully * connected, but further operations using the filehandle will fail when * necessary (due to S_DEAD being set on the directory). */ static int reconnect_path(struct vfsmount *mnt, struct dentry *target_dir, char *nbuf) { struct dentry *dentry, *parent; dentry = dget(target_dir); while (dentry->d_flags & DCACHE_DISCONNECTED) { BUG_ON(dentry == mnt->mnt_sb->s_root); if (IS_ROOT(dentry)) parent = reconnect_one(mnt, dentry, nbuf); else parent = dget_parent(dentry); if (!parent) break; dput(dentry); if (IS_ERR(parent)) return PTR_ERR(parent); dentry = parent; } dput(dentry); clear_disconnected(target_dir); return 0; } struct getdents_callback { struct dir_context ctx; char *name; /* name that was found. It already points to a buffer NAME_MAX+1 is size */ u64 ino; /* the inum we are looking for */ int found; /* inode matched? */ int sequence; /* sequence counter */ }; /* * A rather strange filldir function to capture * the name matching the specified inode number. */ static bool filldir_one(struct dir_context *ctx, const char *name, int len, loff_t pos, u64 ino, unsigned int d_type) { struct getdents_callback *buf = container_of(ctx, struct getdents_callback, ctx); buf->sequence++; if (buf->ino == ino && len <= NAME_MAX && !is_dot_dotdot(name, len)) { memcpy(buf->name, name, len); buf->name[len] = '\0'; buf->found = 1; return false; // no more } return true; } /** * get_name - default export_operations->get_name function * @path: the directory in which to find a name * @name: a pointer to a %NAME_MAX+1 char buffer to store the name * @child: the dentry for the child directory. * * calls readdir on the parent until it finds an entry with * the same inode number as the child, and returns that. */ static int get_name(const struct path *path, char *name, struct dentry *child) { const struct cred *cred = current_cred(); struct inode *dir = path->dentry->d_inode; int error; struct file *file; struct kstat stat; struct path child_path = { .mnt = path->mnt, .dentry = child, }; struct getdents_callback buffer = { .ctx.actor = filldir_one, .name = name, }; error = -ENOTDIR; if (!dir || !S_ISDIR(dir->i_mode)) goto out; error = -EINVAL; if (!dir->i_fop) goto out; /* * inode->i_ino is unsigned long, kstat->ino is u64, so the * former would be insufficient on 32-bit hosts when the * filesystem supports 64-bit inode numbers. So we need to * actually call ->getattr, not just read i_ino: */ error = vfs_getattr_nosec(&child_path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); if (error) return error; buffer.ino = stat.ino; /* * Open the directory ... */ file = dentry_open(path, O_RDONLY, cred); error = PTR_ERR(file); if (IS_ERR(file)) goto out; error = -EINVAL; if (!file->f_op->iterate_shared) goto out_close; buffer.sequence = 0; while (1) { int old_seq = buffer.sequence; error = iterate_dir(file, &buffer.ctx); if (buffer.found) { error = 0; break; } if (error < 0) break; error = -ENOENT; if (old_seq == buffer.sequence) break; } out_close: fput(file); out: return error; } #define FILEID_INO64_GEN_LEN 3 /** * exportfs_encode_ino64_fid - encode non-decodeable 64bit ino file id * @inode: the object to encode * @fid: where to store the file handle fragment * @max_len: maximum length to store there (in 4 byte units) * * This generic function is used to encode a non-decodeable file id for * fanotify for filesystems that do not support NFS export. */ static int exportfs_encode_ino64_fid(struct inode *inode, struct fid *fid, int *max_len) { if (*max_len < FILEID_INO64_GEN_LEN) { *max_len = FILEID_INO64_GEN_LEN; return FILEID_INVALID; } fid->i64.ino = inode->i_ino; fid->i64.gen = inode->i_generation; *max_len = FILEID_INO64_GEN_LEN; return FILEID_INO64_GEN; } /** * exportfs_encode_inode_fh - encode a file handle from inode * @inode: the object to encode * @fid: where to store the file handle fragment * @max_len: maximum length to store there * @parent: parent directory inode, if wanted * @flags: properties of the requested file handle * * Returns an enum fid_type or a negative errno. */ int exportfs_encode_inode_fh(struct inode *inode, struct fid *fid, int *max_len, struct inode *parent, int flags) { const struct export_operations *nop = inode->i_sb->s_export_op; enum fid_type type; if (!exportfs_can_encode_fh(nop, flags)) return -EOPNOTSUPP; if (!nop && (flags & EXPORT_FH_FID)) type = exportfs_encode_ino64_fid(inode, fid, max_len); else type = nop->encode_fh(inode, fid->raw, max_len, parent); if (type > 0 && FILEID_USER_FLAGS(type)) { pr_warn_once("%s: unexpected fh type value 0x%x from fstype %s.\n", __func__, type, inode->i_sb->s_type->name); return -EINVAL; } return type; } EXPORT_SYMBOL_GPL(exportfs_encode_inode_fh); /** * exportfs_encode_fh - encode a file handle from dentry * @dentry: the object to encode * @fid: where to store the file handle fragment * @max_len: maximum length to store there * @flags: properties of the requested file handle * * Returns an enum fid_type or a negative errno. */ int exportfs_encode_fh(struct dentry *dentry, struct fid *fid, int *max_len, int flags) { int error; struct dentry *p = NULL; struct inode *inode = dentry->d_inode, *parent = NULL; if ((flags & EXPORT_FH_CONNECTABLE) && !S_ISDIR(inode->i_mode)) { p = dget_parent(dentry); /* * note that while p might've ceased to be our parent already, * it's still pinned by and still positive. */ parent = p->d_inode; } error = exportfs_encode_inode_fh(inode, fid, max_len, parent, flags); dput(p); return error; } EXPORT_SYMBOL_GPL(exportfs_encode_fh); struct dentry * exportfs_decode_fh_raw(struct vfsmount *mnt, struct fid *fid, int fh_len, int fileid_type, unsigned int flags, int (*acceptable)(void *, struct dentry *), void *context) { const struct export_operations *nop = mnt->mnt_sb->s_export_op; struct dentry *result, *alias; char nbuf[NAME_MAX+1]; int err; if (fileid_type < 0 || FILEID_USER_FLAGS(fileid_type)) return ERR_PTR(-EINVAL); /* * Try to get any dentry for the given file handle from the filesystem. */ if (!exportfs_can_decode_fh(nop)) return ERR_PTR(-ESTALE); result = nop->fh_to_dentry(mnt->mnt_sb, fid, fh_len, fileid_type); if (IS_ERR_OR_NULL(result)) return result; if ((flags & EXPORT_FH_DIR_ONLY) && !d_is_dir(result)) { err = -ENOTDIR; goto err_result; } /* * If no acceptance criteria was specified by caller, a disconnected * dentry is also accepatable. Callers may use this mode to query if * file handle is stale or to get a reference to an inode without * risking the high overhead caused by directory reconnect. */ if (!acceptable) return result; if (d_is_dir(result)) { /* * This request is for a directory. * * On the positive side there is only one dentry for each * directory inode. On the negative side this implies that we * to ensure our dentry is connected all the way up to the * filesystem root. */ if (result->d_flags & DCACHE_DISCONNECTED) { err = reconnect_path(mnt, result, nbuf); if (err) goto err_result; } if (!acceptable(context, result)) { err = -EACCES; goto err_result; } return result; } else { /* * It's not a directory. Life is a little more complicated. */ struct dentry *target_dir, *nresult; /* * See if either the dentry we just got from the filesystem * or any alias for it is acceptable. This is always true * if this filesystem is exported without the subtreecheck * option. If the filesystem is exported with the subtree * check option there's a fair chance we need to look at * the parent directory in the file handle and make sure * it's connected to the filesystem root. */ alias = find_acceptable_alias(result, acceptable, context); if (alias) return alias; /* * Try to extract a dentry for the parent directory from the * file handle. If this fails we'll have to give up. */ err = -ESTALE; if (!nop->fh_to_parent) goto err_result; target_dir = nop->fh_to_parent(mnt->mnt_sb, fid, fh_len, fileid_type); if (!target_dir) goto err_result; err = PTR_ERR(target_dir); if (IS_ERR(target_dir)) goto err_result; /* * And as usual we need to make sure the parent directory is * connected to the filesystem root. The VFS really doesn't * like disconnected directories.. */ err = reconnect_path(mnt, target_dir, nbuf); if (err) { dput(target_dir); goto err_result; } /* * Now that we've got both a well-connected parent and a * dentry for the inode we're after, make sure that our * inode is actually connected to the parent. */ err = exportfs_get_name(mnt, target_dir, nbuf, result); if (err) { dput(target_dir); goto err_result; } inode_lock(target_dir->d_inode); nresult = lookup_one(mnt_idmap(mnt), nbuf, target_dir, strlen(nbuf)); if (!IS_ERR(nresult)) { if (unlikely(nresult->d_inode != result->d_inode)) { dput(nresult); nresult = ERR_PTR(-ESTALE); } } inode_unlock(target_dir->d_inode); /* * At this point we are done with the parent, but it's pinned * by the child dentry anyway. */ dput(target_dir); if (IS_ERR(nresult)) { err = PTR_ERR(nresult); goto err_result; } dput(result); result = nresult; /* * And finally make sure the dentry is actually acceptable * to NFSD. */ alias = find_acceptable_alias(result, acceptable, context); if (!alias) { err = -EACCES; goto err_result; } return alias; } err_result: dput(result); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(exportfs_decode_fh_raw); struct dentry *exportfs_decode_fh(struct vfsmount *mnt, struct fid *fid, int fh_len, int fileid_type, int (*acceptable)(void *, struct dentry *), void *context) { struct dentry *ret; ret = exportfs_decode_fh_raw(mnt, fid, fh_len, fileid_type, 0, acceptable, context); if (IS_ERR_OR_NULL(ret)) { if (ret == ERR_PTR(-ENOMEM)) return ret; return ERR_PTR(-ESTALE); } return ret; } EXPORT_SYMBOL_GPL(exportfs_decode_fh); MODULE_DESCRIPTION("Code mapping from inodes to file handles"); MODULE_LICENSE("GPL");
6 1 1 3 1 2 6 1 1 3 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 // SPDX-License-Identifier: GPL-2.0-only /* * Xtables module for matching the value of the IPv4/IPv6 and TCP ECN bits * * (C) 2002 by Harald Welte <laforge@gnumonks.org> * (C) 2011 Patrick McHardy <kaber@trash.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/in.h> #include <linux/ip.h> #include <net/ip.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/tcp.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_ecn.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); MODULE_DESCRIPTION("Xtables: Explicit Congestion Notification (ECN) flag match"); MODULE_LICENSE("GPL"); MODULE_ALIAS("ipt_ecn"); MODULE_ALIAS("ip6t_ecn"); static bool match_tcp(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_ecn_info *einfo = par->matchinfo; struct tcphdr _tcph; const struct tcphdr *th; /* In practice, TCP match does this, so can't fail. But let's * be good citizens. */ th = skb_header_pointer(skb, par->thoff, sizeof(_tcph), &_tcph); if (th == NULL) return false; if (einfo->operation & XT_ECN_OP_MATCH_ECE) { if (einfo->invert & XT_ECN_OP_MATCH_ECE) { if (th->ece == 1) return false; } else { if (th->ece == 0) return false; } } if (einfo->operation & XT_ECN_OP_MATCH_CWR) { if (einfo->invert & XT_ECN_OP_MATCH_CWR) { if (th->cwr == 1) return false; } else { if (th->cwr == 0) return false; } } return true; } static inline bool match_ip(const struct sk_buff *skb, const struct xt_ecn_info *einfo) { return ((ip_hdr(skb)->tos & XT_ECN_IP_MASK) == einfo->ip_ect) ^ !!(einfo->invert & XT_ECN_OP_MATCH_IP); } static bool ecn_mt4(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_ecn_info *info = par->matchinfo; if (info->operation & XT_ECN_OP_MATCH_IP && !match_ip(skb, info)) return false; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && !match_tcp(skb, par)) return false; return true; } static int ecn_mt_check4(const struct xt_mtchk_param *par) { const struct xt_ecn_info *info = par->matchinfo; const struct ipt_ip *ip = par->entryinfo; if (info->operation & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->invert & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && (ip->proto != IPPROTO_TCP || ip->invflags & IPT_INV_PROTO)) { pr_info_ratelimited("cannot match TCP bits for non-tcp packets\n"); return -EINVAL; } return 0; } static inline bool match_ipv6(const struct sk_buff *skb, const struct xt_ecn_info *einfo) { return (((ipv6_hdr(skb)->flow_lbl[0] >> 4) & XT_ECN_IP_MASK) == einfo->ip_ect) ^ !!(einfo->invert & XT_ECN_OP_MATCH_IP); } static bool ecn_mt6(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_ecn_info *info = par->matchinfo; if (info->operation & XT_ECN_OP_MATCH_IP && !match_ipv6(skb, info)) return false; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && !match_tcp(skb, par)) return false; return true; } static int ecn_mt_check6(const struct xt_mtchk_param *par) { const struct xt_ecn_info *info = par->matchinfo; const struct ip6t_ip6 *ip = par->entryinfo; if (info->operation & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->invert & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && (ip->proto != IPPROTO_TCP || ip->invflags & IP6T_INV_PROTO)) { pr_info_ratelimited("cannot match TCP bits for non-tcp packets\n"); return -EINVAL; } return 0; } static struct xt_match ecn_mt_reg[] __read_mostly = { { .name = "ecn", .family = NFPROTO_IPV4, .match = ecn_mt4, .matchsize = sizeof(struct xt_ecn_info), .checkentry = ecn_mt_check4, .me = THIS_MODULE, }, { .name = "ecn", .family = NFPROTO_IPV6, .match = ecn_mt6, .matchsize = sizeof(struct xt_ecn_info), .checkentry = ecn_mt_check6, .me = THIS_MODULE, }, }; static int __init ecn_mt_init(void) { return xt_register_matches(ecn_mt_reg, ARRAY_SIZE(ecn_mt_reg)); } static void __exit ecn_mt_exit(void) { xt_unregister_matches(ecn_mt_reg, ARRAY_SIZE(ecn_mt_reg)); } module_init(ecn_mt_init); module_exit(ecn_mt_exit);
72548 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 // SPDX-License-Identifier: GPL-2.0-only #include <linux/fault-inject.h> #include <linux/fault-inject-usercopy.h> static struct { struct fault_attr attr; } fail_usercopy = { .attr = FAULT_ATTR_INITIALIZER, }; static int __init setup_fail_usercopy(char *str) { return setup_fault_attr(&fail_usercopy.attr, str); } __setup("fail_usercopy=", setup_fail_usercopy); #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS static int __init fail_usercopy_debugfs(void) { struct dentry *dir; dir = fault_create_debugfs_attr("fail_usercopy", NULL, &fail_usercopy.attr); if (IS_ERR(dir)) return PTR_ERR(dir); return 0; } late_initcall(fail_usercopy_debugfs); #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ bool should_fail_usercopy(void) { return should_fail(&fail_usercopy.attr, 1); } EXPORT_SYMBOL_GPL(should_fail_usercopy);
2 2 32 3 3 76 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 /* * include/linux/ktime.h * * ktime_t - nanosecond-resolution time format. * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes and macros. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * * Roman Zippel provided the ideas and primary code snippets of * the ktime_t union and further simplifications of the original * code. * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_KTIME_H #define _LINUX_KTIME_H #include <asm/bug.h> #include <linux/jiffies.h> #include <linux/time.h> #include <linux/types.h> /** * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value * @secs: seconds to set * @nsecs: nanoseconds to set * * Return: The ktime_t representation of the value. */ static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) { if (unlikely(secs >= KTIME_SEC_MAX)) return KTIME_MAX; return secs * NSEC_PER_SEC + (s64)nsecs; } /* Subtract two ktime_t variables. rem = lhs -rhs: */ #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) /* Add two ktime_t variables. res = lhs + rhs: */ #define ktime_add(lhs, rhs) ((lhs) + (rhs)) /* * Same as ktime_add(), but avoids undefined behaviour on overflow; however, * this means that you must check the result for overflow yourself. */ #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) /* * Add a ktime_t variable and a scalar nanosecond value. * res = kt + nsval: */ #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) /* * Subtract a scalar nanosecod from a ktime_t variable * res = kt - nsval: */ #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) /* convert a timespec64 to ktime_t format: */ static inline ktime_t timespec64_to_ktime(struct timespec64 ts) { return ktime_set(ts.tv_sec, ts.tv_nsec); } /* Map the ktime_t to timespec conversion to ns_to_timespec function */ #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) /* Convert ktime_t to nanoseconds */ static inline s64 ktime_to_ns(const ktime_t kt) { return kt; } /** * ktime_compare - Compares two ktime_t variables for less, greater or equal * @cmp1: comparable1 * @cmp2: comparable2 * * Return: ... * cmp1 < cmp2: return <0 * cmp1 == cmp2: return 0 * cmp1 > cmp2: return >0 */ static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) { if (cmp1 < cmp2) return -1; if (cmp1 > cmp2) return 1; return 0; } /** * ktime_after - Compare if a ktime_t value is bigger than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened after cmp2. */ static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) > 0; } /** * ktime_before - Compare if a ktime_t value is smaller than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened before cmp2. */ static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) < 0; } #if BITS_PER_LONG < 64 extern s64 __ktime_divns(const ktime_t kt, s64 div); static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * Negative divisors could cause an inf loop, * so bug out here. */ BUG_ON(div < 0); if (__builtin_constant_p(div) && !(div >> 32)) { s64 ns = kt; u64 tmp = ns < 0 ? -ns : ns; do_div(tmp, div); return ns < 0 ? -tmp : tmp; } else { return __ktime_divns(kt, div); } } #else /* BITS_PER_LONG < 64 */ static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * 32-bit implementation cannot handle negative divisors, * so catch them on 64bit as well. */ WARN_ON(div < 0); return kt / div; } #endif static inline s64 ktime_to_us(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_USEC); } static inline s64 ktime_to_ms(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_MSEC); } static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_us(ktime_sub(later, earlier)); } static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_ms(ktime_sub(later, earlier)); } static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) { return ktime_add_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) { return ktime_add_ns(kt, msec * NSEC_PER_MSEC); } static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) { return ktime_sub_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) { return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); } extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); /** * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 * format only if the variable contains data * @kt: the ktime_t variable to convert * @ts: the timespec variable to store the result in * * Return: %true if there was a successful conversion, %false if kt was 0. */ static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts) { if (kt) { *ts = ktime_to_timespec64(kt); return true; } else { return false; } } #include <vdso/ktime.h> static inline ktime_t ns_to_ktime(u64 ns) { return ns; } static inline ktime_t us_to_ktime(u64 us) { return us * NSEC_PER_USEC; } static inline ktime_t ms_to_ktime(u64 ms) { return ms * NSEC_PER_MSEC; } # include <linux/timekeeping.h> #endif
1 1 4054 3866 222 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 // SPDX-License-Identifier: GPL-2.0-only /* * Generic HDLC support routines for Linux * * Copyright (C) 1999 - 2008 Krzysztof Halasa <khc@pm.waw.pl> * * Currently supported: * * raw IP-in-HDLC * * Cisco HDLC * * Frame Relay with ANSI or CCITT LMI (both user and network side) * * PPP * * X.25 * * Use sethdlc utility to set line parameters, protocol and PVCs * * How does it work: * - proto->open(), close(), start(), stop() calls are serialized. * The order is: open, [ start, stop ... ] close ... * - proto->start() and stop() are called with spin_lock_irq held. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/errno.h> #include <linux/hdlc.h> #include <linux/if_arp.h> #include <linux/inetdevice.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/pkt_sched.h> #include <linux/poll.h> #include <linux/rtnetlink.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/net_namespace.h> static const char *version = "HDLC support module revision 1.22"; #undef DEBUG_LINK static struct hdlc_proto *first_proto; static int hdlc_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *p, struct net_device *orig_dev) { struct hdlc_device *hdlc; /* First make sure "dev" is an HDLC device */ if (!(dev->priv_flags & IFF_WAN_HDLC)) { kfree_skb(skb); return NET_RX_SUCCESS; } hdlc = dev_to_hdlc(dev); if (!net_eq(dev_net(dev), &init_net)) { kfree_skb(skb); return 0; } BUG_ON(!hdlc->proto->netif_rx); return hdlc->proto->netif_rx(skb); } netdev_tx_t hdlc_start_xmit(struct sk_buff *skb, struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); if (hdlc->proto->xmit) return hdlc->proto->xmit(skb, dev); return hdlc->xmit(skb, dev); /* call hardware driver directly */ } EXPORT_SYMBOL(hdlc_start_xmit); static inline void hdlc_proto_start(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); if (hdlc->proto->start) hdlc->proto->start(dev); } static inline void hdlc_proto_stop(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); if (hdlc->proto->stop) hdlc->proto->stop(dev); } static int hdlc_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); hdlc_device *hdlc; unsigned long flags; int on; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; if (!(dev->priv_flags & IFF_WAN_HDLC)) return NOTIFY_DONE; /* not an HDLC device */ if (event != NETDEV_CHANGE) return NOTIFY_DONE; /* Only interested in carrier changes */ on = netif_carrier_ok(dev); #ifdef DEBUG_LINK printk(KERN_DEBUG "%s: hdlc_device_event NETDEV_CHANGE, carrier %i\n", dev->name, on); #endif hdlc = dev_to_hdlc(dev); spin_lock_irqsave(&hdlc->state_lock, flags); if (hdlc->carrier == on) goto carrier_exit; /* no change in DCD line level */ hdlc->carrier = on; if (!hdlc->open) goto carrier_exit; if (hdlc->carrier) { netdev_info(dev, "Carrier detected\n"); hdlc_proto_start(dev); } else { netdev_info(dev, "Carrier lost\n"); hdlc_proto_stop(dev); } carrier_exit: spin_unlock_irqrestore(&hdlc->state_lock, flags); return NOTIFY_DONE; } /* Must be called by hardware driver when HDLC device is being opened */ int hdlc_open(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); #ifdef DEBUG_LINK printk(KERN_DEBUG "%s: hdlc_open() carrier %i open %i\n", dev->name, hdlc->carrier, hdlc->open); #endif if (!hdlc->proto) return -ENOSYS; /* no protocol attached */ if (hdlc->proto->open) { int result = hdlc->proto->open(dev); if (result) return result; } spin_lock_irq(&hdlc->state_lock); if (hdlc->carrier) { netdev_info(dev, "Carrier detected\n"); hdlc_proto_start(dev); } else { netdev_info(dev, "No carrier\n"); } hdlc->open = 1; spin_unlock_irq(&hdlc->state_lock); return 0; } EXPORT_SYMBOL(hdlc_open); /* Must be called by hardware driver when HDLC device is being closed */ void hdlc_close(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); #ifdef DEBUG_LINK printk(KERN_DEBUG "%s: hdlc_close() carrier %i open %i\n", dev->name, hdlc->carrier, hdlc->open); #endif spin_lock_irq(&hdlc->state_lock); hdlc->open = 0; if (hdlc->carrier) hdlc_proto_stop(dev); spin_unlock_irq(&hdlc->state_lock); if (hdlc->proto->close) hdlc->proto->close(dev); } EXPORT_SYMBOL(hdlc_close); int hdlc_ioctl(struct net_device *dev, struct if_settings *ifs) { struct hdlc_proto *proto = first_proto; int result; if (dev_to_hdlc(dev)->proto) { result = dev_to_hdlc(dev)->proto->ioctl(dev, ifs); if (result != -EINVAL) return result; } /* Not handled by currently attached protocol (if any) */ while (proto) { result = proto->ioctl(dev, ifs); if (result != -EINVAL) return result; proto = proto->next; } return -EINVAL; } EXPORT_SYMBOL(hdlc_ioctl); static const struct header_ops hdlc_null_ops; static void hdlc_setup_dev(struct net_device *dev) { /* Re-init all variables changed by HDLC protocol drivers, * including ether_setup() called from hdlc_raw_eth.c. */ dev->flags = IFF_POINTOPOINT | IFF_NOARP; dev->priv_flags = IFF_WAN_HDLC; dev->mtu = HDLC_MAX_MTU; dev->min_mtu = 68; dev->max_mtu = HDLC_MAX_MTU; dev->type = ARPHRD_RAWHDLC; dev->hard_header_len = 0; dev->needed_headroom = 0; dev->addr_len = 0; dev->header_ops = &hdlc_null_ops; } static void hdlc_setup(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); hdlc_setup_dev(dev); hdlc->carrier = 1; hdlc->open = 0; spin_lock_init(&hdlc->state_lock); } struct net_device *alloc_hdlcdev(void *priv) { struct net_device *dev; dev = alloc_netdev(sizeof(struct hdlc_device), "hdlc%d", NET_NAME_UNKNOWN, hdlc_setup); if (dev) dev_to_hdlc(dev)->priv = priv; return dev; } EXPORT_SYMBOL(alloc_hdlcdev); void unregister_hdlc_device(struct net_device *dev) { rtnl_lock(); detach_hdlc_protocol(dev); unregister_netdevice(dev); rtnl_unlock(); } EXPORT_SYMBOL(unregister_hdlc_device); int attach_hdlc_protocol(struct net_device *dev, struct hdlc_proto *proto, size_t size) { int err; err = detach_hdlc_protocol(dev); if (err) return err; if (!try_module_get(proto->module)) return -ENOSYS; if (size) { dev_to_hdlc(dev)->state = kmalloc(size, GFP_KERNEL); if (!dev_to_hdlc(dev)->state) { module_put(proto->module); return -ENOBUFS; } } dev_to_hdlc(dev)->proto = proto; return 0; } EXPORT_SYMBOL(attach_hdlc_protocol); int detach_hdlc_protocol(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); int err; if (hdlc->proto) { err = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, dev); err = notifier_to_errno(err); if (err) { netdev_err(dev, "Refused to change device type\n"); return err; } if (hdlc->proto->detach) hdlc->proto->detach(dev); module_put(hdlc->proto->module); hdlc->proto = NULL; } kfree(hdlc->state); hdlc->state = NULL; hdlc_setup_dev(dev); return 0; } EXPORT_SYMBOL(detach_hdlc_protocol); void register_hdlc_protocol(struct hdlc_proto *proto) { rtnl_lock(); proto->next = first_proto; first_proto = proto; rtnl_unlock(); } EXPORT_SYMBOL(register_hdlc_protocol); void unregister_hdlc_protocol(struct hdlc_proto *proto) { struct hdlc_proto **p; rtnl_lock(); p = &first_proto; while (*p != proto) { BUG_ON(!*p); p = &((*p)->next); } *p = proto->next; rtnl_unlock(); } EXPORT_SYMBOL(unregister_hdlc_protocol); MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>"); MODULE_DESCRIPTION("HDLC support module"); MODULE_LICENSE("GPL v2"); static struct packet_type hdlc_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_HDLC), .func = hdlc_rcv, }; static struct notifier_block hdlc_notifier = { .notifier_call = hdlc_device_event, }; static int __init hdlc_module_init(void) { int result; pr_info("%s\n", version); result = register_netdevice_notifier(&hdlc_notifier); if (result) return result; dev_add_pack(&hdlc_packet_type); return 0; } static void __exit hdlc_module_exit(void) { dev_remove_pack(&hdlc_packet_type); unregister_netdevice_notifier(&hdlc_notifier); } module_init(hdlc_module_init); module_exit(hdlc_module_exit);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2018-2025 Intel Corporation */ #ifndef IEEE80211_I_H #define IEEE80211_I_H #include <linux/kernel.h> #include <linux/device.h> #include <linux/if_ether.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/workqueue.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/etherdevice.h> #include <linux/leds.h> #include <linux/idr.h> #include <linux/rhashtable.h> #include <linux/rbtree.h> #include <kunit/visibility.h> #include <net/ieee80211_radiotap.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include <net/fq.h> #include "key.h" #include "sta_info.h" #include "debug.h" #include "drop.h" extern const struct cfg80211_ops mac80211_config_ops; struct ieee80211_local; struct ieee80211_mesh_fast_tx; /* Maximum number of broadcast/multicast frames to buffer when some of the * associated stations are using power saving. */ #define AP_MAX_BC_BUFFER 128 /* Maximum number of frames buffered to all STAs, including multicast frames. * Note: increasing this limit increases the potential memory requirement. Each * frame can be up to about 2 kB long. */ #define TOTAL_MAX_TX_BUFFER 512 /* Required encryption head and tailroom */ #define IEEE80211_ENCRYPT_HEADROOM 8 #define IEEE80211_ENCRYPT_TAILROOM 18 /* power level hasn't been configured (or set to automatic) */ #define IEEE80211_UNSET_POWER_LEVEL INT_MIN /* * Some APs experience problems when working with U-APSD. Decreasing the * probability of that happening by using legacy mode for all ACs but VO isn't * enough. * * Cisco 4410N originally forced us to enable VO by default only because it * treated non-VO ACs as legacy. * * However some APs (notably Netgear R7000) silently reclassify packets to * different ACs. Since u-APSD ACs require trigger frames for frame retrieval * clients would never see some frames (e.g. ARP responses) or would fetch them * accidentally after a long time. * * It makes little sense to enable u-APSD queues by default because it needs * userspace applications to be aware of it to actually take advantage of the * possible additional powersavings. Implicitly depending on driver autotrigger * frame support doesn't make much sense. */ #define IEEE80211_DEFAULT_UAPSD_QUEUES 0 #define IEEE80211_DEFAULT_MAX_SP_LEN \ IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL extern const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS]; #define IEEE80211_DEAUTH_FRAME_LEN (24 /* hdr */ + 2 /* reason */) #define IEEE80211_MAX_NAN_INSTANCE_ID 255 enum ieee80211_status_data { IEEE80211_STATUS_TYPE_MASK = 0x00f, IEEE80211_STATUS_TYPE_INVALID = 0, IEEE80211_STATUS_TYPE_SMPS = 1, IEEE80211_STATUS_TYPE_NEG_TTLM = 2, IEEE80211_STATUS_SUBDATA_MASK = 0x1ff0, }; static inline bool ieee80211_sta_keep_active(struct sta_info *sta, u8 ac) { /* Keep a station's queues on the active list for deficit accounting * purposes if it was active or queued during the last 100ms. */ return time_before_eq(jiffies, sta->airtime[ac].last_active + HZ / 10); } struct ieee80211_bss { u32 device_ts_beacon, device_ts_presp; bool wmm_used; bool uapsd_supported; #define IEEE80211_MAX_SUPP_RATES 32 u8 supp_rates[IEEE80211_MAX_SUPP_RATES]; size_t supp_rates_len; struct ieee80211_rate *beacon_rate; u32 vht_cap_info; /* * During association, we save an ERP value from a probe response so * that we can feed ERP info to the driver when handling the * association completes. these fields probably won't be up-to-date * otherwise, you probably don't want to use them. */ bool has_erp_value; u8 erp_value; /* Keep track of the corruption of the last beacon/probe response. */ u8 corrupt_data; /* Keep track of what bits of information we have valid info for. */ u8 valid_data; }; /** * enum ieee80211_bss_corrupt_data_flags - BSS data corruption flags * @IEEE80211_BSS_CORRUPT_BEACON: last beacon frame received was corrupted * @IEEE80211_BSS_CORRUPT_PROBE_RESP: last probe response received was corrupted * * These are bss flags that are attached to a bss in the * @corrupt_data field of &struct ieee80211_bss. */ enum ieee80211_bss_corrupt_data_flags { IEEE80211_BSS_CORRUPT_BEACON = BIT(0), IEEE80211_BSS_CORRUPT_PROBE_RESP = BIT(1) }; /** * enum ieee80211_bss_valid_data_flags - BSS valid data flags * @IEEE80211_BSS_VALID_WMM: WMM/UAPSD data was gathered from non-corrupt IE * @IEEE80211_BSS_VALID_RATES: Supported rates were gathered from non-corrupt IE * @IEEE80211_BSS_VALID_ERP: ERP flag was gathered from non-corrupt IE * * These are bss flags that are attached to a bss in the * @valid_data field of &struct ieee80211_bss. They show which parts * of the data structure were received as a result of an un-corrupted * beacon/probe response. */ enum ieee80211_bss_valid_data_flags { IEEE80211_BSS_VALID_WMM = BIT(1), IEEE80211_BSS_VALID_RATES = BIT(2), IEEE80211_BSS_VALID_ERP = BIT(3) }; typedef unsigned __bitwise ieee80211_tx_result; #define TX_CONTINUE ((__force ieee80211_tx_result) 0u) #define TX_DROP ((__force ieee80211_tx_result) 1u) #define TX_QUEUED ((__force ieee80211_tx_result) 2u) #define IEEE80211_TX_UNICAST BIT(1) #define IEEE80211_TX_PS_BUFFERED BIT(2) struct ieee80211_tx_data { struct sk_buff *skb; struct sk_buff_head skbs; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_key *key; struct ieee80211_tx_rate rate; unsigned int flags; }; /** * enum ieee80211_packet_rx_flags - packet RX flags * @IEEE80211_RX_AMSDU: a-MSDU packet * @IEEE80211_RX_MALFORMED_ACTION_FRM: action frame is malformed * @IEEE80211_RX_DEFERRED_RELEASE: frame was subjected to receive reordering * * These are per-frame flags that are attached to a frame in the * @rx_flags field of &struct ieee80211_rx_status. */ enum ieee80211_packet_rx_flags { IEEE80211_RX_AMSDU = BIT(3), IEEE80211_RX_MALFORMED_ACTION_FRM = BIT(4), IEEE80211_RX_DEFERRED_RELEASE = BIT(5), }; /** * enum ieee80211_rx_flags - RX data flags * * @IEEE80211_RX_BEACON_REPORTED: This frame was already reported * to cfg80211_report_obss_beacon(). * * These flags are used across handling multiple interfaces * for a single frame. */ enum ieee80211_rx_flags { IEEE80211_RX_BEACON_REPORTED = BIT(0), }; struct ieee80211_rx_data { struct list_head *list; struct sk_buff *skb; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct ieee80211_link_data *link; struct sta_info *sta; struct link_sta_info *link_sta; struct ieee80211_key *key; unsigned int flags; /* * Index into sequence numbers array, 0..16 * since the last (16) is used for non-QoS, * will be 16 on non-QoS frames. */ int seqno_idx; /* * Index into the security IV/PN arrays, 0..16 * since the last (16) is used for CCMP-encrypted * management frames, will be set to 16 on mgmt * frames and 0 on non-QoS frames. */ int security_idx; int link_id; union { struct { u32 iv32; u16 iv16; } tkip; struct { u8 pn[IEEE80211_CCMP_PN_LEN]; } ccm_gcm; }; }; struct ieee80211_csa_settings { const u16 *counter_offsets_beacon; const u16 *counter_offsets_presp; int n_counter_offsets_beacon; int n_counter_offsets_presp; u8 count; }; struct ieee80211_color_change_settings { u16 counter_offset_beacon; u16 counter_offset_presp; u8 count; }; struct beacon_data { u8 *head, *tail; int head_len, tail_len; struct ieee80211_meshconf_ie *meshconf; u16 cntdwn_counter_offsets[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; u8 cntdwn_current_counter; struct cfg80211_mbssid_elems *mbssid_ies; struct cfg80211_rnr_elems *rnr_ies; struct rcu_head rcu_head; }; struct probe_resp { struct rcu_head rcu_head; int len; u16 cntdwn_counter_offsets[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; u8 data[]; }; struct fils_discovery_data { struct rcu_head rcu_head; int len; u8 data[]; }; struct unsol_bcast_probe_resp_data { struct rcu_head rcu_head; int len; u8 data[]; }; struct ps_data { /* yes, this looks ugly, but guarantees that we can later use * bitmap_empty :) * NB: don't touch this bitmap, use sta_info_{set,clear}_tim_bit */ u8 tim[sizeof(unsigned long) * BITS_TO_LONGS(IEEE80211_MAX_AID + 1)] __aligned(__alignof__(unsigned long)); struct sk_buff_head bc_buf; atomic_t num_sta_ps; /* number of stations in PS mode */ int dtim_count; bool dtim_bc_mc; }; struct ieee80211_if_ap { struct list_head vlans; /* write-protected with RTNL and local->mtx */ struct ps_data ps; atomic_t num_mcast_sta; /* number of stations receiving multicast */ bool multicast_to_unicast; bool active; }; struct ieee80211_if_vlan { struct list_head list; /* write-protected with RTNL and local->mtx */ /* used for all tx if the VLAN is configured to 4-addr mode */ struct sta_info __rcu *sta; atomic_t num_mcast_sta; /* number of stations receiving multicast */ }; struct mesh_stats { __u32 fwded_mcast; /* Mesh forwarded multicast frames */ __u32 fwded_unicast; /* Mesh forwarded unicast frames */ __u32 fwded_frames; /* Mesh total forwarded frames */ __u32 dropped_frames_ttl; /* Not transmitted since mesh_ttl == 0*/ __u32 dropped_frames_no_route; /* Not transmitted, no route found */ }; #define PREQ_Q_F_START 0x1 #define PREQ_Q_F_REFRESH 0x2 struct mesh_preq_queue { struct list_head list; u8 dst[ETH_ALEN]; u8 flags; }; struct ieee80211_roc_work { struct list_head list; struct ieee80211_sub_if_data *sdata; struct ieee80211_channel *chan; bool started, abort, hw_begun, notified; bool on_channel; unsigned long start_time; u32 duration, req_duration; struct sk_buff *frame; u64 cookie, mgmt_tx_cookie; enum ieee80211_roc_type type; }; /* flags used in struct ieee80211_if_managed.flags */ enum ieee80211_sta_flags { IEEE80211_STA_CONNECTION_POLL = BIT(1), IEEE80211_STA_CONTROL_PORT = BIT(2), IEEE80211_STA_MFP_ENABLED = BIT(6), IEEE80211_STA_UAPSD_ENABLED = BIT(7), IEEE80211_STA_NULLFUNC_ACKED = BIT(8), IEEE80211_STA_ENABLE_RRM = BIT(15), }; enum ieee80211_conn_mode { IEEE80211_CONN_MODE_S1G, IEEE80211_CONN_MODE_LEGACY, IEEE80211_CONN_MODE_HT, IEEE80211_CONN_MODE_VHT, IEEE80211_CONN_MODE_HE, IEEE80211_CONN_MODE_EHT, }; #define IEEE80211_CONN_MODE_HIGHEST IEEE80211_CONN_MODE_EHT enum ieee80211_conn_bw_limit { IEEE80211_CONN_BW_LIMIT_20, IEEE80211_CONN_BW_LIMIT_40, IEEE80211_CONN_BW_LIMIT_80, IEEE80211_CONN_BW_LIMIT_160, /* also 80+80 */ IEEE80211_CONN_BW_LIMIT_320, }; struct ieee80211_conn_settings { enum ieee80211_conn_mode mode; enum ieee80211_conn_bw_limit bw_limit; }; extern const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited; struct ieee80211_mgd_auth_data { struct cfg80211_bss *bss; unsigned long timeout; int tries; u16 algorithm, expected_transaction; unsigned long userspace_selectors[BITS_TO_LONGS(128)]; u8 key[WLAN_KEY_LEN_WEP104]; u8 key_len, key_idx; bool done, waiting; bool peer_confirmed; bool timeout_started; int link_id; u8 ap_addr[ETH_ALEN] __aligned(2); u16 sae_trans, sae_status; size_t data_len; u8 data[]; }; struct ieee80211_mgd_assoc_data { struct { struct cfg80211_bss *bss; u8 addr[ETH_ALEN] __aligned(2); u8 ap_ht_param; struct ieee80211_vht_cap ap_vht_cap; size_t elems_len; u8 *elems; /* pointing to inside ie[] below */ struct ieee80211_conn_settings conn; u16 status; bool disabled; } link[IEEE80211_MLD_MAX_NUM_LINKS]; u8 ap_addr[ETH_ALEN] __aligned(2); /* this is for a workaround, so we use it only for non-MLO */ const u8 *supp_rates; u8 supp_rates_len; unsigned long timeout; int tries; u8 prev_ap_addr[ETH_ALEN]; u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len; bool wmm, uapsd; bool need_beacon; bool synced; bool timeout_started; bool comeback; /* whether the AP has requested association comeback */ bool s1g; bool spp_amsdu; s8 assoc_link_id; __le16 ext_mld_capa_ops; u8 fils_nonces[2 * FILS_NONCE_LEN]; u8 fils_kek[FILS_MAX_KEK_LEN]; size_t fils_kek_len; size_t ie_len; u8 *ie_pos; /* used to fill ie[] with link[].elems */ u8 ie[]; }; struct ieee80211_sta_tx_tspec { /* timestamp of the first packet in the time slice */ unsigned long time_slice_start; u32 admitted_time; /* in usecs, unlike over the air */ u8 tsid; s8 up; /* signed to be able to invalidate with -1 during teardown */ /* consumed TX time in microseconds in the time slice */ u32 consumed_tx_time; enum { TX_TSPEC_ACTION_NONE = 0, TX_TSPEC_ACTION_DOWNGRADE, TX_TSPEC_ACTION_STOP_DOWNGRADE, } action; bool downgraded; }; /* Advertised TID-to-link mapping info */ struct ieee80211_adv_ttlm_info { /* time in TUs at which the new mapping is established, or 0 if there is * no planned advertised TID-to-link mapping */ u16 switch_time; u32 duration; /* duration of the planned T2L map in TUs */ u16 map; /* map of usable links for all TIDs */ bool active; /* whether the advertised mapping is active or not */ }; DECLARE_EWMA(beacon_signal, 4, 4) struct ieee80211_if_managed { struct timer_list timer; struct timer_list conn_mon_timer; struct timer_list bcn_mon_timer; struct wiphy_work monitor_work; struct wiphy_work beacon_connection_loss_work; struct wiphy_work csa_connection_drop_work; unsigned long beacon_timeout; unsigned long probe_timeout; int probe_send_count; bool nullfunc_failed; u8 connection_loss:1, driver_disconnect:1, reconnect:1, associated:1; struct ieee80211_mgd_auth_data *auth_data; struct ieee80211_mgd_assoc_data *assoc_data; unsigned long userspace_selectors[BITS_TO_LONGS(128)]; bool powersave; /* powersave requested for this iface */ bool broken_ap; /* AP is broken -- turn off powersave */ unsigned int flags; u16 mcast_seq_last; bool status_acked; bool status_received; __le16 status_fc; enum { IEEE80211_MFP_DISABLED, IEEE80211_MFP_OPTIONAL, IEEE80211_MFP_REQUIRED } mfp; /* management frame protection */ /* * Bitmask of enabled u-apsd queues, * IEEE80211_WMM_IE_STA_QOSINFO_AC_BE & co. Needs a new association * to take effect. */ unsigned int uapsd_queues; /* * Maximum number of buffered frames AP can deliver during a * service period, IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL or similar. * Needs a new association to take effect. */ unsigned int uapsd_max_sp_len; u8 use_4addr; /* * State variables for keeping track of RSSI of the AP currently * connected to and informing driver when RSSI has gone * below/above a certain threshold. */ int rssi_min_thold, rssi_max_thold; struct ieee80211_ht_cap ht_capa; /* configured ht-cap over-rides */ struct ieee80211_ht_cap ht_capa_mask; /* Valid parts of ht_capa */ struct ieee80211_vht_cap vht_capa; /* configured VHT overrides */ struct ieee80211_vht_cap vht_capa_mask; /* Valid parts of vht_capa */ struct ieee80211_s1g_cap s1g_capa; /* configured S1G overrides */ struct ieee80211_s1g_cap s1g_capa_mask; /* valid s1g_capa bits */ /* TDLS support */ u8 tdls_peer[ETH_ALEN] __aligned(2); struct wiphy_delayed_work tdls_peer_del_work; struct sk_buff *orig_teardown_skb; /* The original teardown skb */ struct sk_buff *teardown_skb; /* A copy to send through the AP */ spinlock_t teardown_lock; /* To lock changing teardown_skb */ bool tdls_wider_bw_prohibited; /* WMM-AC TSPEC support */ struct ieee80211_sta_tx_tspec tx_tspec[IEEE80211_NUM_ACS]; /* Use a separate work struct so that we can do something here * while the sdata->work is flushing the queues, for example. * otherwise, in scenarios where we hardly get any traffic out * on the BE queue, but there's a lot of VO traffic, we might * get stuck in a downgraded situation and flush takes forever. */ struct wiphy_delayed_work tx_tspec_wk; /* Information elements from the last transmitted (Re)Association * Request frame. */ u8 *assoc_req_ies; size_t assoc_req_ies_len; struct wiphy_delayed_work ml_reconf_work; u16 removed_links; /* TID-to-link mapping support */ struct wiphy_delayed_work ttlm_work; struct ieee80211_adv_ttlm_info ttlm_info; struct wiphy_work teardown_ttlm_work; /* dialog token enumerator for neg TTLM request */ u8 dialog_token_alloc; struct wiphy_delayed_work neg_ttlm_timeout_work; /* Locally initiated multi-link reconfiguration */ struct { struct ieee80211_mgd_assoc_data *add_links_data; struct wiphy_delayed_work wk; u16 removed_links; u16 added_links; u8 dialog_token; } reconf; /* Support for epcs */ struct { bool enabled; u8 dialog_token; } epcs; }; struct ieee80211_if_ibss { struct timer_list timer; struct wiphy_work csa_connection_drop_work; unsigned long last_scan_completed; u32 basic_rates; bool fixed_bssid; bool fixed_channel; bool privacy; bool control_port; bool userspace_handles_dfs; u8 bssid[ETH_ALEN] __aligned(2); u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len, ie_len; u8 *ie; struct cfg80211_chan_def chandef; unsigned long ibss_join_req; /* probe response/beacon for IBSS */ struct beacon_data __rcu *presp; struct ieee80211_ht_cap ht_capa; /* configured ht-cap over-rides */ struct ieee80211_ht_cap ht_capa_mask; /* Valid parts of ht_capa */ spinlock_t incomplete_lock; struct list_head incomplete_stations; enum { IEEE80211_IBSS_MLME_SEARCH, IEEE80211_IBSS_MLME_JOINED, } state; }; /** * struct ieee80211_if_ocb - OCB mode state * * @housekeeping_timer: timer for periodic invocation of a housekeeping task * @wrkq_flags: OCB deferred task action * @incomplete_lock: delayed STA insertion lock * @incomplete_stations: list of STAs waiting for delayed insertion * @joined: indication if the interface is connected to an OCB network */ struct ieee80211_if_ocb { struct timer_list housekeeping_timer; unsigned long wrkq_flags; spinlock_t incomplete_lock; struct list_head incomplete_stations; bool joined; }; /** * struct ieee80211_mesh_sync_ops - Extensible synchronization framework interface * * these declarations define the interface, which enables * vendor-specific mesh synchronization * * @rx_bcn_presp: beacon/probe response was received * @adjust_tsf: TSF adjustment method */ struct ieee80211_mesh_sync_ops { void (*rx_bcn_presp)(struct ieee80211_sub_if_data *sdata, u16 stype, struct ieee80211_mgmt *mgmt, unsigned int len, const struct ieee80211_meshconf_ie *mesh_cfg, struct ieee80211_rx_status *rx_status); /* should be called with beacon_data under RCU read lock */ void (*adjust_tsf)(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon); /* add other framework functions here */ }; struct mesh_csa_settings { struct rcu_head rcu_head; struct cfg80211_csa_settings settings; }; /** * struct mesh_table - mesh hash table * * @known_gates: list of known mesh gates and their mpaths by the station. The * gate's mpath may or may not be resolved and active. * @gates_lock: protects updates to known_gates * @rhead: the rhashtable containing struct mesh_paths, keyed by dest addr * @walk_head: linked list containing all mesh_path objects * @walk_lock: lock protecting walk_head * @entries: number of entries in the table */ struct mesh_table { struct hlist_head known_gates; spinlock_t gates_lock; struct rhashtable rhead; struct hlist_head walk_head; spinlock_t walk_lock; atomic_t entries; /* Up to MAX_MESH_NEIGHBOURS */ }; /** * struct mesh_tx_cache - mesh fast xmit header cache * * @rht: hash table containing struct ieee80211_mesh_fast_tx, using skb DA as key * @walk_head: linked list containing all ieee80211_mesh_fast_tx objects * @walk_lock: lock protecting walk_head and rht */ struct mesh_tx_cache { struct rhashtable rht; struct hlist_head walk_head; spinlock_t walk_lock; }; struct ieee80211_if_mesh { struct timer_list housekeeping_timer; struct timer_list mesh_path_timer; struct timer_list mesh_path_root_timer; unsigned long wrkq_flags; unsigned long mbss_changed[64 / BITS_PER_LONG]; bool userspace_handles_dfs; u8 mesh_id[IEEE80211_MAX_MESH_ID_LEN]; size_t mesh_id_len; /* Active Path Selection Protocol Identifier */ u8 mesh_pp_id; /* Active Path Selection Metric Identifier */ u8 mesh_pm_id; /* Congestion Control Mode Identifier */ u8 mesh_cc_id; /* Synchronization Protocol Identifier */ u8 mesh_sp_id; /* Authentication Protocol Identifier */ u8 mesh_auth_id; /* Local mesh Sequence Number */ u32 sn; /* Last used PREQ ID */ u32 preq_id; atomic_t mpaths; /* Timestamp of last SN update */ unsigned long last_sn_update; /* Time when it's ok to send next PERR */ unsigned long next_perr; /* Timestamp of last PREQ sent */ unsigned long last_preq; struct mesh_rmc *rmc; spinlock_t mesh_preq_queue_lock; struct mesh_preq_queue preq_queue; int preq_queue_len; struct mesh_stats mshstats; struct mesh_config mshcfg; atomic_t estab_plinks; atomic_t mesh_seqnum; bool accepting_plinks; int num_gates; struct beacon_data __rcu *beacon; const u8 *ie; u8 ie_len; enum { IEEE80211_MESH_SEC_NONE = 0x0, IEEE80211_MESH_SEC_AUTHED = 0x1, IEEE80211_MESH_SEC_SECURED = 0x2, } security; bool user_mpm; /* Extensible Synchronization Framework */ const struct ieee80211_mesh_sync_ops *sync_ops; s64 sync_offset_clockdrift_max; spinlock_t sync_offset_lock; /* mesh power save */ enum nl80211_mesh_power_mode nonpeer_pm; int ps_peers_light_sleep; int ps_peers_deep_sleep; struct ps_data ps; /* Channel Switching Support */ struct mesh_csa_settings __rcu *csa; enum { IEEE80211_MESH_CSA_ROLE_NONE, IEEE80211_MESH_CSA_ROLE_INIT, IEEE80211_MESH_CSA_ROLE_REPEATER, } csa_role; u8 chsw_ttl; u16 pre_value; /* offset from skb->data while building IE */ int meshconf_offset; struct mesh_table mesh_paths; struct mesh_table mpp_paths; /* Store paths for MPP&MAP */ int mesh_paths_generation; int mpp_paths_generation; struct mesh_tx_cache tx_cache; }; #ifdef CONFIG_MAC80211_MESH #define IEEE80211_IFSTA_MESH_CTR_INC(msh, name) \ do { (msh)->mshstats.name++; } while (0) #else #define IEEE80211_IFSTA_MESH_CTR_INC(msh, name) \ do { } while (0) #endif /** * enum ieee80211_sub_if_data_flags - virtual interface flags * * @IEEE80211_SDATA_ALLMULTI: interface wants all multicast packets * @IEEE80211_SDATA_DONT_BRIDGE_PACKETS: bridge packets between * associated stations and deliver multicast frames both * back to wireless media and to the local net stack. * @IEEE80211_SDATA_DISCONNECT_RESUME: Disconnect after resume. * @IEEE80211_SDATA_IN_DRIVER: indicates interface was added to driver * @IEEE80211_SDATA_DISCONNECT_HW_RESTART: Disconnect after hardware restart * recovery */ enum ieee80211_sub_if_data_flags { IEEE80211_SDATA_ALLMULTI = BIT(0), IEEE80211_SDATA_DONT_BRIDGE_PACKETS = BIT(3), IEEE80211_SDATA_DISCONNECT_RESUME = BIT(4), IEEE80211_SDATA_IN_DRIVER = BIT(5), IEEE80211_SDATA_DISCONNECT_HW_RESTART = BIT(6), }; /** * enum ieee80211_sdata_state_bits - virtual interface state bits * @SDATA_STATE_RUNNING: virtual interface is up & running; this * mirrors netif_running() but is separate for interface type * change handling while the interface is up * @SDATA_STATE_OFFCHANNEL: This interface is currently in offchannel * mode, so queues are stopped * @SDATA_STATE_OFFCHANNEL_BEACON_STOPPED: Beaconing was stopped due * to offchannel, reset when offchannel returns */ enum ieee80211_sdata_state_bits { SDATA_STATE_RUNNING, SDATA_STATE_OFFCHANNEL, SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, }; /** * enum ieee80211_chanctx_mode - channel context configuration mode * * @IEEE80211_CHANCTX_SHARED: channel context may be used by * multiple interfaces * @IEEE80211_CHANCTX_EXCLUSIVE: channel context can be used * only by a single interface. This can be used for example for * non-fixed channel IBSS. */ enum ieee80211_chanctx_mode { IEEE80211_CHANCTX_SHARED, IEEE80211_CHANCTX_EXCLUSIVE }; /** * enum ieee80211_chanctx_replace_state - channel context replacement state * * This is used for channel context in-place reservations that require channel * context switch/swap. * * @IEEE80211_CHANCTX_REPLACE_NONE: no replacement is taking place * @IEEE80211_CHANCTX_WILL_BE_REPLACED: this channel context will be replaced * by a (not yet registered) channel context pointed by %replace_ctx. * @IEEE80211_CHANCTX_REPLACES_OTHER: this (not yet registered) channel context * replaces an existing channel context pointed to by %replace_ctx. */ enum ieee80211_chanctx_replace_state { IEEE80211_CHANCTX_REPLACE_NONE, IEEE80211_CHANCTX_WILL_BE_REPLACED, IEEE80211_CHANCTX_REPLACES_OTHER, }; struct ieee80211_chanctx { struct list_head list; struct rcu_head rcu_head; struct list_head assigned_links; struct list_head reserved_links; enum ieee80211_chanctx_replace_state replace_state; struct ieee80211_chanctx *replace_ctx; enum ieee80211_chanctx_mode mode; bool driver_present; /* temporary data for search algorithm etc. */ struct ieee80211_chan_req req; bool radar_detected; /* MUST be last - ends in a flexible-array member. */ struct ieee80211_chanctx_conf conf; }; struct mac80211_qos_map { struct cfg80211_qos_map qos_map; struct rcu_head rcu_head; }; enum txq_info_flags { IEEE80211_TXQ_STOP, IEEE80211_TXQ_AMPDU, IEEE80211_TXQ_NO_AMSDU, IEEE80211_TXQ_DIRTY, }; /** * struct txq_info - per tid queue * * @tin: contains packets split into multiple flows * @def_cvars: codel vars for the @tin's default_flow * @cstats: code statistics for this queue * @frags: used to keep fragments created after dequeue * @schedule_order: used with ieee80211_local->active_txqs * @schedule_round: counter to prevent infinite loops on TXQ scheduling * @flags: TXQ flags from &enum txq_info_flags * @txq: the driver visible part */ struct txq_info { struct fq_tin tin; struct codel_vars def_cvars; struct codel_stats cstats; u16 schedule_round; struct list_head schedule_order; struct sk_buff_head frags; unsigned long flags; /* keep last! */ struct ieee80211_txq txq; }; struct ieee80211_if_mntr { u32 flags; u8 mu_follow_addr[ETH_ALEN] __aligned(2); struct list_head list; }; /** * struct ieee80211_if_nan - NAN state * * @conf: current NAN configuration * @func_lock: lock for @func_inst_ids * @function_inst_ids: a bitmap of available instance_id's */ struct ieee80211_if_nan { struct cfg80211_nan_conf conf; /* protects function_inst_ids */ spinlock_t func_lock; struct idr function_inst_ids; }; struct ieee80211_link_data_managed { u8 bssid[ETH_ALEN] __aligned(2); u8 dtim_period; enum ieee80211_smps_mode req_smps, /* requested smps mode */ driver_smps_mode; /* smps mode request */ struct ieee80211_conn_settings conn; s16 p2p_noa_index; bool tdls_chan_switch_prohibited; bool have_beacon; bool tracking_signal_avg; bool disable_wmm_tracking; bool operating_11g_mode; struct { struct wiphy_delayed_work switch_work; struct cfg80211_chan_def ap_chandef; struct ieee80211_parsed_tpe tpe; unsigned long time; bool waiting_bcn; bool ignored_same_chan; bool blocked_tx; } csa; struct wiphy_work request_smps_work; /* used to reconfigure hardware SM PS */ struct wiphy_work recalc_smps; bool beacon_crc_valid; u32 beacon_crc; struct ewma_beacon_signal ave_beacon_signal; int last_ave_beacon_signal; /* * Number of Beacon frames used in ave_beacon_signal. This can be used * to avoid generating less reliable cqm events that would be based * only on couple of received frames. */ unsigned int count_beacon_signal; /* Number of times beacon loss was invoked. */ unsigned int beacon_loss_count; /* * Last Beacon frame signal strength average (ave_beacon_signal / 16) * that triggered a cqm event. 0 indicates that no event has been * generated for the current association. */ int last_cqm_event_signal; int wmm_last_param_set; int mu_edca_last_param_set; }; struct ieee80211_link_data_ap { struct beacon_data __rcu *beacon; struct probe_resp __rcu *probe_resp; struct fils_discovery_data __rcu *fils_discovery; struct unsol_bcast_probe_resp_data __rcu *unsol_bcast_probe_resp; /* to be used after channel switch. */ struct cfg80211_beacon_data *next_beacon; }; struct ieee80211_link_data { struct ieee80211_sub_if_data *sdata; unsigned int link_id; struct list_head assigned_chanctx_list; /* protected by wiphy mutex */ struct list_head reserved_chanctx_list; /* protected by wiphy mutex */ /* multicast keys only */ struct ieee80211_key __rcu *gtk[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS]; struct ieee80211_key __rcu *default_multicast_key; struct ieee80211_key __rcu *default_mgmt_key; struct ieee80211_key __rcu *default_beacon_key; bool operating_11g_mode; struct { struct wiphy_work finalize_work; struct ieee80211_chan_req chanreq; } csa; struct wiphy_work color_change_finalize_work; struct wiphy_delayed_work color_collision_detect_work; u64 color_bitmap; /* context reservation -- protected with wiphy mutex */ struct ieee80211_chanctx *reserved_chanctx; struct ieee80211_chan_req reserved; bool reserved_radar_required; bool reserved_ready; u8 needed_rx_chains; enum ieee80211_smps_mode smps_mode; int user_power_level; /* in dBm */ int ap_power_level; /* in dBm */ bool radar_required; struct wiphy_delayed_work dfs_cac_timer_work; union { struct ieee80211_link_data_managed mgd; struct ieee80211_link_data_ap ap; } u; struct ieee80211_tx_queue_params tx_conf[IEEE80211_NUM_ACS]; struct ieee80211_bss_conf *conf; #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfs_dir; #endif }; struct ieee80211_sub_if_data { struct list_head list; struct wireless_dev wdev; /* keys */ struct list_head key_list; /* count for keys needing tailroom space allocation */ int crypto_tx_tailroom_needed_cnt; int crypto_tx_tailroom_pending_dec; struct wiphy_delayed_work dec_tailroom_needed_wk; struct net_device *dev; struct ieee80211_local *local; unsigned int flags; unsigned long state; char name[IFNAMSIZ]; struct ieee80211_fragment_cache frags; /* TID bitmap for NoAck policy */ u16 noack_map; /* bit field of ACM bits (BIT(802.1D tag)) */ u8 wmm_acm; struct ieee80211_key __rcu *keys[NUM_DEFAULT_KEYS]; struct ieee80211_key __rcu *default_unicast_key; u16 sequence_number; u16 mld_mcast_seq; __be16 control_port_protocol; bool control_port_no_encrypt; bool control_port_no_preauth; bool control_port_over_nl80211; atomic_t num_tx_queued; struct mac80211_qos_map __rcu *qos_map; struct wiphy_work work; struct sk_buff_head skb_queue; struct sk_buff_head status_queue; /* * AP this belongs to: self in AP mode and * corresponding AP in VLAN mode, NULL for * all others (might be needed later in IBSS) */ struct ieee80211_if_ap *bss; /* bitmap of allowed (non-MCS) rate indexes for rate control */ u32 rc_rateidx_mask[NUM_NL80211_BANDS]; bool rc_has_mcs_mask[NUM_NL80211_BANDS]; u8 rc_rateidx_mcs_mask[NUM_NL80211_BANDS][IEEE80211_HT_MCS_MASK_LEN]; bool rc_has_vht_mcs_mask[NUM_NL80211_BANDS]; u16 rc_rateidx_vht_mcs_mask[NUM_NL80211_BANDS][NL80211_VHT_NSS_MAX]; /* Beacon frame (non-MCS) rate (as a bitmap) */ u32 beacon_rateidx_mask[NUM_NL80211_BANDS]; bool beacon_rate_set; union { struct ieee80211_if_ap ap; struct ieee80211_if_vlan vlan; struct ieee80211_if_managed mgd; struct ieee80211_if_ibss ibss; struct ieee80211_if_mesh mesh; struct ieee80211_if_ocb ocb; struct ieee80211_if_mntr mntr; struct ieee80211_if_nan nan; } u; struct ieee80211_link_data deflink; struct ieee80211_link_data __rcu *link[IEEE80211_MLD_MAX_NUM_LINKS]; /* for ieee80211_set_active_links_async() */ struct wiphy_work activate_links_work; u16 desired_active_links; u16 restart_active_links; #ifdef CONFIG_MAC80211_DEBUGFS struct { struct dentry *subdir_stations; struct dentry *default_unicast_key; struct dentry *default_multicast_key; struct dentry *default_mgmt_key; struct dentry *default_beacon_key; } debugfs; #endif /* must be last, dynamically sized area in this! */ struct ieee80211_vif vif; }; static inline struct ieee80211_sub_if_data *vif_to_sdata(struct ieee80211_vif *p) { return container_of(p, struct ieee80211_sub_if_data, vif); } #define sdata_dereference(p, sdata) \ wiphy_dereference(sdata->local->hw.wiphy, p) #define for_each_sdata_link(_local, _link) \ /* outer loop just to define the variables ... */ \ for (struct ieee80211_sub_if_data *___sdata = NULL; \ !___sdata; \ ___sdata = (void *)~0 /* always stop */) \ list_for_each_entry(___sdata, &(_local)->interfaces, list) \ if (ieee80211_sdata_running(___sdata)) \ for (int ___link_id = 0; \ ___link_id < ARRAY_SIZE(___sdata->link); \ ___link_id++) \ if ((_link = wiphy_dereference((_local)->hw.wiphy, \ ___sdata->link[___link_id]))) static inline int ieee80211_get_mbssid_beacon_len(struct cfg80211_mbssid_elems *elems, struct cfg80211_rnr_elems *rnr_elems, u8 i) { int len = 0; if (!elems || !elems->cnt || i > elems->cnt) return 0; if (i < elems->cnt) { len = elems->elem[i].len; if (rnr_elems) { len += rnr_elems->elem[i].len; for (i = elems->cnt; i < rnr_elems->cnt; i++) len += rnr_elems->elem[i].len; } return len; } /* i == elems->cnt, calculate total length of all MBSSID elements */ for (i = 0; i < elems->cnt; i++) len += elems->elem[i].len; if (rnr_elems) { for (i = 0; i < rnr_elems->cnt; i++) len += rnr_elems->elem[i].len; } return len; } enum { IEEE80211_RX_MSG = 1, IEEE80211_TX_STATUS_MSG = 2, }; enum queue_stop_reason { IEEE80211_QUEUE_STOP_REASON_DRIVER, IEEE80211_QUEUE_STOP_REASON_PS, IEEE80211_QUEUE_STOP_REASON_CSA, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, IEEE80211_QUEUE_STOP_REASON_SUSPEND, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, IEEE80211_QUEUE_STOP_REASON_FLUSH, IEEE80211_QUEUE_STOP_REASON_TDLS_TEARDOWN, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID, IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE, IEEE80211_QUEUE_STOP_REASONS, }; #ifdef CONFIG_MAC80211_LEDS struct tpt_led_trigger { char name[32]; const struct ieee80211_tpt_blink *blink_table; unsigned int blink_table_len; struct timer_list timer; struct ieee80211_local *local; unsigned long prev_traffic; unsigned long tx_bytes, rx_bytes; unsigned int active, want; bool running; }; #endif /** * enum mac80211_scan_flags - currently active scan mode * * @SCAN_SW_SCANNING: We're currently in the process of scanning but may as * well be on the operating channel * @SCAN_HW_SCANNING: The hardware is scanning for us, we have no way to * determine if we are on the operating channel or not * @SCAN_ONCHANNEL_SCANNING: Do a software scan on only the current operating * channel. This should not interrupt normal traffic. * @SCAN_COMPLETED: Set for our scan work function when the driver reported * that the scan completed. * @SCAN_ABORTED: Set for our scan work function when the driver reported * a scan complete for an aborted scan. * @SCAN_HW_CANCELLED: Set for our scan work function when the scan is being * cancelled. * @SCAN_BEACON_WAIT: Set whenever we're passive scanning because of radar/no-IR * and could send a probe request after receiving a beacon. * @SCAN_BEACON_DONE: Beacon received, we can now send a probe request */ enum mac80211_scan_flags { SCAN_SW_SCANNING, SCAN_HW_SCANNING, SCAN_ONCHANNEL_SCANNING, SCAN_COMPLETED, SCAN_ABORTED, SCAN_HW_CANCELLED, SCAN_BEACON_WAIT, SCAN_BEACON_DONE, }; /** * enum mac80211_scan_state - scan state machine states * * @SCAN_DECISION: Main entry point to the scan state machine, this state * determines if we should keep on scanning or switch back to the * operating channel * @SCAN_SET_CHANNEL: Set the next channel to be scanned * @SCAN_SEND_PROBE: Send probe requests and wait for probe responses * @SCAN_SUSPEND: Suspend the scan and go back to operating channel to * send out data * @SCAN_RESUME: Resume the scan and scan the next channel * @SCAN_ABORT: Abort the scan and go back to operating channel */ enum mac80211_scan_state { SCAN_DECISION, SCAN_SET_CHANNEL, SCAN_SEND_PROBE, SCAN_SUSPEND, SCAN_RESUME, SCAN_ABORT, }; DECLARE_STATIC_KEY_FALSE(aql_disable); struct ieee80211_local { /* embed the driver visible part. * don't cast (use the static inlines below), but we keep * it first anyway so they become a no-op */ struct ieee80211_hw hw; struct fq fq; struct codel_vars *cvars; struct codel_params cparams; /* protects active_txqs and txqi->schedule_order */ spinlock_t active_txq_lock[IEEE80211_NUM_ACS]; struct list_head active_txqs[IEEE80211_NUM_ACS]; u16 schedule_round[IEEE80211_NUM_ACS]; /* serializes ieee80211_handle_wake_tx_queue */ spinlock_t handle_wake_tx_queue_lock; u16 airtime_flags; u32 aql_txq_limit_low[IEEE80211_NUM_ACS]; u32 aql_txq_limit_high[IEEE80211_NUM_ACS]; u32 aql_threshold; atomic_t aql_total_pending_airtime; atomic_t aql_ac_pending_airtime[IEEE80211_NUM_ACS]; const struct ieee80211_ops *ops; /* * private workqueue to mac80211. mac80211 makes this accessible * via ieee80211_queue_work() */ struct workqueue_struct *workqueue; unsigned long queue_stop_reasons[IEEE80211_MAX_QUEUES]; int q_stop_reasons[IEEE80211_MAX_QUEUES][IEEE80211_QUEUE_STOP_REASONS]; /* also used to protect ampdu_ac_queue and amdpu_ac_stop_refcnt */ spinlock_t queue_stop_reason_lock; int open_count; int monitors, virt_monitors, tx_mntrs; /* number of interfaces with corresponding FIF_ flags */ int fif_fcsfail, fif_plcpfail, fif_control, fif_other_bss, fif_pspoll, fif_probe_req; bool probe_req_reg; bool rx_mcast_action_reg; unsigned int filter_flags; /* FIF_* */ bool wiphy_ciphers_allocated; struct cfg80211_chan_def dflt_chandef; bool emulate_chanctx; /* protects the aggregated multicast list and filter calls */ spinlock_t filter_lock; /* used for uploading changed mc list */ struct wiphy_work reconfig_filter; /* aggregated multicast list */ struct netdev_hw_addr_list mc_list; bool tim_in_locked_section; /* see ieee80211_beacon_get() */ /* * suspended is true if we finished all the suspend _and_ we have * not yet come up from resume. This is to be used by mac80211 * to ensure driver sanity during suspend and mac80211's own * sanity. It can eventually be used for WoW as well. */ bool suspended; /* suspending is true during the whole suspend process */ bool suspending; /* * Resuming is true while suspended, but when we're reprogramming the * hardware -- at that time it's allowed to use ieee80211_queue_work() * again even though some other parts of the stack are still suspended * and we still drop received frames to avoid waking the stack. */ bool resuming; /* * quiescing is true during the suspend process _only_ to * ease timer cancelling etc. */ bool quiescing; /* device is started */ bool started; /* device is during a HW reconfig */ bool in_reconfig; /* reconfiguration failed ... suppress some warnings etc. */ bool reconfig_failure; /* wowlan is enabled -- don't reconfig on resume */ bool wowlan; struct wiphy_work radar_detected_work; /* number of RX chains the hardware has */ u8 rx_chains; /* bitmap of which sbands were copied */ u8 sband_allocated; int tx_headroom; /* required headroom for hardware/radiotap */ /* Tasklet and skb queue to process calls from IRQ mode. All frames * added to skb_queue will be processed, but frames in * skb_queue_unreliable may be dropped if the total length of these * queues increases over the limit. */ #define IEEE80211_IRQSAFE_QUEUE_LIMIT 128 struct tasklet_struct tasklet; struct sk_buff_head skb_queue; struct sk_buff_head skb_queue_unreliable; spinlock_t rx_path_lock; /* Station data */ /* * The list, hash table and counter are protected * by the wiphy mutex, reads are done with RCU. */ spinlock_t tim_lock; unsigned long num_sta; struct list_head sta_list; struct rhltable sta_hash; struct rhltable link_sta_hash; struct timer_list sta_cleanup; int sta_generation; struct sk_buff_head pending[IEEE80211_MAX_QUEUES]; struct tasklet_struct tx_pending_tasklet; struct tasklet_struct wake_txqs_tasklet; atomic_t agg_queue_stop[IEEE80211_MAX_QUEUES]; /* number of interfaces with allmulti RX */ atomic_t iff_allmultis; struct rate_control_ref *rate_ctrl; struct arc4_ctx wep_tx_ctx; struct arc4_ctx wep_rx_ctx; u32 wep_iv; /* see iface.c */ struct list_head interfaces; struct list_head mon_list; /* only that are IFF_UP */ struct mutex iflist_mtx; /* Scanning and BSS list */ unsigned long scanning; struct cfg80211_ssid scan_ssid; struct cfg80211_scan_request *int_scan_req; struct cfg80211_scan_request __rcu *scan_req; struct ieee80211_scan_request *hw_scan_req; struct cfg80211_chan_def scan_chandef; enum nl80211_band hw_scan_band; int scan_channel_idx; int scan_ies_len; int hw_scan_ies_bufsize; struct cfg80211_scan_info scan_info; struct wiphy_work sched_scan_stopped_work; struct ieee80211_sub_if_data __rcu *sched_scan_sdata; struct cfg80211_sched_scan_request __rcu *sched_scan_req; u8 scan_addr[ETH_ALEN]; unsigned long leave_oper_channel_time; enum mac80211_scan_state next_scan_state; struct wiphy_delayed_work scan_work; struct ieee80211_sub_if_data __rcu *scan_sdata; /* Temporary remain-on-channel for off-channel operations */ struct ieee80211_channel *tmp_channel; /* channel contexts */ struct list_head chanctx_list; #ifdef CONFIG_MAC80211_LEDS struct led_trigger tx_led, rx_led, assoc_led, radio_led; struct led_trigger tpt_led; atomic_t tx_led_active, rx_led_active, assoc_led_active; atomic_t radio_led_active, tpt_led_active; struct tpt_led_trigger *tpt_led_trigger; #endif #ifdef CONFIG_MAC80211_DEBUG_COUNTERS /* SNMP counters */ /* dot11CountersTable */ u32 dot11TransmittedFragmentCount; u32 dot11MulticastTransmittedFrameCount; u32 dot11FailedCount; u32 dot11RetryCount; u32 dot11MultipleRetryCount; u32 dot11FrameDuplicateCount; u32 dot11ReceivedFragmentCount; u32 dot11MulticastReceivedFrameCount; u32 dot11TransmittedFrameCount; /* TX/RX handler statistics */ unsigned int tx_handlers_drop; unsigned int tx_handlers_queued; unsigned int tx_handlers_drop_wep; unsigned int tx_handlers_drop_not_assoc; unsigned int tx_handlers_drop_unauth_port; unsigned int rx_handlers_drop; unsigned int rx_handlers_queued; unsigned int rx_handlers_drop_nullfunc; unsigned int rx_handlers_drop_defrag; unsigned int tx_expand_skb_head; unsigned int tx_expand_skb_head_cloned; unsigned int rx_expand_skb_head_defrag; unsigned int rx_handlers_fragments; unsigned int tx_status_drop; #define I802_DEBUG_INC(c) (c)++ #else /* CONFIG_MAC80211_DEBUG_COUNTERS */ #define I802_DEBUG_INC(c) do { } while (0) #endif /* CONFIG_MAC80211_DEBUG_COUNTERS */ int total_ps_buffered; /* total number of all buffered unicast and * multicast packets for power saving stations */ bool pspolling; /* * PS can only be enabled when we have exactly one managed * interface (and monitors) in PS, this then points there. */ struct ieee80211_sub_if_data *ps_sdata; struct wiphy_work dynamic_ps_enable_work; struct wiphy_work dynamic_ps_disable_work; struct timer_list dynamic_ps_timer; struct notifier_block ifa_notifier; struct notifier_block ifa6_notifier; /* * The dynamic ps timeout configured from user space via WEXT - * this will override whatever chosen by mac80211 internally. */ int dynamic_ps_forced_timeout; int user_power_level; /* in dBm, for all interfaces */ struct work_struct restart_work; #ifdef CONFIG_MAC80211_DEBUGFS struct local_debugfsdentries { struct dentry *rcdir; struct dentry *keys; } debugfs; bool force_tx_status; #endif /* * Remain-on-channel support */ struct wiphy_delayed_work roc_work; struct list_head roc_list; struct wiphy_work hw_roc_start, hw_roc_done; unsigned long hw_roc_start_time; u64 roc_cookie_counter; struct idr ack_status_frames; spinlock_t ack_status_lock; struct ieee80211_sub_if_data __rcu *p2p_sdata; /* virtual monitor interface */ struct ieee80211_sub_if_data __rcu *monitor_sdata; struct ieee80211_chan_req monitor_chanreq; /* extended capabilities provided by mac80211 */ u8 ext_capa[8]; bool wbrf_supported; }; static inline struct ieee80211_sub_if_data * IEEE80211_DEV_TO_SUB_IF(const struct net_device *dev) { return netdev_priv(dev); } static inline struct ieee80211_sub_if_data * IEEE80211_WDEV_TO_SUB_IF(struct wireless_dev *wdev) { return container_of(wdev, struct ieee80211_sub_if_data, wdev); } static inline struct ieee80211_supported_band * ieee80211_get_sband(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; WARN_ON(ieee80211_vif_is_mld(&sdata->vif)); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return NULL; } band = chanctx_conf->def.chan->band; rcu_read_unlock(); return local->hw.wiphy->bands[band]; } static inline struct ieee80211_supported_band * ieee80211_get_link_sband(struct ieee80211_link_data *link) { struct ieee80211_local *local = link->sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return NULL; } band = chanctx_conf->def.chan->band; rcu_read_unlock(); return local->hw.wiphy->bands[band]; } /* this struct holds the value parsing from channel switch IE */ struct ieee80211_csa_ie { struct ieee80211_chan_req chanreq; u8 mode; u8 count; u8 ttl; u16 pre_value; u16 reason_code; u32 max_switch_time; }; enum ieee80211_elems_parse_error { IEEE80211_PARSE_ERR_INVALID_END = BIT(0), IEEE80211_PARSE_ERR_DUP_ELEM = BIT(1), IEEE80211_PARSE_ERR_BAD_ELEM_SIZE = BIT(2), IEEE80211_PARSE_ERR_UNEXPECTED_ELEM = BIT(3), IEEE80211_PARSE_ERR_DUP_NEST_ML_BASIC = BIT(4), }; /* Parsed Information Elements */ struct ieee802_11_elems { const u8 *ie_start; size_t total_len; u32 crc; /* pointers to IEs */ const struct ieee80211_tdls_lnkie *lnk_id; const struct ieee80211_ch_switch_timing *ch_sw_timing; const u8 *ext_capab; const u8 *ssid; const u8 *supp_rates; const u8 *ds_params; const struct ieee80211_tim_ie *tim; const u8 *rsn; const u8 *rsnx; const u8 *erp_info; const u8 *ext_supp_rates; const u8 *wmm_info; const u8 *wmm_param; const struct ieee80211_ht_cap *ht_cap_elem; const struct ieee80211_ht_operation *ht_operation; const struct ieee80211_vht_cap *vht_cap_elem; const struct ieee80211_vht_operation *vht_operation; const struct ieee80211_meshconf_ie *mesh_config; const u8 *he_cap; const struct ieee80211_he_operation *he_operation; const struct ieee80211_he_spr *he_spr; const struct ieee80211_mu_edca_param_set *mu_edca_param_set; const struct ieee80211_he_6ghz_capa *he_6ghz_capa; const u8 *uora_element; const u8 *mesh_id; const u8 *peering; const __le16 *awake_window; const u8 *preq; const u8 *prep; const u8 *perr; const struct ieee80211_rann_ie *rann; const struct ieee80211_channel_sw_ie *ch_switch_ie; const struct ieee80211_ext_chansw_ie *ext_chansw_ie; const struct ieee80211_wide_bw_chansw_ie *wide_bw_chansw_ie; const u8 *max_channel_switch_time; const u8 *country_elem; const u8 *pwr_constr_elem; const u8 *cisco_dtpc_elem; const struct ieee80211_timeout_interval_ie *timeout_int; const u8 *opmode_notif; const struct ieee80211_sec_chan_offs_ie *sec_chan_offs; struct ieee80211_mesh_chansw_params_ie *mesh_chansw_params_ie; const struct ieee80211_bss_max_idle_period_ie *max_idle_period_ie; const struct ieee80211_multiple_bssid_configuration *mbssid_config_ie; const struct ieee80211_bssid_index *bssid_index; u8 max_bssid_indicator; u8 dtim_count; u8 dtim_period; const struct ieee80211_addba_ext_ie *addba_ext_ie; const struct ieee80211_s1g_cap *s1g_capab; const struct ieee80211_s1g_oper_ie *s1g_oper; const struct ieee80211_s1g_bcn_compat_ie *s1g_bcn_compat; const struct ieee80211_aid_response_ie *aid_resp; const struct ieee80211_eht_cap_elem *eht_cap; const struct ieee80211_eht_operation *eht_operation; const struct ieee80211_multi_link_elem *ml_basic; const struct ieee80211_multi_link_elem *ml_reconf; const struct ieee80211_multi_link_elem *ml_epcs; const struct ieee80211_bandwidth_indication *bandwidth_indication; const struct ieee80211_ttlm_elem *ttlm[IEEE80211_TTLM_MAX_CNT]; /* not the order in the psd values is per element, not per chandef */ struct ieee80211_parsed_tpe tpe; struct ieee80211_parsed_tpe csa_tpe; /* length of them, respectively */ u8 ext_capab_len; u8 ssid_len; u8 supp_rates_len; u8 tim_len; u8 rsn_len; u8 rsnx_len; u8 ext_supp_rates_len; u8 wmm_info_len; u8 wmm_param_len; u8 he_cap_len; u8 mesh_id_len; u8 peering_len; u8 preq_len; u8 prep_len; u8 perr_len; u8 country_elem_len; u8 bssid_index_len; u8 eht_cap_len; /* mult-link element can be de-fragmented and thus u8 is not sufficient */ size_t ml_basic_len; size_t ml_reconf_len; size_t ml_epcs_len; u8 ttlm_num; /* * store the per station profile pointer and length in case that the * parsing also handled Multi-Link element parsing for a specific link * ID. */ struct ieee80211_mle_per_sta_profile *prof; size_t sta_prof_len; /* whether/which parse error occurred while retrieving these elements */ u8 parse_error; }; static inline struct ieee80211_local *hw_to_local( struct ieee80211_hw *hw) { return container_of(hw, struct ieee80211_local, hw); } static inline struct txq_info *to_txq_info(struct ieee80211_txq *txq) { return container_of(txq, struct txq_info, txq); } static inline bool txq_has_queue(struct ieee80211_txq *txq) { struct txq_info *txqi = to_txq_info(txq); return !(skb_queue_empty(&txqi->frags) && !txqi->tin.backlog_packets); } static inline bool ieee80211_have_rx_timestamp(struct ieee80211_rx_status *status) { return status->flag & RX_FLAG_MACTIME; } void ieee80211_vif_inc_num_mcast(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_dec_num_mcast(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_block_queues_csa(struct ieee80211_sub_if_data *sdata); void ieee80211_vif_unblock_queues_csa(struct ieee80211_sub_if_data *sdata); /* This function returns the number of multicast stations connected to this * interface. It returns -1 if that number is not tracked, that is for netdevs * not in AP or AP_VLAN mode or when using 4addr. */ static inline int ieee80211_vif_get_num_mcast_if(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP) return atomic_read(&sdata->u.ap.num_mcast_sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) return atomic_read(&sdata->u.vlan.num_mcast_sta); return -1; } u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, struct ieee80211_rx_status *status, unsigned int mpdu_len, unsigned int mpdu_offset); int ieee80211_hw_config(struct ieee80211_local *local, u32 changed); int ieee80211_hw_conf_chan(struct ieee80211_local *local); void ieee80211_hw_conf_init(struct ieee80211_local *local); void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx); void ieee80211_bss_info_change_notify(struct ieee80211_sub_if_data *sdata, u64 changed); void ieee80211_vif_cfg_change_notify(struct ieee80211_sub_if_data *sdata, u64 changed); void ieee80211_link_info_change_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, u64 changed); void ieee80211_configure_filter(struct ieee80211_local *local); u64 ieee80211_reset_erp_info(struct ieee80211_sub_if_data *sdata); void ieee80211_handle_queued_frames(struct ieee80211_local *local); u64 ieee80211_mgmt_tx_cookie(struct ieee80211_local *local); int ieee80211_attach_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u64 *cookie, gfp_t gfp); void ieee80211_check_fast_rx(struct sta_info *sta); void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_clear_fast_rx(struct sta_info *sta); bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr, int *out_link_id); /* STA code */ void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata); int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata, struct cfg80211_auth_request *req); int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_request *req); int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata, struct cfg80211_deauth_request *req); int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_disassoc_request *req); void ieee80211_send_pspoll(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_recalc_ps(struct ieee80211_local *local); void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata); void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata); void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata, __le16 fc, bool acked); void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata); void ieee80211_sta_connection_lost(struct ieee80211_sub_if_data *sdata, u8 reason, bool tx); void ieee80211_mgd_setup_link(struct ieee80211_link_data *link); void ieee80211_mgd_stop_link(struct ieee80211_link_data *link); void ieee80211_mgd_set_link_qos_params(struct ieee80211_link_data *link); /* IBSS code */ void ieee80211_ibss_notify_scan_completed(struct ieee80211_local *local); void ieee80211_ibss_setup_sdata(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates); int ieee80211_ibss_join(struct ieee80211_sub_if_data *sdata, struct cfg80211_ibss_params *params); int ieee80211_ibss_leave(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_work(struct ieee80211_sub_if_data *sdata); void ieee80211_ibss_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); int ieee80211_ibss_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings, u64 *changed); int ieee80211_ibss_finish_csa(struct ieee80211_sub_if_data *sdata, u64 *changed); void ieee80211_ibss_stop(struct ieee80211_sub_if_data *sdata); /* OCB code */ void ieee80211_ocb_work(struct ieee80211_sub_if_data *sdata); void ieee80211_ocb_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates); void ieee80211_ocb_setup_sdata(struct ieee80211_sub_if_data *sdata); int ieee80211_ocb_join(struct ieee80211_sub_if_data *sdata, struct ocb_setup *setup); int ieee80211_ocb_leave(struct ieee80211_sub_if_data *sdata); /* mesh code */ void ieee80211_mesh_work(struct ieee80211_sub_if_data *sdata); void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); int ieee80211_mesh_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings, u64 *changed); int ieee80211_mesh_finish_csa(struct ieee80211_sub_if_data *sdata, u64 *changed); /* scan/BSS handling */ void ieee80211_scan_work(struct wiphy *wiphy, struct wiphy_work *work); int ieee80211_request_ibss_scan(struct ieee80211_sub_if_data *sdata, const u8 *ssid, u8 ssid_len, struct ieee80211_channel **channels, unsigned int n_channels); int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata, struct cfg80211_scan_request *req); void ieee80211_scan_cancel(struct ieee80211_local *local); void ieee80211_run_deferred_scan(struct ieee80211_local *local); void ieee80211_scan_rx(struct ieee80211_local *local, struct sk_buff *skb); void ieee80211_inform_bss(struct wiphy *wiphy, struct cfg80211_bss *bss, const struct cfg80211_bss_ies *ies, void *data); void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local); struct ieee80211_bss * ieee80211_bss_info_update(struct ieee80211_local *local, struct ieee80211_rx_status *rx_status, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_channel *channel); void ieee80211_rx_bss_put(struct ieee80211_local *local, struct ieee80211_bss *bss); /* scheduled scan handling */ int __ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req); int ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req); int ieee80211_request_sched_scan_stop(struct ieee80211_local *local); void ieee80211_sched_scan_end(struct ieee80211_local *local); void ieee80211_sched_scan_stopped_work(struct wiphy *wiphy, struct wiphy_work *work); /* off-channel/mgmt-tx */ void ieee80211_offchannel_stop_vifs(struct ieee80211_local *local); void ieee80211_offchannel_return(struct ieee80211_local *local); void ieee80211_roc_setup(struct ieee80211_local *local); void ieee80211_start_next_roc(struct ieee80211_local *local); void ieee80211_reconfig_roc(struct ieee80211_local *local); void ieee80211_roc_purge(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int ieee80211_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie); int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); /* channel switch handling */ void ieee80211_csa_finalize_work(struct wiphy *wiphy, struct wiphy_work *work); int ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params); /* color change handling */ void ieee80211_color_change_finalize_work(struct wiphy *wiphy, struct wiphy_work *work); void ieee80211_color_collision_detection_work(struct wiphy *wiphy, struct wiphy_work *work); /* interface handling */ #define MAC80211_SUPPORTED_FEATURES_TX (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | \ NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_HIGHDMA | NETIF_F_GSO_SOFTWARE | \ NETIF_F_HW_TC) #define MAC80211_SUPPORTED_FEATURES_RX (NETIF_F_RXCSUM) #define MAC80211_SUPPORTED_FEATURES (MAC80211_SUPPORTED_FEATURES_TX | \ MAC80211_SUPPORTED_FEATURES_RX) int ieee80211_iface_init(void); void ieee80211_iface_exit(void); int ieee80211_if_add(struct ieee80211_local *local, const char *name, unsigned char name_assign_type, struct wireless_dev **new_wdev, enum nl80211_iftype type, struct vif_params *params); int ieee80211_if_change_type(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type); void ieee80211_if_remove(struct ieee80211_sub_if_data *sdata); void ieee80211_remove_interfaces(struct ieee80211_local *local); u32 ieee80211_idle_off(struct ieee80211_local *local); void ieee80211_recalc_idle(struct ieee80211_local *local); void ieee80211_adjust_monitor_flags(struct ieee80211_sub_if_data *sdata, const int offset); int ieee80211_do_open(struct wireless_dev *wdev, bool coming_up); void ieee80211_sdata_stop(struct ieee80211_sub_if_data *sdata); int ieee80211_add_virtual_monitor(struct ieee80211_local *local); void ieee80211_del_virtual_monitor(struct ieee80211_local *local); bool __ieee80211_recalc_txpower(struct ieee80211_link_data *link); void ieee80211_recalc_txpower(struct ieee80211_link_data *link, bool update_bss); void ieee80211_recalc_offload(struct ieee80211_local *local); static inline bool ieee80211_sdata_running(struct ieee80211_sub_if_data *sdata) { return test_bit(SDATA_STATE_RUNNING, &sdata->state); } /* link handling */ void ieee80211_link_setup(struct ieee80211_link_data *link); void ieee80211_link_init(struct ieee80211_sub_if_data *sdata, int link_id, struct ieee80211_link_data *link, struct ieee80211_bss_conf *link_conf); void ieee80211_link_stop(struct ieee80211_link_data *link); int ieee80211_vif_set_links(struct ieee80211_sub_if_data *sdata, u16 new_links, u16 dormant_links); static inline void ieee80211_vif_clear_links(struct ieee80211_sub_if_data *sdata) { ieee80211_vif_set_links(sdata, 0, 0); } /* tx handling */ void ieee80211_clear_tx_pending(struct ieee80211_local *local); void ieee80211_tx_pending(struct tasklet_struct *t); netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev); netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev); netdev_tx_t ieee80211_subif_start_xmit_8023(struct sk_buff *skb, struct net_device *dev); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags, u32 ctrl_flags, u64 *cookie); struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags); void ieee80211_tx_monitor(struct ieee80211_local *local, struct sk_buff *skb, int retry_count, struct ieee80211_tx_status *status); void ieee80211_check_fast_xmit(struct sta_info *sta); void ieee80211_check_fast_xmit_all(struct ieee80211_local *local); void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata); void ieee80211_clear_fast_xmit(struct sta_info *sta); int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted, int link_id, u64 *cookie); int ieee80211_probe_mesh_link(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len); void __ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, bool ampdu, const u8 *da, const u8 *sa); void ieee80211_aggr_check(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb); /* HT */ void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_ht_cap *ht_cap); bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_ht_cap *ht_cap_ie, struct link_sta_info *link_sta); void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u16 initiator, u16 reason_code); int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps, const u8 *da, const u8 *bssid, int link_id); void ieee80211_add_addbaext(struct sk_buff *skb, const u8 req_addba_ext_data, u16 buf_size); u8 ieee80211_retrieve_addba_ext_data(struct sta_info *sta, const void *elem_data, ssize_t elem_len, u16 *buf_size); void __ieee80211_stop_rx_ba_session(struct sta_info *sta, u16 tid, u16 initiator, u16 reason, bool stop); void __ieee80211_start_rx_ba_session(struct sta_info *sta, u8 dialog_token, u16 timeout, u16 start_seq_num, u16 ba_policy, u16 tid, u16 buf_size, bool tx, bool auto_seq, const u8 addba_ext_data); void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, enum ieee80211_agg_stop_reason reason); void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_addba_resp(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_addba_request(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len); static inline struct ieee80211_mgmt * ieee80211_mgmt_ba(struct sk_buff *skb, const u8 *da, struct ieee80211_sub_if_data *sdata) { struct ieee80211_mgmt *mgmt = skb_put_zero(skb, 24); ether_addr_copy(mgmt->da, da); ether_addr_copy(mgmt->sa, sdata->vif.addr); if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) ether_addr_copy(mgmt->bssid, sdata->vif.addr); else if (sdata->vif.type == NL80211_IFTYPE_STATION) ether_addr_copy(mgmt->bssid, sdata->vif.cfg.ap_addr); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) ether_addr_copy(mgmt->bssid, sdata->u.ibss.bssid); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); return mgmt; } int __ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason); void ieee80211_start_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); void ieee80211_stop_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); void ieee80211_ba_session_work(struct wiphy *wiphy, struct wiphy_work *work); void ieee80211_tx_ba_session_handle_start(struct sta_info *sta, int tid); void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid); u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs); enum nl80211_smps_mode ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps); /* VHT */ void ieee80211_vht_cap_ie_to_sta_vht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_vht_cap *vht_cap_ie, const struct ieee80211_vht_cap *vht_cap_ie2, struct link_sta_info *link_sta); enum ieee80211_sta_rx_bandwidth _ieee80211_sta_cap_rx_bw(struct link_sta_info *link_sta, struct cfg80211_chan_def *chandef); static inline enum ieee80211_sta_rx_bandwidth ieee80211_sta_cap_rx_bw(struct link_sta_info *link_sta) { return _ieee80211_sta_cap_rx_bw(link_sta, NULL); } enum ieee80211_sta_rx_bandwidth _ieee80211_sta_cur_vht_bw(struct link_sta_info *link_sta, struct cfg80211_chan_def *chandef); static inline enum ieee80211_sta_rx_bandwidth ieee80211_sta_cur_vht_bw(struct link_sta_info *link_sta) { return _ieee80211_sta_cur_vht_bw(link_sta, NULL); } void ieee80211_sta_init_nss(struct link_sta_info *link_sta); enum nl80211_chan_width ieee80211_sta_cap_chan_bw(struct link_sta_info *link_sta); void ieee80211_process_mu_groups(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ieee80211_mgmt *mgmt); u32 __ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct link_sta_info *sta, u8 opmode, enum nl80211_band band); void ieee80211_vht_handle_opmode(struct ieee80211_sub_if_data *sdata, struct link_sta_info *sta, u8 opmode, enum nl80211_band band); void ieee80211_apply_vhtcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_vht_cap *vht_cap); void ieee80211_get_vht_mask_from_cap(__le16 vht_cap, u16 vht_mask[NL80211_VHT_NSS_MAX]); enum nl80211_chan_width ieee80211_sta_rx_bw_to_chan_width(struct link_sta_info *sta); /* HE */ void ieee80211_he_cap_ie_to_sta_he_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const u8 *he_cap_ie, u8 he_cap_len, const struct ieee80211_he_6ghz_capa *he_6ghz_capa, struct link_sta_info *link_sta); void ieee80211_he_spr_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_spr *he_spr_ie_elem); void ieee80211_he_op_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_operation *he_op_ie_elem); /* S1G */ void ieee80211_s1g_sta_rate_init(struct sta_info *sta); bool ieee80211_s1g_is_twt_setup(struct sk_buff *skb); void ieee80211_s1g_rx_twt_action(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); void ieee80211_s1g_status_twt_action(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); /* Spectrum management */ void ieee80211_process_measurement_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); /** * ieee80211_parse_ch_switch_ie - parses channel switch IEs * @sdata: the sdata of the interface which has received the frame * @elems: parsed 802.11 elements received with the frame * @current_band: indicates the current band * @vht_cap_info: VHT capabilities of the transmitter * @conn: contains information about own capabilities and restrictions * to decide which channel switch announcements can be accepted * @bssid: the currently connected bssid (for reporting) * @unprot_action: whether the frame was an unprotected frame or not, * used for reporting * @csa_ie: parsed 802.11 csa elements on count, mode, chandef and mesh ttl. * All of them will be filled with if success only. * Return: 0 on success, <0 on error and >0 if there is nothing to parse. */ int ieee80211_parse_ch_switch_ie(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band current_band, u32 vht_cap_info, struct ieee80211_conn_settings *conn, u8 *bssid, bool unprot_action, struct ieee80211_csa_ie *csa_ie); /* Suspend/resume and hw reconfiguration */ int ieee80211_reconfig(struct ieee80211_local *local); void ieee80211_stop_device(struct ieee80211_local *local, bool suspend); int __ieee80211_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); static inline int __ieee80211_resume(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); WARN(test_bit(SCAN_HW_SCANNING, &local->scanning) && !test_bit(SCAN_COMPLETED, &local->scanning), "%s: resume with hardware scan still in progress\n", wiphy_name(hw->wiphy)); return ieee80211_reconfig(hw_to_local(hw)); } /* utility functions/constants */ extern const void *const mac80211_wiphy_privid; /* for wiphy privid */ const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode); enum ieee80211_conn_bw_limit ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef); int ieee80211_frame_duration(enum nl80211_band band, size_t len, int rate, int erp, int short_preamble); void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_queue_params *qparam, int ac); void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe); void ieee80211_set_wmm_default(struct ieee80211_link_data *link, bool bss_notify, bool enable_qos); void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id, enum nl80211_band band); /* sta_out needs to be checked for ERR_PTR() before using */ int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out); static inline void ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, enum nl80211_band band) { rcu_read_lock(); __ieee80211_tx_skb_tid_band(sdata, skb, tid, -1, band); rcu_read_unlock(); } void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id); static inline void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */ ieee80211_tx_skb_tid(sdata, skb, 7, -1); } /** * struct ieee80211_elems_parse_params - element parsing parameters * @mode: connection mode for parsing * @start: pointer to the elements * @len: length of the elements * @action: %true if the elements came from an action frame * @filter: bitmap of element IDs to filter out while calculating * the element CRC * @crc: CRC starting value * @bss: the BSS to parse this as, for multi-BSSID cases this can * represent a non-transmitting BSS in which case the data * for that non-transmitting BSS is returned * @link_id: the link ID to parse elements for, if a STA profile * is present in the multi-link element, or -1 to ignore; * note that the code currently assumes parsing an association * (or re-association) response frame if this is given * @from_ap: frame is received from an AP (currently used only * for EHT capabilities parsing) */ struct ieee80211_elems_parse_params { enum ieee80211_conn_mode mode; const u8 *start; size_t len; bool action; u64 filter; u32 crc; struct cfg80211_bss *bss; int link_id; bool from_ap; }; struct ieee802_11_elems * ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params); static inline struct ieee802_11_elems * ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, u64 filter, u32 crc, struct cfg80211_bss *bss) { struct ieee80211_elems_parse_params params = { .mode = IEEE80211_CONN_MODE_HIGHEST, .start = start, .len = len, .action = action, .filter = filter, .crc = crc, .bss = bss, .link_id = -1, }; return ieee802_11_parse_elems_full(&params); } static inline struct ieee802_11_elems * ieee802_11_parse_elems(const u8 *start, size_t len, bool action, struct cfg80211_bss *bss) { return ieee802_11_parse_elems_crc(start, len, action, 0, 0, bss); } extern const int ieee802_1d_to_ac[8]; static inline int ieee80211_ac_from_tid(int tid) { return ieee802_1d_to_ac[tid & 7]; } void ieee80211_dynamic_ps_enable_work(struct wiphy *wiphy, struct wiphy_work *work); void ieee80211_dynamic_ps_disable_work(struct wiphy *wiphy, struct wiphy_work *work); void ieee80211_dynamic_ps_timer(struct timer_list *t); void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool powersave); void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, bool ack, u16 tx_time); unsigned int ieee80211_get_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted); void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted); void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted); void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted); static inline void ieee80211_stop_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_stop_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, true); } static inline void ieee80211_wake_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_wake_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, true); } static inline void ieee80211_stop_vif_queues_norefcount(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_stop_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, false); } static inline void ieee80211_wake_vif_queues_norefcount(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_wake_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, false); } void ieee80211_add_pending_skb(struct ieee80211_local *local, struct sk_buff *skb); void ieee80211_add_pending_skbs(struct ieee80211_local *local, struct sk_buff_head *skbs); void ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool drop); void __ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int queues, bool drop); static inline bool ieee80211_can_run_worker(struct ieee80211_local *local) { /* * It's unsafe to try to do any work during reconfigure flow. * When the flow ends the work will be requeued. */ if (local->in_reconfig) return false; /* * If quiescing is set, we are racing with __ieee80211_suspend. * __ieee80211_suspend flushes the workers after setting quiescing, * and we check quiescing / suspended before enqueuing new workers. * We should abort the worker to avoid the races below. */ if (local->quiescing) return false; /* * We might already be suspended if the following scenario occurs: * __ieee80211_suspend Control path * * if (local->quiescing) * return; * local->quiescing = true; * flush_workqueue(); * queue_work(...); * local->suspended = true; * local->quiescing = false; * worker starts running... */ if (local->suspended) return false; return true; } int ieee80211_txq_setup_flows(struct ieee80211_local *local); void ieee80211_txq_set_params(struct ieee80211_local *local); void ieee80211_txq_teardown_flows(struct ieee80211_local *local); void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txq, int tid); void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi); void ieee80211_purge_sta_txqs(struct sta_info *sta); void ieee80211_txq_remove_vlan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void ieee80211_fill_txq_stats(struct cfg80211_txq_stats *txqstats, struct txq_info *txqi); void ieee80211_wake_txqs(struct tasklet_struct *t); void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *bssid, const u8 *da, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags); void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u16 stype, u16 reason, bool send_frame, u8 *frame_buf); enum { IEEE80211_PROBE_FLAG_DIRECTED = BIT(0), IEEE80211_PROBE_FLAG_MIN_CONTENT = BIT(1), IEEE80211_PROBE_FLAG_RANDOM_SN = BIT(2), }; int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags); struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, u32 ratemask, struct ieee80211_channel *chan, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 flags); u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band band, u32 *basic_rates); int __ieee80211_request_smps_mgd(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, enum ieee80211_smps_mode smps_mode); void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link); void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, int link_id); size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset); u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, u16 cap); u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, const struct cfg80211_chan_def *chandef, u16 prot_mode, bool rifs_mode); void ieee80211_ie_build_wide_bw_cs(u8 *pos, const struct cfg80211_chan_def *chandef); u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, u32 cap); u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, const struct cfg80211_chan_def *chandef); u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata); u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef); u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, const struct ieee80211_sta_eht_cap *eht_cap); int ieee80211_parse_bitrates(enum nl80211_chan_width width, const struct ieee80211_supported_band *sband, const u8 *srates, int srates_len, u32 *rates); u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo); void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_s1g_cap *caps, struct sk_buff *skb); void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); /* element building in SKBs */ int ieee80211_put_srates_elem(struct sk_buff *skb, const struct ieee80211_supported_band *sband, u32 basic_rates, u32 rate_flags, u32 masked_rates, u8 element_id); int ieee80211_put_he_cap(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, const struct ieee80211_supported_band *sband, const struct ieee80211_conn_settings *conn); int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode); int ieee80211_put_eht_cap(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, const struct ieee80211_supported_band *sband, const struct ieee80211_conn_settings *conn); /* channel management */ bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, const struct ieee80211_vht_operation *oper, const struct ieee80211_ht_operation *htop, struct cfg80211_chan_def *chandef); void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, const struct ieee80211_he_operation *he_oper, const struct ieee80211_eht_operation *eht_oper, struct cfg80211_chan_def *chandef); bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, struct cfg80211_chan_def *chandef); void ieee80211_chandef_downgrade(struct cfg80211_chan_def *chandef, struct ieee80211_conn_settings *conn); static inline void ieee80211_chanreq_downgrade(struct ieee80211_chan_req *chanreq, struct ieee80211_conn_settings *conn) { ieee80211_chandef_downgrade(&chanreq->oper, conn); if (WARN_ON(!conn)) return; if (conn->mode < IEEE80211_CONN_MODE_EHT) chanreq->ap.chan = NULL; } bool ieee80211_chanreq_identical(const struct ieee80211_chan_req *a, const struct ieee80211_chan_req *b); int __must_check _ieee80211_link_use_channel(struct ieee80211_link_data *link, const struct ieee80211_chan_req *req, enum ieee80211_chanctx_mode mode, bool assign_on_failure); static inline int __must_check ieee80211_link_use_channel(struct ieee80211_link_data *link, const struct ieee80211_chan_req *req, enum ieee80211_chanctx_mode mode) { return _ieee80211_link_use_channel(link, req, mode, false); } int __must_check ieee80211_link_reserve_chanctx(struct ieee80211_link_data *link, const struct ieee80211_chan_req *req, enum ieee80211_chanctx_mode mode, bool radar_required); int __must_check ieee80211_link_use_reserved_context(struct ieee80211_link_data *link); int ieee80211_link_unreserve_chanctx(struct ieee80211_link_data *link); int __must_check ieee80211_link_change_chanreq(struct ieee80211_link_data *link, const struct ieee80211_chan_req *req, u64 *changed); void __ieee80211_link_release_channel(struct ieee80211_link_data *link, bool skip_idle_recalc); void ieee80211_link_release_channel(struct ieee80211_link_data *link); void ieee80211_link_vlan_copy_chanctx(struct ieee80211_link_data *link); void ieee80211_link_copy_chanctx_to_vlans(struct ieee80211_link_data *link, bool clear); int ieee80211_chanctx_refcount(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); void ieee80211_recalc_smps_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *chanctx); void ieee80211_recalc_chanctx_min_def(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, struct ieee80211_link_data *rsvd_for, bool check_reserved); bool ieee80211_is_radar_required(struct ieee80211_local *local); void ieee80211_dfs_cac_timer_work(struct wiphy *wiphy, struct wiphy_work *work); void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, struct ieee80211_chanctx *chanctx); void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, struct wiphy_work *work); int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings); void ieee80211_recalc_dtim(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode chanmode, u8 radar_detect, int radio_idx); int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx); u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev); void ieee80211_recalc_chanctx_chantype(struct ieee80211_local *local, struct ieee80211_chanctx *ctx); /* TDLS */ int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, int link_id, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *extra_ies, size_t extra_ies_len); int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, enum nl80211_tdls_operation oper); void ieee80211_tdls_peer_del_work(struct wiphy *wiphy, struct wiphy_work *wk); int ieee80211_tdls_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef); void ieee80211_tdls_cancel_channel_switch(struct wiphy *wiphy, struct net_device *dev, const u8 *addr); void ieee80211_teardown_tdls_peers(struct ieee80211_link_data *link); void ieee80211_tdls_handle_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *peer, u16 reason); void ieee80211_process_tdls_channel_switch(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb); const char *ieee80211_get_reason_code_string(u16 reason_code); u16 ieee80211_encode_usf(int val); u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, enum nl80211_iftype type); extern const struct ethtool_ops ieee80211_ethtool_ops; u32 ieee80211_calc_expected_tx_airtime(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *pubsta, int len, bool ampdu); #ifdef CONFIG_MAC80211_NOINLINE #define debug_noinline noinline #else #define debug_noinline #endif void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache); void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache); u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata); void ieee80211_eht_cap_ie_to_sta_eht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const u8 *he_cap_ie, u8 he_cap_len, const struct ieee80211_eht_cap_elem *eht_cap_ie_elem, u8 eht_cap_len, struct link_sta_info *link_sta); void ieee80211_process_neg_ttlm_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_neg_ttlm_res(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); int ieee80211_req_neg_ttlm(struct ieee80211_sub_if_data *sdata, struct cfg80211_ttlm_params *params); void ieee80211_process_ttlm_teardown(struct ieee80211_sub_if_data *sdata); void ieee80211_check_wbrf_support(struct ieee80211_local *local); void ieee80211_add_wbrf(struct ieee80211_local *local, struct cfg80211_chan_def *chandef); void ieee80211_remove_wbrf(struct ieee80211_local *local, struct cfg80211_chan_def *chandef); int ieee80211_mgd_set_epcs(struct ieee80211_sub_if_data *sdata, bool enable); void ieee80211_process_epcs_ena_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); void ieee80211_process_epcs_teardown(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); int ieee80211_mgd_assoc_ml_reconf(struct ieee80211_sub_if_data *sdata, struct cfg80211_ml_reconf_req *req); void ieee80211_process_ml_reconf_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len); #if IS_ENABLED(CONFIG_MAC80211_KUNIT_TEST) #define EXPORT_SYMBOL_IF_MAC80211_KUNIT(sym) EXPORT_SYMBOL_IF_KUNIT(sym) #define VISIBLE_IF_MAC80211_KUNIT ieee80211_rx_result ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx); int ieee80211_calc_chandef_subchan_offset(const struct cfg80211_chan_def *ap, u8 n_partial_subchans); void ieee80211_rearrange_tpe_psd(struct ieee80211_parsed_tpe_psd *psd, const struct cfg80211_chan_def *ap, const struct cfg80211_chan_def *used); struct ieee802_11_elems * ieee80211_determine_chan_mode(struct ieee80211_sub_if_data *sdata, struct ieee80211_conn_settings *conn, struct cfg80211_bss *cbss, int link_id, struct ieee80211_chan_req *chanreq, struct cfg80211_chan_def *ap_chandef, unsigned long *userspace_selectors); #else #define EXPORT_SYMBOL_IF_MAC80211_KUNIT(sym) #define VISIBLE_IF_MAC80211_KUNIT static #endif #endif /* IEEE80211_I_H */
2 2 3 3 8 6 2 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2016 Pablo Neira Ayuso <pablo@netfilter.org> */ #include <linux/init.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> #define nft_objref_priv(expr) *((struct nft_object **)nft_expr_priv(expr)) void nft_objref_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { struct nft_object *obj = nft_objref_priv(expr); obj->ops->eval(obj, regs, pkt); } static int nft_objref_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_object *obj = nft_objref_priv(expr); u8 genmask = nft_genmask_next(ctx->net); u32 objtype; if (!tb[NFTA_OBJREF_IMM_NAME] || !tb[NFTA_OBJREF_IMM_TYPE]) return -EINVAL; objtype = ntohl(nla_get_be32(tb[NFTA_OBJREF_IMM_TYPE])); obj = nft_obj_lookup(ctx->net, ctx->table, tb[NFTA_OBJREF_IMM_NAME], objtype, genmask); if (IS_ERR(obj)) return -ENOENT; if (!nft_use_inc(&obj->use)) return -EMFILE; nft_objref_priv(expr) = obj; return 0; } static int nft_objref_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_object *obj = nft_objref_priv(expr); if (nla_put_string(skb, NFTA_OBJREF_IMM_NAME, obj->key.name) || nla_put_be32(skb, NFTA_OBJREF_IMM_TYPE, htonl(obj->ops->type->type))) goto nla_put_failure; return 0; nla_put_failure: return -1; } static void nft_objref_deactivate(const struct nft_ctx *ctx, const struct nft_expr *expr, enum nft_trans_phase phase) { struct nft_object *obj = nft_objref_priv(expr); if (phase == NFT_TRANS_COMMIT) return; nft_use_dec(&obj->use); } static void nft_objref_activate(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct nft_object *obj = nft_objref_priv(expr); nft_use_inc_restore(&obj->use); } static const struct nft_expr_ops nft_objref_ops = { .type = &nft_objref_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_object *)), .eval = nft_objref_eval, .init = nft_objref_init, .activate = nft_objref_activate, .deactivate = nft_objref_deactivate, .dump = nft_objref_dump, .reduce = NFT_REDUCE_READONLY, }; struct nft_objref_map { struct nft_set *set; u8 sreg; struct nft_set_binding binding; }; void nft_objref_map_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { struct nft_objref_map *priv = nft_expr_priv(expr); const struct nft_set *set = priv->set; struct net *net = nft_net(pkt); const struct nft_set_ext *ext; struct nft_object *obj; bool found; found = nft_set_do_lookup(net, set, &regs->data[priv->sreg], &ext); if (!found) { ext = nft_set_catchall_lookup(net, set); if (!ext) { regs->verdict.code = NFT_BREAK; return; } } obj = *nft_set_ext_obj(ext); obj->ops->eval(obj, regs, pkt); } static int nft_objref_map_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_objref_map *priv = nft_expr_priv(expr); u8 genmask = nft_genmask_next(ctx->net); struct nft_set *set; int err; set = nft_set_lookup_global(ctx->net, ctx->table, tb[NFTA_OBJREF_SET_NAME], tb[NFTA_OBJREF_SET_ID], genmask); if (IS_ERR(set)) return PTR_ERR(set); if (!(set->flags & NFT_SET_OBJECT)) return -EINVAL; err = nft_parse_register_load(ctx, tb[NFTA_OBJREF_SET_SREG], &priv->sreg, set->klen); if (err < 0) return err; priv->binding.flags = set->flags & NFT_SET_OBJECT; err = nf_tables_bind_set(ctx, set, &priv->binding); if (err < 0) return err; priv->set = set; return 0; } static int nft_objref_map_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_objref_map *priv = nft_expr_priv(expr); if (nft_dump_register(skb, NFTA_OBJREF_SET_SREG, priv->sreg) || nla_put_string(skb, NFTA_OBJREF_SET_NAME, priv->set->name)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static void nft_objref_map_deactivate(const struct nft_ctx *ctx, const struct nft_expr *expr, enum nft_trans_phase phase) { struct nft_objref_map *priv = nft_expr_priv(expr); nf_tables_deactivate_set(ctx, priv->set, &priv->binding, phase); } static void nft_objref_map_activate(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct nft_objref_map *priv = nft_expr_priv(expr); nf_tables_activate_set(ctx, priv->set); } static void nft_objref_map_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct nft_objref_map *priv = nft_expr_priv(expr); nf_tables_destroy_set(ctx, priv->set); } static const struct nft_expr_ops nft_objref_map_ops = { .type = &nft_objref_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_objref_map)), .eval = nft_objref_map_eval, .init = nft_objref_map_init, .activate = nft_objref_map_activate, .deactivate = nft_objref_map_deactivate, .destroy = nft_objref_map_destroy, .dump = nft_objref_map_dump, .reduce = NFT_REDUCE_READONLY, }; static const struct nft_expr_ops * nft_objref_select_ops(const struct nft_ctx *ctx, const struct nlattr * const tb[]) { if (tb[NFTA_OBJREF_SET_SREG] && (tb[NFTA_OBJREF_SET_NAME] || tb[NFTA_OBJREF_SET_ID])) return &nft_objref_map_ops; else if (tb[NFTA_OBJREF_IMM_NAME] && tb[NFTA_OBJREF_IMM_TYPE]) return &nft_objref_ops; return ERR_PTR(-EOPNOTSUPP); } static const struct nla_policy nft_objref_policy[NFTA_OBJREF_MAX + 1] = { [NFTA_OBJREF_IMM_NAME] = { .type = NLA_STRING, .len = NFT_OBJ_MAXNAMELEN - 1 }, [NFTA_OBJREF_IMM_TYPE] = { .type = NLA_U32 }, [NFTA_OBJREF_SET_SREG] = { .type = NLA_U32 }, [NFTA_OBJREF_SET_NAME] = { .type = NLA_STRING, .len = NFT_SET_MAXNAMELEN - 1 }, [NFTA_OBJREF_SET_ID] = { .type = NLA_U32 }, }; struct nft_expr_type nft_objref_type __read_mostly = { .name = "objref", .select_ops = nft_objref_select_ops, .policy = nft_objref_policy, .maxattr = NFTA_OBJREF_MAX, .owner = THIS_MODULE, };
463 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/lockd/svc.c * * This is the central lockd service. * * FIXME: Separate the lockd NFS server functionality from the lockd NFS * client functionality. Oh why didn't Sun create two separate * services in the first place? * * Authors: Olaf Kirch (okir@monad.swb.de) * * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> */ #include <linux/module.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/moduleparam.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/uio.h> #include <linux/smp.h> #include <linux/mutex.h> #include <linux/freezer.h> #include <linux/inetdevice.h> #include <linux/sunrpc/types.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/svc.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/svc_xprt.h> #include <net/ip.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <linux/lockd/lockd.h> #include <linux/nfs.h> #include "netns.h" #include "procfs.h" #include "netlink.h" #define NLMDBG_FACILITY NLMDBG_SVC #define LOCKD_BUFSIZE (1024 + NLMSVC_XDRSIZE) static struct svc_program nlmsvc_program; const struct nlmsvc_binding *nlmsvc_ops; EXPORT_SYMBOL_GPL(nlmsvc_ops); static DEFINE_MUTEX(nlmsvc_mutex); static unsigned int nlmsvc_users; static struct svc_serv *nlmsvc_serv; static void nlmsvc_request_retry(struct timer_list *tl) { svc_wake_up(nlmsvc_serv); } DEFINE_TIMER(nlmsvc_retry, nlmsvc_request_retry); unsigned int lockd_net_id; /* * These can be set at insmod time (useful for NFS as root filesystem), * and also changed through the sysctl interface. -- Jamie Lokier, Aug 2003 */ static unsigned long nlm_grace_period; unsigned long nlm_timeout = LOCKD_DFLT_TIMEO; static int nlm_udpport, nlm_tcpport; /* * Constants needed for the sysctl interface. */ static const unsigned long nlm_grace_period_min = 0; static const unsigned long nlm_grace_period_max = 240; static const unsigned long nlm_timeout_min = 3; static const unsigned long nlm_timeout_max = 20; #ifdef CONFIG_SYSCTL static const int nlm_port_min = 0, nlm_port_max = 65535; static struct ctl_table_header * nlm_sysctl_table; #endif static unsigned long get_lockd_grace_period(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); /* Return the net-ns specific grace period, if there is one */ if (ln->gracetime) return ln->gracetime * HZ; /* Note: nlm_timeout should always be nonzero */ if (nlm_grace_period) return roundup(nlm_grace_period, nlm_timeout) * HZ; else return nlm_timeout * 5 * HZ; } static void grace_ender(struct work_struct *grace) { struct delayed_work *dwork = to_delayed_work(grace); struct lockd_net *ln = container_of(dwork, struct lockd_net, grace_period_end); locks_end_grace(&ln->lockd_manager); } static void set_grace_period(struct net *net) { unsigned long grace_period = get_lockd_grace_period(net); struct lockd_net *ln = net_generic(net, lockd_net_id); locks_start_grace(net, &ln->lockd_manager); cancel_delayed_work_sync(&ln->grace_period_end); schedule_delayed_work(&ln->grace_period_end, grace_period); } /* * This is the lockd kernel thread */ static int lockd(void *vrqstp) { struct svc_rqst *rqstp = vrqstp; struct net *net = &init_net; struct lockd_net *ln = net_generic(net, lockd_net_id); svc_thread_init_status(rqstp, 0); /* try_to_freeze() is called from svc_recv() */ set_freezable(); dprintk("NFS locking service started (ver " LOCKD_VERSION ").\n"); /* * The main request loop. We don't terminate until the last * NFS mount or NFS daemon has gone away. */ while (!svc_thread_should_stop(rqstp)) { nlmsvc_retry_blocked(rqstp); svc_recv(rqstp); } if (nlmsvc_ops) nlmsvc_invalidate_all(); nlm_shutdown_hosts(); cancel_delayed_work_sync(&ln->grace_period_end); locks_end_grace(&ln->lockd_manager); dprintk("lockd_down: service stopped\n"); svc_exit_thread(rqstp); return 0; } static int create_lockd_listener(struct svc_serv *serv, const char *name, struct net *net, const int family, const unsigned short port, const struct cred *cred) { struct svc_xprt *xprt; xprt = svc_find_xprt(serv, name, net, family, 0); if (xprt == NULL) return svc_xprt_create(serv, name, net, family, port, SVC_SOCK_DEFAULTS, cred); svc_xprt_put(xprt); return 0; } static int create_lockd_family(struct svc_serv *serv, struct net *net, const int family, const struct cred *cred) { struct lockd_net *ln = net_generic(net, lockd_net_id); int err; err = create_lockd_listener(serv, "udp", net, family, ln->udp_port ? ln->udp_port : nlm_udpport, cred); if (err < 0) return err; return create_lockd_listener(serv, "tcp", net, family, ln->tcp_port ? ln->tcp_port : nlm_tcpport, cred); } /* * Ensure there are active UDP and TCP listeners for lockd. * * Even if we have only TCP NFS mounts and/or TCP NFSDs, some * local services (such as rpc.statd) still require UDP, and * some NFS servers do not yet support NLM over TCP. * * Returns zero if all listeners are available; otherwise a * negative errno value is returned. */ static int make_socks(struct svc_serv *serv, struct net *net, const struct cred *cred) { static int warned; int err; err = create_lockd_family(serv, net, PF_INET, cred); if (err < 0) goto out_err; err = create_lockd_family(serv, net, PF_INET6, cred); if (err < 0 && err != -EAFNOSUPPORT) goto out_err; warned = 0; return 0; out_err: if (warned++ == 0) printk(KERN_WARNING "lockd_up: makesock failed, error=%d\n", err); svc_xprt_destroy_all(serv, net); svc_rpcb_cleanup(serv, net); return err; } static int lockd_up_net(struct svc_serv *serv, struct net *net, const struct cred *cred) { struct lockd_net *ln = net_generic(net, lockd_net_id); int error; if (ln->nlmsvc_users++) return 0; error = svc_bind(serv, net); if (error) goto err_bind; error = make_socks(serv, net, cred); if (error < 0) goto err_bind; set_grace_period(net); dprintk("%s: per-net data created; net=%x\n", __func__, net->ns.inum); return 0; err_bind: ln->nlmsvc_users--; return error; } static void lockd_down_net(struct svc_serv *serv, struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); if (ln->nlmsvc_users) { if (--ln->nlmsvc_users == 0) { nlm_shutdown_hosts_net(net); cancel_delayed_work_sync(&ln->grace_period_end); locks_end_grace(&ln->lockd_manager); svc_xprt_destroy_all(serv, net); svc_rpcb_cleanup(serv, net); } } else { pr_err("%s: no users! net=%x\n", __func__, net->ns.inum); BUG(); } } static int lockd_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; struct sockaddr_in sin; if (event != NETDEV_DOWN) goto out; if (nlmsvc_serv) { dprintk("lockd_inetaddr_event: removed %pI4\n", &ifa->ifa_local); sin.sin_family = AF_INET; sin.sin_addr.s_addr = ifa->ifa_local; svc_age_temp_xprts_now(nlmsvc_serv, (struct sockaddr *)&sin); } out: return NOTIFY_DONE; } static struct notifier_block lockd_inetaddr_notifier = { .notifier_call = lockd_inetaddr_event, }; #if IS_ENABLED(CONFIG_IPV6) static int lockd_inet6addr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct inet6_ifaddr *ifa = (struct inet6_ifaddr *)ptr; struct sockaddr_in6 sin6; if (event != NETDEV_DOWN) goto out; if (nlmsvc_serv) { dprintk("lockd_inet6addr_event: removed %pI6\n", &ifa->addr); sin6.sin6_family = AF_INET6; sin6.sin6_addr = ifa->addr; if (ipv6_addr_type(&sin6.sin6_addr) & IPV6_ADDR_LINKLOCAL) sin6.sin6_scope_id = ifa->idev->dev->ifindex; svc_age_temp_xprts_now(nlmsvc_serv, (struct sockaddr *)&sin6); } out: return NOTIFY_DONE; } static struct notifier_block lockd_inet6addr_notifier = { .notifier_call = lockd_inet6addr_event, }; #endif static int lockd_get(void) { struct svc_serv *serv; int error; if (nlmsvc_serv) { nlmsvc_users++; return 0; } /* * Sanity check: if there's no pid, * we should be the first user ... */ if (nlmsvc_users) printk(KERN_WARNING "lockd_up: no pid, %d users??\n", nlmsvc_users); serv = svc_create(&nlmsvc_program, LOCKD_BUFSIZE, lockd); if (!serv) { printk(KERN_WARNING "lockd_up: create service failed\n"); return -ENOMEM; } error = svc_set_num_threads(serv, NULL, 1); if (error < 0) { svc_destroy(&serv); return error; } nlmsvc_serv = serv; register_inetaddr_notifier(&lockd_inetaddr_notifier); #if IS_ENABLED(CONFIG_IPV6) register_inet6addr_notifier(&lockd_inet6addr_notifier); #endif dprintk("lockd_up: service created\n"); nlmsvc_users++; return 0; } static void lockd_put(void) { if (WARN(nlmsvc_users <= 0, "lockd_down: no users!\n")) return; if (--nlmsvc_users) return; unregister_inetaddr_notifier(&lockd_inetaddr_notifier); #if IS_ENABLED(CONFIG_IPV6) unregister_inet6addr_notifier(&lockd_inet6addr_notifier); #endif svc_set_num_threads(nlmsvc_serv, NULL, 0); timer_delete_sync(&nlmsvc_retry); svc_destroy(&nlmsvc_serv); dprintk("lockd_down: service destroyed\n"); } /* * Bring up the lockd process if it's not already up. */ int lockd_up(struct net *net, const struct cred *cred) { int error; mutex_lock(&nlmsvc_mutex); error = lockd_get(); if (error) goto err; error = lockd_up_net(nlmsvc_serv, net, cred); if (error < 0) { lockd_put(); goto err; } err: mutex_unlock(&nlmsvc_mutex); return error; } EXPORT_SYMBOL_GPL(lockd_up); /* * Decrement the user count and bring down lockd if we're the last. */ void lockd_down(struct net *net) { mutex_lock(&nlmsvc_mutex); lockd_down_net(nlmsvc_serv, net); lockd_put(); mutex_unlock(&nlmsvc_mutex); } EXPORT_SYMBOL_GPL(lockd_down); #ifdef CONFIG_SYSCTL /* * Sysctl parameters (same as module parameters, different interface). */ static const struct ctl_table nlm_sysctls[] = { { .procname = "nlm_grace_period", .data = &nlm_grace_period, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = (unsigned long *) &nlm_grace_period_min, .extra2 = (unsigned long *) &nlm_grace_period_max, }, { .procname = "nlm_timeout", .data = &nlm_timeout, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = (unsigned long *) &nlm_timeout_min, .extra2 = (unsigned long *) &nlm_timeout_max, }, { .procname = "nlm_udpport", .data = &nlm_udpport, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = (int *) &nlm_port_min, .extra2 = (int *) &nlm_port_max, }, { .procname = "nlm_tcpport", .data = &nlm_tcpport, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = (int *) &nlm_port_min, .extra2 = (int *) &nlm_port_max, }, { .procname = "nsm_use_hostnames", .data = &nsm_use_hostnames, .maxlen = sizeof(bool), .mode = 0644, .proc_handler = proc_dobool, }, { .procname = "nsm_local_state", .data = &nsm_local_state, .maxlen = sizeof(nsm_local_state), .mode = 0644, .proc_handler = proc_douintvec, .extra1 = SYSCTL_ZERO, }, }; #endif /* CONFIG_SYSCTL */ /* * Module (and sysfs) parameters. */ #define param_set_min_max(name, type, which_strtol, min, max) \ static int param_set_##name(const char *val, const struct kernel_param *kp) \ { \ char *endp; \ __typeof__(type) num = which_strtol(val, &endp, 0); \ if (endp == val || *endp || num < (min) || num > (max)) \ return -EINVAL; \ *((type *) kp->arg) = num; \ return 0; \ } static inline int is_callback(u32 proc) { return proc == NLMPROC_GRANTED || proc == NLMPROC_GRANTED_MSG || proc == NLMPROC_TEST_RES || proc == NLMPROC_LOCK_RES || proc == NLMPROC_CANCEL_RES || proc == NLMPROC_UNLOCK_RES || proc == NLMPROC_NSM_NOTIFY; } static enum svc_auth_status lockd_authenticate(struct svc_rqst *rqstp) { rqstp->rq_client = NULL; switch (rqstp->rq_authop->flavour) { case RPC_AUTH_NULL: case RPC_AUTH_UNIX: rqstp->rq_auth_stat = rpc_auth_ok; if (rqstp->rq_proc == 0) return SVC_OK; if (is_callback(rqstp->rq_proc)) { /* Leave it to individual procedures to * call nlmsvc_lookup_host(rqstp) */ return SVC_OK; } return svc_set_client(rqstp); } rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } param_set_min_max(port, int, simple_strtol, 0, 65535) param_set_min_max(grace_period, unsigned long, simple_strtoul, nlm_grace_period_min, nlm_grace_period_max) param_set_min_max(timeout, unsigned long, simple_strtoul, nlm_timeout_min, nlm_timeout_max) MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_DESCRIPTION("NFS file locking service version " LOCKD_VERSION "."); MODULE_LICENSE("GPL"); module_param_call(nlm_grace_period, param_set_grace_period, param_get_ulong, &nlm_grace_period, 0644); module_param_call(nlm_timeout, param_set_timeout, param_get_ulong, &nlm_timeout, 0644); module_param_call(nlm_udpport, param_set_port, param_get_int, &nlm_udpport, 0644); module_param_call(nlm_tcpport, param_set_port, param_get_int, &nlm_tcpport, 0644); module_param(nsm_use_hostnames, bool, 0644); static int lockd_init_net(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); INIT_DELAYED_WORK(&ln->grace_period_end, grace_ender); INIT_LIST_HEAD(&ln->lockd_manager.list); ln->lockd_manager.block_opens = false; INIT_LIST_HEAD(&ln->nsm_handles); return 0; } static void lockd_exit_net(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); WARN_ONCE(!list_empty(&ln->lockd_manager.list), "net %x %s: lockd_manager.list is not empty\n", net->ns.inum, __func__); WARN_ONCE(!list_empty(&ln->nsm_handles), "net %x %s: nsm_handles list is not empty\n", net->ns.inum, __func__); WARN_ONCE(delayed_work_pending(&ln->grace_period_end), "net %x %s: grace_period_end was not cancelled\n", net->ns.inum, __func__); } static struct pernet_operations lockd_net_ops = { .init = lockd_init_net, .exit = lockd_exit_net, .id = &lockd_net_id, .size = sizeof(struct lockd_net), }; /* * Initialising and terminating the module. */ static int __init init_nlm(void) { int err; #ifdef CONFIG_SYSCTL err = -ENOMEM; nlm_sysctl_table = register_sysctl("fs/nfs", nlm_sysctls); if (nlm_sysctl_table == NULL) goto err_sysctl; #endif err = register_pernet_subsys(&lockd_net_ops); if (err) goto err_pernet; err = genl_register_family(&lockd_nl_family); if (err) goto err_netlink; err = lockd_create_procfs(); if (err) goto err_procfs; return 0; err_procfs: genl_unregister_family(&lockd_nl_family); err_netlink: unregister_pernet_subsys(&lockd_net_ops); err_pernet: #ifdef CONFIG_SYSCTL unregister_sysctl_table(nlm_sysctl_table); err_sysctl: #endif return err; } static void __exit exit_nlm(void) { /* FIXME: delete all NLM clients */ nlm_shutdown_hosts(); genl_unregister_family(&lockd_nl_family); lockd_remove_procfs(); unregister_pernet_subsys(&lockd_net_ops); #ifdef CONFIG_SYSCTL unregister_sysctl_table(nlm_sysctl_table); #endif } module_init(init_nlm); module_exit(exit_nlm); /** * nlmsvc_dispatch - Process an NLM Request * @rqstp: incoming request * * Return values: * %0: Processing complete; do not send a Reply * %1: Processing complete; send Reply in rqstp->rq_res */ static int nlmsvc_dispatch(struct svc_rqst *rqstp) { const struct svc_procedure *procp = rqstp->rq_procinfo; __be32 *statp = rqstp->rq_accept_statp; if (!procp->pc_decode(rqstp, &rqstp->rq_arg_stream)) goto out_decode_err; *statp = procp->pc_func(rqstp); if (*statp == rpc_drop_reply) return 0; if (*statp != rpc_success) return 1; if (!procp->pc_encode(rqstp, &rqstp->rq_res_stream)) goto out_encode_err; return 1; out_decode_err: *statp = rpc_garbage_args; return 1; out_encode_err: *statp = rpc_system_err; return 1; } /* * Define NLM program and procedures */ static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version1_count[17]); static const struct svc_version nlmsvc_version1 = { .vs_vers = 1, .vs_nproc = 17, .vs_proc = nlmsvc_procedures, .vs_count = nlmsvc_version1_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version3_count[ARRAY_SIZE(nlmsvc_procedures)]); static const struct svc_version nlmsvc_version3 = { .vs_vers = 3, .vs_nproc = ARRAY_SIZE(nlmsvc_procedures), .vs_proc = nlmsvc_procedures, .vs_count = nlmsvc_version3_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; #ifdef CONFIG_LOCKD_V4 static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version4_count[ARRAY_SIZE(nlmsvc_procedures4)]); static const struct svc_version nlmsvc_version4 = { .vs_vers = 4, .vs_nproc = ARRAY_SIZE(nlmsvc_procedures4), .vs_proc = nlmsvc_procedures4, .vs_count = nlmsvc_version4_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; #endif static const struct svc_version *nlmsvc_version[] = { [1] = &nlmsvc_version1, [3] = &nlmsvc_version3, #ifdef CONFIG_LOCKD_V4 [4] = &nlmsvc_version4, #endif }; #define NLM_NRVERS ARRAY_SIZE(nlmsvc_version) static struct svc_program nlmsvc_program = { .pg_prog = NLM_PROGRAM, /* program number */ .pg_nvers = NLM_NRVERS, /* number of entries in nlmsvc_version */ .pg_vers = nlmsvc_version, /* version table */ .pg_name = "lockd", /* service name */ .pg_class = "nfsd", /* share authentication with nfsd */ .pg_authenticate = &lockd_authenticate, /* export authentication */ .pg_init_request = svc_generic_init_request, .pg_rpcbind_set = svc_generic_rpcbind_set, }; /** * lockd_nl_server_set_doit - set the lockd server parameters via netlink * @skb: reply buffer * @info: netlink metadata and command arguments * * This updates the per-net values. When updating the values in the init_net * namespace, also update the "legacy" global values. * * Return 0 on success or a negative errno. */ int lockd_nl_server_set_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct lockd_net *ln = net_generic(net, lockd_net_id); const struct nlattr *attr; if (GENL_REQ_ATTR_CHECK(info, LOCKD_A_SERVER_GRACETIME)) return -EINVAL; if (info->attrs[LOCKD_A_SERVER_GRACETIME] || info->attrs[LOCKD_A_SERVER_TCP_PORT] || info->attrs[LOCKD_A_SERVER_UDP_PORT]) { attr = info->attrs[LOCKD_A_SERVER_GRACETIME]; if (attr) { u32 gracetime = nla_get_u32(attr); if (gracetime > nlm_grace_period_max) return -EINVAL; ln->gracetime = gracetime; if (net == &init_net) nlm_grace_period = gracetime; } attr = info->attrs[LOCKD_A_SERVER_TCP_PORT]; if (attr) { ln->tcp_port = nla_get_u16(attr); if (net == &init_net) nlm_tcpport = ln->tcp_port; } attr = info->attrs[LOCKD_A_SERVER_UDP_PORT]; if (attr) { ln->udp_port = nla_get_u16(attr); if (net == &init_net) nlm_udpport = ln->udp_port; } } return 0; } /** * lockd_nl_server_get_doit - get lockd server parameters via netlink * @skb: reply buffer * @info: netlink metadata and command arguments * * Return 0 on success or a negative errno. */ int lockd_nl_server_get_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct lockd_net *ln = net_generic(net, lockd_net_id); void *hdr; int err; skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = genlmsg_iput(skb, info); if (!hdr) { err = -EMSGSIZE; goto err_free_msg; } err = nla_put_u32(skb, LOCKD_A_SERVER_GRACETIME, ln->gracetime) || nla_put_u16(skb, LOCKD_A_SERVER_TCP_PORT, ln->tcp_port) || nla_put_u16(skb, LOCKD_A_SERVER_UDP_PORT, ln->udp_port); if (err) goto err_free_msg; genlmsg_end(skb, hdr); return genlmsg_reply(skb, info); err_free_msg: nlmsg_free(skb); return err; }
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 // SPDX-License-Identifier: GPL-2.0 /* net/atm/svc.c - ATM SVC sockets */ /* Written 1995-2000 by Werner Almesberger, EPFL LRC/ICA */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__ #include <linux/string.h> #include <linux/net.h> /* struct socket, struct proto_ops */ #include <linux/errno.h> /* error codes */ #include <linux/kernel.h> /* printk */ #include <linux/skbuff.h> #include <linux/wait.h> #include <linux/sched/signal.h> #include <linux/fcntl.h> /* O_NONBLOCK */ #include <linux/init.h> #include <linux/atm.h> /* ATM stuff */ #include <linux/atmsap.h> #include <linux/atmsvc.h> #include <linux/atmdev.h> #include <linux/bitops.h> #include <net/sock.h> /* for sock_no_* */ #include <linux/uaccess.h> #include <linux/export.h> #include "resources.h" #include "common.h" /* common for PVCs and SVCs */ #include "signaling.h" #include "addr.h" #ifdef CONFIG_COMPAT /* It actually takes struct sockaddr_atmsvc, not struct atm_iobuf */ #define COMPAT_ATM_ADDPARTY _IOW('a', ATMIOC_SPECIAL + 4, struct compat_atm_iobuf) #endif static int svc_create(struct net *net, struct socket *sock, int protocol, int kern); /* * Note: since all this is still nicely synchronized with the signaling demon, * there's no need to protect sleep loops with clis. If signaling is * moved into the kernel, that would change. */ static int svc_shutdown(struct socket *sock, int how) { return 0; } static void svc_disconnect(struct atm_vcc *vcc) { DEFINE_WAIT(wait); struct sk_buff *skb; struct sock *sk = sk_atm(vcc); pr_debug("%p\n", vcc); if (test_bit(ATM_VF_REGIS, &vcc->flags)) { sigd_enq(vcc, as_close, NULL, NULL, NULL); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_UNINTERRUPTIBLE); if (test_bit(ATM_VF_RELEASED, &vcc->flags) || !sigd) break; schedule(); } finish_wait(sk_sleep(sk), &wait); } /* beware - socket is still in use by atmsigd until the last as_indicate has been answered */ while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { atm_return(vcc, skb->truesize); pr_debug("LISTEN REL\n"); sigd_enq2(NULL, as_reject, vcc, NULL, NULL, &vcc->qos, 0); dev_kfree_skb(skb); } clear_bit(ATM_VF_REGIS, &vcc->flags); /* ... may retry later */ } static int svc_release(struct socket *sock) { struct sock *sk = sock->sk; struct atm_vcc *vcc; if (sk) { vcc = ATM_SD(sock); pr_debug("%p\n", vcc); clear_bit(ATM_VF_READY, &vcc->flags); /* * VCC pointer is used as a reference, * so we must not free it (thereby subjecting it to re-use) * before all pending connections are closed */ svc_disconnect(vcc); vcc_release(sock); } return 0; } static int svc_bind(struct socket *sock, struct sockaddr *sockaddr, int sockaddr_len) { DEFINE_WAIT(wait); struct sock *sk = sock->sk; struct sockaddr_atmsvc *addr; struct atm_vcc *vcc; int error; if (sockaddr_len != sizeof(struct sockaddr_atmsvc)) return -EINVAL; lock_sock(sk); if (sock->state == SS_CONNECTED) { error = -EISCONN; goto out; } if (sock->state != SS_UNCONNECTED) { error = -EINVAL; goto out; } vcc = ATM_SD(sock); addr = (struct sockaddr_atmsvc *) sockaddr; if (addr->sas_family != AF_ATMSVC) { error = -EAFNOSUPPORT; goto out; } clear_bit(ATM_VF_BOUND, &vcc->flags); /* failing rebind will kill old binding */ /* @@@ check memory (de)allocation on rebind */ if (!test_bit(ATM_VF_HASQOS, &vcc->flags)) { error = -EBADFD; goto out; } vcc->local = *addr; set_bit(ATM_VF_WAITING, &vcc->flags); sigd_enq(vcc, as_bind, NULL, NULL, &vcc->local); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_UNINTERRUPTIBLE); if (!test_bit(ATM_VF_WAITING, &vcc->flags) || !sigd) break; schedule(); } finish_wait(sk_sleep(sk), &wait); clear_bit(ATM_VF_REGIS, &vcc->flags); /* doesn't count */ if (!sigd) { error = -EUNATCH; goto out; } if (!sk->sk_err) set_bit(ATM_VF_BOUND, &vcc->flags); error = -sk->sk_err; out: release_sock(sk); return error; } static int svc_connect(struct socket *sock, struct sockaddr *sockaddr, int sockaddr_len, int flags) { DEFINE_WAIT(wait); struct sock *sk = sock->sk; struct sockaddr_atmsvc *addr; struct atm_vcc *vcc = ATM_SD(sock); int error; pr_debug("%p\n", vcc); lock_sock(sk); if (sockaddr_len != sizeof(struct sockaddr_atmsvc)) { error = -EINVAL; goto out; } switch (sock->state) { default: error = -EINVAL; goto out; case SS_CONNECTED: error = -EISCONN; goto out; case SS_CONNECTING: if (test_bit(ATM_VF_WAITING, &vcc->flags)) { error = -EALREADY; goto out; } sock->state = SS_UNCONNECTED; if (sk->sk_err) { error = -sk->sk_err; goto out; } break; case SS_UNCONNECTED: addr = (struct sockaddr_atmsvc *) sockaddr; if (addr->sas_family != AF_ATMSVC) { error = -EAFNOSUPPORT; goto out; } if (!test_bit(ATM_VF_HASQOS, &vcc->flags)) { error = -EBADFD; goto out; } if (vcc->qos.txtp.traffic_class == ATM_ANYCLASS || vcc->qos.rxtp.traffic_class == ATM_ANYCLASS) { error = -EINVAL; goto out; } if (!vcc->qos.txtp.traffic_class && !vcc->qos.rxtp.traffic_class) { error = -EINVAL; goto out; } vcc->remote = *addr; set_bit(ATM_VF_WAITING, &vcc->flags); sigd_enq(vcc, as_connect, NULL, NULL, &vcc->remote); if (flags & O_NONBLOCK) { sock->state = SS_CONNECTING; error = -EINPROGRESS; goto out; } error = 0; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); while (test_bit(ATM_VF_WAITING, &vcc->flags) && sigd) { schedule(); if (!signal_pending(current)) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); continue; } pr_debug("*ABORT*\n"); /* * This is tricky: * Kernel ---close--> Demon * Kernel <--close--- Demon * or * Kernel ---close--> Demon * Kernel <--error--- Demon * or * Kernel ---close--> Demon * Kernel <--okay---- Demon * Kernel <--close--- Demon */ sigd_enq(vcc, as_close, NULL, NULL, NULL); while (test_bit(ATM_VF_WAITING, &vcc->flags) && sigd) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); schedule(); } if (!sk->sk_err) while (!test_bit(ATM_VF_RELEASED, &vcc->flags) && sigd) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); schedule(); } clear_bit(ATM_VF_REGIS, &vcc->flags); clear_bit(ATM_VF_RELEASED, &vcc->flags); clear_bit(ATM_VF_CLOSE, &vcc->flags); /* we're gone now but may connect later */ error = -EINTR; break; } finish_wait(sk_sleep(sk), &wait); if (error) goto out; if (!sigd) { error = -EUNATCH; goto out; } if (sk->sk_err) { error = -sk->sk_err; goto out; } } vcc->qos.txtp.max_pcr = SELECT_TOP_PCR(vcc->qos.txtp); vcc->qos.txtp.pcr = 0; vcc->qos.txtp.min_pcr = 0; error = vcc_connect(sock, vcc->itf, vcc->vpi, vcc->vci); if (!error) sock->state = SS_CONNECTED; else (void)svc_disconnect(vcc); out: release_sock(sk); return error; } static int svc_listen(struct socket *sock, int backlog) { DEFINE_WAIT(wait); struct sock *sk = sock->sk; struct atm_vcc *vcc = ATM_SD(sock); int error; pr_debug("%p\n", vcc); lock_sock(sk); /* let server handle listen on unbound sockets */ if (test_bit(ATM_VF_SESSION, &vcc->flags)) { error = -EINVAL; goto out; } if (test_bit(ATM_VF_LISTEN, &vcc->flags)) { error = -EADDRINUSE; goto out; } set_bit(ATM_VF_WAITING, &vcc->flags); sigd_enq(vcc, as_listen, NULL, NULL, &vcc->local); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_UNINTERRUPTIBLE); if (!test_bit(ATM_VF_WAITING, &vcc->flags) || !sigd) break; schedule(); } finish_wait(sk_sleep(sk), &wait); if (!sigd) { error = -EUNATCH; goto out; } set_bit(ATM_VF_LISTEN, &vcc->flags); vcc_insert_socket(sk); sk->sk_max_ack_backlog = backlog > 0 ? backlog : ATM_BACKLOG_DEFAULT; error = -sk->sk_err; out: release_sock(sk); return error; } static int svc_accept(struct socket *sock, struct socket *newsock, struct proto_accept_arg *arg) { struct sock *sk = sock->sk; struct sk_buff *skb; struct atmsvc_msg *msg; struct atm_vcc *old_vcc = ATM_SD(sock); struct atm_vcc *new_vcc; int error; lock_sock(sk); error = svc_create(sock_net(sk), newsock, 0, arg->kern); if (error) goto out; new_vcc = ATM_SD(newsock); pr_debug("%p -> %p\n", old_vcc, new_vcc); while (1) { DEFINE_WAIT(wait); prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); while (!(skb = skb_dequeue(&sk->sk_receive_queue)) && sigd) { if (test_bit(ATM_VF_RELEASED, &old_vcc->flags)) break; if (test_bit(ATM_VF_CLOSE, &old_vcc->flags)) { error = -sk->sk_err; break; } if (arg->flags & O_NONBLOCK) { error = -EAGAIN; break; } release_sock(sk); schedule(); lock_sock(sk); if (signal_pending(current)) { error = -ERESTARTSYS; break; } prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); } finish_wait(sk_sleep(sk), &wait); if (error) goto out; if (!skb) { error = -EUNATCH; goto out; } msg = (struct atmsvc_msg *)skb->data; new_vcc->qos = msg->qos; set_bit(ATM_VF_HASQOS, &new_vcc->flags); new_vcc->remote = msg->svc; new_vcc->local = msg->local; new_vcc->sap = msg->sap; error = vcc_connect(newsock, msg->pvc.sap_addr.itf, msg->pvc.sap_addr.vpi, msg->pvc.sap_addr.vci); dev_kfree_skb(skb); sk_acceptq_removed(sk); if (error) { sigd_enq2(NULL, as_reject, old_vcc, NULL, NULL, &old_vcc->qos, error); error = error == -EAGAIN ? -EBUSY : error; goto out; } /* wait should be short, so we ignore the non-blocking flag */ set_bit(ATM_VF_WAITING, &new_vcc->flags); sigd_enq(new_vcc, as_accept, old_vcc, NULL, NULL); for (;;) { prepare_to_wait(sk_sleep(sk_atm(new_vcc)), &wait, TASK_UNINTERRUPTIBLE); if (!test_bit(ATM_VF_WAITING, &new_vcc->flags) || !sigd) break; release_sock(sk); schedule(); lock_sock(sk); } finish_wait(sk_sleep(sk_atm(new_vcc)), &wait); if (!sigd) { error = -EUNATCH; goto out; } if (!sk_atm(new_vcc)->sk_err) break; if (sk_atm(new_vcc)->sk_err != ERESTARTSYS) { error = -sk_atm(new_vcc)->sk_err; goto out; } } newsock->state = SS_CONNECTED; out: release_sock(sk); return error; } static int svc_getname(struct socket *sock, struct sockaddr *sockaddr, int peer) { struct sockaddr_atmsvc *addr; addr = (struct sockaddr_atmsvc *) sockaddr; memcpy(addr, peer ? &ATM_SD(sock)->remote : &ATM_SD(sock)->local, sizeof(struct sockaddr_atmsvc)); return sizeof(struct sockaddr_atmsvc); } int svc_change_qos(struct atm_vcc *vcc, struct atm_qos *qos) { struct sock *sk = sk_atm(vcc); DEFINE_WAIT(wait); set_bit(ATM_VF_WAITING, &vcc->flags); sigd_enq2(vcc, as_modify, NULL, NULL, &vcc->local, qos, 0); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_UNINTERRUPTIBLE); if (!test_bit(ATM_VF_WAITING, &vcc->flags) || test_bit(ATM_VF_RELEASED, &vcc->flags) || !sigd) { break; } schedule(); } finish_wait(sk_sleep(sk), &wait); if (!sigd) return -EUNATCH; return -sk->sk_err; } static int svc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct atm_vcc *vcc = ATM_SD(sock); int value, error = 0; lock_sock(sk); switch (optname) { case SO_ATMSAP: if (level != SOL_ATM || optlen != sizeof(struct atm_sap)) { error = -EINVAL; goto out; } if (copy_from_sockptr(&vcc->sap, optval, optlen)) { error = -EFAULT; goto out; } set_bit(ATM_VF_HASSAP, &vcc->flags); break; case SO_MULTIPOINT: if (level != SOL_ATM || optlen != sizeof(int)) { error = -EINVAL; goto out; } if (copy_from_sockptr(&value, optval, sizeof(int))) { error = -EFAULT; goto out; } if (value == 1) set_bit(ATM_VF_SESSION, &vcc->flags); else if (value == 0) clear_bit(ATM_VF_SESSION, &vcc->flags); else error = -EINVAL; break; default: error = vcc_setsockopt(sock, level, optname, optval, optlen); } out: release_sock(sk); return error; } static int svc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; int error = 0, len; lock_sock(sk); if (!__SO_LEVEL_MATCH(optname, level) || optname != SO_ATMSAP) { error = vcc_getsockopt(sock, level, optname, optval, optlen); goto out; } if (get_user(len, optlen)) { error = -EFAULT; goto out; } if (len != sizeof(struct atm_sap)) { error = -EINVAL; goto out; } if (copy_to_user(optval, &ATM_SD(sock)->sap, sizeof(struct atm_sap))) { error = -EFAULT; goto out; } out: release_sock(sk); return error; } static int svc_addparty(struct socket *sock, struct sockaddr *sockaddr, int sockaddr_len, int flags) { DEFINE_WAIT(wait); struct sock *sk = sock->sk; struct atm_vcc *vcc = ATM_SD(sock); int error; lock_sock(sk); set_bit(ATM_VF_WAITING, &vcc->flags); sigd_enq(vcc, as_addparty, NULL, NULL, (struct sockaddr_atmsvc *) sockaddr); if (flags & O_NONBLOCK) { error = -EINPROGRESS; goto out; } pr_debug("added wait queue\n"); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (!test_bit(ATM_VF_WAITING, &vcc->flags) || !sigd) break; schedule(); } finish_wait(sk_sleep(sk), &wait); error = -xchg(&sk->sk_err_soft, 0); out: release_sock(sk); return error; } static int svc_dropparty(struct socket *sock, int ep_ref) { DEFINE_WAIT(wait); struct sock *sk = sock->sk; struct atm_vcc *vcc = ATM_SD(sock); int error; lock_sock(sk); set_bit(ATM_VF_WAITING, &vcc->flags); sigd_enq2(vcc, as_dropparty, NULL, NULL, NULL, NULL, ep_ref); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (!test_bit(ATM_VF_WAITING, &vcc->flags) || !sigd) break; schedule(); } finish_wait(sk_sleep(sk), &wait); if (!sigd) { error = -EUNATCH; goto out; } error = -xchg(&sk->sk_err_soft, 0); out: release_sock(sk); return error; } static int svc_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { int error, ep_ref; struct sockaddr_atmsvc sa; struct atm_vcc *vcc = ATM_SD(sock); switch (cmd) { case ATM_ADDPARTY: if (!test_bit(ATM_VF_SESSION, &vcc->flags)) return -EINVAL; if (copy_from_user(&sa, (void __user *) arg, sizeof(sa))) return -EFAULT; error = svc_addparty(sock, (struct sockaddr *)&sa, sizeof(sa), 0); break; case ATM_DROPPARTY: if (!test_bit(ATM_VF_SESSION, &vcc->flags)) return -EINVAL; if (copy_from_user(&ep_ref, (void __user *) arg, sizeof(int))) return -EFAULT; error = svc_dropparty(sock, ep_ref); break; default: error = vcc_ioctl(sock, cmd, arg); } return error; } #ifdef CONFIG_COMPAT static int svc_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { /* The definition of ATM_ADDPARTY uses the size of struct atm_iobuf. But actually it takes a struct sockaddr_atmsvc, which doesn't need compat handling. So all we have to do is fix up cmd... */ if (cmd == COMPAT_ATM_ADDPARTY) cmd = ATM_ADDPARTY; if (cmd == ATM_ADDPARTY || cmd == ATM_DROPPARTY) return svc_ioctl(sock, cmd, arg); else return vcc_compat_ioctl(sock, cmd, arg); } #endif /* CONFIG_COMPAT */ static const struct proto_ops svc_proto_ops = { .family = PF_ATMSVC, .owner = THIS_MODULE, .release = svc_release, .bind = svc_bind, .connect = svc_connect, .socketpair = sock_no_socketpair, .accept = svc_accept, .getname = svc_getname, .poll = vcc_poll, .ioctl = svc_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = svc_compat_ioctl, #endif .gettstamp = sock_gettstamp, .listen = svc_listen, .shutdown = svc_shutdown, .setsockopt = svc_setsockopt, .getsockopt = svc_getsockopt, .sendmsg = vcc_sendmsg, .recvmsg = vcc_recvmsg, .mmap = sock_no_mmap, }; static int svc_create(struct net *net, struct socket *sock, int protocol, int kern) { int error; if (!net_eq(net, &init_net)) return -EAFNOSUPPORT; sock->ops = &svc_proto_ops; error = vcc_create(net, sock, protocol, AF_ATMSVC, kern); if (error) return error; ATM_SD(sock)->local.sas_family = AF_ATMSVC; ATM_SD(sock)->remote.sas_family = AF_ATMSVC; return 0; } static const struct net_proto_family svc_family_ops = { .family = PF_ATMSVC, .create = svc_create, .owner = THIS_MODULE, }; /* * Initialize the ATM SVC protocol family */ int __init atmsvc_init(void) { return sock_register(&svc_family_ops); } void atmsvc_exit(void) { sock_unregister(PF_ATMSVC); }
219 1 2 6 210 2 1 204 15 2 2 44 6 23 132 10 159 22 154 8 2 2 2 5 1 82 35 42 8 116 94 65 94 155 4 154 5 65 94 159 155 10 46 2 1 1 1 1 1 1 1 1 1 1 1 90 49 41 3 118 14 107 35 86 114 6 119 119 118 119 139 48 6 4 9 78 1 1 3 142 87 49 3 142 463 463 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_police.c Input police filter * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * J Hadi Salim (action changes) */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <linux/slab.h> #include <net/act_api.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_cls.h> #include <net/tc_act/tc_police.h> #include <net/tc_wrapper.h> /* Each policer is serialized by its individual spinlock */ static struct tc_action_ops act_police_ops; static const struct nla_policy police_policy[TCA_POLICE_MAX + 1] = { [TCA_POLICE_RATE] = { .len = TC_RTAB_SIZE }, [TCA_POLICE_PEAKRATE] = { .len = TC_RTAB_SIZE }, [TCA_POLICE_AVRATE] = { .type = NLA_U32 }, [TCA_POLICE_RESULT] = { .type = NLA_U32 }, [TCA_POLICE_RATE64] = { .type = NLA_U64 }, [TCA_POLICE_PEAKRATE64] = { .type = NLA_U64 }, [TCA_POLICE_PKTRATE64] = { .type = NLA_U64, .min = 1 }, [TCA_POLICE_PKTBURST64] = { .type = NLA_U64, .min = 1 }, }; static int tcf_police_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { int ret = 0, tcfp_result = TC_ACT_OK, err, size; bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_POLICE_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_police *parm; struct tcf_police *police; struct qdisc_rate_table *R_tab = NULL, *P_tab = NULL; struct tc_action_net *tn = net_generic(net, act_police_ops.net_id); struct tcf_police_params *new; bool exists = false; u32 index; u64 rate64, prate64; u64 pps, ppsburst; if (nla == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_POLICE_MAX, nla, police_policy, NULL); if (err < 0) return err; if (tb[TCA_POLICE_TBF] == NULL) return -EINVAL; size = nla_len(tb[TCA_POLICE_TBF]); if (size != sizeof(*parm) && size != sizeof(struct tc_police_compat)) return -EINVAL; parm = nla_data(tb[TCA_POLICE_TBF]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return ACT_P_BOUND; if (!exists) { ret = tcf_idr_create(tn, index, NULL, a, &act_police_ops, bind, true, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; spin_lock_init(&(to_police(*a)->tcfp_lock)); } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; police = to_police(*a); if (parm->rate.rate) { err = -ENOMEM; R_tab = qdisc_get_rtab(&parm->rate, tb[TCA_POLICE_RATE], NULL); if (R_tab == NULL) goto failure; if (parm->peakrate.rate) { P_tab = qdisc_get_rtab(&parm->peakrate, tb[TCA_POLICE_PEAKRATE], NULL); if (P_tab == NULL) goto failure; } } if (est) { err = gen_replace_estimator(&police->tcf_bstats, police->common.cpu_bstats, &police->tcf_rate_est, &police->tcf_lock, false, est); if (err) goto failure; } else if (tb[TCA_POLICE_AVRATE] && (ret == ACT_P_CREATED || !gen_estimator_active(&police->tcf_rate_est))) { err = -EINVAL; goto failure; } if (tb[TCA_POLICE_RESULT]) { tcfp_result = nla_get_u32(tb[TCA_POLICE_RESULT]); if (TC_ACT_EXT_CMP(tcfp_result, TC_ACT_GOTO_CHAIN)) { NL_SET_ERR_MSG(extack, "goto chain not allowed on fallback"); err = -EINVAL; goto failure; } } if ((tb[TCA_POLICE_PKTRATE64] && !tb[TCA_POLICE_PKTBURST64]) || (!tb[TCA_POLICE_PKTRATE64] && tb[TCA_POLICE_PKTBURST64])) { NL_SET_ERR_MSG(extack, "Both or neither packet-per-second burst and rate must be provided"); err = -EINVAL; goto failure; } if (tb[TCA_POLICE_PKTRATE64] && R_tab) { NL_SET_ERR_MSG(extack, "packet-per-second and byte-per-second rate limits not allowed in same action"); err = -EINVAL; goto failure; } new = kzalloc(sizeof(*new), GFP_KERNEL); if (unlikely(!new)) { err = -ENOMEM; goto failure; } /* No failure allowed after this point */ new->tcfp_result = tcfp_result; new->tcfp_mtu = parm->mtu; if (!new->tcfp_mtu) { new->tcfp_mtu = ~0; if (R_tab) new->tcfp_mtu = 255 << R_tab->rate.cell_log; } if (R_tab) { new->rate_present = true; rate64 = nla_get_u64_default(tb[TCA_POLICE_RATE64], 0); psched_ratecfg_precompute(&new->rate, &R_tab->rate, rate64); qdisc_put_rtab(R_tab); } else { new->rate_present = false; } if (P_tab) { new->peak_present = true; prate64 = nla_get_u64_default(tb[TCA_POLICE_PEAKRATE64], 0); psched_ratecfg_precompute(&new->peak, &P_tab->rate, prate64); qdisc_put_rtab(P_tab); } else { new->peak_present = false; } new->tcfp_burst = PSCHED_TICKS2NS(parm->burst); if (new->peak_present) new->tcfp_mtu_ptoks = (s64)psched_l2t_ns(&new->peak, new->tcfp_mtu); if (tb[TCA_POLICE_AVRATE]) new->tcfp_ewma_rate = nla_get_u32(tb[TCA_POLICE_AVRATE]); if (tb[TCA_POLICE_PKTRATE64]) { pps = nla_get_u64(tb[TCA_POLICE_PKTRATE64]); ppsburst = nla_get_u64(tb[TCA_POLICE_PKTBURST64]); new->pps_present = true; new->tcfp_pkt_burst = PSCHED_TICKS2NS(ppsburst); psched_ppscfg_precompute(&new->ppsrate, pps); } spin_lock_bh(&police->tcf_lock); spin_lock_bh(&police->tcfp_lock); police->tcfp_t_c = ktime_get_ns(); police->tcfp_toks = new->tcfp_burst; if (new->peak_present) police->tcfp_ptoks = new->tcfp_mtu_ptoks; spin_unlock_bh(&police->tcfp_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); new = rcu_replace_pointer(police->params, new, lockdep_is_held(&police->tcf_lock)); spin_unlock_bh(&police->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (new) kfree_rcu(new, rcu); return ret; failure: qdisc_put_rtab(P_tab); qdisc_put_rtab(R_tab); if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static bool tcf_police_mtu_check(struct sk_buff *skb, u32 limit) { u32 len; if (skb_is_gso(skb)) return skb_gso_validate_mac_len(skb, limit); len = qdisc_pkt_len(skb); if (skb_at_tc_ingress(skb)) len += skb->mac_len; return len <= limit; } TC_INDIRECT_SCOPE int tcf_police_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_police *police = to_police(a); s64 now, toks, ppstoks = 0, ptoks = 0; struct tcf_police_params *p; int ret; tcf_lastuse_update(&police->tcf_tm); bstats_update(this_cpu_ptr(police->common.cpu_bstats), skb); ret = READ_ONCE(police->tcf_action); p = rcu_dereference_bh(police->params); if (p->tcfp_ewma_rate) { struct gnet_stats_rate_est64 sample; if (!gen_estimator_read(&police->tcf_rate_est, &sample) || sample.bps >= p->tcfp_ewma_rate) goto inc_overlimits; } if (tcf_police_mtu_check(skb, p->tcfp_mtu)) { if (!p->rate_present && !p->pps_present) { ret = p->tcfp_result; goto end; } now = ktime_get_ns(); spin_lock_bh(&police->tcfp_lock); toks = min_t(s64, now - police->tcfp_t_c, p->tcfp_burst); if (p->peak_present) { ptoks = toks + police->tcfp_ptoks; if (ptoks > p->tcfp_mtu_ptoks) ptoks = p->tcfp_mtu_ptoks; ptoks -= (s64)psched_l2t_ns(&p->peak, qdisc_pkt_len(skb)); } if (p->rate_present) { toks += police->tcfp_toks; if (toks > p->tcfp_burst) toks = p->tcfp_burst; toks -= (s64)psched_l2t_ns(&p->rate, qdisc_pkt_len(skb)); } else if (p->pps_present) { ppstoks = min_t(s64, now - police->tcfp_t_c, p->tcfp_pkt_burst); ppstoks += police->tcfp_pkttoks; if (ppstoks > p->tcfp_pkt_burst) ppstoks = p->tcfp_pkt_burst; ppstoks -= (s64)psched_pkt2t_ns(&p->ppsrate, 1); } if ((toks | ptoks | ppstoks) >= 0) { police->tcfp_t_c = now; police->tcfp_toks = toks; police->tcfp_ptoks = ptoks; police->tcfp_pkttoks = ppstoks; spin_unlock_bh(&police->tcfp_lock); ret = p->tcfp_result; goto inc_drops; } spin_unlock_bh(&police->tcfp_lock); } inc_overlimits: qstats_overlimit_inc(this_cpu_ptr(police->common.cpu_qstats)); inc_drops: if (ret == TC_ACT_SHOT) qstats_drop_inc(this_cpu_ptr(police->common.cpu_qstats)); end: return ret; } static void tcf_police_cleanup(struct tc_action *a) { struct tcf_police *police = to_police(a); struct tcf_police_params *p; p = rcu_dereference_protected(police->params, 1); if (p) kfree_rcu(p, rcu); } static void tcf_police_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_police *police = to_police(a); struct tcf_t *tm = &police->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_police_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_police *police = to_police(a); struct tcf_police_params *p; struct tc_police opt = { .index = police->tcf_index, .refcnt = refcount_read(&police->tcf_refcnt) - ref, .bindcnt = atomic_read(&police->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&police->tcf_lock); opt.action = police->tcf_action; p = rcu_dereference_protected(police->params, lockdep_is_held(&police->tcf_lock)); opt.mtu = p->tcfp_mtu; opt.burst = PSCHED_NS2TICKS(p->tcfp_burst); if (p->rate_present) { psched_ratecfg_getrate(&opt.rate, &p->rate); if ((p->rate.rate_bytes_ps >= (1ULL << 32)) && nla_put_u64_64bit(skb, TCA_POLICE_RATE64, p->rate.rate_bytes_ps, TCA_POLICE_PAD)) goto nla_put_failure; } if (p->peak_present) { psched_ratecfg_getrate(&opt.peakrate, &p->peak); if ((p->peak.rate_bytes_ps >= (1ULL << 32)) && nla_put_u64_64bit(skb, TCA_POLICE_PEAKRATE64, p->peak.rate_bytes_ps, TCA_POLICE_PAD)) goto nla_put_failure; } if (p->pps_present) { if (nla_put_u64_64bit(skb, TCA_POLICE_PKTRATE64, p->ppsrate.rate_pkts_ps, TCA_POLICE_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(skb, TCA_POLICE_PKTBURST64, PSCHED_NS2TICKS(p->tcfp_pkt_burst), TCA_POLICE_PAD)) goto nla_put_failure; } if (nla_put(skb, TCA_POLICE_TBF, sizeof(opt), &opt)) goto nla_put_failure; if (p->tcfp_result && nla_put_u32(skb, TCA_POLICE_RESULT, p->tcfp_result)) goto nla_put_failure; if (p->tcfp_ewma_rate && nla_put_u32(skb, TCA_POLICE_AVRATE, p->tcfp_ewma_rate)) goto nla_put_failure; tcf_tm_dump(&t, &police->tcf_tm); if (nla_put_64bit(skb, TCA_POLICE_TM, sizeof(t), &t, TCA_POLICE_PAD)) goto nla_put_failure; spin_unlock_bh(&police->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&police->tcf_lock); nlmsg_trim(skb, b); return -1; } static int tcf_police_act_to_flow_act(int tc_act, u32 *extval, struct netlink_ext_ack *extack) { int act_id = -EOPNOTSUPP; if (!TC_ACT_EXT_OPCODE(tc_act)) { if (tc_act == TC_ACT_OK) act_id = FLOW_ACTION_ACCEPT; else if (tc_act == TC_ACT_SHOT) act_id = FLOW_ACTION_DROP; else if (tc_act == TC_ACT_PIPE) act_id = FLOW_ACTION_PIPE; else if (tc_act == TC_ACT_RECLASSIFY) NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform/exceed action is \"reclassify\""); else NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload"); } else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_GOTO_CHAIN)) { act_id = FLOW_ACTION_GOTO; *extval = tc_act & TC_ACT_EXT_VAL_MASK; } else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_JUMP)) { act_id = FLOW_ACTION_JUMP; *extval = tc_act & TC_ACT_EXT_VAL_MASK; } else if (tc_act == TC_ACT_UNSPEC) { act_id = FLOW_ACTION_CONTINUE; } else { NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload"); } return act_id; } static int tcf_police_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; struct tcf_police *police = to_police(act); struct tcf_police_params *p; int act_id; p = rcu_dereference_protected(police->params, lockdep_is_held(&police->tcf_lock)); entry->id = FLOW_ACTION_POLICE; entry->police.burst = tcf_police_burst(act); entry->police.rate_bytes_ps = tcf_police_rate_bytes_ps(act); entry->police.peakrate_bytes_ps = tcf_police_peakrate_bytes_ps(act); entry->police.avrate = tcf_police_tcfp_ewma_rate(act); entry->police.overhead = tcf_police_rate_overhead(act); entry->police.burst_pkt = tcf_police_burst_pkt(act); entry->police.rate_pkt_ps = tcf_police_rate_pkt_ps(act); entry->police.mtu = tcf_police_tcfp_mtu(act); act_id = tcf_police_act_to_flow_act(police->tcf_action, &entry->police.exceed.extval, extack); if (act_id < 0) return act_id; entry->police.exceed.act_id = act_id; act_id = tcf_police_act_to_flow_act(p->tcfp_result, &entry->police.notexceed.extval, extack); if (act_id < 0) return act_id; entry->police.notexceed.act_id = act_id; *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; fl_action->id = FLOW_ACTION_POLICE; } return 0; } MODULE_AUTHOR("Alexey Kuznetsov"); MODULE_DESCRIPTION("Policing actions"); MODULE_LICENSE("GPL"); static struct tc_action_ops act_police_ops = { .kind = "police", .id = TCA_ID_POLICE, .owner = THIS_MODULE, .stats_update = tcf_police_stats_update, .act = tcf_police_act, .dump = tcf_police_dump, .init = tcf_police_init, .cleanup = tcf_police_cleanup, .offload_act_setup = tcf_police_offload_act_setup, .size = sizeof(struct tcf_police), }; MODULE_ALIAS_NET_ACT("police"); static __net_init int police_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_police_ops.net_id); return tc_action_net_init(net, tn, &act_police_ops); } static void __net_exit police_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_police_ops.net_id); } static struct pernet_operations police_net_ops = { .init = police_init_net, .exit_batch = police_exit_net, .id = &act_police_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init police_init_module(void) { return tcf_register_action(&act_police_ops, &police_net_ops); } static void __exit police_cleanup_module(void) { tcf_unregister_action(&act_police_ops, &police_net_ops); } module_init(police_init_module); module_exit(police_cleanup_module);
1 4 6 1 1 5 5 5 5 12 5 17 6 4 13 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2020 Cloudflare Ltd https://cloudflare.com */ #include <linux/skmsg.h> #include <net/sock.h> #include <net/udp.h> #include <net/inet_common.h> #include "udp_impl.h" static struct proto *udpv6_prot_saved __read_mostly; static int sk_udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6) return udpv6_prot_saved->recvmsg(sk, msg, len, flags, addr_len); #endif return udp_prot.recvmsg(sk, msg, len, flags, addr_len); } static bool udp_sk_has_data(struct sock *sk) { return !skb_queue_empty(&udp_sk(sk)->reader_queue) || !skb_queue_empty(&sk->sk_receive_queue); } static bool psock_has_data(struct sk_psock *psock) { return !skb_queue_empty(&psock->ingress_skb) || !sk_psock_queue_empty(psock); } #define udp_msg_has_data(__sk, __psock) \ ({ udp_sk_has_data(__sk) || psock_has_data(__psock); }) static int udp_msg_wait_data(struct sock *sk, struct sk_psock *psock, long timeo) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int ret = 0; if (sk->sk_shutdown & RCV_SHUTDOWN) return 1; if (!timeo) return ret; add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); ret = udp_msg_has_data(sk, psock); if (!ret) { wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); ret = udp_msg_has_data(sk, psock); } sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); return ret; } static int udp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct sk_psock *psock; int copied, ret; if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (!len) return 0; psock = sk_psock_get(sk); if (unlikely(!psock)) return sk_udp_recvmsg(sk, msg, len, flags, addr_len); if (!psock_has_data(psock)) { ret = sk_udp_recvmsg(sk, msg, len, flags, addr_len); goto out; } msg_bytes_ready: copied = sk_msg_recvmsg(sk, psock, msg, len, flags); if (!copied) { long timeo; int data; timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); data = udp_msg_wait_data(sk, psock, timeo); if (data) { if (psock_has_data(psock)) goto msg_bytes_ready; ret = sk_udp_recvmsg(sk, msg, len, flags, addr_len); goto out; } copied = -EAGAIN; } ret = copied; out: sk_psock_put(sk, psock); return ret; } enum { UDP_BPF_IPV4, UDP_BPF_IPV6, UDP_BPF_NUM_PROTS, }; static DEFINE_SPINLOCK(udpv6_prot_lock); static struct proto udp_bpf_prots[UDP_BPF_NUM_PROTS]; static void udp_bpf_rebuild_protos(struct proto *prot, const struct proto *base) { *prot = *base; prot->close = sock_map_close; prot->recvmsg = udp_bpf_recvmsg; prot->sock_is_readable = sk_msg_is_readable; } static void udp_bpf_check_v6_needs_rebuild(struct proto *ops) { if (unlikely(ops != smp_load_acquire(&udpv6_prot_saved))) { spin_lock_bh(&udpv6_prot_lock); if (likely(ops != udpv6_prot_saved)) { udp_bpf_rebuild_protos(&udp_bpf_prots[UDP_BPF_IPV6], ops); smp_store_release(&udpv6_prot_saved, ops); } spin_unlock_bh(&udpv6_prot_lock); } } static int __init udp_bpf_v4_build_proto(void) { udp_bpf_rebuild_protos(&udp_bpf_prots[UDP_BPF_IPV4], &udp_prot); return 0; } late_initcall(udp_bpf_v4_build_proto); int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore) { int family = sk->sk_family == AF_INET ? UDP_BPF_IPV4 : UDP_BPF_IPV6; if (restore) { sk->sk_write_space = psock->saved_write_space; sock_replace_proto(sk, psock->sk_proto); return 0; } if (sk->sk_family == AF_INET6) udp_bpf_check_v6_needs_rebuild(psock->sk_proto); sock_replace_proto(sk, &udp_bpf_prots[family]); return 0; } EXPORT_SYMBOL_GPL(udp_bpf_update_proto);
1063 29 29 28 1 8 8 8 997 997 4 2 2 5 5 5 5 5 4 5 7 4 4 4 1 5 8 8 8 1 8 10 5 2 4 8 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 /* * cgroup_freezer.c - control group freezer subsystem * * Copyright IBM Corporation, 2007 * * Author : Cedric Le Goater <clg@fr.ibm.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ #include <linux/export.h> #include <linux/slab.h> #include <linux/cgroup.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/mutex.h> #include <linux/cpu.h> /* * A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared * for "THAWED". FREEZING_PARENT is set if the parent freezer is FREEZING * for whatever reason. IOW, a cgroup has FREEZING_PARENT set if one of * its ancestors has FREEZING_SELF set. */ enum freezer_state_flags { CGROUP_FREEZER_ONLINE = (1 << 0), /* freezer is fully online */ CGROUP_FREEZING_SELF = (1 << 1), /* this freezer is freezing */ CGROUP_FREEZING_PARENT = (1 << 2), /* the parent freezer is freezing */ CGROUP_FROZEN = (1 << 3), /* this and its descendants frozen */ /* mask for all FREEZING flags */ CGROUP_FREEZING = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT, }; struct freezer { struct cgroup_subsys_state css; unsigned int state; }; static DEFINE_MUTEX(freezer_mutex); static inline struct freezer *css_freezer(struct cgroup_subsys_state *css) { return css ? container_of(css, struct freezer, css) : NULL; } static inline struct freezer *task_freezer(struct task_struct *task) { return css_freezer(task_css(task, freezer_cgrp_id)); } static struct freezer *parent_freezer(struct freezer *freezer) { return css_freezer(freezer->css.parent); } bool cgroup_freezing(struct task_struct *task) { bool ret; unsigned int state; rcu_read_lock(); /* Check if the cgroup is still FREEZING, but not FROZEN. The extra * !FROZEN check is required, because the FREEZING bit is not cleared * when the state FROZEN is reached. */ state = task_freezer(task)->state; ret = (state & CGROUP_FREEZING) && !(state & CGROUP_FROZEN); rcu_read_unlock(); return ret; } static const char *freezer_state_strs(unsigned int state) { if (state & CGROUP_FROZEN) return "FROZEN"; if (state & CGROUP_FREEZING) return "FREEZING"; return "THAWED"; }; static struct cgroup_subsys_state * freezer_css_alloc(struct cgroup_subsys_state *parent_css) { struct freezer *freezer; freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL); if (!freezer) return ERR_PTR(-ENOMEM); return &freezer->css; } /** * freezer_css_online - commit creation of a freezer css * @css: css being created * * We're committing to creation of @css. Mark it online and inherit * parent's freezing state while holding cpus read lock and freezer_mutex. */ static int freezer_css_online(struct cgroup_subsys_state *css) { struct freezer *freezer = css_freezer(css); struct freezer *parent = parent_freezer(freezer); cpus_read_lock(); mutex_lock(&freezer_mutex); freezer->state |= CGROUP_FREEZER_ONLINE; if (parent && (parent->state & CGROUP_FREEZING)) { freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN; static_branch_inc_cpuslocked(&freezer_active); } mutex_unlock(&freezer_mutex); cpus_read_unlock(); return 0; } /** * freezer_css_offline - initiate destruction of a freezer css * @css: css being destroyed * * @css is going away. Mark it dead and decrement freezer_active if * it was holding one. */ static void freezer_css_offline(struct cgroup_subsys_state *css) { struct freezer *freezer = css_freezer(css); cpus_read_lock(); mutex_lock(&freezer_mutex); if (freezer->state & CGROUP_FREEZING) static_branch_dec_cpuslocked(&freezer_active); freezer->state = 0; mutex_unlock(&freezer_mutex); cpus_read_unlock(); } static void freezer_css_free(struct cgroup_subsys_state *css) { kfree(css_freezer(css)); } /* * Tasks can be migrated into a different freezer anytime regardless of its * current state. freezer_attach() is responsible for making new tasks * conform to the current state. * * Freezer state changes and task migration are synchronized via * @freezer->lock. freezer_attach() makes the new tasks conform to the * current state and all following state changes can see the new tasks. */ static void freezer_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct cgroup_subsys_state *new_css; mutex_lock(&freezer_mutex); /* * Make the new tasks conform to the current state of @new_css. * For simplicity, when migrating any task to a FROZEN cgroup, we * revert it to FREEZING and let update_if_frozen() determine the * correct state later. * * Tasks in @tset are on @new_css but may not conform to its * current state before executing the following - !frozen tasks may * be visible in a FROZEN cgroup and frozen tasks in a THAWED one. */ cgroup_taskset_for_each(task, new_css, tset) { struct freezer *freezer = css_freezer(new_css); if (!(freezer->state & CGROUP_FREEZING)) { __thaw_task(task); } else { freeze_task(task); /* clear FROZEN and propagate upwards */ while (freezer && (freezer->state & CGROUP_FROZEN)) { freezer->state &= ~CGROUP_FROZEN; freezer = parent_freezer(freezer); } } } mutex_unlock(&freezer_mutex); } /** * freezer_fork - cgroup post fork callback * @task: a task which has just been forked * * @task has just been created and should conform to the current state of * the cgroup_freezer it belongs to. This function may race against * freezer_attach(). Losing to freezer_attach() means that we don't have * to do anything as freezer_attach() will put @task into the appropriate * state. */ static void freezer_fork(struct task_struct *task) { struct freezer *freezer; /* * The root cgroup is non-freezable, so we can skip locking the * freezer. This is safe regardless of race with task migration. * If we didn't race or won, skipping is obviously the right thing * to do. If we lost and root is the new cgroup, noop is still the * right thing to do. */ if (task_css_is_root(task, freezer_cgrp_id)) return; mutex_lock(&freezer_mutex); rcu_read_lock(); freezer = task_freezer(task); if (freezer->state & CGROUP_FREEZING) freeze_task(task); rcu_read_unlock(); mutex_unlock(&freezer_mutex); } /** * update_if_frozen - update whether a cgroup finished freezing * @css: css of interest * * Once FREEZING is initiated, transition to FROZEN is lazily updated by * calling this function. If the current state is FREEZING but not FROZEN, * this function checks whether all tasks of this cgroup and the descendant * cgroups finished freezing and, if so, sets FROZEN. * * The caller is responsible for grabbing RCU read lock and calling * update_if_frozen() on all descendants prior to invoking this function. * * Task states and freezer state might disagree while tasks are being * migrated into or out of @css, so we can't verify task states against * @freezer state here. See freezer_attach() for details. */ static void update_if_frozen(struct cgroup_subsys_state *css) { struct freezer *freezer = css_freezer(css); struct cgroup_subsys_state *pos; struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&freezer_mutex); if (!(freezer->state & CGROUP_FREEZING) || (freezer->state & CGROUP_FROZEN)) return; /* are all (live) children frozen? */ rcu_read_lock(); css_for_each_child(pos, css) { struct freezer *child = css_freezer(pos); if ((child->state & CGROUP_FREEZER_ONLINE) && !(child->state & CGROUP_FROZEN)) { rcu_read_unlock(); return; } } rcu_read_unlock(); /* are all tasks frozen? */ css_task_iter_start(css, 0, &it); while ((task = css_task_iter_next(&it))) { if (freezing(task) && !frozen(task)) goto out_iter_end; } freezer->state |= CGROUP_FROZEN; out_iter_end: css_task_iter_end(&it); } static int freezer_read(struct seq_file *m, void *v) { struct cgroup_subsys_state *css = seq_css(m), *pos; mutex_lock(&freezer_mutex); rcu_read_lock(); /* update states bottom-up */ css_for_each_descendant_post(pos, css) { if (!css_tryget_online(pos)) continue; rcu_read_unlock(); update_if_frozen(pos); rcu_read_lock(); css_put(pos); } rcu_read_unlock(); mutex_unlock(&freezer_mutex); seq_puts(m, freezer_state_strs(css_freezer(css)->state)); seq_putc(m, '\n'); return 0; } static void freeze_cgroup(struct freezer *freezer) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&freezer->css, 0, &it); while ((task = css_task_iter_next(&it))) freeze_task(task); css_task_iter_end(&it); } static void unfreeze_cgroup(struct freezer *freezer) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&freezer->css, 0, &it); while ((task = css_task_iter_next(&it))) __thaw_task(task); css_task_iter_end(&it); } /** * freezer_apply_state - apply state change to a single cgroup_freezer * @freezer: freezer to apply state change to * @freeze: whether to freeze or unfreeze * @state: CGROUP_FREEZING_* flag to set or clear * * Set or clear @state on @cgroup according to @freeze, and perform * freezing or thawing as necessary. */ static void freezer_apply_state(struct freezer *freezer, bool freeze, unsigned int state) { /* also synchronizes against task migration, see freezer_attach() */ lockdep_assert_held(&freezer_mutex); if (!(freezer->state & CGROUP_FREEZER_ONLINE)) return; if (freeze) { if (!(freezer->state & CGROUP_FREEZING)) static_branch_inc_cpuslocked(&freezer_active); freezer->state |= state; freeze_cgroup(freezer); } else { bool was_freezing = freezer->state & CGROUP_FREEZING; freezer->state &= ~state; if (!(freezer->state & CGROUP_FREEZING)) { freezer->state &= ~CGROUP_FROZEN; if (was_freezing) static_branch_dec_cpuslocked(&freezer_active); unfreeze_cgroup(freezer); } } } /** * freezer_change_state - change the freezing state of a cgroup_freezer * @freezer: freezer of interest * @freeze: whether to freeze or thaw * * Freeze or thaw @freezer according to @freeze. The operations are * recursive - all descendants of @freezer will be affected. */ static void freezer_change_state(struct freezer *freezer, bool freeze) { struct cgroup_subsys_state *pos; cpus_read_lock(); /* * Update all its descendants in pre-order traversal. Each * descendant will try to inherit its parent's FREEZING state as * CGROUP_FREEZING_PARENT. */ mutex_lock(&freezer_mutex); rcu_read_lock(); css_for_each_descendant_pre(pos, &freezer->css) { struct freezer *pos_f = css_freezer(pos); struct freezer *parent = parent_freezer(pos_f); if (!css_tryget_online(pos)) continue; rcu_read_unlock(); if (pos_f == freezer) freezer_apply_state(pos_f, freeze, CGROUP_FREEZING_SELF); else freezer_apply_state(pos_f, parent->state & CGROUP_FREEZING, CGROUP_FREEZING_PARENT); rcu_read_lock(); css_put(pos); } rcu_read_unlock(); mutex_unlock(&freezer_mutex); cpus_read_unlock(); } static ssize_t freezer_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { bool freeze; buf = strstrip(buf); if (strcmp(buf, freezer_state_strs(0)) == 0) freeze = false; else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0) { pr_info_once("Freezing with imperfect legacy cgroup freezer. " "See cgroup.freeze of cgroup v2\n"); freeze = true; } else return -EINVAL; freezer_change_state(css_freezer(of_css(of)), freeze); return nbytes; } static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct freezer *freezer = css_freezer(css); return (bool)(freezer->state & CGROUP_FREEZING_SELF); } static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct freezer *freezer = css_freezer(css); return (bool)(freezer->state & CGROUP_FREEZING_PARENT); } static struct cftype files[] = { { .name = "state", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = freezer_read, .write = freezer_write, }, { .name = "self_freezing", .flags = CFTYPE_NOT_ON_ROOT, .read_u64 = freezer_self_freezing_read, }, { .name = "parent_freezing", .flags = CFTYPE_NOT_ON_ROOT, .read_u64 = freezer_parent_freezing_read, }, { } /* terminate */ }; struct cgroup_subsys freezer_cgrp_subsys = { .css_alloc = freezer_css_alloc, .css_online = freezer_css_online, .css_offline = freezer_css_offline, .css_free = freezer_css_free, .attach = freezer_attach, .fork = freezer_fork, .legacy_cftypes = files, };
12 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HW_BREAKPOINT_H #define _LINUX_HW_BREAKPOINT_H #include <linux/perf_event.h> #include <uapi/linux/hw_breakpoint.h> #ifdef CONFIG_HAVE_HW_BREAKPOINT enum bp_type_idx { TYPE_INST = 0, #if defined(CONFIG_HAVE_MIXED_BREAKPOINTS_REGS) TYPE_DATA = 0, #else TYPE_DATA = 1, #endif TYPE_MAX }; extern int __init init_hw_breakpoint(void); static inline void hw_breakpoint_init(struct perf_event_attr *attr) { memset(attr, 0, sizeof(*attr)); attr->type = PERF_TYPE_BREAKPOINT; attr->size = sizeof(*attr); /* * As it's for in-kernel or ptrace use, we want it to be pinned * and to call its callback every hits. */ attr->pinned = 1; attr->sample_period = 1; } static inline void ptrace_breakpoint_init(struct perf_event_attr *attr) { hw_breakpoint_init(attr); attr->exclude_kernel = 1; } static inline unsigned long hw_breakpoint_addr(struct perf_event *bp) { return bp->attr.bp_addr; } static inline int hw_breakpoint_type(struct perf_event *bp) { return bp->attr.bp_type; } static inline unsigned long hw_breakpoint_len(struct perf_event *bp) { return bp->attr.bp_len; } extern struct perf_event * register_user_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context, struct task_struct *tsk); /* FIXME: only change from the attr, and don't unregister */ extern int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr); extern int modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr, bool check); /* * Kernel breakpoints are not associated with any particular thread. */ extern struct perf_event * register_wide_hw_breakpoint_cpu(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context, int cpu); extern struct perf_event * __percpu * register_wide_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context); extern int register_perf_hw_breakpoint(struct perf_event *bp); extern void unregister_hw_breakpoint(struct perf_event *bp); extern void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events); extern bool hw_breakpoint_is_used(void); extern int dbg_reserve_bp_slot(struct perf_event *bp); extern int dbg_release_bp_slot(struct perf_event *bp); extern int reserve_bp_slot(struct perf_event *bp); extern void release_bp_slot(struct perf_event *bp); extern void flush_ptrace_hw_breakpoint(struct task_struct *tsk); static inline struct arch_hw_breakpoint *counter_arch_bp(struct perf_event *bp) { return &bp->hw.info; } #else /* !CONFIG_HAVE_HW_BREAKPOINT */ static inline int __init init_hw_breakpoint(void) { return 0; } static inline struct perf_event * register_user_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context, struct task_struct *tsk) { return NULL; } static inline int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) { return -ENOSYS; } static inline int modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr, bool check) { return -ENOSYS; } static inline struct perf_event * register_wide_hw_breakpoint_cpu(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context, int cpu) { return NULL; } static inline struct perf_event * __percpu * register_wide_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context) { return NULL; } static inline int register_perf_hw_breakpoint(struct perf_event *bp) { return -ENOSYS; } static inline void unregister_hw_breakpoint(struct perf_event *bp) { } static inline void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events) { } static inline bool hw_breakpoint_is_used(void) { return false; } static inline int reserve_bp_slot(struct perf_event *bp) {return -ENOSYS; } static inline void release_bp_slot(struct perf_event *bp) { } static inline void flush_ptrace_hw_breakpoint(struct task_struct *tsk) { } static inline struct arch_hw_breakpoint *counter_arch_bp(struct perf_event *bp) { return NULL; } #endif /* CONFIG_HAVE_HW_BREAKPOINT */ #endif /* _LINUX_HW_BREAKPOINT_H */
12717 12714 11462 1323 321 51 11493 208 113 11601 346 30 4 5 23 4021 4005 15 2 4021 8082 987 12623 221 12505 71 5 10 7 7 56 8 5175 5375 11901 84 135 4 138 12562 12571 167 265 554 181 557 550 12313 1585 4975 12502 6243 12562 12583 43 6279 12579 584 12549 3998 8206 8599 7853 1189 12462 12473 12489 48 8704 184 12425 12231 327 327 327 432 39 12417 382 702 12419 12417 12190 10874 3011 702 5 54 58 12015 35 11991 4 11019 1 11974 54 11953 11949 34 157 6 24 131 9339 10656 2741 162 8692 36 10668 10 9138 3705 1 5805 5668 5665 5663 478 5712 1 5705 3 2 5704 454 394 1 394 77 1507 866 1189 1085 44 44 1126 13 5 1 1 1 1 1 1 19 19 70 20 64 28 64 21 21 21 7 16 565 564 563 3 6 564 48 563 6 568 570 2 43 14 43 123 1 122 8620 2 6022 1 6015 4890 9065 1 7 1 442 443 2920 1 26 2309 537 192 24 1647 1646 2 1373 51 39 10 116 10708 4663 8990 754 4 6 123 1001 1105 800 38 3679 2 6 1 3677 3582 120 2813 12031 1 2 13 335 1864 2 327 1868 1864 279 192 1378 1085 4 670 1558 14 826 1 743 730 1000 394 1348 2 483 1823 433 10305 10311 2922 1949 9036 9 8605 2358 437 1786 675 236 176 70 207 207 4 32 196 173 7 16 184 4 10 9188 9045 250 117 236 196 340 1 336 4 8272 1150 78 8231 23 8622 2814 6544 1146 5920 3432 6394 125 125 794 2334 12474 3066 5440 454 12042 526 2337 10652 345 8841 11193 505 11854 65 11865 1046 10672 996 1370 10655 4 27 12477 39 12266 523 12467 12472 233 187 48 5273 9223 9216 9219 166 272 789 13 800 551 230 9716 2 2 25 4 7479 8 273 257 24 7815 7787 48 2116 7480 6423 230 6432 1867 8081 477 7679 7665 25 7667 1897 6469 7678 3 168 2 1674 2032 290 1762 1759 168 3 170 170 1673 1761 3497 3499 48 48 1071 1074 1073 1057 864 862 3 861 3 3 3 647 15 633 157 473 629 630 124 123 1 123 5801 5807 21 1 534 534 3 1 531 3 241 320 526 1236 1238 1238 102 36 48 3 52 3 194 194 102 1676 61 1 60 14 53 67 26 48 2385 2 2385 6207 4064 57 1951 3992 66 2420 286 6173 17 6169 153 14 937 28 3091 3100 11 11 2261 980 2355 933 2258 982 43 951 15 3094 3038 76 2441 816 7 812 2978 1 1 1278 5465 28 6091 354 6 4 318 16 6424 19 4892 914 2262 919 75 872 2407 989 2261 3108 3107 2427 749 2969 989 2260 933 2362 216 2431 749 5879 240 5560 1696 749 18 6180 5754 5326 1155 16 1138 6168 749 5600 181 392 6072 5769 153 6110 5997 175 87 1 1 86 6 83 42 16 33 97 13 44 49 67 44 43 6728 97 67 2435 6565 6187 3742 5939 6584 6586 6521 87 6534 6539 186 185 185 185 2 184 185 185 1361 210 5 155 1115 12 17 149 98 98 103 496 93 93 165 2 163 2 160 160 65 2 8 153 221 2 223 223 68 160 159 159 224 102 121 433 2 1 430 429 76 393 393 519 164 433 80 393 432 516 352 181 121 4 118 117 22 99 23 99 198 76 1 1 1 2 10 4 122 131 198 139 151 2 1 148 1 146 20 7 141 141 200 67 1 1 43 3 124 1 124 133 134 200 1 113 1 65 46 152 393 2 1 19 377 468 59 28 393 467 467 333 135 44 1 1 42 41 160 7 115 1 44 45 45 161 161 55 106 273 4 4 135 95 43 2 1 175 43 50 79 14 262 60 50 70 46 2 10 147 263 263 259 107 158 177 85 67 139 56 14 70 171 35 263 141 130 70 171 35 394 3 4 84 22 1 1 1 1 194 103 45 6 9 2 234 22 25 115 1 170 1 3 272 291 292 310 394 394 173 19 201 23 40 17 57 68 9 3 27 31 6 19 7 25 25 124 68 1 72 109 124 15 109 109 109 59 59 1 58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/namei.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * Some corrections by tytso. */ /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname * lookup logic. */ /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. */ #include <linux/init.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/wordpart.h> #include <linux/fs.h> #include <linux/filelock.h> #include <linux/namei.h> #include <linux/pagemap.h> #include <linux/sched/mm.h> #include <linux/fsnotify.h> #include <linux/personality.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/mount.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/file.h> #include <linux/fcntl.h> #include <linux/device_cgroup.h> #include <linux/fs_struct.h> #include <linux/posix_acl.h> #include <linux/hash.h> #include <linux/bitops.h> #include <linux/init_task.h> #include <linux/uaccess.h> #include "internal.h" #include "mount.h" /* [Feb-1997 T. Schoebel-Theuer] * Fundamental changes in the pathname lookup mechanisms (namei) * were necessary because of omirr. The reason is that omirr needs * to know the _real_ pathname, not the user-supplied one, in case * of symlinks (and also when transname replacements occur). * * The new code replaces the old recursive symlink resolution with * an iterative one (in case of non-nested symlink chains). It does * this with calls to <fs>_follow_link(). * As a side effect, dir_namei(), _namei() and follow_link() are now * replaced with a single function lookup_dentry() that can handle all * the special cases of the former code. * * With the new dcache, the pathname is stored at each inode, at least as * long as the refcount of the inode is positive. As a side effect, the * size of the dcache depends on the inode cache and thus is dynamic. * * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink * resolution to correspond with current state of the code. * * Note that the symlink resolution is not *completely* iterative. * There is still a significant amount of tail- and mid- recursion in * the algorithm. Also, note that <fs>_readlink() is not used in * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() * may return different results than <fs>_follow_link(). Many virtual * filesystems (including /proc) exhibit this behavior. */ /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL * and the name already exists in form of a symlink, try to create the new * name indicated by the symlink. The old code always complained that the * name already exists, due to not following the symlink even if its target * is nonexistent. The new semantics affects also mknod() and link() when * the name is a symlink pointing to a non-existent name. * * I don't know which semantics is the right one, since I have no access * to standards. But I found by trial that HP-UX 9.0 has the full "new" * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the * "old" one. Personally, I think the new semantics is much more logical. * Note that "ln old new" where "new" is a symlink pointing to a non-existing * file does succeed in both HP-UX and SunOs, but not in Solaris * and in the old Linux semantics. */ /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink * semantics. See the comments in "open_namei" and "do_link" below. * * [10-Sep-98 Alan Modra] Another symlink change. */ /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: * inside the path - always follow. * in the last component in creation/removal/renaming - never follow. * if LOOKUP_FOLLOW passed - follow. * if the pathname has trailing slashes - follow. * otherwise - don't follow. * (applied in that order). * * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT * restored for 2.4. This is the last surviving part of old 4.2BSD bug. * During the 2.4 we need to fix the userland stuff depending on it - * hopefully we will be able to get rid of that wart in 2.5. So far only * XEmacs seems to be relying on it... */ /* * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives * any extra contention... */ /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). * PATH_MAX includes the nul terminator --RR. */ #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) static inline void initname(struct filename *name, const char __user *uptr) { name->uptr = uptr; name->aname = NULL; atomic_set(&name->refcnt, 1); } struct filename * getname_flags(const char __user *filename, int flags) { struct filename *result; char *kname; int len; result = audit_reusename(filename); if (result) return result; result = __getname(); if (unlikely(!result)) return ERR_PTR(-ENOMEM); /* * First, try to embed the struct filename inside the names_cache * allocation */ kname = (char *)result->iname; result->name = kname; len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); /* * Handle both empty path and copy failure in one go. */ if (unlikely(len <= 0)) { if (unlikely(len < 0)) { __putname(result); return ERR_PTR(len); } /* The empty path is special. */ if (!(flags & LOOKUP_EMPTY)) { __putname(result); return ERR_PTR(-ENOENT); } } /* * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a * separate struct filename so we can dedicate the entire * names_cache allocation for the pathname, and re-do the copy from * userland. */ if (unlikely(len == EMBEDDED_NAME_MAX)) { const size_t size = offsetof(struct filename, iname[1]); kname = (char *)result; /* * size is chosen that way we to guarantee that * result->iname[0] is within the same object and that * kname can't be equal to result->iname, no matter what. */ result = kzalloc(size, GFP_KERNEL); if (unlikely(!result)) { __putname(kname); return ERR_PTR(-ENOMEM); } result->name = kname; len = strncpy_from_user(kname, filename, PATH_MAX); if (unlikely(len < 0)) { __putname(kname); kfree(result); return ERR_PTR(len); } /* The empty path is special. */ if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { __putname(kname); kfree(result); return ERR_PTR(-ENOENT); } if (unlikely(len == PATH_MAX)) { __putname(kname); kfree(result); return ERR_PTR(-ENAMETOOLONG); } } initname(result, filename); audit_getname(result); return result; } struct filename *getname_uflags(const char __user *filename, int uflags) { int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; return getname_flags(filename, flags); } struct filename *__getname_maybe_null(const char __user *pathname) { struct filename *name; char c; /* try to save on allocations; loss on um, though */ if (get_user(c, pathname)) return ERR_PTR(-EFAULT); if (!c) return NULL; name = getname_flags(pathname, LOOKUP_EMPTY); if (!IS_ERR(name) && !(name->name[0])) { putname(name); name = NULL; } return name; } struct filename *getname_kernel(const char * filename) { struct filename *result; int len = strlen(filename) + 1; result = __getname(); if (unlikely(!result)) return ERR_PTR(-ENOMEM); if (len <= EMBEDDED_NAME_MAX) { result->name = (char *)result->iname; } else if (len <= PATH_MAX) { const size_t size = offsetof(struct filename, iname[1]); struct filename *tmp; tmp = kmalloc(size, GFP_KERNEL); if (unlikely(!tmp)) { __putname(result); return ERR_PTR(-ENOMEM); } tmp->name = (char *)result; result = tmp; } else { __putname(result); return ERR_PTR(-ENAMETOOLONG); } memcpy((char *)result->name, filename, len); initname(result, NULL); audit_getname(result); return result; } EXPORT_SYMBOL(getname_kernel); void putname(struct filename *name) { int refcnt; if (IS_ERR_OR_NULL(name)) return; refcnt = atomic_read(&name->refcnt); if (refcnt != 1) { if (WARN_ON_ONCE(!refcnt)) return; if (!atomic_dec_and_test(&name->refcnt)) return; } if (name->name != name->iname) { __putname(name->name); kfree(name); } else __putname(name); } EXPORT_SYMBOL(putname); /** * check_acl - perform ACL permission checking * @idmap: idmap of the mount the inode was found from * @inode: inode to check permissions on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) * * This function performs the ACL permission checking. Since this function * retrieve POSIX acls it needs to know whether it is called from a blocking or * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ static int check_acl(struct mnt_idmap *idmap, struct inode *inode, int mask) { #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *acl; if (mask & MAY_NOT_BLOCK) { acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); if (!acl) return -EAGAIN; /* no ->get_inode_acl() calls in RCU mode... */ if (is_uncached_acl(acl)) return -ECHILD; return posix_acl_permission(idmap, inode, acl, mask); } acl = get_inode_acl(inode, ACL_TYPE_ACCESS); if (IS_ERR(acl)) return PTR_ERR(acl); if (acl) { int error = posix_acl_permission(idmap, inode, acl, mask); posix_acl_release(acl); return error; } #endif return -EAGAIN; } /* * Very quick optimistic "we know we have no ACL's" check. * * Note that this is purely for ACL_TYPE_ACCESS, and purely * for the "we have cached that there are no ACLs" case. * * If this returns true, we know there are no ACLs. But if * it returns false, we might still not have ACLs (it could * be the is_uncached_acl() case). */ static inline bool no_acl_inode(struct inode *inode) { #ifdef CONFIG_FS_POSIX_ACL return likely(!READ_ONCE(inode->i_acl)); #else return true; #endif } /** * acl_permission_check - perform basic UNIX permission checking * @idmap: idmap of the mount the inode was found from * @inode: inode to check permissions on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) * * This function performs the basic UNIX permission checking. Since this * function may retrieve POSIX acls it needs to know whether it is called from a * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ static int acl_permission_check(struct mnt_idmap *idmap, struct inode *inode, int mask) { unsigned int mode = inode->i_mode; vfsuid_t vfsuid; /* * Common cheap case: everybody has the requested * rights, and there are no ACLs to check. No need * to do any owner/group checks in that case. * * - 'mask&7' is the requested permission bit set * - multiplying by 0111 spreads them out to all of ugo * - '& ~mode' looks for missing inode permission bits * - the '!' is for "no missing permissions" * * After that, we just need to check that there are no * ACL's on the inode - do the 'IS_POSIXACL()' check last * because it will dereference the ->i_sb pointer and we * want to avoid that if at all possible. */ if (!((mask & 7) * 0111 & ~mode)) { if (no_acl_inode(inode)) return 0; if (!IS_POSIXACL(inode)) return 0; } /* Are we the owner? If so, ACL's don't matter */ vfsuid = i_uid_into_vfsuid(idmap, inode); if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { mask &= 7; mode >>= 6; return (mask & ~mode) ? -EACCES : 0; } /* Do we have ACL's? */ if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { int error = check_acl(idmap, inode, mask); if (error != -EAGAIN) return error; } /* Only RWX matters for group/other mode bits */ mask &= 7; /* * Are the group permissions different from * the other permissions in the bits we care * about? Need to check group ownership if so. */ if (mask & (mode ^ (mode >> 3))) { vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); if (vfsgid_in_group_p(vfsgid)) mode >>= 3; } /* Bits in 'mode' clear that we require? */ return (mask & ~mode) ? -EACCES : 0; } /** * generic_permission - check for access rights on a Posix-like filesystem * @idmap: idmap of the mount the inode was found from * @inode: inode to check access rights for * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, * %MAY_NOT_BLOCK ...) * * Used to check for read/write/execute permissions on a file. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things. * * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk * request cannot be satisfied (eg. requires blocking or too much complexity). * It would then be called again in ref-walk mode. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int generic_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { int ret; /* * Do the basic permission checks. */ ret = acl_permission_check(idmap, inode, mask); if (ret != -EACCES) return ret; if (S_ISDIR(inode->i_mode)) { /* DACs are overridable for directories */ if (!(mask & MAY_WRITE)) if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_READ_SEARCH)) return 0; if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_OVERRIDE)) return 0; return -EACCES; } /* * Searching includes executable on directories, else just read. */ mask &= MAY_READ | MAY_WRITE | MAY_EXEC; if (mask == MAY_READ) if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_READ_SEARCH)) return 0; /* * Read/write DACs are always overridable. * Executable DACs are overridable when there is * at least one exec bit set. */ if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_OVERRIDE)) return 0; return -EACCES; } EXPORT_SYMBOL(generic_permission); /** * do_inode_permission - UNIX permission checking * @idmap: idmap of the mount the inode was found from * @inode: inode to check permissions on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) * * We _really_ want to just do "generic_permission()" without * even looking at the inode->i_op values. So we keep a cache * flag in inode->i_opflags, that says "this has not special * permission function, use the fast case". */ static inline int do_inode_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { if (likely(inode->i_op->permission)) return inode->i_op->permission(idmap, inode, mask); /* This gets set once for the inode lifetime */ spin_lock(&inode->i_lock); inode->i_opflags |= IOP_FASTPERM; spin_unlock(&inode->i_lock); } return generic_permission(idmap, inode, mask); } /** * sb_permission - Check superblock-level permissions * @sb: Superblock of inode to check permission on * @inode: Inode to check permission on * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Separate out file-system wide checks from inode-specific permission checks. */ static int sb_permission(struct super_block *sb, struct inode *inode, int mask) { if (unlikely(mask & MAY_WRITE)) { umode_t mode = inode->i_mode; /* Nobody gets write access to a read-only fs. */ if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) return -EROFS; } return 0; } /** * inode_permission - Check for access rights to a given inode * @idmap: idmap of the mount the inode was found from * @inode: Inode to check permission on * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Check for read/write/execute permissions on an inode. We use fs[ug]id for * this, letting us set arbitrary permissions for filesystem access without * changing the "normal" UIDs which are used for other things. * * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. */ int inode_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { int retval; retval = sb_permission(inode->i_sb, inode, mask); if (retval) return retval; if (unlikely(mask & MAY_WRITE)) { /* * Nobody gets write access to an immutable file. */ if (IS_IMMUTABLE(inode)) return -EPERM; /* * Updating mtime will likely cause i_uid and i_gid to be * written back improperly if their true value is unknown * to the vfs. */ if (HAS_UNMAPPED_ID(idmap, inode)) return -EACCES; } retval = do_inode_permission(idmap, inode, mask); if (retval) return retval; retval = devcgroup_inode_permission(inode, mask); if (retval) return retval; return security_inode_permission(inode, mask); } EXPORT_SYMBOL(inode_permission); /** * path_get - get a reference to a path * @path: path to get the reference to * * Given a path increment the reference count to the dentry and the vfsmount. */ void path_get(const struct path *path) { mntget(path->mnt); dget(path->dentry); } EXPORT_SYMBOL(path_get); /** * path_put - put a reference to a path * @path: path to put the reference to * * Given a path decrement the reference count to the dentry and the vfsmount. */ void path_put(const struct path *path) { dput(path->dentry); mntput(path->mnt); } EXPORT_SYMBOL(path_put); #define EMBEDDED_LEVELS 2 struct nameidata { struct path path; struct qstr last; struct path root; struct inode *inode; /* path.dentry.d_inode */ unsigned int flags, state; unsigned seq, next_seq, m_seq, r_seq; int last_type; unsigned depth; int total_link_count; struct saved { struct path link; struct delayed_call done; const char *name; unsigned seq; } *stack, internal[EMBEDDED_LEVELS]; struct filename *name; const char *pathname; struct nameidata *saved; unsigned root_seq; int dfd; vfsuid_t dir_vfsuid; umode_t dir_mode; } __randomize_layout; #define ND_ROOT_PRESET 1 #define ND_ROOT_GRABBED 2 #define ND_JUMPED 4 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) { struct nameidata *old = current->nameidata; p->stack = p->internal; p->depth = 0; p->dfd = dfd; p->name = name; p->pathname = likely(name) ? name->name : ""; p->path.mnt = NULL; p->path.dentry = NULL; p->total_link_count = old ? old->total_link_count : 0; p->saved = old; current->nameidata = p; } static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, const struct path *root) { __set_nameidata(p, dfd, name); p->state = 0; if (unlikely(root)) { p->state = ND_ROOT_PRESET; p->root = *root; } } static void restore_nameidata(void) { struct nameidata *now = current->nameidata, *old = now->saved; current->nameidata = old; if (old) old->total_link_count = now->total_link_count; if (now->stack != now->internal) kfree(now->stack); } static bool nd_alloc_stack(struct nameidata *nd) { struct saved *p; p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); if (unlikely(!p)) return false; memcpy(p, nd->internal, sizeof(nd->internal)); nd->stack = p; return true; } /** * path_connected - Verify that a dentry is below mnt.mnt_root * @mnt: The mountpoint to check. * @dentry: The dentry to check. * * Rename can sometimes move a file or directory outside of a bind * mount, path_connected allows those cases to be detected. */ static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) { struct super_block *sb = mnt->mnt_sb; /* Bind mounts can have disconnected paths */ if (mnt->mnt_root == sb->s_root) return true; return is_subdir(dentry, mnt->mnt_root); } static void drop_links(struct nameidata *nd) { int i = nd->depth; while (i--) { struct saved *last = nd->stack + i; do_delayed_call(&last->done); clear_delayed_call(&last->done); } } static void leave_rcu(struct nameidata *nd) { nd->flags &= ~LOOKUP_RCU; nd->seq = nd->next_seq = 0; rcu_read_unlock(); } static void terminate_walk(struct nameidata *nd) { drop_links(nd); if (!(nd->flags & LOOKUP_RCU)) { int i; path_put(&nd->path); for (i = 0; i < nd->depth; i++) path_put(&nd->stack[i].link); if (nd->state & ND_ROOT_GRABBED) { path_put(&nd->root); nd->state &= ~ND_ROOT_GRABBED; } } else { leave_rcu(nd); } nd->depth = 0; nd->path.mnt = NULL; nd->path.dentry = NULL; } /* path_put is needed afterwards regardless of success or failure */ static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) { int res = __legitimize_mnt(path->mnt, mseq); if (unlikely(res)) { if (res > 0) path->mnt = NULL; path->dentry = NULL; return false; } if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { path->dentry = NULL; return false; } return !read_seqcount_retry(&path->dentry->d_seq, seq); } static inline bool legitimize_path(struct nameidata *nd, struct path *path, unsigned seq) { return __legitimize_path(path, seq, nd->m_seq); } static bool legitimize_links(struct nameidata *nd) { int i; if (unlikely(nd->flags & LOOKUP_CACHED)) { drop_links(nd); nd->depth = 0; return false; } for (i = 0; i < nd->depth; i++) { struct saved *last = nd->stack + i; if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { drop_links(nd); nd->depth = i + 1; return false; } } return true; } static bool legitimize_root(struct nameidata *nd) { /* Nothing to do if nd->root is zero or is managed by the VFS user. */ if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) return true; nd->state |= ND_ROOT_GRABBED; return legitimize_path(nd, &nd->root, nd->root_seq); } /* * Path walking has 2 modes, rcu-walk and ref-walk (see * Documentation/filesystems/path-lookup.txt). In situations when we can't * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab * normal reference counts on dentries and vfsmounts to transition to ref-walk * mode. Refcounts are grabbed at the last known good point before rcu-walk * got stuck, so ref-walk may continue from there. If this is not successful * (eg. a seqcount has changed), then failure is returned and it's up to caller * to restart the path walk from the beginning in ref-walk mode. */ /** * try_to_unlazy - try to switch to ref-walk mode. * @nd: nameidata pathwalk data * Returns: true on success, false on failure * * try_to_unlazy attempts to legitimize the current nd->path and nd->root * for ref-walk mode. * Must be called from rcu-walk context. * Nothing should touch nameidata between try_to_unlazy() failure and * terminate_walk(). */ static bool try_to_unlazy(struct nameidata *nd) { struct dentry *parent = nd->path.dentry; BUG_ON(!(nd->flags & LOOKUP_RCU)); if (unlikely(!legitimize_links(nd))) goto out1; if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) goto out; if (unlikely(!legitimize_root(nd))) goto out; leave_rcu(nd); BUG_ON(nd->inode != parent->d_inode); return true; out1: nd->path.mnt = NULL; nd->path.dentry = NULL; out: leave_rcu(nd); return false; } /** * try_to_unlazy_next - try to switch to ref-walk mode. * @nd: nameidata pathwalk data * @dentry: next dentry to step into * Returns: true on success, false on failure * * Similar to try_to_unlazy(), but here we have the next dentry already * picked by rcu-walk and want to legitimize that in addition to the current * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. * Nothing should touch nameidata between try_to_unlazy_next() failure and * terminate_walk(). */ static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) { int res; BUG_ON(!(nd->flags & LOOKUP_RCU)); if (unlikely(!legitimize_links(nd))) goto out2; res = __legitimize_mnt(nd->path.mnt, nd->m_seq); if (unlikely(res)) { if (res > 0) goto out2; goto out1; } if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) goto out1; /* * We need to move both the parent and the dentry from the RCU domain * to be properly refcounted. And the sequence number in the dentry * validates *both* dentry counters, since we checked the sequence * number of the parent after we got the child sequence number. So we * know the parent must still be valid if the child sequence number is */ if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) goto out; if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) goto out_dput; /* * Sequence counts matched. Now make sure that the root is * still valid and get it if required. */ if (unlikely(!legitimize_root(nd))) goto out_dput; leave_rcu(nd); return true; out2: nd->path.mnt = NULL; out1: nd->path.dentry = NULL; out: leave_rcu(nd); return false; out_dput: leave_rcu(nd); dput(dentry); return false; } static inline int d_revalidate(struct inode *dir, const struct qstr *name, struct dentry *dentry, unsigned int flags) { if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) return dentry->d_op->d_revalidate(dir, name, dentry, flags); else return 1; } /** * complete_walk - successful completion of path walk * @nd: pointer nameidata * * If we had been in RCU mode, drop out of it and legitimize nd->path. * Revalidate the final result, unless we'd already done that during * the path walk or the filesystem doesn't ask for it. Return 0 on * success, -error on failure. In case of failure caller does not * need to drop nd->path. */ static int complete_walk(struct nameidata *nd) { struct dentry *dentry = nd->path.dentry; int status; if (nd->flags & LOOKUP_RCU) { /* * We don't want to zero nd->root for scoped-lookups or * externally-managed nd->root. */ if (!(nd->state & ND_ROOT_PRESET)) if (!(nd->flags & LOOKUP_IS_SCOPED)) nd->root.mnt = NULL; nd->flags &= ~LOOKUP_CACHED; if (!try_to_unlazy(nd)) return -ECHILD; } if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { /* * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't * ever step outside the root during lookup" and should already * be guaranteed by the rest of namei, we want to avoid a namei * BUG resulting in userspace being given a path that was not * scoped within the root at some point during the lookup. * * So, do a final sanity-check to make sure that in the * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) * we won't silently return an fd completely outside of the * requested root to userspace. * * Userspace could move the path outside the root after this * check, but as discussed elsewhere this is not a concern (the * resolved file was inside the root at some point). */ if (!path_is_under(&nd->path, &nd->root)) return -EXDEV; } if (likely(!(nd->state & ND_JUMPED))) return 0; if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) return 0; status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); if (status > 0) return 0; if (!status) status = -ESTALE; return status; } static int set_root(struct nameidata *nd) { struct fs_struct *fs = current->fs; /* * Jumping to the real root in a scoped-lookup is a BUG in namei, but we * still have to ensure it doesn't happen because it will cause a breakout * from the dirfd. */ if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) return -ENOTRECOVERABLE; if (nd->flags & LOOKUP_RCU) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); nd->root = fs->root; nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); } while (read_seqcount_retry(&fs->seq, seq)); } else { get_fs_root(fs, &nd->root); nd->state |= ND_ROOT_GRABBED; } return 0; } static int nd_jump_root(struct nameidata *nd) { if (unlikely(nd->flags & LOOKUP_BENEATH)) return -EXDEV; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { /* Absolute path arguments to path_init() are allowed. */ if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) return -EXDEV; } if (!nd->root.mnt) { int error = set_root(nd); if (error) return error; } if (nd->flags & LOOKUP_RCU) { struct dentry *d; nd->path = nd->root; d = nd->path.dentry; nd->inode = d->d_inode; nd->seq = nd->root_seq; if (read_seqcount_retry(&d->d_seq, nd->seq)) return -ECHILD; } else { path_put(&nd->path); nd->path = nd->root; path_get(&nd->path); nd->inode = nd->path.dentry->d_inode; } nd->state |= ND_JUMPED; return 0; } /* * Helper to directly jump to a known parsed path from ->get_link, * caller must have taken a reference to path beforehand. */ int nd_jump_link(const struct path *path) { int error = -ELOOP; struct nameidata *nd = current->nameidata; if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) goto err; error = -EXDEV; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { if (nd->path.mnt != path->mnt) goto err; } /* Not currently safe for scoped-lookups. */ if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) goto err; path_put(&nd->path); nd->path = *path; nd->inode = nd->path.dentry->d_inode; nd->state |= ND_JUMPED; return 0; err: path_put(path); return error; } static inline void put_link(struct nameidata *nd) { struct saved *last = nd->stack + --nd->depth; do_delayed_call(&last->done); if (!(nd->flags & LOOKUP_RCU)) path_put(&last->link); } static int sysctl_protected_symlinks __read_mostly; static int sysctl_protected_hardlinks __read_mostly; static int sysctl_protected_fifos __read_mostly; static int sysctl_protected_regular __read_mostly; #ifdef CONFIG_SYSCTL static const struct ctl_table namei_sysctls[] = { { .procname = "protected_symlinks", .data = &sysctl_protected_symlinks, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "protected_hardlinks", .data = &sysctl_protected_hardlinks, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "protected_fifos", .data = &sysctl_protected_fifos, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "protected_regular", .data = &sysctl_protected_regular, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, }; static int __init init_fs_namei_sysctls(void) { register_sysctl_init("fs", namei_sysctls); return 0; } fs_initcall(init_fs_namei_sysctls); #endif /* CONFIG_SYSCTL */ /** * may_follow_link - Check symlink following for unsafe situations * @nd: nameidata pathwalk data * @inode: Used for idmapping. * * In the case of the sysctl_protected_symlinks sysctl being enabled, * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is * in a sticky world-writable directory. This is to protect privileged * processes from failing races against path names that may change out * from under them by way of other users creating malicious symlinks. * It will permit symlinks to be followed only when outside a sticky * world-writable directory, or when the uid of the symlink and follower * match, or when the directory owner matches the symlink's owner. * * Returns 0 if following the symlink is allowed, -ve on error. */ static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) { struct mnt_idmap *idmap; vfsuid_t vfsuid; if (!sysctl_protected_symlinks) return 0; idmap = mnt_idmap(nd->path.mnt); vfsuid = i_uid_into_vfsuid(idmap, inode); /* Allowed if owner and follower match. */ if (vfsuid_eq_kuid(vfsuid, current_fsuid())) return 0; /* Allowed if parent directory not sticky and world-writable. */ if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) return 0; /* Allowed if parent directory and link owner match. */ if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) return 0; if (nd->flags & LOOKUP_RCU) return -ECHILD; audit_inode(nd->name, nd->stack[0].link.dentry, 0); audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); return -EACCES; } /** * safe_hardlink_source - Check for safe hardlink conditions * @idmap: idmap of the mount the inode was found from * @inode: the source inode to hardlink from * * Return false if at least one of the following conditions: * - inode is not a regular file * - inode is setuid * - inode is setgid and group-exec * - access failure for read and write * * Otherwise returns true. */ static bool safe_hardlink_source(struct mnt_idmap *idmap, struct inode *inode) { umode_t mode = inode->i_mode; /* Special files should not get pinned to the filesystem. */ if (!S_ISREG(mode)) return false; /* Setuid files should not get pinned to the filesystem. */ if (mode & S_ISUID) return false; /* Executable setgid files should not get pinned to the filesystem. */ if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) return false; /* Hardlinking to unreadable or unwritable sources is dangerous. */ if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) return false; return true; } /** * may_linkat - Check permissions for creating a hardlink * @idmap: idmap of the mount the inode was found from * @link: the source to hardlink from * * Block hardlink when all of: * - sysctl_protected_hardlinks enabled * - fsuid does not match inode * - hardlink source is unsafe (see safe_hardlink_source() above) * - not CAP_FOWNER in a namespace with the inode owner uid mapped * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. * * Returns 0 if successful, -ve on error. */ int may_linkat(struct mnt_idmap *idmap, const struct path *link) { struct inode *inode = link->dentry->d_inode; /* Inode writeback is not safe when the uid or gid are invalid. */ if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) return -EOVERFLOW; if (!sysctl_protected_hardlinks) return 0; /* Source inode owner (or CAP_FOWNER) can hardlink all they like, * otherwise, it must be a safe source. */ if (safe_hardlink_source(idmap, inode) || inode_owner_or_capable(idmap, inode)) return 0; audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); return -EPERM; } /** * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory * should be allowed, or not, on files that already * exist. * @idmap: idmap of the mount the inode was found from * @nd: nameidata pathwalk data * @inode: the inode of the file to open * * Block an O_CREAT open of a FIFO (or a regular file) when: * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled * - the file already exists * - we are in a sticky directory * - we don't own the file * - the owner of the directory doesn't own the file * - the directory is world writable * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 * the directory doesn't have to be world writable: being group writable will * be enough. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. * * Returns 0 if the open is allowed, -ve on error. */ static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, struct inode *const inode) { umode_t dir_mode = nd->dir_mode; vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; if (likely(!(dir_mode & S_ISVTX))) return 0; if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) return 0; if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) return 0; i_vfsuid = i_uid_into_vfsuid(idmap, inode); if (vfsuid_eq(i_vfsuid, dir_vfsuid)) return 0; if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) return 0; if (likely(dir_mode & 0002)) { audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); return -EACCES; } if (dir_mode & 0020) { if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create_fifo"); return -EACCES; } if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create_regular"); return -EACCES; } } return 0; } /* * follow_up - Find the mountpoint of path's vfsmount * * Given a path, find the mountpoint of its source file system. * Replace @path with the path of the mountpoint in the parent mount. * Up is towards /. * * Return 1 if we went up a level and 0 if we were already at the * root. */ int follow_up(struct path *path) { struct mount *mnt = real_mount(path->mnt); struct mount *parent; struct dentry *mountpoint; read_seqlock_excl(&mount_lock); parent = mnt->mnt_parent; if (parent == mnt) { read_sequnlock_excl(&mount_lock); return 0; } mntget(&parent->mnt); mountpoint = dget(mnt->mnt_mountpoint); read_sequnlock_excl(&mount_lock); dput(path->dentry); path->dentry = mountpoint; mntput(path->mnt); path->mnt = &parent->mnt; return 1; } EXPORT_SYMBOL(follow_up); static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, struct path *path, unsigned *seqp) { while (mnt_has_parent(m)) { struct dentry *mountpoint = m->mnt_mountpoint; m = m->mnt_parent; if (unlikely(root->dentry == mountpoint && root->mnt == &m->mnt)) break; if (mountpoint != m->mnt.mnt_root) { path->mnt = &m->mnt; path->dentry = mountpoint; *seqp = read_seqcount_begin(&mountpoint->d_seq); return true; } } return false; } static bool choose_mountpoint(struct mount *m, const struct path *root, struct path *path) { bool found; rcu_read_lock(); while (1) { unsigned seq, mseq = read_seqbegin(&mount_lock); found = choose_mountpoint_rcu(m, root, path, &seq); if (unlikely(!found)) { if (!read_seqretry(&mount_lock, mseq)) break; } else { if (likely(__legitimize_path(path, seq, mseq))) break; rcu_read_unlock(); path_put(path); rcu_read_lock(); } } rcu_read_unlock(); return found; } /* * Perform an automount * - return -EISDIR to tell follow_managed() to stop and return the path we * were called with. */ static int follow_automount(struct path *path, int *count, unsigned lookup_flags) { struct dentry *dentry = path->dentry; /* We don't want to mount if someone's just doing a stat - * unless they're stat'ing a directory and appended a '/' to * the name. * * We do, however, want to mount if someone wants to open or * create a file of any type under the mountpoint, wants to * traverse through the mountpoint or wants to open the * mounted directory. Also, autofs may mark negative dentries * as being automount points. These will need the attentions * of the daemon to instantiate them before they can be used. */ if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && dentry->d_inode) return -EISDIR; if (count && (*count)++ >= MAXSYMLINKS) return -ELOOP; return finish_automount(dentry->d_op->d_automount(path), path); } /* * mount traversal - out-of-line part. One note on ->d_flags accesses - * dentries are pinned but not locked here, so negative dentry can go * positive right under us. Use of smp_load_acquire() provides a barrier * sufficient for ->d_inode and ->d_flags consistency. */ static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, int *count, unsigned lookup_flags) { struct vfsmount *mnt = path->mnt; bool need_mntput = false; int ret = 0; while (flags & DCACHE_MANAGED_DENTRY) { /* Allow the filesystem to manage the transit without i_mutex * being held. */ if (flags & DCACHE_MANAGE_TRANSIT) { ret = path->dentry->d_op->d_manage(path, false); flags = smp_load_acquire(&path->dentry->d_flags); if (ret < 0) break; } if (flags & DCACHE_MOUNTED) { // something's mounted on it.. struct vfsmount *mounted = lookup_mnt(path); if (mounted) { // ... in our namespace dput(path->dentry); if (need_mntput) mntput(path->mnt); path->mnt = mounted; path->dentry = dget(mounted->mnt_root); // here we know it's positive flags = path->dentry->d_flags; need_mntput = true; continue; } } if (!(flags & DCACHE_NEED_AUTOMOUNT)) break; // uncovered automount point ret = follow_automount(path, count, lookup_flags); flags = smp_load_acquire(&path->dentry->d_flags); if (ret < 0) break; } if (ret == -EISDIR) ret = 0; // possible if you race with several mount --move if (need_mntput && path->mnt == mnt) mntput(path->mnt); if (!ret && unlikely(d_flags_negative(flags))) ret = -ENOENT; *jumped = need_mntput; return ret; } static inline int traverse_mounts(struct path *path, bool *jumped, int *count, unsigned lookup_flags) { unsigned flags = smp_load_acquire(&path->dentry->d_flags); /* fastpath */ if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { *jumped = false; if (unlikely(d_flags_negative(flags))) return -ENOENT; return 0; } return __traverse_mounts(path, flags, jumped, count, lookup_flags); } int follow_down_one(struct path *path) { struct vfsmount *mounted; mounted = lookup_mnt(path); if (mounted) { dput(path->dentry); mntput(path->mnt); path->mnt = mounted; path->dentry = dget(mounted->mnt_root); return 1; } return 0; } EXPORT_SYMBOL(follow_down_one); /* * Follow down to the covering mount currently visible to userspace. At each * point, the filesystem owning that dentry may be queried as to whether the * caller is permitted to proceed or not. */ int follow_down(struct path *path, unsigned int flags) { struct vfsmount *mnt = path->mnt; bool jumped; int ret = traverse_mounts(path, &jumped, NULL, flags); if (path->mnt != mnt) mntput(mnt); return ret; } EXPORT_SYMBOL(follow_down); /* * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if * we meet a managed dentry that would need blocking. */ static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) { struct dentry *dentry = path->dentry; unsigned int flags = dentry->d_flags; if (likely(!(flags & DCACHE_MANAGED_DENTRY))) return true; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) return false; for (;;) { /* * Don't forget we might have a non-mountpoint managed dentry * that wants to block transit. */ if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { int res = dentry->d_op->d_manage(path, true); if (res) return res == -EISDIR; flags = dentry->d_flags; } if (flags & DCACHE_MOUNTED) { struct mount *mounted = __lookup_mnt(path->mnt, dentry); if (mounted) { path->mnt = &mounted->mnt; dentry = path->dentry = mounted->mnt.mnt_root; nd->state |= ND_JUMPED; nd->next_seq = read_seqcount_begin(&dentry->d_seq); flags = dentry->d_flags; // makes sure that non-RCU pathwalk could reach // this state. if (read_seqretry(&mount_lock, nd->m_seq)) return false; continue; } if (read_seqretry(&mount_lock, nd->m_seq)) return false; } return !(flags & DCACHE_NEED_AUTOMOUNT); } } static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, struct path *path) { bool jumped; int ret; path->mnt = nd->path.mnt; path->dentry = dentry; if (nd->flags & LOOKUP_RCU) { unsigned int seq = nd->next_seq; if (likely(__follow_mount_rcu(nd, path))) return 0; // *path and nd->next_seq might've been clobbered path->mnt = nd->path.mnt; path->dentry = dentry; nd->next_seq = seq; if (!try_to_unlazy_next(nd, dentry)) return -ECHILD; } ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); if (jumped) { if (unlikely(nd->flags & LOOKUP_NO_XDEV)) ret = -EXDEV; else nd->state |= ND_JUMPED; } if (unlikely(ret)) { dput(path->dentry); if (path->mnt != nd->path.mnt) mntput(path->mnt); } return ret; } /* * This looks up the name in dcache and possibly revalidates the found dentry. * NULL is returned if the dentry does not exist in the cache. */ static struct dentry *lookup_dcache(const struct qstr *name, struct dentry *dir, unsigned int flags) { struct dentry *dentry = d_lookup(dir, name); if (dentry) { int error = d_revalidate(dir->d_inode, name, dentry, flags); if (unlikely(error <= 0)) { if (!error) d_invalidate(dentry); dput(dentry); return ERR_PTR(error); } } return dentry; } static struct dentry *lookup_one_qstr_excl_raw(const struct qstr *name, struct dentry *base, unsigned int flags) { struct dentry *dentry; struct dentry *old; struct inode *dir; dentry = lookup_dcache(name, base, flags); if (dentry) return dentry; /* Don't create child dentry for a dead directory. */ dir = base->d_inode; if (unlikely(IS_DEADDIR(dir))) return ERR_PTR(-ENOENT); dentry = d_alloc(base, name); if (unlikely(!dentry)) return ERR_PTR(-ENOMEM); old = dir->i_op->lookup(dir, dentry, flags); if (unlikely(old)) { dput(dentry); dentry = old; } return dentry; } /* * Parent directory has inode locked exclusive. This is one * and only case when ->lookup() gets called on non in-lookup * dentries - as the matter of fact, this only gets called * when directory is guaranteed to have no in-lookup children * at all. * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed. * Will return -EEXIST if name is found and LOOKUP_EXCL was passed. */ struct dentry *lookup_one_qstr_excl(const struct qstr *name, struct dentry *base, unsigned int flags) { struct dentry *dentry; dentry = lookup_one_qstr_excl_raw(name, base, flags); if (IS_ERR(dentry)) return dentry; if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) { dput(dentry); return ERR_PTR(-ENOENT); } if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) { dput(dentry); return ERR_PTR(-EEXIST); } return dentry; } EXPORT_SYMBOL(lookup_one_qstr_excl); /** * lookup_fast - do fast lockless (but racy) lookup of a dentry * @nd: current nameidata * * Do a fast, but racy lookup in the dcache for the given dentry, and * revalidate it. Returns a valid dentry pointer or NULL if one wasn't * found. On error, an ERR_PTR will be returned. * * If this function returns a valid dentry and the walk is no longer * lazy, the dentry will carry a reference that must later be put. If * RCU mode is still in force, then this is not the case and the dentry * must be legitimized before use. If this returns NULL, then the walk * will no longer be in RCU mode. */ static struct dentry *lookup_fast(struct nameidata *nd) { struct dentry *dentry, *parent = nd->path.dentry; int status = 1; /* * Rename seqlock is not required here because in the off chance * of a false negative due to a concurrent rename, the caller is * going to fall back to non-racy lookup. */ if (nd->flags & LOOKUP_RCU) { dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); if (unlikely(!dentry)) { if (!try_to_unlazy(nd)) return ERR_PTR(-ECHILD); return NULL; } /* * This sequence count validates that the parent had no * changes while we did the lookup of the dentry above. */ if (read_seqcount_retry(&parent->d_seq, nd->seq)) return ERR_PTR(-ECHILD); status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); if (likely(status > 0)) return dentry; if (!try_to_unlazy_next(nd, dentry)) return ERR_PTR(-ECHILD); if (status == -ECHILD) /* we'd been told to redo it in non-rcu mode */ status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); } else { dentry = __d_lookup(parent, &nd->last); if (unlikely(!dentry)) return NULL; status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); } if (unlikely(status <= 0)) { if (!status) d_invalidate(dentry); dput(dentry); return ERR_PTR(status); } return dentry; } /* Fast lookup failed, do it the slow way */ static struct dentry *__lookup_slow(const struct qstr *name, struct dentry *dir, unsigned int flags) { struct dentry *dentry, *old; struct inode *inode = dir->d_inode; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); /* Don't go there if it's already dead */ if (unlikely(IS_DEADDIR(inode))) return ERR_PTR(-ENOENT); again: dentry = d_alloc_parallel(dir, name, &wq); if (IS_ERR(dentry)) return dentry; if (unlikely(!d_in_lookup(dentry))) { int error = d_revalidate(inode, name, dentry, flags); if (unlikely(error <= 0)) { if (!error) { d_invalidate(dentry); dput(dentry); goto again; } dput(dentry); dentry = ERR_PTR(error); } } else { old = inode->i_op->lookup(inode, dentry, flags); d_lookup_done(dentry); if (unlikely(old)) { dput(dentry); dentry = old; } } return dentry; } static struct dentry *lookup_slow(const struct qstr *name, struct dentry *dir, unsigned int flags) { struct inode *inode = dir->d_inode; struct dentry *res; inode_lock_shared(inode); res = __lookup_slow(name, dir, flags); inode_unlock_shared(inode); return res; } static inline int may_lookup(struct mnt_idmap *idmap, struct nameidata *restrict nd) { int err, mask; mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); if (likely(!err)) return 0; // If we failed, and we weren't in LOOKUP_RCU, it's final if (!(nd->flags & LOOKUP_RCU)) return err; // Drop out of RCU mode to make sure it wasn't transient if (!try_to_unlazy(nd)) return -ECHILD; // redo it all non-lazy if (err != -ECHILD) // hard error return err; return inode_permission(idmap, nd->inode, MAY_EXEC); } static int reserve_stack(struct nameidata *nd, struct path *link) { if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) return -ELOOP; if (likely(nd->depth != EMBEDDED_LEVELS)) return 0; if (likely(nd->stack != nd->internal)) return 0; if (likely(nd_alloc_stack(nd))) return 0; if (nd->flags & LOOKUP_RCU) { // we need to grab link before we do unlazy. And we can't skip // unlazy even if we fail to grab the link - cleanup needs it bool grabbed_link = legitimize_path(nd, link, nd->next_seq); if (!try_to_unlazy(nd) || !grabbed_link) return -ECHILD; if (nd_alloc_stack(nd)) return 0; } return -ENOMEM; } enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; static const char *pick_link(struct nameidata *nd, struct path *link, struct inode *inode, int flags) { struct saved *last; const char *res; int error = reserve_stack(nd, link); if (unlikely(error)) { if (!(nd->flags & LOOKUP_RCU)) path_put(link); return ERR_PTR(error); } last = nd->stack + nd->depth++; last->link = *link; clear_delayed_call(&last->done); last->seq = nd->next_seq; if (flags & WALK_TRAILING) { error = may_follow_link(nd, inode); if (unlikely(error)) return ERR_PTR(error); } if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) return ERR_PTR(-ELOOP); if (!(nd->flags & LOOKUP_RCU)) { touch_atime(&last->link); cond_resched(); } else if (atime_needs_update(&last->link, inode)) { if (!try_to_unlazy(nd)) return ERR_PTR(-ECHILD); touch_atime(&last->link); } error = security_inode_follow_link(link->dentry, inode, nd->flags & LOOKUP_RCU); if (unlikely(error)) return ERR_PTR(error); res = READ_ONCE(inode->i_link); if (!res) { const char * (*get)(struct dentry *, struct inode *, struct delayed_call *); get = inode->i_op->get_link; if (nd->flags & LOOKUP_RCU) { res = get(NULL, inode, &last->done); if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) res = get(link->dentry, inode, &last->done); } else { res = get(link->dentry, inode, &last->done); } if (!res) goto all_done; if (IS_ERR(res)) return res; } if (*res == '/') { error = nd_jump_root(nd); if (unlikely(error)) return ERR_PTR(error); while (unlikely(*++res == '/')) ; } if (*res) return res; all_done: // pure jump put_link(nd); return NULL; } /* * Do we need to follow links? We _really_ want to be able * to do this check without having to look at inode->i_op, * so we keep a cache of "no, this doesn't need follow_link" * for the common case. * * NOTE: dentry must be what nd->next_seq had been sampled from. */ static const char *step_into(struct nameidata *nd, int flags, struct dentry *dentry) { struct path path; struct inode *inode; int err = handle_mounts(nd, dentry, &path); if (err < 0) return ERR_PTR(err); inode = path.dentry->d_inode; if (likely(!d_is_symlink(path.dentry)) || ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || (flags & WALK_NOFOLLOW)) { /* not a symlink or should not follow */ if (nd->flags & LOOKUP_RCU) { if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) return ERR_PTR(-ECHILD); if (unlikely(!inode)) return ERR_PTR(-ENOENT); } else { dput(nd->path.dentry); if (nd->path.mnt != path.mnt) mntput(nd->path.mnt); } nd->path = path; nd->inode = inode; nd->seq = nd->next_seq; return NULL; } if (nd->flags & LOOKUP_RCU) { /* make sure that d_is_symlink above matches inode */ if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) return ERR_PTR(-ECHILD); } else { if (path.mnt == nd->path.mnt) mntget(path.mnt); } return pick_link(nd, &path, inode, flags); } static struct dentry *follow_dotdot_rcu(struct nameidata *nd) { struct dentry *parent, *old; if (path_equal(&nd->path, &nd->root)) goto in_root; if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { struct path path; unsigned seq; if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), &nd->root, &path, &seq)) goto in_root; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) return ERR_PTR(-ECHILD); nd->path = path; nd->inode = path.dentry->d_inode; nd->seq = seq; // makes sure that non-RCU pathwalk could reach this state if (read_seqretry(&mount_lock, nd->m_seq)) return ERR_PTR(-ECHILD); /* we know that mountpoint was pinned */ } old = nd->path.dentry; parent = old->d_parent; nd->next_seq = read_seqcount_begin(&parent->d_seq); // makes sure that non-RCU pathwalk could reach this state if (read_seqcount_retry(&old->d_seq, nd->seq)) return ERR_PTR(-ECHILD); if (unlikely(!path_connected(nd->path.mnt, parent))) return ERR_PTR(-ECHILD); return parent; in_root: if (read_seqretry(&mount_lock, nd->m_seq)) return ERR_PTR(-ECHILD); if (unlikely(nd->flags & LOOKUP_BENEATH)) return ERR_PTR(-ECHILD); nd->next_seq = nd->seq; return nd->path.dentry; } static struct dentry *follow_dotdot(struct nameidata *nd) { struct dentry *parent; if (path_equal(&nd->path, &nd->root)) goto in_root; if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { struct path path; if (!choose_mountpoint(real_mount(nd->path.mnt), &nd->root, &path)) goto in_root; path_put(&nd->path); nd->path = path; nd->inode = path.dentry->d_inode; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) return ERR_PTR(-EXDEV); } /* rare case of legitimate dget_parent()... */ parent = dget_parent(nd->path.dentry); if (unlikely(!path_connected(nd->path.mnt, parent))) { dput(parent); return ERR_PTR(-ENOENT); } return parent; in_root: if (unlikely(nd->flags & LOOKUP_BENEATH)) return ERR_PTR(-EXDEV); return dget(nd->path.dentry); } static const char *handle_dots(struct nameidata *nd, int type) { if (type == LAST_DOTDOT) { const char *error = NULL; struct dentry *parent; if (!nd->root.mnt) { error = ERR_PTR(set_root(nd)); if (error) return error; } if (nd->flags & LOOKUP_RCU) parent = follow_dotdot_rcu(nd); else parent = follow_dotdot(nd); if (IS_ERR(parent)) return ERR_CAST(parent); error = step_into(nd, WALK_NOFOLLOW, parent); if (unlikely(error)) return error; if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { /* * If there was a racing rename or mount along our * path, then we can't be sure that ".." hasn't jumped * above nd->root (and so userspace should retry or use * some fallback). */ smp_rmb(); if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) return ERR_PTR(-EAGAIN); if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) return ERR_PTR(-EAGAIN); } } return NULL; } static const char *walk_component(struct nameidata *nd, int flags) { struct dentry *dentry; /* * "." and ".." are special - ".." especially so because it has * to be able to know about the current root directory and * parent relationships. */ if (unlikely(nd->last_type != LAST_NORM)) { if (!(flags & WALK_MORE) && nd->depth) put_link(nd); return handle_dots(nd, nd->last_type); } dentry = lookup_fast(nd); if (IS_ERR(dentry)) return ERR_CAST(dentry); if (unlikely(!dentry)) { dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); if (IS_ERR(dentry)) return ERR_CAST(dentry); } if (!(flags & WALK_MORE) && nd->depth) put_link(nd); return step_into(nd, flags, dentry); } /* * We can do the critical dentry name comparison and hashing * operations one word at a time, but we are limited to: * * - Architectures with fast unaligned word accesses. We could * do a "get_unaligned()" if this helps and is sufficiently * fast. * * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we * do not trap on the (extremely unlikely) case of a page * crossing operation. * * - Furthermore, we need an efficient 64-bit compile for the * 64-bit case in order to generate the "number of bytes in * the final mask". Again, that could be replaced with a * efficient population count instruction or similar. */ #ifdef CONFIG_DCACHE_WORD_ACCESS #include <asm/word-at-a-time.h> #ifdef HASH_MIX /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ #elif defined(CONFIG_64BIT) /* * Register pressure in the mixing function is an issue, particularly * on 32-bit x86, but almost any function requires one state value and * one temporary. Instead, use a function designed for two state values * and no temporaries. * * This function cannot create a collision in only two iterations, so * we have two iterations to achieve avalanche. In those two iterations, * we have six layers of mixing, which is enough to spread one bit's * influence out to 2^6 = 64 state bits. * * Rotate constants are scored by considering either 64 one-bit input * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the * probability of that delta causing a change to each of the 128 output * bits, using a sample of random initial states. * * The Shannon entropy of the computed probabilities is then summed * to produce a score. Ideally, any input change has a 50% chance of * toggling any given output bit. * * Mixing scores (in bits) for (12,45): * Input delta: 1-bit 2-bit * 1 round: 713.3 42542.6 * 2 rounds: 2753.7 140389.8 * 3 rounds: 5954.1 233458.2 * 4 rounds: 7862.6 256672.2 * Perfect: 8192 258048 * (64*128) (64*63/2 * 128) */ #define HASH_MIX(x, y, a) \ ( x ^= (a), \ y ^= x, x = rol64(x,12),\ x += y, y = rol64(y,45),\ y *= 9 ) /* * Fold two longs into one 32-bit hash value. This must be fast, but * latency isn't quite as critical, as there is a fair bit of additional * work done before the hash value is used. */ static inline unsigned int fold_hash(unsigned long x, unsigned long y) { y ^= x * GOLDEN_RATIO_64; y *= GOLDEN_RATIO_64; return y >> 32; } #else /* 32-bit case */ /* * Mixing scores (in bits) for (7,20): * Input delta: 1-bit 2-bit * 1 round: 330.3 9201.6 * 2 rounds: 1246.4 25475.4 * 3 rounds: 1907.1 31295.1 * 4 rounds: 2042.3 31718.6 * Perfect: 2048 31744 * (32*64) (32*31/2 * 64) */ #define HASH_MIX(x, y, a) \ ( x ^= (a), \ y ^= x, x = rol32(x, 7),\ x += y, y = rol32(y,20),\ y *= 9 ) static inline unsigned int fold_hash(unsigned long x, unsigned long y) { /* Use arch-optimized multiply if one exists */ return __hash_32(y ^ __hash_32(x)); } #endif /* * Return the hash of a string of known length. This is carfully * designed to match hash_name(), which is the more critical function. * In particular, we must end by hashing a final word containing 0..7 * payload bytes, to match the way that hash_name() iterates until it * finds the delimiter after the name. */ unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) { unsigned long a, x = 0, y = (unsigned long)salt; for (;;) { if (!len) goto done; a = load_unaligned_zeropad(name); if (len < sizeof(unsigned long)) break; HASH_MIX(x, y, a); name += sizeof(unsigned long); len -= sizeof(unsigned long); } x ^= a & bytemask_from_count(len); done: return fold_hash(x, y); } EXPORT_SYMBOL(full_name_hash); /* Return the "hash_len" (hash and length) of a null-terminated string */ u64 hashlen_string(const void *salt, const char *name) { unsigned long a = 0, x = 0, y = (unsigned long)salt; unsigned long adata, mask, len; const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; len = 0; goto inside; do { HASH_MIX(x, y, a); len += sizeof(unsigned long); inside: a = load_unaligned_zeropad(name+len); } while (!has_zero(a, &adata, &constants)); adata = prep_zero_mask(a, adata, &constants); mask = create_zero_mask(adata); x ^= a & zero_bytemask(mask); return hashlen_create(fold_hash(x, y), len + find_zero(mask)); } EXPORT_SYMBOL(hashlen_string); /* * Calculate the length and hash of the path component, and * return the length as the result. */ static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) { unsigned long a, b, x, y = (unsigned long)nd->path.dentry; unsigned long adata, bdata, mask, len; const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; /* * The first iteration is special, because it can result in * '.' and '..' and has no mixing other than the final fold. */ a = load_unaligned_zeropad(name); b = a ^ REPEAT_BYTE('/'); if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { adata = prep_zero_mask(a, adata, &constants); bdata = prep_zero_mask(b, bdata, &constants); mask = create_zero_mask(adata | bdata); a &= zero_bytemask(mask); *lastword = a; len = find_zero(mask); nd->last.hash = fold_hash(a, y); nd->last.len = len; return name + len; } len = 0; x = 0; do { HASH_MIX(x, y, a); len += sizeof(unsigned long); a = load_unaligned_zeropad(name+len); b = a ^ REPEAT_BYTE('/'); } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); adata = prep_zero_mask(a, adata, &constants); bdata = prep_zero_mask(b, bdata, &constants); mask = create_zero_mask(adata | bdata); a &= zero_bytemask(mask); x ^= a; len += find_zero(mask); *lastword = 0; // Multi-word components cannot be DOT or DOTDOT nd->last.hash = fold_hash(x, y); nd->last.len = len; return name + len; } /* * Note that the 'last' word is always zero-masked, but * was loaded as a possibly big-endian word. */ #ifdef __BIG_ENDIAN #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) #endif #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ /* Return the hash of a string of known length */ unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) { unsigned long hash = init_name_hash(salt); while (len--) hash = partial_name_hash((unsigned char)*name++, hash); return end_name_hash(hash); } EXPORT_SYMBOL(full_name_hash); /* Return the "hash_len" (hash and length) of a null-terminated string */ u64 hashlen_string(const void *salt, const char *name) { unsigned long hash = init_name_hash(salt); unsigned long len = 0, c; c = (unsigned char)*name; while (c) { len++; hash = partial_name_hash(c, hash); c = (unsigned char)name[len]; } return hashlen_create(end_name_hash(hash), len); } EXPORT_SYMBOL(hashlen_string); /* * We know there's a real path component here of at least * one character. */ static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) { unsigned long hash = init_name_hash(nd->path.dentry); unsigned long len = 0, c, last = 0; c = (unsigned char)*name; do { last = (last << 8) + c; len++; hash = partial_name_hash(c, hash); c = (unsigned char)name[len]; } while (c && c != '/'); // This is reliable for DOT or DOTDOT, since the component // cannot contain NUL characters - top bits being zero means // we cannot have had any other pathnames. *lastword = last; nd->last.hash = end_name_hash(hash); nd->last.len = len; return name + len; } #endif #ifndef LAST_WORD_IS_DOT #define LAST_WORD_IS_DOT 0x2e #define LAST_WORD_IS_DOTDOT 0x2e2e #endif /* * Name resolution. * This is the basic name resolution function, turning a pathname into * the final dentry. We expect 'base' to be positive and a directory. * * Returns 0 and nd will have valid dentry and mnt on success. * Returns error and drops reference to input namei data on failure. */ static int link_path_walk(const char *name, struct nameidata *nd) { int depth = 0; // depth <= nd->depth int err; nd->last_type = LAST_ROOT; nd->flags |= LOOKUP_PARENT; if (IS_ERR(name)) return PTR_ERR(name); while (*name=='/') name++; if (!*name) { nd->dir_mode = 0; // short-circuit the 'hardening' idiocy return 0; } /* At this point we know we have a real path component. */ for(;;) { struct mnt_idmap *idmap; const char *link; unsigned long lastword; idmap = mnt_idmap(nd->path.mnt); err = may_lookup(idmap, nd); if (err) return err; nd->last.name = name; name = hash_name(nd, name, &lastword); switch(lastword) { case LAST_WORD_IS_DOTDOT: nd->last_type = LAST_DOTDOT; nd->state |= ND_JUMPED; break; case LAST_WORD_IS_DOT: nd->last_type = LAST_DOT; break; default: nd->last_type = LAST_NORM; nd->state &= ~ND_JUMPED; struct dentry *parent = nd->path.dentry; if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { err = parent->d_op->d_hash(parent, &nd->last); if (err < 0) return err; } } if (!*name) goto OK; /* * If it wasn't NUL, we know it was '/'. Skip that * slash, and continue until no more slashes. */ do { name++; } while (unlikely(*name == '/')); if (unlikely(!*name)) { OK: /* pathname or trailing symlink, done */ if (!depth) { nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); nd->dir_mode = nd->inode->i_mode; nd->flags &= ~LOOKUP_PARENT; return 0; } /* last component of nested symlink */ name = nd->stack[--depth].name; link = walk_component(nd, 0); } else { /* not the last component */ link = walk_component(nd, WALK_MORE); } if (unlikely(link)) { if (IS_ERR(link)) return PTR_ERR(link); /* a symlink to follow */ nd->stack[depth++].name = name; name = link; continue; } if (unlikely(!d_can_lookup(nd->path.dentry))) { if (nd->flags & LOOKUP_RCU) { if (!try_to_unlazy(nd)) return -ECHILD; } return -ENOTDIR; } } } /* must be paired with terminate_walk() */ static const char *path_init(struct nameidata *nd, unsigned flags) { int error; const char *s = nd->pathname; /* LOOKUP_CACHED requires RCU, ask caller to retry */ if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) return ERR_PTR(-EAGAIN); if (!*s) flags &= ~LOOKUP_RCU; if (flags & LOOKUP_RCU) rcu_read_lock(); else nd->seq = nd->next_seq = 0; nd->flags = flags; nd->state |= ND_JUMPED; nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); smp_rmb(); if (nd->state & ND_ROOT_PRESET) { struct dentry *root = nd->root.dentry; struct inode *inode = root->d_inode; if (*s && unlikely(!d_can_lookup(root))) return ERR_PTR(-ENOTDIR); nd->path = nd->root; nd->inode = inode; if (flags & LOOKUP_RCU) { nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); nd->root_seq = nd->seq; } else { path_get(&nd->path); } return s; } nd->root.mnt = NULL; /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { error = nd_jump_root(nd); if (unlikely(error)) return ERR_PTR(error); return s; } /* Relative pathname -- get the starting-point it is relative to. */ if (nd->dfd == AT_FDCWD) { if (flags & LOOKUP_RCU) { struct fs_struct *fs = current->fs; unsigned seq; do { seq = read_seqcount_begin(&fs->seq); nd->path = fs->pwd; nd->inode = nd->path.dentry->d_inode; nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); } while (read_seqcount_retry(&fs->seq, seq)); } else { get_fs_pwd(current->fs, &nd->path); nd->inode = nd->path.dentry->d_inode; } } else { /* Caller must check execute permissions on the starting path component */ CLASS(fd_raw, f)(nd->dfd); struct dentry *dentry; if (fd_empty(f)) return ERR_PTR(-EBADF); if (flags & LOOKUP_LINKAT_EMPTY) { if (fd_file(f)->f_cred != current_cred() && !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) return ERR_PTR(-ENOENT); } dentry = fd_file(f)->f_path.dentry; if (*s && unlikely(!d_can_lookup(dentry))) return ERR_PTR(-ENOTDIR); nd->path = fd_file(f)->f_path; if (flags & LOOKUP_RCU) { nd->inode = nd->path.dentry->d_inode; nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); } else { path_get(&nd->path); nd->inode = nd->path.dentry->d_inode; } } /* For scoped-lookups we need to set the root to the dirfd as well. */ if (flags & LOOKUP_IS_SCOPED) { nd->root = nd->path; if (flags & LOOKUP_RCU) { nd->root_seq = nd->seq; } else { path_get(&nd->root); nd->state |= ND_ROOT_GRABBED; } } return s; } static inline const char *lookup_last(struct nameidata *nd) { if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; return walk_component(nd, WALK_TRAILING); } static int handle_lookup_down(struct nameidata *nd) { if (!(nd->flags & LOOKUP_RCU)) dget(nd->path.dentry); nd->next_seq = nd->seq; return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); } /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) { const char *s = path_init(nd, flags); int err; if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { err = handle_lookup_down(nd); if (unlikely(err < 0)) s = ERR_PTR(err); } while (!(err = link_path_walk(s, nd)) && (s = lookup_last(nd)) != NULL) ; if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { err = handle_lookup_down(nd); nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... } if (!err) err = complete_walk(nd); if (!err && nd->flags & LOOKUP_DIRECTORY) if (!d_can_lookup(nd->path.dentry)) err = -ENOTDIR; if (!err) { *path = nd->path; nd->path.mnt = NULL; nd->path.dentry = NULL; } terminate_walk(nd); return err; } int filename_lookup(int dfd, struct filename *name, unsigned flags, struct path *path, struct path *root) { int retval; struct nameidata nd; if (IS_ERR(name)) return PTR_ERR(name); set_nameidata(&nd, dfd, name, root); retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); if (unlikely(retval == -ECHILD)) retval = path_lookupat(&nd, flags, path); if (unlikely(retval == -ESTALE)) retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); if (likely(!retval)) audit_inode(name, path->dentry, flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); restore_nameidata(); return retval; } /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ static int path_parentat(struct nameidata *nd, unsigned flags, struct path *parent) { const char *s = path_init(nd, flags); int err = link_path_walk(s, nd); if (!err) err = complete_walk(nd); if (!err) { *parent = nd->path; nd->path.mnt = NULL; nd->path.dentry = NULL; } terminate_walk(nd); return err; } /* Note: this does not consume "name" */ static int __filename_parentat(int dfd, struct filename *name, unsigned int flags, struct path *parent, struct qstr *last, int *type, const struct path *root) { int retval; struct nameidata nd; if (IS_ERR(name)) return PTR_ERR(name); set_nameidata(&nd, dfd, name, root); retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); if (unlikely(retval == -ECHILD)) retval = path_parentat(&nd, flags, parent); if (unlikely(retval == -ESTALE)) retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); if (likely(!retval)) { *last = nd.last; *type = nd.last_type; audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); } restore_nameidata(); return retval; } static int filename_parentat(int dfd, struct filename *name, unsigned int flags, struct path *parent, struct qstr *last, int *type) { return __filename_parentat(dfd, name, flags, parent, last, type, NULL); } /* does lookup, returns the object with parent locked */ static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) { struct path parent_path __free(path_put) = {}; struct dentry *d; struct qstr last; int type, error; error = filename_parentat(dfd, name, 0, &parent_path, &last, &type); if (error) return ERR_PTR(error); if (unlikely(type != LAST_NORM)) return ERR_PTR(-EINVAL); inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); d = lookup_one_qstr_excl(&last, parent_path.dentry, 0); if (IS_ERR(d)) { inode_unlock(parent_path.dentry->d_inode); return d; } path->dentry = no_free_ptr(parent_path.dentry); path->mnt = no_free_ptr(parent_path.mnt); return d; } struct dentry *kern_path_locked_negative(const char *name, struct path *path) { struct path parent_path __free(path_put) = {}; struct filename *filename __free(putname) = getname_kernel(name); struct dentry *d; struct qstr last; int type, error; error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type); if (error) return ERR_PTR(error); if (unlikely(type != LAST_NORM)) return ERR_PTR(-EINVAL); inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); d = lookup_one_qstr_excl_raw(&last, parent_path.dentry, 0); if (IS_ERR(d)) { inode_unlock(parent_path.dentry->d_inode); return d; } path->dentry = no_free_ptr(parent_path.dentry); path->mnt = no_free_ptr(parent_path.mnt); return d; } struct dentry *kern_path_locked(const char *name, struct path *path) { struct filename *filename = getname_kernel(name); struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); putname(filename); return res; } struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) { struct filename *filename = getname(name); struct dentry *res = __kern_path_locked(dfd, filename, path); putname(filename); return res; } EXPORT_SYMBOL(user_path_locked_at); int kern_path(const char *name, unsigned int flags, struct path *path) { struct filename *filename = getname_kernel(name); int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); putname(filename); return ret; } EXPORT_SYMBOL(kern_path); /** * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair * @filename: filename structure * @flags: lookup flags * @parent: pointer to struct path to fill * @last: last component * @type: type of the last component * @root: pointer to struct path of the base directory */ int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, struct path *parent, struct qstr *last, int *type, const struct path *root) { return __filename_parentat(AT_FDCWD, filename, flags, parent, last, type, root); } EXPORT_SYMBOL(vfs_path_parent_lookup); /** * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair * @dentry: pointer to dentry of the base directory * @mnt: pointer to vfs mount of the base directory * @name: pointer to file name * @flags: lookup flags * @path: pointer to struct path to fill */ int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, const char *name, unsigned int flags, struct path *path) { struct filename *filename; struct path root = {.mnt = mnt, .dentry = dentry}; int ret; filename = getname_kernel(name); /* the first argument of filename_lookup() is ignored with root */ ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); putname(filename); return ret; } EXPORT_SYMBOL(vfs_path_lookup); static int lookup_one_common(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len, struct qstr *this) { this->name = name; this->len = len; this->hash = full_name_hash(base, name, len); if (!len) return -EACCES; if (is_dot_dotdot(name, len)) return -EACCES; while (len--) { unsigned int c = *(const unsigned char *)name++; if (c == '/' || c == '\0') return -EACCES; } /* * See if the low-level filesystem might want * to use its own hash.. */ if (base->d_flags & DCACHE_OP_HASH) { int err = base->d_op->d_hash(base, this); if (err < 0) return err; } return inode_permission(idmap, base->d_inode, MAY_EXEC); } /** * try_lookup_one_len - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Look up a dentry by name in the dcache, returning NULL if it does not * currently exist. The function does not try to create a dentry. * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * No locks need be held - only a counted reference to @base is needed. * */ struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) { struct qstr this; int err; err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); if (err) return ERR_PTR(err); return lookup_dcache(&this, base, 0); } EXPORT_SYMBOL(try_lookup_one_len); /** * lookup_one_len - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The caller must hold base->i_mutex. */ struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) { struct dentry *dentry; struct qstr this; int err; WARN_ON_ONCE(!inode_is_locked(base->d_inode)); err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); if (err) return ERR_PTR(err); dentry = lookup_dcache(&this, base, 0); return dentry ? dentry : __lookup_slow(&this, base, 0); } EXPORT_SYMBOL(lookup_one_len); /** * lookup_one - filesystem helper to lookup single pathname component * @idmap: idmap of the mount the lookup is performed from * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The caller must hold base->i_mutex. */ struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len) { struct dentry *dentry; struct qstr this; int err; WARN_ON_ONCE(!inode_is_locked(base->d_inode)); err = lookup_one_common(idmap, name, base, len, &this); if (err) return ERR_PTR(err); dentry = lookup_dcache(&this, base, 0); return dentry ? dentry : __lookup_slow(&this, base, 0); } EXPORT_SYMBOL(lookup_one); /** * lookup_one_unlocked - filesystem helper to lookup single pathname component * @idmap: idmap of the mount the lookup is performed from * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * Unlike lookup_one_len, it should be called without the parent * i_mutex held, and will take the i_mutex itself if necessary. */ struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len) { struct qstr this; int err; struct dentry *ret; err = lookup_one_common(idmap, name, base, len, &this); if (err) return ERR_PTR(err); ret = lookup_dcache(&this, base, 0); if (!ret) ret = lookup_slow(&this, base, 0); return ret; } EXPORT_SYMBOL(lookup_one_unlocked); /** * lookup_one_positive_unlocked - filesystem helper to lookup single * pathname component * @idmap: idmap of the mount the lookup is performed from * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns * known positive or ERR_PTR(). This is what most of the users want. * * Note that pinned negative with unlocked parent _can_ become positive at any * time, so callers of lookup_one_unlocked() need to be very careful; pinned * positives have >d_inode stable, so this one avoids such problems. * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The helper should be called without i_mutex held. */ struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len) { struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { dput(ret); ret = ERR_PTR(-ENOENT); } return ret; } EXPORT_SYMBOL(lookup_one_positive_unlocked); /** * lookup_one_len_unlocked - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * Unlike lookup_one_len, it should be called without the parent * i_mutex held, and will take the i_mutex itself if necessary. */ struct dentry *lookup_one_len_unlocked(const char *name, struct dentry *base, int len) { return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); } EXPORT_SYMBOL(lookup_one_len_unlocked); /* * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) * on negatives. Returns known positive or ERR_PTR(); that's what * most of the users want. Note that pinned negative with unlocked parent * _can_ become positive at any time, so callers of lookup_one_len_unlocked() * need to be very careful; pinned positives have ->d_inode stable, so * this one avoids such problems. */ struct dentry *lookup_positive_unlocked(const char *name, struct dentry *base, int len) { return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); } EXPORT_SYMBOL(lookup_positive_unlocked); #ifdef CONFIG_UNIX98_PTYS int path_pts(struct path *path) { /* Find something mounted on "pts" in the same directory as * the input path. */ struct dentry *parent = dget_parent(path->dentry); struct dentry *child; struct qstr this = QSTR_INIT("pts", 3); if (unlikely(!path_connected(path->mnt, parent))) { dput(parent); return -ENOENT; } dput(path->dentry); path->dentry = parent; child = d_hash_and_lookup(parent, &this); if (IS_ERR_OR_NULL(child)) return -ENOENT; path->dentry = child; dput(parent); follow_down(path, 0); return 0; } #endif int user_path_at(int dfd, const char __user *name, unsigned flags, struct path *path) { struct filename *filename = getname_flags(name, flags); int ret = filename_lookup(dfd, filename, flags, path, NULL); putname(filename); return ret; } EXPORT_SYMBOL(user_path_at); int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, struct inode *inode) { kuid_t fsuid = current_fsuid(); if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) return 0; if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) return 0; return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); } EXPORT_SYMBOL(__check_sticky); /* * Check whether we can remove a link victim from directory dir, check * whether the type of victim is right. * 1. We can't do it if dir is read-only (done in permission()) * 2. We should have write and exec permissions on dir * 3. We can't remove anything from append-only dir * 4. We can't do anything with immutable dir (done in permission()) * 5. If the sticky bit on dir is set we should either * a. be owner of dir, or * b. be owner of victim, or * c. have CAP_FOWNER capability * 6. If the victim is append-only or immutable we can't do antyhing with * links pointing to it. * 7. If the victim has an unknown uid or gid we can't change the inode. * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. * 10. We can't remove a root or mountpoint. * 11. We don't allow removal of NFS sillyrenamed files; it's handled by * nfs_async_unlink(). */ static int may_delete(struct mnt_idmap *idmap, struct inode *dir, struct dentry *victim, bool isdir) { struct inode *inode = d_backing_inode(victim); int error; if (d_is_negative(victim)) return -ENOENT; BUG_ON(!inode); BUG_ON(victim->d_parent->d_inode != dir); /* Inode writeback is not safe when the uid or gid are invalid. */ if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) return -EOVERFLOW; audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); if (error) return error; if (IS_APPEND(dir)) return -EPERM; if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(idmap, inode)) return -EPERM; if (isdir) { if (!d_is_dir(victim)) return -ENOTDIR; if (IS_ROOT(victim)) return -EBUSY; } else if (d_is_dir(victim)) return -EISDIR; if (IS_DEADDIR(dir)) return -ENOENT; if (victim->d_flags & DCACHE_NFSFS_RENAMED) return -EBUSY; return 0; } /* Check whether we can create an object with dentry child in directory * dir. * 1. We can't do it if child already exists (open has special treatment for * this case, but since we are inlined it's OK) * 2. We can't do it if dir is read-only (done in permission()) * 3. We can't do it if the fs can't represent the fsuid or fsgid. * 4. We should have write and exec permissions on dir * 5. We can't do it if dir is immutable (done in permission()) */ static inline int may_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *child) { audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); if (child->d_inode) return -EEXIST; if (IS_DEADDIR(dir)) return -ENOENT; if (!fsuidgid_has_mapping(dir->i_sb, idmap)) return -EOVERFLOW; return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); } // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) { struct dentry *p = p1, *q = p2, *r; while ((r = p->d_parent) != p2 && r != p) p = r; if (r == p2) { // p is a child of p2 and an ancestor of p1 or p1 itself inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); return p; } // p is the root of connected component that contains p1 // p2 does not occur on the path from p to p1 while ((r = q->d_parent) != p1 && r != p && r != q) q = r; if (r == p1) { // q is a child of p1 and an ancestor of p2 or p2 itself inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); return q; } else if (likely(r == p)) { // both p2 and p1 are descendents of p inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); return NULL; } else { // no common ancestor at the time we'd been called mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); return ERR_PTR(-EXDEV); } } /* * p1 and p2 should be directories on the same fs. */ struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) { if (p1 == p2) { inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); return NULL; } mutex_lock(&p1->d_sb->s_vfs_rename_mutex); return lock_two_directories(p1, p2); } EXPORT_SYMBOL(lock_rename); /* * c1 and p2 should be on the same fs. */ struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) { if (READ_ONCE(c1->d_parent) == p2) { /* * hopefully won't need to touch ->s_vfs_rename_mutex at all. */ inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); /* * now that p2 is locked, nobody can move in or out of it, * so the test below is safe. */ if (likely(c1->d_parent == p2)) return NULL; /* * c1 got moved out of p2 while we'd been taking locks; * unlock and fall back to slow case. */ inode_unlock(p2->d_inode); } mutex_lock(&c1->d_sb->s_vfs_rename_mutex); /* * nobody can move out of any directories on this fs. */ if (likely(c1->d_parent != p2)) return lock_two_directories(c1->d_parent, p2); /* * c1 got moved into p2 while we were taking locks; * we need p2 locked and ->s_vfs_rename_mutex unlocked, * for consistency with lock_rename(). */ inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); return NULL; } EXPORT_SYMBOL(lock_rename_child); void unlock_rename(struct dentry *p1, struct dentry *p2) { inode_unlock(p1->d_inode); if (p1 != p2) { inode_unlock(p2->d_inode); mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); } } EXPORT_SYMBOL(unlock_rename); /** * vfs_prepare_mode - prepare the mode to be used for a new inode * @idmap: idmap of the mount the inode was found from * @dir: parent directory of the new inode * @mode: mode of the new inode * @mask_perms: allowed permission by the vfs * @type: type of file to be created * * This helper consolidates and enforces vfs restrictions on the @mode of a new * object to be created. * * Umask stripping depends on whether the filesystem supports POSIX ACLs (see * the kernel documentation for mode_strip_umask()). Moving umask stripping * after setgid stripping allows the same ordering for both non-POSIX ACL and * POSIX ACL supporting filesystems. * * Note that it's currently valid for @type to be 0 if a directory is created. * Filesystems raise that flag individually and we need to check whether each * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a * non-zero type. * * Returns: mode to be passed to the filesystem */ static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, const struct inode *dir, umode_t mode, umode_t mask_perms, umode_t type) { mode = mode_strip_sgid(idmap, dir, mode); mode = mode_strip_umask(dir, mode); /* * Apply the vfs mandated allowed permission mask and set the type of * file to be created before we call into the filesystem. */ mode &= (mask_perms & ~S_IFMT); mode |= (type & S_IFMT); return mode; } /** * vfs_create - create new file * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child file * @mode: mode of the child file * @want_excl: whether the file must not yet exist * * Create a new file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool want_excl) { int error; error = may_create(idmap, dir, dentry); if (error) return error; if (!dir->i_op->create) return -EACCES; /* shouldn't it be ENOSYS? */ mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); error = security_inode_create(dir, dentry, mode); if (error) return error; error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_create); int vfs_mkobj(struct dentry *dentry, umode_t mode, int (*f)(struct dentry *, umode_t, void *), void *arg) { struct inode *dir = dentry->d_parent->d_inode; int error = may_create(&nop_mnt_idmap, dir, dentry); if (error) return error; mode &= S_IALLUGO; mode |= S_IFREG; error = security_inode_create(dir, dentry, mode); if (error) return error; error = f(dentry, mode, arg); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_mkobj); bool may_open_dev(const struct path *path) { return !(path->mnt->mnt_flags & MNT_NODEV) && !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); } static int may_open(struct mnt_idmap *idmap, const struct path *path, int acc_mode, int flag) { struct dentry *dentry = path->dentry; struct inode *inode = dentry->d_inode; int error; if (!inode) return -ENOENT; switch (inode->i_mode & S_IFMT) { case S_IFLNK: return -ELOOP; case S_IFDIR: if (acc_mode & MAY_WRITE) return -EISDIR; if (acc_mode & MAY_EXEC) return -EACCES; break; case S_IFBLK: case S_IFCHR: if (!may_open_dev(path)) return -EACCES; fallthrough; case S_IFIFO: case S_IFSOCK: if (acc_mode & MAY_EXEC) return -EACCES; flag &= ~O_TRUNC; break; case S_IFREG: if ((acc_mode & MAY_EXEC) && path_noexec(path)) return -EACCES; break; default: VFS_BUG_ON_INODE(1, inode); } error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); if (error) return error; /* * An append-only file must be opened in append mode for writing. */ if (IS_APPEND(inode)) { if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) return -EPERM; if (flag & O_TRUNC) return -EPERM; } /* O_NOATIME can only be set by the owner or superuser */ if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) return -EPERM; return 0; } static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) { const struct path *path = &filp->f_path; struct inode *inode = path->dentry->d_inode; int error = get_write_access(inode); if (error) return error; error = security_file_truncate(filp); if (!error) { error = do_truncate(idmap, path->dentry, 0, ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, filp); } put_write_access(inode); return error; } static inline int open_to_namei_flags(int flag) { if ((flag & O_ACCMODE) == 3) flag--; return flag; } static int may_o_create(struct mnt_idmap *idmap, const struct path *dir, struct dentry *dentry, umode_t mode) { int error = security_path_mknod(dir, dentry, mode, 0); if (error) return error; if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) return -EOVERFLOW; error = inode_permission(idmap, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); if (error) return error; return security_inode_create(dir->dentry->d_inode, dentry, mode); } /* * Attempt to atomically look up, create and open a file from a negative * dentry. * * Returns 0 if successful. The file will have been created and attached to * @file by the filesystem calling finish_open(). * * If the file was looked up only or didn't need creating, FMODE_OPENED won't * be set. The caller will need to perform the open themselves. @path will * have been updated to point to the new dentry. This may be negative. * * Returns an error code otherwise. */ static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, struct file *file, int open_flag, umode_t mode) { struct dentry *const DENTRY_NOT_SET = (void *) -1UL; struct inode *dir = nd->path.dentry->d_inode; int error; if (nd->flags & LOOKUP_DIRECTORY) open_flag |= O_DIRECTORY; file->f_path.dentry = DENTRY_NOT_SET; file->f_path.mnt = nd->path.mnt; error = dir->i_op->atomic_open(dir, dentry, file, open_to_namei_flags(open_flag), mode); d_lookup_done(dentry); if (!error) { if (file->f_mode & FMODE_OPENED) { if (unlikely(dentry != file->f_path.dentry)) { dput(dentry); dentry = dget(file->f_path.dentry); } } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { error = -EIO; } else { if (file->f_path.dentry) { dput(dentry); dentry = file->f_path.dentry; } if (unlikely(d_is_negative(dentry))) error = -ENOENT; } } if (error) { dput(dentry); dentry = ERR_PTR(error); } return dentry; } /* * Look up and maybe create and open the last component. * * Must be called with parent locked (exclusive in O_CREAT case). * * Returns 0 on success, that is, if * the file was successfully atomically created (if necessary) and opened, or * the file was not completely opened at this time, though lookups and * creations were performed. * These case are distinguished by presence of FMODE_OPENED on file->f_mode. * In the latter case dentry returned in @path might be negative if O_CREAT * hadn't been specified. * * An error code is returned on failure. */ static struct dentry *lookup_open(struct nameidata *nd, struct file *file, const struct open_flags *op, bool got_write) { struct mnt_idmap *idmap; struct dentry *dir = nd->path.dentry; struct inode *dir_inode = dir->d_inode; int open_flag = op->open_flag; struct dentry *dentry; int error, create_error = 0; umode_t mode = op->mode; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); if (unlikely(IS_DEADDIR(dir_inode))) return ERR_PTR(-ENOENT); file->f_mode &= ~FMODE_CREATED; dentry = d_lookup(dir, &nd->last); for (;;) { if (!dentry) { dentry = d_alloc_parallel(dir, &nd->last, &wq); if (IS_ERR(dentry)) return dentry; } if (d_in_lookup(dentry)) break; error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags); if (likely(error > 0)) break; if (error) goto out_dput; d_invalidate(dentry); dput(dentry); dentry = NULL; } if (dentry->d_inode) { /* Cached positive dentry: will open in f_op->open */ return dentry; } if (open_flag & O_CREAT) audit_inode(nd->name, dir, AUDIT_INODE_PARENT); /* * Checking write permission is tricky, bacuse we don't know if we are * going to actually need it: O_CREAT opens should work as long as the * file exists. But checking existence breaks atomicity. The trick is * to check access and if not granted clear O_CREAT from the flags. * * Another problem is returing the "right" error value (e.g. for an * O_EXCL open we want to return EEXIST not EROFS). */ if (unlikely(!got_write)) open_flag &= ~O_TRUNC; idmap = mnt_idmap(nd->path.mnt); if (open_flag & O_CREAT) { if (open_flag & O_EXCL) open_flag &= ~O_TRUNC; mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); if (likely(got_write)) create_error = may_o_create(idmap, &nd->path, dentry, mode); else create_error = -EROFS; } if (create_error) open_flag &= ~O_CREAT; if (dir_inode->i_op->atomic_open) { dentry = atomic_open(nd, dentry, file, open_flag, mode); if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) dentry = ERR_PTR(create_error); return dentry; } if (d_in_lookup(dentry)) { struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, nd->flags); d_lookup_done(dentry); if (unlikely(res)) { if (IS_ERR(res)) { error = PTR_ERR(res); goto out_dput; } dput(dentry); dentry = res; } } /* Negative dentry, just create the file */ if (!dentry->d_inode && (open_flag & O_CREAT)) { file->f_mode |= FMODE_CREATED; audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); if (!dir_inode->i_op->create) { error = -EACCES; goto out_dput; } error = dir_inode->i_op->create(idmap, dir_inode, dentry, mode, open_flag & O_EXCL); if (error) goto out_dput; } if (unlikely(create_error) && !dentry->d_inode) { error = create_error; goto out_dput; } return dentry; out_dput: dput(dentry); return ERR_PTR(error); } static inline bool trailing_slashes(struct nameidata *nd) { return (bool)nd->last.name[nd->last.len]; } static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) { struct dentry *dentry; if (open_flag & O_CREAT) { if (trailing_slashes(nd)) return ERR_PTR(-EISDIR); /* Don't bother on an O_EXCL create */ if (open_flag & O_EXCL) return NULL; } if (trailing_slashes(nd)) nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; dentry = lookup_fast(nd); if (IS_ERR_OR_NULL(dentry)) return dentry; if (open_flag & O_CREAT) { /* Discard negative dentries. Need inode_lock to do the create */ if (!dentry->d_inode) { if (!(nd->flags & LOOKUP_RCU)) dput(dentry); dentry = NULL; } } return dentry; } static const char *open_last_lookups(struct nameidata *nd, struct file *file, const struct open_flags *op) { struct dentry *dir = nd->path.dentry; int open_flag = op->open_flag; bool got_write = false; struct dentry *dentry; const char *res; nd->flags |= op->intent; if (nd->last_type != LAST_NORM) { if (nd->depth) put_link(nd); return handle_dots(nd, nd->last_type); } /* We _can_ be in RCU mode here */ dentry = lookup_fast_for_open(nd, open_flag); if (IS_ERR(dentry)) return ERR_CAST(dentry); if (likely(dentry)) goto finish_lookup; if (!(open_flag & O_CREAT)) { if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) return ERR_PTR(-ECHILD); } else { if (nd->flags & LOOKUP_RCU) { if (!try_to_unlazy(nd)) return ERR_PTR(-ECHILD); } } if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { got_write = !mnt_want_write(nd->path.mnt); /* * do _not_ fail yet - we might not need that or fail with * a different error; let lookup_open() decide; we'll be * dropping this one anyway. */ } if (open_flag & O_CREAT) inode_lock(dir->d_inode); else inode_lock_shared(dir->d_inode); dentry = lookup_open(nd, file, op, got_write); if (!IS_ERR(dentry)) { if (file->f_mode & FMODE_CREATED) fsnotify_create(dir->d_inode, dentry); if (file->f_mode & FMODE_OPENED) fsnotify_open(file); } if (open_flag & O_CREAT) inode_unlock(dir->d_inode); else inode_unlock_shared(dir->d_inode); if (got_write) mnt_drop_write(nd->path.mnt); if (IS_ERR(dentry)) return ERR_CAST(dentry); if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { dput(nd->path.dentry); nd->path.dentry = dentry; return NULL; } finish_lookup: if (nd->depth) put_link(nd); res = step_into(nd, WALK_TRAILING, dentry); if (unlikely(res)) nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); return res; } /* * Handle the last step of open() */ static int do_open(struct nameidata *nd, struct file *file, const struct open_flags *op) { struct mnt_idmap *idmap; int open_flag = op->open_flag; bool do_truncate; int acc_mode; int error; if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { error = complete_walk(nd); if (error) return error; } if (!(file->f_mode & FMODE_CREATED)) audit_inode(nd->name, nd->path.dentry, 0); idmap = mnt_idmap(nd->path.mnt); if (open_flag & O_CREAT) { if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) return -EEXIST; if (d_is_dir(nd->path.dentry)) return -EISDIR; error = may_create_in_sticky(idmap, nd, d_backing_inode(nd->path.dentry)); if (unlikely(error)) return error; } if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) return -ENOTDIR; do_truncate = false; acc_mode = op->acc_mode; if (file->f_mode & FMODE_CREATED) { /* Don't check for write permission, don't truncate */ open_flag &= ~O_TRUNC; acc_mode = 0; } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { error = mnt_want_write(nd->path.mnt); if (error) return error; do_truncate = true; } error = may_open(idmap, &nd->path, acc_mode, open_flag); if (!error && !(file->f_mode & FMODE_OPENED)) error = vfs_open(&nd->path, file); if (!error) error = security_file_post_open(file, op->acc_mode); if (!error && do_truncate) error = handle_truncate(idmap, file); if (unlikely(error > 0)) { WARN_ON(1); error = -EINVAL; } if (do_truncate) mnt_drop_write(nd->path.mnt); return error; } /** * vfs_tmpfile - create tmpfile * @idmap: idmap of the mount the inode was found from * @parentpath: pointer to the path of the base directory * @file: file descriptor of the new tmpfile * @mode: mode of the new tmpfile * * Create a temporary file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_tmpfile(struct mnt_idmap *idmap, const struct path *parentpath, struct file *file, umode_t mode) { struct dentry *child; struct inode *dir = d_inode(parentpath->dentry); struct inode *inode; int error; int open_flag = file->f_flags; /* we want directory to be writable */ error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); if (error) return error; if (!dir->i_op->tmpfile) return -EOPNOTSUPP; child = d_alloc(parentpath->dentry, &slash_name); if (unlikely(!child)) return -ENOMEM; file->f_path.mnt = parentpath->mnt; file->f_path.dentry = child; mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); error = dir->i_op->tmpfile(idmap, dir, file, mode); dput(child); if (file->f_mode & FMODE_OPENED) fsnotify_open(file); if (error) return error; /* Don't check for other permissions, the inode was just created */ error = may_open(idmap, &file->f_path, 0, file->f_flags); if (error) return error; inode = file_inode(file); if (!(open_flag & O_EXCL)) { spin_lock(&inode->i_lock); inode->i_state |= I_LINKABLE; spin_unlock(&inode->i_lock); } security_inode_post_create_tmpfile(idmap, inode); return 0; } /** * kernel_tmpfile_open - open a tmpfile for kernel internal use * @idmap: idmap of the mount the inode was found from * @parentpath: path of the base directory * @mode: mode of the new tmpfile * @open_flag: flags * @cred: credentials for open * * Create and open a temporary file. The file is not accounted in nr_files, * hence this is only for kernel internal use, and must not be installed into * file tables or such. */ struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, const struct path *parentpath, umode_t mode, int open_flag, const struct cred *cred) { struct file *file; int error; file = alloc_empty_file_noaccount(open_flag, cred); if (IS_ERR(file)) return file; error = vfs_tmpfile(idmap, parentpath, file, mode); if (error) { fput(file); file = ERR_PTR(error); } return file; } EXPORT_SYMBOL(kernel_tmpfile_open); static int do_tmpfile(struct nameidata *nd, unsigned flags, const struct open_flags *op, struct file *file) { struct path path; int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); if (unlikely(error)) return error; error = mnt_want_write(path.mnt); if (unlikely(error)) goto out; error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); if (error) goto out2; audit_inode(nd->name, file->f_path.dentry, 0); out2: mnt_drop_write(path.mnt); out: path_put(&path); return error; } static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) { struct path path; int error = path_lookupat(nd, flags, &path); if (!error) { audit_inode(nd->name, path.dentry, 0); error = vfs_open(&path, file); path_put(&path); } return error; } static struct file *path_openat(struct nameidata *nd, const struct open_flags *op, unsigned flags) { struct file *file; int error; file = alloc_empty_file(op->open_flag, current_cred()); if (IS_ERR(file)) return file; if (unlikely(file->f_flags & __O_TMPFILE)) { error = do_tmpfile(nd, flags, op, file); } else if (unlikely(file->f_flags & O_PATH)) { error = do_o_path(nd, flags, file); } else { const char *s = path_init(nd, flags); while (!(error = link_path_walk(s, nd)) && (s = open_last_lookups(nd, file, op)) != NULL) ; if (!error) error = do_open(nd, file, op); terminate_walk(nd); } if (likely(!error)) { if (likely(file->f_mode & FMODE_OPENED)) return file; WARN_ON(1); error = -EINVAL; } fput_close(file); if (error == -EOPENSTALE) { if (flags & LOOKUP_RCU) error = -ECHILD; else error = -ESTALE; } return ERR_PTR(error); } struct file *do_filp_open(int dfd, struct filename *pathname, const struct open_flags *op) { struct nameidata nd; int flags = op->lookup_flags; struct file *filp; set_nameidata(&nd, dfd, pathname, NULL); filp = path_openat(&nd, op, flags | LOOKUP_RCU); if (unlikely(filp == ERR_PTR(-ECHILD))) filp = path_openat(&nd, op, flags); if (unlikely(filp == ERR_PTR(-ESTALE))) filp = path_openat(&nd, op, flags | LOOKUP_REVAL); restore_nameidata(); return filp; } struct file *do_file_open_root(const struct path *root, const char *name, const struct open_flags *op) { struct nameidata nd; struct file *file; struct filename *filename; int flags = op->lookup_flags; if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) return ERR_PTR(-ELOOP); filename = getname_kernel(name); if (IS_ERR(filename)) return ERR_CAST(filename); set_nameidata(&nd, -1, filename, root); file = path_openat(&nd, op, flags | LOOKUP_RCU); if (unlikely(file == ERR_PTR(-ECHILD))) file = path_openat(&nd, op, flags); if (unlikely(file == ERR_PTR(-ESTALE))) file = path_openat(&nd, op, flags | LOOKUP_REVAL); restore_nameidata(); putname(filename); return file; } static struct dentry *filename_create(int dfd, struct filename *name, struct path *path, unsigned int lookup_flags) { struct dentry *dentry = ERR_PTR(-EEXIST); struct qstr last; bool want_dir = lookup_flags & LOOKUP_DIRECTORY; unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; int type; int err2; int error; error = filename_parentat(dfd, name, reval_flag, path, &last, &type); if (error) return ERR_PTR(error); /* * Yucky last component or no last component at all? * (foo/., foo/.., /////) */ if (unlikely(type != LAST_NORM)) goto out; /* don't fail immediately if it's r/o, at least try to report other errors */ err2 = mnt_want_write(path->mnt); /* * Do the final lookup. Suppress 'create' if there is a trailing * '/', and a directory wasn't requested. */ if (last.name[last.len] && !want_dir) create_flags &= ~LOOKUP_CREATE; inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); dentry = lookup_one_qstr_excl(&last, path->dentry, reval_flag | create_flags); if (IS_ERR(dentry)) goto unlock; if (unlikely(err2)) { error = err2; goto fail; } return dentry; fail: dput(dentry); dentry = ERR_PTR(error); unlock: inode_unlock(path->dentry->d_inode); if (!err2) mnt_drop_write(path->mnt); out: path_put(path); return dentry; } struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, unsigned int lookup_flags) { struct filename *filename = getname_kernel(pathname); struct dentry *res = filename_create(dfd, filename, path, lookup_flags); putname(filename); return res; } EXPORT_SYMBOL(kern_path_create); void done_path_create(struct path *path, struct dentry *dentry) { if (!IS_ERR(dentry)) dput(dentry); inode_unlock(path->dentry->d_inode); mnt_drop_write(path->mnt); path_put(path); } EXPORT_SYMBOL(done_path_create); inline struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, unsigned int lookup_flags) { struct filename *filename = getname(pathname); struct dentry *res = filename_create(dfd, filename, path, lookup_flags); putname(filename); return res; } EXPORT_SYMBOL(user_path_create); /** * vfs_mknod - create device node or file * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child device node * @mode: mode of the child device node * @dev: device number of device to create * * Create a device node or file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; int error = may_create(idmap, dir, dentry); if (error) return error; if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && !capable(CAP_MKNOD)) return -EPERM; if (!dir->i_op->mknod) return -EPERM; mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); error = devcgroup_inode_mknod(mode, dev); if (error) return error; error = security_inode_mknod(dir, dentry, mode, dev); if (error) return error; error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_mknod); static int may_mknod(umode_t mode) { switch (mode & S_IFMT) { case S_IFREG: case S_IFCHR: case S_IFBLK: case S_IFIFO: case S_IFSOCK: case 0: /* zero mode translates to S_IFREG */ return 0; case S_IFDIR: return -EPERM; default: return -EINVAL; } } static int do_mknodat(int dfd, struct filename *name, umode_t mode, unsigned int dev) { struct mnt_idmap *idmap; struct dentry *dentry; struct path path; int error; unsigned int lookup_flags = 0; error = may_mknod(mode); if (error) goto out1; retry: dentry = filename_create(dfd, name, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out1; error = security_path_mknod(&path, dentry, mode_strip_umask(path.dentry->d_inode, mode), dev); if (error) goto out2; idmap = mnt_idmap(path.mnt); switch (mode & S_IFMT) { case 0: case S_IFREG: error = vfs_create(idmap, path.dentry->d_inode, dentry, mode, true); if (!error) security_path_post_mknod(idmap, dentry); break; case S_IFCHR: case S_IFBLK: error = vfs_mknod(idmap, path.dentry->d_inode, dentry, mode, new_decode_dev(dev)); break; case S_IFIFO: case S_IFSOCK: error = vfs_mknod(idmap, path.dentry->d_inode, dentry, mode, 0); break; } out2: done_path_create(&path, dentry); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out1: putname(name); return error; } SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, unsigned int, dev) { return do_mknodat(dfd, getname(filename), mode, dev); } SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) { return do_mknodat(AT_FDCWD, getname(filename), mode, dev); } /** * vfs_mkdir - create directory returning correct dentry if possible * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child directory * @mode: mode of the child directory * * Create a directory. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. * * In the event that the filesystem does not use the *@dentry but leaves it * negative or unhashes it and possibly splices a different one returning it, * the original dentry is dput() and the alternate is returned. * * In case of an error the dentry is dput() and an ERR_PTR() is returned. */ struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { int error; unsigned max_links = dir->i_sb->s_max_links; struct dentry *de; error = may_create(idmap, dir, dentry); if (error) goto err; error = -EPERM; if (!dir->i_op->mkdir) goto err; mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); error = security_inode_mkdir(dir, dentry, mode); if (error) goto err; error = -EMLINK; if (max_links && dir->i_nlink >= max_links) goto err; de = dir->i_op->mkdir(idmap, dir, dentry, mode); error = PTR_ERR(de); if (IS_ERR(de)) goto err; if (de) { dput(dentry); dentry = de; } fsnotify_mkdir(dir, dentry); return dentry; err: dput(dentry); return ERR_PTR(error); } EXPORT_SYMBOL(vfs_mkdir); int do_mkdirat(int dfd, struct filename *name, umode_t mode) { struct dentry *dentry; struct path path; int error; unsigned int lookup_flags = LOOKUP_DIRECTORY; retry: dentry = filename_create(dfd, name, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_putname; error = security_path_mkdir(&path, dentry, mode_strip_umask(path.dentry->d_inode, mode)); if (!error) { dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry, mode); if (IS_ERR(dentry)) error = PTR_ERR(dentry); } done_path_create(&path, dentry); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out_putname: putname(name); return error; } SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) { return do_mkdirat(dfd, getname(pathname), mode); } SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) { return do_mkdirat(AT_FDCWD, getname(pathname), mode); } /** * vfs_rmdir - remove directory * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child directory * * Remove a directory. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry) { int error = may_delete(idmap, dir, dentry, 1); if (error) return error; if (!dir->i_op->rmdir) return -EPERM; dget(dentry); inode_lock(dentry->d_inode); error = -EBUSY; if (is_local_mountpoint(dentry) || (dentry->d_inode->i_flags & S_KERNEL_FILE)) goto out; error = security_inode_rmdir(dir, dentry); if (error) goto out; error = dir->i_op->rmdir(dir, dentry); if (error) goto out; shrink_dcache_parent(dentry); dentry->d_inode->i_flags |= S_DEAD; dont_mount(dentry); detach_mounts(dentry); out: inode_unlock(dentry->d_inode); dput(dentry); if (!error) d_delete_notify(dir, dentry); return error; } EXPORT_SYMBOL(vfs_rmdir); int do_rmdir(int dfd, struct filename *name) { int error; struct dentry *dentry; struct path path; struct qstr last; int type; unsigned int lookup_flags = 0; retry: error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); if (error) goto exit1; switch (type) { case LAST_DOTDOT: error = -ENOTEMPTY; goto exit2; case LAST_DOT: error = -EINVAL; goto exit2; case LAST_ROOT: error = -EBUSY; goto exit2; } error = mnt_want_write(path.mnt); if (error) goto exit2; inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit3; error = security_path_rmdir(&path, dentry); if (error) goto exit4; error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); exit4: dput(dentry); exit3: inode_unlock(path.dentry->d_inode); mnt_drop_write(path.mnt); exit2: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } exit1: putname(name); return error; } SYSCALL_DEFINE1(rmdir, const char __user *, pathname) { return do_rmdir(AT_FDCWD, getname(pathname)); } /** * vfs_unlink - unlink a filesystem object * @idmap: idmap of the mount the inode was found from * @dir: parent directory * @dentry: victim * @delegated_inode: returns victim inode, if the inode is delegated. * * The caller must hold dir->i_mutex. * * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and * return a reference to the inode in delegated_inode. The caller * should then break the delegation on that inode and retry. Because * breaking a delegation may take a long time, the caller should drop * dir->i_mutex before doing so. * * Alternatively, a caller may pass NULL for delegated_inode. This may * be appropriate for callers that expect the underlying filesystem not * to be NFS exported. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) { struct inode *target = dentry->d_inode; int error = may_delete(idmap, dir, dentry, 0); if (error) return error; if (!dir->i_op->unlink) return -EPERM; inode_lock(target); if (IS_SWAPFILE(target)) error = -EPERM; else if (is_local_mountpoint(dentry)) error = -EBUSY; else { error = security_inode_unlink(dir, dentry); if (!error) { error = try_break_deleg(target, delegated_inode); if (error) goto out; error = dir->i_op->unlink(dir, dentry); if (!error) { dont_mount(dentry); detach_mounts(dentry); } } } out: inode_unlock(target); /* We don't d_delete() NFS sillyrenamed files--they still exist. */ if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { fsnotify_unlink(dir, dentry); } else if (!error) { fsnotify_link_count(target); d_delete_notify(dir, dentry); } return error; } EXPORT_SYMBOL(vfs_unlink); /* * Make sure that the actual truncation of the file will occur outside its * directory's i_mutex. Truncate can take a long time if there is a lot of * writeout happening, and we don't want to prevent access to the directory * while waiting on the I/O. */ int do_unlinkat(int dfd, struct filename *name) { int error; struct dentry *dentry; struct path path; struct qstr last; int type; struct inode *inode = NULL; struct inode *delegated_inode = NULL; unsigned int lookup_flags = 0; retry: error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); if (error) goto exit1; error = -EISDIR; if (type != LAST_NORM) goto exit2; error = mnt_want_write(path.mnt); if (error) goto exit2; retry_deleg: inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { /* Why not before? Because we want correct error value */ if (last.name[last.len]) goto slashes; inode = dentry->d_inode; ihold(inode); error = security_path_unlink(&path, dentry); if (error) goto exit3; error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, dentry, &delegated_inode); exit3: dput(dentry); } inode_unlock(path.dentry->d_inode); if (inode) iput(inode); /* truncate the inode here */ inode = NULL; if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(path.mnt); exit2: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; inode = NULL; goto retry; } exit1: putname(name); return error; slashes: if (d_is_dir(dentry)) error = -EISDIR; else error = -ENOTDIR; goto exit3; } SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) { if ((flag & ~AT_REMOVEDIR) != 0) return -EINVAL; if (flag & AT_REMOVEDIR) return do_rmdir(dfd, getname(pathname)); return do_unlinkat(dfd, getname(pathname)); } SYSCALL_DEFINE1(unlink, const char __user *, pathname) { return do_unlinkat(AT_FDCWD, getname(pathname)); } /** * vfs_symlink - create symlink * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child symlink file * @oldname: name of the file to link to * * Create a symlink. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *oldname) { int error; error = may_create(idmap, dir, dentry); if (error) return error; if (!dir->i_op->symlink) return -EPERM; error = security_inode_symlink(dir, dentry, oldname); if (error) return error; error = dir->i_op->symlink(idmap, dir, dentry, oldname); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_symlink); int do_symlinkat(struct filename *from, int newdfd, struct filename *to) { int error; struct dentry *dentry; struct path path; unsigned int lookup_flags = 0; if (IS_ERR(from)) { error = PTR_ERR(from); goto out_putnames; } retry: dentry = filename_create(newdfd, to, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_putnames; error = security_path_symlink(&path, dentry, from->name); if (!error) error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, dentry, from->name); done_path_create(&path, dentry); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out_putnames: putname(to); putname(from); return error; } SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, int, newdfd, const char __user *, newname) { return do_symlinkat(getname(oldname), newdfd, getname(newname)); } SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) { return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); } /** * vfs_link - create a new link * @old_dentry: object to be linked * @idmap: idmap of the mount * @dir: new parent * @new_dentry: where to create the new link * @delegated_inode: returns inode needing a delegation break * * The caller must hold dir->i_mutex * * If vfs_link discovers a delegation on the to-be-linked file in need * of breaking, it will return -EWOULDBLOCK and return a reference to the * inode in delegated_inode. The caller should then break the delegation * and retry. Because breaking a delegation may take a long time, the * caller should drop the i_mutex before doing so. * * Alternatively, a caller may pass NULL for delegated_inode. This may * be appropriate for callers that expect the underlying filesystem not * to be NFS exported. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) { struct inode *inode = old_dentry->d_inode; unsigned max_links = dir->i_sb->s_max_links; int error; if (!inode) return -ENOENT; error = may_create(idmap, dir, new_dentry); if (error) return error; if (dir->i_sb != inode->i_sb) return -EXDEV; /* * A link to an append-only or immutable file cannot be created. */ if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; /* * Updating the link count will likely cause i_uid and i_gid to * be writen back improperly if their true value is unknown to * the vfs. */ if (HAS_UNMAPPED_ID(idmap, inode)) return -EPERM; if (!dir->i_op->link) return -EPERM; if (S_ISDIR(inode->i_mode)) return -EPERM; error = security_inode_link(old_dentry, dir, new_dentry); if (error) return error; inode_lock(inode); /* Make sure we don't allow creating hardlink to an unlinked file */ if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) error = -ENOENT; else if (max_links && inode->i_nlink >= max_links) error = -EMLINK; else { error = try_break_deleg(inode, delegated_inode); if (!error) error = dir->i_op->link(old_dentry, dir, new_dentry); } if (!error && (inode->i_state & I_LINKABLE)) { spin_lock(&inode->i_lock); inode->i_state &= ~I_LINKABLE; spin_unlock(&inode->i_lock); } inode_unlock(inode); if (!error) fsnotify_link(dir, inode, new_dentry); return error; } EXPORT_SYMBOL(vfs_link); /* * Hardlinks are often used in delicate situations. We avoid * security-related surprises by not following symlinks on the * newname. --KAB * * We don't follow them on the oldname either to be compatible * with linux 2.0, and to avoid hard-linking to directories * and other special files. --ADM */ int do_linkat(int olddfd, struct filename *old, int newdfd, struct filename *new, int flags) { struct mnt_idmap *idmap; struct dentry *new_dentry; struct path old_path, new_path; struct inode *delegated_inode = NULL; int how = 0; int error; if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { error = -EINVAL; goto out_putnames; } /* * To use null names we require CAP_DAC_READ_SEARCH or * that the open-time creds of the dfd matches current. * This ensures that not everyone will be able to create * a hardlink using the passed file descriptor. */ if (flags & AT_EMPTY_PATH) how |= LOOKUP_LINKAT_EMPTY; if (flags & AT_SYMLINK_FOLLOW) how |= LOOKUP_FOLLOW; retry: error = filename_lookup(olddfd, old, how, &old_path, NULL); if (error) goto out_putnames; new_dentry = filename_create(newdfd, new, &new_path, (how & LOOKUP_REVAL)); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto out_putpath; error = -EXDEV; if (old_path.mnt != new_path.mnt) goto out_dput; idmap = mnt_idmap(new_path.mnt); error = may_linkat(idmap, &old_path); if (unlikely(error)) goto out_dput; error = security_path_link(old_path.dentry, &new_path, new_dentry); if (error) goto out_dput; error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, new_dentry, &delegated_inode); out_dput: done_path_create(&new_path, new_dentry); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) { path_put(&old_path); goto retry; } } if (retry_estale(error, how)) { path_put(&old_path); how |= LOOKUP_REVAL; goto retry; } out_putpath: path_put(&old_path); out_putnames: putname(old); putname(new); return error; } SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname, int, flags) { return do_linkat(olddfd, getname_uflags(oldname, flags), newdfd, getname(newname), flags); } SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) { return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); } /** * vfs_rename - rename a filesystem object * @rd: pointer to &struct renamedata info * * The caller must hold multiple mutexes--see lock_rename()). * * If vfs_rename discovers a delegation in need of breaking at either * the source or destination, it will return -EWOULDBLOCK and return a * reference to the inode in delegated_inode. The caller should then * break the delegation and retry. Because breaking a delegation may * take a long time, the caller should drop all locks before doing * so. * * Alternatively, a caller may pass NULL for delegated_inode. This may * be appropriate for callers that expect the underlying filesystem not * to be NFS exported. * * The worst of all namespace operations - renaming directory. "Perverted" * doesn't even start to describe it. Somebody in UCB had a heck of a trip... * Problems: * * a) we can get into loop creation. * b) race potential - two innocent renames can create a loop together. * That's where 4.4BSD screws up. Current fix: serialization on * sb->s_vfs_rename_mutex. We might be more accurate, but that's another * story. * c) we may have to lock up to _four_ objects - parents and victim (if it exists), * and source (if it's a non-directory or a subdirectory that moves to * different parent). * And that - after we got ->i_mutex on parents (until then we don't know * whether the target exists). Solution: try to be smart with locking * order for inodes. We rely on the fact that tree topology may change * only under ->s_vfs_rename_mutex _and_ that parent of the object we * move will be locked. Thus we can rank directories by the tree * (ancestors first) and rank all non-directories after them. * That works since everybody except rename does "lock parent, lookup, * lock child" and rename is under ->s_vfs_rename_mutex. * HOWEVER, it relies on the assumption that any object with ->lookup() * has no more than 1 dentry. If "hybrid" objects will ever appear, * we'd better make sure that there's no link(2) for them. * d) conversion from fhandle to dentry may come in the wrong moment - when * we are removing the target. Solution: we will have to grab ->i_mutex * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on * ->i_mutex on parents, which works but leads to some truly excessive * locking]. */ int vfs_rename(struct renamedata *rd) { int error; struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; struct dentry *old_dentry = rd->old_dentry; struct dentry *new_dentry = rd->new_dentry; struct inode **delegated_inode = rd->delegated_inode; unsigned int flags = rd->flags; bool is_dir = d_is_dir(old_dentry); struct inode *source = old_dentry->d_inode; struct inode *target = new_dentry->d_inode; bool new_is_dir = false; unsigned max_links = new_dir->i_sb->s_max_links; struct name_snapshot old_name; bool lock_old_subdir, lock_new_subdir; if (source == target) return 0; error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); if (error) return error; if (!target) { error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); } else { new_is_dir = d_is_dir(new_dentry); if (!(flags & RENAME_EXCHANGE)) error = may_delete(rd->new_mnt_idmap, new_dir, new_dentry, is_dir); else error = may_delete(rd->new_mnt_idmap, new_dir, new_dentry, new_is_dir); } if (error) return error; if (!old_dir->i_op->rename) return -EPERM; /* * If we are going to change the parent - check write permissions, * we'll need to flip '..'. */ if (new_dir != old_dir) { if (is_dir) { error = inode_permission(rd->old_mnt_idmap, source, MAY_WRITE); if (error) return error; } if ((flags & RENAME_EXCHANGE) && new_is_dir) { error = inode_permission(rd->new_mnt_idmap, target, MAY_WRITE); if (error) return error; } } error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, flags); if (error) return error; take_dentry_name_snapshot(&old_name, old_dentry); dget(new_dentry); /* * Lock children. * The source subdirectory needs to be locked on cross-directory * rename or cross-directory exchange since its parent changes. * The target subdirectory needs to be locked on cross-directory * exchange due to parent change and on any rename due to becoming * a victim. * Non-directories need locking in all cases (for NFS reasons); * they get locked after any subdirectories (in inode address order). * * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. */ lock_old_subdir = new_dir != old_dir; lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); if (is_dir) { if (lock_old_subdir) inode_lock_nested(source, I_MUTEX_CHILD); if (target && (!new_is_dir || lock_new_subdir)) inode_lock(target); } else if (new_is_dir) { if (lock_new_subdir) inode_lock_nested(target, I_MUTEX_CHILD); inode_lock(source); } else { lock_two_nondirectories(source, target); } error = -EPERM; if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) goto out; error = -EBUSY; if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) goto out; if (max_links && new_dir != old_dir) { error = -EMLINK; if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) goto out; if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && old_dir->i_nlink >= max_links) goto out; } if (!is_dir) { error = try_break_deleg(source, delegated_inode); if (error) goto out; } if (target && !new_is_dir) { error = try_break_deleg(target, delegated_inode); if (error) goto out; } error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, new_dir, new_dentry, flags); if (error) goto out; if (!(flags & RENAME_EXCHANGE) && target) { if (is_dir) { shrink_dcache_parent(new_dentry); target->i_flags |= S_DEAD; } dont_mount(new_dentry); detach_mounts(new_dentry); } if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { if (!(flags & RENAME_EXCHANGE)) d_move(old_dentry, new_dentry); else d_exchange(old_dentry, new_dentry); } out: if (!is_dir || lock_old_subdir) inode_unlock(source); if (target && (!new_is_dir || lock_new_subdir)) inode_unlock(target); dput(new_dentry); if (!error) { fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); if (flags & RENAME_EXCHANGE) { fsnotify_move(new_dir, old_dir, &old_dentry->d_name, new_is_dir, NULL, new_dentry); } } release_dentry_name_snapshot(&old_name); return error; } EXPORT_SYMBOL(vfs_rename); int do_renameat2(int olddfd, struct filename *from, int newdfd, struct filename *to, unsigned int flags) { struct renamedata rd; struct dentry *old_dentry, *new_dentry; struct dentry *trap; struct path old_path, new_path; struct qstr old_last, new_last; int old_type, new_type; struct inode *delegated_inode = NULL; unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE; bool should_retry = false; int error = -EINVAL; if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) goto put_names; if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && (flags & RENAME_EXCHANGE)) goto put_names; if (flags & RENAME_EXCHANGE) target_flags = 0; if (flags & RENAME_NOREPLACE) target_flags |= LOOKUP_EXCL; retry: error = filename_parentat(olddfd, from, lookup_flags, &old_path, &old_last, &old_type); if (error) goto put_names; error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, &new_type); if (error) goto exit1; error = -EXDEV; if (old_path.mnt != new_path.mnt) goto exit2; error = -EBUSY; if (old_type != LAST_NORM) goto exit2; if (flags & RENAME_NOREPLACE) error = -EEXIST; if (new_type != LAST_NORM) goto exit2; error = mnt_want_write(old_path.mnt); if (error) goto exit2; retry_deleg: trap = lock_rename(new_path.dentry, old_path.dentry); if (IS_ERR(trap)) { error = PTR_ERR(trap); goto exit_lock_rename; } old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, lookup_flags); error = PTR_ERR(old_dentry); if (IS_ERR(old_dentry)) goto exit3; new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, lookup_flags | target_flags); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto exit4; if (flags & RENAME_EXCHANGE) { if (!d_is_dir(new_dentry)) { error = -ENOTDIR; if (new_last.name[new_last.len]) goto exit5; } } /* unless the source is a directory trailing slashes give -ENOTDIR */ if (!d_is_dir(old_dentry)) { error = -ENOTDIR; if (old_last.name[old_last.len]) goto exit5; if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) goto exit5; } /* source should not be ancestor of target */ error = -EINVAL; if (old_dentry == trap) goto exit5; /* target should not be an ancestor of source */ if (!(flags & RENAME_EXCHANGE)) error = -ENOTEMPTY; if (new_dentry == trap) goto exit5; error = security_path_rename(&old_path, old_dentry, &new_path, new_dentry, flags); if (error) goto exit5; rd.old_dir = old_path.dentry->d_inode; rd.old_dentry = old_dentry; rd.old_mnt_idmap = mnt_idmap(old_path.mnt); rd.new_dir = new_path.dentry->d_inode; rd.new_dentry = new_dentry; rd.new_mnt_idmap = mnt_idmap(new_path.mnt); rd.delegated_inode = &delegated_inode; rd.flags = flags; error = vfs_rename(&rd); exit5: dput(new_dentry); exit4: dput(old_dentry); exit3: unlock_rename(new_path.dentry, old_path.dentry); exit_lock_rename: if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(old_path.mnt); exit2: if (retry_estale(error, lookup_flags)) should_retry = true; path_put(&new_path); exit1: path_put(&old_path); if (should_retry) { should_retry = false; lookup_flags |= LOOKUP_REVAL; goto retry; } put_names: putname(from); putname(to); return error; } SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname, unsigned int, flags) { return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), flags); } SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname) { return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 0); } SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) { return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); } int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen) { int copylen; copylen = linklen; if (unlikely(copylen > (unsigned) buflen)) copylen = buflen; if (copy_to_user(buffer, link, copylen)) copylen = -EFAULT; return copylen; } /** * vfs_readlink - copy symlink body into userspace buffer * @dentry: dentry on which to get symbolic link * @buffer: user memory pointer * @buflen: size of buffer * * Does not touch atime. That's up to the caller if necessary * * Does not call security hook. */ int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct inode *inode = d_inode(dentry); DEFINE_DELAYED_CALL(done); const char *link; int res; if (inode->i_opflags & IOP_CACHED_LINK) return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen); if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { if (unlikely(inode->i_op->readlink)) return inode->i_op->readlink(dentry, buffer, buflen); if (!d_is_symlink(dentry)) return -EINVAL; spin_lock(&inode->i_lock); inode->i_opflags |= IOP_DEFAULT_READLINK; spin_unlock(&inode->i_lock); } link = READ_ONCE(inode->i_link); if (!link) { link = inode->i_op->get_link(dentry, inode, &done); if (IS_ERR(link)) return PTR_ERR(link); } res = readlink_copy(buffer, buflen, link, strlen(link)); do_delayed_call(&done); return res; } EXPORT_SYMBOL(vfs_readlink); /** * vfs_get_link - get symlink body * @dentry: dentry on which to get symbolic link * @done: caller needs to free returned data with this * * Calls security hook and i_op->get_link() on the supplied inode. * * It does not touch atime. That's up to the caller if necessary. * * Does not work on "special" symlinks like /proc/$$/fd/N */ const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) { const char *res = ERR_PTR(-EINVAL); struct inode *inode = d_inode(dentry); if (d_is_symlink(dentry)) { res = ERR_PTR(security_inode_readlink(dentry)); if (!res) res = inode->i_op->get_link(dentry, inode, done); } return res; } EXPORT_SYMBOL(vfs_get_link); /* get the link contents into pagecache */ static char *__page_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *callback) { struct page *page; struct address_space *mapping = inode->i_mapping; if (!dentry) { page = find_get_page(mapping, 0); if (!page) return ERR_PTR(-ECHILD); if (!PageUptodate(page)) { put_page(page); return ERR_PTR(-ECHILD); } } else { page = read_mapping_page(mapping, 0, NULL); if (IS_ERR(page)) return (char*)page; } set_delayed_call(callback, page_put_link, page); BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); return page_address(page); } const char *page_get_link_raw(struct dentry *dentry, struct inode *inode, struct delayed_call *callback) { return __page_get_link(dentry, inode, callback); } EXPORT_SYMBOL_GPL(page_get_link_raw); const char *page_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *callback) { char *kaddr = __page_get_link(dentry, inode, callback); if (!IS_ERR(kaddr)) nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); return kaddr; } EXPORT_SYMBOL(page_get_link); void page_put_link(void *arg) { put_page(arg); } EXPORT_SYMBOL(page_put_link); int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) { const char *link; int res; DEFINE_DELAYED_CALL(done); link = page_get_link(dentry, d_inode(dentry), &done); res = PTR_ERR(link); if (!IS_ERR(link)) res = readlink_copy(buffer, buflen, link, strlen(link)); do_delayed_call(&done); return res; } EXPORT_SYMBOL(page_readlink); int page_symlink(struct inode *inode, const char *symname, int len) { struct address_space *mapping = inode->i_mapping; const struct address_space_operations *aops = mapping->a_ops; bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); struct folio *folio; void *fsdata = NULL; int err; unsigned int flags; retry: if (nofs) flags = memalloc_nofs_save(); err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); if (nofs) memalloc_nofs_restore(flags); if (err) goto fail; memcpy(folio_address(folio), symname, len - 1); err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, folio, fsdata); if (err < 0) goto fail; if (err < len-1) goto retry; mark_inode_dirty(inode); return 0; fail: return err; } EXPORT_SYMBOL(page_symlink); const struct inode_operations page_symlink_inode_operations = { .get_link = page_get_link, }; EXPORT_SYMBOL(page_symlink_inode_operations);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <stephen.smalley.work@gmail.com> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * Support for enhanced MLS infrastructure. * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(const struct mls_level *l1, const struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_equal(&l1->cat, &l2->cat)); } static inline int mls_level_dom(const struct mls_level *l1, const struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/blkdev.h> #include <asm/local.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->bd_stats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ TYPEOF_UNQUAL((part)->bd_stats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->bd_stats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct block_device *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->bd_stats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->bd_stats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if (bdev_is_partition(part)) \ __part_stat_add(bdev_whole(part), field, addnd); \ } while (0) #define part_stat_dec(part, field) \ part_stat_add(part, field, -1) #define part_stat_inc(part, field) \ part_stat_add(part, field, 1) #define part_stat_sub(part, field, subnd) \ part_stat_add(part, field, -subnd) #define part_stat_local_dec(part, field) \ local_dec(&(part_stat_get(part, field))) #define part_stat_local_inc(part, field) \ local_inc(&(part_stat_get(part, field))) #define part_stat_local_read(part, field) \ local_read(&(part_stat_get(part, field))) #define part_stat_local_read_cpu(part, field, cpu) \ local_read(&(part_stat_get_cpu(part, field, cpu))) #endif /* _LINUX_PART_STAT_H */
765 946 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 #ifndef _LINUX_GENERIC_RADIX_TREE_H #define _LINUX_GENERIC_RADIX_TREE_H /** * DOC: Generic radix trees/sparse arrays * * Very simple and minimalistic, supporting arbitrary size entries up to * GENRADIX_NODE_SIZE. * * A genradix is defined with the type it will store, like so: * * static GENRADIX(struct foo) foo_genradix; * * The main operations are: * * - genradix_init(radix) - initialize an empty genradix * * - genradix_free(radix) - free all memory owned by the genradix and * reinitialize it * * - genradix_ptr(radix, idx) - gets a pointer to the entry at idx, returning * NULL if that entry does not exist * * - genradix_ptr_alloc(radix, idx, gfp) - gets a pointer to an entry, * allocating it if necessary * * - genradix_for_each(radix, iter, p) - iterate over each entry in a genradix * * The radix tree allocates one page of entries at a time, so entries may exist * that were never explicitly allocated - they will be initialized to all * zeroes. * * Internally, a genradix is just a radix tree of pages, and indexing works in * terms of byte offsets. The wrappers in this header file use sizeof on the * type the radix contains to calculate a byte offset from the index - see * __idx_to_offset. */ #include <asm/page.h> #include <linux/bug.h> #include <linux/limits.h> #include <linux/log2.h> #include <linux/math.h> #include <linux/slab.h> #include <linux/types.h> struct genradix_root; #define GENRADIX_NODE_SHIFT 9 #define GENRADIX_NODE_SIZE (1U << GENRADIX_NODE_SHIFT) #define GENRADIX_ARY (GENRADIX_NODE_SIZE / sizeof(struct genradix_node *)) #define GENRADIX_ARY_SHIFT ilog2(GENRADIX_ARY) /* depth that's needed for a genradix that can address up to ULONG_MAX: */ #define GENRADIX_MAX_DEPTH \ DIV_ROUND_UP(BITS_PER_LONG - GENRADIX_NODE_SHIFT, GENRADIX_ARY_SHIFT) #define GENRADIX_DEPTH_MASK \ ((unsigned long) (roundup_pow_of_two(GENRADIX_MAX_DEPTH + 1) - 1)) static inline int genradix_depth_shift(unsigned depth) { return GENRADIX_NODE_SHIFT + GENRADIX_ARY_SHIFT * depth; } /* * Returns size (of data, in bytes) that a tree of a given depth holds: */ static inline size_t genradix_depth_size(unsigned depth) { return 1UL << genradix_depth_shift(depth); } static inline unsigned genradix_root_to_depth(struct genradix_root *r) { return (unsigned long) r & GENRADIX_DEPTH_MASK; } static inline struct genradix_node *genradix_root_to_node(struct genradix_root *r) { return (void *) ((unsigned long) r & ~GENRADIX_DEPTH_MASK); } struct __genradix { struct genradix_root *root; }; struct genradix_node { union { /* Interior node: */ struct genradix_node *children[GENRADIX_ARY]; /* Leaf: */ u8 data[GENRADIX_NODE_SIZE]; }; }; static inline struct genradix_node *genradix_alloc_node(gfp_t gfp_mask) { return kzalloc(GENRADIX_NODE_SIZE, gfp_mask); } static inline void genradix_free_node(struct genradix_node *node) { kfree(node); } /* * NOTE: currently, sizeof(_type) must not be larger than GENRADIX_NODE_SIZE: */ #define __GENRADIX_INITIALIZER \ { \ .tree = { \ .root = NULL, \ } \ } /* * We use a 0 size array to stash the type we're storing without taking any * space at runtime - then the various accessor macros can use typeof() to get * to it for casts/sizeof - we also force the alignment so that storing a type * with a ridiculous alignment doesn't blow up the alignment or size of the * genradix. */ #define GENRADIX(_type) \ struct { \ struct __genradix tree; \ _type type[0] __aligned(1); \ } #define DEFINE_GENRADIX(_name, _type) \ GENRADIX(_type) _name = __GENRADIX_INITIALIZER /** * genradix_init - initialize a genradix * @_radix: genradix to initialize * * Does not fail */ #define genradix_init(_radix) \ do { \ *(_radix) = (typeof(*_radix)) __GENRADIX_INITIALIZER; \ } while (0) void __genradix_free(struct __genradix *); /** * genradix_free: free all memory owned by a genradix * @_radix: the genradix to free * * After freeing, @_radix will be reinitialized and empty */ #define genradix_free(_radix) __genradix_free(&(_radix)->tree) static inline size_t __idx_to_offset(size_t idx, size_t obj_size) { if (__builtin_constant_p(obj_size)) BUILD_BUG_ON(obj_size > GENRADIX_NODE_SIZE); else BUG_ON(obj_size > GENRADIX_NODE_SIZE); if (!is_power_of_2(obj_size)) { size_t objs_per_page = GENRADIX_NODE_SIZE / obj_size; return (idx / objs_per_page) * GENRADIX_NODE_SIZE + (idx % objs_per_page) * obj_size; } else { return idx * obj_size; } } #define __genradix_cast(_radix) (typeof((_radix)->type[0]) *) #define __genradix_obj_size(_radix) sizeof((_radix)->type[0]) #define __genradix_objs_per_page(_radix) \ (GENRADIX_NODE_SIZE / sizeof((_radix)->type[0])) #define __genradix_page_remainder(_radix) \ (GENRADIX_NODE_SIZE % sizeof((_radix)->type[0])) #define __genradix_idx_to_offset(_radix, _idx) \ __idx_to_offset(_idx, __genradix_obj_size(_radix)) static inline void *__genradix_ptr_inlined(struct __genradix *radix, size_t offset) { struct genradix_root *r = READ_ONCE(radix->root); struct genradix_node *n = genradix_root_to_node(r); unsigned level = genradix_root_to_depth(r); unsigned shift = genradix_depth_shift(level); if (unlikely(ilog2(offset) >= genradix_depth_shift(level))) return NULL; while (n && shift > GENRADIX_NODE_SHIFT) { shift -= GENRADIX_ARY_SHIFT; n = n->children[offset >> shift]; offset &= (1UL << shift) - 1; } return n ? &n->data[offset] : NULL; } #define genradix_ptr_inlined(_radix, _idx) \ (__genradix_cast(_radix) \ __genradix_ptr_inlined(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx))) void *__genradix_ptr(struct __genradix *, size_t); /** * genradix_ptr - get a pointer to a genradix entry * @_radix: genradix to access * @_idx: index to fetch * * Returns a pointer to entry at @_idx, or NULL if that entry does not exist. */ #define genradix_ptr(_radix, _idx) \ (__genradix_cast(_radix) \ __genradix_ptr(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx))) void *__genradix_ptr_alloc(struct __genradix *, size_t, struct genradix_node **, gfp_t); #define genradix_ptr_alloc_inlined(_radix, _idx, _gfp) \ (__genradix_cast(_radix) \ (__genradix_ptr_inlined(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx)) ?: \ __genradix_ptr_alloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx), \ NULL, _gfp))) #define genradix_ptr_alloc_preallocated_inlined(_radix, _idx, _new_node, _gfp)\ (__genradix_cast(_radix) \ (__genradix_ptr_inlined(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx)) ?: \ __genradix_ptr_alloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx), \ _new_node, _gfp))) /** * genradix_ptr_alloc - get a pointer to a genradix entry, allocating it * if necessary * @_radix: genradix to access * @_idx: index to fetch * @_gfp: gfp mask * * Returns a pointer to entry at @_idx, or NULL on allocation failure */ #define genradix_ptr_alloc(_radix, _idx, _gfp) \ (__genradix_cast(_radix) \ __genradix_ptr_alloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx), \ NULL, _gfp)) #define genradix_ptr_alloc_preallocated(_radix, _idx, _new_node, _gfp)\ (__genradix_cast(_radix) \ __genradix_ptr_alloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _idx), \ _new_node, _gfp)) struct genradix_iter { size_t offset; size_t pos; }; /** * genradix_iter_init - initialize a genradix_iter * @_radix: genradix that will be iterated over * @_idx: index to start iterating from */ #define genradix_iter_init(_radix, _idx) \ ((struct genradix_iter) { \ .pos = (_idx), \ .offset = __genradix_idx_to_offset((_radix), (_idx)),\ }) void *__genradix_iter_peek(struct genradix_iter *, struct __genradix *, size_t); /** * genradix_iter_peek - get first entry at or above iterator's current * position * @_iter: a genradix_iter * @_radix: genradix being iterated over * * If no more entries exist at or above @_iter's current position, returns NULL */ #define genradix_iter_peek(_iter, _radix) \ (__genradix_cast(_radix) \ __genradix_iter_peek(_iter, &(_radix)->tree, \ __genradix_objs_per_page(_radix))) void *__genradix_iter_peek_prev(struct genradix_iter *, struct __genradix *, size_t, size_t); /** * genradix_iter_peek_prev - get first entry at or below iterator's current * position * @_iter: a genradix_iter * @_radix: genradix being iterated over * * If no more entries exist at or below @_iter's current position, returns NULL */ #define genradix_iter_peek_prev(_iter, _radix) \ (__genradix_cast(_radix) \ __genradix_iter_peek_prev(_iter, &(_radix)->tree, \ __genradix_objs_per_page(_radix), \ __genradix_obj_size(_radix) + \ __genradix_page_remainder(_radix))) static inline void __genradix_iter_advance(struct genradix_iter *iter, size_t obj_size) { if (iter->offset + obj_size < iter->offset) { iter->offset = SIZE_MAX; iter->pos = SIZE_MAX; return; } iter->offset += obj_size; if (!is_power_of_2(obj_size) && (iter->offset & (GENRADIX_NODE_SIZE - 1)) + obj_size > GENRADIX_NODE_SIZE) iter->offset = round_up(iter->offset, GENRADIX_NODE_SIZE); iter->pos++; } #define genradix_iter_advance(_iter, _radix) \ __genradix_iter_advance(_iter, __genradix_obj_size(_radix)) static inline void __genradix_iter_rewind(struct genradix_iter *iter, size_t obj_size) { if (iter->offset == 0 || iter->offset == SIZE_MAX) { iter->offset = SIZE_MAX; return; } if ((iter->offset & (GENRADIX_NODE_SIZE - 1)) == 0) iter->offset -= GENRADIX_NODE_SIZE % obj_size; iter->offset -= obj_size; iter->pos--; } #define genradix_iter_rewind(_iter, _radix) \ __genradix_iter_rewind(_iter, __genradix_obj_size(_radix)) #define genradix_for_each_from(_radix, _iter, _p, _start) \ for (_iter = genradix_iter_init(_radix, _start); \ (_p = genradix_iter_peek(&_iter, _radix)) != NULL; \ genradix_iter_advance(&_iter, _radix)) /** * genradix_for_each - iterate over entry in a genradix * @_radix: genradix to iterate over * @_iter: a genradix_iter to track current position * @_p: pointer to genradix entry type * * On every iteration, @_p will point to the current entry, and @_iter.pos * will be the current entry's index. */ #define genradix_for_each(_radix, _iter, _p) \ genradix_for_each_from(_radix, _iter, _p, 0) #define genradix_last_pos(_radix) \ (SIZE_MAX / GENRADIX_NODE_SIZE * __genradix_objs_per_page(_radix) - 1) /** * genradix_for_each_reverse - iterate over entry in a genradix, reverse order * @_radix: genradix to iterate over * @_iter: a genradix_iter to track current position * @_p: pointer to genradix entry type * * On every iteration, @_p will point to the current entry, and @_iter.pos * will be the current entry's index. */ #define genradix_for_each_reverse(_radix, _iter, _p) \ for (_iter = genradix_iter_init(_radix, genradix_last_pos(_radix));\ (_p = genradix_iter_peek_prev(&_iter, _radix)) != NULL;\ genradix_iter_rewind(&_iter, _radix)) int __genradix_prealloc(struct __genradix *, size_t, gfp_t); /** * genradix_prealloc - preallocate entries in a generic radix tree * @_radix: genradix to preallocate * @_nr: number of entries to preallocate * @_gfp: gfp mask * * Returns 0 on success, -ENOMEM on failure */ #define genradix_prealloc(_radix, _nr, _gfp) \ __genradix_prealloc(&(_radix)->tree, \ __genradix_idx_to_offset(_radix, _nr + 1),\ _gfp) #endif /* _LINUX_GENERIC_RADIX_TREE_H */
5 2 1 2 2 5 3 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 // SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/errno.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/io_uring.h> #include <linux/eventpoll.h> #include <uapi/linux/io_uring.h> #include "io_uring.h" #include "epoll.h" struct io_epoll { struct file *file; int epfd; int op; int fd; struct epoll_event event; }; struct io_epoll_wait { struct file *file; int maxevents; struct epoll_event __user *events; }; int io_epoll_ctl_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_epoll *epoll = io_kiocb_to_cmd(req, struct io_epoll); if (sqe->buf_index || sqe->splice_fd_in) return -EINVAL; epoll->epfd = READ_ONCE(sqe->fd); epoll->op = READ_ONCE(sqe->len); epoll->fd = READ_ONCE(sqe->off); if (ep_op_has_event(epoll->op)) { struct epoll_event __user *ev; ev = u64_to_user_ptr(READ_ONCE(sqe->addr)); if (copy_from_user(&epoll->event, ev, sizeof(*ev))) return -EFAULT; } return 0; } int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags) { struct io_epoll *ie = io_kiocb_to_cmd(req, struct io_epoll); int ret; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock); if (force_nonblock && ret == -EAGAIN) return -EAGAIN; if (ret < 0) req_set_fail(req); io_req_set_res(req, ret, 0); return IOU_OK; } int io_epoll_wait_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_epoll_wait *iew = io_kiocb_to_cmd(req, struct io_epoll_wait); if (sqe->off || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; iew->maxevents = READ_ONCE(sqe->len); iew->events = u64_to_user_ptr(READ_ONCE(sqe->addr)); return 0; } int io_epoll_wait(struct io_kiocb *req, unsigned int issue_flags) { struct io_epoll_wait *iew = io_kiocb_to_cmd(req, struct io_epoll_wait); int ret; ret = epoll_sendevents(req->file, iew->events, iew->maxevents); if (ret == 0) return -EAGAIN; if (ret < 0) req_set_fail(req); io_req_set_res(req, ret, 0); return IOU_OK; }
11 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* AF_RXRPC internal definitions * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/atomic.h> #include <linux/seqlock.h> #include <linux/win_minmax.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/sock.h> #include <net/af_rxrpc.h> #include <keys/rxrpc-type.h> #include "protocol.h" #define FCRYPT_BSIZE 8 struct rxrpc_crypt { union { u8 x[FCRYPT_BSIZE]; __be32 n[2]; }; } __attribute__((aligned(8))); #define rxrpc_queue_work(WS) queue_work(rxrpc_workqueue, (WS)) #define rxrpc_queue_delayed_work(WS,D) \ queue_delayed_work(rxrpc_workqueue, (WS), (D)) struct key_preparsed_payload; struct rxrpc_connection; struct rxrpc_txbuf; struct rxrpc_txqueue; /* * Mark applied to socket buffers in skb->mark. skb->priority is used * to pass supplementary information. */ enum rxrpc_skb_mark { RXRPC_SKB_MARK_PACKET, /* Received packet */ RXRPC_SKB_MARK_ERROR, /* Error notification */ RXRPC_SKB_MARK_SERVICE_CONN_SECURED, /* Service connection response has been verified */ RXRPC_SKB_MARK_REJECT_BUSY, /* Reject with BUSY */ RXRPC_SKB_MARK_REJECT_ABORT, /* Reject with ABORT (code in skb->priority) */ }; /* * sk_state for RxRPC sockets */ enum { RXRPC_UNBOUND = 0, RXRPC_CLIENT_UNBOUND, /* Unbound socket used as client */ RXRPC_CLIENT_BOUND, /* client local address bound */ RXRPC_SERVER_BOUND, /* server local address bound */ RXRPC_SERVER_BOUND2, /* second server local address bound */ RXRPC_SERVER_LISTENING, /* server listening for connections */ RXRPC_SERVER_LISTEN_DISABLED, /* server listening disabled */ RXRPC_CLOSE, /* socket is being closed */ }; /* * Per-network namespace data. */ struct rxrpc_net { struct proc_dir_entry *proc_net; /* Subdir in /proc/net */ u32 epoch; /* Local epoch for detecting local-end reset */ struct list_head calls; /* List of calls active in this namespace */ spinlock_t call_lock; /* Lock for ->calls */ atomic_t nr_calls; /* Count of allocated calls */ atomic_t nr_conns; struct list_head bundle_proc_list; /* List of bundles for proc */ struct list_head conn_proc_list; /* List of conns in this namespace for proc */ struct list_head service_conns; /* Service conns in this namespace */ rwlock_t conn_lock; /* Lock for ->conn_proc_list, ->service_conns */ struct work_struct service_conn_reaper; struct timer_list service_conn_reap_timer; bool live; atomic_t nr_client_conns; struct hlist_head local_endpoints; struct mutex local_mutex; /* Lock for ->local_endpoints */ DECLARE_HASHTABLE (peer_hash, 10); spinlock_t peer_hash_lock; /* Lock for ->peer_hash */ #define RXRPC_KEEPALIVE_TIME 20 /* NAT keepalive time in seconds */ u8 peer_keepalive_cursor; time64_t peer_keepalive_base; struct list_head peer_keepalive[32]; struct list_head peer_keepalive_new; struct timer_list peer_keepalive_timer; struct work_struct peer_keepalive_work; atomic_t stat_tx_data; atomic_t stat_tx_data_retrans; atomic_t stat_tx_data_send; atomic_t stat_tx_data_send_frag; atomic_t stat_tx_data_send_fail; atomic_t stat_tx_data_send_msgsize; atomic_t stat_tx_data_underflow; atomic_t stat_tx_data_cwnd_reset; atomic_t stat_rx_data; atomic_t stat_rx_data_reqack; atomic_t stat_rx_data_jumbo; atomic_t stat_tx_ack_fill; atomic_t stat_tx_ack_send; atomic_t stat_tx_ack_skip; atomic_t stat_tx_acks[256]; atomic_t stat_rx_acks[256]; atomic_t stat_tx_jumbo[10]; atomic_t stat_rx_jumbo[10]; atomic_t stat_why_req_ack[8]; atomic_t stat_io_loop; }; /* * Service backlog preallocation. * * This contains circular buffers of preallocated peers, connections and calls * for incoming service calls and their head and tail pointers. This allows * calls to be set up in the data_ready handler, thereby avoiding the need to * shuffle packets around so much. */ struct rxrpc_backlog { unsigned short peer_backlog_head; unsigned short peer_backlog_tail; unsigned short conn_backlog_head; unsigned short conn_backlog_tail; unsigned short call_backlog_head; unsigned short call_backlog_tail; #define RXRPC_BACKLOG_MAX 32 struct rxrpc_peer *peer_backlog[RXRPC_BACKLOG_MAX]; struct rxrpc_connection *conn_backlog[RXRPC_BACKLOG_MAX]; struct rxrpc_call *call_backlog[RXRPC_BACKLOG_MAX]; }; /* * RxRPC socket definition */ struct rxrpc_sock { /* WARNING: sk has to be the first member */ struct sock sk; rxrpc_notify_new_call_t notify_new_call; /* Func to notify of new call */ rxrpc_discard_new_call_t discard_new_call; /* Func to discard a new call */ struct rxrpc_local *local; /* local endpoint */ struct rxrpc_backlog *backlog; /* Preallocation for services */ spinlock_t incoming_lock; /* Incoming call vs service shutdown lock */ struct list_head sock_calls; /* List of calls owned by this socket */ struct list_head to_be_accepted; /* calls awaiting acceptance */ struct list_head recvmsg_q; /* Calls awaiting recvmsg's attention */ spinlock_t recvmsg_lock; /* Lock for recvmsg_q */ struct key *key; /* security for this socket */ struct key *securities; /* list of server security descriptors */ struct rb_root calls; /* User ID -> call mapping */ unsigned long flags; #define RXRPC_SOCK_CONNECTED 0 /* connect_srx is set */ rwlock_t call_lock; /* lock for calls */ u32 min_sec_level; /* minimum security level */ #define RXRPC_SECURITY_MAX RXRPC_SECURITY_ENCRYPT bool exclusive; /* Exclusive connection for a client socket */ u16 second_service; /* Additional service bound to the endpoint */ struct { /* Service upgrade information */ u16 from; /* Service ID to upgrade (if not 0) */ u16 to; /* service ID to upgrade to */ } service_upgrade; sa_family_t family; /* Protocol family created with */ struct sockaddr_rxrpc srx; /* Primary Service/local addresses */ struct sockaddr_rxrpc connect_srx; /* Default client address from connect() */ }; #define rxrpc_sk(__sk) container_of((__sk), struct rxrpc_sock, sk) /* * CPU-byteorder normalised Rx packet header. */ struct rxrpc_host_header { u32 epoch; /* client boot timestamp */ u32 cid; /* connection and channel ID */ u32 callNumber; /* call ID (0 for connection-level packets) */ u32 seq; /* sequence number of pkt in call stream */ u32 serial; /* serial number of pkt sent to network */ u8 type; /* packet type */ u8 flags; /* packet flags */ u8 userStatus; /* app-layer defined status */ u8 securityIndex; /* security protocol ID */ union { u16 _rsvd; /* reserved */ u16 cksum; /* kerberos security checksum */ }; u16 serviceId; /* service ID */ } __packed; /* * RxRPC socket buffer private variables * - max 48 bytes (struct sk_buff::cb) */ struct rxrpc_skb_priv { union { struct rxrpc_connection *conn; /* Connection referred to (poke packet) */ struct { u16 offset; /* Offset of data */ u16 len; /* Length of data */ u8 flags; #define RXRPC_RX_VERIFIED 0x01 }; struct { rxrpc_seq_t first_ack; /* First packet in acks table */ rxrpc_seq_t prev_ack; /* Highest seq seen */ rxrpc_serial_t acked_serial; /* Packet in response to (or 0) */ u16 nr_acks; /* Number of acks+nacks */ u8 reason; /* Reason for ack */ } ack; }; struct rxrpc_host_header hdr; /* RxRPC packet header from this packet */ }; #define rxrpc_skb(__skb) ((struct rxrpc_skb_priv *) &(__skb)->cb) /* * RxRPC security module interface */ struct rxrpc_security { const char *name; /* name of this service */ u8 security_index; /* security type provided */ u32 no_key_abort; /* Abort code indicating no key */ /* Initialise a security service */ int (*init)(void); /* Clean up a security service */ void (*exit)(void); /* Parse the information from a server key */ int (*preparse_server_key)(struct key_preparsed_payload *); /* Clean up the preparse buffer after parsing a server key */ void (*free_preparse_server_key)(struct key_preparsed_payload *); /* Destroy the payload of a server key */ void (*destroy_server_key)(struct key *); /* Describe a server key */ void (*describe_server_key)(const struct key *, struct seq_file *); /* initialise a connection's security */ int (*init_connection_security)(struct rxrpc_connection *, struct rxrpc_key_token *); /* Work out how much data we can store in a packet, given an estimate * of the amount of data remaining and allocate a data buffer. */ struct rxrpc_txbuf *(*alloc_txbuf)(struct rxrpc_call *call, size_t remaining, gfp_t gfp); /* impose security on a packet */ int (*secure_packet)(struct rxrpc_call *, struct rxrpc_txbuf *); /* verify the security on a received packet */ int (*verify_packet)(struct rxrpc_call *, struct sk_buff *); /* Free crypto request on a call */ void (*free_call_crypto)(struct rxrpc_call *); /* issue a challenge */ int (*issue_challenge)(struct rxrpc_connection *); /* respond to a challenge */ int (*respond_to_challenge)(struct rxrpc_connection *, struct sk_buff *); /* verify a response */ int (*verify_response)(struct rxrpc_connection *, struct sk_buff *); /* clear connection security */ void (*clear)(struct rxrpc_connection *); }; /* * RxRPC local transport endpoint description * - owned by a single AF_RXRPC socket * - pointed to by transport socket struct sk_user_data */ struct rxrpc_local { struct rcu_head rcu; atomic_t active_users; /* Number of users of the local endpoint */ refcount_t ref; /* Number of references to the structure */ struct net *net; /* The network namespace */ struct rxrpc_net *rxnet; /* Our bits in the network namespace */ struct hlist_node link; struct socket *socket; /* my UDP socket */ struct task_struct *io_thread; struct completion io_thread_ready; /* Indication that the I/O thread started */ struct page_frag_cache tx_alloc; /* Tx control packet allocation (I/O thread only) */ struct rxrpc_sock *service; /* Service(s) listening on this endpoint */ #ifdef CONFIG_AF_RXRPC_INJECT_RX_DELAY struct sk_buff_head rx_delay_queue; /* Delay injection queue */ #endif struct sk_buff_head rx_queue; /* Received packets */ struct list_head conn_attend_q; /* Conns requiring immediate attention */ struct list_head call_attend_q; /* Calls requiring immediate attention */ struct rb_root client_bundles; /* Client connection bundles by socket params */ spinlock_t client_bundles_lock; /* Lock for client_bundles */ bool kill_all_client_conns; struct list_head idle_client_conns; struct timer_list client_conn_reap_timer; unsigned long client_conn_flags; #define RXRPC_CLIENT_CONN_REAP_TIMER 0 /* The client conn reap timer expired */ spinlock_t lock; /* access lock */ rwlock_t services_lock; /* lock for services list */ int debug_id; /* debug ID for printks */ bool dead; bool service_closed; /* Service socket closed */ struct idr conn_ids; /* List of connection IDs */ struct list_head new_client_calls; /* Newly created client calls need connection */ spinlock_t client_call_lock; /* Lock for ->new_client_calls */ struct sockaddr_rxrpc srx; /* local address */ /* Provide a kvec table sufficiently large to manage either a DATA * packet with a maximum set of jumbo subpackets or a PING ACK padded * out to 64K with zeropages for PMTUD. */ struct kvec kvec[1 + RXRPC_MAX_NR_JUMBO > 3 + 16 ? 1 + RXRPC_MAX_NR_JUMBO : 3 + 16]; }; /* * RxRPC remote transport endpoint definition * - matched by local endpoint, remote port, address and protocol type */ struct rxrpc_peer { struct rcu_head rcu; /* This must be first */ refcount_t ref; unsigned long hash_key; struct hlist_node hash_link; struct rxrpc_local *local; struct hlist_head error_targets; /* targets for net error distribution */ struct rb_root service_conns; /* Service connections */ struct list_head keepalive_link; /* Link in net->peer_keepalive[] */ unsigned long app_data; /* Application data (e.g. afs_server) */ time64_t last_tx_at; /* Last time packet sent here */ seqlock_t service_conn_lock; spinlock_t lock; /* access lock */ int debug_id; /* debug ID for printks */ struct sockaddr_rxrpc srx; /* remote address */ /* Path MTU discovery [RFC8899] */ unsigned int pmtud_trial; /* Current MTU probe size */ unsigned int pmtud_good; /* Largest working MTU probe we've tried */ unsigned int pmtud_bad; /* Smallest non-working MTU probe we've tried */ bool pmtud_lost; /* T if MTU probe was lost */ bool pmtud_probing; /* T if we have an active probe outstanding */ bool pmtud_pending; /* T if a call to this peer should send a probe */ u8 pmtud_jumbo; /* Max jumbo packets for the MTU */ bool ackr_adv_pmtud; /* T if the peer advertises path-MTU */ unsigned int ackr_max_data; /* Maximum data advertised by peer */ unsigned int if_mtu; /* Local interface MTU (- hdrsize) for this peer */ unsigned int max_data; /* Maximum packet data capacity for this peer */ unsigned short hdrsize; /* header size (IP + UDP + RxRPC) */ unsigned short tx_seg_max; /* Maximum number of transmissable segments */ /* Calculated RTT cache */ unsigned int recent_srtt_us; unsigned int recent_rto_us; u8 cong_ssthresh; /* Congestion slow-start threshold */ }; /* * Keys for matching a connection. */ struct rxrpc_conn_proto { union { struct { u32 epoch; /* epoch of this connection */ u32 cid; /* connection ID */ }; u64 index_key; }; }; struct rxrpc_conn_parameters { struct rxrpc_local *local; /* Representation of local endpoint */ struct rxrpc_peer *peer; /* Representation of remote endpoint */ struct key *key; /* Security details */ bool exclusive; /* T if conn is exclusive */ bool upgrade; /* T if service ID can be upgraded */ u16 service_id; /* Service ID for this connection */ u32 security_level; /* Security level selected */ }; /* * Call completion condition (state == RXRPC_CALL_COMPLETE). */ enum rxrpc_call_completion { RXRPC_CALL_SUCCEEDED, /* - Normal termination */ RXRPC_CALL_REMOTELY_ABORTED, /* - call aborted by peer */ RXRPC_CALL_LOCALLY_ABORTED, /* - call aborted locally on error or close */ RXRPC_CALL_LOCAL_ERROR, /* - call failed due to local error */ RXRPC_CALL_NETWORK_ERROR, /* - call terminated by network error */ NR__RXRPC_CALL_COMPLETIONS }; /* * Bits in the connection flags. */ enum rxrpc_conn_flag { RXRPC_CONN_IN_SERVICE_CONNS, /* Conn is in peer->service_conns */ RXRPC_CONN_DONT_REUSE, /* Don't reuse this connection */ RXRPC_CONN_PROBING_FOR_UPGRADE, /* Probing for service upgrade */ RXRPC_CONN_FINAL_ACK_0, /* Need final ACK for channel 0 */ RXRPC_CONN_FINAL_ACK_1, /* Need final ACK for channel 1 */ RXRPC_CONN_FINAL_ACK_2, /* Need final ACK for channel 2 */ RXRPC_CONN_FINAL_ACK_3, /* Need final ACK for channel 3 */ }; #define RXRPC_CONN_FINAL_ACK_MASK ((1UL << RXRPC_CONN_FINAL_ACK_0) | \ (1UL << RXRPC_CONN_FINAL_ACK_1) | \ (1UL << RXRPC_CONN_FINAL_ACK_2) | \ (1UL << RXRPC_CONN_FINAL_ACK_3)) /* * Events that can be raised upon a connection. */ enum rxrpc_conn_event { RXRPC_CONN_EV_CHALLENGE, /* Send challenge packet */ RXRPC_CONN_EV_ABORT_CALLS, /* Abort attached calls */ }; /* * The connection protocol state. */ enum rxrpc_conn_proto_state { RXRPC_CONN_UNUSED, /* Connection not yet attempted */ RXRPC_CONN_CLIENT_UNSECURED, /* Client connection needs security init */ RXRPC_CONN_CLIENT, /* Client connection */ RXRPC_CONN_SERVICE_PREALLOC, /* Service connection preallocation */ RXRPC_CONN_SERVICE_UNSECURED, /* Service unsecured connection */ RXRPC_CONN_SERVICE_CHALLENGING, /* Service challenging for security */ RXRPC_CONN_SERVICE, /* Service secured connection */ RXRPC_CONN_ABORTED, /* Conn aborted */ RXRPC_CONN__NR_STATES }; /* * RxRPC client connection bundle. */ struct rxrpc_bundle { struct rxrpc_local *local; /* Representation of local endpoint */ struct rxrpc_peer *peer; /* Remote endpoint */ struct key *key; /* Security details */ struct list_head proc_link; /* Link in net->bundle_proc_list */ const struct rxrpc_security *security; /* applied security module */ refcount_t ref; atomic_t active; /* Number of active users */ unsigned int debug_id; u32 security_level; /* Security level selected */ u16 service_id; /* Service ID for this connection */ bool try_upgrade; /* True if the bundle is attempting upgrade */ bool exclusive; /* T if conn is exclusive */ bool upgrade; /* T if service ID can be upgraded */ unsigned short alloc_error; /* Error from last conn allocation */ struct rb_node local_node; /* Node in local->client_conns */ struct list_head waiting_calls; /* Calls waiting for channels */ unsigned long avail_chans; /* Mask of available channels */ unsigned int conn_ids[4]; /* Connection IDs. */ struct rxrpc_connection *conns[4]; /* The connections in the bundle (max 4) */ }; /* * RxRPC connection definition * - matched by { local, peer, epoch, conn_id, direction } * - each connection can only handle four simultaneous calls */ struct rxrpc_connection { struct rxrpc_conn_proto proto; struct rxrpc_local *local; /* Representation of local endpoint */ struct rxrpc_peer *peer; /* Remote endpoint */ struct rxrpc_net *rxnet; /* Network namespace to which call belongs */ struct key *key; /* Security details */ struct list_head attend_link; /* Link in local->conn_attend_q */ refcount_t ref; atomic_t active; /* Active count for service conns */ struct rcu_head rcu; struct list_head cache_link; unsigned char act_chans; /* Mask of active channels */ struct rxrpc_channel { unsigned long final_ack_at; /* Time at which to issue final ACK */ struct rxrpc_call *call; /* Active call */ unsigned int call_debug_id; /* call->debug_id */ u32 call_id; /* ID of current call */ u32 call_counter; /* Call ID counter */ u32 last_call; /* ID of last call */ u8 last_type; /* Type of last packet */ union { u32 last_seq; u32 last_abort; }; } channels[RXRPC_MAXCALLS]; struct timer_list timer; /* Conn event timer */ struct work_struct processor; /* connection event processor */ struct work_struct destructor; /* In-process-context destroyer */ struct rxrpc_bundle *bundle; /* Client connection bundle */ struct rb_node service_node; /* Node in peer->service_conns */ struct list_head proc_link; /* link in procfs list */ struct list_head link; /* link in master connection list */ struct sk_buff_head rx_queue; /* received conn-level packets */ struct page_frag_cache tx_data_alloc; /* Tx DATA packet allocation */ struct mutex tx_data_alloc_lock; struct mutex security_lock; /* Lock for security management */ const struct rxrpc_security *security; /* applied security module */ union { struct { struct crypto_sync_skcipher *cipher; /* encryption handle */ struct rxrpc_crypt csum_iv; /* packet checksum base */ u32 nonce; /* response re-use preventer */ } rxkad; }; unsigned long flags; unsigned long events; unsigned long idle_timestamp; /* Time at which last became idle */ spinlock_t state_lock; /* state-change lock */ enum rxrpc_conn_proto_state state; /* current state of connection */ enum rxrpc_call_completion completion; /* Completion condition */ s32 abort_code; /* Abort code of connection abort */ int debug_id; /* debug ID for printks */ rxrpc_serial_t tx_serial; /* Outgoing packet serial number counter */ unsigned int hi_serial; /* highest serial number received */ rxrpc_serial_t pmtud_probe; /* Serial of MTU probe (or 0) */ unsigned int pmtud_call; /* ID of call used for probe */ u32 service_id; /* Service ID, possibly upgraded */ u32 security_level; /* Security level selected */ u8 security_ix; /* security type */ u8 out_clientflag; /* RXRPC_CLIENT_INITIATED if we are client */ u8 bundle_shift; /* Index into bundle->avail_chans */ bool exclusive; /* T if conn is exclusive */ bool upgrade; /* T if service ID can be upgraded */ u16 orig_service_id; /* Originally requested service ID */ short error; /* Local error code */ }; static inline bool rxrpc_to_server(const struct rxrpc_skb_priv *sp) { return sp->hdr.flags & RXRPC_CLIENT_INITIATED; } static inline bool rxrpc_to_client(const struct rxrpc_skb_priv *sp) { return !rxrpc_to_server(sp); } /* * Flags in call->flags. */ enum rxrpc_call_flag { RXRPC_CALL_RELEASED, /* call has been released - no more message to userspace */ RXRPC_CALL_HAS_USERID, /* has a user ID attached */ RXRPC_CALL_IS_SERVICE, /* Call is service call */ RXRPC_CALL_EXPOSED, /* The call was exposed to the world */ RXRPC_CALL_RX_LAST, /* Received the last packet (at rxtx_top) */ RXRPC_CALL_TX_LAST, /* Last packet in Tx buffer (at rxtx_top) */ RXRPC_CALL_TX_ALL_ACKED, /* Last packet has been hard-acked */ RXRPC_CALL_TX_NO_MORE, /* No more data to transmit (MSG_MORE deasserted) */ RXRPC_CALL_SEND_PING, /* A ping will need to be sent */ RXRPC_CALL_RETRANS_TIMEOUT, /* Retransmission due to timeout occurred */ RXRPC_CALL_BEGAN_RX_TIMER, /* We began the expect_rx_by timer */ RXRPC_CALL_RX_HEARD, /* The peer responded at least once to this call */ RXRPC_CALL_DISCONNECTED, /* The call has been disconnected */ RXRPC_CALL_KERNEL, /* The call was made by the kernel */ RXRPC_CALL_UPGRADE, /* Service upgrade was requested for the call */ RXRPC_CALL_EXCLUSIVE, /* The call uses a once-only connection */ RXRPC_CALL_RX_IS_IDLE, /* recvmsg() is idle - send an ACK */ RXRPC_CALL_RECVMSG_READ_ALL, /* recvmsg() read all of the received data */ RXRPC_CALL_CONN_CHALLENGING, /* The connection is being challenged */ }; /* * Events that can be raised on a call. */ enum rxrpc_call_event { RXRPC_CALL_EV_ACK_LOST, /* ACK may be lost, send ping */ RXRPC_CALL_EV_INITIAL_PING, /* Send initial ping for a new service call */ }; /* * The states that a call can be in. */ enum rxrpc_call_state { RXRPC_CALL_UNINITIALISED, RXRPC_CALL_CLIENT_AWAIT_CONN, /* - client waiting for connection to become available */ RXRPC_CALL_CLIENT_SEND_REQUEST, /* - client sending request phase */ RXRPC_CALL_CLIENT_AWAIT_REPLY, /* - client awaiting reply */ RXRPC_CALL_CLIENT_RECV_REPLY, /* - client receiving reply phase */ RXRPC_CALL_SERVER_PREALLOC, /* - service preallocation */ RXRPC_CALL_SERVER_RECV_REQUEST, /* - server receiving request */ RXRPC_CALL_SERVER_ACK_REQUEST, /* - server pending ACK of request */ RXRPC_CALL_SERVER_SEND_REPLY, /* - server sending reply */ RXRPC_CALL_SERVER_AWAIT_ACK, /* - server awaiting final ACK */ RXRPC_CALL_COMPLETE, /* - call complete */ NR__RXRPC_CALL_STATES }; /* * Call Tx congestion management modes. */ enum rxrpc_ca_state { RXRPC_CA_SLOW_START, RXRPC_CA_CONGEST_AVOIDANCE, RXRPC_CA_PACKET_LOSS, RXRPC_CA_FAST_RETRANSMIT, NR__RXRPC_CA_STATES } __mode(byte); /* * Current purpose of call RACK timer. According to the RACK-TLP protocol * [RFC8985], the transmission timer (call->rack_timo_at) may only be used for * one of these at once. */ enum rxrpc_rack_timer_mode { RXRPC_CALL_RACKTIMER_OFF, /* Timer not running */ RXRPC_CALL_RACKTIMER_RACK_REORDER, /* RACK reordering timer */ RXRPC_CALL_RACKTIMER_TLP_PTO, /* TLP timeout */ RXRPC_CALL_RACKTIMER_RTO, /* Retransmission timeout */ } __mode(byte); /* * RxRPC call definition * - matched by { connection, call_id } */ struct rxrpc_call { struct rcu_head rcu; struct rxrpc_connection *conn; /* connection carrying call */ struct rxrpc_bundle *bundle; /* Connection bundle to use */ struct rxrpc_peer *peer; /* Peer record for remote address */ struct rxrpc_local *local; /* Representation of local endpoint */ struct rxrpc_sock __rcu *socket; /* socket responsible */ struct rxrpc_net *rxnet; /* Network namespace to which call belongs */ struct key *key; /* Security details */ const struct rxrpc_security *security; /* applied security module */ struct mutex user_mutex; /* User access mutex */ struct sockaddr_rxrpc dest_srx; /* Destination address */ ktime_t delay_ack_at; /* When DELAY ACK needs to happen */ ktime_t rack_timo_at; /* When ACK is figured as lost */ ktime_t ping_at; /* When next to send a ping */ ktime_t keepalive_at; /* When next to send a keepalive ping */ ktime_t expect_rx_by; /* When we expect to get a packet by */ ktime_t expect_req_by; /* When we expect to get a request DATA packet by */ ktime_t expect_term_by; /* When we expect call termination by */ u32 next_rx_timo; /* Timeout for next Rx packet (ms) */ u32 next_req_timo; /* Timeout for next Rx request packet (ms) */ u32 hard_timo; /* Maximum lifetime or 0 (s) */ struct timer_list timer; /* Combined event timer */ struct work_struct destroyer; /* In-process-context destroyer */ rxrpc_notify_rx_t notify_rx; /* kernel service Rx notification function */ struct list_head link; /* link in master call list */ struct list_head wait_link; /* Link in local->new_client_calls */ struct hlist_node error_link; /* link in error distribution list */ struct list_head accept_link; /* Link in rx->acceptq */ struct list_head recvmsg_link; /* Link in rx->recvmsg_q */ struct list_head sock_link; /* Link in rx->sock_calls */ struct rb_node sock_node; /* Node in rx->calls */ struct list_head attend_link; /* Link in local->call_attend_q */ struct rxrpc_txbuf *tx_pending; /* Tx buffer being filled */ wait_queue_head_t waitq; /* Wait queue for channel or Tx */ s64 tx_total_len; /* Total length left to be transmitted (or -1) */ unsigned long user_call_ID; /* user-defined call ID */ unsigned long flags; unsigned long events; spinlock_t notify_lock; /* Kernel notification lock */ unsigned int send_abort_why; /* Why the abort [enum rxrpc_abort_reason] */ s32 send_abort; /* Abort code to be sent */ short send_abort_err; /* Error to be associated with the abort */ rxrpc_seq_t send_abort_seq; /* DATA packet that incurred the abort (or 0) */ s32 abort_code; /* Local/remote abort code */ int error; /* Local error incurred */ enum rxrpc_call_state _state; /* Current state of call (needs barrier) */ enum rxrpc_call_completion completion; /* Call completion condition */ refcount_t ref; u8 security_ix; /* Security type */ enum rxrpc_interruptibility interruptibility; /* At what point call may be interrupted */ u32 call_id; /* call ID on connection */ u32 cid; /* connection ID plus channel index */ u32 security_level; /* Security level selected */ int debug_id; /* debug ID for printks */ unsigned short rx_pkt_offset; /* Current recvmsg packet offset */ unsigned short rx_pkt_len; /* Current recvmsg packet len */ /* Sendmsg data tracking. */ rxrpc_seq_t send_top; /* Highest Tx slot filled by sendmsg. */ struct rxrpc_txqueue *send_queue; /* Queue that sendmsg is writing into */ /* Transmitted data tracking. */ struct rxrpc_txqueue *tx_queue; /* Start of transmission buffers */ struct rxrpc_txqueue *tx_qtail; /* End of transmission buffers */ rxrpc_seq_t tx_qbase; /* First slot in tx_queue */ rxrpc_seq_t tx_bottom; /* First packet in buffer */ rxrpc_seq_t tx_transmitted; /* Highest packet transmitted */ rxrpc_seq_t tx_top; /* Highest Tx slot allocated. */ rxrpc_serial_t tx_last_serial; /* Serial of last DATA transmitted */ u16 tx_backoff; /* Delay to insert due to Tx failure (ms) */ u16 tx_nr_sent; /* Number of packets sent, but unacked */ u16 tx_nr_lost; /* Number of packets marked lost */ u16 tx_nr_resent; /* Number of packets resent, but unacked */ u16 tx_winsize; /* Maximum size of Tx window */ #define RXRPC_TX_MAX_WINDOW 128 u8 tx_jumbo_max; /* Maximum subpkts peer will accept */ ktime_t tx_last_sent; /* Last time a transmission occurred */ /* Received data tracking */ struct sk_buff_head recvmsg_queue; /* Queue of packets ready for recvmsg() */ struct sk_buff_head rx_queue; /* Queue of packets for this call to receive */ struct sk_buff_head rx_oos_queue; /* Queue of out of sequence packets */ rxrpc_seq_t rx_highest_seq; /* Higest sequence number received */ rxrpc_seq_t rx_consumed; /* Highest packet consumed */ rxrpc_serial_t rx_serial; /* Highest serial received for this call */ u8 rx_winsize; /* Size of Rx window */ /* TCP-style slow-start congestion control [RFC5681]. Since the SMSS * is fixed, we keep these numbers in terms of segments (ie. DATA * packets) rather than bytes. */ #define RXRPC_TX_SMSS RXRPC_JUMBO_DATALEN #define RXRPC_MIN_CWND 4 enum rxrpc_ca_state cong_ca_state; /* Congestion control state */ u8 cong_extra; /* Extra to send for congestion management */ u16 cong_cwnd; /* Congestion window size */ u16 cong_ssthresh; /* Slow-start threshold */ u16 cong_dup_acks; /* Count of ACKs showing missing packets */ u16 cong_cumul_acks; /* Cumulative ACK count */ ktime_t cong_tstamp; /* Last time cwnd was changed */ /* RACK-TLP [RFC8985] state. */ ktime_t rack_xmit_ts; /* Latest transmission timestamp */ ktime_t rack_rtt; /* RTT of most recently ACK'd segment */ ktime_t rack_rtt_ts; /* Timestamp of rack_rtt */ ktime_t rack_reo_wnd; /* Reordering window */ unsigned int rack_reo_wnd_mult; /* Multiplier applied to rack_reo_wnd */ int rack_reo_wnd_persist; /* Num loss recoveries before reset reo_wnd */ rxrpc_seq_t rack_fack; /* Highest sequence so far ACK'd */ rxrpc_seq_t rack_end_seq; /* Highest sequence seen */ rxrpc_seq_t rack_dsack_round; /* DSACK opt recv'd in latest roundtrip */ bool rack_dsack_round_none; /* T if dsack_round is "None" */ bool rack_reordering_seen; /* T if detected reordering event */ enum rxrpc_rack_timer_mode rack_timer_mode; /* Current mode of RACK timer */ bool tlp_is_retrans; /* T if unacked TLP retransmission */ rxrpc_serial_t tlp_serial; /* Serial of TLP probe (or 0 if none in progress) */ rxrpc_seq_t tlp_seq; /* Sequence of TLP probe */ unsigned int tlp_rtt_taken; /* Last time RTT taken */ ktime_t tlp_max_ack_delay; /* Sender budget for max delayed ACK interval */ /* Receive-phase ACK management (ACKs we send). */ u8 ackr_reason; /* reason to ACK */ u16 ackr_sack_base; /* Starting slot in SACK table ring */ rxrpc_seq_t ackr_window; /* Base of SACK window */ rxrpc_seq_t ackr_wtop; /* Base of SACK window */ unsigned int ackr_nr_unacked; /* Number of unacked packets */ atomic_t ackr_nr_consumed; /* Number of packets needing hard ACK */ struct { #define RXRPC_SACK_SIZE 256 /* SACK table for soft-acked packets */ u8 ackr_sack_table[RXRPC_SACK_SIZE]; } __aligned(8); /* RTT management */ rxrpc_serial_t rtt_serial[4]; /* Serial number of DATA or PING sent */ ktime_t rtt_sent_at[4]; /* Time packet sent */ unsigned long rtt_avail; /* Mask of available slots in bits 0-3, * Mask of pending samples in 8-11 */ #define RXRPC_CALL_RTT_AVAIL_MASK 0xf #define RXRPC_CALL_RTT_PEND_SHIFT 8 /* Transmission-phase ACK management (ACKs we've received). */ ktime_t acks_latest_ts; /* Timestamp of latest ACK received */ rxrpc_seq_t acks_hard_ack; /* Highest sequence hard acked */ rxrpc_seq_t acks_prev_seq; /* Highest previousPacket received */ rxrpc_seq_t acks_lowest_nak; /* Lowest NACK in the buffer (or ==tx_hard_ack) */ rxrpc_serial_t acks_highest_serial; /* Highest serial number ACK'd */ unsigned short acks_nr_sacks; /* Number of soft acks recorded */ unsigned short acks_nr_snacks; /* Number of soft nacks recorded */ /* Calculated RTT cache */ ktime_t rtt_last_req; /* Time of last RTT request */ unsigned int rtt_count; /* Number of samples we've got */ unsigned int rtt_taken; /* Number of samples taken (wrapping) */ struct minmax min_rtt; /* Estimated minimum RTT */ u32 srtt_us; /* smoothed round trip time << 3 in usecs */ u32 mdev_us; /* medium deviation */ u32 mdev_max_us; /* maximal mdev for the last rtt period */ u32 rttvar_us; /* smoothed mdev_max */ u32 rto_us; /* Retransmission timeout in usec */ u8 backoff; /* Backoff timeout (as shift) */ }; /* * Summary of a new ACK and the changes it made to the Tx buffer packet states. */ struct rxrpc_ack_summary { rxrpc_serial_t ack_serial; /* Serial number of ACK */ rxrpc_serial_t acked_serial; /* Serial number ACK'd */ u16 in_flight; /* Number of unreceived transmissions */ u16 nr_new_hacks; /* Number of rotated new ACKs */ u16 nr_new_sacks; /* Number of new soft ACKs in packet */ u16 nr_new_snacks; /* Number of new soft nacks in packet */ u8 ack_reason; bool new_low_snack:1; /* T if new low soft NACK found */ bool retrans_timeo:1; /* T if reTx due to timeout happened */ bool need_retransmit:1; /* T if we need transmission */ bool rtt_sample_avail:1; /* T if RTT sample available */ bool in_fast_or_rto_recovery:1; bool exiting_fast_or_rto_recovery:1; bool tlp_probe_acked:1; /* T if the TLP probe seq was acked */ u8 /*enum rxrpc_congest_change*/ change; }; /* * sendmsg() cmsg-specified parameters. */ enum rxrpc_command { RXRPC_CMD_SEND_DATA, /* send data message */ RXRPC_CMD_SEND_ABORT, /* request abort generation */ RXRPC_CMD_REJECT_BUSY, /* [server] reject a call as busy */ RXRPC_CMD_CHARGE_ACCEPT, /* [server] charge accept preallocation */ }; struct rxrpc_call_params { s64 tx_total_len; /* Total Tx data length (if send data) */ unsigned long user_call_ID; /* User's call ID */ struct { u32 hard; /* Maximum lifetime (sec) */ u32 idle; /* Max time since last data packet (msec) */ u32 normal; /* Max time since last call packet (msec) */ } timeouts; u8 nr_timeouts; /* Number of timeouts specified */ bool kernel; /* T if kernel is making the call */ enum rxrpc_interruptibility interruptibility; /* How is interruptible is the call? */ }; struct rxrpc_send_params { struct rxrpc_call_params call; u32 abort_code; /* Abort code to Tx (if abort) */ enum rxrpc_command command : 8; /* The command to implement */ bool exclusive; /* Shared or exclusive call */ bool upgrade; /* If the connection is upgradeable */ }; /* * Buffer of data to be output as a packet. */ struct rxrpc_txbuf { refcount_t ref; rxrpc_seq_t seq; /* Sequence number of this packet */ rxrpc_serial_t serial; /* Last serial number transmitted with */ unsigned int call_debug_id; unsigned int debug_id; unsigned short len; /* Amount of data in buffer */ unsigned short space; /* Remaining data space */ unsigned short offset; /* Offset of fill point */ unsigned short pkt_len; /* Size of packet content */ unsigned short alloc_size; /* Amount of bufferage allocated */ unsigned int flags; #define RXRPC_TXBUF_WIRE_FLAGS 0xff /* The wire protocol flags */ #define RXRPC_TXBUF_RESENT 0x100 /* Set if has been resent */ __be16 cksum; /* Checksum to go in header */ bool jumboable; /* Can be non-terminal jumbo subpacket */ void *data; /* Data with preceding jumbo header */ }; static inline bool rxrpc_sending_to_server(const struct rxrpc_txbuf *txb) { return txb->flags & RXRPC_CLIENT_INITIATED; } static inline bool rxrpc_sending_to_client(const struct rxrpc_txbuf *txb) { return !rxrpc_sending_to_server(txb); } /* * Transmit queue element, including RACK [RFC8985] per-segment metadata. The * transmission timestamp is in usec from the base. */ struct rxrpc_txqueue { /* Start with the members we want to prefetch. */ struct rxrpc_txqueue *next; ktime_t xmit_ts_base; rxrpc_seq_t qbase; u8 nr_reported_acks; /* Number of segments explicitly acked/nacked */ unsigned long segment_acked; /* Bit-per-buf: Set if ACK'd */ unsigned long segment_lost; /* Bit-per-buf: Set if declared lost */ unsigned long segment_retransmitted; /* Bit-per-buf: Set if retransmitted */ unsigned long rtt_samples; /* Bit-per-buf: Set if available for RTT */ unsigned long ever_retransmitted; /* Bit-per-buf: Set if ever retransmitted */ /* The arrays we want to pack into as few cache lines as possible. */ struct { #define RXRPC_NR_TXQUEUE BITS_PER_LONG #define RXRPC_TXQ_MASK (RXRPC_NR_TXQUEUE - 1) struct rxrpc_txbuf *bufs[RXRPC_NR_TXQUEUE]; unsigned int segment_serial[RXRPC_NR_TXQUEUE]; unsigned int segment_xmit_ts[RXRPC_NR_TXQUEUE]; } ____cacheline_aligned; }; /* * Data transmission request. */ struct rxrpc_send_data_req { ktime_t now; /* Current time */ struct rxrpc_txqueue *tq; /* Tx queue segment holding first DATA */ rxrpc_seq_t seq; /* Sequence of first data */ int n; /* Number of DATA packets to glue into jumbo */ bool retrans; /* T if this is a retransmission */ bool did_send; /* T if did actually send */ bool tlp_probe; /* T if this is a TLP probe */ int /* enum rxrpc_txdata_trace */ trace; }; #include <trace/events/rxrpc.h> /* * Allocate the next serial number on a connection. 0 must be skipped. */ static inline rxrpc_serial_t rxrpc_get_next_serial(struct rxrpc_connection *conn) { rxrpc_serial_t serial; serial = conn->tx_serial; if (serial == 0) serial = 1; conn->tx_serial = serial + 1; return serial; } /* * Allocate the next serial n numbers on a connection. 0 must be skipped. */ static inline rxrpc_serial_t rxrpc_get_next_serials(struct rxrpc_connection *conn, unsigned int n) { rxrpc_serial_t serial; serial = conn->tx_serial; if (serial + n <= n) serial = 1; conn->tx_serial = serial + n; return serial; } /* * af_rxrpc.c */ extern atomic_t rxrpc_n_rx_skbs; extern struct workqueue_struct *rxrpc_workqueue; /* * call_accept.c */ int rxrpc_service_prealloc(struct rxrpc_sock *, gfp_t); void rxrpc_discard_prealloc(struct rxrpc_sock *); bool rxrpc_new_incoming_call(struct rxrpc_local *local, struct rxrpc_peer *peer, struct rxrpc_connection *conn, struct sockaddr_rxrpc *peer_srx, struct sk_buff *skb); int rxrpc_user_charge_accept(struct rxrpc_sock *, unsigned long); /* * call_event.c */ void rxrpc_propose_ping(struct rxrpc_call *call, u32 serial, enum rxrpc_propose_ack_trace why); void rxrpc_propose_delay_ACK(struct rxrpc_call *, rxrpc_serial_t, enum rxrpc_propose_ack_trace); void rxrpc_resend_tlp(struct rxrpc_call *call); void rxrpc_transmit_some_data(struct rxrpc_call *call, unsigned int limit, enum rxrpc_txdata_trace trace); bool rxrpc_input_call_event(struct rxrpc_call *call); /* * call_object.c */ extern const char *const rxrpc_call_states[]; extern const char *const rxrpc_call_completions[]; extern struct kmem_cache *rxrpc_call_jar; void rxrpc_poke_call(struct rxrpc_call *call, enum rxrpc_call_poke_trace what); struct rxrpc_call *rxrpc_find_call_by_user_ID(struct rxrpc_sock *, unsigned long); struct rxrpc_call *rxrpc_alloc_call(struct rxrpc_sock *, gfp_t, unsigned int); struct rxrpc_call *rxrpc_new_client_call(struct rxrpc_sock *, struct rxrpc_conn_parameters *, struct rxrpc_call_params *, gfp_t, unsigned int); void rxrpc_start_call_timer(struct rxrpc_call *call); void rxrpc_incoming_call(struct rxrpc_sock *, struct rxrpc_call *, struct sk_buff *); void rxrpc_release_call(struct rxrpc_sock *, struct rxrpc_call *); void rxrpc_release_calls_on_socket(struct rxrpc_sock *); void rxrpc_see_call(struct rxrpc_call *, enum rxrpc_call_trace); struct rxrpc_call *rxrpc_try_get_call(struct rxrpc_call *, enum rxrpc_call_trace); void rxrpc_get_call(struct rxrpc_call *, enum rxrpc_call_trace); void rxrpc_put_call(struct rxrpc_call *, enum rxrpc_call_trace); void rxrpc_cleanup_call(struct rxrpc_call *); void rxrpc_destroy_all_calls(struct rxrpc_net *); static inline bool rxrpc_is_service_call(const struct rxrpc_call *call) { return test_bit(RXRPC_CALL_IS_SERVICE, &call->flags); } static inline bool rxrpc_is_client_call(const struct rxrpc_call *call) { return !rxrpc_is_service_call(call); } /* * call_state.c */ bool rxrpc_set_call_completion(struct rxrpc_call *call, enum rxrpc_call_completion compl, u32 abort_code, int error); bool rxrpc_call_completed(struct rxrpc_call *call); bool rxrpc_abort_call(struct rxrpc_call *call, rxrpc_seq_t seq, u32 abort_code, int error, enum rxrpc_abort_reason why); void rxrpc_prefail_call(struct rxrpc_call *call, enum rxrpc_call_completion compl, int error); static inline void rxrpc_set_call_state(struct rxrpc_call *call, enum rxrpc_call_state state) { /* Order write of completion info before write of ->state. */ smp_store_release(&call->_state, state); wake_up(&call->waitq); } static inline enum rxrpc_call_state __rxrpc_call_state(const struct rxrpc_call *call) { return call->_state; /* Only inside I/O thread */ } static inline bool __rxrpc_call_is_complete(const struct rxrpc_call *call) { return __rxrpc_call_state(call) == RXRPC_CALL_COMPLETE; } static inline enum rxrpc_call_state rxrpc_call_state(const struct rxrpc_call *call) { /* Order read ->state before read of completion info. */ return smp_load_acquire(&call->_state); } static inline bool rxrpc_call_is_complete(const struct rxrpc_call *call) { return rxrpc_call_state(call) == RXRPC_CALL_COMPLETE; } static inline bool rxrpc_call_has_failed(const struct rxrpc_call *call) { return rxrpc_call_is_complete(call) && call->completion != RXRPC_CALL_SUCCEEDED; } /* * conn_client.c */ extern unsigned int rxrpc_reap_client_connections; extern unsigned long rxrpc_conn_idle_client_expiry; extern unsigned long rxrpc_conn_idle_client_fast_expiry; void rxrpc_purge_client_connections(struct rxrpc_local *local); struct rxrpc_bundle *rxrpc_get_bundle(struct rxrpc_bundle *, enum rxrpc_bundle_trace); void rxrpc_put_bundle(struct rxrpc_bundle *, enum rxrpc_bundle_trace); int rxrpc_look_up_bundle(struct rxrpc_call *call, gfp_t gfp); void rxrpc_connect_client_calls(struct rxrpc_local *local); void rxrpc_expose_client_call(struct rxrpc_call *); void rxrpc_disconnect_client_call(struct rxrpc_bundle *, struct rxrpc_call *); void rxrpc_deactivate_bundle(struct rxrpc_bundle *bundle); void rxrpc_discard_expired_client_conns(struct rxrpc_local *local); void rxrpc_clean_up_local_conns(struct rxrpc_local *); /* * conn_event.c */ void rxrpc_conn_retransmit_call(struct rxrpc_connection *conn, struct sk_buff *skb, unsigned int channel); int rxrpc_abort_conn(struct rxrpc_connection *conn, struct sk_buff *skb, s32 abort_code, int err, enum rxrpc_abort_reason why); void rxrpc_process_connection(struct work_struct *); void rxrpc_process_delayed_final_acks(struct rxrpc_connection *, bool); bool rxrpc_input_conn_packet(struct rxrpc_connection *conn, struct sk_buff *skb); void rxrpc_input_conn_event(struct rxrpc_connection *conn, struct sk_buff *skb); static inline bool rxrpc_is_conn_aborted(const struct rxrpc_connection *conn) { /* Order reading the abort info after the state check. */ return smp_load_acquire(&conn->state) == RXRPC_CONN_ABORTED; } /* * conn_object.c */ extern unsigned int rxrpc_connection_expiry; extern unsigned int rxrpc_closed_conn_expiry; void rxrpc_poke_conn(struct rxrpc_connection *conn, enum rxrpc_conn_trace why); struct rxrpc_connection *rxrpc_alloc_connection(struct rxrpc_net *, gfp_t); struct rxrpc_connection *rxrpc_find_client_connection_rcu(struct rxrpc_local *, struct sockaddr_rxrpc *, struct sk_buff *); void __rxrpc_disconnect_call(struct rxrpc_connection *, struct rxrpc_call *); void rxrpc_disconnect_call(struct rxrpc_call *); void rxrpc_kill_client_conn(struct rxrpc_connection *); void rxrpc_queue_conn(struct rxrpc_connection *, enum rxrpc_conn_trace); void rxrpc_see_connection(struct rxrpc_connection *, enum rxrpc_conn_trace); struct rxrpc_connection *rxrpc_get_connection(struct rxrpc_connection *, enum rxrpc_conn_trace); struct rxrpc_connection *rxrpc_get_connection_maybe(struct rxrpc_connection *, enum rxrpc_conn_trace); void rxrpc_put_connection(struct rxrpc_connection *, enum rxrpc_conn_trace); void rxrpc_service_connection_reaper(struct work_struct *); void rxrpc_destroy_all_connections(struct rxrpc_net *); static inline bool rxrpc_conn_is_client(const struct rxrpc_connection *conn) { return conn->out_clientflag; } static inline bool rxrpc_conn_is_service(const struct rxrpc_connection *conn) { return !rxrpc_conn_is_client(conn); } static inline void rxrpc_reduce_conn_timer(struct rxrpc_connection *conn, unsigned long expire_at) { timer_reduce(&conn->timer, expire_at); } /* * conn_service.c */ struct rxrpc_connection *rxrpc_find_service_conn_rcu(struct rxrpc_peer *, struct sk_buff *); struct rxrpc_connection *rxrpc_prealloc_service_connection(struct rxrpc_net *, gfp_t); void rxrpc_new_incoming_connection(struct rxrpc_sock *, struct rxrpc_connection *, const struct rxrpc_security *, struct sk_buff *); void rxrpc_unpublish_service_conn(struct rxrpc_connection *); /* * input.c */ void rxrpc_congestion_degrade(struct rxrpc_call *); void rxrpc_input_call_packet(struct rxrpc_call *, struct sk_buff *); void rxrpc_implicit_end_call(struct rxrpc_call *, struct sk_buff *); /* * input_rack.c */ void rxrpc_input_rack_one(struct rxrpc_call *call, struct rxrpc_ack_summary *summary, struct rxrpc_txqueue *tq, unsigned int ix); void rxrpc_input_rack(struct rxrpc_call *call, struct rxrpc_ack_summary *summary, struct rxrpc_txqueue *tq, unsigned long new_acks); void rxrpc_rack_detect_loss_and_arm_timer(struct rxrpc_call *call, struct rxrpc_ack_summary *summary); ktime_t rxrpc_tlp_calc_pto(struct rxrpc_call *call, ktime_t now); void rxrpc_tlp_send_probe(struct rxrpc_call *call); void rxrpc_tlp_process_ack(struct rxrpc_call *call, struct rxrpc_ack_summary *summary); void rxrpc_rack_timer_expired(struct rxrpc_call *call, ktime_t overran_by); /* Initialise TLP state [RFC8958 7.1]. */ static inline void rxrpc_tlp_init(struct rxrpc_call *call) { call->tlp_serial = 0; call->tlp_seq = call->acks_hard_ack; call->tlp_is_retrans = false; } /* * io_thread.c */ int rxrpc_encap_rcv(struct sock *, struct sk_buff *); void rxrpc_error_report(struct sock *); bool rxrpc_direct_abort(struct sk_buff *skb, enum rxrpc_abort_reason why, s32 abort_code, int err); int rxrpc_io_thread(void *data); static inline void rxrpc_wake_up_io_thread(struct rxrpc_local *local) { wake_up_process(READ_ONCE(local->io_thread)); } static inline bool rxrpc_protocol_error(struct sk_buff *skb, enum rxrpc_abort_reason why) { return rxrpc_direct_abort(skb, why, RX_PROTOCOL_ERROR, -EPROTO); } /* * insecure.c */ extern const struct rxrpc_security rxrpc_no_security; /* * key.c */ extern struct key_type key_type_rxrpc; int rxrpc_request_key(struct rxrpc_sock *, sockptr_t , int); int rxrpc_get_server_data_key(struct rxrpc_connection *, const void *, time64_t, u32); /* * local_event.c */ void rxrpc_gen_version_string(void); void rxrpc_send_version_request(struct rxrpc_local *local, struct rxrpc_host_header *hdr, struct sk_buff *skb); /* * local_object.c */ void rxrpc_local_dont_fragment(const struct rxrpc_local *local, bool set); struct rxrpc_local *rxrpc_lookup_local(struct net *, const struct sockaddr_rxrpc *); struct rxrpc_local *rxrpc_get_local(struct rxrpc_local *, enum rxrpc_local_trace); struct rxrpc_local *rxrpc_get_local_maybe(struct rxrpc_local *, enum rxrpc_local_trace); void rxrpc_put_local(struct rxrpc_local *, enum rxrpc_local_trace); struct rxrpc_local *rxrpc_use_local(struct rxrpc_local *, enum rxrpc_local_trace); void rxrpc_unuse_local(struct rxrpc_local *, enum rxrpc_local_trace); void rxrpc_destroy_local(struct rxrpc_local *local); void rxrpc_destroy_all_locals(struct rxrpc_net *); static inline bool __rxrpc_use_local(struct rxrpc_local *local, enum rxrpc_local_trace why) { int r, u; r = refcount_read(&local->ref); u = atomic_fetch_add_unless(&local->active_users, 1, 0); trace_rxrpc_local(local->debug_id, why, r, u); return u != 0; } static inline void rxrpc_see_local(struct rxrpc_local *local, enum rxrpc_local_trace why) { int r, u; r = refcount_read(&local->ref); u = atomic_read(&local->active_users); trace_rxrpc_local(local->debug_id, why, r, u); } /* * misc.c */ extern unsigned int rxrpc_max_backlog __read_mostly; extern unsigned long rxrpc_soft_ack_delay; extern unsigned long rxrpc_idle_ack_delay; extern unsigned int rxrpc_rx_window_size; extern unsigned int rxrpc_rx_mtu; extern unsigned int rxrpc_rx_jumbo_max; #ifdef CONFIG_AF_RXRPC_INJECT_RX_DELAY extern unsigned long rxrpc_inject_rx_delay; #endif /* * net_ns.c */ extern unsigned int rxrpc_net_id; extern struct pernet_operations rxrpc_net_ops; static inline struct rxrpc_net *rxrpc_net(struct net *net) { return net_generic(net, rxrpc_net_id); } /* * output.c */ void rxrpc_send_ACK(struct rxrpc_call *call, u8 ack_reason, rxrpc_serial_t serial, enum rxrpc_propose_ack_trace why); void rxrpc_send_probe_for_pmtud(struct rxrpc_call *call); int rxrpc_send_abort_packet(struct rxrpc_call *); void rxrpc_send_data_packet(struct rxrpc_call *call, struct rxrpc_send_data_req *req); void rxrpc_send_conn_abort(struct rxrpc_connection *conn); void rxrpc_reject_packet(struct rxrpc_local *local, struct sk_buff *skb); void rxrpc_send_keepalive(struct rxrpc_peer *); /* * peer_event.c */ void rxrpc_input_error(struct rxrpc_local *, struct sk_buff *); void rxrpc_peer_keepalive_worker(struct work_struct *); void rxrpc_input_probe_for_pmtud(struct rxrpc_connection *conn, rxrpc_serial_t acked_serial, bool sendmsg_fail); /* * peer_object.c */ struct rxrpc_peer *rxrpc_lookup_peer_rcu(struct rxrpc_local *, const struct sockaddr_rxrpc *); struct rxrpc_peer *rxrpc_lookup_peer(struct rxrpc_local *local, struct sockaddr_rxrpc *srx, gfp_t gfp); struct rxrpc_peer *rxrpc_alloc_peer(struct rxrpc_local *, gfp_t, enum rxrpc_peer_trace); void rxrpc_new_incoming_peer(struct rxrpc_local *local, struct rxrpc_peer *peer); void rxrpc_destroy_all_peers(struct rxrpc_net *); struct rxrpc_peer *rxrpc_get_peer(struct rxrpc_peer *, enum rxrpc_peer_trace); struct rxrpc_peer *rxrpc_get_peer_maybe(struct rxrpc_peer *, enum rxrpc_peer_trace); void rxrpc_put_peer(struct rxrpc_peer *, enum rxrpc_peer_trace); /* * proc.c */ extern const struct seq_operations rxrpc_call_seq_ops; extern const struct seq_operations rxrpc_connection_seq_ops; extern const struct seq_operations rxrpc_bundle_seq_ops; extern const struct seq_operations rxrpc_peer_seq_ops; extern const struct seq_operations rxrpc_local_seq_ops; /* * recvmsg.c */ void rxrpc_notify_socket(struct rxrpc_call *); int rxrpc_recvmsg(struct socket *, struct msghdr *, size_t, int); /* * Abort a call due to a protocol error. */ static inline int rxrpc_abort_eproto(struct rxrpc_call *call, struct sk_buff *skb, s32 abort_code, enum rxrpc_abort_reason why) { struct rxrpc_skb_priv *sp = rxrpc_skb(skb); rxrpc_abort_call(call, sp->hdr.seq, abort_code, -EPROTO, why); return -EPROTO; } /* * rtt.c */ void rxrpc_call_add_rtt(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why, int rtt_slot, rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial, ktime_t send_time, ktime_t resp_time); ktime_t rxrpc_get_rto_backoff(struct rxrpc_call *call, bool retrans); void rxrpc_call_init_rtt(struct rxrpc_call *call); /* * rxkad.c */ #ifdef CONFIG_RXKAD extern const struct rxrpc_security rxkad; #endif /* * security.c */ int __init rxrpc_init_security(void); const struct rxrpc_security *rxrpc_security_lookup(u8); void rxrpc_exit_security(void); int rxrpc_init_client_call_security(struct rxrpc_call *); int rxrpc_init_client_conn_security(struct rxrpc_connection *); const struct rxrpc_security *rxrpc_get_incoming_security(struct rxrpc_sock *, struct sk_buff *); struct key *rxrpc_look_up_server_security(struct rxrpc_connection *, struct sk_buff *, u32, u32); /* * sendmsg.c */ bool rxrpc_propose_abort(struct rxrpc_call *call, s32 abort_code, int error, enum rxrpc_abort_reason why); int rxrpc_do_sendmsg(struct rxrpc_sock *, struct msghdr *, size_t); /* * server_key.c */ extern struct key_type key_type_rxrpc_s; int rxrpc_server_keyring(struct rxrpc_sock *, sockptr_t, int); /* * skbuff.c */ void rxrpc_kernel_data_consumed(struct rxrpc_call *, struct sk_buff *); void rxrpc_new_skb(struct sk_buff *, enum rxrpc_skb_trace); void rxrpc_see_skb(struct sk_buff *, enum rxrpc_skb_trace); void rxrpc_eaten_skb(struct sk_buff *, enum rxrpc_skb_trace); void rxrpc_get_skb(struct sk_buff *, enum rxrpc_skb_trace); void rxrpc_free_skb(struct sk_buff *, enum rxrpc_skb_trace); void rxrpc_purge_queue(struct sk_buff_head *); /* * stats.c */ int rxrpc_stats_show(struct seq_file *seq, void *v); int rxrpc_stats_clear(struct file *file, char *buf, size_t size); #define rxrpc_inc_stat(rxnet, s) atomic_inc(&(rxnet)->s) #define rxrpc_dec_stat(rxnet, s) atomic_dec(&(rxnet)->s) /* * sysctl.c */ #ifdef CONFIG_SYSCTL extern int __init rxrpc_sysctl_init(void); extern void rxrpc_sysctl_exit(void); #else static inline int __init rxrpc_sysctl_init(void) { return 0; } static inline void rxrpc_sysctl_exit(void) {} #endif /* * txbuf.c */ extern atomic_t rxrpc_nr_txbuf; struct rxrpc_txbuf *rxrpc_alloc_data_txbuf(struct rxrpc_call *call, size_t data_size, size_t data_align, gfp_t gfp); void rxrpc_get_txbuf(struct rxrpc_txbuf *txb, enum rxrpc_txbuf_trace what); void rxrpc_see_txbuf(struct rxrpc_txbuf *txb, enum rxrpc_txbuf_trace what); void rxrpc_put_txbuf(struct rxrpc_txbuf *txb, enum rxrpc_txbuf_trace what); /* * utils.c */ int rxrpc_extract_addr_from_skb(struct sockaddr_rxrpc *, struct sk_buff *); static inline bool before(u32 seq1, u32 seq2) { return (s32)(seq1 - seq2) < 0; } static inline bool before_eq(u32 seq1, u32 seq2) { return (s32)(seq1 - seq2) <= 0; } static inline bool after(u32 seq1, u32 seq2) { return (s32)(seq1 - seq2) > 0; } static inline bool after_eq(u32 seq1, u32 seq2) { return (s32)(seq1 - seq2) >= 0; } static inline u32 earliest(u32 seq1, u32 seq2) { return before(seq1, seq2) ? seq1 : seq2; } static inline u32 latest(u32 seq1, u32 seq2) { return after(seq1, seq2) ? seq1 : seq2; } static inline bool rxrpc_seq_in_txq(const struct rxrpc_txqueue *tq, rxrpc_seq_t seq) { return (seq & (RXRPC_NR_TXQUEUE - 1)) == tq->qbase; } static inline void rxrpc_queue_rx_call_packet(struct rxrpc_call *call, struct sk_buff *skb) { rxrpc_get_skb(skb, rxrpc_skb_get_call_rx); __skb_queue_tail(&call->rx_queue, skb); rxrpc_poke_call(call, rxrpc_call_poke_rx_packet); } /* * Calculate how much space there is for transmitting more DATA packets. */ static inline unsigned int rxrpc_tx_window_space(const struct rxrpc_call *call) { int winsize = umin(call->tx_winsize, call->cong_cwnd + call->cong_extra); int transmitted = call->tx_top - call->tx_bottom; return max(winsize - transmitted, 0); } static inline unsigned int rxrpc_left_out(const struct rxrpc_call *call) { return call->acks_nr_sacks + call->tx_nr_lost; } /* * Calculate the number of transmitted DATA packets assumed to be in flight * [approx RFC6675]. */ static inline unsigned int rxrpc_tx_in_flight(const struct rxrpc_call *call) { return call->tx_nr_sent - rxrpc_left_out(call) + call->tx_nr_resent; } /* * debug tracing */ extern unsigned int rxrpc_debug; #define dbgprintk(FMT,...) \ printk("[%-6.6s] "FMT"\n", current->comm ,##__VA_ARGS__) #define kenter(FMT,...) dbgprintk("==> %s("FMT")",__func__ ,##__VA_ARGS__) #define kleave(FMT,...) dbgprintk("<== %s()"FMT"",__func__ ,##__VA_ARGS__) #define kdebug(FMT,...) dbgprintk(" "FMT ,##__VA_ARGS__) #if defined(__KDEBUG) #define _enter(FMT,...) kenter(FMT,##__VA_ARGS__) #define _leave(FMT,...) kleave(FMT,##__VA_ARGS__) #define _debug(FMT,...) kdebug(FMT,##__VA_ARGS__) #elif defined(CONFIG_AF_RXRPC_DEBUG) #define RXRPC_DEBUG_KENTER 0x01 #define RXRPC_DEBUG_KLEAVE 0x02 #define RXRPC_DEBUG_KDEBUG 0x04 #define _enter(FMT,...) \ do { \ if (unlikely(rxrpc_debug & RXRPC_DEBUG_KENTER)) \ kenter(FMT,##__VA_ARGS__); \ } while (0) #define _leave(FMT,...) \ do { \ if (unlikely(rxrpc_debug & RXRPC_DEBUG_KLEAVE)) \ kleave(FMT,##__VA_ARGS__); \ } while (0) #define _debug(FMT,...) \ do { \ if (unlikely(rxrpc_debug & RXRPC_DEBUG_KDEBUG)) \ kdebug(FMT,##__VA_ARGS__); \ } while (0) #else #define _enter(FMT,...) no_printk("==> %s("FMT")",__func__ ,##__VA_ARGS__) #define _leave(FMT,...) no_printk("<== %s()"FMT"",__func__ ,##__VA_ARGS__) #define _debug(FMT,...) no_printk(" "FMT ,##__VA_ARGS__) #endif /* * debug assertion checking */ #if 1 // defined(__KDEBUGALL) #define ASSERT(X) \ do { \ if (unlikely(!(X))) { \ pr_err("Assertion failed\n"); \ BUG(); \ } \ } while (0) #define ASSERTCMP(X, OP, Y) \ do { \ __typeof__(X) _x = (X); \ __typeof__(Y) _y = (__typeof__(X))(Y); \ if (unlikely(!(_x OP _y))) { \ pr_err("Assertion failed - %lu(0x%lx) %s %lu(0x%lx) is false\n", \ (unsigned long)_x, (unsigned long)_x, #OP, \ (unsigned long)_y, (unsigned long)_y); \ BUG(); \ } \ } while (0) #define ASSERTIF(C, X) \ do { \ if (unlikely((C) && !(X))) { \ pr_err("Assertion failed\n"); \ BUG(); \ } \ } while (0) #define ASSERTIFCMP(C, X, OP, Y) \ do { \ __typeof__(X) _x = (X); \ __typeof__(Y) _y = (__typeof__(X))(Y); \ if (unlikely((C) && !(_x OP _y))) { \ pr_err("Assertion failed - %lu(0x%lx) %s %lu(0x%lx) is false\n", \ (unsigned long)_x, (unsigned long)_x, #OP, \ (unsigned long)_y, (unsigned long)_y); \ BUG(); \ } \ } while (0) #else #define ASSERT(X) \ do { \ } while (0) #define ASSERTCMP(X, OP, Y) \ do { \ } while (0) #define ASSERTIF(C, X) \ do { \ } while (0) #define ASSERTIFCMP(C, X, OP, Y) \ do { \ } while (0) #endif /* __KDEBUGALL */
79 79 23 79 79 113 113 113 113 113 5 5 5 8 1 7 1 1 2 24 141 10 140 1 22 22 118 113 1 3 2 1 2 12 3 9 1 4 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 // SPDX-License-Identifier: GPL-2.0-only /* * kernel/power/hibernate.c - Hibernation (a.k.a suspend-to-disk) support. * * Copyright (c) 2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * Copyright (c) 2004 Pavel Machek <pavel@ucw.cz> * Copyright (c) 2009 Rafael J. Wysocki, Novell Inc. * Copyright (C) 2012 Bojan Smojver <bojan@rexursive.com> */ #define pr_fmt(fmt) "PM: hibernation: " fmt #include <crypto/acompress.h> #include <linux/blkdev.h> #include <linux/export.h> #include <linux/suspend.h> #include <linux/reboot.h> #include <linux/string.h> #include <linux/device.h> #include <linux/async.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/pm.h> #include <linux/nmi.h> #include <linux/console.h> #include <linux/cpu.h> #include <linux/freezer.h> #include <linux/gfp.h> #include <linux/syscore_ops.h> #include <linux/ctype.h> #include <linux/ktime.h> #include <linux/security.h> #include <linux/secretmem.h> #include <trace/events/power.h> #include "power.h" static int nocompress; static int noresume; static int nohibernate; static int resume_wait; static unsigned int resume_delay; static char resume_file[256] = CONFIG_PM_STD_PARTITION; dev_t swsusp_resume_device; sector_t swsusp_resume_block; __visible int in_suspend __nosavedata; static char hibernate_compressor[CRYPTO_MAX_ALG_NAME] = CONFIG_HIBERNATION_DEF_COMP; /* * Compression/decompression algorithm to be used while saving/loading * image to/from disk. This would later be used in 'kernel/power/swap.c' * to allocate comp streams. */ char hib_comp_algo[CRYPTO_MAX_ALG_NAME]; enum { HIBERNATION_INVALID, HIBERNATION_PLATFORM, HIBERNATION_SHUTDOWN, HIBERNATION_REBOOT, #ifdef CONFIG_SUSPEND HIBERNATION_SUSPEND, #endif HIBERNATION_TEST_RESUME, /* keep last */ __HIBERNATION_AFTER_LAST }; #define HIBERNATION_MAX (__HIBERNATION_AFTER_LAST-1) #define HIBERNATION_FIRST (HIBERNATION_INVALID + 1) static int hibernation_mode = HIBERNATION_SHUTDOWN; bool freezer_test_done; static const struct platform_hibernation_ops *hibernation_ops; static atomic_t hibernate_atomic = ATOMIC_INIT(1); bool hibernate_acquire(void) { return atomic_add_unless(&hibernate_atomic, -1, 0); } void hibernate_release(void) { atomic_inc(&hibernate_atomic); } bool hibernation_available(void) { return nohibernate == 0 && !security_locked_down(LOCKDOWN_HIBERNATION) && !secretmem_active() && !cxl_mem_active(); } /** * hibernation_set_ops - Set the global hibernate operations. * @ops: Hibernation operations to use in subsequent hibernation transitions. */ void hibernation_set_ops(const struct platform_hibernation_ops *ops) { unsigned int sleep_flags; if (ops && !(ops->begin && ops->end && ops->pre_snapshot && ops->prepare && ops->finish && ops->enter && ops->pre_restore && ops->restore_cleanup && ops->leave)) { WARN_ON(1); return; } sleep_flags = lock_system_sleep(); hibernation_ops = ops; if (ops) hibernation_mode = HIBERNATION_PLATFORM; else if (hibernation_mode == HIBERNATION_PLATFORM) hibernation_mode = HIBERNATION_SHUTDOWN; unlock_system_sleep(sleep_flags); } EXPORT_SYMBOL_GPL(hibernation_set_ops); static bool entering_platform_hibernation; bool system_entering_hibernation(void) { return entering_platform_hibernation; } EXPORT_SYMBOL(system_entering_hibernation); #ifdef CONFIG_PM_DEBUG static void hibernation_debug_sleep(void) { pr_info("debug: Waiting for 5 seconds.\n"); mdelay(5000); } static int hibernation_test(int level) { if (pm_test_level == level) { hibernation_debug_sleep(); return 1; } return 0; } #else /* !CONFIG_PM_DEBUG */ static int hibernation_test(int level) { return 0; } #endif /* !CONFIG_PM_DEBUG */ /** * platform_begin - Call platform to start hibernation. * @platform_mode: Whether or not to use the platform driver. */ static int platform_begin(int platform_mode) { return (platform_mode && hibernation_ops) ? hibernation_ops->begin(PMSG_FREEZE) : 0; } /** * platform_end - Call platform to finish transition to the working state. * @platform_mode: Whether or not to use the platform driver. */ static void platform_end(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->end(); } /** * platform_pre_snapshot - Call platform to prepare the machine for hibernation. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to prepare the system for creating a hibernate image, * if so configured, and return an error code if that fails. */ static int platform_pre_snapshot(int platform_mode) { return (platform_mode && hibernation_ops) ? hibernation_ops->pre_snapshot() : 0; } /** * platform_leave - Call platform to prepare a transition to the working state. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver prepare to prepare the machine for switching to the * normal mode of operation. * * This routine is called on one CPU with interrupts disabled. */ static void platform_leave(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->leave(); } /** * platform_finish - Call platform to switch the system to the working state. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to switch the machine to the normal mode of * operation. * * This routine must be called after platform_prepare(). */ static void platform_finish(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->finish(); } /** * platform_pre_restore - Prepare for hibernate image restoration. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to prepare the system for resume from a hibernation * image. * * If the restore fails after this function has been called, * platform_restore_cleanup() must be called. */ static int platform_pre_restore(int platform_mode) { return (platform_mode && hibernation_ops) ? hibernation_ops->pre_restore() : 0; } /** * platform_restore_cleanup - Switch to the working state after failing restore. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to switch the system to the normal mode of operation * after a failing restore. * * If platform_pre_restore() has been called before the failing restore, this * function must be called too, regardless of the result of * platform_pre_restore(). */ static void platform_restore_cleanup(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->restore_cleanup(); } /** * platform_recover - Recover from a failure to suspend devices. * @platform_mode: Whether or not to use the platform driver. */ static void platform_recover(int platform_mode) { if (platform_mode && hibernation_ops && hibernation_ops->recover) hibernation_ops->recover(); } /** * swsusp_show_speed - Print time elapsed between two events during hibernation. * @start: Starting event. * @stop: Final event. * @nr_pages: Number of memory pages processed between @start and @stop. * @msg: Additional diagnostic message to print. */ void swsusp_show_speed(ktime_t start, ktime_t stop, unsigned nr_pages, char *msg) { ktime_t diff; u64 elapsed_centisecs64; unsigned int centisecs; unsigned int k; unsigned int kps; diff = ktime_sub(stop, start); elapsed_centisecs64 = ktime_divns(diff, 10*NSEC_PER_MSEC); centisecs = elapsed_centisecs64; if (centisecs == 0) centisecs = 1; /* avoid div-by-zero */ k = nr_pages * (PAGE_SIZE / 1024); kps = (k * 100) / centisecs; pr_info("%s %u kbytes in %u.%02u seconds (%u.%02u MB/s)\n", msg, k, centisecs / 100, centisecs % 100, kps / 1000, (kps % 1000) / 10); } __weak int arch_resume_nosmt(void) { return 0; } /** * create_image - Create a hibernation image. * @platform_mode: Whether or not to use the platform driver. * * Execute device drivers' "late" and "noirq" freeze callbacks, create a * hibernation image and run the drivers' "noirq" and "early" thaw callbacks. * * Control reappears in this routine after the subsequent restore. */ static int create_image(int platform_mode) { int error; error = dpm_suspend_end(PMSG_FREEZE); if (error) { pr_err("Some devices failed to power down, aborting\n"); return error; } error = platform_pre_snapshot(platform_mode); if (error || hibernation_test(TEST_PLATFORM)) goto Platform_finish; error = pm_sleep_disable_secondary_cpus(); if (error || hibernation_test(TEST_CPUS)) goto Enable_cpus; local_irq_disable(); system_state = SYSTEM_SUSPEND; error = syscore_suspend(); if (error) { pr_err("Some system devices failed to power down, aborting\n"); goto Enable_irqs; } if (hibernation_test(TEST_CORE) || pm_wakeup_pending()) goto Power_up; in_suspend = 1; save_processor_state(); trace_suspend_resume(TPS("machine_suspend"), PM_EVENT_HIBERNATE, true); error = swsusp_arch_suspend(); /* Restore control flow magically appears here */ restore_processor_state(); trace_suspend_resume(TPS("machine_suspend"), PM_EVENT_HIBERNATE, false); if (error) pr_err("Error %d creating image\n", error); if (!in_suspend) { events_check_enabled = false; clear_or_poison_free_pages(); } platform_leave(platform_mode); Power_up: syscore_resume(); Enable_irqs: system_state = SYSTEM_RUNNING; local_irq_enable(); Enable_cpus: pm_sleep_enable_secondary_cpus(); /* Allow architectures to do nosmt-specific post-resume dances */ if (!in_suspend) error = arch_resume_nosmt(); Platform_finish: platform_finish(platform_mode); dpm_resume_start(in_suspend ? (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); return error; } /** * hibernation_snapshot - Quiesce devices and create a hibernation image. * @platform_mode: If set, use platform driver to prepare for the transition. * * This routine must be called with system_transition_mutex held. */ int hibernation_snapshot(int platform_mode) { pm_message_t msg; int error; pm_suspend_clear_flags(); error = platform_begin(platform_mode); if (error) goto Close; /* Preallocate image memory before shutting down devices. */ error = hibernate_preallocate_memory(); if (error) goto Close; error = freeze_kernel_threads(); if (error) goto Cleanup; if (hibernation_test(TEST_FREEZER)) { /* * Indicate to the caller that we are returning due to a * successful freezer test. */ freezer_test_done = true; goto Thaw; } error = dpm_prepare(PMSG_FREEZE); if (error) { dpm_complete(PMSG_RECOVER); goto Thaw; } console_suspend_all(); pm_restrict_gfp_mask(); error = dpm_suspend(PMSG_FREEZE); if (error || hibernation_test(TEST_DEVICES)) platform_recover(platform_mode); else error = create_image(platform_mode); /* * In the case that we call create_image() above, the control * returns here (1) after the image has been created or the * image creation has failed and (2) after a successful restore. */ /* We may need to release the preallocated image pages here. */ if (error || !in_suspend) swsusp_free(); msg = in_suspend ? (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE; dpm_resume(msg); if (error || !in_suspend) pm_restore_gfp_mask(); console_resume_all(); dpm_complete(msg); Close: platform_end(platform_mode); return error; Thaw: thaw_kernel_threads(); Cleanup: swsusp_free(); goto Close; } int __weak hibernate_resume_nonboot_cpu_disable(void) { return suspend_disable_secondary_cpus(); } /** * resume_target_kernel - Restore system state from a hibernation image. * @platform_mode: Whether or not to use the platform driver. * * Execute device drivers' "noirq" and "late" freeze callbacks, restore the * contents of highmem that have not been restored yet from the image and run * the low-level code that will restore the remaining contents of memory and * switch to the just restored target kernel. */ static int resume_target_kernel(bool platform_mode) { int error; error = dpm_suspend_end(PMSG_QUIESCE); if (error) { pr_err("Some devices failed to power down, aborting resume\n"); return error; } error = platform_pre_restore(platform_mode); if (error) goto Cleanup; cpuidle_pause(); error = hibernate_resume_nonboot_cpu_disable(); if (error) goto Enable_cpus; local_irq_disable(); system_state = SYSTEM_SUSPEND; error = syscore_suspend(); if (error) goto Enable_irqs; save_processor_state(); error = restore_highmem(); if (!error) { error = swsusp_arch_resume(); /* * The code below is only ever reached in case of a failure. * Otherwise, execution continues at the place where * swsusp_arch_suspend() was called. */ BUG_ON(!error); /* * This call to restore_highmem() reverts the changes made by * the previous one. */ restore_highmem(); } /* * The only reason why swsusp_arch_resume() can fail is memory being * very tight, so we have to free it as soon as we can to avoid * subsequent failures. */ swsusp_free(); restore_processor_state(); touch_softlockup_watchdog(); syscore_resume(); Enable_irqs: system_state = SYSTEM_RUNNING; local_irq_enable(); Enable_cpus: pm_sleep_enable_secondary_cpus(); Cleanup: platform_restore_cleanup(platform_mode); dpm_resume_start(PMSG_RECOVER); return error; } /** * hibernation_restore - Quiesce devices and restore from a hibernation image. * @platform_mode: If set, use platform driver to prepare for the transition. * * This routine must be called with system_transition_mutex held. If it is * successful, control reappears in the restored target kernel in * hibernation_snapshot(). */ int hibernation_restore(int platform_mode) { int error; pm_prepare_console(); console_suspend_all(); pm_restrict_gfp_mask(); error = dpm_suspend_start(PMSG_QUIESCE); if (!error) { error = resume_target_kernel(platform_mode); /* * The above should either succeed and jump to the new kernel, * or return with an error. Otherwise things are just * undefined, so let's be paranoid. */ BUG_ON(!error); } dpm_resume_end(PMSG_RECOVER); pm_restore_gfp_mask(); console_resume_all(); pm_restore_console(); return error; } /** * hibernation_platform_enter - Power off the system using the platform driver. */ int hibernation_platform_enter(void) { int error; if (!hibernation_ops) return -ENOSYS; /* * We have cancelled the power transition by running * hibernation_ops->finish() before saving the image, so we should let * the firmware know that we're going to enter the sleep state after all */ error = hibernation_ops->begin(PMSG_HIBERNATE); if (error) goto Close; entering_platform_hibernation = true; console_suspend_all(); error = dpm_suspend_start(PMSG_HIBERNATE); if (error) { if (hibernation_ops->recover) hibernation_ops->recover(); goto Resume_devices; } error = dpm_suspend_end(PMSG_HIBERNATE); if (error) goto Resume_devices; error = hibernation_ops->prepare(); if (error) goto Platform_finish; error = pm_sleep_disable_secondary_cpus(); if (error) goto Enable_cpus; local_irq_disable(); system_state = SYSTEM_SUSPEND; error = syscore_suspend(); if (error) goto Enable_irqs; if (pm_wakeup_pending()) { error = -EAGAIN; goto Power_up; } hibernation_ops->enter(); /* We should never get here */ while (1); Power_up: syscore_resume(); Enable_irqs: system_state = SYSTEM_RUNNING; local_irq_enable(); Enable_cpus: pm_sleep_enable_secondary_cpus(); Platform_finish: hibernation_ops->finish(); dpm_resume_start(PMSG_RESTORE); Resume_devices: entering_platform_hibernation = false; dpm_resume_end(PMSG_RESTORE); console_resume_all(); Close: hibernation_ops->end(); return error; } /** * power_down - Shut the machine down for hibernation. * * Use the platform driver, if configured, to put the system into the sleep * state corresponding to hibernation, or try to power it off or reboot, * depending on the value of hibernation_mode. */ static void power_down(void) { int error; #ifdef CONFIG_SUSPEND if (hibernation_mode == HIBERNATION_SUSPEND) { error = suspend_devices_and_enter(mem_sleep_current); if (error) { hibernation_mode = hibernation_ops ? HIBERNATION_PLATFORM : HIBERNATION_SHUTDOWN; } else { /* Restore swap signature. */ error = swsusp_unmark(); if (error) pr_err("Swap will be unusable! Try swapon -a.\n"); return; } } #endif switch (hibernation_mode) { case HIBERNATION_REBOOT: kernel_restart(NULL); break; case HIBERNATION_PLATFORM: error = hibernation_platform_enter(); if (error == -EAGAIN || error == -EBUSY) { swsusp_unmark(); events_check_enabled = false; pr_info("Wakeup event detected during hibernation, rolling back.\n"); return; } fallthrough; case HIBERNATION_SHUTDOWN: if (kernel_can_power_off()) { entering_platform_hibernation = true; kernel_power_off(); entering_platform_hibernation = false; } break; } kernel_halt(); /* * Valid image is on the disk, if we continue we risk serious data * corruption after resume. */ pr_crit("Power down manually\n"); while (1) cpu_relax(); } static int load_image_and_restore(void) { int error; unsigned int flags; pm_pr_dbg("Loading hibernation image.\n"); lock_device_hotplug(); error = create_basic_memory_bitmaps(); if (error) { swsusp_close(); goto Unlock; } error = swsusp_read(&flags); swsusp_close(); if (!error) error = hibernation_restore(flags & SF_PLATFORM_MODE); pr_err("Failed to load image, recovering.\n"); swsusp_free(); free_basic_memory_bitmaps(); Unlock: unlock_device_hotplug(); return error; } #define COMPRESSION_ALGO_LZO "lzo" #define COMPRESSION_ALGO_LZ4 "lz4" /** * hibernate - Carry out system hibernation, including saving the image. */ int hibernate(void) { bool snapshot_test = false; unsigned int sleep_flags; int error; if (!hibernation_available()) { pm_pr_dbg("Hibernation not available.\n"); return -EPERM; } /* * Query for the compression algorithm support if compression is enabled. */ if (!nocompress) { strscpy(hib_comp_algo, hibernate_compressor, sizeof(hib_comp_algo)); if (!crypto_has_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC)) { pr_err("%s compression is not available\n", hib_comp_algo); return -EOPNOTSUPP; } } sleep_flags = lock_system_sleep(); /* The snapshot device should not be opened while we're running */ if (!hibernate_acquire()) { error = -EBUSY; goto Unlock; } pr_info("hibernation entry\n"); pm_prepare_console(); error = pm_notifier_call_chain_robust(PM_HIBERNATION_PREPARE, PM_POST_HIBERNATION); if (error) goto Restore; ksys_sync_helper(); error = freeze_processes(); if (error) goto Exit; lock_device_hotplug(); /* Allocate memory management structures */ error = create_basic_memory_bitmaps(); if (error) goto Thaw; error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); if (error || freezer_test_done) goto Free_bitmaps; if (in_suspend) { unsigned int flags = 0; if (hibernation_mode == HIBERNATION_PLATFORM) flags |= SF_PLATFORM_MODE; if (nocompress) { flags |= SF_NOCOMPRESS_MODE; } else { flags |= SF_CRC32_MODE; /* * By default, LZO compression is enabled. Use SF_COMPRESSION_ALG_LZ4 * to override this behaviour and use LZ4. * * Refer kernel/power/power.h for more details */ if (!strcmp(hib_comp_algo, COMPRESSION_ALGO_LZ4)) flags |= SF_COMPRESSION_ALG_LZ4; else flags |= SF_COMPRESSION_ALG_LZO; } pm_pr_dbg("Writing hibernation image.\n"); error = swsusp_write(flags); swsusp_free(); if (!error) { if (hibernation_mode == HIBERNATION_TEST_RESUME) snapshot_test = true; else power_down(); } in_suspend = 0; pm_restore_gfp_mask(); } else { pm_pr_dbg("Hibernation image restored successfully.\n"); } Free_bitmaps: free_basic_memory_bitmaps(); Thaw: unlock_device_hotplug(); if (snapshot_test) { pm_pr_dbg("Checking hibernation image\n"); error = swsusp_check(false); if (!error) error = load_image_and_restore(); } thaw_processes(); /* Don't bother checking whether freezer_test_done is true */ freezer_test_done = false; Exit: pm_notifier_call_chain(PM_POST_HIBERNATION); Restore: pm_restore_console(); hibernate_release(); Unlock: unlock_system_sleep(sleep_flags); pr_info("hibernation exit\n"); return error; } /** * hibernate_quiet_exec - Execute a function with all devices frozen. * @func: Function to execute. * @data: Data pointer to pass to @func. * * Return the @func return value or an error code if it cannot be executed. */ int hibernate_quiet_exec(int (*func)(void *data), void *data) { unsigned int sleep_flags; int error; sleep_flags = lock_system_sleep(); if (!hibernate_acquire()) { error = -EBUSY; goto unlock; } pm_prepare_console(); error = pm_notifier_call_chain_robust(PM_HIBERNATION_PREPARE, PM_POST_HIBERNATION); if (error) goto restore; error = freeze_processes(); if (error) goto exit; lock_device_hotplug(); pm_suspend_clear_flags(); error = platform_begin(true); if (error) goto thaw; error = freeze_kernel_threads(); if (error) goto thaw; error = dpm_prepare(PMSG_FREEZE); if (error) goto dpm_complete; console_suspend_all(); error = dpm_suspend(PMSG_FREEZE); if (error) goto dpm_resume; error = dpm_suspend_end(PMSG_FREEZE); if (error) goto dpm_resume; error = platform_pre_snapshot(true); if (error) goto skip; error = func(data); skip: platform_finish(true); dpm_resume_start(PMSG_THAW); dpm_resume: dpm_resume(PMSG_THAW); console_resume_all(); dpm_complete: dpm_complete(PMSG_THAW); thaw_kernel_threads(); thaw: platform_end(true); unlock_device_hotplug(); thaw_processes(); exit: pm_notifier_call_chain(PM_POST_HIBERNATION); restore: pm_restore_console(); hibernate_release(); unlock: unlock_system_sleep(sleep_flags); return error; } EXPORT_SYMBOL_GPL(hibernate_quiet_exec); static int __init find_resume_device(void) { if (!strlen(resume_file)) return -ENOENT; pm_pr_dbg("Checking hibernation image partition %s\n", resume_file); if (resume_delay) { pr_info("Waiting %dsec before reading resume device ...\n", resume_delay); ssleep(resume_delay); } /* Check if the device is there */ if (!early_lookup_bdev(resume_file, &swsusp_resume_device)) return 0; /* * Some device discovery might still be in progress; we need to wait for * this to finish. */ wait_for_device_probe(); if (resume_wait) { while (early_lookup_bdev(resume_file, &swsusp_resume_device)) msleep(10); async_synchronize_full(); } return early_lookup_bdev(resume_file, &swsusp_resume_device); } static int software_resume(void) { int error; pm_pr_dbg("Hibernation image partition %d:%d present\n", MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device)); pm_pr_dbg("Looking for hibernation image.\n"); mutex_lock(&system_transition_mutex); error = swsusp_check(true); if (error) goto Unlock; /* * Check if the hibernation image is compressed. If so, query for * the algorithm support. */ if (!(swsusp_header_flags & SF_NOCOMPRESS_MODE)) { if (swsusp_header_flags & SF_COMPRESSION_ALG_LZ4) strscpy(hib_comp_algo, COMPRESSION_ALGO_LZ4, sizeof(hib_comp_algo)); else strscpy(hib_comp_algo, COMPRESSION_ALGO_LZO, sizeof(hib_comp_algo)); if (!crypto_has_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC)) { pr_err("%s compression is not available\n", hib_comp_algo); error = -EOPNOTSUPP; goto Unlock; } } /* The snapshot device should not be opened while we're running */ if (!hibernate_acquire()) { error = -EBUSY; swsusp_close(); goto Unlock; } pr_info("resume from hibernation\n"); pm_prepare_console(); error = pm_notifier_call_chain_robust(PM_RESTORE_PREPARE, PM_POST_RESTORE); if (error) goto Restore; pm_pr_dbg("Preparing processes for hibernation restore.\n"); error = freeze_processes(); if (error) goto Close_Finish; error = freeze_kernel_threads(); if (error) { thaw_processes(); goto Close_Finish; } error = load_image_and_restore(); thaw_processes(); Finish: pm_notifier_call_chain(PM_POST_RESTORE); Restore: pm_restore_console(); pr_info("resume failed (%d)\n", error); hibernate_release(); /* For success case, the suspend path will release the lock */ Unlock: mutex_unlock(&system_transition_mutex); pm_pr_dbg("Hibernation image not present or could not be loaded.\n"); return error; Close_Finish: swsusp_close(); goto Finish; } /** * software_resume_initcall - Resume from a saved hibernation image. * * This routine is called as a late initcall, when all devices have been * discovered and initialized already. * * The image reading code is called to see if there is a hibernation image * available for reading. If that is the case, devices are quiesced and the * contents of memory is restored from the saved image. * * If this is successful, control reappears in the restored target kernel in * hibernation_snapshot() which returns to hibernate(). Otherwise, the routine * attempts to recover gracefully and make the kernel return to the normal mode * of operation. */ static int __init software_resume_initcall(void) { /* * If the user said "noresume".. bail out early. */ if (noresume || !hibernation_available()) return 0; if (!swsusp_resume_device) { int error = find_resume_device(); if (error) return error; } return software_resume(); } late_initcall_sync(software_resume_initcall); static const char * const hibernation_modes[] = { [HIBERNATION_PLATFORM] = "platform", [HIBERNATION_SHUTDOWN] = "shutdown", [HIBERNATION_REBOOT] = "reboot", #ifdef CONFIG_SUSPEND [HIBERNATION_SUSPEND] = "suspend", #endif [HIBERNATION_TEST_RESUME] = "test_resume", }; /* * /sys/power/disk - Control hibernation mode. * * Hibernation can be handled in several ways. There are a few different ways * to put the system into the sleep state: using the platform driver (e.g. ACPI * or other hibernation_ops), powering it off or rebooting it (for testing * mostly). * * The sysfs file /sys/power/disk provides an interface for selecting the * hibernation mode to use. Reading from this file causes the available modes * to be printed. There are 3 modes that can be supported: * * 'platform' * 'shutdown' * 'reboot' * * If a platform hibernation driver is in use, 'platform' will be supported * and will be used by default. Otherwise, 'shutdown' will be used by default. * The selected option (i.e. the one corresponding to the current value of * hibernation_mode) is enclosed by a square bracket. * * To select a given hibernation mode it is necessary to write the mode's * string representation (as returned by reading from /sys/power/disk) back * into /sys/power/disk. */ static ssize_t disk_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t count = 0; int i; if (!hibernation_available()) return sysfs_emit(buf, "[disabled]\n"); for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) { if (!hibernation_modes[i]) continue; switch (i) { case HIBERNATION_SHUTDOWN: case HIBERNATION_REBOOT: #ifdef CONFIG_SUSPEND case HIBERNATION_SUSPEND: #endif case HIBERNATION_TEST_RESUME: break; case HIBERNATION_PLATFORM: if (hibernation_ops) break; /* not a valid mode, continue with loop */ continue; } if (i == hibernation_mode) count += sysfs_emit_at(buf, count, "[%s] ", hibernation_modes[i]); else count += sysfs_emit_at(buf, count, "%s ", hibernation_modes[i]); } /* Convert the last space to a newline if needed. */ if (count > 0) buf[count - 1] = '\n'; return count; } static ssize_t disk_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { int mode = HIBERNATION_INVALID; unsigned int sleep_flags; int error = 0; int len; char *p; int i; if (!hibernation_available()) return -EPERM; p = memchr(buf, '\n', n); len = p ? p - buf : n; sleep_flags = lock_system_sleep(); for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) { if (len == strlen(hibernation_modes[i]) && !strncmp(buf, hibernation_modes[i], len)) { mode = i; break; } } if (mode != HIBERNATION_INVALID) { switch (mode) { case HIBERNATION_SHUTDOWN: case HIBERNATION_REBOOT: #ifdef CONFIG_SUSPEND case HIBERNATION_SUSPEND: #endif case HIBERNATION_TEST_RESUME: hibernation_mode = mode; break; case HIBERNATION_PLATFORM: if (hibernation_ops) hibernation_mode = mode; else error = -EINVAL; } } else error = -EINVAL; if (!error) pm_pr_dbg("Hibernation mode set to '%s'\n", hibernation_modes[mode]); unlock_system_sleep(sleep_flags); return error ? error : n; } power_attr(disk); static ssize_t resume_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%d:%d\n", MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device)); } static ssize_t resume_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned int sleep_flags; int len = n; char *name; dev_t dev; int error; if (!hibernation_available()) return n; if (len && buf[len-1] == '\n') len--; name = kstrndup(buf, len, GFP_KERNEL); if (!name) return -ENOMEM; error = lookup_bdev(name, &dev); if (error) { unsigned maj, min, offset; char *p, dummy; error = 0; if (sscanf(name, "%u:%u%c", &maj, &min, &dummy) == 2 || sscanf(name, "%u:%u:%u:%c", &maj, &min, &offset, &dummy) == 3) { dev = MKDEV(maj, min); if (maj != MAJOR(dev) || min != MINOR(dev)) error = -EINVAL; } else { dev = new_decode_dev(simple_strtoul(name, &p, 16)); if (*p) error = -EINVAL; } } kfree(name); if (error) return error; sleep_flags = lock_system_sleep(); swsusp_resume_device = dev; unlock_system_sleep(sleep_flags); pm_pr_dbg("Configured hibernation resume from disk to %u\n", swsusp_resume_device); noresume = 0; software_resume(); return n; } power_attr(resume); static ssize_t resume_offset_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%llu\n", (unsigned long long)swsusp_resume_block); } static ssize_t resume_offset_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long long offset; int rc; rc = kstrtoull(buf, 0, &offset); if (rc) return rc; swsusp_resume_block = offset; return n; } power_attr(resume_offset); static ssize_t image_size_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", image_size); } static ssize_t image_size_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long size; if (sscanf(buf, "%lu", &size) == 1) { image_size = size; return n; } return -EINVAL; } power_attr(image_size); static ssize_t reserved_size_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", reserved_size); } static ssize_t reserved_size_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long size; if (sscanf(buf, "%lu", &size) == 1) { reserved_size = size; return n; } return -EINVAL; } power_attr(reserved_size); static struct attribute *g[] = { &disk_attr.attr, &resume_offset_attr.attr, &resume_attr.attr, &image_size_attr.attr, &reserved_size_attr.attr, NULL, }; static const struct attribute_group attr_group = { .attrs = g, }; static int __init pm_disk_init(void) { return sysfs_create_group(power_kobj, &attr_group); } core_initcall(pm_disk_init); static int __init resume_setup(char *str) { if (noresume) return 1; strscpy(resume_file, str); return 1; } static int __init resume_offset_setup(char *str) { unsigned long long offset; if (noresume) return 1; if (sscanf(str, "%llu", &offset) == 1) swsusp_resume_block = offset; return 1; } static int __init hibernate_setup(char *str) { if (!strncmp(str, "noresume", 8)) { noresume = 1; } else if (!strncmp(str, "nocompress", 10)) { nocompress = 1; } else if (!strncmp(str, "no", 2)) { noresume = 1; nohibernate = 1; } else if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && !strncmp(str, "protect_image", 13)) { enable_restore_image_protection(); } return 1; } static int __init noresume_setup(char *str) { noresume = 1; return 1; } static int __init resumewait_setup(char *str) { resume_wait = 1; return 1; } static int __init resumedelay_setup(char *str) { int rc = kstrtouint(str, 0, &resume_delay); if (rc) pr_warn("resumedelay: bad option string '%s'\n", str); return 1; } static int __init nohibernate_setup(char *str) { noresume = 1; nohibernate = 1; return 1; } static const char * const comp_alg_enabled[] = { #if IS_ENABLED(CONFIG_CRYPTO_LZO) COMPRESSION_ALGO_LZO, #endif #if IS_ENABLED(CONFIG_CRYPTO_LZ4) COMPRESSION_ALGO_LZ4, #endif }; static int hibernate_compressor_param_set(const char *compressor, const struct kernel_param *kp) { int index, ret; if (!mutex_trylock(&system_transition_mutex)) return -EBUSY; index = sysfs_match_string(comp_alg_enabled, compressor); if (index >= 0) { ret = param_set_copystring(comp_alg_enabled[index], kp); if (!ret) strscpy(hib_comp_algo, comp_alg_enabled[index], sizeof(hib_comp_algo)); } else { ret = index; } mutex_unlock(&system_transition_mutex); if (ret) pr_debug("Cannot set specified compressor %s\n", compressor); return ret; } static const struct kernel_param_ops hibernate_compressor_param_ops = { .set = hibernate_compressor_param_set, .get = param_get_string, }; static struct kparam_string hibernate_compressor_param_string = { .maxlen = sizeof(hibernate_compressor), .string = hibernate_compressor, }; module_param_cb(compressor, &hibernate_compressor_param_ops, &hibernate_compressor_param_string, 0644); MODULE_PARM_DESC(compressor, "Compression algorithm to be used with hibernation"); __setup("noresume", noresume_setup); __setup("resume_offset=", resume_offset_setup); __setup("resume=", resume_setup); __setup("hibernate=", hibernate_setup); __setup("resumewait", resumewait_setup); __setup("resumedelay=", resumedelay_setup); __setup("nohibernate", nohibernate_setup);
673 427 170 171 236 236 163 164 259 258 264 263 265 266 51 51 29 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/cache.h> #include <linux/random.h> #include <linux/hrtimer.h> #include <linux/ktime.h> #include <linux/string.h> #include <linux/net.h> #include <linux/siphash.h> #include <net/secure_seq.h> #if IS_ENABLED(CONFIG_IPV6) || IS_ENABLED(CONFIG_INET) #include <linux/in6.h> #include <net/tcp.h> static siphash_aligned_key_t net_secret; static siphash_aligned_key_t ts_secret; #define EPHEMERAL_PORT_SHUFFLE_PERIOD (10 * HZ) static __always_inline void net_secret_init(void) { net_get_random_once(&net_secret, sizeof(net_secret)); } static __always_inline void ts_secret_init(void) { net_get_random_once(&ts_secret, sizeof(ts_secret)); } #endif #ifdef CONFIG_INET static u32 seq_scale(u32 seq) { /* * As close as possible to RFC 793, which * suggests using a 250 kHz clock. * Further reading shows this assumes 2 Mb/s networks. * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but * we also need to limit the resolution so that the u32 seq * overlaps less than one time per MSL (2 minutes). * Choosing a clock of 64 ns period is OK. (period of 274 s) */ return seq + (ktime_get_real_ns() >> 6); } #endif #if IS_ENABLED(CONFIG_IPV6) u32 secure_tcpv6_ts_off(const struct net *net, const __be32 *saddr, const __be32 *daddr) { const struct { struct in6_addr saddr; struct in6_addr daddr; } __aligned(SIPHASH_ALIGNMENT) combined = { .saddr = *(struct in6_addr *)saddr, .daddr = *(struct in6_addr *)daddr, }; if (READ_ONCE(net->ipv4.sysctl_tcp_timestamps) != 1) return 0; ts_secret_init(); return siphash(&combined, offsetofend(typeof(combined), daddr), &ts_secret); } EXPORT_IPV6_MOD(secure_tcpv6_ts_off); u32 secure_tcpv6_seq(const __be32 *saddr, const __be32 *daddr, __be16 sport, __be16 dport) { const struct { struct in6_addr saddr; struct in6_addr daddr; __be16 sport; __be16 dport; } __aligned(SIPHASH_ALIGNMENT) combined = { .saddr = *(struct in6_addr *)saddr, .daddr = *(struct in6_addr *)daddr, .sport = sport, .dport = dport }; u32 hash; net_secret_init(); hash = siphash(&combined, offsetofend(typeof(combined), dport), &net_secret); return seq_scale(hash); } EXPORT_SYMBOL(secure_tcpv6_seq); u64 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport) { const struct { struct in6_addr saddr; struct in6_addr daddr; unsigned int timeseed; __be16 dport; } __aligned(SIPHASH_ALIGNMENT) combined = { .saddr = *(struct in6_addr *)saddr, .daddr = *(struct in6_addr *)daddr, .timeseed = jiffies / EPHEMERAL_PORT_SHUFFLE_PERIOD, .dport = dport, }; net_secret_init(); return siphash(&combined, offsetofend(typeof(combined), dport), &net_secret); } EXPORT_SYMBOL(secure_ipv6_port_ephemeral); #endif #ifdef CONFIG_INET u32 secure_tcp_ts_off(const struct net *net, __be32 saddr, __be32 daddr) { if (READ_ONCE(net->ipv4.sysctl_tcp_timestamps) != 1) return 0; ts_secret_init(); return siphash_2u32((__force u32)saddr, (__force u32)daddr, &ts_secret); } /* secure_tcp_seq_and_tsoff(a, b, 0, d) == secure_ipv4_port_ephemeral(a, b, d), * but fortunately, `sport' cannot be 0 in any circumstances. If this changes, * it would be easy enough to have the former function use siphash_4u32, passing * the arguments as separate u32. */ u32 secure_tcp_seq(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport) { u32 hash; net_secret_init(); hash = siphash_3u32((__force u32)saddr, (__force u32)daddr, (__force u32)sport << 16 | (__force u32)dport, &net_secret); return seq_scale(hash); } EXPORT_SYMBOL_GPL(secure_tcp_seq); u64 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) { net_secret_init(); return siphash_4u32((__force u32)saddr, (__force u32)daddr, (__force u16)dport, jiffies / EPHEMERAL_PORT_SHUFFLE_PERIOD, &net_secret); } EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); #endif #if IS_ENABLED(CONFIG_IP_DCCP) u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport) { u64 seq; net_secret_init(); seq = siphash_3u32((__force u32)saddr, (__force u32)daddr, (__force u32)sport << 16 | (__force u32)dport, &net_secret); seq += ktime_get_real_ns(); seq &= (1ull << 48) - 1; return seq; } EXPORT_SYMBOL(secure_dccp_sequence_number); #if IS_ENABLED(CONFIG_IPV6) u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr, __be16 sport, __be16 dport) { const struct { struct in6_addr saddr; struct in6_addr daddr; __be16 sport; __be16 dport; } __aligned(SIPHASH_ALIGNMENT) combined = { .saddr = *(struct in6_addr *)saddr, .daddr = *(struct in6_addr *)daddr, .sport = sport, .dport = dport }; u64 seq; net_secret_init(); seq = siphash(&combined, offsetofend(typeof(combined), dport), &net_secret); seq += ktime_get_real_ns(); seq &= (1ull << 48) - 1; return seq; } EXPORT_SYMBOL(secure_dccpv6_sequence_number); #endif #endif
6 131 14 131 9 18 15 14 15 10 15 301 232 131 131 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 // SPDX-License-Identifier: GPL-2.0 /* * lib/minmax.c: windowed min/max tracker * * Kathleen Nichols' algorithm for tracking the minimum (or maximum) * value of a data stream over some fixed time interval. (E.g., * the minimum RTT over the past five minutes.) It uses constant * space and constant time per update yet almost always delivers * the same minimum as an implementation that has to keep all the * data in the window. * * The algorithm keeps track of the best, 2nd best & 3rd best min * values, maintaining an invariant that the measurement time of * the n'th best >= n-1'th best. It also makes sure that the three * values are widely separated in the time window since that bounds * the worse case error when that data is monotonically increasing * over the window. * * Upon getting a new min, we can forget everything earlier because * it has no value - the new min is <= everything else in the window * by definition and it's the most recent. So we restart fresh on * every new min and overwrites 2nd & 3rd choices. The same property * holds for 2nd & 3rd best. */ #include <linux/module.h> #include <linux/win_minmax.h> /* As time advances, update the 1st, 2nd, and 3rd choices. */ static u32 minmax_subwin_update(struct minmax *m, u32 win, const struct minmax_sample *val) { u32 dt = val->t - m->s[0].t; if (unlikely(dt > win)) { /* * Passed entire window without a new val so make 2nd * choice the new val & 3rd choice the new 2nd choice. * we may have to iterate this since our 2nd choice * may also be outside the window (we checked on entry * that the third choice was in the window). */ m->s[0] = m->s[1]; m->s[1] = m->s[2]; m->s[2] = *val; if (unlikely(val->t - m->s[0].t > win)) { m->s[0] = m->s[1]; m->s[1] = m->s[2]; m->s[2] = *val; } } else if (unlikely(m->s[1].t == m->s[0].t) && dt > win/4) { /* * We've passed a quarter of the window without a new val * so take a 2nd choice from the 2nd quarter of the window. */ m->s[2] = m->s[1] = *val; } else if (unlikely(m->s[2].t == m->s[1].t) && dt > win/2) { /* * We've passed half the window without finding a new val * so take a 3rd choice from the last half of the window */ m->s[2] = *val; } return m->s[0].v; } /* Check if new measurement updates the 1st, 2nd or 3rd choice max. */ u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas) { struct minmax_sample val = { .t = t, .v = meas }; if (unlikely(val.v >= m->s[0].v) || /* found new max? */ unlikely(val.t - m->s[2].t > win)) /* nothing left in window? */ return minmax_reset(m, t, meas); /* forget earlier samples */ if (unlikely(val.v >= m->s[1].v)) m->s[2] = m->s[1] = val; else if (unlikely(val.v >= m->s[2].v)) m->s[2] = val; return minmax_subwin_update(m, win, &val); } EXPORT_SYMBOL(minmax_running_max); /* Check if new measurement updates the 1st, 2nd or 3rd choice min. */ u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas) { struct minmax_sample val = { .t = t, .v = meas }; if (unlikely(val.v <= m->s[0].v) || /* found new min? */ unlikely(val.t - m->s[2].t > win)) /* nothing left in window? */ return minmax_reset(m, t, meas); /* forget earlier samples */ if (unlikely(val.v <= m->s[1].v)) m->s[2] = m->s[1] = val; else if (unlikely(val.v <= m->s[2].v)) m->s[2] = val; return minmax_subwin_update(m, win, &val); } EXPORT_SYMBOL(minmax_running_min);
218 218 43 43 43 43 43 85 218 217 133 85 85 85 85 133 133 133 133 133 43 43 43 43 43 43 43 43 43 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 // SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/resource.c * * Copyright (C) 1999 Linus Torvalds * Copyright (C) 1999 Martin Mares <mj@ucw.cz> * * Arbitrary resource management. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/export.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/fs.h> #include <linux/proc_fs.h> #include <linux/pseudo_fs.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/device.h> #include <linux/pfn.h> #include <linux/mm.h> #include <linux/mount.h> #include <linux/resource_ext.h> #include <uapi/linux/magic.h> #include <linux/string.h> #include <linux/vmalloc.h> #include <asm/io.h> struct resource ioport_resource = { .name = "PCI IO", .start = 0, .end = IO_SPACE_LIMIT, .flags = IORESOURCE_IO, }; EXPORT_SYMBOL(ioport_resource); struct resource iomem_resource = { .name = "PCI mem", .start = 0, .end = -1, .flags = IORESOURCE_MEM, }; EXPORT_SYMBOL(iomem_resource); static DEFINE_RWLOCK(resource_lock); /* * Return the next node of @p in pre-order tree traversal. If * @skip_children is true, skip the descendant nodes of @p in * traversal. If @p is a descendant of @subtree_root, only traverse * the subtree under @subtree_root. */ static struct resource *next_resource(struct resource *p, bool skip_children, struct resource *subtree_root) { if (!skip_children && p->child) return p->child; while (!p->sibling && p->parent) { p = p->parent; if (p == subtree_root) return NULL; } return p->sibling; } /* * Traverse the resource subtree under @_root in pre-order, excluding * @_root itself. * * NOTE: '__p' is introduced to avoid shadowing '_p' outside of loop. * And it is referenced to avoid unused variable warning. */ #define for_each_resource(_root, _p, _skip_children) \ for (typeof(_root) __root = (_root), __p = _p = __root->child; \ __p && _p; _p = next_resource(_p, _skip_children, __root)) #ifdef CONFIG_PROC_FS enum { MAX_IORES_LEVEL = 5 }; static void *r_start(struct seq_file *m, loff_t *pos) __acquires(resource_lock) { struct resource *root = pde_data(file_inode(m->file)); struct resource *p; loff_t l = *pos; read_lock(&resource_lock); for_each_resource(root, p, false) { if (l-- == 0) break; } return p; } static void *r_next(struct seq_file *m, void *v, loff_t *pos) { struct resource *p = v; (*pos)++; return (void *)next_resource(p, false, NULL); } static void r_stop(struct seq_file *m, void *v) __releases(resource_lock) { read_unlock(&resource_lock); } static int r_show(struct seq_file *m, void *v) { struct resource *root = pde_data(file_inode(m->file)); struct resource *r = v, *p; unsigned long long start, end; int width = root->end < 0x10000 ? 4 : 8; int depth; for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) if (p->parent == root) break; if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { start = r->start; end = r->end; } else { start = end = 0; } seq_printf(m, "%*s%0*llx-%0*llx : %s\n", depth * 2, "", width, start, width, end, r->name ? r->name : "<BAD>"); return 0; } static const struct seq_operations resource_op = { .start = r_start, .next = r_next, .stop = r_stop, .show = r_show, }; static int __init ioresources_init(void) { proc_create_seq_data("ioports", 0, NULL, &resource_op, &ioport_resource); proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); return 0; } __initcall(ioresources_init); #endif /* CONFIG_PROC_FS */ static void free_resource(struct resource *res) { /** * If the resource was allocated using memblock early during boot * we'll leak it here: we can only return full pages back to the * buddy and trying to be smart and reusing them eventually in * alloc_resource() overcomplicates resource handling. */ if (res && PageSlab(virt_to_head_page(res))) kfree(res); } static struct resource *alloc_resource(gfp_t flags) { return kzalloc(sizeof(struct resource), flags); } /* Return the conflict entry if you can't request it */ static struct resource * __request_resource(struct resource *root, struct resource *new) { resource_size_t start = new->start; resource_size_t end = new->end; struct resource *tmp, **p; if (end < start) return root; if (start < root->start) return root; if (end > root->end) return root; p = &root->child; for (;;) { tmp = *p; if (!tmp || tmp->start > end) { new->sibling = tmp; *p = new; new->parent = root; return NULL; } p = &tmp->sibling; if (tmp->end < start) continue; return tmp; } } static int __release_resource(struct resource *old, bool release_child) { struct resource *tmp, **p, *chd; p = &old->parent->child; for (;;) { tmp = *p; if (!tmp) break; if (tmp == old) { if (release_child || !(tmp->child)) { *p = tmp->sibling; } else { for (chd = tmp->child;; chd = chd->sibling) { chd->parent = tmp->parent; if (!(chd->sibling)) break; } *p = tmp->child; chd->sibling = tmp->sibling; } old->parent = NULL; return 0; } p = &tmp->sibling; } return -EINVAL; } static void __release_child_resources(struct resource *r) { struct resource *tmp, *p; resource_size_t size; p = r->child; r->child = NULL; while (p) { tmp = p; p = p->sibling; tmp->parent = NULL; tmp->sibling = NULL; __release_child_resources(tmp); printk(KERN_DEBUG "release child resource %pR\n", tmp); /* need to restore size, and keep flags */ size = resource_size(tmp); tmp->start = 0; tmp->end = size - 1; } } void release_child_resources(struct resource *r) { write_lock(&resource_lock); __release_child_resources(r); write_unlock(&resource_lock); } /** * request_resource_conflict - request and reserve an I/O or memory resource * @root: root resource descriptor * @new: resource descriptor desired by caller * * Returns 0 for success, conflict resource on error. */ struct resource *request_resource_conflict(struct resource *root, struct resource *new) { struct resource *conflict; write_lock(&resource_lock); conflict = __request_resource(root, new); write_unlock(&resource_lock); return conflict; } /** * request_resource - request and reserve an I/O or memory resource * @root: root resource descriptor * @new: resource descriptor desired by caller * * Returns 0 for success, negative error code on error. */ int request_resource(struct resource *root, struct resource *new) { struct resource *conflict; conflict = request_resource_conflict(root, new); return conflict ? -EBUSY : 0; } EXPORT_SYMBOL(request_resource); /** * release_resource - release a previously reserved resource * @old: resource pointer */ int release_resource(struct resource *old) { int retval; write_lock(&resource_lock); retval = __release_resource(old, true); write_unlock(&resource_lock); return retval; } EXPORT_SYMBOL(release_resource); static bool is_type_match(struct resource *p, unsigned long flags, unsigned long desc) { return (p->flags & flags) == flags && (desc == IORES_DESC_NONE || desc == p->desc); } /** * find_next_iomem_res - Finds the lowest iomem resource that covers part of * [@start..@end]. * * If a resource is found, returns 0 and @*res is overwritten with the part * of the resource that's within [@start..@end]; if none is found, returns * -ENODEV. Returns -EINVAL for invalid parameters. * * @start: start address of the resource searched for * @end: end address of same resource * @flags: flags which the resource must have * @desc: descriptor the resource must have * @res: return ptr, if resource found * * The caller must specify @start, @end, @flags, and @desc * (which may be IORES_DESC_NONE). */ static int find_next_iomem_res(resource_size_t start, resource_size_t end, unsigned long flags, unsigned long desc, struct resource *res) { struct resource *p; if (!res) return -EINVAL; if (start >= end) return -EINVAL; read_lock(&resource_lock); for_each_resource(&iomem_resource, p, false) { /* If we passed the resource we are looking for, stop */ if (p->start > end) { p = NULL; break; } /* Skip until we find a range that matches what we look for */ if (p->end < start) continue; /* Found a match, break */ if (is_type_match(p, flags, desc)) break; } if (p) { /* copy data */ *res = (struct resource) { .start = max(start, p->start), .end = min(end, p->end), .flags = p->flags, .desc = p->desc, .parent = p->parent, }; } read_unlock(&resource_lock); return p ? 0 : -ENODEV; } static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, unsigned long flags, unsigned long desc, void *arg, int (*func)(struct resource *, void *)) { struct resource res; int ret = -EINVAL; while (start < end && !find_next_iomem_res(start, end, flags, desc, &res)) { ret = (*func)(&res, arg); if (ret) break; start = res.end + 1; } return ret; } /** * walk_iomem_res_desc - Walks through iomem resources and calls func() * with matching resource ranges. * * * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. * @flags: I/O resource flags * @start: start addr * @end: end addr * @arg: function argument for the callback @func * @func: callback function that is called for each qualifying resource area * * All the memory ranges which overlap start,end and also match flags and * desc are valid candidates. * * NOTE: For a new descriptor search, define a new IORES_DESC in * <linux/ioport.h> and set it in 'desc' of a target resource entry. */ int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)) { return __walk_iomem_res_desc(start, end, flags, desc, arg, func); } EXPORT_SYMBOL_GPL(walk_iomem_res_desc); /* * This function calls the @func callback against all memory ranges of type * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. * Now, this function is only for System RAM, it deals with full ranges and * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate * ranges. */ int walk_system_ram_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)) { unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, func); } /* * This function, being a variant of walk_system_ram_res(), calls the @func * callback against all memory ranges of type System RAM which are marked as * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from * higher to lower. */ int walk_system_ram_res_rev(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)) { struct resource res, *rams; int rams_size = 16, i; unsigned long flags; int ret = -1; /* create a list */ rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL); if (!rams) return ret; flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; i = 0; while ((start < end) && (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) { if (i >= rams_size) { /* re-alloc */ struct resource *rams_new; rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource), GFP_KERNEL); if (!rams_new) goto out; rams = rams_new; rams_size += 16; } rams[i++] = res; start = res.end + 1; } /* go reverse */ for (i--; i >= 0; i--) { ret = (*func)(&rams[i], arg); if (ret) break; } out: kvfree(rams); return ret; } /* * This function calls the @func callback against all memory ranges, which * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. */ int walk_mem_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)) { unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, func); } /* * This function calls the @func callback against all memory ranges of type * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. * It is to be used only for System RAM. */ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)) { resource_size_t start, end; unsigned long flags; struct resource res; unsigned long pfn, end_pfn; int ret = -EINVAL; start = (u64) start_pfn << PAGE_SHIFT; end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; while (start < end && !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { pfn = PFN_UP(res.start); end_pfn = PFN_DOWN(res.end + 1); if (end_pfn > pfn) ret = (*func)(pfn, end_pfn - pfn, arg); if (ret) break; start = res.end + 1; } return ret; } static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) { return 1; } /* * This generic page_is_ram() returns true if specified address is * registered as System RAM in iomem_resource list. */ int __weak page_is_ram(unsigned long pfn) { return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; } EXPORT_SYMBOL_GPL(page_is_ram); static int __region_intersects(struct resource *parent, resource_size_t start, size_t size, unsigned long flags, unsigned long desc) { int type = 0; int other = 0; struct resource *p, *dp; struct resource res, o; bool covered; res = DEFINE_RES(start, size, 0); for (p = parent->child; p ; p = p->sibling) { if (!resource_intersection(p, &res, &o)) continue; if (is_type_match(p, flags, desc)) { type++; continue; } /* * Continue to search in descendant resources as if the * matched descendant resources cover some ranges of 'p'. * * |------------- "CXL Window 0" ------------| * |-- "System RAM" --| * * will behave similar as the following fake resource * tree when searching "System RAM". * * |-- "System RAM" --||-- "CXL Window 0a" --| */ covered = false; for_each_resource(p, dp, false) { if (!resource_overlaps(dp, &res)) continue; if (is_type_match(dp, flags, desc)) { type++; /* * Range from 'o.start' to 'dp->start' * isn't covered by matched resource. */ if (dp->start > o.start) break; if (dp->end >= o.end) { covered = true; break; } /* Remove covered range */ o.start = max(o.start, dp->end + 1); } } if (!covered) other++; } if (type == 0) return REGION_DISJOINT; if (other == 0) return REGION_INTERSECTS; return REGION_MIXED; } /** * region_intersects() - determine intersection of region with known resources * @start: region start address * @size: size of region * @flags: flags of resource (in iomem_resource) * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE * * Check if the specified region partially overlaps or fully eclipses a * resource identified by @flags and @desc (optional with IORES_DESC_NONE). * Return REGION_DISJOINT if the region does not overlap @flags/@desc, * return REGION_MIXED if the region overlaps @flags/@desc and another * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc * and no other defined resource. Note that REGION_INTERSECTS is also * returned in the case when the specified region overlaps RAM and undefined * memory holes. * * region_intersect() is used by memory remapping functions to ensure * the user is not remapping RAM and is a vast speed up over walking * through the resource table page by page. */ int region_intersects(resource_size_t start, size_t size, unsigned long flags, unsigned long desc) { int ret; read_lock(&resource_lock); ret = __region_intersects(&iomem_resource, start, size, flags, desc); read_unlock(&resource_lock); return ret; } EXPORT_SYMBOL_GPL(region_intersects); void __weak arch_remove_reservations(struct resource *avail) { } static void resource_clip(struct resource *res, resource_size_t min, resource_size_t max) { if (res->start < min) res->start = min; if (res->end > max) res->end = max; } /* * Find empty space in the resource tree with the given range and * alignment constraints */ static int __find_resource_space(struct resource *root, struct resource *old, struct resource *new, resource_size_t size, struct resource_constraint *constraint) { struct resource *this = root->child; struct resource tmp = *new, avail, alloc; resource_alignf alignf = constraint->alignf; tmp.start = root->start; /* * Skip past an allocated resource that starts at 0, since the assignment * of this->start - 1 to tmp->end below would cause an underflow. */ if (this && this->start == root->start) { tmp.start = (this == old) ? old->start : this->end + 1; this = this->sibling; } for(;;) { if (this) tmp.end = (this == old) ? this->end : this->start - 1; else tmp.end = root->end; if (tmp.end < tmp.start) goto next; resource_clip(&tmp, constraint->min, constraint->max); arch_remove_reservations(&tmp); /* Check for overflow after ALIGN() */ avail.start = ALIGN(tmp.start, constraint->align); avail.end = tmp.end; avail.flags = new->flags & ~IORESOURCE_UNSET; if (avail.start >= tmp.start) { alloc.flags = avail.flags; if (alignf) { alloc.start = alignf(constraint->alignf_data, &avail, size, constraint->align); } else { alloc.start = avail.start; } alloc.end = alloc.start + size - 1; if (alloc.start <= alloc.end && resource_contains(&avail, &alloc)) { new->start = alloc.start; new->end = alloc.end; return 0; } } next: if (!this || this->end == root->end) break; if (this != old) tmp.start = this->end + 1; this = this->sibling; } return -EBUSY; } /** * find_resource_space - Find empty space in the resource tree * @root: Root resource descriptor * @new: Resource descriptor awaiting an empty resource space * @size: The minimum size of the empty space * @constraint: The range and alignment constraints to be met * * Finds an empty space under @root in the resource tree satisfying range and * alignment @constraints. * * Return: * * %0 - if successful, @new members start, end, and flags are altered. * * %-EBUSY - if no empty space was found. */ int find_resource_space(struct resource *root, struct resource *new, resource_size_t size, struct resource_constraint *constraint) { return __find_resource_space(root, NULL, new, size, constraint); } EXPORT_SYMBOL_GPL(find_resource_space); /** * reallocate_resource - allocate a slot in the resource tree given range & alignment. * The resource will be relocated if the new size cannot be reallocated in the * current location. * * @root: root resource descriptor * @old: resource descriptor desired by caller * @newsize: new size of the resource descriptor * @constraint: the memory range and alignment constraints to be met. */ static int reallocate_resource(struct resource *root, struct resource *old, resource_size_t newsize, struct resource_constraint *constraint) { int err=0; struct resource new = *old; struct resource *conflict; write_lock(&resource_lock); if ((err = __find_resource_space(root, old, &new, newsize, constraint))) goto out; if (resource_contains(&new, old)) { old->start = new.start; old->end = new.end; goto out; } if (old->child) { err = -EBUSY; goto out; } if (resource_contains(old, &new)) { old->start = new.start; old->end = new.end; } else { __release_resource(old, true); *old = new; conflict = __request_resource(root, old); BUG_ON(conflict); } out: write_unlock(&resource_lock); return err; } /** * allocate_resource - allocate empty slot in the resource tree given range & alignment. * The resource will be reallocated with a new size if it was already allocated * @root: root resource descriptor * @new: resource descriptor desired by caller * @size: requested resource region size * @min: minimum boundary to allocate * @max: maximum boundary to allocate * @align: alignment requested, in bytes * @alignf: alignment function, optional, called if not NULL * @alignf_data: arbitrary data to pass to the @alignf function */ int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, resource_alignf alignf, void *alignf_data) { int err; struct resource_constraint constraint; constraint.min = min; constraint.max = max; constraint.align = align; constraint.alignf = alignf; constraint.alignf_data = alignf_data; if ( new->parent ) { /* resource is already allocated, try reallocating with the new constraints */ return reallocate_resource(root, new, size, &constraint); } write_lock(&resource_lock); err = find_resource_space(root, new, size, &constraint); if (err >= 0 && __request_resource(root, new)) err = -EBUSY; write_unlock(&resource_lock); return err; } EXPORT_SYMBOL(allocate_resource); /** * lookup_resource - find an existing resource by a resource start address * @root: root resource descriptor * @start: resource start address * * Returns a pointer to the resource if found, NULL otherwise */ struct resource *lookup_resource(struct resource *root, resource_size_t start) { struct resource *res; read_lock(&resource_lock); for (res = root->child; res; res = res->sibling) { if (res->start == start) break; } read_unlock(&resource_lock); return res; } /* * Insert a resource into the resource tree. If successful, return NULL, * otherwise return the conflicting resource (compare to __request_resource()) */ static struct resource * __insert_resource(struct resource *parent, struct resource *new) { struct resource *first, *next; for (;; parent = first) { first = __request_resource(parent, new); if (!first) return first; if (first == parent) return first; if (WARN_ON(first == new)) /* duplicated insertion */ return first; if ((first->start > new->start) || (first->end < new->end)) break; if ((first->start == new->start) && (first->end == new->end)) break; } for (next = first; ; next = next->sibling) { /* Partial overlap? Bad, and unfixable */ if (next->start < new->start || next->end > new->end) return next; if (!next->sibling) break; if (next->sibling->start > new->end) break; } new->parent = parent; new->sibling = next->sibling; new->child = first; next->sibling = NULL; for (next = first; next; next = next->sibling) next->parent = new; if (parent->child == first) { parent->child = new; } else { next = parent->child; while (next->sibling != first) next = next->sibling; next->sibling = new; } return NULL; } /** * insert_resource_conflict - Inserts resource in the resource tree * @parent: parent of the new resource * @new: new resource to insert * * Returns 0 on success, conflict resource if the resource can't be inserted. * * This function is equivalent to request_resource_conflict when no conflict * happens. If a conflict happens, and the conflicting resources * entirely fit within the range of the new resource, then the new * resource is inserted and the conflicting resources become children of * the new resource. * * This function is intended for producers of resources, such as FW modules * and bus drivers. */ struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) { struct resource *conflict; write_lock(&resource_lock); conflict = __insert_resource(parent, new); write_unlock(&resource_lock); return conflict; } /** * insert_resource - Inserts a resource in the resource tree * @parent: parent of the new resource * @new: new resource to insert * * Returns 0 on success, -EBUSY if the resource can't be inserted. * * This function is intended for producers of resources, such as FW modules * and bus drivers. */ int insert_resource(struct resource *parent, struct resource *new) { struct resource *conflict; conflict = insert_resource_conflict(parent, new); return conflict ? -EBUSY : 0; } EXPORT_SYMBOL_GPL(insert_resource); /** * insert_resource_expand_to_fit - Insert a resource into the resource tree * @root: root resource descriptor * @new: new resource to insert * * Insert a resource into the resource tree, possibly expanding it in order * to make it encompass any conflicting resources. */ void insert_resource_expand_to_fit(struct resource *root, struct resource *new) { if (new->parent) return; write_lock(&resource_lock); for (;;) { struct resource *conflict; conflict = __insert_resource(root, new); if (!conflict) break; if (conflict == root) break; /* Ok, expand resource to cover the conflict, then try again .. */ if (conflict->start < new->start) new->start = conflict->start; if (conflict->end > new->end) new->end = conflict->end; pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); } write_unlock(&resource_lock); } /* * Not for general consumption, only early boot memory map parsing, PCI * resource discovery, and late discovery of CXL resources are expected * to use this interface. The former are built-in and only the latter, * CXL, is a module. */ EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, "CXL"); /** * remove_resource - Remove a resource in the resource tree * @old: resource to remove * * Returns 0 on success, -EINVAL if the resource is not valid. * * This function removes a resource previously inserted by insert_resource() * or insert_resource_conflict(), and moves the children (if any) up to * where they were before. insert_resource() and insert_resource_conflict() * insert a new resource, and move any conflicting resources down to the * children of the new resource. * * insert_resource(), insert_resource_conflict() and remove_resource() are * intended for producers of resources, such as FW modules and bus drivers. */ int remove_resource(struct resource *old) { int retval; write_lock(&resource_lock); retval = __release_resource(old, false); write_unlock(&resource_lock); return retval; } EXPORT_SYMBOL_GPL(remove_resource); static int __adjust_resource(struct resource *res, resource_size_t start, resource_size_t size) { struct resource *tmp, *parent = res->parent; resource_size_t end = start + size - 1; int result = -EBUSY; if (!parent) goto skip; if ((start < parent->start) || (end > parent->end)) goto out; if (res->sibling && (res->sibling->start <= end)) goto out; tmp = parent->child; if (tmp != res) { while (tmp->sibling != res) tmp = tmp->sibling; if (start <= tmp->end) goto out; } skip: for (tmp = res->child; tmp; tmp = tmp->sibling) if ((tmp->start < start) || (tmp->end > end)) goto out; res->start = start; res->end = end; result = 0; out: return result; } /** * adjust_resource - modify a resource's start and size * @res: resource to modify * @start: new start value * @size: new size * * Given an existing resource, change its start and size to match the * arguments. Returns 0 on success, -EBUSY if it can't fit. * Existing children of the resource are assumed to be immutable. */ int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size) { int result; write_lock(&resource_lock); result = __adjust_resource(res, start, size); write_unlock(&resource_lock); return result; } EXPORT_SYMBOL(adjust_resource); static void __init __reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name) { struct resource *parent = root; struct resource *conflict; struct resource *res = alloc_resource(GFP_ATOMIC); struct resource *next_res = NULL; int type = resource_type(root); if (!res) return; res->name = name; res->start = start; res->end = end; res->flags = type | IORESOURCE_BUSY; res->desc = IORES_DESC_NONE; while (1) { conflict = __request_resource(parent, res); if (!conflict) { if (!next_res) break; res = next_res; next_res = NULL; continue; } /* conflict covered whole area */ if (conflict->start <= res->start && conflict->end >= res->end) { free_resource(res); WARN_ON(next_res); break; } /* failed, split and try again */ if (conflict->start > res->start) { end = res->end; res->end = conflict->start - 1; if (conflict->end < end) { next_res = alloc_resource(GFP_ATOMIC); if (!next_res) { free_resource(res); break; } next_res->name = name; next_res->start = conflict->end + 1; next_res->end = end; next_res->flags = type | IORESOURCE_BUSY; next_res->desc = IORES_DESC_NONE; } } else { res->start = conflict->end + 1; } } } void __init reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name) { int abort = 0; write_lock(&resource_lock); if (root->start > start || root->end < end) { pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", (unsigned long long)start, (unsigned long long)end, root); if (start > root->end || end < root->start) abort = 1; else { if (end > root->end) end = root->end; if (start < root->start) start = root->start; pr_err("fixing request to [0x%llx-0x%llx]\n", (unsigned long long)start, (unsigned long long)end); } dump_stack(); } if (!abort) __reserve_region_with_split(root, start, end, name); write_unlock(&resource_lock); } /** * resource_alignment - calculate resource's alignment * @res: resource pointer * * Returns alignment on success, 0 (invalid alignment) on failure. */ resource_size_t resource_alignment(struct resource *res) { switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { case IORESOURCE_SIZEALIGN: return resource_size(res); case IORESOURCE_STARTALIGN: return res->start; default: return 0; } } /* * This is compatibility stuff for IO resources. * * Note how this, unlike the above, knows about * the IO flag meanings (busy etc). * * request_region creates a new busy region. * * release_region releases a matching busy region. */ static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); static struct inode *iomem_inode; #ifdef CONFIG_IO_STRICT_DEVMEM static void revoke_iomem(struct resource *res) { /* pairs with smp_store_release() in iomem_init_inode() */ struct inode *inode = smp_load_acquire(&iomem_inode); /* * Check that the initialization has completed. Losing the race * is ok because it means drivers are claiming resources before * the fs_initcall level of init and prevent iomem_get_mapping users * from establishing mappings. */ if (!inode) return; /* * The expectation is that the driver has successfully marked * the resource busy by this point, so devmem_is_allowed() * should start returning false, however for performance this * does not iterate the entire resource range. */ if (devmem_is_allowed(PHYS_PFN(res->start)) && devmem_is_allowed(PHYS_PFN(res->end))) { /* * *cringe* iomem=relaxed says "go ahead, what's the * worst that can happen?" */ return; } unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); } #else static void revoke_iomem(struct resource *res) {} #endif struct address_space *iomem_get_mapping(void) { /* * This function is only called from file open paths, hence guaranteed * that fs_initcalls have completed and no need to check for NULL. But * since revoke_iomem can be called before the initcall we still need * the barrier to appease checkers. */ return smp_load_acquire(&iomem_inode)->i_mapping; } static int __request_region_locked(struct resource *res, struct resource *parent, resource_size_t start, resource_size_t n, const char *name, int flags) { DECLARE_WAITQUEUE(wait, current); res->name = name; res->start = start; res->end = start + n - 1; for (;;) { struct resource *conflict; res->flags = resource_type(parent) | resource_ext_type(parent); res->flags |= IORESOURCE_BUSY | flags; res->desc = parent->desc; conflict = __request_resource(parent, res); if (!conflict) break; /* * mm/hmm.c reserves physical addresses which then * become unavailable to other users. Conflicts are * not expected. Warn to aid debugging if encountered. */ if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { pr_warn("Unaddressable device %s %pR conflicts with %pR", conflict->name, conflict, res); } if (conflict != parent) { if (!(conflict->flags & IORESOURCE_BUSY)) { parent = conflict; continue; } } if (conflict->flags & flags & IORESOURCE_MUXED) { add_wait_queue(&muxed_resource_wait, &wait); write_unlock(&resource_lock); set_current_state(TASK_UNINTERRUPTIBLE); schedule(); remove_wait_queue(&muxed_resource_wait, &wait); write_lock(&resource_lock); continue; } /* Uhhuh, that didn't work out.. */ return -EBUSY; } return 0; } /** * __request_region - create a new busy resource region * @parent: parent resource descriptor * @start: resource start address * @n: resource region size * @name: reserving caller's ID string * @flags: IO resource flags */ struct resource *__request_region(struct resource *parent, resource_size_t start, resource_size_t n, const char *name, int flags) { struct resource *res = alloc_resource(GFP_KERNEL); int ret; if (!res) return NULL; write_lock(&resource_lock); ret = __request_region_locked(res, parent, start, n, name, flags); write_unlock(&resource_lock); if (ret) { free_resource(res); return NULL; } if (parent == &iomem_resource) revoke_iomem(res); return res; } EXPORT_SYMBOL(__request_region); /** * __release_region - release a previously reserved resource region * @parent: parent resource descriptor * @start: resource start address * @n: resource region size * * The described resource region must match a currently busy region. */ void __release_region(struct resource *parent, resource_size_t start, resource_size_t n) { struct resource **p; resource_size_t end; p = &parent->child; end = start + n - 1; write_lock(&resource_lock); for (;;) { struct resource *res = *p; if (!res) break; if (res->start <= start && res->end >= end) { if (!(res->flags & IORESOURCE_BUSY)) { p = &res->child; continue; } if (res->start != start || res->end != end) break; *p = res->sibling; write_unlock(&resource_lock); if (res->flags & IORESOURCE_MUXED) wake_up(&muxed_resource_wait); free_resource(res); return; } p = &res->sibling; } write_unlock(&resource_lock); pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); } EXPORT_SYMBOL(__release_region); #ifdef CONFIG_MEMORY_HOTREMOVE /** * release_mem_region_adjustable - release a previously reserved memory region * @start: resource start address * @size: resource region size * * This interface is intended for memory hot-delete. The requested region * is released from a currently busy memory resource. The requested region * must either match exactly or fit into a single busy resource entry. In * the latter case, the remaining resource is adjusted accordingly. * Existing children of the busy memory resource must be immutable in the * request. * * Note: * - Additional release conditions, such as overlapping region, can be * supported after they are confirmed as valid cases. * - When a busy memory resource gets split into two entries, the code * assumes that all children remain in the lower address entry for * simplicity. Enhance this logic when necessary. */ void release_mem_region_adjustable(resource_size_t start, resource_size_t size) { struct resource *parent = &iomem_resource; struct resource *new_res = NULL; bool alloc_nofail = false; struct resource **p; struct resource *res; resource_size_t end; end = start + size - 1; if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) return; /* * We free up quite a lot of memory on memory hotunplug (esp., memap), * just before releasing the region. This is highly unlikely to * fail - let's play save and make it never fail as the caller cannot * perform any error handling (e.g., trying to re-add memory will fail * similarly). */ retry: new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); p = &parent->child; write_lock(&resource_lock); while ((res = *p)) { if (res->start >= end) break; /* look for the next resource if it does not fit into */ if (res->start > start || res->end < end) { p = &res->sibling; continue; } if (!(res->flags & IORESOURCE_MEM)) break; if (!(res->flags & IORESOURCE_BUSY)) { p = &res->child; continue; } /* found the target resource; let's adjust accordingly */ if (res->start == start && res->end == end) { /* free the whole entry */ *p = res->sibling; free_resource(res); } else if (res->start == start && res->end != end) { /* adjust the start */ WARN_ON_ONCE(__adjust_resource(res, end + 1, res->end - end)); } else if (res->start != start && res->end == end) { /* adjust the end */ WARN_ON_ONCE(__adjust_resource(res, res->start, start - res->start)); } else { /* split into two entries - we need a new resource */ if (!new_res) { new_res = alloc_resource(GFP_ATOMIC); if (!new_res) { alloc_nofail = true; write_unlock(&resource_lock); goto retry; } } new_res->name = res->name; new_res->start = end + 1; new_res->end = res->end; new_res->flags = res->flags; new_res->desc = res->desc; new_res->parent = res->parent; new_res->sibling = res->sibling; new_res->child = NULL; if (WARN_ON_ONCE(__adjust_resource(res, res->start, start - res->start))) break; res->sibling = new_res; new_res = NULL; } break; } write_unlock(&resource_lock); free_resource(new_res); } #endif /* CONFIG_MEMORY_HOTREMOVE */ #ifdef CONFIG_MEMORY_HOTPLUG static bool system_ram_resources_mergeable(struct resource *r1, struct resource *r2) { /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ return r1->flags == r2->flags && r1->end + 1 == r2->start && r1->name == r2->name && r1->desc == r2->desc && !r1->child && !r2->child; } /** * merge_system_ram_resource - mark the System RAM resource mergeable and try to * merge it with adjacent, mergeable resources * @res: resource descriptor * * This interface is intended for memory hotplug, whereby lots of contiguous * system ram resources are added (e.g., via add_memory*()) by a driver, and * the actual resource boundaries are not of interest (e.g., it might be * relevant for DIMMs). Only resources that are marked mergeable, that have the * same parent, and that don't have any children are considered. All mergeable * resources must be immutable during the request. * * Note: * - The caller has to make sure that no pointers to resources that are * marked mergeable are used anymore after this call - the resource might * be freed and the pointer might be stale! * - release_mem_region_adjustable() will split on demand on memory hotunplug */ void merge_system_ram_resource(struct resource *res) { const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; struct resource *cur; if (WARN_ON_ONCE((res->flags & flags) != flags)) return; write_lock(&resource_lock); res->flags |= IORESOURCE_SYSRAM_MERGEABLE; /* Try to merge with next item in the list. */ cur = res->sibling; if (cur && system_ram_resources_mergeable(res, cur)) { res->end = cur->end; res->sibling = cur->sibling; free_resource(cur); } /* Try to merge with previous item in the list. */ cur = res->parent->child; while (cur && cur->sibling != res) cur = cur->sibling; if (cur && system_ram_resources_mergeable(cur, res)) { cur->end = res->end; cur->sibling = res->sibling; free_resource(res); } write_unlock(&resource_lock); } #endif /* CONFIG_MEMORY_HOTPLUG */ /* * Managed region resource */ static void devm_resource_release(struct device *dev, void *ptr) { struct resource **r = ptr; release_resource(*r); } /** * devm_request_resource() - request and reserve an I/O or memory resource * @dev: device for which to request the resource * @root: root of the resource tree from which to request the resource * @new: descriptor of the resource to request * * This is a device-managed version of request_resource(). There is usually * no need to release resources requested by this function explicitly since * that will be taken care of when the device is unbound from its driver. * If for some reason the resource needs to be released explicitly, because * of ordering issues for example, drivers must call devm_release_resource() * rather than the regular release_resource(). * * When a conflict is detected between any existing resources and the newly * requested resource, an error message will be printed. * * Returns 0 on success or a negative error code on failure. */ int devm_request_resource(struct device *dev, struct resource *root, struct resource *new) { struct resource *conflict, **ptr; ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; *ptr = new; conflict = request_resource_conflict(root, new); if (conflict) { dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", new, conflict->name, conflict); devres_free(ptr); return -EBUSY; } devres_add(dev, ptr); return 0; } EXPORT_SYMBOL(devm_request_resource); static int devm_resource_match(struct device *dev, void *res, void *data) { struct resource **ptr = res; return *ptr == data; } /** * devm_release_resource() - release a previously requested resource * @dev: device for which to release the resource * @new: descriptor of the resource to release * * Releases a resource previously requested using devm_request_resource(). */ void devm_release_resource(struct device *dev, struct resource *new) { WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, new)); } EXPORT_SYMBOL(devm_release_resource); struct region_devres { struct resource *parent; resource_size_t start; resource_size_t n; }; static void devm_region_release(struct device *dev, void *res) { struct region_devres *this = res; __release_region(this->parent, this->start, this->n); } static int devm_region_match(struct device *dev, void *res, void *match_data) { struct region_devres *this = res, *match = match_data; return this->parent == match->parent && this->start == match->start && this->n == match->n; } struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name) { struct region_devres *dr = NULL; struct resource *res; dr = devres_alloc(devm_region_release, sizeof(struct region_devres), GFP_KERNEL); if (!dr) return NULL; dr->parent = parent; dr->start = start; dr->n = n; res = __request_region(parent, start, n, name, 0); if (res) devres_add(dev, dr); else devres_free(dr); return res; } EXPORT_SYMBOL(__devm_request_region); void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n) { struct region_devres match_data = { parent, start, n }; WARN_ON(devres_release(dev, devm_region_release, devm_region_match, &match_data)); } EXPORT_SYMBOL(__devm_release_region); /* * Reserve I/O ports or memory based on "reserve=" kernel parameter. */ #define MAXRESERVE 4 static int __init reserve_setup(char *str) { static int reserved; static struct resource reserve[MAXRESERVE]; for (;;) { unsigned int io_start, io_num; int x = reserved; struct resource *parent; if (get_option(&str, &io_start) != 2) break; if (get_option(&str, &io_num) == 0) break; if (x < MAXRESERVE) { struct resource *res = reserve + x; /* * If the region starts below 0x10000, we assume it's * I/O port space; otherwise assume it's memory. */ if (io_start < 0x10000) { *res = DEFINE_RES_IO_NAMED(io_start, io_num, "reserved"); parent = &ioport_resource; } else { *res = DEFINE_RES_MEM_NAMED(io_start, io_num, "reserved"); parent = &iomem_resource; } res->flags |= IORESOURCE_BUSY; if (request_resource(parent, res) == 0) reserved = x+1; } } return 1; } __setup("reserve=", reserve_setup); /* * Check if the requested addr and size spans more than any slot in the * iomem resource tree. */ int iomem_map_sanity_check(resource_size_t addr, unsigned long size) { resource_size_t end = addr + size - 1; struct resource *p; int err = 0; read_lock(&resource_lock); for_each_resource(&iomem_resource, p, false) { /* * We can probably skip the resources without * IORESOURCE_IO attribute? */ if (p->start > end) continue; if (p->end < addr) continue; if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && PFN_DOWN(p->end) >= PFN_DOWN(end)) continue; /* * if a resource is "BUSY", it's not a hardware resource * but a driver mapping of such a resource; we don't want * to warn for those; some drivers legitimately map only * partial hardware resources. (example: vesafb) */ if (p->flags & IORESOURCE_BUSY) continue; pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", &addr, &end, p->name, p); err = -1; break; } read_unlock(&resource_lock); return err; } #ifdef CONFIG_STRICT_DEVMEM static int strict_iomem_checks = 1; #else static int strict_iomem_checks; #endif /* * Check if an address is exclusive to the kernel and must not be mapped to * user space, for example, via /dev/mem. * * Returns true if exclusive to the kernel, otherwise returns false. */ bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) { const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | IORESOURCE_EXCLUSIVE; bool skip_children = false, err = false; struct resource *p; read_lock(&resource_lock); for_each_resource(root, p, skip_children) { if (p->start >= addr + size) break; if (p->end < addr) { skip_children = true; continue; } skip_children = false; /* * IORESOURCE_SYSTEM_RAM resources are exclusive if * IORESOURCE_EXCLUSIVE is set, even if they * are not busy and even if "iomem=relaxed" is set. The * responsible driver dynamically adds/removes system RAM within * such an area and uncontrolled access is dangerous. */ if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { err = true; break; } /* * A resource is exclusive if IORESOURCE_EXCLUSIVE is set * or CONFIG_IO_STRICT_DEVMEM is enabled and the * resource is busy. */ if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) continue; if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) || p->flags & IORESOURCE_EXCLUSIVE) { err = true; break; } } read_unlock(&resource_lock); return err; } bool iomem_is_exclusive(u64 addr) { return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, PAGE_SIZE); } struct resource_entry *resource_list_create_entry(struct resource *res, size_t extra_size) { struct resource_entry *entry; entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); if (entry) { INIT_LIST_HEAD(&entry->node); entry->res = res ? res : &entry->__res; } return entry; } EXPORT_SYMBOL(resource_list_create_entry); void resource_list_free(struct list_head *head) { struct resource_entry *entry, *tmp; list_for_each_entry_safe(entry, tmp, head, node) resource_list_destroy_entry(entry); } EXPORT_SYMBOL(resource_list_free); #ifdef CONFIG_GET_FREE_REGION #define GFR_DESCENDING (1UL << 0) #define GFR_REQUEST_REGION (1UL << 1) #ifdef PA_SECTION_SHIFT #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) #else #define GFR_DEFAULT_ALIGN PAGE_SIZE #endif static resource_size_t gfr_start(struct resource *base, resource_size_t size, resource_size_t align, unsigned long flags) { if (flags & GFR_DESCENDING) { resource_size_t end; end = min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END); return end - size + 1; } return ALIGN(max(base->start, align), align); } static bool gfr_continue(struct resource *base, resource_size_t addr, resource_size_t size, unsigned long flags) { if (flags & GFR_DESCENDING) return addr > size && addr >= base->start; /* * In the ascend case be careful that the last increment by * @size did not wrap 0. */ return addr > addr - size && addr <= min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END); } static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, unsigned long flags) { if (flags & GFR_DESCENDING) return addr - size; return addr + size; } static void remove_free_mem_region(void *_res) { struct resource *res = _res; if (res->parent) remove_resource(res); free_resource(res); } static struct resource * get_free_mem_region(struct device *dev, struct resource *base, resource_size_t size, const unsigned long align, const char *name, const unsigned long desc, const unsigned long flags) { resource_size_t addr; struct resource *res; struct region_devres *dr = NULL; size = ALIGN(size, align); res = alloc_resource(GFP_KERNEL); if (!res) return ERR_PTR(-ENOMEM); if (dev && (flags & GFR_REQUEST_REGION)) { dr = devres_alloc(devm_region_release, sizeof(struct region_devres), GFP_KERNEL); if (!dr) { free_resource(res); return ERR_PTR(-ENOMEM); } } else if (dev) { if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) return ERR_PTR(-ENOMEM); } write_lock(&resource_lock); for (addr = gfr_start(base, size, align, flags); gfr_continue(base, addr, align, flags); addr = gfr_next(addr, align, flags)) { if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != REGION_DISJOINT) continue; if (flags & GFR_REQUEST_REGION) { if (__request_region_locked(res, &iomem_resource, addr, size, name, 0)) break; if (dev) { dr->parent = &iomem_resource; dr->start = addr; dr->n = size; devres_add(dev, dr); } res->desc = desc; write_unlock(&resource_lock); /* * A driver is claiming this region so revoke any * mappings. */ revoke_iomem(res); } else { *res = DEFINE_RES_NAMED_DESC(addr, size, name, IORESOURCE_MEM, desc); /* * Only succeed if the resource hosts an exclusive * range after the insert */ if (__insert_resource(base, res) || res->child) break; write_unlock(&resource_lock); } return res; } write_unlock(&resource_lock); if (flags & GFR_REQUEST_REGION) { free_resource(res); devres_free(dr); } else if (dev) devm_release_action(dev, remove_free_mem_region, res); return ERR_PTR(-ERANGE); } /** * devm_request_free_mem_region - find free region for device private memory * * @dev: device struct to bind the resource to * @size: size in bytes of the device memory to add * @base: resource tree to look in * * This function tries to find an empty range of physical address big enough to * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE * memory, which in turn allocates struct pages. */ struct resource *devm_request_free_mem_region(struct device *dev, struct resource *base, unsigned long size) { unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, dev_name(dev), IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); } EXPORT_SYMBOL_GPL(devm_request_free_mem_region); struct resource *request_free_mem_region(struct resource *base, unsigned long size, const char *name) { unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); } EXPORT_SYMBOL_GPL(request_free_mem_region); /** * alloc_free_mem_region - find a free region relative to @base * @base: resource that will parent the new resource * @size: size in bytes of memory to allocate from @base * @align: alignment requirements for the allocation * @name: resource name * * Buses like CXL, that can dynamically instantiate new memory regions, * need a method to allocate physical address space for those regions. * Allocate and insert a new resource to cover a free, unclaimed by a * descendant of @base, range in the span of @base. */ struct resource *alloc_free_mem_region(struct resource *base, unsigned long size, unsigned long align, const char *name) { /* Default of ascending direction and insert resource */ unsigned long flags = 0; return get_free_mem_region(NULL, base, size, align, name, IORES_DESC_NONE, flags); } EXPORT_SYMBOL_GPL(alloc_free_mem_region); #endif /* CONFIG_GET_FREE_REGION */ static int __init strict_iomem(char *str) { if (strstr(str, "relaxed")) strict_iomem_checks = 0; if (strstr(str, "strict")) strict_iomem_checks = 1; return 1; } static int iomem_fs_init_fs_context(struct fs_context *fc) { return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; } static struct file_system_type iomem_fs_type = { .name = "iomem", .owner = THIS_MODULE, .init_fs_context = iomem_fs_init_fs_context, .kill_sb = kill_anon_super, }; static int __init iomem_init_inode(void) { static struct vfsmount *iomem_vfs_mount; static int iomem_fs_cnt; struct inode *inode; int rc; rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); if (rc < 0) { pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); return rc; } inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); if (IS_ERR(inode)) { rc = PTR_ERR(inode); pr_err("Cannot allocate inode for iomem: %d\n", rc); simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); return rc; } /* * Publish iomem revocation inode initialized. * Pairs with smp_load_acquire() in revoke_iomem(). */ smp_store_release(&iomem_inode, inode); return 0; } fs_initcall(iomem_init_inode); __setup("iomem=", strict_iomem);
1124 1124 319 817 1122 1 1 190 108 86 4790 4788 4790 4810 4782 4482 347 326 326 741 740 6 161 161 181 2 178 181 181 178 421 422 1643 23 23 15 4 12 12 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Ethernet-type device handling. * * Version: @(#)eth.c 1.0.7 05/25/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Florian La Roche, <rzsfl@rz.uni-sb.de> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Fixes: * Mr Linux : Arp problems * Alan Cox : Generic queue tidyup (very tiny here) * Alan Cox : eth_header ntohs should be htons * Alan Cox : eth_rebuild_header missing an htons and * minor other things. * Tegge : Arp bug fixes. * Florian : Removed many unnecessary functions, code cleanup * and changes for new arp and skbuff. * Alan Cox : Redid header building to reflect new format. * Alan Cox : ARP only when compiled with CONFIG_INET * Greg Page : 802.2 and SNAP stuff. * Alan Cox : MAC layer pointers/new format. * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. * Alan Cox : Protect against forwarding explosions with * older network drivers and IFF_ALLMULTI. * Christer Weinigel : Better rebuild header message. * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/nvmem-consumer.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/if_ether.h> #include <linux/of_net.h> #include <linux/pci.h> #include <linux/property.h> #include <net/dst.h> #include <net/arp.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/ip.h> #include <net/dsa.h> #include <net/flow_dissector.h> #include <net/gro.h> #include <linux/uaccess.h> #include <net/pkt_sched.h> /** * eth_header - create the Ethernet header * @skb: buffer to alter * @dev: source device * @type: Ethernet type field * @daddr: destination address (NULL leave destination address) * @saddr: source address (NULL use device source address) * @len: packet length (<= skb->len) * * * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length * in here instead. */ int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct ethhdr *eth = skb_push(skb, ETH_HLEN); if (type != ETH_P_802_3 && type != ETH_P_802_2) eth->h_proto = htons(type); else eth->h_proto = htons(len); /* * Set the source hardware address. */ if (!saddr) saddr = dev->dev_addr; memcpy(eth->h_source, saddr, ETH_ALEN); if (daddr) { memcpy(eth->h_dest, daddr, ETH_ALEN); return ETH_HLEN; } /* * Anyway, the loopback-device should never use this function... */ if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { eth_zero_addr(eth->h_dest); return ETH_HLEN; } return -ETH_HLEN; } EXPORT_SYMBOL(eth_header); /** * eth_get_headlen - determine the length of header for an ethernet frame * @dev: pointer to network device * @data: pointer to start of frame * @len: total length of frame * * Make a best effort attempt to pull the length for all of the headers for * a given frame in a linear buffer. */ u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len) { const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; const struct ethhdr *eth = (const struct ethhdr *)data; struct flow_keys_basic keys; /* this should never happen, but better safe than sorry */ if (unlikely(len < sizeof(*eth))) return len; /* parse any remaining L2/L3 headers, check for L4 */ if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data, eth->h_proto, sizeof(*eth), len, flags)) return max_t(u32, keys.control.thoff, sizeof(*eth)); /* parse for any L4 headers */ return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); } EXPORT_SYMBOL(eth_get_headlen); /** * eth_type_trans - determine the packet's protocol ID. * @skb: received socket data * @dev: receiving network device * * The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. */ __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) { unsigned short _service_access_point; const unsigned short *sap; const struct ethhdr *eth; skb->dev = dev; skb_reset_mac_header(skb); eth = eth_skb_pull_mac(skb); eth_skb_pkt_type(skb, dev); /* * Some variants of DSA tagging don't have an ethertype field * at all, so we check here whether one of those tagging * variants has been configured on the receiving interface, * and if so, set skb->protocol without looking at the packet. */ if (unlikely(netdev_uses_dsa(dev))) return htons(ETH_P_XDSA); if (likely(eth_proto_is_802_3(eth->h_proto))) return eth->h_proto; /* * This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); if (sap && *sap == 0xFFFF) return htons(ETH_P_802_3); /* * Real 802.2 LLC */ return htons(ETH_P_802_2); } EXPORT_SYMBOL(eth_type_trans); /** * eth_header_parse - extract hardware address from packet * @skb: packet to extract header from * @haddr: destination buffer */ int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) { const struct ethhdr *eth = eth_hdr(skb); memcpy(haddr, eth->h_source, ETH_ALEN); return ETH_ALEN; } EXPORT_SYMBOL(eth_header_parse); /** * eth_header_cache - fill cache entry from neighbour * @neigh: source neighbour * @hh: destination cache entry * @type: Ethernet type field * * Create an Ethernet header template from the neighbour. */ int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) { struct ethhdr *eth; const struct net_device *dev = neigh->dev; eth = (struct ethhdr *) (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); if (type == htons(ETH_P_802_3)) return -1; eth->h_proto = type; memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); memcpy(eth->h_dest, neigh->ha, ETH_ALEN); /* Pairs with READ_ONCE() in neigh_resolve_output(), * neigh_hh_output() and neigh_update_hhs(). */ smp_store_release(&hh->hh_len, ETH_HLEN); return 0; } EXPORT_SYMBOL(eth_header_cache); /** * eth_header_cache_update - update cache entry * @hh: destination cache entry * @dev: network device * @haddr: new hardware address * * Called by Address Resolution module to notify changes in address. */ void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr) { memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), haddr, ETH_ALEN); } EXPORT_SYMBOL(eth_header_cache_update); /** * eth_header_parse_protocol - extract protocol from L2 header * @skb: packet to extract protocol from */ __be16 eth_header_parse_protocol(const struct sk_buff *skb) { const struct ethhdr *eth = eth_hdr(skb); return eth->h_proto; } EXPORT_SYMBOL(eth_header_parse_protocol); /** * eth_prepare_mac_addr_change - prepare for mac change * @dev: network device * @p: socket address */ int eth_prepare_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_prepare_mac_addr_change); /** * eth_commit_mac_addr_change - commit mac change * @dev: network device * @p: socket address */ void eth_commit_mac_addr_change(struct net_device *dev, void *p) { struct sockaddr *addr = p; eth_hw_addr_set(dev, addr->sa_data); } EXPORT_SYMBOL(eth_commit_mac_addr_change); /** * eth_mac_addr - set new Ethernet hardware address * @dev: network device * @p: socket address * * Change hardware address of device. * * This doesn't change hardware matching, so needs to be overridden * for most real devices. */ int eth_mac_addr(struct net_device *dev, void *p) { int ret; ret = eth_prepare_mac_addr_change(dev, p); if (ret < 0) return ret; eth_commit_mac_addr_change(dev, p); return 0; } EXPORT_SYMBOL(eth_mac_addr); int eth_validate_addr(struct net_device *dev) { if (!is_valid_ether_addr(dev->dev_addr)) return -EADDRNOTAVAIL; return 0; } EXPORT_SYMBOL(eth_validate_addr); const struct header_ops eth_header_ops ____cacheline_aligned = { .create = eth_header, .parse = eth_header_parse, .cache = eth_header_cache, .cache_update = eth_header_cache_update, .parse_protocol = eth_header_parse_protocol, }; /** * ether_setup - setup Ethernet network device * @dev: network device * * Fill in the fields of the device structure with Ethernet-generic values. */ void ether_setup(struct net_device *dev) { dev->header_ops = &eth_header_ops; dev->type = ARPHRD_ETHER; dev->hard_header_len = ETH_HLEN; dev->min_header_len = ETH_HLEN; dev->mtu = ETH_DATA_LEN; dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = ETH_DATA_LEN; dev->addr_len = ETH_ALEN; dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; dev->flags = IFF_BROADCAST|IFF_MULTICAST; dev->priv_flags |= IFF_TX_SKB_SHARING; eth_broadcast_addr(dev->broadcast); } EXPORT_SYMBOL(ether_setup); /** * alloc_etherdev_mqs - Allocates and sets up an Ethernet device * @sizeof_priv: Size of additional driver-private structure to be allocated * for this Ethernet device * @txqs: The number of TX queues this device has. * @rxqs: The number of RX queues this device has. * * Fill in the fields of the device structure with Ethernet-generic * values. Basically does everything except registering the device. * * Constructs a new net device, complete with a private data area of * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for * this private data area. */ struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs) { return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_ENUM, ether_setup, txqs, rxqs); } EXPORT_SYMBOL(alloc_etherdev_mqs); ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) { return sysfs_emit(buf, "%*phC\n", len, addr); } EXPORT_SYMBOL(sysfs_format_mac); struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct packet_offload *ptype; unsigned int hlen, off_eth; struct sk_buff *pp = NULL; struct ethhdr *eh, *eh2; struct sk_buff *p; __be16 type; int flush = 1; off_eth = skb_gro_offset(skb); hlen = off_eth + sizeof(*eh); eh = skb_gro_header(skb, hlen, off_eth); if (unlikely(!eh)) goto out; flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; eh2 = (struct ethhdr *)(p->data + off_eth); if (compare_ether_header(eh, eh2)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } type = eh->h_proto; ptype = gro_find_receive_by_type(type); if (ptype == NULL) { flush = 1; goto out; } skb_gro_pull(skb, sizeof(*eh)); skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive, ipv6_gro_receive, inet_gro_receive, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(eth_gro_receive); int eth_gro_complete(struct sk_buff *skb, int nhoff) { struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); __be16 type = eh->h_proto; struct packet_offload *ptype; int err = -ENOSYS; if (skb->encapsulation) skb_set_inner_mac_header(skb, nhoff); ptype = gro_find_complete_by_type(type); if (ptype != NULL) err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, ipv6_gro_complete, inet_gro_complete, skb, nhoff + sizeof(*eh)); return err; } EXPORT_SYMBOL(eth_gro_complete); static struct packet_offload eth_packet_offload __read_mostly = { .type = cpu_to_be16(ETH_P_TEB), .priority = 10, .callbacks = { .gro_receive = eth_gro_receive, .gro_complete = eth_gro_complete, }, }; static int __init eth_offload_init(void) { dev_add_offload(&eth_packet_offload); return 0; } fs_initcall(eth_offload_init); unsigned char * __weak arch_get_platform_mac_address(void) { return NULL; } int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) { unsigned char *addr; int ret; ret = of_get_mac_address(dev->of_node, mac_addr); if (!ret) return 0; addr = arch_get_platform_mac_address(); if (!addr) return -ENODEV; ether_addr_copy(mac_addr, addr); return 0; } EXPORT_SYMBOL(eth_platform_get_mac_address); /** * platform_get_ethdev_address - Set netdev's MAC address from a given device * @dev: Pointer to the device * @netdev: Pointer to netdev to write the address to * * Wrapper around eth_platform_get_mac_address() which writes the address * directly to netdev->dev_addr. */ int platform_get_ethdev_address(struct device *dev, struct net_device *netdev) { u8 addr[ETH_ALEN] __aligned(2); int ret; ret = eth_platform_get_mac_address(dev, addr); if (!ret) eth_hw_addr_set(netdev, addr); return ret; } EXPORT_SYMBOL(platform_get_ethdev_address); /** * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named * 'mac-address' associated with given device. * * @dev: Device with which the mac-address cell is associated. * @addrbuf: Buffer to which the MAC address will be copied on success. * * Returns 0 on success or a negative error number on failure. */ int nvmem_get_mac_address(struct device *dev, void *addrbuf) { struct nvmem_cell *cell; const void *mac; size_t len; cell = nvmem_cell_get(dev, "mac-address"); if (IS_ERR(cell)) return PTR_ERR(cell); mac = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(mac)) return PTR_ERR(mac); if (len != ETH_ALEN || !is_valid_ether_addr(mac)) { kfree(mac); return -EINVAL; } ether_addr_copy(addrbuf, mac); kfree(mac); return 0; } static int fwnode_get_mac_addr(struct fwnode_handle *fwnode, const char *name, char *addr) { int ret; ret = fwnode_property_read_u8_array(fwnode, name, addr, ETH_ALEN); if (ret) return ret; if (!is_valid_ether_addr(addr)) return -EINVAL; return 0; } /** * fwnode_get_mac_address - Get the MAC from the firmware node * @fwnode: Pointer to the firmware node * @addr: Address of buffer to store the MAC in * * Search the firmware node for the best MAC address to use. 'mac-address' is * checked first, because that is supposed to contain to "most recent" MAC * address. If that isn't set, then 'local-mac-address' is checked next, * because that is the default address. If that isn't set, then the obsolete * 'address' is checked, just in case we're using an old device tree. * * Note that the 'address' property is supposed to contain a virtual address of * the register set, but some DTS files have redefined that property to be the * MAC address. * * All-zero MAC addresses are rejected, because those could be properties that * exist in the firmware tables, but were not updated by the firmware. For * example, the DTS could define 'mac-address' and 'local-mac-address', with * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'. * In this case, the real MAC is in 'local-mac-address', and 'mac-address' * exists but is all zeros. */ int fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr) { if (!fwnode_get_mac_addr(fwnode, "mac-address", addr) || !fwnode_get_mac_addr(fwnode, "local-mac-address", addr) || !fwnode_get_mac_addr(fwnode, "address", addr)) return 0; return -ENOENT; } EXPORT_SYMBOL(fwnode_get_mac_address); /** * device_get_mac_address - Get the MAC for a given device * @dev: Pointer to the device * @addr: Address of buffer to store the MAC in */ int device_get_mac_address(struct device *dev, char *addr) { return fwnode_get_mac_address(dev_fwnode(dev), addr); } EXPORT_SYMBOL(device_get_mac_address); /** * device_get_ethdev_address - Set netdev's MAC address from a given device * @dev: Pointer to the device * @netdev: Pointer to netdev to write the address to * * Wrapper around device_get_mac_address() which writes the address * directly to netdev->dev_addr. */ int device_get_ethdev_address(struct device *dev, struct net_device *netdev) { u8 addr[ETH_ALEN]; int ret; ret = device_get_mac_address(dev, addr); if (!ret) eth_hw_addr_set(netdev, addr); return ret; } EXPORT_SYMBOL(device_get_ethdev_address);
82 82 82 82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 /* * Copyright (c) 2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/random.h> #include <rdma/ib_cache.h> #include "sa.h" static int mcast_add_one(struct ib_device *device); static void mcast_remove_one(struct ib_device *device, void *client_data); static struct ib_client mcast_client = { .name = "ib_multicast", .add = mcast_add_one, .remove = mcast_remove_one }; static struct ib_sa_client sa_client; static struct workqueue_struct *mcast_wq; static union ib_gid mgid0; struct mcast_device; struct mcast_port { struct mcast_device *dev; spinlock_t lock; struct rb_root table; refcount_t refcount; struct completion comp; u32 port_num; }; struct mcast_device { struct ib_device *device; struct ib_event_handler event_handler; int start_port; int end_port; struct mcast_port port[]; }; enum mcast_state { MCAST_JOINING, MCAST_MEMBER, MCAST_ERROR, }; enum mcast_group_state { MCAST_IDLE, MCAST_BUSY, MCAST_GROUP_ERROR, MCAST_PKEY_EVENT }; enum { MCAST_INVALID_PKEY_INDEX = 0xFFFF }; struct mcast_member; struct mcast_group { struct ib_sa_mcmember_rec rec; struct rb_node node; struct mcast_port *port; spinlock_t lock; struct work_struct work; struct list_head pending_list; struct list_head active_list; struct mcast_member *last_join; int members[NUM_JOIN_MEMBERSHIP_TYPES]; atomic_t refcount; enum mcast_group_state state; struct ib_sa_query *query; u16 pkey_index; u8 leave_state; int retries; }; struct mcast_member { struct ib_sa_multicast multicast; struct ib_sa_client *client; struct mcast_group *group; struct list_head list; enum mcast_state state; refcount_t refcount; struct completion comp; }; static void join_handler(int status, struct ib_sa_mcmember_rec *rec, void *context); static void leave_handler(int status, struct ib_sa_mcmember_rec *rec, void *context); static struct mcast_group *mcast_find(struct mcast_port *port, union ib_gid *mgid) { struct rb_node *node = port->table.rb_node; struct mcast_group *group; int ret; while (node) { group = rb_entry(node, struct mcast_group, node); ret = memcmp(mgid->raw, group->rec.mgid.raw, sizeof *mgid); if (!ret) return group; if (ret < 0) node = node->rb_left; else node = node->rb_right; } return NULL; } static struct mcast_group *mcast_insert(struct mcast_port *port, struct mcast_group *group, int allow_duplicates) { struct rb_node **link = &port->table.rb_node; struct rb_node *parent = NULL; struct mcast_group *cur_group; int ret; while (*link) { parent = *link; cur_group = rb_entry(parent, struct mcast_group, node); ret = memcmp(group->rec.mgid.raw, cur_group->rec.mgid.raw, sizeof group->rec.mgid); if (ret < 0) link = &(*link)->rb_left; else if (ret > 0) link = &(*link)->rb_right; else if (allow_duplicates) link = &(*link)->rb_left; else return cur_group; } rb_link_node(&group->node, parent, link); rb_insert_color(&group->node, &port->table); return NULL; } static void deref_port(struct mcast_port *port) { if (refcount_dec_and_test(&port->refcount)) complete(&port->comp); } static void release_group(struct mcast_group *group) { struct mcast_port *port = group->port; unsigned long flags; spin_lock_irqsave(&port->lock, flags); if (atomic_dec_and_test(&group->refcount)) { rb_erase(&group->node, &port->table); spin_unlock_irqrestore(&port->lock, flags); kfree(group); deref_port(port); } else spin_unlock_irqrestore(&port->lock, flags); } static void deref_member(struct mcast_member *member) { if (refcount_dec_and_test(&member->refcount)) complete(&member->comp); } static void queue_join(struct mcast_member *member) { struct mcast_group *group = member->group; unsigned long flags; spin_lock_irqsave(&group->lock, flags); list_add_tail(&member->list, &group->pending_list); if (group->state == MCAST_IDLE) { group->state = MCAST_BUSY; atomic_inc(&group->refcount); queue_work(mcast_wq, &group->work); } spin_unlock_irqrestore(&group->lock, flags); } /* * A multicast group has four types of members: full member, non member, * sendonly non member and sendonly full member. * We need to keep track of the number of members of each * type based on their join state. Adjust the number of members the belong to * the specified join states. */ static void adjust_membership(struct mcast_group *group, u8 join_state, int inc) { int i; for (i = 0; i < NUM_JOIN_MEMBERSHIP_TYPES; i++, join_state >>= 1) if (join_state & 0x1) group->members[i] += inc; } /* * If a multicast group has zero members left for a particular join state, but * the group is still a member with the SA, we need to leave that join state. * Determine which join states we still belong to, but that do not have any * active members. */ static u8 get_leave_state(struct mcast_group *group) { u8 leave_state = 0; int i; for (i = 0; i < NUM_JOIN_MEMBERSHIP_TYPES; i++) if (!group->members[i]) leave_state |= (0x1 << i); return leave_state & group->rec.join_state; } static int check_selector(ib_sa_comp_mask comp_mask, ib_sa_comp_mask selector_mask, ib_sa_comp_mask value_mask, u8 selector, u8 src_value, u8 dst_value) { int err; if (!(comp_mask & selector_mask) || !(comp_mask & value_mask)) return 0; switch (selector) { case IB_SA_GT: err = (src_value <= dst_value); break; case IB_SA_LT: err = (src_value >= dst_value); break; case IB_SA_EQ: err = (src_value != dst_value); break; default: err = 0; break; } return err; } static int cmp_rec(struct ib_sa_mcmember_rec *src, struct ib_sa_mcmember_rec *dst, ib_sa_comp_mask comp_mask) { /* MGID must already match */ if (comp_mask & IB_SA_MCMEMBER_REC_PORT_GID && memcmp(&src->port_gid, &dst->port_gid, sizeof src->port_gid)) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_QKEY && src->qkey != dst->qkey) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_MLID && src->mlid != dst->mlid) return -EINVAL; if (check_selector(comp_mask, IB_SA_MCMEMBER_REC_MTU_SELECTOR, IB_SA_MCMEMBER_REC_MTU, dst->mtu_selector, src->mtu, dst->mtu)) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_TRAFFIC_CLASS && src->traffic_class != dst->traffic_class) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_PKEY && src->pkey != dst->pkey) return -EINVAL; if (check_selector(comp_mask, IB_SA_MCMEMBER_REC_RATE_SELECTOR, IB_SA_MCMEMBER_REC_RATE, dst->rate_selector, src->rate, dst->rate)) return -EINVAL; if (check_selector(comp_mask, IB_SA_MCMEMBER_REC_PACKET_LIFE_TIME_SELECTOR, IB_SA_MCMEMBER_REC_PACKET_LIFE_TIME, dst->packet_life_time_selector, src->packet_life_time, dst->packet_life_time)) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_SL && src->sl != dst->sl) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_FLOW_LABEL && src->flow_label != dst->flow_label) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_HOP_LIMIT && src->hop_limit != dst->hop_limit) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_SCOPE && src->scope != dst->scope) return -EINVAL; /* join_state checked separately, proxy_join ignored */ return 0; } static int send_join(struct mcast_group *group, struct mcast_member *member) { struct mcast_port *port = group->port; int ret; group->last_join = member; ret = ib_sa_mcmember_rec_query(&sa_client, port->dev->device, port->port_num, IB_MGMT_METHOD_SET, &member->multicast.rec, member->multicast.comp_mask, 3000, GFP_KERNEL, join_handler, group, &group->query); return (ret > 0) ? 0 : ret; } static int send_leave(struct mcast_group *group, u8 leave_state) { struct mcast_port *port = group->port; struct ib_sa_mcmember_rec rec; int ret; rec = group->rec; rec.join_state = leave_state; group->leave_state = leave_state; ret = ib_sa_mcmember_rec_query(&sa_client, port->dev->device, port->port_num, IB_SA_METHOD_DELETE, &rec, IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | IB_SA_MCMEMBER_REC_JOIN_STATE, 3000, GFP_KERNEL, leave_handler, group, &group->query); return (ret > 0) ? 0 : ret; } static void join_group(struct mcast_group *group, struct mcast_member *member, u8 join_state) { member->state = MCAST_MEMBER; adjust_membership(group, join_state, 1); group->rec.join_state |= join_state; member->multicast.rec = group->rec; member->multicast.rec.join_state = join_state; list_move(&member->list, &group->active_list); } static int fail_join(struct mcast_group *group, struct mcast_member *member, int status) { spin_lock_irq(&group->lock); list_del_init(&member->list); spin_unlock_irq(&group->lock); return member->multicast.callback(status, &member->multicast); } static void process_group_error(struct mcast_group *group) { struct mcast_member *member; int ret = 0; u16 pkey_index; if (group->state == MCAST_PKEY_EVENT) ret = ib_find_pkey(group->port->dev->device, group->port->port_num, be16_to_cpu(group->rec.pkey), &pkey_index); spin_lock_irq(&group->lock); if (group->state == MCAST_PKEY_EVENT && !ret && group->pkey_index == pkey_index) goto out; while (!list_empty(&group->active_list)) { member = list_entry(group->active_list.next, struct mcast_member, list); refcount_inc(&member->refcount); list_del_init(&member->list); adjust_membership(group, member->multicast.rec.join_state, -1); member->state = MCAST_ERROR; spin_unlock_irq(&group->lock); ret = member->multicast.callback(-ENETRESET, &member->multicast); deref_member(member); if (ret) ib_sa_free_multicast(&member->multicast); spin_lock_irq(&group->lock); } group->rec.join_state = 0; out: group->state = MCAST_BUSY; spin_unlock_irq(&group->lock); } static void mcast_work_handler(struct work_struct *work) { struct mcast_group *group; struct mcast_member *member; struct ib_sa_multicast *multicast; int status, ret; u8 join_state; group = container_of(work, typeof(*group), work); retest: spin_lock_irq(&group->lock); while (!list_empty(&group->pending_list) || (group->state != MCAST_BUSY)) { if (group->state != MCAST_BUSY) { spin_unlock_irq(&group->lock); process_group_error(group); goto retest; } member = list_entry(group->pending_list.next, struct mcast_member, list); multicast = &member->multicast; join_state = multicast->rec.join_state; refcount_inc(&member->refcount); if (join_state == (group->rec.join_state & join_state)) { status = cmp_rec(&group->rec, &multicast->rec, multicast->comp_mask); if (!status) join_group(group, member, join_state); else list_del_init(&member->list); spin_unlock_irq(&group->lock); ret = multicast->callback(status, multicast); } else { spin_unlock_irq(&group->lock); status = send_join(group, member); if (!status) { deref_member(member); return; } ret = fail_join(group, member, status); } deref_member(member); if (ret) ib_sa_free_multicast(&member->multicast); spin_lock_irq(&group->lock); } join_state = get_leave_state(group); if (join_state) { group->rec.join_state &= ~join_state; spin_unlock_irq(&group->lock); if (send_leave(group, join_state)) goto retest; } else { group->state = MCAST_IDLE; spin_unlock_irq(&group->lock); release_group(group); } } /* * Fail a join request if it is still active - at the head of the pending queue. */ static void process_join_error(struct mcast_group *group, int status) { struct mcast_member *member; int ret; spin_lock_irq(&group->lock); member = list_entry(group->pending_list.next, struct mcast_member, list); if (group->last_join == member) { refcount_inc(&member->refcount); list_del_init(&member->list); spin_unlock_irq(&group->lock); ret = member->multicast.callback(status, &member->multicast); deref_member(member); if (ret) ib_sa_free_multicast(&member->multicast); } else spin_unlock_irq(&group->lock); } static void join_handler(int status, struct ib_sa_mcmember_rec *rec, void *context) { struct mcast_group *group = context; u16 pkey_index = MCAST_INVALID_PKEY_INDEX; if (status) process_join_error(group, status); else { int mgids_changed, is_mgid0; if (ib_find_pkey(group->port->dev->device, group->port->port_num, be16_to_cpu(rec->pkey), &pkey_index)) pkey_index = MCAST_INVALID_PKEY_INDEX; spin_lock_irq(&group->port->lock); if (group->state == MCAST_BUSY && group->pkey_index == MCAST_INVALID_PKEY_INDEX) group->pkey_index = pkey_index; mgids_changed = memcmp(&rec->mgid, &group->rec.mgid, sizeof(group->rec.mgid)); group->rec = *rec; if (mgids_changed) { rb_erase(&group->node, &group->port->table); is_mgid0 = !memcmp(&mgid0, &group->rec.mgid, sizeof(mgid0)); mcast_insert(group->port, group, is_mgid0); } spin_unlock_irq(&group->port->lock); } mcast_work_handler(&group->work); } static void leave_handler(int status, struct ib_sa_mcmember_rec *rec, void *context) { struct mcast_group *group = context; if (status && group->retries > 0 && !send_leave(group, group->leave_state)) group->retries--; else mcast_work_handler(&group->work); } static struct mcast_group *acquire_group(struct mcast_port *port, union ib_gid *mgid, gfp_t gfp_mask) { struct mcast_group *group, *cur_group; unsigned long flags; int is_mgid0; is_mgid0 = !memcmp(&mgid0, mgid, sizeof mgid0); if (!is_mgid0) { spin_lock_irqsave(&port->lock, flags); group = mcast_find(port, mgid); if (group) goto found; spin_unlock_irqrestore(&port->lock, flags); } group = kzalloc(sizeof *group, gfp_mask); if (!group) return NULL; group->retries = 3; group->port = port; group->rec.mgid = *mgid; group->pkey_index = MCAST_INVALID_PKEY_INDEX; INIT_LIST_HEAD(&group->pending_list); INIT_LIST_HEAD(&group->active_list); INIT_WORK(&group->work, mcast_work_handler); spin_lock_init(&group->lock); spin_lock_irqsave(&port->lock, flags); cur_group = mcast_insert(port, group, is_mgid0); if (cur_group) { kfree(group); group = cur_group; } else refcount_inc(&port->refcount); found: atomic_inc(&group->refcount); spin_unlock_irqrestore(&port->lock, flags); return group; } /* * We serialize all join requests to a single group to make our lives much * easier. Otherwise, two users could try to join the same group * simultaneously, with different configurations, one could leave while the * join is in progress, etc., which makes locking around error recovery * difficult. */ struct ib_sa_multicast * ib_sa_join_multicast(struct ib_sa_client *client, struct ib_device *device, u32 port_num, struct ib_sa_mcmember_rec *rec, ib_sa_comp_mask comp_mask, gfp_t gfp_mask, int (*callback)(int status, struct ib_sa_multicast *multicast), void *context) { struct mcast_device *dev; struct mcast_member *member; struct ib_sa_multicast *multicast; int ret; dev = ib_get_client_data(device, &mcast_client); if (!dev) return ERR_PTR(-ENODEV); member = kmalloc(sizeof *member, gfp_mask); if (!member) return ERR_PTR(-ENOMEM); ib_sa_client_get(client); member->client = client; member->multicast.rec = *rec; member->multicast.comp_mask = comp_mask; member->multicast.callback = callback; member->multicast.context = context; init_completion(&member->comp); refcount_set(&member->refcount, 1); member->state = MCAST_JOINING; member->group = acquire_group(&dev->port[port_num - dev->start_port], &rec->mgid, gfp_mask); if (!member->group) { ret = -ENOMEM; goto err; } /* * The user will get the multicast structure in their callback. They * could then free the multicast structure before we can return from * this routine. So we save the pointer to return before queuing * any callback. */ multicast = &member->multicast; queue_join(member); return multicast; err: ib_sa_client_put(client); kfree(member); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_sa_join_multicast); void ib_sa_free_multicast(struct ib_sa_multicast *multicast) { struct mcast_member *member; struct mcast_group *group; member = container_of(multicast, struct mcast_member, multicast); group = member->group; spin_lock_irq(&group->lock); if (member->state == MCAST_MEMBER) adjust_membership(group, multicast->rec.join_state, -1); list_del_init(&member->list); if (group->state == MCAST_IDLE) { group->state = MCAST_BUSY; spin_unlock_irq(&group->lock); /* Continue to hold reference on group until callback */ queue_work(mcast_wq, &group->work); } else { spin_unlock_irq(&group->lock); release_group(group); } deref_member(member); wait_for_completion(&member->comp); ib_sa_client_put(member->client); kfree(member); } EXPORT_SYMBOL(ib_sa_free_multicast); int ib_sa_get_mcmember_rec(struct ib_device *device, u32 port_num, union ib_gid *mgid, struct ib_sa_mcmember_rec *rec) { struct mcast_device *dev; struct mcast_port *port; struct mcast_group *group; unsigned long flags; int ret = 0; dev = ib_get_client_data(device, &mcast_client); if (!dev) return -ENODEV; port = &dev->port[port_num - dev->start_port]; spin_lock_irqsave(&port->lock, flags); group = mcast_find(port, mgid); if (group) *rec = group->rec; else ret = -EADDRNOTAVAIL; spin_unlock_irqrestore(&port->lock, flags); return ret; } EXPORT_SYMBOL(ib_sa_get_mcmember_rec); /** * ib_init_ah_from_mcmember - Initialize AH attribute from multicast * member record and gid of the device. * @device: RDMA device * @port_num: Port of the rdma device to consider * @rec: Multicast member record to use * @ndev: Optional netdevice, applicable only for RoCE * @gid_type: GID type to consider * @ah_attr: AH attribute to fillup on successful completion * * ib_init_ah_from_mcmember() initializes AH attribute based on multicast * member record and other device properties. On success the caller is * responsible to call rdma_destroy_ah_attr on the ah_attr. Returns 0 on * success or appropriate error code. * */ int ib_init_ah_from_mcmember(struct ib_device *device, u32 port_num, struct ib_sa_mcmember_rec *rec, struct net_device *ndev, enum ib_gid_type gid_type, struct rdma_ah_attr *ah_attr) { const struct ib_gid_attr *sgid_attr; /* GID table is not based on the netdevice for IB link layer, * so ignore ndev during search. */ if (rdma_protocol_ib(device, port_num)) ndev = NULL; else if (!rdma_protocol_roce(device, port_num)) return -EINVAL; sgid_attr = rdma_find_gid_by_port(device, &rec->port_gid, gid_type, port_num, ndev); if (IS_ERR(sgid_attr)) return PTR_ERR(sgid_attr); memset(ah_attr, 0, sizeof(*ah_attr)); ah_attr->type = rdma_ah_find_type(device, port_num); rdma_ah_set_dlid(ah_attr, be16_to_cpu(rec->mlid)); rdma_ah_set_sl(ah_attr, rec->sl); rdma_ah_set_port_num(ah_attr, port_num); rdma_ah_set_static_rate(ah_attr, rec->rate); rdma_move_grh_sgid_attr(ah_attr, &rec->mgid, be32_to_cpu(rec->flow_label), rec->hop_limit, rec->traffic_class, sgid_attr); return 0; } EXPORT_SYMBOL(ib_init_ah_from_mcmember); static void mcast_groups_event(struct mcast_port *port, enum mcast_group_state state) { struct mcast_group *group; struct rb_node *node; unsigned long flags; spin_lock_irqsave(&port->lock, flags); for (node = rb_first(&port->table); node; node = rb_next(node)) { group = rb_entry(node, struct mcast_group, node); spin_lock(&group->lock); if (group->state == MCAST_IDLE) { atomic_inc(&group->refcount); queue_work(mcast_wq, &group->work); } if (group->state != MCAST_GROUP_ERROR) group->state = state; spin_unlock(&group->lock); } spin_unlock_irqrestore(&port->lock, flags); } static void mcast_event_handler(struct ib_event_handler *handler, struct ib_event *event) { struct mcast_device *dev; int index; dev = container_of(handler, struct mcast_device, event_handler); if (!rdma_cap_ib_mcast(dev->device, event->element.port_num)) return; index = event->element.port_num - dev->start_port; switch (event->event) { case IB_EVENT_PORT_ERR: case IB_EVENT_LID_CHANGE: case IB_EVENT_CLIENT_REREGISTER: mcast_groups_event(&dev->port[index], MCAST_GROUP_ERROR); break; case IB_EVENT_PKEY_CHANGE: mcast_groups_event(&dev->port[index], MCAST_PKEY_EVENT); break; default: break; } } static int mcast_add_one(struct ib_device *device) { struct mcast_device *dev; struct mcast_port *port; int i; int count = 0; dev = kmalloc(struct_size(dev, port, device->phys_port_cnt), GFP_KERNEL); if (!dev) return -ENOMEM; dev->start_port = rdma_start_port(device); dev->end_port = rdma_end_port(device); for (i = 0; i <= dev->end_port - dev->start_port; i++) { if (!rdma_cap_ib_mcast(device, dev->start_port + i)) continue; port = &dev->port[i]; port->dev = dev; port->port_num = dev->start_port + i; spin_lock_init(&port->lock); port->table = RB_ROOT; init_completion(&port->comp); refcount_set(&port->refcount, 1); ++count; } if (!count) { kfree(dev); return -EOPNOTSUPP; } dev->device = device; ib_set_client_data(device, &mcast_client, dev); INIT_IB_EVENT_HANDLER(&dev->event_handler, device, mcast_event_handler); ib_register_event_handler(&dev->event_handler); return 0; } static void mcast_remove_one(struct ib_device *device, void *client_data) { struct mcast_device *dev = client_data; struct mcast_port *port; int i; ib_unregister_event_handler(&dev->event_handler); flush_workqueue(mcast_wq); for (i = 0; i <= dev->end_port - dev->start_port; i++) { if (rdma_cap_ib_mcast(device, dev->start_port + i)) { port = &dev->port[i]; deref_port(port); wait_for_completion(&port->comp); } } kfree(dev); } int mcast_init(void) { int ret; mcast_wq = alloc_ordered_workqueue("ib_mcast", WQ_MEM_RECLAIM); if (!mcast_wq) return -ENOMEM; ib_sa_register_client(&sa_client); ret = ib_register_client(&mcast_client); if (ret) goto err; return 0; err: ib_sa_unregister_client(&sa_client); destroy_workqueue(mcast_wq); return ret; } void mcast_cleanup(void) { ib_unregister_client(&mcast_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(mcast_wq); }
4 4050 3866 223 12 6 1 4 4 4 4 4 1 1 1 1 1 3 1 1 1 1 1 1 8 11 1 1 1 8 6 2 4 4 4 6 1 2 1 2 1 1 6 6 6 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 54 14 1 1 1 5 2 1 1 1 13 1 1 2 2 3 4 2 4 1 5 1 1 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 6 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 // SPDX-License-Identifier: GPL-2.0-or-later /* * X.25 Packet Layer release 002 * * This is ALPHA test software. This code may break your machine, * randomly fail to work with new releases, misbehave and/or generally * screw up. It might even work. * * This code REQUIRES 2.1.15 or higher * * History * X.25 001 Jonathan Naylor Started coding. * X.25 002 Jonathan Naylor Centralised disconnect handling. * New timer architecture. * 2000-03-11 Henner Eisen MSG_EOR handling more POSIX compliant. * 2000-03-22 Daniela Squassoni Allowed disabling/enabling of * facilities negotiation and increased * the throughput upper limit. * 2000-08-27 Arnaldo C. Melo s/suser/capable/ + micro cleanups * 2000-09-04 Henner Eisen Set sock->state in x25_accept(). * Fixed x25_output() related skb leakage. * 2000-10-02 Henner Eisen Made x25_kick() single threaded per socket. * 2000-10-27 Henner Eisen MSG_DONTWAIT for fragment allocation. * 2000-11-14 Henner Eisen Closing datalink from NETDEV_GOING_DOWN * 2002-10-06 Arnaldo C. Melo Get rid of cli/sti, move proc stuff to * x25_proc.c, using seq_file * 2005-04-02 Shaun Pereira Selective sub address matching * with call user data * 2005-04-15 Shaun Pereira Fast select with no restriction on * response */ #define pr_fmt(fmt) "X25: " fmt #include <linux/module.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/sock.h> #include <net/tcp_states.h> #include <linux/uaccess.h> #include <linux/fcntl.h> #include <linux/termios.h> /* For TIOCINQ/OUTQ */ #include <linux/notifier.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/ctype.h> #include <net/x25.h> #include <net/compat.h> int sysctl_x25_restart_request_timeout = X25_DEFAULT_T20; int sysctl_x25_call_request_timeout = X25_DEFAULT_T21; int sysctl_x25_reset_request_timeout = X25_DEFAULT_T22; int sysctl_x25_clear_request_timeout = X25_DEFAULT_T23; int sysctl_x25_ack_holdback_timeout = X25_DEFAULT_T2; int sysctl_x25_forward = 0; HLIST_HEAD(x25_list); DEFINE_RWLOCK(x25_list_lock); static const struct proto_ops x25_proto_ops; static const struct x25_address null_x25_address = {" "}; #ifdef CONFIG_COMPAT struct compat_x25_subscrip_struct { char device[200-sizeof(compat_ulong_t)]; compat_ulong_t global_facil_mask; compat_uint_t extended; }; #endif int x25_parse_address_block(struct sk_buff *skb, struct x25_address *called_addr, struct x25_address *calling_addr) { unsigned char len; int needed; int rc; if (!pskb_may_pull(skb, 1)) { /* packet has no address block */ rc = 0; goto empty; } len = *skb->data; needed = 1 + ((len >> 4) + (len & 0x0f) + 1) / 2; if (!pskb_may_pull(skb, needed)) { /* packet is too short to hold the addresses it claims to hold */ rc = -1; goto empty; } return x25_addr_ntoa(skb->data, called_addr, calling_addr); empty: *called_addr->x25_addr = 0; *calling_addr->x25_addr = 0; return rc; } int x25_addr_ntoa(unsigned char *p, struct x25_address *called_addr, struct x25_address *calling_addr) { unsigned int called_len, calling_len; char *called, *calling; unsigned int i; called_len = (*p >> 0) & 0x0F; calling_len = (*p >> 4) & 0x0F; called = called_addr->x25_addr; calling = calling_addr->x25_addr; p++; for (i = 0; i < (called_len + calling_len); i++) { if (i < called_len) { if (i % 2 != 0) { *called++ = ((*p >> 0) & 0x0F) + '0'; p++; } else { *called++ = ((*p >> 4) & 0x0F) + '0'; } } else { if (i % 2 != 0) { *calling++ = ((*p >> 0) & 0x0F) + '0'; p++; } else { *calling++ = ((*p >> 4) & 0x0F) + '0'; } } } *called = *calling = '\0'; return 1 + (called_len + calling_len + 1) / 2; } int x25_addr_aton(unsigned char *p, struct x25_address *called_addr, struct x25_address *calling_addr) { unsigned int called_len, calling_len; char *called, *calling; int i; called = called_addr->x25_addr; calling = calling_addr->x25_addr; called_len = strlen(called); calling_len = strlen(calling); *p++ = (calling_len << 4) | (called_len << 0); for (i = 0; i < (called_len + calling_len); i++) { if (i < called_len) { if (i % 2 != 0) { *p |= (*called++ - '0') << 0; p++; } else { *p = 0x00; *p |= (*called++ - '0') << 4; } } else { if (i % 2 != 0) { *p |= (*calling++ - '0') << 0; p++; } else { *p = 0x00; *p |= (*calling++ - '0') << 4; } } } return 1 + (called_len + calling_len + 1) / 2; } /* * Socket removal during an interrupt is now safe. */ static void x25_remove_socket(struct sock *sk) { write_lock_bh(&x25_list_lock); sk_del_node_init(sk); write_unlock_bh(&x25_list_lock); } /* * Handle device status changes. */ static int x25_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct x25_neigh *nb; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; if (dev->type == ARPHRD_X25) { switch (event) { case NETDEV_REGISTER: case NETDEV_POST_TYPE_CHANGE: x25_link_device_up(dev); break; case NETDEV_DOWN: nb = x25_get_neigh(dev); if (nb) { x25_link_terminated(nb); x25_neigh_put(nb); } x25_route_device_down(dev); break; case NETDEV_PRE_TYPE_CHANGE: case NETDEV_UNREGISTER: x25_link_device_down(dev); break; case NETDEV_CHANGE: if (!netif_carrier_ok(dev)) { nb = x25_get_neigh(dev); if (nb) { x25_link_terminated(nb); x25_neigh_put(nb); } } break; } } return NOTIFY_DONE; } /* * Add a socket to the bound sockets list. */ static void x25_insert_socket(struct sock *sk) { write_lock_bh(&x25_list_lock); sk_add_node(sk, &x25_list); write_unlock_bh(&x25_list_lock); } /* * Find a socket that wants to accept the Call Request we just * received. Check the full list for an address/cud match. * If no cuds match return the next_best thing, an address match. * Note: if a listening socket has cud set it must only get calls * with matching cud. */ static struct sock *x25_find_listener(struct x25_address *addr, struct sk_buff *skb) { struct sock *s; struct sock *next_best; read_lock_bh(&x25_list_lock); next_best = NULL; sk_for_each(s, &x25_list) if ((!strcmp(addr->x25_addr, x25_sk(s)->source_addr.x25_addr) || !strcmp(x25_sk(s)->source_addr.x25_addr, null_x25_address.x25_addr)) && s->sk_state == TCP_LISTEN) { /* * Found a listening socket, now check the incoming * call user data vs this sockets call user data */ if (x25_sk(s)->cudmatchlength > 0 && skb->len >= x25_sk(s)->cudmatchlength) { if((memcmp(x25_sk(s)->calluserdata.cuddata, skb->data, x25_sk(s)->cudmatchlength)) == 0) { sock_hold(s); goto found; } } else next_best = s; } if (next_best) { s = next_best; sock_hold(s); goto found; } s = NULL; found: read_unlock_bh(&x25_list_lock); return s; } /* * Find a connected X.25 socket given my LCI and neighbour. */ static struct sock *__x25_find_socket(unsigned int lci, struct x25_neigh *nb) { struct sock *s; sk_for_each(s, &x25_list) if (x25_sk(s)->lci == lci && x25_sk(s)->neighbour == nb) { sock_hold(s); goto found; } s = NULL; found: return s; } struct sock *x25_find_socket(unsigned int lci, struct x25_neigh *nb) { struct sock *s; read_lock_bh(&x25_list_lock); s = __x25_find_socket(lci, nb); read_unlock_bh(&x25_list_lock); return s; } /* * Find a unique LCI for a given device. */ static unsigned int x25_new_lci(struct x25_neigh *nb) { unsigned int lci = 1; struct sock *sk; while ((sk = x25_find_socket(lci, nb)) != NULL) { sock_put(sk); if (++lci == 4096) { lci = 0; break; } cond_resched(); } return lci; } /* * Deferred destroy. */ static void __x25_destroy_socket(struct sock *); /* * handler for deferred kills. */ static void x25_destroy_timer(struct timer_list *t) { struct sock *sk = from_timer(sk, t, sk_timer); x25_destroy_socket_from_timer(sk); } /* * This is called from user mode and the timers. Thus it protects itself * against interrupting users but doesn't worry about being called during * work. Once it is removed from the queue no interrupt or bottom half * will touch it and we are (fairly 8-) ) safe. * Not static as it's used by the timer */ static void __x25_destroy_socket(struct sock *sk) { struct sk_buff *skb; x25_stop_heartbeat(sk); x25_stop_timer(sk); x25_remove_socket(sk); x25_clear_queues(sk); /* Flush the queues */ while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { if (skb->sk != sk) { /* A pending connection */ /* * Queue the unaccepted socket for death */ skb->sk->sk_state = TCP_LISTEN; sock_set_flag(skb->sk, SOCK_DEAD); x25_start_heartbeat(skb->sk); x25_sk(skb->sk)->state = X25_STATE_0; } kfree_skb(skb); } if (sk_has_allocations(sk)) { /* Defer: outstanding buffers */ sk->sk_timer.expires = jiffies + 10 * HZ; sk->sk_timer.function = x25_destroy_timer; add_timer(&sk->sk_timer); } else { /* drop last reference so sock_put will free */ __sock_put(sk); } } void x25_destroy_socket_from_timer(struct sock *sk) { sock_hold(sk); bh_lock_sock(sk); __x25_destroy_socket(sk); bh_unlock_sock(sk); sock_put(sk); } /* * Handling for system calls applied via the various interfaces to a * X.25 socket object. */ static int x25_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { int opt; struct sock *sk = sock->sk; int rc = -ENOPROTOOPT; if (level != SOL_X25 || optname != X25_QBITINCL) goto out; rc = -EINVAL; if (optlen < sizeof(int)) goto out; rc = -EFAULT; if (copy_from_sockptr(&opt, optval, sizeof(int))) goto out; if (opt) set_bit(X25_Q_BIT_FLAG, &x25_sk(sk)->flags); else clear_bit(X25_Q_BIT_FLAG, &x25_sk(sk)->flags); rc = 0; out: return rc; } static int x25_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; int val, len, rc = -ENOPROTOOPT; if (level != SOL_X25 || optname != X25_QBITINCL) goto out; rc = -EFAULT; if (get_user(len, optlen)) goto out; rc = -EINVAL; if (len < 0) goto out; len = min_t(unsigned int, len, sizeof(int)); rc = -EFAULT; if (put_user(len, optlen)) goto out; val = test_bit(X25_Q_BIT_FLAG, &x25_sk(sk)->flags); rc = copy_to_user(optval, &val, len) ? -EFAULT : 0; out: return rc; } static int x25_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int rc = -EOPNOTSUPP; lock_sock(sk); if (sock->state != SS_UNCONNECTED) { rc = -EINVAL; release_sock(sk); return rc; } if (sk->sk_state != TCP_LISTEN) { memset(&x25_sk(sk)->dest_addr, 0, X25_ADDR_LEN); sk->sk_max_ack_backlog = backlog; sk->sk_state = TCP_LISTEN; rc = 0; } release_sock(sk); return rc; } static struct proto x25_proto = { .name = "X25", .owner = THIS_MODULE, .obj_size = sizeof(struct x25_sock), }; static struct sock *x25_alloc_socket(struct net *net, int kern) { struct x25_sock *x25; struct sock *sk = sk_alloc(net, AF_X25, GFP_ATOMIC, &x25_proto, kern); if (!sk) goto out; sock_init_data(NULL, sk); x25 = x25_sk(sk); skb_queue_head_init(&x25->ack_queue); skb_queue_head_init(&x25->fragment_queue); skb_queue_head_init(&x25->interrupt_in_queue); skb_queue_head_init(&x25->interrupt_out_queue); out: return sk; } static int x25_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct x25_sock *x25; int rc = -EAFNOSUPPORT; if (!net_eq(net, &init_net)) goto out; rc = -ESOCKTNOSUPPORT; if (sock->type != SOCK_SEQPACKET) goto out; rc = -EINVAL; if (protocol) goto out; rc = -ENOMEM; if ((sk = x25_alloc_socket(net, kern)) == NULL) goto out; x25 = x25_sk(sk); sock_init_data(sock, sk); x25_init_timers(sk); sock->ops = &x25_proto_ops; sk->sk_protocol = protocol; sk->sk_backlog_rcv = x25_backlog_rcv; x25->t21 = sysctl_x25_call_request_timeout; x25->t22 = sysctl_x25_reset_request_timeout; x25->t23 = sysctl_x25_clear_request_timeout; x25->t2 = sysctl_x25_ack_holdback_timeout; x25->state = X25_STATE_0; x25->cudmatchlength = 0; set_bit(X25_ACCPT_APPRV_FLAG, &x25->flags); /* normally no cud */ /* on call accept */ x25->facilities.winsize_in = X25_DEFAULT_WINDOW_SIZE; x25->facilities.winsize_out = X25_DEFAULT_WINDOW_SIZE; x25->facilities.pacsize_in = X25_DEFAULT_PACKET_SIZE; x25->facilities.pacsize_out = X25_DEFAULT_PACKET_SIZE; x25->facilities.throughput = 0; /* by default don't negotiate throughput */ x25->facilities.reverse = X25_DEFAULT_REVERSE; x25->dte_facilities.calling_len = 0; x25->dte_facilities.called_len = 0; memset(x25->dte_facilities.called_ae, '\0', sizeof(x25->dte_facilities.called_ae)); memset(x25->dte_facilities.calling_ae, '\0', sizeof(x25->dte_facilities.calling_ae)); rc = 0; out: return rc; } static struct sock *x25_make_new(struct sock *osk) { struct sock *sk = NULL; struct x25_sock *x25, *ox25; if (osk->sk_type != SOCK_SEQPACKET) goto out; if ((sk = x25_alloc_socket(sock_net(osk), 0)) == NULL) goto out; x25 = x25_sk(sk); sk->sk_type = osk->sk_type; sk->sk_priority = READ_ONCE(osk->sk_priority); sk->sk_protocol = osk->sk_protocol; sk->sk_rcvbuf = osk->sk_rcvbuf; sk->sk_sndbuf = osk->sk_sndbuf; sk->sk_state = TCP_ESTABLISHED; sk->sk_backlog_rcv = osk->sk_backlog_rcv; sock_copy_flags(sk, osk); ox25 = x25_sk(osk); x25->t21 = ox25->t21; x25->t22 = ox25->t22; x25->t23 = ox25->t23; x25->t2 = ox25->t2; x25->flags = ox25->flags; x25->facilities = ox25->facilities; x25->dte_facilities = ox25->dte_facilities; x25->cudmatchlength = ox25->cudmatchlength; clear_bit(X25_INTERRUPT_FLAG, &x25->flags); x25_init_timers(sk); out: return sk; } static int x25_release(struct socket *sock) { struct sock *sk = sock->sk; struct x25_sock *x25; if (!sk) return 0; x25 = x25_sk(sk); sock_hold(sk); lock_sock(sk); switch (x25->state) { case X25_STATE_0: case X25_STATE_2: x25_disconnect(sk, 0, 0, 0); __x25_destroy_socket(sk); goto out; case X25_STATE_1: case X25_STATE_3: case X25_STATE_4: x25_clear_queues(sk); x25_write_internal(sk, X25_CLEAR_REQUEST); x25_start_t23timer(sk); x25->state = X25_STATE_2; sk->sk_state = TCP_CLOSE; sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); sock_set_flag(sk, SOCK_DEAD); sock_set_flag(sk, SOCK_DESTROY); break; case X25_STATE_5: x25_write_internal(sk, X25_CLEAR_REQUEST); x25_disconnect(sk, 0, 0, 0); __x25_destroy_socket(sk); goto out; } sock_orphan(sk); out: release_sock(sk); sock_put(sk); return 0; } static int x25_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct sockaddr_x25 *addr = (struct sockaddr_x25 *)uaddr; int len, i, rc = 0; if (addr_len != sizeof(struct sockaddr_x25) || addr->sx25_family != AF_X25 || strnlen(addr->sx25_addr.x25_addr, X25_ADDR_LEN) == X25_ADDR_LEN) { rc = -EINVAL; goto out; } /* check for the null_x25_address */ if (strcmp(addr->sx25_addr.x25_addr, null_x25_address.x25_addr)) { len = strlen(addr->sx25_addr.x25_addr); for (i = 0; i < len; i++) { if (!isdigit(addr->sx25_addr.x25_addr[i])) { rc = -EINVAL; goto out; } } } lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { x25_sk(sk)->source_addr = addr->sx25_addr; x25_insert_socket(sk); sock_reset_flag(sk, SOCK_ZAPPED); } else { rc = -EINVAL; } release_sock(sk); net_dbg_ratelimited("x25_bind: socket is bound\n"); out: return rc; } static int x25_wait_for_connection_establishment(struct sock *sk) { DECLARE_WAITQUEUE(wait, current); int rc; add_wait_queue_exclusive(sk_sleep(sk), &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); rc = -ERESTARTSYS; if (signal_pending(current)) break; rc = sock_error(sk); if (rc) { sk->sk_socket->state = SS_UNCONNECTED; break; } rc = -ENOTCONN; if (sk->sk_state == TCP_CLOSE) { sk->sk_socket->state = SS_UNCONNECTED; break; } rc = 0; if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); schedule(); lock_sock(sk); } else break; } __set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); return rc; } static int x25_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct x25_sock *x25 = x25_sk(sk); struct sockaddr_x25 *addr = (struct sockaddr_x25 *)uaddr; struct x25_route *rt; int rc = 0; lock_sock(sk); if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { sock->state = SS_CONNECTED; goto out; /* Connect completed during a ERESTARTSYS event */ } rc = -ECONNREFUSED; if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { sock->state = SS_UNCONNECTED; goto out; } rc = -EISCONN; /* No reconnect on a seqpacket socket */ if (sk->sk_state == TCP_ESTABLISHED) goto out; rc = -EALREADY; /* Do nothing if call is already in progress */ if (sk->sk_state == TCP_SYN_SENT) goto out; sk->sk_state = TCP_CLOSE; sock->state = SS_UNCONNECTED; rc = -EINVAL; if (addr_len != sizeof(struct sockaddr_x25) || addr->sx25_family != AF_X25 || strnlen(addr->sx25_addr.x25_addr, X25_ADDR_LEN) == X25_ADDR_LEN) goto out; rc = -ENETUNREACH; rt = x25_get_route(&addr->sx25_addr); if (!rt) goto out; x25->neighbour = x25_get_neigh(rt->dev); if (!x25->neighbour) goto out_put_route; x25_limit_facilities(&x25->facilities, x25->neighbour); x25->lci = x25_new_lci(x25->neighbour); if (!x25->lci) goto out_put_neigh; rc = -EINVAL; if (sock_flag(sk, SOCK_ZAPPED)) /* Must bind first - autobinding does not work */ goto out_put_neigh; if (!strcmp(x25->source_addr.x25_addr, null_x25_address.x25_addr)) memset(&x25->source_addr, '\0', X25_ADDR_LEN); x25->dest_addr = addr->sx25_addr; /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->sk_state = TCP_SYN_SENT; x25->state = X25_STATE_1; x25_write_internal(sk, X25_CALL_REQUEST); x25_start_heartbeat(sk); x25_start_t21timer(sk); /* Now the loop */ rc = -EINPROGRESS; if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) goto out; rc = x25_wait_for_connection_establishment(sk); if (rc) goto out_put_neigh; sock->state = SS_CONNECTED; rc = 0; out_put_neigh: if (rc && x25->neighbour) { read_lock_bh(&x25_list_lock); x25_neigh_put(x25->neighbour); x25->neighbour = NULL; read_unlock_bh(&x25_list_lock); x25->state = X25_STATE_0; } out_put_route: x25_route_put(rt); out: release_sock(sk); return rc; } static int x25_wait_for_data(struct sock *sk, long timeout) { DECLARE_WAITQUEUE(wait, current); int rc = 0; add_wait_queue_exclusive(sk_sleep(sk), &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); if (sk->sk_shutdown & RCV_SHUTDOWN) break; rc = -ERESTARTSYS; if (signal_pending(current)) break; rc = -EAGAIN; if (!timeout) break; rc = 0; if (skb_queue_empty(&sk->sk_receive_queue)) { release_sock(sk); timeout = schedule_timeout(timeout); lock_sock(sk); } else break; } __set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); return rc; } static int x25_accept(struct socket *sock, struct socket *newsock, struct proto_accept_arg *arg) { struct sock *sk = sock->sk; struct sock *newsk; struct sk_buff *skb; int rc = -EINVAL; if (!sk) goto out; rc = -EOPNOTSUPP; if (sk->sk_type != SOCK_SEQPACKET) goto out; lock_sock(sk); rc = -EINVAL; if (sk->sk_state != TCP_LISTEN) goto out2; rc = x25_wait_for_data(sk, sk->sk_rcvtimeo); if (rc) goto out2; skb = skb_dequeue(&sk->sk_receive_queue); rc = -EINVAL; if (!skb->sk) goto out2; newsk = skb->sk; sock_graft(newsk, newsock); /* Now attach up the new socket */ skb->sk = NULL; kfree_skb(skb); sk_acceptq_removed(sk); newsock->state = SS_CONNECTED; rc = 0; out2: release_sock(sk); out: return rc; } static int x25_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_x25 *sx25 = (struct sockaddr_x25 *)uaddr; struct sock *sk = sock->sk; struct x25_sock *x25 = x25_sk(sk); int rc = 0; if (peer) { if (sk->sk_state != TCP_ESTABLISHED) { rc = -ENOTCONN; goto out; } sx25->sx25_addr = x25->dest_addr; } else sx25->sx25_addr = x25->source_addr; sx25->sx25_family = AF_X25; rc = sizeof(*sx25); out: return rc; } int x25_rx_call_request(struct sk_buff *skb, struct x25_neigh *nb, unsigned int lci) { struct sock *sk; struct sock *make; struct x25_sock *makex25; struct x25_address source_addr, dest_addr; struct x25_facilities facilities; struct x25_dte_facilities dte_facilities; int len, addr_len, rc; /* * Remove the LCI and frame type. */ skb_pull(skb, X25_STD_MIN_LEN); /* * Extract the X.25 addresses and convert them to ASCII strings, * and remove them. * * Address block is mandatory in call request packets */ addr_len = x25_parse_address_block(skb, &source_addr, &dest_addr); if (addr_len <= 0) goto out_clear_request; skb_pull(skb, addr_len); /* * Get the length of the facilities, skip past them for the moment * get the call user data because this is needed to determine * the correct listener * * Facilities length is mandatory in call request packets */ if (!pskb_may_pull(skb, 1)) goto out_clear_request; len = skb->data[0] + 1; if (!pskb_may_pull(skb, len)) goto out_clear_request; skb_pull(skb,len); /* * Ensure that the amount of call user data is valid. */ if (skb->len > X25_MAX_CUD_LEN) goto out_clear_request; /* * Get all the call user data so it can be used in * x25_find_listener and skb_copy_from_linear_data up ahead. */ if (!pskb_may_pull(skb, skb->len)) goto out_clear_request; /* * Find a listener for the particular address/cud pair. */ sk = x25_find_listener(&source_addr,skb); skb_push(skb,len); if (sk != NULL && sk_acceptq_is_full(sk)) { goto out_sock_put; } /* * We dont have any listeners for this incoming call. * Try forwarding it. */ if (sk == NULL) { skb_push(skb, addr_len + X25_STD_MIN_LEN); if (sysctl_x25_forward && x25_forward_call(&dest_addr, nb, skb, lci) > 0) { /* Call was forwarded, dont process it any more */ kfree_skb(skb); rc = 1; goto out; } else { /* No listeners, can't forward, clear the call */ goto out_clear_request; } } /* * Try to reach a compromise on the requested facilities. */ len = x25_negotiate_facilities(skb, sk, &facilities, &dte_facilities); if (len == -1) goto out_sock_put; /* * current neighbour/link might impose additional limits * on certain facilities */ x25_limit_facilities(&facilities, nb); /* * Try to create a new socket. */ make = x25_make_new(sk); if (!make) goto out_sock_put; /* * Remove the facilities */ skb_pull(skb, len); skb->sk = make; make->sk_state = TCP_ESTABLISHED; makex25 = x25_sk(make); makex25->lci = lci; makex25->dest_addr = dest_addr; makex25->source_addr = source_addr; x25_neigh_hold(nb); makex25->neighbour = nb; makex25->facilities = facilities; makex25->dte_facilities= dte_facilities; makex25->vc_facil_mask = x25_sk(sk)->vc_facil_mask; /* ensure no reverse facil on accept */ makex25->vc_facil_mask &= ~X25_MASK_REVERSE; /* ensure no calling address extension on accept */ makex25->vc_facil_mask &= ~X25_MASK_CALLING_AE; makex25->cudmatchlength = x25_sk(sk)->cudmatchlength; /* Normally all calls are accepted immediately */ if (test_bit(X25_ACCPT_APPRV_FLAG, &makex25->flags)) { x25_write_internal(make, X25_CALL_ACCEPTED); makex25->state = X25_STATE_3; } else { makex25->state = X25_STATE_5; } /* * Incoming Call User Data. */ skb_copy_from_linear_data(skb, makex25->calluserdata.cuddata, skb->len); makex25->calluserdata.cudlength = skb->len; sk_acceptq_added(sk); x25_insert_socket(make); skb_queue_head(&sk->sk_receive_queue, skb); x25_start_heartbeat(make); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); rc = 1; sock_put(sk); out: return rc; out_sock_put: sock_put(sk); out_clear_request: rc = 0; x25_transmit_clear_request(nb, lci, 0x01); goto out; } static int x25_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct x25_sock *x25 = x25_sk(sk); DECLARE_SOCKADDR(struct sockaddr_x25 *, usx25, msg->msg_name); struct sockaddr_x25 sx25; struct sk_buff *skb; unsigned char *asmptr; int noblock = msg->msg_flags & MSG_DONTWAIT; size_t size; int qbit = 0, rc = -EINVAL; lock_sock(sk); if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_OOB|MSG_EOR|MSG_CMSG_COMPAT)) goto out; /* we currently don't support segmented records at the user interface */ if (!(msg->msg_flags & (MSG_EOR|MSG_OOB))) goto out; rc = -EADDRNOTAVAIL; if (sock_flag(sk, SOCK_ZAPPED)) goto out; rc = -EPIPE; if (sk->sk_shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); goto out; } rc = -ENETUNREACH; if (!x25->neighbour) goto out; if (usx25) { rc = -EINVAL; if (msg->msg_namelen < sizeof(sx25)) goto out; memcpy(&sx25, usx25, sizeof(sx25)); rc = -EISCONN; if (strcmp(x25->dest_addr.x25_addr, sx25.sx25_addr.x25_addr)) goto out; rc = -EINVAL; if (sx25.sx25_family != AF_X25) goto out; } else { /* * FIXME 1003.1g - if the socket is like this because * it has become closed (not started closed) we ought * to SIGPIPE, EPIPE; */ rc = -ENOTCONN; if (sk->sk_state != TCP_ESTABLISHED) goto out; sx25.sx25_family = AF_X25; sx25.sx25_addr = x25->dest_addr; } /* Sanity check the packet size */ if (len > 65535) { rc = -EMSGSIZE; goto out; } net_dbg_ratelimited("x25_sendmsg: sendto: Addresses built.\n"); /* Build a packet */ net_dbg_ratelimited("x25_sendmsg: sendto: building packet.\n"); if ((msg->msg_flags & MSG_OOB) && len > 32) len = 32; size = len + X25_MAX_L2_LEN + X25_EXT_MIN_LEN; release_sock(sk); skb = sock_alloc_send_skb(sk, size, noblock, &rc); lock_sock(sk); if (!skb) goto out; X25_SKB_CB(skb)->flags = msg->msg_flags; skb_reserve(skb, X25_MAX_L2_LEN + X25_EXT_MIN_LEN); /* * Put the data on the end */ net_dbg_ratelimited("x25_sendmsg: Copying user data\n"); skb_reset_transport_header(skb); skb_put(skb, len); rc = memcpy_from_msg(skb_transport_header(skb), msg, len); if (rc) goto out_kfree_skb; /* * If the Q BIT Include socket option is in force, the first * byte of the user data is the logical value of the Q Bit. */ if (test_bit(X25_Q_BIT_FLAG, &x25->flags)) { if (!pskb_may_pull(skb, 1)) goto out_kfree_skb; qbit = skb->data[0]; skb_pull(skb, 1); } /* * Push down the X.25 header */ net_dbg_ratelimited("x25_sendmsg: Building X.25 Header.\n"); if (msg->msg_flags & MSG_OOB) { if (x25->neighbour->extended) { asmptr = skb_push(skb, X25_STD_MIN_LEN); *asmptr++ = ((x25->lci >> 8) & 0x0F) | X25_GFI_EXTSEQ; *asmptr++ = (x25->lci >> 0) & 0xFF; *asmptr++ = X25_INTERRUPT; } else { asmptr = skb_push(skb, X25_STD_MIN_LEN); *asmptr++ = ((x25->lci >> 8) & 0x0F) | X25_GFI_STDSEQ; *asmptr++ = (x25->lci >> 0) & 0xFF; *asmptr++ = X25_INTERRUPT; } } else { if (x25->neighbour->extended) { /* Build an Extended X.25 header */ asmptr = skb_push(skb, X25_EXT_MIN_LEN); *asmptr++ = ((x25->lci >> 8) & 0x0F) | X25_GFI_EXTSEQ; *asmptr++ = (x25->lci >> 0) & 0xFF; *asmptr++ = X25_DATA; *asmptr++ = X25_DATA; } else { /* Build an Standard X.25 header */ asmptr = skb_push(skb, X25_STD_MIN_LEN); *asmptr++ = ((x25->lci >> 8) & 0x0F) | X25_GFI_STDSEQ; *asmptr++ = (x25->lci >> 0) & 0xFF; *asmptr++ = X25_DATA; } if (qbit) skb->data[0] |= X25_Q_BIT; } net_dbg_ratelimited("x25_sendmsg: Built header.\n"); net_dbg_ratelimited("x25_sendmsg: Transmitting buffer\n"); rc = -ENOTCONN; if (sk->sk_state != TCP_ESTABLISHED) goto out_kfree_skb; if (msg->msg_flags & MSG_OOB) skb_queue_tail(&x25->interrupt_out_queue, skb); else { rc = x25_output(sk, skb); len = rc; if (rc < 0) kfree_skb(skb); else if (test_bit(X25_Q_BIT_FLAG, &x25->flags)) len++; } x25_kick(sk); rc = len; out: release_sock(sk); return rc; out_kfree_skb: kfree_skb(skb); goto out; } static int x25_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct x25_sock *x25 = x25_sk(sk); DECLARE_SOCKADDR(struct sockaddr_x25 *, sx25, msg->msg_name); size_t copied; int qbit, header_len; struct sk_buff *skb; unsigned char *asmptr; int rc = -ENOTCONN; lock_sock(sk); if (x25->neighbour == NULL) goto out; header_len = x25->neighbour->extended ? X25_EXT_MIN_LEN : X25_STD_MIN_LEN; /* * This works for seqpacket too. The receiver has ordered the queue for * us! We do one quick check first though */ if (sk->sk_state != TCP_ESTABLISHED) goto out; if (flags & MSG_OOB) { rc = -EINVAL; if (sock_flag(sk, SOCK_URGINLINE) || !skb_peek(&x25->interrupt_in_queue)) goto out; skb = skb_dequeue(&x25->interrupt_in_queue); if (!pskb_may_pull(skb, X25_STD_MIN_LEN)) goto out_free_dgram; skb_pull(skb, X25_STD_MIN_LEN); /* * No Q bit information on Interrupt data. */ if (test_bit(X25_Q_BIT_FLAG, &x25->flags)) { asmptr = skb_push(skb, 1); *asmptr = 0x00; } msg->msg_flags |= MSG_OOB; } else { /* Now we can treat all alike */ release_sock(sk); skb = skb_recv_datagram(sk, flags, &rc); lock_sock(sk); if (!skb) goto out; if (!pskb_may_pull(skb, header_len)) goto out_free_dgram; qbit = (skb->data[0] & X25_Q_BIT) == X25_Q_BIT; skb_pull(skb, header_len); if (test_bit(X25_Q_BIT_FLAG, &x25->flags)) { asmptr = skb_push(skb, 1); *asmptr = qbit; } } skb_reset_transport_header(skb); copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } /* Currently, each datagram always contains a complete record */ msg->msg_flags |= MSG_EOR; rc = skb_copy_datagram_msg(skb, 0, msg, copied); if (rc) goto out_free_dgram; if (sx25) { sx25->sx25_family = AF_X25; sx25->sx25_addr = x25->dest_addr; msg->msg_namelen = sizeof(*sx25); } x25_check_rbuf(sk); rc = copied; out_free_dgram: skb_free_datagram(sk, skb); out: release_sock(sk); return rc; } static int x25_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; struct x25_sock *x25 = x25_sk(sk); void __user *argp = (void __user *)arg; int rc; switch (cmd) { case TIOCOUTQ: { int amount; amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (amount < 0) amount = 0; rc = put_user(amount, (unsigned int __user *)argp); break; } case TIOCINQ: { struct sk_buff *skb; int amount = 0; /* * These two are safe on a single CPU system as * only user tasks fiddle here */ lock_sock(sk); if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) amount = skb->len; release_sock(sk); rc = put_user(amount, (unsigned int __user *)argp); break; } case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: rc = -EINVAL; break; case SIOCADDRT: case SIOCDELRT: rc = -EPERM; if (!capable(CAP_NET_ADMIN)) break; rc = x25_route_ioctl(cmd, argp); break; case SIOCX25GSUBSCRIP: rc = x25_subscr_ioctl(cmd, argp); break; case SIOCX25SSUBSCRIP: rc = -EPERM; if (!capable(CAP_NET_ADMIN)) break; rc = x25_subscr_ioctl(cmd, argp); break; case SIOCX25GFACILITIES: { lock_sock(sk); rc = copy_to_user(argp, &x25->facilities, sizeof(x25->facilities)) ? -EFAULT : 0; release_sock(sk); break; } case SIOCX25SFACILITIES: { struct x25_facilities facilities; rc = -EFAULT; if (copy_from_user(&facilities, argp, sizeof(facilities))) break; rc = -EINVAL; lock_sock(sk); if (sk->sk_state != TCP_LISTEN && sk->sk_state != TCP_CLOSE) goto out_fac_release; if (facilities.pacsize_in < X25_PS16 || facilities.pacsize_in > X25_PS4096) goto out_fac_release; if (facilities.pacsize_out < X25_PS16 || facilities.pacsize_out > X25_PS4096) goto out_fac_release; if (facilities.winsize_in < 1 || facilities.winsize_in > 127) goto out_fac_release; if (facilities.throughput) { int out = facilities.throughput & 0xf0; int in = facilities.throughput & 0x0f; if (!out) facilities.throughput |= X25_DEFAULT_THROUGHPUT << 4; else if (out < 0x30 || out > 0xD0) goto out_fac_release; if (!in) facilities.throughput |= X25_DEFAULT_THROUGHPUT; else if (in < 0x03 || in > 0x0D) goto out_fac_release; } if (facilities.reverse && (facilities.reverse & 0x81) != 0x81) goto out_fac_release; x25->facilities = facilities; rc = 0; out_fac_release: release_sock(sk); break; } case SIOCX25GDTEFACILITIES: { lock_sock(sk); rc = copy_to_user(argp, &x25->dte_facilities, sizeof(x25->dte_facilities)); release_sock(sk); if (rc) rc = -EFAULT; break; } case SIOCX25SDTEFACILITIES: { struct x25_dte_facilities dtefacs; rc = -EFAULT; if (copy_from_user(&dtefacs, argp, sizeof(dtefacs))) break; rc = -EINVAL; lock_sock(sk); if (sk->sk_state != TCP_LISTEN && sk->sk_state != TCP_CLOSE) goto out_dtefac_release; if (dtefacs.calling_len > X25_MAX_AE_LEN) goto out_dtefac_release; if (dtefacs.called_len > X25_MAX_AE_LEN) goto out_dtefac_release; x25->dte_facilities = dtefacs; rc = 0; out_dtefac_release: release_sock(sk); break; } case SIOCX25GCALLUSERDATA: { lock_sock(sk); rc = copy_to_user(argp, &x25->calluserdata, sizeof(x25->calluserdata)) ? -EFAULT : 0; release_sock(sk); break; } case SIOCX25SCALLUSERDATA: { struct x25_calluserdata calluserdata; rc = -EFAULT; if (copy_from_user(&calluserdata, argp, sizeof(calluserdata))) break; rc = -EINVAL; if (calluserdata.cudlength > X25_MAX_CUD_LEN) break; lock_sock(sk); x25->calluserdata = calluserdata; release_sock(sk); rc = 0; break; } case SIOCX25GCAUSEDIAG: { lock_sock(sk); rc = copy_to_user(argp, &x25->causediag, sizeof(x25->causediag)) ? -EFAULT : 0; release_sock(sk); break; } case SIOCX25SCAUSEDIAG: { struct x25_causediag causediag; rc = -EFAULT; if (copy_from_user(&causediag, argp, sizeof(causediag))) break; lock_sock(sk); x25->causediag = causediag; release_sock(sk); rc = 0; break; } case SIOCX25SCUDMATCHLEN: { struct x25_subaddr sub_addr; rc = -EINVAL; lock_sock(sk); if(sk->sk_state != TCP_CLOSE) goto out_cud_release; rc = -EFAULT; if (copy_from_user(&sub_addr, argp, sizeof(sub_addr))) goto out_cud_release; rc = -EINVAL; if (sub_addr.cudmatchlength > X25_MAX_CUD_LEN) goto out_cud_release; x25->cudmatchlength = sub_addr.cudmatchlength; rc = 0; out_cud_release: release_sock(sk); break; } case SIOCX25CALLACCPTAPPRV: { rc = -EINVAL; lock_sock(sk); if (sk->sk_state == TCP_CLOSE) { clear_bit(X25_ACCPT_APPRV_FLAG, &x25->flags); rc = 0; } release_sock(sk); break; } case SIOCX25SENDCALLACCPT: { rc = -EINVAL; lock_sock(sk); if (sk->sk_state != TCP_ESTABLISHED) goto out_sendcallaccpt_release; /* must call accptapprv above */ if (test_bit(X25_ACCPT_APPRV_FLAG, &x25->flags)) goto out_sendcallaccpt_release; x25_write_internal(sk, X25_CALL_ACCEPTED); x25->state = X25_STATE_3; rc = 0; out_sendcallaccpt_release: release_sock(sk); break; } default: rc = -ENOIOCTLCMD; break; } return rc; } static const struct net_proto_family x25_family_ops = { .family = AF_X25, .create = x25_create, .owner = THIS_MODULE, }; #ifdef CONFIG_COMPAT static int compat_x25_subscr_ioctl(unsigned int cmd, struct compat_x25_subscrip_struct __user *x25_subscr32) { struct compat_x25_subscrip_struct x25_subscr; struct x25_neigh *nb; struct net_device *dev; int rc = -EINVAL; rc = -EFAULT; if (copy_from_user(&x25_subscr, x25_subscr32, sizeof(*x25_subscr32))) goto out; rc = -EINVAL; dev = x25_dev_get(x25_subscr.device); if (dev == NULL) goto out; nb = x25_get_neigh(dev); if (nb == NULL) goto out_dev_put; dev_put(dev); if (cmd == SIOCX25GSUBSCRIP) { read_lock_bh(&x25_neigh_list_lock); x25_subscr.extended = nb->extended; x25_subscr.global_facil_mask = nb->global_facil_mask; read_unlock_bh(&x25_neigh_list_lock); rc = copy_to_user(x25_subscr32, &x25_subscr, sizeof(*x25_subscr32)) ? -EFAULT : 0; } else { rc = -EINVAL; if (x25_subscr.extended == 0 || x25_subscr.extended == 1) { rc = 0; write_lock_bh(&x25_neigh_list_lock); nb->extended = x25_subscr.extended; nb->global_facil_mask = x25_subscr.global_facil_mask; write_unlock_bh(&x25_neigh_list_lock); } } x25_neigh_put(nb); out: return rc; out_dev_put: dev_put(dev); goto out; } static int compat_x25_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); int rc = -ENOIOCTLCMD; switch(cmd) { case TIOCOUTQ: case TIOCINQ: rc = x25_ioctl(sock, cmd, (unsigned long)argp); break; case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: rc = -EINVAL; break; case SIOCADDRT: case SIOCDELRT: rc = -EPERM; if (!capable(CAP_NET_ADMIN)) break; rc = x25_route_ioctl(cmd, argp); break; case SIOCX25GSUBSCRIP: rc = compat_x25_subscr_ioctl(cmd, argp); break; case SIOCX25SSUBSCRIP: rc = -EPERM; if (!capable(CAP_NET_ADMIN)) break; rc = compat_x25_subscr_ioctl(cmd, argp); break; case SIOCX25GFACILITIES: case SIOCX25SFACILITIES: case SIOCX25GDTEFACILITIES: case SIOCX25SDTEFACILITIES: case SIOCX25GCALLUSERDATA: case SIOCX25SCALLUSERDATA: case SIOCX25GCAUSEDIAG: case SIOCX25SCAUSEDIAG: case SIOCX25SCUDMATCHLEN: case SIOCX25CALLACCPTAPPRV: case SIOCX25SENDCALLACCPT: rc = x25_ioctl(sock, cmd, (unsigned long)argp); break; default: rc = -ENOIOCTLCMD; break; } return rc; } #endif static const struct proto_ops x25_proto_ops = { .family = AF_X25, .owner = THIS_MODULE, .release = x25_release, .bind = x25_bind, .connect = x25_connect, .socketpair = sock_no_socketpair, .accept = x25_accept, .getname = x25_getname, .poll = datagram_poll, .ioctl = x25_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_x25_ioctl, #endif .gettstamp = sock_gettstamp, .listen = x25_listen, .shutdown = sock_no_shutdown, .setsockopt = x25_setsockopt, .getsockopt = x25_getsockopt, .sendmsg = x25_sendmsg, .recvmsg = x25_recvmsg, .mmap = sock_no_mmap, }; static struct packet_type x25_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_X25), .func = x25_lapb_receive_frame, }; static struct notifier_block x25_dev_notifier = { .notifier_call = x25_device_event, }; void x25_kill_by_neigh(struct x25_neigh *nb) { struct sock *s; write_lock_bh(&x25_list_lock); sk_for_each(s, &x25_list) { if (x25_sk(s)->neighbour == nb) { write_unlock_bh(&x25_list_lock); lock_sock(s); x25_disconnect(s, ENETUNREACH, 0, 0); release_sock(s); write_lock_bh(&x25_list_lock); } } write_unlock_bh(&x25_list_lock); /* Remove any related forwards */ x25_clear_forward_by_dev(nb->dev); } static int __init x25_init(void) { int rc; rc = proto_register(&x25_proto, 0); if (rc) goto out; rc = sock_register(&x25_family_ops); if (rc) goto out_proto; dev_add_pack(&x25_packet_type); rc = register_netdevice_notifier(&x25_dev_notifier); if (rc) goto out_sock; rc = x25_register_sysctl(); if (rc) goto out_dev; rc = x25_proc_init(); if (rc) goto out_sysctl; pr_info("Linux Version 0.2\n"); out: return rc; out_sysctl: x25_unregister_sysctl(); out_dev: unregister_netdevice_notifier(&x25_dev_notifier); out_sock: dev_remove_pack(&x25_packet_type); sock_unregister(AF_X25); out_proto: proto_unregister(&x25_proto); goto out; } module_init(x25_init); static void __exit x25_exit(void) { x25_proc_exit(); x25_link_free(); x25_route_free(); x25_unregister_sysctl(); unregister_netdevice_notifier(&x25_dev_notifier); dev_remove_pack(&x25_packet_type); sock_unregister(AF_X25); proto_unregister(&x25_proto); } module_exit(x25_exit); MODULE_AUTHOR("Jonathan Naylor <g4klx@g4klx.demon.co.uk>"); MODULE_DESCRIPTION("The X.25 Packet Layer network layer protocol"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_X25);
5351 5306 537 101 104 101 101 101 101 230 231 231 3 205 230 66 66 66 66 66 3476 3477 1 1 3476 3478 1 1 2256 2206 123 123 123 101 101 101 101 101 101 101 101 101 1 123 4418 4419 101 101 101 101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 // SPDX-License-Identifier: GPL-2.0 /* * bus.c - bus driver management * * Copyright (c) 2002-3 Patrick Mochel * Copyright (c) 2002-3 Open Source Development Labs * Copyright (c) 2007 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2007 Novell Inc. * Copyright (c) 2023 Greg Kroah-Hartman <gregkh@linuxfoundation.org> */ #include <linux/async.h> #include <linux/device/bus.h> #include <linux/device.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/string.h> #include <linux/mutex.h> #include <linux/sysfs.h> #include "base.h" #include "power/power.h" /* /sys/devices/system */ static struct kset *system_kset; /* /sys/bus */ static struct kset *bus_kset; #define to_bus_attr(_attr) container_of(_attr, struct bus_attribute, attr) /* * sysfs bindings for drivers */ #define to_drv_attr(_attr) container_of(_attr, struct driver_attribute, attr) #define DRIVER_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ struct driver_attribute driver_attr_##_name = \ __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) static int __must_check bus_rescan_devices_helper(struct device *dev, void *data); /** * bus_to_subsys - Turn a struct bus_type into a struct subsys_private * * @bus: pointer to the struct bus_type to look up * * The driver core internals needs to work on the subsys_private structure, not * the external struct bus_type pointer. This function walks the list of * registered busses in the system and finds the matching one and returns the * internal struct subsys_private that relates to that bus. * * Note, the reference count of the return value is INCREMENTED if it is not * NULL. A call to subsys_put() must be done when finished with the pointer in * order for it to be properly freed. */ struct subsys_private *bus_to_subsys(const struct bus_type *bus) { struct subsys_private *sp = NULL; struct kobject *kobj; if (!bus || !bus_kset) return NULL; spin_lock(&bus_kset->list_lock); if (list_empty(&bus_kset->list)) goto done; list_for_each_entry(kobj, &bus_kset->list, entry) { struct kset *kset = container_of(kobj, struct kset, kobj); sp = container_of_const(kset, struct subsys_private, subsys); if (sp->bus == bus) goto done; } sp = NULL; done: sp = subsys_get(sp); spin_unlock(&bus_kset->list_lock); return sp; } static const struct bus_type *bus_get(const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); if (sp) return bus; return NULL; } static void bus_put(const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); /* two puts are required as the call to bus_to_subsys incremented it again */ subsys_put(sp); subsys_put(sp); } static ssize_t drv_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct driver_attribute *drv_attr = to_drv_attr(attr); struct driver_private *drv_priv = to_driver(kobj); ssize_t ret = -EIO; if (drv_attr->show) ret = drv_attr->show(drv_priv->driver, buf); return ret; } static ssize_t drv_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct driver_attribute *drv_attr = to_drv_attr(attr); struct driver_private *drv_priv = to_driver(kobj); ssize_t ret = -EIO; if (drv_attr->store) ret = drv_attr->store(drv_priv->driver, buf, count); return ret; } static const struct sysfs_ops driver_sysfs_ops = { .show = drv_attr_show, .store = drv_attr_store, }; static void driver_release(struct kobject *kobj) { struct driver_private *drv_priv = to_driver(kobj); pr_debug("driver: '%s': %s\n", kobject_name(kobj), __func__); kfree(drv_priv); } static const struct kobj_type driver_ktype = { .sysfs_ops = &driver_sysfs_ops, .release = driver_release, }; /* * sysfs bindings for buses */ static ssize_t bus_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct bus_attribute *bus_attr = to_bus_attr(attr); struct subsys_private *subsys_priv = to_subsys_private(kobj); /* return -EIO for reading a bus attribute without show() */ ssize_t ret = -EIO; if (bus_attr->show) ret = bus_attr->show(subsys_priv->bus, buf); return ret; } static ssize_t bus_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct bus_attribute *bus_attr = to_bus_attr(attr); struct subsys_private *subsys_priv = to_subsys_private(kobj); /* return -EIO for writing a bus attribute without store() */ ssize_t ret = -EIO; if (bus_attr->store) ret = bus_attr->store(subsys_priv->bus, buf, count); return ret; } static const struct sysfs_ops bus_sysfs_ops = { .show = bus_attr_show, .store = bus_attr_store, }; int bus_create_file(const struct bus_type *bus, struct bus_attribute *attr) { struct subsys_private *sp = bus_to_subsys(bus); int error; if (!sp) return -EINVAL; error = sysfs_create_file(&sp->subsys.kobj, &attr->attr); subsys_put(sp); return error; } EXPORT_SYMBOL_GPL(bus_create_file); void bus_remove_file(const struct bus_type *bus, struct bus_attribute *attr) { struct subsys_private *sp = bus_to_subsys(bus); if (!sp) return; sysfs_remove_file(&sp->subsys.kobj, &attr->attr); subsys_put(sp); } EXPORT_SYMBOL_GPL(bus_remove_file); static void bus_release(struct kobject *kobj) { struct subsys_private *priv = to_subsys_private(kobj); lockdep_unregister_key(&priv->lock_key); kfree(priv); } static const struct kobj_type bus_ktype = { .sysfs_ops = &bus_sysfs_ops, .release = bus_release, }; static int bus_uevent_filter(const struct kobject *kobj) { const struct kobj_type *ktype = get_ktype(kobj); if (ktype == &bus_ktype) return 1; return 0; } static const struct kset_uevent_ops bus_uevent_ops = { .filter = bus_uevent_filter, }; /* Manually detach a device from its associated driver. */ static ssize_t unbind_store(struct device_driver *drv, const char *buf, size_t count) { const struct bus_type *bus = bus_get(drv->bus); struct device *dev; int err = -ENODEV; dev = bus_find_device_by_name(bus, NULL, buf); if (dev && dev->driver == drv) { device_driver_detach(dev); err = count; } put_device(dev); bus_put(bus); return err; } static DRIVER_ATTR_IGNORE_LOCKDEP(unbind, 0200, NULL, unbind_store); /* * Manually attach a device to a driver. * Note: the driver must want to bind to the device, * it is not possible to override the driver's id table. */ static ssize_t bind_store(struct device_driver *drv, const char *buf, size_t count) { const struct bus_type *bus = bus_get(drv->bus); struct device *dev; int err = -ENODEV; dev = bus_find_device_by_name(bus, NULL, buf); if (dev && driver_match_device(drv, dev)) { err = device_driver_attach(drv, dev); if (!err) { /* success */ err = count; } } put_device(dev); bus_put(bus); return err; } static DRIVER_ATTR_IGNORE_LOCKDEP(bind, 0200, NULL, bind_store); static ssize_t drivers_autoprobe_show(const struct bus_type *bus, char *buf) { struct subsys_private *sp = bus_to_subsys(bus); int ret; if (!sp) return -EINVAL; ret = sysfs_emit(buf, "%d\n", sp->drivers_autoprobe); subsys_put(sp); return ret; } static ssize_t drivers_autoprobe_store(const struct bus_type *bus, const char *buf, size_t count) { struct subsys_private *sp = bus_to_subsys(bus); if (!sp) return -EINVAL; if (buf[0] == '0') sp->drivers_autoprobe = 0; else sp->drivers_autoprobe = 1; subsys_put(sp); return count; } static ssize_t drivers_probe_store(const struct bus_type *bus, const char *buf, size_t count) { struct device *dev; int err = -EINVAL; dev = bus_find_device_by_name(bus, NULL, buf); if (!dev) return -ENODEV; if (bus_rescan_devices_helper(dev, NULL) == 0) err = count; put_device(dev); return err; } static struct device *next_device(struct klist_iter *i) { struct klist_node *n = klist_next(i); struct device *dev = NULL; struct device_private *dev_prv; if (n) { dev_prv = to_device_private_bus(n); dev = dev_prv->device; } return dev; } /** * bus_for_each_dev - device iterator. * @bus: bus type. * @start: device to start iterating from. * @data: data for the callback. * @fn: function to be called for each device. * * Iterate over @bus's list of devices, and call @fn for each, * passing it @data. If @start is not NULL, we use that device to * begin iterating from. * * We check the return of @fn each time. If it returns anything * other than 0, we break out and return that value. * * NOTE: The device that returns a non-zero value is not retained * in any way, nor is its refcount incremented. If the caller needs * to retain this data, it should do so, and increment the reference * count in the supplied callback. */ int bus_for_each_dev(const struct bus_type *bus, struct device *start, void *data, device_iter_t fn) { struct subsys_private *sp = bus_to_subsys(bus); struct klist_iter i; struct device *dev; int error = 0; if (!sp) return -EINVAL; klist_iter_init_node(&sp->klist_devices, &i, (start ? &start->p->knode_bus : NULL)); while (!error && (dev = next_device(&i))) error = fn(dev, data); klist_iter_exit(&i); subsys_put(sp); return error; } EXPORT_SYMBOL_GPL(bus_for_each_dev); /** * bus_find_device - device iterator for locating a particular device. * @bus: bus type * @start: Device to begin with * @data: Data to pass to match function * @match: Callback function to check device * * This is similar to the bus_for_each_dev() function above, but it * returns a reference to a device that is 'found' for later use, as * determined by the @match callback. * * The callback should return 0 if the device doesn't match and non-zero * if it does. If the callback returns non-zero, this function will * return to the caller and not iterate over any more devices. */ struct device *bus_find_device(const struct bus_type *bus, struct device *start, const void *data, device_match_t match) { struct subsys_private *sp = bus_to_subsys(bus); struct klist_iter i; struct device *dev; if (!sp) return NULL; klist_iter_init_node(&sp->klist_devices, &i, (start ? &start->p->knode_bus : NULL)); while ((dev = next_device(&i))) { if (match(dev, data)) { get_device(dev); break; } } klist_iter_exit(&i); subsys_put(sp); return dev; } EXPORT_SYMBOL_GPL(bus_find_device); static struct device_driver *next_driver(struct klist_iter *i) { struct klist_node *n = klist_next(i); struct driver_private *drv_priv; if (n) { drv_priv = container_of(n, struct driver_private, knode_bus); return drv_priv->driver; } return NULL; } /** * bus_for_each_drv - driver iterator * @bus: bus we're dealing with. * @start: driver to start iterating on. * @data: data to pass to the callback. * @fn: function to call for each driver. * * This is nearly identical to the device iterator above. * We iterate over each driver that belongs to @bus, and call * @fn for each. If @fn returns anything but 0, we break out * and return it. If @start is not NULL, we use it as the head * of the list. * * NOTE: we don't return the driver that returns a non-zero * value, nor do we leave the reference count incremented for that * driver. If the caller needs to know that info, it must set it * in the callback. It must also be sure to increment the refcount * so it doesn't disappear before returning to the caller. */ int bus_for_each_drv(const struct bus_type *bus, struct device_driver *start, void *data, int (*fn)(struct device_driver *, void *)) { struct subsys_private *sp = bus_to_subsys(bus); struct klist_iter i; struct device_driver *drv; int error = 0; if (!sp) return -EINVAL; klist_iter_init_node(&sp->klist_drivers, &i, start ? &start->p->knode_bus : NULL); while ((drv = next_driver(&i)) && !error) error = fn(drv, data); klist_iter_exit(&i); subsys_put(sp); return error; } EXPORT_SYMBOL_GPL(bus_for_each_drv); /** * bus_add_device - add device to bus * @dev: device being added * * - Add device's bus attributes. * - Create links to device's bus. * - Add the device to its bus's list of devices. */ int bus_add_device(struct device *dev) { struct subsys_private *sp = bus_to_subsys(dev->bus); int error; if (!sp) { /* * This is a normal operation for many devices that do not * have a bus assigned to them, just say that all went * well. */ return 0; } /* * Reference in sp is now incremented and will be dropped when * the device is removed from the bus */ pr_debug("bus: '%s': add device %s\n", sp->bus->name, dev_name(dev)); error = device_add_groups(dev, sp->bus->dev_groups); if (error) goto out_put; error = sysfs_create_link(&sp->devices_kset->kobj, &dev->kobj, dev_name(dev)); if (error) goto out_groups; error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); if (error) goto out_subsys; klist_add_tail(&dev->p->knode_bus, &sp->klist_devices); return 0; out_subsys: sysfs_remove_link(&sp->devices_kset->kobj, dev_name(dev)); out_groups: device_remove_groups(dev, sp->bus->dev_groups); out_put: subsys_put(sp); return error; } /** * bus_probe_device - probe drivers for a new device * @dev: device to probe * * - Automatically probe for a driver if the bus allows it. */ void bus_probe_device(struct device *dev) { struct subsys_private *sp = bus_to_subsys(dev->bus); struct subsys_interface *sif; if (!sp) return; if (sp->drivers_autoprobe) device_initial_probe(dev); mutex_lock(&sp->mutex); list_for_each_entry(sif, &sp->interfaces, node) if (sif->add_dev) sif->add_dev(dev, sif); mutex_unlock(&sp->mutex); subsys_put(sp); } /** * bus_remove_device - remove device from bus * @dev: device to be removed * * - Remove device from all interfaces. * - Remove symlink from bus' directory. * - Delete device from bus's list. * - Detach from its driver. * - Drop reference taken in bus_add_device(). */ void bus_remove_device(struct device *dev) { struct subsys_private *sp = bus_to_subsys(dev->bus); struct subsys_interface *sif; if (!sp) return; mutex_lock(&sp->mutex); list_for_each_entry(sif, &sp->interfaces, node) if (sif->remove_dev) sif->remove_dev(dev, sif); mutex_unlock(&sp->mutex); sysfs_remove_link(&dev->kobj, "subsystem"); sysfs_remove_link(&sp->devices_kset->kobj, dev_name(dev)); device_remove_groups(dev, dev->bus->dev_groups); if (klist_node_attached(&dev->p->knode_bus)) klist_del(&dev->p->knode_bus); pr_debug("bus: '%s': remove device %s\n", dev->bus->name, dev_name(dev)); device_release_driver(dev); /* * Decrement the reference count twice, once for the bus_to_subsys() * call in the start of this function, and the second one from the * reference increment in bus_add_device() */ subsys_put(sp); subsys_put(sp); } static int __must_check add_bind_files(struct device_driver *drv) { int ret; ret = driver_create_file(drv, &driver_attr_unbind); if (ret == 0) { ret = driver_create_file(drv, &driver_attr_bind); if (ret) driver_remove_file(drv, &driver_attr_unbind); } return ret; } static void remove_bind_files(struct device_driver *drv) { driver_remove_file(drv, &driver_attr_bind); driver_remove_file(drv, &driver_attr_unbind); } static BUS_ATTR_WO(drivers_probe); static BUS_ATTR_RW(drivers_autoprobe); static int add_probe_files(const struct bus_type *bus) { int retval; retval = bus_create_file(bus, &bus_attr_drivers_probe); if (retval) goto out; retval = bus_create_file(bus, &bus_attr_drivers_autoprobe); if (retval) bus_remove_file(bus, &bus_attr_drivers_probe); out: return retval; } static void remove_probe_files(const struct bus_type *bus) { bus_remove_file(bus, &bus_attr_drivers_autoprobe); bus_remove_file(bus, &bus_attr_drivers_probe); } static ssize_t uevent_store(struct device_driver *drv, const char *buf, size_t count) { int rc; rc = kobject_synth_uevent(&drv->p->kobj, buf, count); return rc ? rc : count; } static DRIVER_ATTR_WO(uevent); /** * bus_add_driver - Add a driver to the bus. * @drv: driver. */ int bus_add_driver(struct device_driver *drv) { struct subsys_private *sp = bus_to_subsys(drv->bus); struct driver_private *priv; int error = 0; if (!sp) return -EINVAL; /* * Reference in sp is now incremented and will be dropped when * the driver is removed from the bus */ pr_debug("bus: '%s': add driver %s\n", sp->bus->name, drv->name); priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) { error = -ENOMEM; goto out_put_bus; } klist_init(&priv->klist_devices, NULL, NULL); priv->driver = drv; drv->p = priv; priv->kobj.kset = sp->drivers_kset; error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL, "%s", drv->name); if (error) goto out_unregister; klist_add_tail(&priv->knode_bus, &sp->klist_drivers); if (sp->drivers_autoprobe) { error = driver_attach(drv); if (error) goto out_del_list; } error = module_add_driver(drv->owner, drv); if (error) { printk(KERN_ERR "%s: failed to create module links for %s\n", __func__, drv->name); goto out_detach; } error = driver_create_file(drv, &driver_attr_uevent); if (error) { printk(KERN_ERR "%s: uevent attr (%s) failed\n", __func__, drv->name); } error = driver_add_groups(drv, sp->bus->drv_groups); if (error) { /* How the hell do we get out of this pickle? Give up */ printk(KERN_ERR "%s: driver_add_groups(%s) failed\n", __func__, drv->name); } if (!drv->suppress_bind_attrs) { error = add_bind_files(drv); if (error) { /* Ditto */ printk(KERN_ERR "%s: add_bind_files(%s) failed\n", __func__, drv->name); } } return 0; out_detach: driver_detach(drv); out_del_list: klist_del(&priv->knode_bus); out_unregister: kobject_put(&priv->kobj); /* drv->p is freed in driver_release() */ drv->p = NULL; out_put_bus: subsys_put(sp); return error; } /** * bus_remove_driver - delete driver from bus's knowledge. * @drv: driver. * * Detach the driver from the devices it controls, and remove * it from its bus's list of drivers. Finally, we drop the reference * to the bus we took in bus_add_driver(). */ void bus_remove_driver(struct device_driver *drv) { struct subsys_private *sp = bus_to_subsys(drv->bus); if (!sp) return; pr_debug("bus: '%s': remove driver %s\n", sp->bus->name, drv->name); if (!drv->suppress_bind_attrs) remove_bind_files(drv); driver_remove_groups(drv, sp->bus->drv_groups); driver_remove_file(drv, &driver_attr_uevent); klist_remove(&drv->p->knode_bus); driver_detach(drv); module_remove_driver(drv); kobject_put(&drv->p->kobj); /* * Decrement the reference count twice, once for the bus_to_subsys() * call in the start of this function, and the second one from the * reference increment in bus_add_driver() */ subsys_put(sp); subsys_put(sp); } /* Helper for bus_rescan_devices's iter */ static int __must_check bus_rescan_devices_helper(struct device *dev, void *data) { int ret = 0; if (!dev->driver) { if (dev->parent && dev->bus->need_parent_lock) device_lock(dev->parent); ret = device_attach(dev); if (dev->parent && dev->bus->need_parent_lock) device_unlock(dev->parent); } return ret < 0 ? ret : 0; } /** * bus_rescan_devices - rescan devices on the bus for possible drivers * @bus: the bus to scan. * * This function will look for devices on the bus with no driver * attached and rescan it against existing drivers to see if it matches * any by calling device_attach() for the unbound devices. */ int bus_rescan_devices(const struct bus_type *bus) { return bus_for_each_dev(bus, NULL, NULL, bus_rescan_devices_helper); } EXPORT_SYMBOL_GPL(bus_rescan_devices); /** * device_reprobe - remove driver for a device and probe for a new driver * @dev: the device to reprobe * * This function detaches the attached driver (if any) for the given * device and restarts the driver probing process. It is intended * to use if probing criteria changed during a devices lifetime and * driver attachment should change accordingly. */ int device_reprobe(struct device *dev) { if (dev->driver) device_driver_detach(dev); return bus_rescan_devices_helper(dev, NULL); } EXPORT_SYMBOL_GPL(device_reprobe); static void klist_devices_get(struct klist_node *n) { struct device_private *dev_prv = to_device_private_bus(n); struct device *dev = dev_prv->device; get_device(dev); } static void klist_devices_put(struct klist_node *n) { struct device_private *dev_prv = to_device_private_bus(n); struct device *dev = dev_prv->device; put_device(dev); } static ssize_t bus_uevent_store(const struct bus_type *bus, const char *buf, size_t count) { struct subsys_private *sp = bus_to_subsys(bus); int ret; if (!sp) return -EINVAL; ret = kobject_synth_uevent(&sp->subsys.kobj, buf, count); subsys_put(sp); if (ret) return ret; return count; } /* * "open code" the old BUS_ATTR() macro here. We want to use BUS_ATTR_WO() * here, but can not use it as earlier in the file we have * DEVICE_ATTR_WO(uevent), which would cause a clash with the with the store * function name. */ static struct bus_attribute bus_attr_uevent = __ATTR(uevent, 0200, NULL, bus_uevent_store); /** * bus_register - register a driver-core subsystem * @bus: bus to register * * Once we have that, we register the bus with the kobject * infrastructure, then register the children subsystems it has: * the devices and drivers that belong to the subsystem. */ int bus_register(const struct bus_type *bus) { int retval; struct subsys_private *priv; struct kobject *bus_kobj; struct lock_class_key *key; priv = kzalloc(sizeof(struct subsys_private), GFP_KERNEL); if (!priv) return -ENOMEM; priv->bus = bus; BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier); bus_kobj = &priv->subsys.kobj; retval = kobject_set_name(bus_kobj, "%s", bus->name); if (retval) goto out; bus_kobj->kset = bus_kset; bus_kobj->ktype = &bus_ktype; priv->drivers_autoprobe = 1; retval = kset_register(&priv->subsys); if (retval) goto out; retval = bus_create_file(bus, &bus_attr_uevent); if (retval) goto bus_uevent_fail; priv->devices_kset = kset_create_and_add("devices", NULL, bus_kobj); if (!priv->devices_kset) { retval = -ENOMEM; goto bus_devices_fail; } priv->drivers_kset = kset_create_and_add("drivers", NULL, bus_kobj); if (!priv->drivers_kset) { retval = -ENOMEM; goto bus_drivers_fail; } INIT_LIST_HEAD(&priv->interfaces); key = &priv->lock_key; lockdep_register_key(key); __mutex_init(&priv->mutex, "subsys mutex", key); klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put); klist_init(&priv->klist_drivers, NULL, NULL); retval = add_probe_files(bus); if (retval) goto bus_probe_files_fail; retval = sysfs_create_groups(bus_kobj, bus->bus_groups); if (retval) goto bus_groups_fail; pr_debug("bus: '%s': registered\n", bus->name); return 0; bus_groups_fail: remove_probe_files(bus); bus_probe_files_fail: kset_unregister(priv->drivers_kset); bus_drivers_fail: kset_unregister(priv->devices_kset); bus_devices_fail: bus_remove_file(bus, &bus_attr_uevent); bus_uevent_fail: kset_unregister(&priv->subsys); /* Above kset_unregister() will kfree @priv */ priv = NULL; out: kfree(priv); return retval; } EXPORT_SYMBOL_GPL(bus_register); /** * bus_unregister - remove a bus from the system * @bus: bus. * * Unregister the child subsystems and the bus itself. * Finally, we call bus_put() to release the refcount */ void bus_unregister(const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); struct kobject *bus_kobj; if (!sp) return; pr_debug("bus: '%s': unregistering\n", bus->name); if (sp->dev_root) device_unregister(sp->dev_root); bus_kobj = &sp->subsys.kobj; sysfs_remove_groups(bus_kobj, bus->bus_groups); remove_probe_files(bus); bus_remove_file(bus, &bus_attr_uevent); kset_unregister(sp->drivers_kset); kset_unregister(sp->devices_kset); kset_unregister(&sp->subsys); subsys_put(sp); } EXPORT_SYMBOL_GPL(bus_unregister); int bus_register_notifier(const struct bus_type *bus, struct notifier_block *nb) { struct subsys_private *sp = bus_to_subsys(bus); int retval; if (!sp) return -EINVAL; retval = blocking_notifier_chain_register(&sp->bus_notifier, nb); subsys_put(sp); return retval; } EXPORT_SYMBOL_GPL(bus_register_notifier); int bus_unregister_notifier(const struct bus_type *bus, struct notifier_block *nb) { struct subsys_private *sp = bus_to_subsys(bus); int retval; if (!sp) return -EINVAL; retval = blocking_notifier_chain_unregister(&sp->bus_notifier, nb); subsys_put(sp); return retval; } EXPORT_SYMBOL_GPL(bus_unregister_notifier); void bus_notify(struct device *dev, enum bus_notifier_event value) { struct subsys_private *sp = bus_to_subsys(dev->bus); if (!sp) return; blocking_notifier_call_chain(&sp->bus_notifier, value, dev); subsys_put(sp); } struct kset *bus_get_kset(const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); struct kset *kset; if (!sp) return NULL; kset = &sp->subsys; subsys_put(sp); return kset; } EXPORT_SYMBOL_GPL(bus_get_kset); /* * Yes, this forcibly breaks the klist abstraction temporarily. It * just wants to sort the klist, not change reference counts and * take/drop locks rapidly in the process. It does all this while * holding the lock for the list, so objects can't otherwise be * added/removed while we're swizzling. */ static void device_insertion_sort_klist(struct device *a, struct list_head *list, int (*compare)(const struct device *a, const struct device *b)) { struct klist_node *n; struct device_private *dev_prv; struct device *b; list_for_each_entry(n, list, n_node) { dev_prv = to_device_private_bus(n); b = dev_prv->device; if (compare(a, b) <= 0) { list_move_tail(&a->p->knode_bus.n_node, &b->p->knode_bus.n_node); return; } } list_move_tail(&a->p->knode_bus.n_node, list); } void bus_sort_breadthfirst(const struct bus_type *bus, int (*compare)(const struct device *a, const struct device *b)) { struct subsys_private *sp = bus_to_subsys(bus); LIST_HEAD(sorted_devices); struct klist_node *n, *tmp; struct device_private *dev_prv; struct device *dev; struct klist *device_klist; if (!sp) return; device_klist = &sp->klist_devices; spin_lock(&device_klist->k_lock); list_for_each_entry_safe(n, tmp, &device_klist->k_list, n_node) { dev_prv = to_device_private_bus(n); dev = dev_prv->device; device_insertion_sort_klist(dev, &sorted_devices, compare); } list_splice(&sorted_devices, &device_klist->k_list); spin_unlock(&device_klist->k_lock); subsys_put(sp); } EXPORT_SYMBOL_GPL(bus_sort_breadthfirst); struct subsys_dev_iter { struct klist_iter ki; const struct device_type *type; }; /** * subsys_dev_iter_init - initialize subsys device iterator * @iter: subsys iterator to initialize * @sp: the subsys private (i.e. bus) we wanna iterate over * @start: the device to start iterating from, if any * @type: device_type of the devices to iterate over, NULL for all * * Initialize subsys iterator @iter such that it iterates over devices * of @subsys. If @start is set, the list iteration will start there, * otherwise if it is NULL, the iteration starts at the beginning of * the list. */ static void subsys_dev_iter_init(struct subsys_dev_iter *iter, struct subsys_private *sp, struct device *start, const struct device_type *type) { struct klist_node *start_knode = NULL; if (start) start_knode = &start->p->knode_bus; klist_iter_init_node(&sp->klist_devices, &iter->ki, start_knode); iter->type = type; } /** * subsys_dev_iter_next - iterate to the next device * @iter: subsys iterator to proceed * * Proceed @iter to the next device and return it. Returns NULL if * iteration is complete. * * The returned device is referenced and won't be released till * iterator is proceed to the next device or exited. The caller is * free to do whatever it wants to do with the device including * calling back into subsys code. */ static struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter) { struct klist_node *knode; struct device *dev; for (;;) { knode = klist_next(&iter->ki); if (!knode) return NULL; dev = to_device_private_bus(knode)->device; if (!iter->type || iter->type == dev->type) return dev; } } /** * subsys_dev_iter_exit - finish iteration * @iter: subsys iterator to finish * * Finish an iteration. Always call this function after iteration is * complete whether the iteration ran till the end or not. */ static void subsys_dev_iter_exit(struct subsys_dev_iter *iter) { klist_iter_exit(&iter->ki); } int subsys_interface_register(struct subsys_interface *sif) { struct subsys_private *sp; struct subsys_dev_iter iter; struct device *dev; if (!sif || !sif->subsys) return -ENODEV; sp = bus_to_subsys(sif->subsys); if (!sp) return -EINVAL; /* * Reference in sp is now incremented and will be dropped when * the interface is removed from the bus */ mutex_lock(&sp->mutex); list_add_tail(&sif->node, &sp->interfaces); if (sif->add_dev) { subsys_dev_iter_init(&iter, sp, NULL, NULL); while ((dev = subsys_dev_iter_next(&iter))) sif->add_dev(dev, sif); subsys_dev_iter_exit(&iter); } mutex_unlock(&sp->mutex); return 0; } EXPORT_SYMBOL_GPL(subsys_interface_register); void subsys_interface_unregister(struct subsys_interface *sif) { struct subsys_private *sp; struct subsys_dev_iter iter; struct device *dev; if (!sif || !sif->subsys) return; sp = bus_to_subsys(sif->subsys); if (!sp) return; mutex_lock(&sp->mutex); list_del_init(&sif->node); if (sif->remove_dev) { subsys_dev_iter_init(&iter, sp, NULL, NULL); while ((dev = subsys_dev_iter_next(&iter))) sif->remove_dev(dev, sif); subsys_dev_iter_exit(&iter); } mutex_unlock(&sp->mutex); /* * Decrement the reference count twice, once for the bus_to_subsys() * call in the start of this function, and the second one from the * reference increment in subsys_interface_register() */ subsys_put(sp); subsys_put(sp); } EXPORT_SYMBOL_GPL(subsys_interface_unregister); static void system_root_device_release(struct device *dev) { kfree(dev); } static int subsys_register(const struct bus_type *subsys, const struct attribute_group **groups, struct kobject *parent_of_root) { struct subsys_private *sp; struct device *dev; int err; err = bus_register(subsys); if (err < 0) return err; sp = bus_to_subsys(subsys); if (!sp) { err = -EINVAL; goto err_sp; } dev = kzalloc(sizeof(struct device), GFP_KERNEL); if (!dev) { err = -ENOMEM; goto err_dev; } err = dev_set_name(dev, "%s", subsys->name); if (err < 0) goto err_name; dev->kobj.parent = parent_of_root; dev->groups = groups; dev->release = system_root_device_release; err = device_register(dev); if (err < 0) goto err_dev_reg; sp->dev_root = dev; subsys_put(sp); return 0; err_dev_reg: put_device(dev); dev = NULL; err_name: kfree(dev); err_dev: subsys_put(sp); err_sp: bus_unregister(subsys); return err; } /** * subsys_system_register - register a subsystem at /sys/devices/system/ * @subsys: system subsystem * @groups: default attributes for the root device * * All 'system' subsystems have a /sys/devices/system/<name> root device * with the name of the subsystem. The root device can carry subsystem- * wide attributes. All registered devices are below this single root * device and are named after the subsystem with a simple enumeration * number appended. The registered devices are not explicitly named; * only 'id' in the device needs to be set. * * Do not use this interface for anything new, it exists for compatibility * with bad ideas only. New subsystems should use plain subsystems; and * add the subsystem-wide attributes should be added to the subsystem * directory itself and not some create fake root-device placed in * /sys/devices/system/<name>. */ int subsys_system_register(const struct bus_type *subsys, const struct attribute_group **groups) { return subsys_register(subsys, groups, &system_kset->kobj); } EXPORT_SYMBOL_GPL(subsys_system_register); /** * subsys_virtual_register - register a subsystem at /sys/devices/virtual/ * @subsys: virtual subsystem * @groups: default attributes for the root device * * All 'virtual' subsystems have a /sys/devices/system/<name> root device * with the name of the subsystem. The root device can carry subsystem-wide * attributes. All registered devices are below this single root device. * There's no restriction on device naming. This is for kernel software * constructs which need sysfs interface. */ int subsys_virtual_register(const struct bus_type *subsys, const struct attribute_group **groups) { struct kobject *virtual_dir; virtual_dir = virtual_device_parent(); if (!virtual_dir) return -ENOMEM; return subsys_register(subsys, groups, virtual_dir); } EXPORT_SYMBOL_GPL(subsys_virtual_register); /** * driver_find - locate driver on a bus by its name. * @name: name of the driver. * @bus: bus to scan for the driver. * * Call kset_find_obj() to iterate over list of drivers on * a bus to find driver by name. Return driver if found. * * This routine provides no locking to prevent the driver it returns * from being unregistered or unloaded while the caller is using it. * The caller is responsible for preventing this. */ struct device_driver *driver_find(const char *name, const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); struct kobject *k; struct driver_private *priv; if (!sp) return NULL; k = kset_find_obj(sp->drivers_kset, name); subsys_put(sp); if (!k) return NULL; priv = to_driver(k); /* Drop reference added by kset_find_obj() */ kobject_put(k); return priv->driver; } EXPORT_SYMBOL_GPL(driver_find); /* * Warning, the value could go to "removed" instantly after calling this function, so be very * careful when calling it... */ bool bus_is_registered(const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); bool is_initialized = false; if (sp) { is_initialized = true; subsys_put(sp); } return is_initialized; } /** * bus_get_dev_root - return a pointer to the "device root" of a bus * @bus: bus to return the device root of. * * If a bus has a "device root" structure, return it, WITH THE REFERENCE * COUNT INCREMENTED. * * Note, when finished with the device, a call to put_device() is required. * * If the device root is not present (or bus is not a valid pointer), NULL * will be returned. */ struct device *bus_get_dev_root(const struct bus_type *bus) { struct subsys_private *sp = bus_to_subsys(bus); struct device *dev_root; if (!sp) return NULL; dev_root = get_device(sp->dev_root); subsys_put(sp); return dev_root; } EXPORT_SYMBOL_GPL(bus_get_dev_root); int __init buses_init(void) { bus_kset = kset_create_and_add("bus", &bus_uevent_ops, NULL); if (!bus_kset) return -ENOMEM; system_kset = kset_create_and_add("system", NULL, &devices_kset->kobj); if (!system_kset) { /* Do error handling here as devices_init() do */ kset_unregister(bus_kset); bus_kset = NULL; pr_err("%s: failed to create and add kset 'bus'\n", __func__); return -ENOMEM; } return 0; }
10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VIRTIO_VSOCK_H #define _LINUX_VIRTIO_VSOCK_H #include <uapi/linux/virtio_vsock.h> #include <linux/socket.h> #include <net/sock.h> #include <net/af_vsock.h> #define VIRTIO_VSOCK_SKB_HEADROOM (sizeof(struct virtio_vsock_hdr)) struct virtio_vsock_skb_cb { bool reply; bool tap_delivered; u32 offset; }; #define VIRTIO_VSOCK_SKB_CB(skb) ((struct virtio_vsock_skb_cb *)((skb)->cb)) static inline struct virtio_vsock_hdr *virtio_vsock_hdr(struct sk_buff *skb) { return (struct virtio_vsock_hdr *)skb->head; } static inline bool virtio_vsock_skb_reply(struct sk_buff *skb) { return VIRTIO_VSOCK_SKB_CB(skb)->reply; } static inline void virtio_vsock_skb_set_reply(struct sk_buff *skb) { VIRTIO_VSOCK_SKB_CB(skb)->reply = true; } static inline bool virtio_vsock_skb_tap_delivered(struct sk_buff *skb) { return VIRTIO_VSOCK_SKB_CB(skb)->tap_delivered; } static inline void virtio_vsock_skb_set_tap_delivered(struct sk_buff *skb) { VIRTIO_VSOCK_SKB_CB(skb)->tap_delivered = true; } static inline void virtio_vsock_skb_clear_tap_delivered(struct sk_buff *skb) { VIRTIO_VSOCK_SKB_CB(skb)->tap_delivered = false; } static inline void virtio_vsock_skb_rx_put(struct sk_buff *skb) { u32 len; len = le32_to_cpu(virtio_vsock_hdr(skb)->len); if (len > 0) skb_put(skb, len); } static inline struct sk_buff *virtio_vsock_alloc_skb(unsigned int size, gfp_t mask) { struct sk_buff *skb; if (size < VIRTIO_VSOCK_SKB_HEADROOM) return NULL; skb = alloc_skb(size, mask); if (!skb) return NULL; skb_reserve(skb, VIRTIO_VSOCK_SKB_HEADROOM); return skb; } static inline void virtio_vsock_skb_queue_head(struct sk_buff_head *list, struct sk_buff *skb) { spin_lock_bh(&list->lock); __skb_queue_head(list, skb); spin_unlock_bh(&list->lock); } static inline void virtio_vsock_skb_queue_tail(struct sk_buff_head *list, struct sk_buff *skb) { spin_lock_bh(&list->lock); __skb_queue_tail(list, skb); spin_unlock_bh(&list->lock); } static inline struct sk_buff *virtio_vsock_skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb; spin_lock_bh(&list->lock); skb = __skb_dequeue(list); spin_unlock_bh(&list->lock); return skb; } static inline void virtio_vsock_skb_queue_purge(struct sk_buff_head *list) { spin_lock_bh(&list->lock); __skb_queue_purge(list); spin_unlock_bh(&list->lock); } static inline size_t virtio_vsock_skb_len(struct sk_buff *skb) { return (size_t)(skb_end_pointer(skb) - skb->head); } #define VIRTIO_VSOCK_DEFAULT_RX_BUF_SIZE (1024 * 4) #define VIRTIO_VSOCK_MAX_BUF_SIZE 0xFFFFFFFFUL #define VIRTIO_VSOCK_MAX_PKT_BUF_SIZE (1024 * 64) enum { VSOCK_VQ_RX = 0, /* for host to guest data */ VSOCK_VQ_TX = 1, /* for guest to host data */ VSOCK_VQ_EVENT = 2, VSOCK_VQ_MAX = 3, }; /* Per-socket state (accessed via vsk->trans) */ struct virtio_vsock_sock { struct vsock_sock *vsk; spinlock_t tx_lock; spinlock_t rx_lock; /* Protected by tx_lock */ u32 tx_cnt; u32 peer_fwd_cnt; u32 peer_buf_alloc; size_t bytes_unsent; /* Protected by rx_lock */ u32 fwd_cnt; u32 last_fwd_cnt; u32 rx_bytes; u32 buf_alloc; struct sk_buff_head rx_queue; u32 msg_count; }; struct virtio_vsock_pkt_info { u32 remote_cid, remote_port; struct vsock_sock *vsk; struct msghdr *msg; u32 pkt_len; u16 type; u16 op; u32 flags; bool reply; }; struct virtio_transport { /* This must be the first field */ struct vsock_transport transport; /* Takes ownership of the packet */ int (*send_pkt)(struct sk_buff *skb); /* Used in MSG_ZEROCOPY mode. Checks, that provided data * (number of buffers) could be transmitted with zerocopy * mode. If this callback is not implemented for the current * transport - this means that this transport doesn't need * extra checks and can perform zerocopy transmission by * default. */ bool (*can_msgzerocopy)(int bufs_num); }; ssize_t virtio_transport_stream_dequeue(struct vsock_sock *vsk, struct msghdr *msg, size_t len, int type); int virtio_transport_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg, size_t len, int flags); int virtio_transport_seqpacket_enqueue(struct vsock_sock *vsk, struct msghdr *msg, size_t len); ssize_t virtio_transport_seqpacket_dequeue(struct vsock_sock *vsk, struct msghdr *msg, int flags); s64 virtio_transport_stream_has_data(struct vsock_sock *vsk); s64 virtio_transport_stream_has_space(struct vsock_sock *vsk); u32 virtio_transport_seqpacket_has_data(struct vsock_sock *vsk); ssize_t virtio_transport_unsent_bytes(struct vsock_sock *vsk); void virtio_transport_consume_skb_sent(struct sk_buff *skb, bool consume); int virtio_transport_do_socket_init(struct vsock_sock *vsk, struct vsock_sock *psk); int virtio_transport_notify_poll_in(struct vsock_sock *vsk, size_t target, bool *data_ready_now); int virtio_transport_notify_poll_out(struct vsock_sock *vsk, size_t target, bool *space_available_now); int virtio_transport_notify_recv_init(struct vsock_sock *vsk, size_t target, struct vsock_transport_recv_notify_data *data); int virtio_transport_notify_recv_pre_block(struct vsock_sock *vsk, size_t target, struct vsock_transport_recv_notify_data *data); int virtio_transport_notify_recv_pre_dequeue(struct vsock_sock *vsk, size_t target, struct vsock_transport_recv_notify_data *data); int virtio_transport_notify_recv_post_dequeue(struct vsock_sock *vsk, size_t target, ssize_t copied, bool data_read, struct vsock_transport_recv_notify_data *data); int virtio_transport_notify_send_init(struct vsock_sock *vsk, struct vsock_transport_send_notify_data *data); int virtio_transport_notify_send_pre_block(struct vsock_sock *vsk, struct vsock_transport_send_notify_data *data); int virtio_transport_notify_send_pre_enqueue(struct vsock_sock *vsk, struct vsock_transport_send_notify_data *data); int virtio_transport_notify_send_post_enqueue(struct vsock_sock *vsk, ssize_t written, struct vsock_transport_send_notify_data *data); void virtio_transport_notify_buffer_size(struct vsock_sock *vsk, u64 *val); u64 virtio_transport_stream_rcvhiwat(struct vsock_sock *vsk); bool virtio_transport_stream_is_active(struct vsock_sock *vsk); bool virtio_transport_stream_allow(u32 cid, u32 port); int virtio_transport_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr); bool virtio_transport_dgram_allow(u32 cid, u32 port); int virtio_transport_connect(struct vsock_sock *vsk); int virtio_transport_shutdown(struct vsock_sock *vsk, int mode); void virtio_transport_release(struct vsock_sock *vsk); ssize_t virtio_transport_stream_enqueue(struct vsock_sock *vsk, struct msghdr *msg, size_t len); int virtio_transport_dgram_enqueue(struct vsock_sock *vsk, struct sockaddr_vm *remote_addr, struct msghdr *msg, size_t len); void virtio_transport_destruct(struct vsock_sock *vsk); void virtio_transport_recv_pkt(struct virtio_transport *t, struct sk_buff *skb); void virtio_transport_inc_tx_pkt(struct virtio_vsock_sock *vvs, struct sk_buff *skb); u32 virtio_transport_get_credit(struct virtio_vsock_sock *vvs, u32 wanted); void virtio_transport_put_credit(struct virtio_vsock_sock *vvs, u32 credit); void virtio_transport_deliver_tap_pkt(struct sk_buff *skb); int virtio_transport_purge_skbs(void *vsk, struct sk_buff_head *list); int virtio_transport_read_skb(struct vsock_sock *vsk, skb_read_actor_t read_actor); int virtio_transport_notify_set_rcvlowat(struct vsock_sock *vsk, int val); #endif /* _LINUX_VIRTIO_VSOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __DSA_USER_H #define __DSA_USER_H #include <linux/if_bridge.h> #include <linux/if_vlan.h> #include <linux/list.h> #include <linux/netpoll.h> #include <linux/types.h> #include <net/dsa.h> #include <net/gro_cells.h> struct net_device; struct netlink_ext_ack; extern struct notifier_block dsa_user_switchdev_notifier; extern struct notifier_block dsa_user_switchdev_blocking_notifier; struct dsa_user_priv { /* Copy of CPU port xmit for faster access in user transmit hot path */ struct sk_buff * (*xmit)(struct sk_buff *skb, struct net_device *dev); struct gro_cells gcells; /* DSA port data, such as switch, port index, etc. */ struct dsa_port *dp; #ifdef CONFIG_NET_POLL_CONTROLLER struct netpoll *netpoll; #endif /* TC context */ struct list_head mall_tc_list; }; void dsa_user_mii_bus_init(struct dsa_switch *ds); int dsa_user_create(struct dsa_port *dp); void dsa_user_destroy(struct net_device *user_dev); int dsa_user_suspend(struct net_device *user_dev); int dsa_user_resume(struct net_device *user_dev); int dsa_user_register_notifier(void); void dsa_user_unregister_notifier(void); int dsa_user_host_uc_install(struct net_device *dev, const u8 *addr); void dsa_user_host_uc_uninstall(struct net_device *dev); void dsa_user_sync_ha(struct net_device *dev); void dsa_user_unsync_ha(struct net_device *dev); void dsa_user_setup_tagger(struct net_device *user); int dsa_user_change_mtu(struct net_device *dev, int new_mtu); int dsa_user_change_conduit(struct net_device *dev, struct net_device *conduit, struct netlink_ext_ack *extack); int dsa_user_manage_vlan_filtering(struct net_device *dev, bool vlan_filtering); static inline struct dsa_port *dsa_user_to_port(const struct net_device *dev) { struct dsa_user_priv *p = netdev_priv(dev); return p->dp; } static inline struct net_device * dsa_user_to_conduit(const struct net_device *dev) { struct dsa_port *dp = dsa_user_to_port(dev); return dsa_port_to_conduit(dp); } #endif
106 105 4 2 85 85 324 324 196 185 337 338 210 101 101 101 101 101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 // SPDX-License-Identifier: GPL-2.0 /* * Implementation of the hash table type. * * Author : Stephen Smalley, <stephen.smalley.work@gmail.com> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/errno.h> #include "hashtab.h" #include "security.h" static struct kmem_cache *hashtab_node_cachep __ro_after_init; /* * Here we simply round the number of elements up to the nearest power of two. * I tried also other options like rounding down or rounding to the closest * power of two (up or down based on which is closer), but I was unable to * find any significant difference in lookup/insert performance that would * justify switching to a different (less intuitive) formula. It could be that * a different formula is actually more optimal, but any future changes here * should be supported with performance/memory usage data. * * The total memory used by the htable arrays (only) with Fedora policy loaded * is approximately 163 KB at the time of writing. */ static u32 hashtab_compute_size(u32 nel) { return nel == 0 ? 0 : roundup_pow_of_two(nel); } int hashtab_init(struct hashtab *h, u32 nel_hint) { u32 size = hashtab_compute_size(nel_hint); /* should already be zeroed, but better be safe */ h->nel = 0; h->size = 0; h->htable = NULL; if (size) { h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL); if (!h->htable) return -ENOMEM; h->size = size; } return 0; } int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key, void *datum) { struct hashtab_node *newnode; newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL); if (!newnode) return -ENOMEM; newnode->key = key; newnode->datum = datum; newnode->next = *dst; *dst = newnode; h->nel++; return 0; } void hashtab_destroy(struct hashtab *h) { u32 i; struct hashtab_node *cur, *temp; for (i = 0; i < h->size; i++) { cur = h->htable[i]; while (cur) { temp = cur; cur = cur->next; kmem_cache_free(hashtab_node_cachep, temp); } h->htable[i] = NULL; } kfree(h->htable); h->htable = NULL; } int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args), void *args) { u32 i; int ret; struct hashtab_node *cur; for (i = 0; i < h->size; i++) { cur = h->htable[i]; while (cur) { ret = apply(cur->key, cur->datum, args); if (ret) return ret; cur = cur->next; } } return 0; } #ifdef CONFIG_SECURITY_SELINUX_DEBUG void hashtab_stat(struct hashtab *h, struct hashtab_info *info) { u32 i, chain_len, slots_used, max_chain_len; u64 chain2_len_sum; struct hashtab_node *cur; slots_used = 0; max_chain_len = 0; chain2_len_sum = 0; for (i = 0; i < h->size; i++) { cur = h->htable[i]; if (cur) { slots_used++; chain_len = 0; while (cur) { chain_len++; cur = cur->next; } if (chain_len > max_chain_len) max_chain_len = chain_len; chain2_len_sum += (u64)chain_len * chain_len; } } info->slots_used = slots_used; info->max_chain_len = max_chain_len; info->chain2_len_sum = chain2_len_sum; } #endif /* CONFIG_SECURITY_SELINUX_DEBUG */ int hashtab_duplicate(struct hashtab *new, const struct hashtab *orig, int (*copy)(struct hashtab_node *new, const struct hashtab_node *orig, void *args), int (*destroy)(void *k, void *d, void *args), void *args) { const struct hashtab_node *orig_cur; struct hashtab_node *cur, *tmp, *tail; u32 i; int rc; memset(new, 0, sizeof(*new)); new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL); if (!new->htable) return -ENOMEM; new->size = orig->size; for (i = 0; i < orig->size; i++) { tail = NULL; for (orig_cur = orig->htable[i]; orig_cur; orig_cur = orig_cur->next) { tmp = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL); if (!tmp) goto error; rc = copy(tmp, orig_cur, args); if (rc) { kmem_cache_free(hashtab_node_cachep, tmp); goto error; } tmp->next = NULL; if (!tail) new->htable[i] = tmp; else tail->next = tmp; tail = tmp; new->nel++; } } return 0; error: for (i = 0; i < new->size; i++) { for (cur = new->htable[i]; cur; cur = tmp) { tmp = cur->next; destroy(cur->key, cur->datum, args); kmem_cache_free(hashtab_node_cachep, cur); } } kfree(new->htable); memset(new, 0, sizeof(*new)); return -ENOMEM; } void __init hashtab_cache_init(void) { hashtab_node_cachep = KMEM_CACHE(hashtab_node, SLAB_PANIC); }
10 10 10 10 13 10 8 13 11 1 12 2 8 10 5 7 14 12 12 10 1 6 1 5 14 8 7 7 7 7 7 8 8 8 7 17 15 2 12 12 1 11 14 12 2 7 5 2 2 233 1 1 1 1 1 1 13 7 13 1 1 1 1 6 10 183 10 5 10 9 8 8 2 11 11 9 10 10 10 10 5 2 1 6 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 12 12 85 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 // SPDX-License-Identifier: GPL-2.0-only /* By Ross Biro 1/23/92 */ /* * Pentium III FXSR, SSE support * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/ptrace.h> #include <linux/user.h> #include <linux/elf.h> #include <linux/security.h> #include <linux/audit.h> #include <linux/seccomp.h> #include <linux/signal.h> #include <linux/perf_event.h> #include <linux/hw_breakpoint.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <linux/context_tracking.h> #include <linux/nospec.h> #include <linux/uaccess.h> #include <asm/processor.h> #include <asm/fpu/signal.h> #include <asm/fpu/regset.h> #include <asm/fpu/xstate.h> #include <asm/debugreg.h> #include <asm/ldt.h> #include <asm/desc.h> #include <asm/prctl.h> #include <asm/proto.h> #include <asm/hw_breakpoint.h> #include <asm/traps.h> #include <asm/syscall.h> #include <asm/fsgsbase.h> #include <asm/io_bitmap.h> #include "tls.h" enum x86_regset_32 { REGSET32_GENERAL, REGSET32_FP, REGSET32_XFP, REGSET32_XSTATE, REGSET32_TLS, REGSET32_IOPERM, }; enum x86_regset_64 { REGSET64_GENERAL, REGSET64_FP, REGSET64_IOPERM, REGSET64_XSTATE, REGSET64_SSP, }; #define REGSET_GENERAL \ ({ \ BUILD_BUG_ON((int)REGSET32_GENERAL != (int)REGSET64_GENERAL); \ REGSET32_GENERAL; \ }) #define REGSET_FP \ ({ \ BUILD_BUG_ON((int)REGSET32_FP != (int)REGSET64_FP); \ REGSET32_FP; \ }) struct pt_regs_offset { const char *name; int offset; }; #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} #define REG_OFFSET_END {.name = NULL, .offset = 0} static const struct pt_regs_offset regoffset_table[] = { #ifdef CONFIG_X86_64 REG_OFFSET_NAME(r15), REG_OFFSET_NAME(r14), REG_OFFSET_NAME(r13), REG_OFFSET_NAME(r12), REG_OFFSET_NAME(r11), REG_OFFSET_NAME(r10), REG_OFFSET_NAME(r9), REG_OFFSET_NAME(r8), #endif REG_OFFSET_NAME(bx), REG_OFFSET_NAME(cx), REG_OFFSET_NAME(dx), REG_OFFSET_NAME(si), REG_OFFSET_NAME(di), REG_OFFSET_NAME(bp), REG_OFFSET_NAME(ax), #ifdef CONFIG_X86_32 REG_OFFSET_NAME(ds), REG_OFFSET_NAME(es), REG_OFFSET_NAME(fs), REG_OFFSET_NAME(gs), #endif REG_OFFSET_NAME(orig_ax), REG_OFFSET_NAME(ip), REG_OFFSET_NAME(cs), REG_OFFSET_NAME(flags), REG_OFFSET_NAME(sp), REG_OFFSET_NAME(ss), REG_OFFSET_END, }; /** * regs_query_register_offset() - query register offset from its name * @name: the name of a register * * regs_query_register_offset() returns the offset of a register in struct * pt_regs from its name. If the name is invalid, this returns -EINVAL; */ int regs_query_register_offset(const char *name) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (!strcmp(roff->name, name)) return roff->offset; return -EINVAL; } /** * regs_query_register_name() - query register name from its offset * @offset: the offset of a register in struct pt_regs. * * regs_query_register_name() returns the name of a register from its * offset in struct pt_regs. If the @offset is invalid, this returns NULL; */ const char *regs_query_register_name(unsigned int offset) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (roff->offset == offset) return roff->name; return NULL; } /* * does not yet catch signals sent when the child dies. * in exit.c or in signal.c. */ /* * Determines which flags the user has access to [1 = access, 0 = no access]. */ #define FLAG_MASK_32 ((unsigned long) \ (X86_EFLAGS_CF | X86_EFLAGS_PF | \ X86_EFLAGS_AF | X86_EFLAGS_ZF | \ X86_EFLAGS_SF | X86_EFLAGS_TF | \ X86_EFLAGS_DF | X86_EFLAGS_OF | \ X86_EFLAGS_RF | X86_EFLAGS_AC)) /* * Determines whether a value may be installed in a segment register. */ static inline bool invalid_selector(u16 value) { return unlikely(value != 0 && (value & SEGMENT_RPL_MASK) != USER_RPL); } #ifdef CONFIG_X86_32 #define FLAG_MASK FLAG_MASK_32 static unsigned long *pt_regs_access(struct pt_regs *regs, unsigned long regno) { BUILD_BUG_ON(offsetof(struct pt_regs, bx) != 0); return &regs->bx + (regno >> 2); } static u16 get_segment_reg(struct task_struct *task, unsigned long offset) { /* * Returning the value truncates it to 16 bits. */ unsigned int retval; if (offset != offsetof(struct user_regs_struct, gs)) retval = *pt_regs_access(task_pt_regs(task), offset); else { if (task == current) savesegment(gs, retval); else retval = task->thread.gs; } return retval; } static int set_segment_reg(struct task_struct *task, unsigned long offset, u16 value) { if (WARN_ON_ONCE(task == current)) return -EIO; /* * The value argument was already truncated to 16 bits. */ if (invalid_selector(value)) return -EIO; /* * For %cs and %ss we cannot permit a null selector. * We can permit a bogus selector as long as it has USER_RPL. * Null selectors are fine for other segment registers, but * we will never get back to user mode with invalid %cs or %ss * and will take the trap in iret instead. Much code relies * on user_mode() to distinguish a user trap frame (which can * safely use invalid selectors) from a kernel trap frame. */ switch (offset) { case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ss): if (unlikely(value == 0)) return -EIO; fallthrough; default: *pt_regs_access(task_pt_regs(task), offset) = value; break; case offsetof(struct user_regs_struct, gs): task->thread.gs = value; } return 0; } #else /* CONFIG_X86_64 */ #define FLAG_MASK (FLAG_MASK_32 | X86_EFLAGS_NT) static unsigned long *pt_regs_access(struct pt_regs *regs, unsigned long offset) { BUILD_BUG_ON(offsetof(struct pt_regs, r15) != 0); return &regs->r15 + (offset / sizeof(regs->r15)); } static u16 get_segment_reg(struct task_struct *task, unsigned long offset) { /* * Returning the value truncates it to 16 bits. */ unsigned int seg; switch (offset) { case offsetof(struct user_regs_struct, fs): if (task == current) { /* Older gas can't assemble movq %?s,%r?? */ asm("movl %%fs,%0" : "=r" (seg)); return seg; } return task->thread.fsindex; case offsetof(struct user_regs_struct, gs): if (task == current) { asm("movl %%gs,%0" : "=r" (seg)); return seg; } return task->thread.gsindex; case offsetof(struct user_regs_struct, ds): if (task == current) { asm("movl %%ds,%0" : "=r" (seg)); return seg; } return task->thread.ds; case offsetof(struct user_regs_struct, es): if (task == current) { asm("movl %%es,%0" : "=r" (seg)); return seg; } return task->thread.es; case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ss): break; } return *pt_regs_access(task_pt_regs(task), offset); } static int set_segment_reg(struct task_struct *task, unsigned long offset, u16 value) { if (WARN_ON_ONCE(task == current)) return -EIO; /* * The value argument was already truncated to 16 bits. */ if (invalid_selector(value)) return -EIO; /* * Writes to FS and GS will change the stored selector. Whether * this changes the segment base as well depends on whether * FSGSBASE is enabled. */ switch (offset) { case offsetof(struct user_regs_struct,fs): task->thread.fsindex = value; break; case offsetof(struct user_regs_struct,gs): task->thread.gsindex = value; break; case offsetof(struct user_regs_struct,ds): task->thread.ds = value; break; case offsetof(struct user_regs_struct,es): task->thread.es = value; break; /* * Can't actually change these in 64-bit mode. */ case offsetof(struct user_regs_struct,cs): if (unlikely(value == 0)) return -EIO; task_pt_regs(task)->cs = value; break; case offsetof(struct user_regs_struct,ss): if (unlikely(value == 0)) return -EIO; task_pt_regs(task)->ss = value; break; } return 0; } #endif /* CONFIG_X86_32 */ static unsigned long get_flags(struct task_struct *task) { unsigned long retval = task_pt_regs(task)->flags; /* * If the debugger set TF, hide it from the readout. */ if (test_tsk_thread_flag(task, TIF_FORCED_TF)) retval &= ~X86_EFLAGS_TF; return retval; } static int set_flags(struct task_struct *task, unsigned long value) { struct pt_regs *regs = task_pt_regs(task); /* * If the user value contains TF, mark that * it was not "us" (the debugger) that set it. * If not, make sure it stays set if we had. */ if (value & X86_EFLAGS_TF) clear_tsk_thread_flag(task, TIF_FORCED_TF); else if (test_tsk_thread_flag(task, TIF_FORCED_TF)) value |= X86_EFLAGS_TF; regs->flags = (regs->flags & ~FLAG_MASK) | (value & FLAG_MASK); return 0; } static int putreg(struct task_struct *child, unsigned long offset, unsigned long value) { switch (offset) { case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ds): case offsetof(struct user_regs_struct, es): case offsetof(struct user_regs_struct, fs): case offsetof(struct user_regs_struct, gs): case offsetof(struct user_regs_struct, ss): return set_segment_reg(child, offset, value); case offsetof(struct user_regs_struct, flags): return set_flags(child, value); #ifdef CONFIG_X86_64 case offsetof(struct user_regs_struct,fs_base): if (value >= TASK_SIZE_MAX) return -EIO; x86_fsbase_write_task(child, value); return 0; case offsetof(struct user_regs_struct,gs_base): if (value >= TASK_SIZE_MAX) return -EIO; x86_gsbase_write_task(child, value); return 0; #endif } *pt_regs_access(task_pt_regs(child), offset) = value; return 0; } static unsigned long getreg(struct task_struct *task, unsigned long offset) { switch (offset) { case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ds): case offsetof(struct user_regs_struct, es): case offsetof(struct user_regs_struct, fs): case offsetof(struct user_regs_struct, gs): case offsetof(struct user_regs_struct, ss): return get_segment_reg(task, offset); case offsetof(struct user_regs_struct, flags): return get_flags(task); #ifdef CONFIG_X86_64 case offsetof(struct user_regs_struct, fs_base): return x86_fsbase_read_task(task); case offsetof(struct user_regs_struct, gs_base): return x86_gsbase_read_task(task); #endif } return *pt_regs_access(task_pt_regs(task), offset); } static int genregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { int reg; for (reg = 0; to.left; reg++) membuf_store(&to, getreg(target, reg * sizeof(unsigned long))); return 0; } static int genregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret = 0; if (kbuf) { const unsigned long *k = kbuf; while (count >= sizeof(*k) && !ret) { ret = putreg(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const unsigned long __user *u = ubuf; while (count >= sizeof(*u) && !ret) { unsigned long word; ret = __get_user(word, u++); if (ret) break; ret = putreg(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } return ret; } static void ptrace_triggered(struct perf_event *bp, struct perf_sample_data *data, struct pt_regs *regs) { int i; struct thread_struct *thread = &(current->thread); /* * Store in the virtual DR6 register the fact that the breakpoint * was hit so the thread's debugger will see it. */ for (i = 0; i < HBP_NUM; i++) { if (thread->ptrace_bps[i] == bp) break; } thread->virtual_dr6 |= (DR_TRAP0 << i); } /* * Walk through every ptrace breakpoints for this thread and * build the dr7 value on top of their attributes. * */ static unsigned long ptrace_get_dr7(struct perf_event *bp[]) { int i; int dr7 = 0; struct arch_hw_breakpoint *info; for (i = 0; i < HBP_NUM; i++) { if (bp[i] && !bp[i]->attr.disabled) { info = counter_arch_bp(bp[i]); dr7 |= encode_dr7(i, info->len, info->type); } } return dr7; } static int ptrace_fill_bp_fields(struct perf_event_attr *attr, int len, int type, bool disabled) { int err, bp_len, bp_type; err = arch_bp_generic_fields(len, type, &bp_len, &bp_type); if (!err) { attr->bp_len = bp_len; attr->bp_type = bp_type; attr->disabled = disabled; } return err; } static struct perf_event * ptrace_register_breakpoint(struct task_struct *tsk, int len, int type, unsigned long addr, bool disabled) { struct perf_event_attr attr; int err; ptrace_breakpoint_init(&attr); attr.bp_addr = addr; err = ptrace_fill_bp_fields(&attr, len, type, disabled); if (err) return ERR_PTR(err); return register_user_hw_breakpoint(&attr, ptrace_triggered, NULL, tsk); } static int ptrace_modify_breakpoint(struct perf_event *bp, int len, int type, int disabled) { struct perf_event_attr attr = bp->attr; int err; err = ptrace_fill_bp_fields(&attr, len, type, disabled); if (err) return err; return modify_user_hw_breakpoint(bp, &attr); } /* * Handle ptrace writes to debug register 7. */ static int ptrace_write_dr7(struct task_struct *tsk, unsigned long data) { struct thread_struct *thread = &tsk->thread; unsigned long old_dr7; bool second_pass = false; int i, rc, ret = 0; data &= ~DR_CONTROL_RESERVED; old_dr7 = ptrace_get_dr7(thread->ptrace_bps); restore: rc = 0; for (i = 0; i < HBP_NUM; i++) { unsigned len, type; bool disabled = !decode_dr7(data, i, &len, &type); struct perf_event *bp = thread->ptrace_bps[i]; if (!bp) { if (disabled) continue; bp = ptrace_register_breakpoint(tsk, len, type, 0, disabled); if (IS_ERR(bp)) { rc = PTR_ERR(bp); break; } thread->ptrace_bps[i] = bp; continue; } rc = ptrace_modify_breakpoint(bp, len, type, disabled); if (rc) break; } /* Restore if the first pass failed, second_pass shouldn't fail. */ if (rc && !WARN_ON(second_pass)) { ret = rc; data = old_dr7; second_pass = true; goto restore; } return ret; } /* * Handle PTRACE_PEEKUSR calls for the debug register area. */ static unsigned long ptrace_get_debugreg(struct task_struct *tsk, int n) { struct thread_struct *thread = &tsk->thread; unsigned long val = 0; if (n < HBP_NUM) { int index = array_index_nospec(n, HBP_NUM); struct perf_event *bp = thread->ptrace_bps[index]; if (bp) val = bp->hw.info.address; } else if (n == 6) { val = thread->virtual_dr6 ^ DR6_RESERVED; /* Flip back to arch polarity */ } else if (n == 7) { val = thread->ptrace_dr7; } return val; } static int ptrace_set_breakpoint_addr(struct task_struct *tsk, int nr, unsigned long addr) { struct thread_struct *t = &tsk->thread; struct perf_event *bp = t->ptrace_bps[nr]; int err = 0; if (!bp) { /* * Put stub len and type to create an inactive but correct bp. * * CHECKME: the previous code returned -EIO if the addr wasn't * a valid task virtual addr. The new one will return -EINVAL in * this case. * -EINVAL may be what we want for in-kernel breakpoints users, * but -EIO looks better for ptrace, since we refuse a register * writing for the user. And anyway this is the previous * behaviour. */ bp = ptrace_register_breakpoint(tsk, X86_BREAKPOINT_LEN_1, X86_BREAKPOINT_WRITE, addr, true); if (IS_ERR(bp)) err = PTR_ERR(bp); else t->ptrace_bps[nr] = bp; } else { struct perf_event_attr attr = bp->attr; attr.bp_addr = addr; err = modify_user_hw_breakpoint(bp, &attr); } return err; } /* * Handle PTRACE_POKEUSR calls for the debug register area. */ static int ptrace_set_debugreg(struct task_struct *tsk, int n, unsigned long val) { struct thread_struct *thread = &tsk->thread; /* There are no DR4 or DR5 registers */ int rc = -EIO; if (n < HBP_NUM) { rc = ptrace_set_breakpoint_addr(tsk, n, val); } else if (n == 6) { thread->virtual_dr6 = val ^ DR6_RESERVED; /* Flip to positive polarity */ rc = 0; } else if (n == 7) { rc = ptrace_write_dr7(tsk, val); if (!rc) thread->ptrace_dr7 = val; } return rc; } /* * These access the current or another (stopped) task's io permission * bitmap for debugging or core dump. */ static int ioperm_active(struct task_struct *target, const struct user_regset *regset) { struct io_bitmap *iobm = target->thread.io_bitmap; return iobm ? DIV_ROUND_UP(iobm->max, regset->size) : 0; } static int ioperm_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct io_bitmap *iobm = target->thread.io_bitmap; if (!iobm) return -ENXIO; return membuf_write(&to, iobm->bitmap, IO_BITMAP_BYTES); } /* * Called by kernel/ptrace.c when detaching.. * * Make sure the single step bit is not set. */ void ptrace_disable(struct task_struct *child) { user_disable_single_step(child); } #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION static const struct user_regset_view user_x86_32_view; /* Initialized below. */ #endif #ifdef CONFIG_X86_64 static const struct user_regset_view user_x86_64_view; /* Initialized below. */ #endif long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret; unsigned long __user *datap = (unsigned long __user *)data; #ifdef CONFIG_X86_64 /* This is native 64-bit ptrace() */ const struct user_regset_view *regset_view = &user_x86_64_view; #else /* This is native 32-bit ptrace() */ const struct user_regset_view *regset_view = &user_x86_32_view; #endif switch (request) { /* read the word at location addr in the USER area. */ case PTRACE_PEEKUSR: { unsigned long tmp; ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user)) break; tmp = 0; /* Default return condition */ if (addr < sizeof(struct user_regs_struct)) tmp = getreg(child, addr); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); tmp = ptrace_get_debugreg(child, addr / sizeof(data)); } ret = put_user(tmp, datap); break; } case PTRACE_POKEUSR: /* write the word at location addr in the USER area */ ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user)) break; if (addr < sizeof(struct user_regs_struct)) ret = putreg(child, addr, data); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); ret = ptrace_set_debugreg(child, addr / sizeof(data), data); } break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, regset_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, regset_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, regset_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user(child, regset_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); #ifdef CONFIG_X86_32 case PTRACE_GETFPXREGS: /* Get the child extended FPU state. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user_fxsr_struct), datap) ? -EIO : 0; case PTRACE_SETFPXREGS: /* Set the child extended FPU state. */ return copy_regset_from_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user_fxsr_struct), datap) ? -EIO : 0; #endif #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION case PTRACE_GET_THREAD_AREA: if ((int) addr < 0) return -EIO; ret = do_get_thread_area(child, addr, (struct user_desc __user *)data); break; case PTRACE_SET_THREAD_AREA: if ((int) addr < 0) return -EIO; ret = do_set_thread_area(child, addr, (struct user_desc __user *)data, 0); break; #endif #ifdef CONFIG_X86_64 /* normal 64bit interface to access TLS data. Works just like arch_prctl, except that the arguments are reversed. */ case PTRACE_ARCH_PRCTL: ret = do_arch_prctl_64(child, data, addr); break; #endif default: ret = ptrace_request(child, request, addr, data); break; } return ret; } #ifdef CONFIG_IA32_EMULATION #include <linux/compat.h> #include <linux/syscalls.h> #include <asm/ia32.h> #include <asm/user32.h> #define R32(l,q) \ case offsetof(struct user32, regs.l): \ regs->q = value; break #define SEG32(rs) \ case offsetof(struct user32, regs.rs): \ return set_segment_reg(child, \ offsetof(struct user_regs_struct, rs), \ value); \ break static int putreg32(struct task_struct *child, unsigned regno, u32 value) { struct pt_regs *regs = task_pt_regs(child); int ret; switch (regno) { SEG32(cs); SEG32(ds); SEG32(es); /* * A 32-bit ptracer on a 64-bit kernel expects that writing * FS or GS will also update the base. This is needed for * operations like PTRACE_SETREGS to fully restore a saved * CPU state. */ case offsetof(struct user32, regs.fs): ret = set_segment_reg(child, offsetof(struct user_regs_struct, fs), value); if (ret == 0) child->thread.fsbase = x86_fsgsbase_read_task(child, value); return ret; case offsetof(struct user32, regs.gs): ret = set_segment_reg(child, offsetof(struct user_regs_struct, gs), value); if (ret == 0) child->thread.gsbase = x86_fsgsbase_read_task(child, value); return ret; SEG32(ss); R32(ebx, bx); R32(ecx, cx); R32(edx, dx); R32(edi, di); R32(esi, si); R32(ebp, bp); R32(eax, ax); R32(eip, ip); R32(esp, sp); case offsetof(struct user32, regs.orig_eax): /* * Warning: bizarre corner case fixup here. A 32-bit * debugger setting orig_eax to -1 wants to disable * syscall restart. Make sure that the syscall * restart code sign-extends orig_ax. Also make sure * we interpret the -ERESTART* codes correctly if * loaded into regs->ax in case the task is not * actually still sitting at the exit from a 32-bit * syscall with TS_COMPAT still set. */ regs->orig_ax = value; if (syscall_get_nr(child, regs) != -1) child->thread_info.status |= TS_I386_REGS_POKED; break; case offsetof(struct user32, regs.eflags): return set_flags(child, value); case offsetof(struct user32, u_debugreg[0]) ... offsetof(struct user32, u_debugreg[7]): regno -= offsetof(struct user32, u_debugreg[0]); return ptrace_set_debugreg(child, regno / 4, value); default: if (regno > sizeof(struct user32) || (regno & 3)) return -EIO; /* * Other dummy fields in the virtual user structure * are ignored */ break; } return 0; } #undef R32 #undef SEG32 #define R32(l,q) \ case offsetof(struct user32, regs.l): \ *val = regs->q; break #define SEG32(rs) \ case offsetof(struct user32, regs.rs): \ *val = get_segment_reg(child, \ offsetof(struct user_regs_struct, rs)); \ break static int getreg32(struct task_struct *child, unsigned regno, u32 *val) { struct pt_regs *regs = task_pt_regs(child); switch (regno) { SEG32(ds); SEG32(es); SEG32(fs); SEG32(gs); R32(cs, cs); R32(ss, ss); R32(ebx, bx); R32(ecx, cx); R32(edx, dx); R32(edi, di); R32(esi, si); R32(ebp, bp); R32(eax, ax); R32(orig_eax, orig_ax); R32(eip, ip); R32(esp, sp); case offsetof(struct user32, regs.eflags): *val = get_flags(child); break; case offsetof(struct user32, u_debugreg[0]) ... offsetof(struct user32, u_debugreg[7]): regno -= offsetof(struct user32, u_debugreg[0]); *val = ptrace_get_debugreg(child, regno / 4); break; default: if (regno > sizeof(struct user32) || (regno & 3)) return -EIO; /* * Other dummy fields in the virtual user structure * are ignored */ *val = 0; break; } return 0; } #undef R32 #undef SEG32 static int genregs32_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { int reg; for (reg = 0; to.left; reg++) { u32 val; getreg32(target, reg * 4, &val); membuf_store(&to, val); } return 0; } static int genregs32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret = 0; if (kbuf) { const compat_ulong_t *k = kbuf; while (count >= sizeof(*k) && !ret) { ret = putreg32(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const compat_ulong_t __user *u = ubuf; while (count >= sizeof(*u) && !ret) { compat_ulong_t word; ret = __get_user(word, u++); if (ret) break; ret = putreg32(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } return ret; } static long ia32_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { unsigned long addr = caddr; unsigned long data = cdata; void __user *datap = compat_ptr(data); int ret; __u32 val; switch (request) { case PTRACE_PEEKUSR: ret = getreg32(child, addr, &val); if (ret == 0) ret = put_user(val, (__u32 __user *)datap); break; case PTRACE_POKEUSR: ret = putreg32(child, addr, data); break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct32), datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, &user_x86_32_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct32), datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET_FP, 0, sizeof(struct user_i387_ia32_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user( child, &user_x86_32_view, REGSET_FP, 0, sizeof(struct user_i387_ia32_struct), datap); case PTRACE_GETFPXREGS: /* Get the child extended FPU state. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user32_fxsr_struct), datap); case PTRACE_SETFPXREGS: /* Set the child extended FPU state. */ return copy_regset_from_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user32_fxsr_struct), datap); case PTRACE_GET_THREAD_AREA: case PTRACE_SET_THREAD_AREA: return arch_ptrace(child, request, addr, data); default: return compat_ptrace_request(child, request, addr, data); } return ret; } #endif /* CONFIG_IA32_EMULATION */ #ifdef CONFIG_X86_X32_ABI static long x32_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { unsigned long addr = caddr; unsigned long data = cdata; void __user *datap = compat_ptr(data); int ret; switch (request) { /* Read 32bits at location addr in the USER area. Only allow to return the lower 32bits of segment and debug registers. */ case PTRACE_PEEKUSR: { u32 tmp; ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user) || addr < offsetof(struct user_regs_struct, cs)) break; tmp = 0; /* Default return condition */ if (addr < sizeof(struct user_regs_struct)) tmp = getreg(child, addr); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); tmp = ptrace_get_debugreg(child, addr / sizeof(data)); } ret = put_user(tmp, (__u32 __user *)datap); break; } /* Write the word at location addr in the USER area. Only allow to update segment and debug registers with the upper 32bits zero-extended. */ case PTRACE_POKEUSR: ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user) || addr < offsetof(struct user_regs_struct, cs)) break; if (addr < sizeof(struct user_regs_struct)) ret = putreg(child, addr, data); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); ret = ptrace_set_debugreg(child, addr / sizeof(data), data); } break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, &user_x86_64_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, &user_x86_64_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, &user_x86_64_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user(child, &user_x86_64_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); default: return compat_ptrace_request(child, request, addr, data); } return ret; } #endif #ifdef CONFIG_COMPAT long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { #ifdef CONFIG_X86_X32_ABI if (!in_ia32_syscall()) return x32_arch_ptrace(child, request, caddr, cdata); #endif #ifdef CONFIG_IA32_EMULATION return ia32_arch_ptrace(child, request, caddr, cdata); #else return 0; #endif } #endif /* CONFIG_COMPAT */ #ifdef CONFIG_X86_64 static struct user_regset x86_64_regsets[] __ro_after_init = { [REGSET64_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = sizeof(struct user_regs_struct) / sizeof(long), .size = sizeof(long), .align = sizeof(long), .regset_get = genregs_get, .set = genregs_set }, [REGSET64_FP] = { .core_note_type = NT_PRFPREG, .n = sizeof(struct fxregs_state) / sizeof(long), .size = sizeof(long), .align = sizeof(long), .active = regset_xregset_fpregs_active, .regset_get = xfpregs_get, .set = xfpregs_set }, [REGSET64_XSTATE] = { .core_note_type = NT_X86_XSTATE, .size = sizeof(u64), .align = sizeof(u64), .active = xstateregs_active, .regset_get = xstateregs_get, .set = xstateregs_set }, [REGSET64_IOPERM] = { .core_note_type = NT_386_IOPERM, .n = IO_BITMAP_LONGS, .size = sizeof(long), .align = sizeof(long), .active = ioperm_active, .regset_get = ioperm_get }, #ifdef CONFIG_X86_USER_SHADOW_STACK [REGSET64_SSP] = { .core_note_type = NT_X86_SHSTK, .n = 1, .size = sizeof(u64), .align = sizeof(u64), .active = ssp_active, .regset_get = ssp_get, .set = ssp_set }, #endif }; static const struct user_regset_view user_x86_64_view = { .name = "x86_64", .e_machine = EM_X86_64, .regsets = x86_64_regsets, .n = ARRAY_SIZE(x86_64_regsets) }; #else /* CONFIG_X86_32 */ #define user_regs_struct32 user_regs_struct #define genregs32_get genregs_get #define genregs32_set genregs_set #endif /* CONFIG_X86_64 */ #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION static struct user_regset x86_32_regsets[] __ro_after_init = { [REGSET32_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = sizeof(struct user_regs_struct32) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .regset_get = genregs32_get, .set = genregs32_set }, [REGSET32_FP] = { .core_note_type = NT_PRFPREG, .n = sizeof(struct user_i387_ia32_struct) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .active = regset_fpregs_active, .regset_get = fpregs_get, .set = fpregs_set }, [REGSET32_XFP] = { .core_note_type = NT_PRXFPREG, .n = sizeof(struct fxregs_state) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .active = regset_xregset_fpregs_active, .regset_get = xfpregs_get, .set = xfpregs_set }, [REGSET32_XSTATE] = { .core_note_type = NT_X86_XSTATE, .size = sizeof(u64), .align = sizeof(u64), .active = xstateregs_active, .regset_get = xstateregs_get, .set = xstateregs_set }, [REGSET32_TLS] = { .core_note_type = NT_386_TLS, .n = GDT_ENTRY_TLS_ENTRIES, .bias = GDT_ENTRY_TLS_MIN, .size = sizeof(struct user_desc), .align = sizeof(struct user_desc), .active = regset_tls_active, .regset_get = regset_tls_get, .set = regset_tls_set }, [REGSET32_IOPERM] = { .core_note_type = NT_386_IOPERM, .n = IO_BITMAP_BYTES / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .active = ioperm_active, .regset_get = ioperm_get }, }; static const struct user_regset_view user_x86_32_view = { .name = "i386", .e_machine = EM_386, .regsets = x86_32_regsets, .n = ARRAY_SIZE(x86_32_regsets) }; #endif /* * This represents bytes 464..511 in the memory layout exported through * the REGSET_XSTATE interface. */ u64 xstate_fx_sw_bytes[USER_XSTATE_FX_SW_WORDS]; void __init update_regset_xstate_info(unsigned int size, u64 xstate_mask) { #ifdef CONFIG_X86_64 x86_64_regsets[REGSET64_XSTATE].n = size / sizeof(u64); #endif #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION x86_32_regsets[REGSET32_XSTATE].n = size / sizeof(u64); #endif xstate_fx_sw_bytes[USER_XSTATE_XCR0_WORD] = xstate_mask; } /* * This is used by the core dump code to decide which regset to dump. The * core dump code writes out the resulting .e_machine and the corresponding * regsets. This is suboptimal if the task is messing around with its CS.L * field, but at worst the core dump will end up missing some information. * * Unfortunately, it is also used by the broken PTRACE_GETREGSET and * PTRACE_SETREGSET APIs. These APIs look at the .regsets field but have * no way to make sure that the e_machine they use matches the caller's * expectations. The result is that the data format returned by * PTRACE_GETREGSET depends on the returned CS field (and even the offset * of the returned CS field depends on its value!) and the data format * accepted by PTRACE_SETREGSET is determined by the old CS value. The * upshot is that it is basically impossible to use these APIs correctly. * * The best way to fix it in the long run would probably be to add new * improved ptrace() APIs to read and write registers reliably, possibly by * allowing userspace to select the ELF e_machine variant that they expect. */ const struct user_regset_view *task_user_regset_view(struct task_struct *task) { #ifdef CONFIG_IA32_EMULATION if (!user_64bit_mode(task_pt_regs(task))) #endif #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION return &user_x86_32_view; #endif #ifdef CONFIG_X86_64 return &user_x86_64_view; #endif } void send_sigtrap(struct pt_regs *regs, int error_code, int si_code) { struct task_struct *tsk = current; tsk->thread.trap_nr = X86_TRAP_DB; tsk->thread.error_code = error_code; /* Send us the fake SIGTRAP */ force_sig_fault(SIGTRAP, si_code, user_mode(regs) ? (void __user *)regs->ip : NULL); } void user_single_step_report(struct pt_regs *regs) { send_sigtrap(regs, 0, TRAP_BRKPT); }
9 1164 1107 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
43 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM jbd2 #if !defined(_TRACE_JBD2_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_JBD2_H #include <linux/jbd2.h> #include <linux/tracepoint.h> struct transaction_chp_stats_s; struct transaction_run_stats_s; TRACE_EVENT(jbd2_checkpoint, TP_PROTO(journal_t *journal, int result), TP_ARGS(journal, result), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, result ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->result = result; ), TP_printk("dev %d,%d result %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->result) ); DECLARE_EVENT_CLASS(jbd2_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction), TP_STRUCT__entry( __field( dev_t, dev ) __field( char, sync_commit ) __field( tid_t, transaction ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->sync_commit = commit_transaction->t_synchronous_commit; __entry->transaction = commit_transaction->t_tid; ), TP_printk("dev %d,%d transaction %u sync %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->transaction, __entry->sync_commit) ); DEFINE_EVENT(jbd2_commit, jbd2_start_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_locking, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_flushing, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_logging, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_drop_transaction, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); TRACE_EVENT(jbd2_end_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction), TP_STRUCT__entry( __field( dev_t, dev ) __field( char, sync_commit ) __field( tid_t, transaction ) __field( tid_t, head ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->sync_commit = commit_transaction->t_synchronous_commit; __entry->transaction = commit_transaction->t_tid; __entry->head = journal->j_tail_sequence; ), TP_printk("dev %d,%d transaction %u sync %d head %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->transaction, __entry->sync_commit, __entry->head) ); TRACE_EVENT(jbd2_submit_inode_data, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; ), TP_printk("dev %d,%d ino %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino) ); DECLARE_EVENT_CLASS(jbd2_handle_start_class, TP_PROTO(dev_t dev, tid_t tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, requested_blocks) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->requested_blocks = requested_blocks; ), TP_printk("dev %d,%d tid %u type %u line_no %u " "requested_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->requested_blocks) ); DEFINE_EVENT(jbd2_handle_start_class, jbd2_handle_start, TP_PROTO(dev_t dev, tid_t tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks) ); DEFINE_EVENT(jbd2_handle_start_class, jbd2_handle_restart, TP_PROTO(dev_t dev, tid_t tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks) ); TRACE_EVENT(jbd2_handle_extend, TP_PROTO(dev_t dev, tid_t tid, unsigned int type, unsigned int line_no, int buffer_credits, int requested_blocks), TP_ARGS(dev, tid, type, line_no, buffer_credits, requested_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, buffer_credits ) __field( int, requested_blocks) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->buffer_credits = buffer_credits; __entry->requested_blocks = requested_blocks; ), TP_printk("dev %d,%d tid %u type %u line_no %u " "buffer_credits %d requested_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->buffer_credits, __entry->requested_blocks) ); TRACE_EVENT(jbd2_handle_stats, TP_PROTO(dev_t dev, tid_t tid, unsigned int type, unsigned int line_no, int interval, int sync, int requested_blocks, int dirtied_blocks), TP_ARGS(dev, tid, type, line_no, interval, sync, requested_blocks, dirtied_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, interval ) __field( int, sync ) __field( int, requested_blocks) __field( int, dirtied_blocks ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->interval = interval; __entry->sync = sync; __entry->requested_blocks = requested_blocks; __entry->dirtied_blocks = dirtied_blocks; ), TP_printk("dev %d,%d tid %u type %u line_no %u interval %d " "sync %d requested_blocks %d dirtied_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->interval, __entry->sync, __entry->requested_blocks, __entry->dirtied_blocks) ); TRACE_EVENT(jbd2_run_stats, TP_PROTO(dev_t dev, tid_t tid, struct transaction_run_stats_s *stats), TP_ARGS(dev, tid, stats), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tid ) __field( unsigned long, wait ) __field( unsigned long, request_delay ) __field( unsigned long, running ) __field( unsigned long, locked ) __field( unsigned long, flushing ) __field( unsigned long, logging ) __field( __u32, handle_count ) __field( __u32, blocks ) __field( __u32, blocks_logged ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->wait = stats->rs_wait; __entry->request_delay = stats->rs_request_delay; __entry->running = stats->rs_running; __entry->locked = stats->rs_locked; __entry->flushing = stats->rs_flushing; __entry->logging = stats->rs_logging; __entry->handle_count = stats->rs_handle_count; __entry->blocks = stats->rs_blocks; __entry->blocks_logged = stats->rs_blocks_logged; ), TP_printk("dev %d,%d tid %u wait %u request_delay %u running %u " "locked %u flushing %u logging %u handle_count %u " "blocks %u blocks_logged %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, jiffies_to_msecs(__entry->wait), jiffies_to_msecs(__entry->request_delay), jiffies_to_msecs(__entry->running), jiffies_to_msecs(__entry->locked), jiffies_to_msecs(__entry->flushing), jiffies_to_msecs(__entry->logging), __entry->handle_count, __entry->blocks, __entry->blocks_logged) ); TRACE_EVENT(jbd2_checkpoint_stats, TP_PROTO(dev_t dev, tid_t tid, struct transaction_chp_stats_s *stats), TP_ARGS(dev, tid, stats), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tid ) __field( unsigned long, chp_time ) __field( __u32, forced_to_close ) __field( __u32, written ) __field( __u32, dropped ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->chp_time = stats->cs_chp_time; __entry->forced_to_close= stats->cs_forced_to_close; __entry->written = stats->cs_written; __entry->dropped = stats->cs_dropped; ), TP_printk("dev %d,%d tid %u chp_time %u forced_to_close %u " "written %u dropped %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, jiffies_to_msecs(__entry->chp_time), __entry->forced_to_close, __entry->written, __entry->dropped) ); TRACE_EVENT(jbd2_update_log_tail, TP_PROTO(journal_t *journal, tid_t first_tid, unsigned long block_nr, unsigned long freed), TP_ARGS(journal, first_tid, block_nr, freed), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tail_sequence ) __field( tid_t, first_tid ) __field(unsigned long, block_nr ) __field(unsigned long, freed ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->tail_sequence = journal->j_tail_sequence; __entry->first_tid = first_tid; __entry->block_nr = block_nr; __entry->freed = freed; ), TP_printk("dev %d,%d from %u to %u offset %lu freed %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tail_sequence, __entry->first_tid, __entry->block_nr, __entry->freed) ); TRACE_EVENT(jbd2_write_superblock, TP_PROTO(journal_t *journal, blk_opf_t write_flags), TP_ARGS(journal, write_flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( blk_opf_t, write_flags ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->write_flags = write_flags; ), TP_printk("dev %d,%d write_flags %x", MAJOR(__entry->dev), MINOR(__entry->dev), (__force u32)__entry->write_flags) ); TRACE_EVENT(jbd2_lock_buffer_stall, TP_PROTO(dev_t dev, unsigned long stall_ms), TP_ARGS(dev, stall_ms), TP_STRUCT__entry( __field( dev_t, dev ) __field(unsigned long, stall_ms ) ), TP_fast_assign( __entry->dev = dev; __entry->stall_ms = stall_ms; ), TP_printk("dev %d,%d stall_ms %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->stall_ms) ); DECLARE_EVENT_CLASS(jbd2_journal_shrink, TP_PROTO(journal_t *journal, unsigned long nr_to_scan, unsigned long count), TP_ARGS(journal, nr_to_scan, count), TP_STRUCT__entry( __field(dev_t, dev) __field(unsigned long, nr_to_scan) __field(unsigned long, count) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->nr_to_scan = nr_to_scan; __entry->count = count; ), TP_printk("dev %d,%d nr_to_scan %lu count %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->nr_to_scan, __entry->count) ); DEFINE_EVENT(jbd2_journal_shrink, jbd2_shrink_count, TP_PROTO(journal_t *journal, unsigned long nr_to_scan, unsigned long count), TP_ARGS(journal, nr_to_scan, count) ); DEFINE_EVENT(jbd2_journal_shrink, jbd2_shrink_scan_enter, TP_PROTO(journal_t *journal, unsigned long nr_to_scan, unsigned long count), TP_ARGS(journal, nr_to_scan, count) ); TRACE_EVENT(jbd2_shrink_scan_exit, TP_PROTO(journal_t *journal, unsigned long nr_to_scan, unsigned long nr_shrunk, unsigned long count), TP_ARGS(journal, nr_to_scan, nr_shrunk, count), TP_STRUCT__entry( __field(dev_t, dev) __field(unsigned long, nr_to_scan) __field(unsigned long, nr_shrunk) __field(unsigned long, count) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->nr_to_scan = nr_to_scan; __entry->nr_shrunk = nr_shrunk; __entry->count = count; ), TP_printk("dev %d,%d nr_to_scan %lu nr_shrunk %lu count %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->nr_to_scan, __entry->nr_shrunk, __entry->count) ); TRACE_EVENT(jbd2_shrink_checkpoint_list, TP_PROTO(journal_t *journal, tid_t first_tid, tid_t tid, tid_t last_tid, unsigned long nr_freed, tid_t next_tid), TP_ARGS(journal, first_tid, tid, last_tid, nr_freed, next_tid), TP_STRUCT__entry( __field(dev_t, dev) __field(tid_t, first_tid) __field(tid_t, tid) __field(tid_t, last_tid) __field(unsigned long, nr_freed) __field(tid_t, next_tid) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->first_tid = first_tid; __entry->tid = tid; __entry->last_tid = last_tid; __entry->nr_freed = nr_freed; __entry->next_tid = next_tid; ), TP_printk("dev %d,%d shrink transaction %u-%u(%u) freed %lu " "next transaction %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->first_tid, __entry->tid, __entry->last_tid, __entry->nr_freed, __entry->next_tid) ); #endif /* _TRACE_JBD2_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
44 44 42 2 44 46 34 12 2 2 4 1 45 1 1 1 1 46 46 46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 #include <linux/kernel.h> #include <linux/errno.h> #include <linux/file.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/io_uring.h> #include "io_uring.h" #include "notif.h" #include "rsrc.h" static const struct ubuf_info_ops io_ubuf_ops; static void io_notif_tw_complete(struct io_kiocb *notif, io_tw_token_t tw) { struct io_notif_data *nd = io_notif_to_data(notif); do { notif = cmd_to_io_kiocb(nd); lockdep_assert(refcount_read(&nd->uarg.refcnt) == 0); if (unlikely(nd->zc_report) && (nd->zc_copied || !nd->zc_used)) notif->cqe.res |= IORING_NOTIF_USAGE_ZC_COPIED; if (nd->account_pages && notif->ctx->user) { __io_unaccount_mem(notif->ctx->user, nd->account_pages); nd->account_pages = 0; } nd = nd->next; io_req_task_complete(notif, tw); } while (nd); } void io_tx_ubuf_complete(struct sk_buff *skb, struct ubuf_info *uarg, bool success) { struct io_notif_data *nd = container_of(uarg, struct io_notif_data, uarg); struct io_kiocb *notif = cmd_to_io_kiocb(nd); unsigned tw_flags; if (nd->zc_report) { if (success && !nd->zc_used && skb) WRITE_ONCE(nd->zc_used, true); else if (!success && !nd->zc_copied) WRITE_ONCE(nd->zc_copied, true); } if (!refcount_dec_and_test(&uarg->refcnt)) return; if (nd->head != nd) { io_tx_ubuf_complete(skb, &nd->head->uarg, success); return; } tw_flags = nd->next ? 0 : IOU_F_TWQ_LAZY_WAKE; notif->io_task_work.func = io_notif_tw_complete; __io_req_task_work_add(notif, tw_flags); } static int io_link_skb(struct sk_buff *skb, struct ubuf_info *uarg) { struct io_notif_data *nd, *prev_nd; struct io_kiocb *prev_notif, *notif; struct ubuf_info *prev_uarg = skb_zcopy(skb); nd = container_of(uarg, struct io_notif_data, uarg); notif = cmd_to_io_kiocb(nd); if (!prev_uarg) { net_zcopy_get(&nd->uarg); skb_zcopy_init(skb, &nd->uarg); return 0; } /* handle it separately as we can't link a notif to itself */ if (unlikely(prev_uarg == &nd->uarg)) return 0; /* we can't join two links together, just request a fresh skb */ if (unlikely(nd->head != nd || nd->next)) return -EEXIST; /* don't mix zc providers */ if (unlikely(prev_uarg->ops != &io_ubuf_ops)) return -EEXIST; prev_nd = container_of(prev_uarg, struct io_notif_data, uarg); prev_notif = cmd_to_io_kiocb(nd); /* make sure all noifications can be finished in the same task_work */ if (unlikely(notif->ctx != prev_notif->ctx || notif->tctx != prev_notif->tctx)) return -EEXIST; nd->head = prev_nd->head; nd->next = prev_nd->next; prev_nd->next = nd; net_zcopy_get(&nd->head->uarg); return 0; } static const struct ubuf_info_ops io_ubuf_ops = { .complete = io_tx_ubuf_complete, .link_skb = io_link_skb, }; struct io_kiocb *io_alloc_notif(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { struct io_kiocb *notif; struct io_notif_data *nd; if (unlikely(!io_alloc_req(ctx, &notif))) return NULL; notif->opcode = IORING_OP_NOP; notif->flags = 0; notif->file = NULL; notif->tctx = current->io_uring; io_get_task_refs(1); notif->file_node = NULL; notif->buf_node = NULL; nd = io_notif_to_data(notif); nd->zc_report = false; nd->account_pages = 0; nd->next = NULL; nd->head = nd; nd->uarg.flags = IO_NOTIF_UBUF_FLAGS; nd->uarg.ops = &io_ubuf_ops; refcount_set(&nd->uarg.refcnt, 1); return notif; }
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 // SPDX-License-Identifier: GPL-2.0 /* * drivers/power/process.c - Functions for starting/stopping processes on * suspend transitions. * * Originally from swsusp. */ #include <linux/interrupt.h> #include <linux/oom.h> #include <linux/suspend.h> #include <linux/module.h> #include <linux/sched/debug.h> #include <linux/sched/task.h> #include <linux/syscalls.h> #include <linux/freezer.h> #include <linux/delay.h> #include <linux/workqueue.h> #include <linux/kmod.h> #include <trace/events/power.h> #include <linux/cpuset.h> /* * Timeout for stopping processes */ unsigned int __read_mostly freeze_timeout_msecs = 20 * MSEC_PER_SEC; static int try_to_freeze_tasks(bool user_only) { const char *what = user_only ? "user space processes" : "remaining freezable tasks"; struct task_struct *g, *p; unsigned long end_time; unsigned int todo; bool wq_busy = false; ktime_t start, end, elapsed; unsigned int elapsed_msecs; bool wakeup = false; int sleep_usecs = USEC_PER_MSEC; pr_info("Freezing %s\n", what); start = ktime_get_boottime(); end_time = jiffies + msecs_to_jiffies(freeze_timeout_msecs); if (!user_only) freeze_workqueues_begin(); while (true) { todo = 0; read_lock(&tasklist_lock); for_each_process_thread(g, p) { if (p == current || !freeze_task(p)) continue; todo++; } read_unlock(&tasklist_lock); if (!user_only) { wq_busy = freeze_workqueues_busy(); todo += wq_busy; } if (!todo || time_after(jiffies, end_time)) break; if (pm_wakeup_pending()) { wakeup = true; break; } /* * We need to retry, but first give the freezing tasks some * time to enter the refrigerator. Start with an initial * 1 ms sleep followed by exponential backoff until 8 ms. */ usleep_range(sleep_usecs / 2, sleep_usecs); if (sleep_usecs < 8 * USEC_PER_MSEC) sleep_usecs *= 2; } end = ktime_get_boottime(); elapsed = ktime_sub(end, start); elapsed_msecs = ktime_to_ms(elapsed); if (todo) { pr_err("Freezing %s %s after %d.%03d seconds " "(%d tasks refusing to freeze, wq_busy=%d):\n", what, wakeup ? "aborted" : "failed", elapsed_msecs / 1000, elapsed_msecs % 1000, todo - wq_busy, wq_busy); if (wq_busy) show_freezable_workqueues(); if (!wakeup || pm_debug_messages_on) { read_lock(&tasklist_lock); for_each_process_thread(g, p) { if (p != current && freezing(p) && !frozen(p)) sched_show_task(p); } read_unlock(&tasklist_lock); } } else { pr_info("Freezing %s completed (elapsed %d.%03d seconds)\n", what, elapsed_msecs / 1000, elapsed_msecs % 1000); } return todo ? -EBUSY : 0; } /** * freeze_processes - Signal user space processes to enter the refrigerator. * The current thread will not be frozen. The same process that calls * freeze_processes must later call thaw_processes. * * On success, returns 0. On failure, -errno and system is fully thawed. */ int freeze_processes(void) { int error; error = __usermodehelper_disable(UMH_FREEZING); if (error) return error; /* Make sure this task doesn't get frozen */ current->flags |= PF_SUSPEND_TASK; if (!pm_freezing) static_branch_inc(&freezer_active); pm_wakeup_clear(0); pm_freezing = true; error = try_to_freeze_tasks(true); if (!error) __usermodehelper_set_disable_depth(UMH_DISABLED); BUG_ON(in_atomic()); /* * Now that the whole userspace is frozen we need to disable * the OOM killer to disallow any further interference with * killable tasks. There is no guarantee oom victims will * ever reach a point they go away we have to wait with a timeout. */ if (!error && !oom_killer_disable(msecs_to_jiffies(freeze_timeout_msecs))) error = -EBUSY; if (error) thaw_processes(); return error; } /** * freeze_kernel_threads - Make freezable kernel threads go to the refrigerator. * * On success, returns 0. On failure, -errno and only the kernel threads are * thawed, so as to give a chance to the caller to do additional cleanups * (if any) before thawing the userspace tasks. So, it is the responsibility * of the caller to thaw the userspace tasks, when the time is right. */ int freeze_kernel_threads(void) { int error; pm_nosig_freezing = true; error = try_to_freeze_tasks(false); BUG_ON(in_atomic()); if (error) thaw_kernel_threads(); return error; } void thaw_processes(void) { struct task_struct *g, *p; struct task_struct *curr = current; trace_suspend_resume(TPS("thaw_processes"), 0, true); if (pm_freezing) static_branch_dec(&freezer_active); pm_freezing = false; pm_nosig_freezing = false; oom_killer_enable(); pr_info("Restarting tasks ... "); __usermodehelper_set_disable_depth(UMH_FREEZING); thaw_workqueues(); read_lock(&tasklist_lock); for_each_process_thread(g, p) { /* No other threads should have PF_SUSPEND_TASK set */ WARN_ON((p != curr) && (p->flags & PF_SUSPEND_TASK)); __thaw_task(p); } read_unlock(&tasklist_lock); WARN_ON(!(curr->flags & PF_SUSPEND_TASK)); curr->flags &= ~PF_SUSPEND_TASK; usermodehelper_enable(); schedule(); pr_cont("done.\n"); trace_suspend_resume(TPS("thaw_processes"), 0, false); } void thaw_kernel_threads(void) { struct task_struct *g, *p; pm_nosig_freezing = false; pr_info("Restarting kernel threads ... "); thaw_workqueues(); read_lock(&tasklist_lock); for_each_process_thread(g, p) { if (p->flags & PF_KTHREAD) __thaw_task(p); } read_unlock(&tasklist_lock); schedule(); pr_cont("done.\n"); }
2 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013 Patrick McHardy <kaber@trash.net> */ #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_SYNPROXY.h> #include <net/netfilter/nf_synproxy.h> static unsigned int synproxy_tg4(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_synproxy_info *info = par->targinfo; struct net *net = xt_net(par); struct synproxy_net *snet = synproxy_pernet(net); struct synproxy_options opts = {}; struct tcphdr *th, _th; if (nf_ip_checksum(skb, xt_hooknum(par), par->thoff, IPPROTO_TCP)) return NF_DROP; th = skb_header_pointer(skb, par->thoff, sizeof(_th), &_th); if (th == NULL) return NF_DROP; if (!synproxy_parse_options(skb, par->thoff, th, &opts)) return NF_DROP; if (th->syn && !(th->ack || th->fin || th->rst)) { /* Initial SYN from client */ this_cpu_inc(snet->stats->syn_received); if (th->ece && th->cwr) opts.options |= XT_SYNPROXY_OPT_ECN; opts.options &= info->options; opts.mss_encode = opts.mss_option; opts.mss_option = info->mss; if (opts.options & XT_SYNPROXY_OPT_TIMESTAMP) synproxy_init_timestamp_cookie(info, &opts); else opts.options &= ~(XT_SYNPROXY_OPT_WSCALE | XT_SYNPROXY_OPT_SACK_PERM | XT_SYNPROXY_OPT_ECN); synproxy_send_client_synack(net, skb, th, &opts); consume_skb(skb); return NF_STOLEN; } else if (th->ack && !(th->fin || th->rst || th->syn)) { /* ACK from client */ if (synproxy_recv_client_ack(net, skb, th, &opts, ntohl(th->seq))) { consume_skb(skb); return NF_STOLEN; } else { return NF_DROP; } } return XT_CONTINUE; } static int synproxy_tg4_check(const struct xt_tgchk_param *par) { struct synproxy_net *snet = synproxy_pernet(par->net); const struct ipt_entry *e = par->entryinfo; int err; if (e->ip.proto != IPPROTO_TCP || e->ip.invflags & XT_INV_PROTO) return -EINVAL; err = nf_ct_netns_get(par->net, par->family); if (err) return err; err = nf_synproxy_ipv4_init(snet, par->net); if (err) { nf_ct_netns_put(par->net, par->family); return err; } return err; } static void synproxy_tg4_destroy(const struct xt_tgdtor_param *par) { struct synproxy_net *snet = synproxy_pernet(par->net); nf_synproxy_ipv4_fini(snet, par->net); nf_ct_netns_put(par->net, par->family); } static struct xt_target synproxy_tg4_reg __read_mostly = { .name = "SYNPROXY", .family = NFPROTO_IPV4, .hooks = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD), .target = synproxy_tg4, .targetsize = sizeof(struct xt_synproxy_info), .checkentry = synproxy_tg4_check, .destroy = synproxy_tg4_destroy, .me = THIS_MODULE, }; static int __init synproxy_tg4_init(void) { return xt_register_target(&synproxy_tg4_reg); } static void __exit synproxy_tg4_exit(void) { xt_unregister_target(&synproxy_tg4_reg); } module_init(synproxy_tg4_init); module_exit(synproxy_tg4_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_DESCRIPTION("Intercept TCP connections and establish them using syncookies");
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM irq_vectors #if !defined(_TRACE_IRQ_VECTORS_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_IRQ_VECTORS_H #include <linux/tracepoint.h> #include <asm/trace/common.h> #ifdef CONFIG_X86_LOCAL_APIC DECLARE_EVENT_CLASS(x86_irq_vector, TP_PROTO(int vector), TP_ARGS(vector), TP_STRUCT__entry( __field( int, vector ) ), TP_fast_assign( __entry->vector = vector; ), TP_printk("vector=%d", __entry->vector) ); #define DEFINE_IRQ_VECTOR_EVENT(name) \ DEFINE_EVENT_FN(x86_irq_vector, name##_entry, \ TP_PROTO(int vector), \ TP_ARGS(vector), NULL, NULL); \ DEFINE_EVENT_FN(x86_irq_vector, name##_exit, \ TP_PROTO(int vector), \ TP_ARGS(vector), NULL, NULL); /* * local_timer - called when entering/exiting a local timer interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(local_timer); /* * spurious_apic - called when entering/exiting a spurious apic vector handler */ DEFINE_IRQ_VECTOR_EVENT(spurious_apic); /* * error_apic - called when entering/exiting an error apic vector handler */ DEFINE_IRQ_VECTOR_EVENT(error_apic); /* * x86_platform_ipi - called when entering/exiting a x86 platform ipi interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(x86_platform_ipi); #ifdef CONFIG_IRQ_WORK /* * irq_work - called when entering/exiting a irq work interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(irq_work); /* * We must dis-allow sampling irq_work_exit() because perf event sampling * itself can cause irq_work, which would lead to an infinite loop; * * 1) irq_work_exit happens * 2) generates perf sample * 3) generates irq_work * 4) goto 1 */ TRACE_EVENT_PERF_PERM(irq_work_exit, is_sampling_event(p_event) ? -EPERM : 0); #endif /* * The ifdef is required because that tracepoint macro hell emits tracepoint * code in files which include this header even if the tracepoint is not * enabled. Brilliant stuff that. */ #ifdef CONFIG_SMP /* * reschedule - called when entering/exiting a reschedule vector handler */ DEFINE_IRQ_VECTOR_EVENT(reschedule); /* * call_function - called when entering/exiting a call function interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(call_function); /* * call_function_single - called when entering/exiting a call function * single interrupt vector handler */ DEFINE_IRQ_VECTOR_EVENT(call_function_single); #endif #ifdef CONFIG_X86_MCE_THRESHOLD /* * threshold_apic - called when entering/exiting a threshold apic interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(threshold_apic); #endif #ifdef CONFIG_X86_MCE_AMD /* * deferred_error_apic - called when entering/exiting a deferred apic interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(deferred_error_apic); #endif #ifdef CONFIG_X86_THERMAL_VECTOR /* * thermal_apic - called when entering/exiting a thermal apic interrupt * vector handler */ DEFINE_IRQ_VECTOR_EVENT(thermal_apic); #endif TRACE_EVENT(vector_config, TP_PROTO(unsigned int irq, unsigned int vector, unsigned int cpu, unsigned int apicdest), TP_ARGS(irq, vector, cpu, apicdest), TP_STRUCT__entry( __field( unsigned int, irq ) __field( unsigned int, vector ) __field( unsigned int, cpu ) __field( unsigned int, apicdest ) ), TP_fast_assign( __entry->irq = irq; __entry->vector = vector; __entry->cpu = cpu; __entry->apicdest = apicdest; ), TP_printk("irq=%u vector=%u cpu=%u apicdest=0x%08x", __entry->irq, __entry->vector, __entry->cpu, __entry->apicdest) ); DECLARE_EVENT_CLASS(vector_mod, TP_PROTO(unsigned int irq, unsigned int vector, unsigned int cpu, unsigned int prev_vector, unsigned int prev_cpu), TP_ARGS(irq, vector, cpu, prev_vector, prev_cpu), TP_STRUCT__entry( __field( unsigned int, irq ) __field( unsigned int, vector ) __field( unsigned int, cpu ) __field( unsigned int, prev_vector ) __field( unsigned int, prev_cpu ) ), TP_fast_assign( __entry->irq = irq; __entry->vector = vector; __entry->cpu = cpu; __entry->prev_vector = prev_vector; __entry->prev_cpu = prev_cpu; ), TP_printk("irq=%u vector=%u cpu=%u prev_vector=%u prev_cpu=%u", __entry->irq, __entry->vector, __entry->cpu, __entry->prev_vector, __entry->prev_cpu) ); #define DEFINE_IRQ_VECTOR_MOD_EVENT(name) \ DEFINE_EVENT_FN(vector_mod, name, \ TP_PROTO(unsigned int irq, unsigned int vector, \ unsigned int cpu, unsigned int prev_vector, \ unsigned int prev_cpu), \ TP_ARGS(irq, vector, cpu, prev_vector, prev_cpu), NULL, NULL); \ DEFINE_IRQ_VECTOR_MOD_EVENT(vector_update); DEFINE_IRQ_VECTOR_MOD_EVENT(vector_clear); DECLARE_EVENT_CLASS(vector_reserve, TP_PROTO(unsigned int irq, int ret), TP_ARGS(irq, ret), TP_STRUCT__entry( __field( unsigned int, irq ) __field( int, ret ) ), TP_fast_assign( __entry->irq = irq; __entry->ret = ret; ), TP_printk("irq=%u ret=%d", __entry->irq, __entry->ret) ); #define DEFINE_IRQ_VECTOR_RESERVE_EVENT(name) \ DEFINE_EVENT_FN(vector_reserve, name, \ TP_PROTO(unsigned int irq, int ret), \ TP_ARGS(irq, ret), NULL, NULL); \ DEFINE_IRQ_VECTOR_RESERVE_EVENT(vector_reserve_managed); DEFINE_IRQ_VECTOR_RESERVE_EVENT(vector_reserve); TRACE_EVENT(vector_alloc, TP_PROTO(unsigned int irq, unsigned int vector, bool reserved, int ret), TP_ARGS(irq, vector, reserved, ret), TP_STRUCT__entry( __field( unsigned int, irq ) __field( unsigned int, vector ) __field( bool, reserved ) __field( int, ret ) ), TP_fast_assign( __entry->irq = irq; __entry->vector = ret < 0 ? 0 : vector; __entry->reserved = reserved; __entry->ret = ret > 0 ? 0 : ret; ), TP_printk("irq=%u vector=%u reserved=%d ret=%d", __entry->irq, __entry->vector, __entry->reserved, __entry->ret) ); TRACE_EVENT(vector_alloc_managed, TP_PROTO(unsigned int irq, unsigned int vector, int ret), TP_ARGS(irq, vector, ret), TP_STRUCT__entry( __field( unsigned int, irq ) __field( unsigned int, vector ) __field( int, ret ) ), TP_fast_assign( __entry->irq = irq; __entry->vector = ret < 0 ? 0 : vector; __entry->ret = ret > 0 ? 0 : ret; ), TP_printk("irq=%u vector=%u ret=%d", __entry->irq, __entry->vector, __entry->ret) ); DECLARE_EVENT_CLASS(vector_activate, TP_PROTO(unsigned int irq, bool is_managed, bool can_reserve, bool reserve), TP_ARGS(irq, is_managed, can_reserve, reserve), TP_STRUCT__entry( __field( unsigned int, irq ) __field( bool, is_managed ) __field( bool, can_reserve ) __field( bool, reserve ) ), TP_fast_assign( __entry->irq = irq; __entry->is_managed = is_managed; __entry->can_reserve = can_reserve; __entry->reserve = reserve; ), TP_printk("irq=%u is_managed=%d can_reserve=%d reserve=%d", __entry->irq, __entry->is_managed, __entry->can_reserve, __entry->reserve) ); #define DEFINE_IRQ_VECTOR_ACTIVATE_EVENT(name) \ DEFINE_EVENT_FN(vector_activate, name, \ TP_PROTO(unsigned int irq, bool is_managed, \ bool can_reserve, bool reserve), \ TP_ARGS(irq, is_managed, can_reserve, reserve), NULL, NULL); \ DEFINE_IRQ_VECTOR_ACTIVATE_EVENT(vector_activate); DEFINE_IRQ_VECTOR_ACTIVATE_EVENT(vector_deactivate); TRACE_EVENT(vector_teardown, TP_PROTO(unsigned int irq, bool is_managed, bool has_reserved), TP_ARGS(irq, is_managed, has_reserved), TP_STRUCT__entry( __field( unsigned int, irq ) __field( bool, is_managed ) __field( bool, has_reserved ) ), TP_fast_assign( __entry->irq = irq; __entry->is_managed = is_managed; __entry->has_reserved = has_reserved; ), TP_printk("irq=%u is_managed=%d has_reserved=%d", __entry->irq, __entry->is_managed, __entry->has_reserved) ); TRACE_EVENT(vector_setup, TP_PROTO(unsigned int irq, bool is_legacy, int ret), TP_ARGS(irq, is_legacy, ret), TP_STRUCT__entry( __field( unsigned int, irq ) __field( bool, is_legacy ) __field( int, ret ) ), TP_fast_assign( __entry->irq = irq; __entry->is_legacy = is_legacy; __entry->ret = ret; ), TP_printk("irq=%u is_legacy=%d ret=%d", __entry->irq, __entry->is_legacy, __entry->ret) ); TRACE_EVENT(vector_free_moved, TP_PROTO(unsigned int irq, unsigned int cpu, unsigned int vector, bool is_managed), TP_ARGS(irq, cpu, vector, is_managed), TP_STRUCT__entry( __field( unsigned int, irq ) __field( unsigned int, cpu ) __field( unsigned int, vector ) __field( bool, is_managed ) ), TP_fast_assign( __entry->irq = irq; __entry->cpu = cpu; __entry->vector = vector; __entry->is_managed = is_managed; ), TP_printk("irq=%u cpu=%u vector=%u is_managed=%d", __entry->irq, __entry->cpu, __entry->vector, __entry->is_managed) ); #endif /* CONFIG_X86_LOCAL_APIC */ #undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE irq_vectors #endif /* _TRACE_IRQ_VECTORS_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
142 142 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 // SPDX-License-Identifier: GPL-2.0 /* * Block stat tracking code * * Copyright (C) 2016 Jens Axboe */ #include <linux/kernel.h> #include <linux/rculist.h> #include "blk-stat.h" #include "blk-mq.h" #include "blk.h" struct blk_queue_stats { struct list_head callbacks; spinlock_t lock; int accounting; }; void blk_rq_stat_init(struct blk_rq_stat *stat) { stat->min = -1ULL; stat->max = stat->nr_samples = stat->mean = 0; stat->batch = 0; } /* src is a per-cpu stat, mean isn't initialized */ void blk_rq_stat_sum(struct blk_rq_stat *dst, struct blk_rq_stat *src) { if (dst->nr_samples + src->nr_samples <= dst->nr_samples) return; dst->min = min(dst->min, src->min); dst->max = max(dst->max, src->max); dst->mean = div_u64(src->batch + dst->mean * dst->nr_samples, dst->nr_samples + src->nr_samples); dst->nr_samples += src->nr_samples; } void blk_rq_stat_add(struct blk_rq_stat *stat, u64 value) { stat->min = min(stat->min, value); stat->max = max(stat->max, value); stat->batch += value; stat->nr_samples++; } void blk_stat_add(struct request *rq, u64 now) { struct request_queue *q = rq->q; struct blk_stat_callback *cb; struct blk_rq_stat *stat; int bucket, cpu; u64 value; value = (now >= rq->io_start_time_ns) ? now - rq->io_start_time_ns : 0; rcu_read_lock(); cpu = get_cpu(); list_for_each_entry_rcu(cb, &q->stats->callbacks, list) { if (!blk_stat_is_active(cb)) continue; bucket = cb->bucket_fn(rq); if (bucket < 0) continue; stat = &per_cpu_ptr(cb->cpu_stat, cpu)[bucket]; blk_rq_stat_add(stat, value); } put_cpu(); rcu_read_unlock(); } static void blk_stat_timer_fn(struct timer_list *t) { struct blk_stat_callback *cb = from_timer(cb, t, timer); unsigned int bucket; int cpu; for (bucket = 0; bucket < cb->buckets; bucket++) blk_rq_stat_init(&cb->stat[bucket]); for_each_online_cpu(cpu) { struct blk_rq_stat *cpu_stat; cpu_stat = per_cpu_ptr(cb->cpu_stat, cpu); for (bucket = 0; bucket < cb->buckets; bucket++) { blk_rq_stat_sum(&cb->stat[bucket], &cpu_stat[bucket]); blk_rq_stat_init(&cpu_stat[bucket]); } } cb->timer_fn(cb); } struct blk_stat_callback * blk_stat_alloc_callback(void (*timer_fn)(struct blk_stat_callback *), int (*bucket_fn)(const struct request *), unsigned int buckets, void *data) { struct blk_stat_callback *cb; cb = kmalloc(sizeof(*cb), GFP_KERNEL); if (!cb) return NULL; cb->stat = kmalloc_array(buckets, sizeof(struct blk_rq_stat), GFP_KERNEL); if (!cb->stat) { kfree(cb); return NULL; } cb->cpu_stat = __alloc_percpu(buckets * sizeof(struct blk_rq_stat), __alignof__(struct blk_rq_stat)); if (!cb->cpu_stat) { kfree(cb->stat); kfree(cb); return NULL; } cb->timer_fn = timer_fn; cb->bucket_fn = bucket_fn; cb->data = data; cb->buckets = buckets; timer_setup(&cb->timer, blk_stat_timer_fn, 0); return cb; } void blk_stat_add_callback(struct request_queue *q, struct blk_stat_callback *cb) { unsigned int bucket; unsigned long flags; int cpu; for_each_possible_cpu(cpu) { struct blk_rq_stat *cpu_stat; cpu_stat = per_cpu_ptr(cb->cpu_stat, cpu); for (bucket = 0; bucket < cb->buckets; bucket++) blk_rq_stat_init(&cpu_stat[bucket]); } spin_lock_irqsave(&q->stats->lock, flags); list_add_tail_rcu(&cb->list, &q->stats->callbacks); blk_queue_flag_set(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); } void blk_stat_remove_callback(struct request_queue *q, struct blk_stat_callback *cb) { unsigned long flags; spin_lock_irqsave(&q->stats->lock, flags); list_del_rcu(&cb->list); if (list_empty(&q->stats->callbacks) && !q->stats->accounting) blk_queue_flag_clear(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); timer_delete_sync(&cb->timer); } static void blk_stat_free_callback_rcu(struct rcu_head *head) { struct blk_stat_callback *cb; cb = container_of(head, struct blk_stat_callback, rcu); free_percpu(cb->cpu_stat); kfree(cb->stat); kfree(cb); } void blk_stat_free_callback(struct blk_stat_callback *cb) { if (cb) call_rcu(&cb->rcu, blk_stat_free_callback_rcu); } void blk_stat_disable_accounting(struct request_queue *q) { unsigned long flags; spin_lock_irqsave(&q->stats->lock, flags); if (!--q->stats->accounting && list_empty(&q->stats->callbacks)) blk_queue_flag_clear(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); } EXPORT_SYMBOL_GPL(blk_stat_disable_accounting); void blk_stat_enable_accounting(struct request_queue *q) { unsigned long flags; spin_lock_irqsave(&q->stats->lock, flags); if (!q->stats->accounting++ && list_empty(&q->stats->callbacks)) blk_queue_flag_set(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); } EXPORT_SYMBOL_GPL(blk_stat_enable_accounting); struct blk_queue_stats *blk_alloc_queue_stats(void) { struct blk_queue_stats *stats; stats = kmalloc(sizeof(*stats), GFP_KERNEL); if (!stats) return NULL; INIT_LIST_HEAD(&stats->callbacks); spin_lock_init(&stats->lock); stats->accounting = 0; return stats; } void blk_free_queue_stats(struct blk_queue_stats *stats) { if (!stats) return; WARN_ON(!list_empty(&stats->callbacks)); kfree(stats); }
16 3 45 41 38 6 42 42 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #ifndef _WG_QUEUEING_H #define _WG_QUEUEING_H #include "peer.h" #include <linux/types.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/ip_tunnels.h> struct wg_device; struct wg_peer; struct multicore_worker; struct crypt_queue; struct prev_queue; struct sk_buff; /* queueing.c APIs: */ int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function, unsigned int len); void wg_packet_queue_free(struct crypt_queue *queue, bool purge); struct multicore_worker __percpu * wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr); /* receive.c APIs: */ void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb); void wg_packet_handshake_receive_worker(struct work_struct *work); /* NAPI poll function: */ int wg_packet_rx_poll(struct napi_struct *napi, int budget); /* Workqueue worker: */ void wg_packet_decrypt_worker(struct work_struct *work); /* send.c APIs: */ void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer, bool is_retry); void wg_packet_send_handshake_response(struct wg_peer *peer); void wg_packet_send_handshake_cookie(struct wg_device *wg, struct sk_buff *initiating_skb, __le32 sender_index); void wg_packet_send_keepalive(struct wg_peer *peer); void wg_packet_purge_staged_packets(struct wg_peer *peer); void wg_packet_send_staged_packets(struct wg_peer *peer); /* Workqueue workers: */ void wg_packet_handshake_send_worker(struct work_struct *work); void wg_packet_tx_worker(struct work_struct *work); void wg_packet_encrypt_worker(struct work_struct *work); enum packet_state { PACKET_STATE_UNCRYPTED, PACKET_STATE_CRYPTED, PACKET_STATE_DEAD }; struct packet_cb { u64 nonce; struct noise_keypair *keypair; atomic_t state; u32 mtu; u8 ds; }; #define PACKET_CB(skb) ((struct packet_cb *)((skb)->cb)) #define PACKET_PEER(skb) (PACKET_CB(skb)->keypair->entry.peer) static inline bool wg_check_packet_protocol(struct sk_buff *skb) { __be16 real_protocol = ip_tunnel_parse_protocol(skb); return real_protocol && skb->protocol == real_protocol; } static inline void wg_reset_packet(struct sk_buff *skb, bool encapsulating) { u8 l4_hash = skb->l4_hash; u8 sw_hash = skb->sw_hash; u32 hash = skb->hash; skb_scrub_packet(skb, true); memset(&skb->headers, 0, sizeof(skb->headers)); if (encapsulating) { skb->l4_hash = l4_hash; skb->sw_hash = sw_hash; skb->hash = hash; } skb->queue_mapping = 0; skb->nohdr = 0; skb->peeked = 0; skb->mac_len = 0; skb->dev = NULL; #ifdef CONFIG_NET_SCHED skb->tc_index = 0; #endif skb_reset_redirect(skb); skb->hdr_len = skb_headroom(skb); skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); skb_probe_transport_header(skb); skb_reset_inner_headers(skb); } static inline int wg_cpumask_choose_online(int *stored_cpu, unsigned int id) { unsigned int cpu = *stored_cpu, cpu_index, i; if (unlikely(cpu >= nr_cpu_ids || !cpumask_test_cpu(cpu, cpu_online_mask))) { cpu_index = id % cpumask_weight(cpu_online_mask); cpu = cpumask_first(cpu_online_mask); for (i = 0; i < cpu_index; ++i) cpu = cpumask_next(cpu, cpu_online_mask); *stored_cpu = cpu; } return cpu; } /* This function is racy, in the sense that it's called while last_cpu is * unlocked, so it could return the same CPU twice. Adding locking or using * atomic sequence numbers is slower though, and the consequences of racing are * harmless, so live with it. */ static inline int wg_cpumask_next_online(int *last_cpu) { int cpu = cpumask_next(READ_ONCE(*last_cpu), cpu_online_mask); if (cpu >= nr_cpu_ids) cpu = cpumask_first(cpu_online_mask); WRITE_ONCE(*last_cpu, cpu); return cpu; } void wg_prev_queue_init(struct prev_queue *queue); /* Multi producer */ bool wg_prev_queue_enqueue(struct prev_queue *queue, struct sk_buff *skb); /* Single consumer */ struct sk_buff *wg_prev_queue_dequeue(struct prev_queue *queue); /* Single consumer */ static inline struct sk_buff *wg_prev_queue_peek(struct prev_queue *queue) { if (queue->peeked) return queue->peeked; queue->peeked = wg_prev_queue_dequeue(queue); return queue->peeked; } /* Single consumer */ static inline void wg_prev_queue_drop_peeked(struct prev_queue *queue) { queue->peeked = NULL; } static inline int wg_queue_enqueue_per_device_and_peer( struct crypt_queue *device_queue, struct prev_queue *peer_queue, struct sk_buff *skb, struct workqueue_struct *wq) { int cpu; atomic_set_release(&PACKET_CB(skb)->state, PACKET_STATE_UNCRYPTED); /* We first queue this up for the peer ingestion, but the consumer * will wait for the state to change to CRYPTED or DEAD before. */ if (unlikely(!wg_prev_queue_enqueue(peer_queue, skb))) return -ENOSPC; /* Then we queue it up in the device queue, which consumes the * packet as soon as it can. */ cpu = wg_cpumask_next_online(&device_queue->last_cpu); if (unlikely(ptr_ring_produce_bh(&device_queue->ring, skb))) return -EPIPE; queue_work_on(cpu, wq, &per_cpu_ptr(device_queue->worker, cpu)->work); return 0; } static inline void wg_queue_enqueue_per_peer_tx(struct sk_buff *skb, enum packet_state state) { /* We take a reference, because as soon as we call atomic_set, the * peer can be freed from below us. */ struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb)); atomic_set_release(&PACKET_CB(skb)->state, state); queue_work_on(wg_cpumask_choose_online(&peer->serial_work_cpu, peer->internal_id), peer->device->packet_crypt_wq, &peer->transmit_packet_work); wg_peer_put(peer); } static inline void wg_queue_enqueue_per_peer_rx(struct sk_buff *skb, enum packet_state state) { /* We take a reference, because as soon as we call atomic_set, the * peer can be freed from below us. */ struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb)); atomic_set_release(&PACKET_CB(skb)->state, state); napi_schedule(&peer->napi); wg_peer_put(peer); } #ifdef DEBUG bool wg_packet_counter_selftest(void); #endif #endif /* _WG_QUEUEING_H */
703 700 700 700 700 700 704 705 700 705 704 2 703 2 1 419 246 176 707 2 707 2 700 1 2 1 700 700 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 // SPDX-License-Identifier: GPL-2.0 #include <linux/fs.h> #include <linux/random.h> #include <linux/buffer_head.h> #include <linux/utsname.h> #include <linux/kthread.h> #include "ext4.h" /* Checksumming functions */ static __le32 ext4_mmp_csum(struct super_block *sb, struct mmp_struct *mmp) { struct ext4_sb_info *sbi = EXT4_SB(sb); int offset = offsetof(struct mmp_struct, mmp_checksum); __u32 csum; csum = ext4_chksum(sbi, sbi->s_csum_seed, (char *)mmp, offset); return cpu_to_le32(csum); } static int ext4_mmp_csum_verify(struct super_block *sb, struct mmp_struct *mmp) { if (!ext4_has_feature_metadata_csum(sb)) return 1; return mmp->mmp_checksum == ext4_mmp_csum(sb, mmp); } static void ext4_mmp_csum_set(struct super_block *sb, struct mmp_struct *mmp) { if (!ext4_has_feature_metadata_csum(sb)) return; mmp->mmp_checksum = ext4_mmp_csum(sb, mmp); } /* * Write the MMP block using REQ_SYNC to try to get the block on-disk * faster. */ static int write_mmp_block_thawed(struct super_block *sb, struct buffer_head *bh) { struct mmp_struct *mmp = (struct mmp_struct *)(bh->b_data); ext4_mmp_csum_set(sb, mmp); lock_buffer(bh); bh->b_end_io = end_buffer_write_sync; get_bh(bh); submit_bh(REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, bh); wait_on_buffer(bh); if (unlikely(!buffer_uptodate(bh))) return -EIO; return 0; } static int write_mmp_block(struct super_block *sb, struct buffer_head *bh) { int err; /* * We protect against freezing so that we don't create dirty buffers * on frozen filesystem. */ sb_start_write(sb); err = write_mmp_block_thawed(sb, bh); sb_end_write(sb); return err; } /* * Read the MMP block. It _must_ be read from disk and hence we clear the * uptodate flag on the buffer. */ static int read_mmp_block(struct super_block *sb, struct buffer_head **bh, ext4_fsblk_t mmp_block) { struct mmp_struct *mmp; int ret; if (*bh) clear_buffer_uptodate(*bh); /* This would be sb_bread(sb, mmp_block), except we need to be sure * that the MD RAID device cache has been bypassed, and that the read * is not blocked in the elevator. */ if (!*bh) { *bh = sb_getblk(sb, mmp_block); if (!*bh) { ret = -ENOMEM; goto warn_exit; } } lock_buffer(*bh); ret = ext4_read_bh(*bh, REQ_META | REQ_PRIO, NULL, false); if (ret) goto warn_exit; mmp = (struct mmp_struct *)((*bh)->b_data); if (le32_to_cpu(mmp->mmp_magic) != EXT4_MMP_MAGIC) { ret = -EFSCORRUPTED; goto warn_exit; } if (!ext4_mmp_csum_verify(sb, mmp)) { ret = -EFSBADCRC; goto warn_exit; } return 0; warn_exit: brelse(*bh); *bh = NULL; ext4_warning(sb, "Error %d while reading MMP block %llu", ret, mmp_block); return ret; } /* * Dump as much information as possible to help the admin. */ void __dump_mmp_msg(struct super_block *sb, struct mmp_struct *mmp, const char *function, unsigned int line, const char *msg) { __ext4_warning(sb, function, line, "%s", msg); __ext4_warning(sb, function, line, "MMP failure info: last update time: %llu, last update node: %.*s, last update device: %.*s", (unsigned long long)le64_to_cpu(mmp->mmp_time), (int)sizeof(mmp->mmp_nodename), mmp->mmp_nodename, (int)sizeof(mmp->mmp_bdevname), mmp->mmp_bdevname); } /* * kmmpd will update the MMP sequence every s_mmp_update_interval seconds */ static int kmmpd(void *data) { struct super_block *sb = data; struct ext4_super_block *es = EXT4_SB(sb)->s_es; struct buffer_head *bh = EXT4_SB(sb)->s_mmp_bh; struct mmp_struct *mmp; ext4_fsblk_t mmp_block; u32 seq = 0; unsigned long failed_writes = 0; int mmp_update_interval = le16_to_cpu(es->s_mmp_update_interval); unsigned mmp_check_interval; unsigned long last_update_time; unsigned long diff; int retval = 0; mmp_block = le64_to_cpu(es->s_mmp_block); mmp = (struct mmp_struct *)(bh->b_data); mmp->mmp_time = cpu_to_le64(ktime_get_real_seconds()); /* * Start with the higher mmp_check_interval and reduce it if * the MMP block is being updated on time. */ mmp_check_interval = max(EXT4_MMP_CHECK_MULT * mmp_update_interval, EXT4_MMP_MIN_CHECK_INTERVAL); mmp->mmp_check_interval = cpu_to_le16(mmp_check_interval); memcpy(mmp->mmp_nodename, init_utsname()->nodename, sizeof(mmp->mmp_nodename)); while (!kthread_should_stop() && !ext4_emergency_state(sb)) { if (!ext4_has_feature_mmp(sb)) { ext4_warning(sb, "kmmpd being stopped since MMP feature" " has been disabled."); goto wait_to_exit; } if (++seq > EXT4_MMP_SEQ_MAX) seq = 1; mmp->mmp_seq = cpu_to_le32(seq); mmp->mmp_time = cpu_to_le64(ktime_get_real_seconds()); last_update_time = jiffies; retval = write_mmp_block(sb, bh); /* * Don't spew too many error messages. Print one every * (s_mmp_update_interval * 60) seconds. */ if (retval) { if ((failed_writes % 60) == 0) { ext4_error_err(sb, -retval, "Error writing to MMP block"); } failed_writes++; } diff = jiffies - last_update_time; if (diff < mmp_update_interval * HZ) schedule_timeout_interruptible(mmp_update_interval * HZ - diff); /* * We need to make sure that more than mmp_check_interval * seconds have not passed since writing. If that has happened * we need to check if the MMP block is as we left it. */ diff = jiffies - last_update_time; if (diff > mmp_check_interval * HZ) { struct buffer_head *bh_check = NULL; struct mmp_struct *mmp_check; retval = read_mmp_block(sb, &bh_check, mmp_block); if (retval) { ext4_error_err(sb, -retval, "error reading MMP data: %d", retval); goto wait_to_exit; } mmp_check = (struct mmp_struct *)(bh_check->b_data); if (mmp->mmp_seq != mmp_check->mmp_seq || memcmp(mmp->mmp_nodename, mmp_check->mmp_nodename, sizeof(mmp->mmp_nodename))) { dump_mmp_msg(sb, mmp_check, "Error while updating MMP info. " "The filesystem seems to have been" " multiply mounted."); ext4_error_err(sb, EBUSY, "abort"); put_bh(bh_check); retval = -EBUSY; goto wait_to_exit; } put_bh(bh_check); } /* * Adjust the mmp_check_interval depending on how much time * it took for the MMP block to be written. */ mmp_check_interval = max(min(EXT4_MMP_CHECK_MULT * diff / HZ, EXT4_MMP_MAX_CHECK_INTERVAL), EXT4_MMP_MIN_CHECK_INTERVAL); mmp->mmp_check_interval = cpu_to_le16(mmp_check_interval); } /* * Unmount seems to be clean. */ mmp->mmp_seq = cpu_to_le32(EXT4_MMP_SEQ_CLEAN); mmp->mmp_time = cpu_to_le64(ktime_get_real_seconds()); retval = write_mmp_block(sb, bh); wait_to_exit: while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); if (!kthread_should_stop()) schedule(); } set_current_state(TASK_RUNNING); return retval; } void ext4_stop_mmpd(struct ext4_sb_info *sbi) { if (sbi->s_mmp_tsk) { kthread_stop(sbi->s_mmp_tsk); brelse(sbi->s_mmp_bh); sbi->s_mmp_tsk = NULL; } } /* * Get a random new sequence number but make sure it is not greater than * EXT4_MMP_SEQ_MAX. */ static unsigned int mmp_new_seq(void) { return get_random_u32_below(EXT4_MMP_SEQ_MAX + 1); } /* * Protect the filesystem from being mounted more than once. */ int ext4_multi_mount_protect(struct super_block *sb, ext4_fsblk_t mmp_block) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; struct buffer_head *bh = NULL; struct mmp_struct *mmp = NULL; u32 seq; unsigned int mmp_check_interval = le16_to_cpu(es->s_mmp_update_interval); unsigned int wait_time = 0; int retval; if (mmp_block < le32_to_cpu(es->s_first_data_block) || mmp_block >= ext4_blocks_count(es)) { ext4_warning(sb, "Invalid MMP block in superblock"); retval = -EINVAL; goto failed; } retval = read_mmp_block(sb, &bh, mmp_block); if (retval) goto failed; mmp = (struct mmp_struct *)(bh->b_data); if (mmp_check_interval < EXT4_MMP_MIN_CHECK_INTERVAL) mmp_check_interval = EXT4_MMP_MIN_CHECK_INTERVAL; /* * If check_interval in MMP block is larger, use that instead of * update_interval from the superblock. */ if (le16_to_cpu(mmp->mmp_check_interval) > mmp_check_interval) mmp_check_interval = le16_to_cpu(mmp->mmp_check_interval); seq = le32_to_cpu(mmp->mmp_seq); if (seq == EXT4_MMP_SEQ_CLEAN) goto skip; if (seq == EXT4_MMP_SEQ_FSCK) { dump_mmp_msg(sb, mmp, "fsck is running on the filesystem"); retval = -EBUSY; goto failed; } wait_time = min(mmp_check_interval * 2 + 1, mmp_check_interval + 60); /* Print MMP interval if more than 20 secs. */ if (wait_time > EXT4_MMP_MIN_CHECK_INTERVAL * 4) ext4_warning(sb, "MMP interval %u higher than expected, please" " wait.\n", wait_time * 2); if (schedule_timeout_interruptible(HZ * wait_time) != 0) { ext4_warning(sb, "MMP startup interrupted, failing mount\n"); retval = -ETIMEDOUT; goto failed; } retval = read_mmp_block(sb, &bh, mmp_block); if (retval) goto failed; mmp = (struct mmp_struct *)(bh->b_data); if (seq != le32_to_cpu(mmp->mmp_seq)) { dump_mmp_msg(sb, mmp, "Device is already active on another node."); retval = -EBUSY; goto failed; } skip: /* * write a new random sequence number. */ seq = mmp_new_seq(); mmp->mmp_seq = cpu_to_le32(seq); /* * On mount / remount we are protected against fs freezing (by s_umount * semaphore) and grabbing freeze protection upsets lockdep */ retval = write_mmp_block_thawed(sb, bh); if (retval) goto failed; /* * wait for MMP interval and check mmp_seq. */ if (schedule_timeout_interruptible(HZ * wait_time) != 0) { ext4_warning(sb, "MMP startup interrupted, failing mount"); retval = -ETIMEDOUT; goto failed; } retval = read_mmp_block(sb, &bh, mmp_block); if (retval) goto failed; mmp = (struct mmp_struct *)(bh->b_data); if (seq != le32_to_cpu(mmp->mmp_seq)) { dump_mmp_msg(sb, mmp, "Device is already active on another node."); retval = -EBUSY; goto failed; } EXT4_SB(sb)->s_mmp_bh = bh; BUILD_BUG_ON(sizeof(mmp->mmp_bdevname) < BDEVNAME_SIZE); snprintf(mmp->mmp_bdevname, sizeof(mmp->mmp_bdevname), "%pg", bh->b_bdev); /* * Start a kernel thread to update the MMP block periodically. */ EXT4_SB(sb)->s_mmp_tsk = kthread_run(kmmpd, sb, "kmmpd-%.*s", (int)sizeof(mmp->mmp_bdevname), mmp->mmp_bdevname); if (IS_ERR(EXT4_SB(sb)->s_mmp_tsk)) { EXT4_SB(sb)->s_mmp_tsk = NULL; ext4_warning(sb, "Unable to create kmmpd thread for %s.", sb->s_id); retval = -ENOMEM; goto failed; } return 0; failed: brelse(bh); return retval; }
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 463 463 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * This file implements the various access functions for the * PROC file system. It is mainly used for debugging and * statistics. * * Authors: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Gerald J. Heim, <heim@peanuts.informatik.uni-tuebingen.de> * Fred Baumgarten, <dc6iq@insu1.etec.uni-karlsruhe.de> * Erik Schoenfelder, <schoenfr@ibr.cs.tu-bs.de> * * Fixes: * Alan Cox : UDP sockets show the rxqueue/txqueue * using hint flag for the netinfo. * Pauline Middelink : identd support * Alan Cox : Make /proc safer. * Erik Schoenfelder : /proc/net/snmp * Alan Cox : Handle dead sockets properly. * Gerhard Koerting : Show both timers * Alan Cox : Allow inode to be NULL (kernel socket) * Andi Kleen : Add support for open_requests and * split functions for more readibility. * Andi Kleen : Add support for /proc/net/netstat * Arnaldo C. Melo : Convert to seq_file */ #include <linux/types.h> #include <net/net_namespace.h> #include <net/icmp.h> #include <net/protocol.h> #include <net/tcp.h> #include <net/mptcp.h> #include <net/proto_memory.h> #include <net/udp.h> #include <net/udplite.h> #include <linux/bottom_half.h> #include <linux/inetdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/export.h> #include <net/sock.h> #include <net/raw.h> #define TCPUDP_MIB_MAX MAX_T(u32, UDP_MIB_MAX, TCP_MIB_MAX) /* * Report socket allocation statistics [mea@utu.fi] */ static int sockstat_seq_show(struct seq_file *seq, void *v) { struct net *net = seq->private; int orphans, sockets; orphans = tcp_orphan_count_sum(); sockets = proto_sockets_allocated_sum_positive(&tcp_prot); socket_seq_show(seq); seq_printf(seq, "TCP: inuse %d orphan %d tw %d alloc %d mem %ld\n", sock_prot_inuse_get(net, &tcp_prot), orphans, refcount_read(&net->ipv4.tcp_death_row.tw_refcount) - 1, sockets, proto_memory_allocated(&tcp_prot)); seq_printf(seq, "UDP: inuse %d mem %ld\n", sock_prot_inuse_get(net, &udp_prot), proto_memory_allocated(&udp_prot)); seq_printf(seq, "UDPLITE: inuse %d\n", sock_prot_inuse_get(net, &udplite_prot)); seq_printf(seq, "RAW: inuse %d\n", sock_prot_inuse_get(net, &raw_prot)); seq_printf(seq, "FRAG: inuse %u memory %lu\n", atomic_read(&net->ipv4.fqdir->rhashtable.nelems), frag_mem_limit(net->ipv4.fqdir)); return 0; } /* snmp items */ static const struct snmp_mib snmp4_ipstats_list[] = { SNMP_MIB_ITEM("InReceives", IPSTATS_MIB_INPKTS), SNMP_MIB_ITEM("InHdrErrors", IPSTATS_MIB_INHDRERRORS), SNMP_MIB_ITEM("InAddrErrors", IPSTATS_MIB_INADDRERRORS), SNMP_MIB_ITEM("ForwDatagrams", IPSTATS_MIB_OUTFORWDATAGRAMS), SNMP_MIB_ITEM("InUnknownProtos", IPSTATS_MIB_INUNKNOWNPROTOS), SNMP_MIB_ITEM("InDiscards", IPSTATS_MIB_INDISCARDS), SNMP_MIB_ITEM("InDelivers", IPSTATS_MIB_INDELIVERS), SNMP_MIB_ITEM("OutRequests", IPSTATS_MIB_OUTREQUESTS), SNMP_MIB_ITEM("OutDiscards", IPSTATS_MIB_OUTDISCARDS), SNMP_MIB_ITEM("OutNoRoutes", IPSTATS_MIB_OUTNOROUTES), SNMP_MIB_ITEM("ReasmTimeout", IPSTATS_MIB_REASMTIMEOUT), SNMP_MIB_ITEM("ReasmReqds", IPSTATS_MIB_REASMREQDS), SNMP_MIB_ITEM("ReasmOKs", IPSTATS_MIB_REASMOKS), SNMP_MIB_ITEM("ReasmFails", IPSTATS_MIB_REASMFAILS), SNMP_MIB_ITEM("FragOKs", IPSTATS_MIB_FRAGOKS), SNMP_MIB_ITEM("FragFails", IPSTATS_MIB_FRAGFAILS), SNMP_MIB_ITEM("FragCreates", IPSTATS_MIB_FRAGCREATES), SNMP_MIB_ITEM("OutTransmits", IPSTATS_MIB_OUTPKTS), SNMP_MIB_SENTINEL }; /* Following items are displayed in /proc/net/netstat */ static const struct snmp_mib snmp4_ipextstats_list[] = { SNMP_MIB_ITEM("InNoRoutes", IPSTATS_MIB_INNOROUTES), SNMP_MIB_ITEM("InTruncatedPkts", IPSTATS_MIB_INTRUNCATEDPKTS), SNMP_MIB_ITEM("InMcastPkts", IPSTATS_MIB_INMCASTPKTS), SNMP_MIB_ITEM("OutMcastPkts", IPSTATS_MIB_OUTMCASTPKTS), SNMP_MIB_ITEM("InBcastPkts", IPSTATS_MIB_INBCASTPKTS), SNMP_MIB_ITEM("OutBcastPkts", IPSTATS_MIB_OUTBCASTPKTS), SNMP_MIB_ITEM("InOctets", IPSTATS_MIB_INOCTETS), SNMP_MIB_ITEM("OutOctets", IPSTATS_MIB_OUTOCTETS), SNMP_MIB_ITEM("InMcastOctets", IPSTATS_MIB_INMCASTOCTETS), SNMP_MIB_ITEM("OutMcastOctets", IPSTATS_MIB_OUTMCASTOCTETS), SNMP_MIB_ITEM("InBcastOctets", IPSTATS_MIB_INBCASTOCTETS), SNMP_MIB_ITEM("OutBcastOctets", IPSTATS_MIB_OUTBCASTOCTETS), /* Non RFC4293 fields */ SNMP_MIB_ITEM("InCsumErrors", IPSTATS_MIB_CSUMERRORS), SNMP_MIB_ITEM("InNoECTPkts", IPSTATS_MIB_NOECTPKTS), SNMP_MIB_ITEM("InECT1Pkts", IPSTATS_MIB_ECT1PKTS), SNMP_MIB_ITEM("InECT0Pkts", IPSTATS_MIB_ECT0PKTS), SNMP_MIB_ITEM("InCEPkts", IPSTATS_MIB_CEPKTS), SNMP_MIB_ITEM("ReasmOverlaps", IPSTATS_MIB_REASM_OVERLAPS), SNMP_MIB_SENTINEL }; static const struct { const char *name; int index; } icmpmibmap[] = { { "DestUnreachs", ICMP_DEST_UNREACH }, { "TimeExcds", ICMP_TIME_EXCEEDED }, { "ParmProbs", ICMP_PARAMETERPROB }, { "SrcQuenchs", ICMP_SOURCE_QUENCH }, { "Redirects", ICMP_REDIRECT }, { "Echos", ICMP_ECHO }, { "EchoReps", ICMP_ECHOREPLY }, { "Timestamps", ICMP_TIMESTAMP }, { "TimestampReps", ICMP_TIMESTAMPREPLY }, { "AddrMasks", ICMP_ADDRESS }, { "AddrMaskReps", ICMP_ADDRESSREPLY }, { NULL, 0 } }; static const struct snmp_mib snmp4_tcp_list[] = { SNMP_MIB_ITEM("RtoAlgorithm", TCP_MIB_RTOALGORITHM), SNMP_MIB_ITEM("RtoMin", TCP_MIB_RTOMIN), SNMP_MIB_ITEM("RtoMax", TCP_MIB_RTOMAX), SNMP_MIB_ITEM("MaxConn", TCP_MIB_MAXCONN), SNMP_MIB_ITEM("ActiveOpens", TCP_MIB_ACTIVEOPENS), SNMP_MIB_ITEM("PassiveOpens", TCP_MIB_PASSIVEOPENS), SNMP_MIB_ITEM("AttemptFails", TCP_MIB_ATTEMPTFAILS), SNMP_MIB_ITEM("EstabResets", TCP_MIB_ESTABRESETS), SNMP_MIB_ITEM("CurrEstab", TCP_MIB_CURRESTAB), SNMP_MIB_ITEM("InSegs", TCP_MIB_INSEGS), SNMP_MIB_ITEM("OutSegs", TCP_MIB_OUTSEGS), SNMP_MIB_ITEM("RetransSegs", TCP_MIB_RETRANSSEGS), SNMP_MIB_ITEM("InErrs", TCP_MIB_INERRS), SNMP_MIB_ITEM("OutRsts", TCP_MIB_OUTRSTS), SNMP_MIB_ITEM("InCsumErrors", TCP_MIB_CSUMERRORS), SNMP_MIB_SENTINEL }; static const struct snmp_mib snmp4_udp_list[] = { SNMP_MIB_ITEM("InDatagrams", UDP_MIB_INDATAGRAMS), SNMP_MIB_ITEM("NoPorts", UDP_MIB_NOPORTS), SNMP_MIB_ITEM("InErrors", UDP_MIB_INERRORS), SNMP_MIB_ITEM("OutDatagrams", UDP_MIB_OUTDATAGRAMS), SNMP_MIB_ITEM("RcvbufErrors", UDP_MIB_RCVBUFERRORS), SNMP_MIB_ITEM("SndbufErrors", UDP_MIB_SNDBUFERRORS), SNMP_MIB_ITEM("InCsumErrors", UDP_MIB_CSUMERRORS), SNMP_MIB_ITEM("IgnoredMulti", UDP_MIB_IGNOREDMULTI), SNMP_MIB_ITEM("MemErrors", UDP_MIB_MEMERRORS), SNMP_MIB_SENTINEL }; static const struct snmp_mib snmp4_net_list[] = { SNMP_MIB_ITEM("SyncookiesSent", LINUX_MIB_SYNCOOKIESSENT), SNMP_MIB_ITEM("SyncookiesRecv", LINUX_MIB_SYNCOOKIESRECV), SNMP_MIB_ITEM("SyncookiesFailed", LINUX_MIB_SYNCOOKIESFAILED), SNMP_MIB_ITEM("EmbryonicRsts", LINUX_MIB_EMBRYONICRSTS), SNMP_MIB_ITEM("PruneCalled", LINUX_MIB_PRUNECALLED), SNMP_MIB_ITEM("RcvPruned", LINUX_MIB_RCVPRUNED), SNMP_MIB_ITEM("OfoPruned", LINUX_MIB_OFOPRUNED), SNMP_MIB_ITEM("OutOfWindowIcmps", LINUX_MIB_OUTOFWINDOWICMPS), SNMP_MIB_ITEM("LockDroppedIcmps", LINUX_MIB_LOCKDROPPEDICMPS), SNMP_MIB_ITEM("ArpFilter", LINUX_MIB_ARPFILTER), SNMP_MIB_ITEM("TW", LINUX_MIB_TIMEWAITED), SNMP_MIB_ITEM("TWRecycled", LINUX_MIB_TIMEWAITRECYCLED), SNMP_MIB_ITEM("TWKilled", LINUX_MIB_TIMEWAITKILLED), SNMP_MIB_ITEM("PAWSActive", LINUX_MIB_PAWSACTIVEREJECTED), SNMP_MIB_ITEM("PAWSEstab", LINUX_MIB_PAWSESTABREJECTED), SNMP_MIB_ITEM("TSEcrRejected", LINUX_MIB_TSECRREJECTED), SNMP_MIB_ITEM("PAWSOldAck", LINUX_MIB_PAWS_OLD_ACK), SNMP_MIB_ITEM("DelayedACKs", LINUX_MIB_DELAYEDACKS), SNMP_MIB_ITEM("DelayedACKLocked", LINUX_MIB_DELAYEDACKLOCKED), SNMP_MIB_ITEM("DelayedACKLost", LINUX_MIB_DELAYEDACKLOST), SNMP_MIB_ITEM("ListenOverflows", LINUX_MIB_LISTENOVERFLOWS), SNMP_MIB_ITEM("ListenDrops", LINUX_MIB_LISTENDROPS), SNMP_MIB_ITEM("TCPHPHits", LINUX_MIB_TCPHPHITS), SNMP_MIB_ITEM("TCPPureAcks", LINUX_MIB_TCPPUREACKS), SNMP_MIB_ITEM("TCPHPAcks", LINUX_MIB_TCPHPACKS), SNMP_MIB_ITEM("TCPRenoRecovery", LINUX_MIB_TCPRENORECOVERY), SNMP_MIB_ITEM("TCPSackRecovery", LINUX_MIB_TCPSACKRECOVERY), SNMP_MIB_ITEM("TCPSACKReneging", LINUX_MIB_TCPSACKRENEGING), SNMP_MIB_ITEM("TCPSACKReorder", LINUX_MIB_TCPSACKREORDER), SNMP_MIB_ITEM("TCPRenoReorder", LINUX_MIB_TCPRENOREORDER), SNMP_MIB_ITEM("TCPTSReorder", LINUX_MIB_TCPTSREORDER), SNMP_MIB_ITEM("TCPFullUndo", LINUX_MIB_TCPFULLUNDO), SNMP_MIB_ITEM("TCPPartialUndo", LINUX_MIB_TCPPARTIALUNDO), SNMP_MIB_ITEM("TCPDSACKUndo", LINUX_MIB_TCPDSACKUNDO), SNMP_MIB_ITEM("TCPLossUndo", LINUX_MIB_TCPLOSSUNDO), SNMP_MIB_ITEM("TCPLostRetransmit", LINUX_MIB_TCPLOSTRETRANSMIT), SNMP_MIB_ITEM("TCPRenoFailures", LINUX_MIB_TCPRENOFAILURES), SNMP_MIB_ITEM("TCPSackFailures", LINUX_MIB_TCPSACKFAILURES), SNMP_MIB_ITEM("TCPLossFailures", LINUX_MIB_TCPLOSSFAILURES), SNMP_MIB_ITEM("TCPFastRetrans", LINUX_MIB_TCPFASTRETRANS), SNMP_MIB_ITEM("TCPSlowStartRetrans", LINUX_MIB_TCPSLOWSTARTRETRANS), SNMP_MIB_ITEM("TCPTimeouts", LINUX_MIB_TCPTIMEOUTS), SNMP_MIB_ITEM("TCPLossProbes", LINUX_MIB_TCPLOSSPROBES), SNMP_MIB_ITEM("TCPLossProbeRecovery", LINUX_MIB_TCPLOSSPROBERECOVERY), SNMP_MIB_ITEM("TCPRenoRecoveryFail", LINUX_MIB_TCPRENORECOVERYFAIL), SNMP_MIB_ITEM("TCPSackRecoveryFail", LINUX_MIB_TCPSACKRECOVERYFAIL), SNMP_MIB_ITEM("TCPRcvCollapsed", LINUX_MIB_TCPRCVCOLLAPSED), SNMP_MIB_ITEM("TCPBacklogCoalesce", LINUX_MIB_TCPBACKLOGCOALESCE), SNMP_MIB_ITEM("TCPDSACKOldSent", LINUX_MIB_TCPDSACKOLDSENT), SNMP_MIB_ITEM("TCPDSACKOfoSent", LINUX_MIB_TCPDSACKOFOSENT), SNMP_MIB_ITEM("TCPDSACKRecv", LINUX_MIB_TCPDSACKRECV), SNMP_MIB_ITEM("TCPDSACKOfoRecv", LINUX_MIB_TCPDSACKOFORECV), SNMP_MIB_ITEM("TCPAbortOnData", LINUX_MIB_TCPABORTONDATA), SNMP_MIB_ITEM("TCPAbortOnClose", LINUX_MIB_TCPABORTONCLOSE), SNMP_MIB_ITEM("TCPAbortOnMemory", LINUX_MIB_TCPABORTONMEMORY), SNMP_MIB_ITEM("TCPAbortOnTimeout", LINUX_MIB_TCPABORTONTIMEOUT), SNMP_MIB_ITEM("TCPAbortOnLinger", LINUX_MIB_TCPABORTONLINGER), SNMP_MIB_ITEM("TCPAbortFailed", LINUX_MIB_TCPABORTFAILED), SNMP_MIB_ITEM("TCPMemoryPressures", LINUX_MIB_TCPMEMORYPRESSURES), SNMP_MIB_ITEM("TCPMemoryPressuresChrono", LINUX_MIB_TCPMEMORYPRESSURESCHRONO), SNMP_MIB_ITEM("TCPSACKDiscard", LINUX_MIB_TCPSACKDISCARD), SNMP_MIB_ITEM("TCPDSACKIgnoredOld", LINUX_MIB_TCPDSACKIGNOREDOLD), SNMP_MIB_ITEM("TCPDSACKIgnoredNoUndo", LINUX_MIB_TCPDSACKIGNOREDNOUNDO), SNMP_MIB_ITEM("TCPSpuriousRTOs", LINUX_MIB_TCPSPURIOUSRTOS), SNMP_MIB_ITEM("TCPMD5NotFound", LINUX_MIB_TCPMD5NOTFOUND), SNMP_MIB_ITEM("TCPMD5Unexpected", LINUX_MIB_TCPMD5UNEXPECTED), SNMP_MIB_ITEM("TCPMD5Failure", LINUX_MIB_TCPMD5FAILURE), SNMP_MIB_ITEM("TCPSackShifted", LINUX_MIB_SACKSHIFTED), SNMP_MIB_ITEM("TCPSackMerged", LINUX_MIB_SACKMERGED), SNMP_MIB_ITEM("TCPSackShiftFallback", LINUX_MIB_SACKSHIFTFALLBACK), SNMP_MIB_ITEM("TCPBacklogDrop", LINUX_MIB_TCPBACKLOGDROP), SNMP_MIB_ITEM("PFMemallocDrop", LINUX_MIB_PFMEMALLOCDROP), SNMP_MIB_ITEM("TCPMinTTLDrop", LINUX_MIB_TCPMINTTLDROP), SNMP_MIB_ITEM("TCPDeferAcceptDrop", LINUX_MIB_TCPDEFERACCEPTDROP), SNMP_MIB_ITEM("IPReversePathFilter", LINUX_MIB_IPRPFILTER), SNMP_MIB_ITEM("TCPTimeWaitOverflow", LINUX_MIB_TCPTIMEWAITOVERFLOW), SNMP_MIB_ITEM("TCPReqQFullDoCookies", LINUX_MIB_TCPREQQFULLDOCOOKIES), SNMP_MIB_ITEM("TCPReqQFullDrop", LINUX_MIB_TCPREQQFULLDROP), SNMP_MIB_ITEM("TCPRetransFail", LINUX_MIB_TCPRETRANSFAIL), SNMP_MIB_ITEM("TCPRcvCoalesce", LINUX_MIB_TCPRCVCOALESCE), SNMP_MIB_ITEM("TCPOFOQueue", LINUX_MIB_TCPOFOQUEUE), SNMP_MIB_ITEM("TCPOFODrop", LINUX_MIB_TCPOFODROP), SNMP_MIB_ITEM("TCPOFOMerge", LINUX_MIB_TCPOFOMERGE), SNMP_MIB_ITEM("TCPChallengeACK", LINUX_MIB_TCPCHALLENGEACK), SNMP_MIB_ITEM("TCPSYNChallenge", LINUX_MIB_TCPSYNCHALLENGE), SNMP_MIB_ITEM("TCPFastOpenActive", LINUX_MIB_TCPFASTOPENACTIVE), SNMP_MIB_ITEM("TCPFastOpenActiveFail", LINUX_MIB_TCPFASTOPENACTIVEFAIL), SNMP_MIB_ITEM("TCPFastOpenPassive", LINUX_MIB_TCPFASTOPENPASSIVE), SNMP_MIB_ITEM("TCPFastOpenPassiveFail", LINUX_MIB_TCPFASTOPENPASSIVEFAIL), SNMP_MIB_ITEM("TCPFastOpenListenOverflow", LINUX_MIB_TCPFASTOPENLISTENOVERFLOW), SNMP_MIB_ITEM("TCPFastOpenCookieReqd", LINUX_MIB_TCPFASTOPENCOOKIEREQD), SNMP_MIB_ITEM("TCPFastOpenBlackhole", LINUX_MIB_TCPFASTOPENBLACKHOLE), SNMP_MIB_ITEM("TCPSpuriousRtxHostQueues", LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES), SNMP_MIB_ITEM("BusyPollRxPackets", LINUX_MIB_BUSYPOLLRXPACKETS), SNMP_MIB_ITEM("TCPAutoCorking", LINUX_MIB_TCPAUTOCORKING), SNMP_MIB_ITEM("TCPFromZeroWindowAdv", LINUX_MIB_TCPFROMZEROWINDOWADV), SNMP_MIB_ITEM("TCPToZeroWindowAdv", LINUX_MIB_TCPTOZEROWINDOWADV), SNMP_MIB_ITEM("TCPWantZeroWindowAdv", LINUX_MIB_TCPWANTZEROWINDOWADV), SNMP_MIB_ITEM("TCPSynRetrans", LINUX_MIB_TCPSYNRETRANS), SNMP_MIB_ITEM("TCPOrigDataSent", LINUX_MIB_TCPORIGDATASENT), SNMP_MIB_ITEM("TCPHystartTrainDetect", LINUX_MIB_TCPHYSTARTTRAINDETECT), SNMP_MIB_ITEM("TCPHystartTrainCwnd", LINUX_MIB_TCPHYSTARTTRAINCWND), SNMP_MIB_ITEM("TCPHystartDelayDetect", LINUX_MIB_TCPHYSTARTDELAYDETECT), SNMP_MIB_ITEM("TCPHystartDelayCwnd", LINUX_MIB_TCPHYSTARTDELAYCWND), SNMP_MIB_ITEM("TCPACKSkippedSynRecv", LINUX_MIB_TCPACKSKIPPEDSYNRECV), SNMP_MIB_ITEM("TCPACKSkippedPAWS", LINUX_MIB_TCPACKSKIPPEDPAWS), SNMP_MIB_ITEM("TCPACKSkippedSeq", LINUX_MIB_TCPACKSKIPPEDSEQ), SNMP_MIB_ITEM("TCPACKSkippedFinWait2", LINUX_MIB_TCPACKSKIPPEDFINWAIT2), SNMP_MIB_ITEM("TCPACKSkippedTimeWait", LINUX_MIB_TCPACKSKIPPEDTIMEWAIT), SNMP_MIB_ITEM("TCPACKSkippedChallenge", LINUX_MIB_TCPACKSKIPPEDCHALLENGE), SNMP_MIB_ITEM("TCPWinProbe", LINUX_MIB_TCPWINPROBE), SNMP_MIB_ITEM("TCPKeepAlive", LINUX_MIB_TCPKEEPALIVE), SNMP_MIB_ITEM("TCPMTUPFail", LINUX_MIB_TCPMTUPFAIL), SNMP_MIB_ITEM("TCPMTUPSuccess", LINUX_MIB_TCPMTUPSUCCESS), SNMP_MIB_ITEM("TCPDelivered", LINUX_MIB_TCPDELIVERED), SNMP_MIB_ITEM("TCPDeliveredCE", LINUX_MIB_TCPDELIVEREDCE), SNMP_MIB_ITEM("TCPAckCompressed", LINUX_MIB_TCPACKCOMPRESSED), SNMP_MIB_ITEM("TCPZeroWindowDrop", LINUX_MIB_TCPZEROWINDOWDROP), SNMP_MIB_ITEM("TCPRcvQDrop", LINUX_MIB_TCPRCVQDROP), SNMP_MIB_ITEM("TCPWqueueTooBig", LINUX_MIB_TCPWQUEUETOOBIG), SNMP_MIB_ITEM("TCPFastOpenPassiveAltKey", LINUX_MIB_TCPFASTOPENPASSIVEALTKEY), SNMP_MIB_ITEM("TcpTimeoutRehash", LINUX_MIB_TCPTIMEOUTREHASH), SNMP_MIB_ITEM("TcpDuplicateDataRehash", LINUX_MIB_TCPDUPLICATEDATAREHASH), SNMP_MIB_ITEM("TCPDSACKRecvSegs", LINUX_MIB_TCPDSACKRECVSEGS), SNMP_MIB_ITEM("TCPDSACKIgnoredDubious", LINUX_MIB_TCPDSACKIGNOREDDUBIOUS), SNMP_MIB_ITEM("TCPMigrateReqSuccess", LINUX_MIB_TCPMIGRATEREQSUCCESS), SNMP_MIB_ITEM("TCPMigrateReqFailure", LINUX_MIB_TCPMIGRATEREQFAILURE), SNMP_MIB_ITEM("TCPPLBRehash", LINUX_MIB_TCPPLBREHASH), SNMP_MIB_ITEM("TCPAORequired", LINUX_MIB_TCPAOREQUIRED), SNMP_MIB_ITEM("TCPAOBad", LINUX_MIB_TCPAOBAD), SNMP_MIB_ITEM("TCPAOKeyNotFound", LINUX_MIB_TCPAOKEYNOTFOUND), SNMP_MIB_ITEM("TCPAOGood", LINUX_MIB_TCPAOGOOD), SNMP_MIB_ITEM("TCPAODroppedIcmps", LINUX_MIB_TCPAODROPPEDICMPS), SNMP_MIB_SENTINEL }; static void icmpmsg_put_line(struct seq_file *seq, unsigned long *vals, unsigned short *type, int count) { int j; if (count) { seq_puts(seq, "\nIcmpMsg:"); for (j = 0; j < count; ++j) seq_printf(seq, " %sType%u", type[j] & 0x100 ? "Out" : "In", type[j] & 0xff); seq_puts(seq, "\nIcmpMsg:"); for (j = 0; j < count; ++j) seq_printf(seq, " %lu", vals[j]); } } static void icmpmsg_put(struct seq_file *seq) { #define PERLINE 16 int i, count; unsigned short type[PERLINE]; unsigned long vals[PERLINE], val; struct net *net = seq->private; count = 0; for (i = 0; i < ICMPMSG_MIB_MAX; i++) { val = atomic_long_read(&net->mib.icmpmsg_statistics->mibs[i]); if (val) { type[count] = i; vals[count++] = val; } if (count == PERLINE) { icmpmsg_put_line(seq, vals, type, count); count = 0; } } icmpmsg_put_line(seq, vals, type, count); #undef PERLINE } static void icmp_put(struct seq_file *seq) { int i; struct net *net = seq->private; atomic_long_t *ptr = net->mib.icmpmsg_statistics->mibs; seq_puts(seq, "\nIcmp: InMsgs InErrors InCsumErrors"); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " In%s", icmpmibmap[i].name); seq_puts(seq, " OutMsgs OutErrors OutRateLimitGlobal OutRateLimitHost"); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " Out%s", icmpmibmap[i].name); seq_printf(seq, "\nIcmp: %lu %lu %lu", snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_INMSGS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_INERRORS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_CSUMERRORS)); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " %lu", atomic_long_read(ptr + icmpmibmap[i].index)); seq_printf(seq, " %lu %lu %lu %lu", snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_OUTMSGS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_OUTERRORS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_RATELIMITGLOBAL), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_RATELIMITHOST)); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " %lu", atomic_long_read(ptr + (icmpmibmap[i].index | 0x100))); } /* * Called from the PROCfs module. This outputs /proc/net/snmp. */ static int snmp_seq_show_ipstats(struct seq_file *seq, void *v) { struct net *net = seq->private; u64 buff64[IPSTATS_MIB_MAX]; int i; memset(buff64, 0, IPSTATS_MIB_MAX * sizeof(u64)); seq_puts(seq, "Ip: Forwarding DefaultTTL"); for (i = 0; snmp4_ipstats_list[i].name; i++) seq_printf(seq, " %s", snmp4_ipstats_list[i].name); seq_printf(seq, "\nIp: %d %d", IPV4_DEVCONF_ALL_RO(net, FORWARDING) ? 1 : 2, READ_ONCE(net->ipv4.sysctl_ip_default_ttl)); BUILD_BUG_ON(offsetof(struct ipstats_mib, mibs) != 0); snmp_get_cpu_field64_batch(buff64, snmp4_ipstats_list, net->mib.ip_statistics, offsetof(struct ipstats_mib, syncp)); for (i = 0; snmp4_ipstats_list[i].name; i++) seq_printf(seq, " %llu", buff64[i]); return 0; } static int snmp_seq_show_tcp_udp(struct seq_file *seq, void *v) { unsigned long buff[TCPUDP_MIB_MAX]; struct net *net = seq->private; int i; memset(buff, 0, TCPUDP_MIB_MAX * sizeof(unsigned long)); seq_puts(seq, "\nTcp:"); for (i = 0; snmp4_tcp_list[i].name; i++) seq_printf(seq, " %s", snmp4_tcp_list[i].name); seq_puts(seq, "\nTcp:"); snmp_get_cpu_field_batch(buff, snmp4_tcp_list, net->mib.tcp_statistics); for (i = 0; snmp4_tcp_list[i].name; i++) { /* MaxConn field is signed, RFC 2012 */ if (snmp4_tcp_list[i].entry == TCP_MIB_MAXCONN) seq_printf(seq, " %ld", buff[i]); else seq_printf(seq, " %lu", buff[i]); } memset(buff, 0, TCPUDP_MIB_MAX * sizeof(unsigned long)); snmp_get_cpu_field_batch(buff, snmp4_udp_list, net->mib.udp_statistics); seq_puts(seq, "\nUdp:"); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %s", snmp4_udp_list[i].name); seq_puts(seq, "\nUdp:"); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %lu", buff[i]); memset(buff, 0, TCPUDP_MIB_MAX * sizeof(unsigned long)); /* the UDP and UDP-Lite MIBs are the same */ seq_puts(seq, "\nUdpLite:"); snmp_get_cpu_field_batch(buff, snmp4_udp_list, net->mib.udplite_statistics); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %s", snmp4_udp_list[i].name); seq_puts(seq, "\nUdpLite:"); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %lu", buff[i]); seq_putc(seq, '\n'); return 0; } static int snmp_seq_show(struct seq_file *seq, void *v) { snmp_seq_show_ipstats(seq, v); icmp_put(seq); /* RFC 2011 compatibility */ icmpmsg_put(seq); snmp_seq_show_tcp_udp(seq, v); return 0; } /* * Output /proc/net/netstat */ static int netstat_seq_show(struct seq_file *seq, void *v) { const int ip_cnt = ARRAY_SIZE(snmp4_ipextstats_list) - 1; const int tcp_cnt = ARRAY_SIZE(snmp4_net_list) - 1; struct net *net = seq->private; unsigned long *buff; int i; seq_puts(seq, "TcpExt:"); for (i = 0; i < tcp_cnt; i++) seq_printf(seq, " %s", snmp4_net_list[i].name); seq_puts(seq, "\nTcpExt:"); buff = kzalloc(max(tcp_cnt * sizeof(long), ip_cnt * sizeof(u64)), GFP_KERNEL); if (buff) { snmp_get_cpu_field_batch(buff, snmp4_net_list, net->mib.net_statistics); for (i = 0; i < tcp_cnt; i++) seq_printf(seq, " %lu", buff[i]); } else { for (i = 0; i < tcp_cnt; i++) seq_printf(seq, " %lu", snmp_fold_field(net->mib.net_statistics, snmp4_net_list[i].entry)); } seq_puts(seq, "\nIpExt:"); for (i = 0; i < ip_cnt; i++) seq_printf(seq, " %s", snmp4_ipextstats_list[i].name); seq_puts(seq, "\nIpExt:"); if (buff) { u64 *buff64 = (u64 *)buff; memset(buff64, 0, ip_cnt * sizeof(u64)); snmp_get_cpu_field64_batch(buff64, snmp4_ipextstats_list, net->mib.ip_statistics, offsetof(struct ipstats_mib, syncp)); for (i = 0; i < ip_cnt; i++) seq_printf(seq, " %llu", buff64[i]); } else { for (i = 0; i < ip_cnt; i++) seq_printf(seq, " %llu", snmp_fold_field64(net->mib.ip_statistics, snmp4_ipextstats_list[i].entry, offsetof(struct ipstats_mib, syncp))); } kfree(buff); seq_putc(seq, '\n'); mptcp_seq_show(seq); return 0; } static __net_init int ip_proc_init_net(struct net *net) { if (!proc_create_net_single("sockstat", 0444, net->proc_net, sockstat_seq_show, NULL)) goto out_sockstat; if (!proc_create_net_single("netstat", 0444, net->proc_net, netstat_seq_show, NULL)) goto out_netstat; if (!proc_create_net_single("snmp", 0444, net->proc_net, snmp_seq_show, NULL)) goto out_snmp; return 0; out_snmp: remove_proc_entry("netstat", net->proc_net); out_netstat: remove_proc_entry("sockstat", net->proc_net); out_sockstat: return -ENOMEM; } static __net_exit void ip_proc_exit_net(struct net *net) { remove_proc_entry("snmp", net->proc_net); remove_proc_entry("netstat", net->proc_net); remove_proc_entry("sockstat", net->proc_net); } static __net_initdata struct pernet_operations ip_proc_ops = { .init = ip_proc_init_net, .exit = ip_proc_exit_net, }; int __init ip_misc_proc_init(void) { return register_pernet_subsys(&ip_proc_ops); }
9 90 2 10 64 58 3 56 289 290 53 10 61 38 239 25 53 3 53 1 90 61 1 2 1 57 56 1 57 2 95 3 14 9 4 9 4 7 5 3 3 1 2 12 786 2 5 48 1 449 3866 351 2685 3845 3898 67 67 60 60 60 67 295 2 1 3 1 2 287 21 5 55 2 53 29 26 55 38 17 55 87 4 84 82 24 58 5 77 31 59 3 54 46 36 1 53 53 17 36 53 17 36 22 31 35 6 29 786 782 4 785 1 277 786 242 241 6 7 233 223 17 17 235 21 226 2 2 11 1 11 1 231 1 1 1 1 2 2 2 1 1 2 1 1 1 3 4 5 2 1155 15 42 1 43 16 823 13 12 2 233 232 2 12 14 2582 2582 1097 408 5 798 825 786 67 32 60 3898 7 3895 3898 3900 111 8 111 58 53 67 51 51 1 4 3 67 4 4 13 137 1 65 69 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 1993 by Theodore Ts'o. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/stat.h> #include <linux/errno.h> #include <linux/major.h> #include <linux/wait.h> #include <linux/blkpg.h> #include <linux/init.h> #include <linux/swap.h> #include <linux/slab.h> #include <linux/compat.h> #include <linux/suspend.h> #include <linux/freezer.h> #include <linux/mutex.h> #include <linux/writeback.h> #include <linux/completion.h> #include <linux/highmem.h> #include <linux/splice.h> #include <linux/sysfs.h> #include <linux/miscdevice.h> #include <linux/falloc.h> #include <linux/uio.h> #include <linux/ioprio.h> #include <linux/blk-cgroup.h> #include <linux/sched/mm.h> #include <linux/statfs.h> #include <linux/uaccess.h> #include <linux/blk-mq.h> #include <linux/spinlock.h> #include <uapi/linux/loop.h> /* Possible states of device */ enum { Lo_unbound, Lo_bound, Lo_rundown, Lo_deleting, }; struct loop_device { int lo_number; loff_t lo_offset; loff_t lo_sizelimit; int lo_flags; char lo_file_name[LO_NAME_SIZE]; struct file *lo_backing_file; unsigned int lo_min_dio_size; struct block_device *lo_device; gfp_t old_gfp_mask; spinlock_t lo_lock; int lo_state; spinlock_t lo_work_lock; struct workqueue_struct *workqueue; struct work_struct rootcg_work; struct list_head rootcg_cmd_list; struct list_head idle_worker_list; struct rb_root worker_tree; struct timer_list timer; bool sysfs_inited; struct request_queue *lo_queue; struct blk_mq_tag_set tag_set; struct gendisk *lo_disk; struct mutex lo_mutex; bool idr_visible; }; struct loop_cmd { struct list_head list_entry; bool use_aio; /* use AIO interface to handle I/O */ atomic_t ref; /* only for aio */ long ret; struct kiocb iocb; struct bio_vec *bvec; struct cgroup_subsys_state *blkcg_css; struct cgroup_subsys_state *memcg_css; }; #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) #define LOOP_DEFAULT_HW_Q_DEPTH 128 static DEFINE_IDR(loop_index_idr); static DEFINE_MUTEX(loop_ctl_mutex); static DEFINE_MUTEX(loop_validate_mutex); /** * loop_global_lock_killable() - take locks for safe loop_validate_file() test * * @lo: struct loop_device * @global: true if @lo is about to bind another "struct loop_device", false otherwise * * Returns 0 on success, -EINTR otherwise. * * Since loop_validate_file() traverses on other "struct loop_device" if * is_loop_device() is true, we need a global lock for serializing concurrent * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. */ static int loop_global_lock_killable(struct loop_device *lo, bool global) { int err; if (global) { err = mutex_lock_killable(&loop_validate_mutex); if (err) return err; } err = mutex_lock_killable(&lo->lo_mutex); if (err && global) mutex_unlock(&loop_validate_mutex); return err; } /** * loop_global_unlock() - release locks taken by loop_global_lock_killable() * * @lo: struct loop_device * @global: true if @lo was about to bind another "struct loop_device", false otherwise */ static void loop_global_unlock(struct loop_device *lo, bool global) { mutex_unlock(&lo->lo_mutex); if (global) mutex_unlock(&loop_validate_mutex); } static int max_part; static int part_shift; static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) { loff_t loopsize; /* Compute loopsize in bytes */ loopsize = i_size_read(file->f_mapping->host); if (offset > 0) loopsize -= offset; /* offset is beyond i_size, weird but possible */ if (loopsize < 0) return 0; if (sizelimit > 0 && sizelimit < loopsize) loopsize = sizelimit; /* * Unfortunately, if we want to do I/O on the device, * the number of 512-byte sectors has to fit into a sector_t. */ return loopsize >> 9; } static loff_t get_loop_size(struct loop_device *lo, struct file *file) { return get_size(lo->lo_offset, lo->lo_sizelimit, file); } /* * We support direct I/O only if lo_offset is aligned with the logical I/O size * of backing device, and the logical block size of loop is bigger than that of * the backing device. */ static bool lo_can_use_dio(struct loop_device *lo) { if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) return false; if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) return false; if (lo->lo_offset & (lo->lo_min_dio_size - 1)) return false; return true; } /* * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently * disabled when the device block size is too small or the offset is unaligned. * * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and * not the originally passed in one. */ static inline void loop_update_dio(struct loop_device *lo) { lockdep_assert_held(&lo->lo_mutex); WARN_ON_ONCE(lo->lo_state == Lo_bound && lo->lo_queue->mq_freeze_depth == 0); if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; } /** * loop_set_size() - sets device size and notifies userspace * @lo: struct loop_device to set the size for * @size: new size of the loop device * * Callers must validate that the size passed into this function fits into * a sector_t, eg using loop_validate_size() */ static void loop_set_size(struct loop_device *lo, loff_t size) { if (!set_capacity_and_notify(lo->lo_disk, size)) kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); } static void loop_clear_limits(struct loop_device *lo, int mode) { struct queue_limits lim = queue_limits_start_update(lo->lo_queue); if (mode & FALLOC_FL_ZERO_RANGE) lim.max_write_zeroes_sectors = 0; if (mode & FALLOC_FL_PUNCH_HOLE) { lim.max_hw_discard_sectors = 0; lim.discard_granularity = 0; } /* * XXX: this updates the queue limits without freezing the queue, which * is against the locking protocol and dangerous. But we can't just * freeze the queue as we're inside the ->queue_rq method here. So this * should move out into a workqueue unless we get the file operations to * advertise if they support specific fallocate operations. */ queue_limits_commit_update(lo->lo_queue, &lim); } static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, int mode) { /* * We use fallocate to manipulate the space mappings used by the image * a.k.a. discard/zerorange. */ struct file *file = lo->lo_backing_file; int ret; mode |= FALLOC_FL_KEEP_SIZE; if (!bdev_max_discard_sectors(lo->lo_device)) return -EOPNOTSUPP; ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) return -EIO; /* * We initially configure the limits in a hope that fallocate is * supported and clear them here if that turns out not to be true. */ if (unlikely(ret == -EOPNOTSUPP)) loop_clear_limits(lo, mode); return ret; } static int lo_req_flush(struct loop_device *lo, struct request *rq) { int ret = vfs_fsync(lo->lo_backing_file, 0); if (unlikely(ret && ret != -EINVAL)) ret = -EIO; return ret; } static void lo_complete_rq(struct request *rq) { struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); blk_status_t ret = BLK_STS_OK; if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || req_op(rq) != REQ_OP_READ) { if (cmd->ret < 0) ret = errno_to_blk_status(cmd->ret); goto end_io; } /* * Short READ - if we got some data, advance our request and * retry it. If we got no data, end the rest with EIO. */ if (cmd->ret) { blk_update_request(rq, BLK_STS_OK, cmd->ret); cmd->ret = 0; blk_mq_requeue_request(rq, true); } else { struct bio *bio = rq->bio; while (bio) { zero_fill_bio(bio); bio = bio->bi_next; } ret = BLK_STS_IOERR; end_io: blk_mq_end_request(rq, ret); } } static void lo_rw_aio_do_completion(struct loop_cmd *cmd) { struct request *rq = blk_mq_rq_from_pdu(cmd); if (!atomic_dec_and_test(&cmd->ref)) return; kfree(cmd->bvec); cmd->bvec = NULL; if (likely(!blk_should_fake_timeout(rq->q))) blk_mq_complete_request(rq); } static void lo_rw_aio_complete(struct kiocb *iocb, long ret) { struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); cmd->ret = ret; lo_rw_aio_do_completion(cmd); } static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, loff_t pos, int rw) { struct iov_iter iter; struct req_iterator rq_iter; struct bio_vec *bvec; struct request *rq = blk_mq_rq_from_pdu(cmd); struct bio *bio = rq->bio; struct file *file = lo->lo_backing_file; struct bio_vec tmp; unsigned int offset; int nr_bvec = 0; int ret; rq_for_each_bvec(tmp, rq, rq_iter) nr_bvec++; if (rq->bio != rq->biotail) { bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), GFP_NOIO); if (!bvec) return -EIO; cmd->bvec = bvec; /* * The bios of the request may be started from the middle of * the 'bvec' because of bio splitting, so we can't directly * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec * API will take care of all details for us. */ rq_for_each_bvec(tmp, rq, rq_iter) { *bvec = tmp; bvec++; } bvec = cmd->bvec; offset = 0; } else { /* * Same here, this bio may be started from the middle of the * 'bvec' because of bio splitting, so offset from the bvec * must be passed to iov iterator */ offset = bio->bi_iter.bi_bvec_done; bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } atomic_set(&cmd->ref, 2); iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); iter.iov_offset = offset; cmd->iocb.ki_pos = pos; cmd->iocb.ki_filp = file; cmd->iocb.ki_ioprio = req_get_ioprio(rq); if (cmd->use_aio) { cmd->iocb.ki_complete = lo_rw_aio_complete; cmd->iocb.ki_flags = IOCB_DIRECT; } else { cmd->iocb.ki_complete = NULL; cmd->iocb.ki_flags = 0; } if (rw == ITER_SOURCE) ret = file->f_op->write_iter(&cmd->iocb, &iter); else ret = file->f_op->read_iter(&cmd->iocb, &iter); lo_rw_aio_do_completion(cmd); if (ret != -EIOCBQUEUED) lo_rw_aio_complete(&cmd->iocb, ret); return -EIOCBQUEUED; } static int do_req_filebacked(struct loop_device *lo, struct request *rq) { struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; switch (req_op(rq)) { case REQ_OP_FLUSH: return lo_req_flush(lo, rq); case REQ_OP_WRITE_ZEROES: /* * If the caller doesn't want deallocation, call zeroout to * write zeroes the range. Otherwise, punch them out. */ return lo_fallocate(lo, rq, pos, (rq->cmd_flags & REQ_NOUNMAP) ? FALLOC_FL_ZERO_RANGE : FALLOC_FL_PUNCH_HOLE); case REQ_OP_DISCARD: return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); case REQ_OP_WRITE: return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); case REQ_OP_READ: return lo_rw_aio(lo, cmd, pos, ITER_DEST); default: WARN_ON_ONCE(1); return -EIO; } } static void loop_reread_partitions(struct loop_device *lo) { int rc; mutex_lock(&lo->lo_disk->open_mutex); rc = bdev_disk_changed(lo->lo_disk, false); mutex_unlock(&lo->lo_disk->open_mutex); if (rc) pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", __func__, lo->lo_number, lo->lo_file_name, rc); } static unsigned int loop_query_min_dio_size(struct loop_device *lo) { struct file *file = lo->lo_backing_file; struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; struct kstat st; /* * Use the minimal dio alignment of the file system if provided. */ if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && (st.result_mask & STATX_DIOALIGN)) return st.dio_offset_align; /* * In a perfect world this wouldn't be needed, but as of Linux 6.13 only * a handful of file systems support the STATX_DIOALIGN flag. */ if (sb_bdev) return bdev_logical_block_size(sb_bdev); return SECTOR_SIZE; } static inline int is_loop_device(struct file *file) { struct inode *i = file->f_mapping->host; return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; } static int loop_validate_file(struct file *file, struct block_device *bdev) { struct inode *inode = file->f_mapping->host; struct file *f = file; /* Avoid recursion */ while (is_loop_device(f)) { struct loop_device *l; lockdep_assert_held(&loop_validate_mutex); if (f->f_mapping->host->i_rdev == bdev->bd_dev) return -EBADF; l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; if (l->lo_state != Lo_bound) return -EINVAL; /* Order wrt setting lo->lo_backing_file in loop_configure(). */ rmb(); f = l->lo_backing_file; } if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) return -EINVAL; return 0; } static void loop_assign_backing_file(struct loop_device *lo, struct file *file) { lo->lo_backing_file = file; lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); mapping_set_gfp_mask(file->f_mapping, lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); if (lo->lo_backing_file->f_flags & O_DIRECT) lo->lo_flags |= LO_FLAGS_DIRECT_IO; lo->lo_min_dio_size = loop_query_min_dio_size(lo); } static int loop_check_backing_file(struct file *file) { if (!file->f_op->read_iter) return -EINVAL; if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) return -EINVAL; return 0; } /* * loop_change_fd switched the backing store of a loopback device to * a new file. This is useful for operating system installers to free up * the original file and in High Availability environments to switch to * an alternative location for the content in case of server meltdown. * This can only work if the loop device is used read-only, and if the * new backing store is the same size and type as the old backing store. */ static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, unsigned int arg) { struct file *file = fget(arg); struct file *old_file; unsigned int memflags; int error; bool partscan; bool is_loop; if (!file) return -EBADF; error = loop_check_backing_file(file); if (error) return error; /* suppress uevents while reconfiguring the device */ dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); is_loop = is_loop_device(file); error = loop_global_lock_killable(lo, is_loop); if (error) goto out_putf; error = -ENXIO; if (lo->lo_state != Lo_bound) goto out_err; /* the loop device has to be read-only */ error = -EINVAL; if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) goto out_err; error = loop_validate_file(file, bdev); if (error) goto out_err; old_file = lo->lo_backing_file; error = -EINVAL; /* size of the new backing store needs to be the same */ if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) goto out_err; /* * We might switch to direct I/O mode for the loop device, write back * all dirty data the page cache now that so that the individual I/O * operations don't have to do that. */ vfs_fsync(file, 0); /* and ... switch */ disk_force_media_change(lo->lo_disk); memflags = blk_mq_freeze_queue(lo->lo_queue); mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); loop_assign_backing_file(lo, file); loop_update_dio(lo); blk_mq_unfreeze_queue(lo->lo_queue, memflags); partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; loop_global_unlock(lo, is_loop); /* * Flush loop_validate_file() before fput(), for l->lo_backing_file * might be pointing at old_file which might be the last reference. */ if (!is_loop) { mutex_lock(&loop_validate_mutex); mutex_unlock(&loop_validate_mutex); } /* * We must drop file reference outside of lo_mutex as dropping * the file ref can take open_mutex which creates circular locking * dependency. */ fput(old_file); dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); if (partscan) loop_reread_partitions(lo); error = 0; done: kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); return error; out_err: loop_global_unlock(lo, is_loop); out_putf: fput(file); dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); goto done; } /* loop sysfs attributes */ static ssize_t loop_attr_show(struct device *dev, char *page, ssize_t (*callback)(struct loop_device *, char *)) { struct gendisk *disk = dev_to_disk(dev); struct loop_device *lo = disk->private_data; return callback(lo, page); } #define LOOP_ATTR_RO(_name) \ static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ static ssize_t loop_attr_do_show_##_name(struct device *d, \ struct device_attribute *attr, char *b) \ { \ return loop_attr_show(d, b, loop_attr_##_name##_show); \ } \ static struct device_attribute loop_attr_##_name = \ __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) { ssize_t ret; char *p = NULL; spin_lock_irq(&lo->lo_lock); if (lo->lo_backing_file) p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); spin_unlock_irq(&lo->lo_lock); if (IS_ERR_OR_NULL(p)) ret = PTR_ERR(p); else { ret = strlen(p); memmove(buf, p, ret); buf[ret++] = '\n'; buf[ret] = 0; } return ret; } static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) { return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); } static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) { return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); } static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) { int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); } static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) { int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); } static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) { int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); } LOOP_ATTR_RO(backing_file); LOOP_ATTR_RO(offset); LOOP_ATTR_RO(sizelimit); LOOP_ATTR_RO(autoclear); LOOP_ATTR_RO(partscan); LOOP_ATTR_RO(dio); static struct attribute *loop_attrs[] = { &loop_attr_backing_file.attr, &loop_attr_offset.attr, &loop_attr_sizelimit.attr, &loop_attr_autoclear.attr, &loop_attr_partscan.attr, &loop_attr_dio.attr, NULL, }; static struct attribute_group loop_attribute_group = { .name = "loop", .attrs= loop_attrs, }; static void loop_sysfs_init(struct loop_device *lo) { lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, &loop_attribute_group); } static void loop_sysfs_exit(struct loop_device *lo) { if (lo->sysfs_inited) sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, &loop_attribute_group); } static void loop_get_discard_config(struct loop_device *lo, u32 *granularity, u32 *max_discard_sectors) { struct file *file = lo->lo_backing_file; struct inode *inode = file->f_mapping->host; struct kstatfs sbuf; /* * If the backing device is a block device, mirror its zeroing * capability. Set the discard sectors to the block device's zeroing * capabilities because loop discards result in blkdev_issue_zeroout(), * not blkdev_issue_discard(). This maintains consistent behavior with * file-backed loop devices: discarded regions read back as zero. */ if (S_ISBLK(inode->i_mode)) { struct block_device *bdev = I_BDEV(inode); *max_discard_sectors = bdev_write_zeroes_sectors(bdev); *granularity = bdev_discard_granularity(bdev); /* * We use punch hole to reclaim the free space used by the * image a.k.a. discard. */ } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { *max_discard_sectors = UINT_MAX >> 9; *granularity = sbuf.f_bsize; } } struct loop_worker { struct rb_node rb_node; struct work_struct work; struct list_head cmd_list; struct list_head idle_list; struct loop_device *lo; struct cgroup_subsys_state *blkcg_css; unsigned long last_ran_at; }; static void loop_workfn(struct work_struct *work); #ifdef CONFIG_BLK_CGROUP static inline int queue_on_root_worker(struct cgroup_subsys_state *css) { return !css || css == blkcg_root_css; } #else static inline int queue_on_root_worker(struct cgroup_subsys_state *css) { return !css; } #endif static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) { struct rb_node **node, *parent = NULL; struct loop_worker *cur_worker, *worker = NULL; struct work_struct *work; struct list_head *cmd_list; spin_lock_irq(&lo->lo_work_lock); if (queue_on_root_worker(cmd->blkcg_css)) goto queue_work; node = &lo->worker_tree.rb_node; while (*node) { parent = *node; cur_worker = container_of(*node, struct loop_worker, rb_node); if (cur_worker->blkcg_css == cmd->blkcg_css) { worker = cur_worker; break; } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { node = &(*node)->rb_left; } else { node = &(*node)->rb_right; } } if (worker) goto queue_work; worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); /* * In the event we cannot allocate a worker, just queue on the * rootcg worker and issue the I/O as the rootcg */ if (!worker) { cmd->blkcg_css = NULL; if (cmd->memcg_css) css_put(cmd->memcg_css); cmd->memcg_css = NULL; goto queue_work; } worker->blkcg_css = cmd->blkcg_css; css_get(worker->blkcg_css); INIT_WORK(&worker->work, loop_workfn); INIT_LIST_HEAD(&worker->cmd_list); INIT_LIST_HEAD(&worker->idle_list); worker->lo = lo; rb_link_node(&worker->rb_node, parent, node); rb_insert_color(&worker->rb_node, &lo->worker_tree); queue_work: if (worker) { /* * We need to remove from the idle list here while * holding the lock so that the idle timer doesn't * free the worker */ if (!list_empty(&worker->idle_list)) list_del_init(&worker->idle_list); work = &worker->work; cmd_list = &worker->cmd_list; } else { work = &lo->rootcg_work; cmd_list = &lo->rootcg_cmd_list; } list_add_tail(&cmd->list_entry, cmd_list); queue_work(lo->workqueue, work); spin_unlock_irq(&lo->lo_work_lock); } static void loop_set_timer(struct loop_device *lo) { timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); } static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) { struct loop_worker *pos, *worker; spin_lock_irq(&lo->lo_work_lock); list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, idle_list) { if (!delete_all && time_is_after_jiffies(worker->last_ran_at + LOOP_IDLE_WORKER_TIMEOUT)) break; list_del(&worker->idle_list); rb_erase(&worker->rb_node, &lo->worker_tree); css_put(worker->blkcg_css); kfree(worker); } if (!list_empty(&lo->idle_worker_list)) loop_set_timer(lo); spin_unlock_irq(&lo->lo_work_lock); } static void loop_free_idle_workers_timer(struct timer_list *timer) { struct loop_device *lo = container_of(timer, struct loop_device, timer); return loop_free_idle_workers(lo, false); } /** * loop_set_status_from_info - configure device from loop_info * @lo: struct loop_device to configure * @info: struct loop_info64 to configure the device with * * Configures the loop device parameters according to the passed * in loop_info64 configuration. */ static int loop_set_status_from_info(struct loop_device *lo, const struct loop_info64 *info) { if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) return -EINVAL; switch (info->lo_encrypt_type) { case LO_CRYPT_NONE: break; case LO_CRYPT_XOR: pr_warn("support for the xor transformation has been removed.\n"); return -EINVAL; case LO_CRYPT_CRYPTOAPI: pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); return -EINVAL; default: return -EINVAL; } /* Avoid assigning overflow values */ if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) return -EOVERFLOW; lo->lo_offset = info->lo_offset; lo->lo_sizelimit = info->lo_sizelimit; memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); lo->lo_file_name[LO_NAME_SIZE-1] = 0; return 0; } static unsigned int loop_default_blocksize(struct loop_device *lo) { /* In case of direct I/O, match underlying minimum I/O size */ if (lo->lo_flags & LO_FLAGS_DIRECT_IO) return lo->lo_min_dio_size; return SECTOR_SIZE; } static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, unsigned int bsize) { struct file *file = lo->lo_backing_file; struct inode *inode = file->f_mapping->host; struct block_device *backing_bdev = NULL; u32 granularity = 0, max_discard_sectors = 0; if (S_ISBLK(inode->i_mode)) backing_bdev = I_BDEV(inode); else if (inode->i_sb->s_bdev) backing_bdev = inode->i_sb->s_bdev; if (!bsize) bsize = loop_default_blocksize(lo); loop_get_discard_config(lo, &granularity, &max_discard_sectors); lim->logical_block_size = bsize; lim->physical_block_size = bsize; lim->io_min = bsize; lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) lim->features |= BLK_FEAT_WRITE_CACHE; if (backing_bdev && !bdev_nonrot(backing_bdev)) lim->features |= BLK_FEAT_ROTATIONAL; lim->max_hw_discard_sectors = max_discard_sectors; lim->max_write_zeroes_sectors = max_discard_sectors; if (max_discard_sectors) lim->discard_granularity = granularity; else lim->discard_granularity = 0; } static int loop_configure(struct loop_device *lo, blk_mode_t mode, struct block_device *bdev, const struct loop_config *config) { struct file *file = fget(config->fd); struct queue_limits lim; int error; loff_t size; bool partscan; bool is_loop; if (!file) return -EBADF; error = loop_check_backing_file(file); if (error) return error; is_loop = is_loop_device(file); /* This is safe, since we have a reference from open(). */ __module_get(THIS_MODULE); /* * If we don't hold exclusive handle for the device, upgrade to it * here to avoid changing device under exclusive owner. */ if (!(mode & BLK_OPEN_EXCL)) { error = bd_prepare_to_claim(bdev, loop_configure, NULL); if (error) goto out_putf; } error = loop_global_lock_killable(lo, is_loop); if (error) goto out_bdev; error = -EBUSY; if (lo->lo_state != Lo_unbound) goto out_unlock; error = loop_validate_file(file, bdev); if (error) goto out_unlock; if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { error = -EINVAL; goto out_unlock; } error = loop_set_status_from_info(lo, &config->info); if (error) goto out_unlock; lo->lo_flags = config->info.lo_flags; if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || !file->f_op->write_iter) lo->lo_flags |= LO_FLAGS_READ_ONLY; if (!lo->workqueue) { lo->workqueue = alloc_workqueue("loop%d", WQ_UNBOUND | WQ_FREEZABLE, 0, lo->lo_number); if (!lo->workqueue) { error = -ENOMEM; goto out_unlock; } } /* suppress uevents while reconfiguring the device */ dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); disk_force_media_change(lo->lo_disk); set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); lo->lo_device = bdev; loop_assign_backing_file(lo, file); lim = queue_limits_start_update(lo->lo_queue); loop_update_limits(lo, &lim, config->block_size); /* No need to freeze the queue as the device isn't bound yet. */ error = queue_limits_commit_update(lo->lo_queue, &lim); if (error) goto out_unlock; /* * We might switch to direct I/O mode for the loop device, write back * all dirty data the page cache now that so that the individual I/O * operations don't have to do that. */ vfs_fsync(file, 0); loop_update_dio(lo); loop_sysfs_init(lo); size = get_loop_size(lo, file); loop_set_size(lo, size); /* Order wrt reading lo_state in loop_validate_file(). */ wmb(); lo->lo_state = Lo_bound; if (part_shift) lo->lo_flags |= LO_FLAGS_PARTSCAN; partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; if (partscan) clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); loop_global_unlock(lo, is_loop); if (partscan) loop_reread_partitions(lo); if (!(mode & BLK_OPEN_EXCL)) bd_abort_claiming(bdev, loop_configure); return 0; out_unlock: loop_global_unlock(lo, is_loop); out_bdev: if (!(mode & BLK_OPEN_EXCL)) bd_abort_claiming(bdev, loop_configure); out_putf: fput(file); /* This is safe: open() is still holding a reference. */ module_put(THIS_MODULE); return error; } static void __loop_clr_fd(struct loop_device *lo) { struct queue_limits lim; struct file *filp; gfp_t gfp = lo->old_gfp_mask; spin_lock_irq(&lo->lo_lock); filp = lo->lo_backing_file; lo->lo_backing_file = NULL; spin_unlock_irq(&lo->lo_lock); lo->lo_device = NULL; lo->lo_offset = 0; lo->lo_sizelimit = 0; memset(lo->lo_file_name, 0, LO_NAME_SIZE); /* * Reset the block size to the default. * * No queue freezing needed because this is called from the final * ->release call only, so there can't be any outstanding I/O. */ lim = queue_limits_start_update(lo->lo_queue); lim.logical_block_size = SECTOR_SIZE; lim.physical_block_size = SECTOR_SIZE; lim.io_min = SECTOR_SIZE; queue_limits_commit_update(lo->lo_queue, &lim); invalidate_disk(lo->lo_disk); loop_sysfs_exit(lo); /* let user-space know about this change */ kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); mapping_set_gfp_mask(filp->f_mapping, gfp); /* This is safe: open() is still holding a reference. */ module_put(THIS_MODULE); disk_force_media_change(lo->lo_disk); if (lo->lo_flags & LO_FLAGS_PARTSCAN) { int err; /* * open_mutex has been held already in release path, so don't * acquire it if this function is called in such case. * * If the reread partition isn't from release path, lo_refcnt * must be at least one and it can only become zero when the * current holder is released. */ err = bdev_disk_changed(lo->lo_disk, false); if (err) pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", __func__, lo->lo_number, err); /* Device is gone, no point in returning error */ } /* * lo->lo_state is set to Lo_unbound here after above partscan has * finished. There cannot be anybody else entering __loop_clr_fd() as * Lo_rundown state protects us from all the other places trying to * change the 'lo' device. */ lo->lo_flags = 0; if (!part_shift) set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); mutex_lock(&lo->lo_mutex); lo->lo_state = Lo_unbound; mutex_unlock(&lo->lo_mutex); /* * Need not hold lo_mutex to fput backing file. Calling fput holding * lo_mutex triggers a circular lock dependency possibility warning as * fput can take open_mutex which is usually taken before lo_mutex. */ fput(filp); } static int loop_clr_fd(struct loop_device *lo) { int err; /* * Since lo_ioctl() is called without locks held, it is possible that * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. * * Therefore, use global lock when setting Lo_rundown state in order to * make sure that loop_validate_file() will fail if the "struct file" * which loop_configure()/loop_change_fd() found via fget() was this * loop device. */ err = loop_global_lock_killable(lo, true); if (err) return err; if (lo->lo_state != Lo_bound) { loop_global_unlock(lo, true); return -ENXIO; } /* * Mark the device for removing the backing device on last close. * If we are the only opener, also switch the state to roundown here to * prevent new openers from coming in. */ lo->lo_flags |= LO_FLAGS_AUTOCLEAR; if (disk_openers(lo->lo_disk) == 1) lo->lo_state = Lo_rundown; loop_global_unlock(lo, true); return 0; } static int loop_set_status(struct loop_device *lo, const struct loop_info64 *info) { int err; bool partscan = false; bool size_changed = false; unsigned int memflags; err = mutex_lock_killable(&lo->lo_mutex); if (err) return err; if (lo->lo_state != Lo_bound) { err = -ENXIO; goto out_unlock; } if (lo->lo_offset != info->lo_offset || lo->lo_sizelimit != info->lo_sizelimit) { size_changed = true; sync_blockdev(lo->lo_device); invalidate_bdev(lo->lo_device); } /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ memflags = blk_mq_freeze_queue(lo->lo_queue); err = loop_set_status_from_info(lo, info); if (err) goto out_unfreeze; partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && (info->lo_flags & LO_FLAGS_PARTSCAN); lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); if (size_changed) { loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, lo->lo_backing_file); loop_set_size(lo, new_size); } /* update the direct I/O flag if lo_offset changed */ loop_update_dio(lo); out_unfreeze: blk_mq_unfreeze_queue(lo->lo_queue, memflags); if (partscan) clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); out_unlock: mutex_unlock(&lo->lo_mutex); if (partscan) loop_reread_partitions(lo); return err; } static int loop_get_status(struct loop_device *lo, struct loop_info64 *info) { struct path path; struct kstat stat; int ret; ret = mutex_lock_killable(&lo->lo_mutex); if (ret) return ret; if (lo->lo_state != Lo_bound) { mutex_unlock(&lo->lo_mutex); return -ENXIO; } memset(info, 0, sizeof(*info)); info->lo_number = lo->lo_number; info->lo_offset = lo->lo_offset; info->lo_sizelimit = lo->lo_sizelimit; info->lo_flags = lo->lo_flags; memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); /* Drop lo_mutex while we call into the filesystem. */ path = lo->lo_backing_file->f_path; path_get(&path); mutex_unlock(&lo->lo_mutex); ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); if (!ret) { info->lo_device = huge_encode_dev(stat.dev); info->lo_inode = stat.ino; info->lo_rdevice = huge_encode_dev(stat.rdev); } path_put(&path); return ret; } static void loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) { memset(info64, 0, sizeof(*info64)); info64->lo_number = info->lo_number; info64->lo_device = info->lo_device; info64->lo_inode = info->lo_inode; info64->lo_rdevice = info->lo_rdevice; info64->lo_offset = info->lo_offset; info64->lo_sizelimit = 0; info64->lo_flags = info->lo_flags; memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); } static int loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) { memset(info, 0, sizeof(*info)); info->lo_number = info64->lo_number; info->lo_device = info64->lo_device; info->lo_inode = info64->lo_inode; info->lo_rdevice = info64->lo_rdevice; info->lo_offset = info64->lo_offset; info->lo_flags = info64->lo_flags; memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); /* error in case values were truncated */ if (info->lo_device != info64->lo_device || info->lo_rdevice != info64->lo_rdevice || info->lo_inode != info64->lo_inode || info->lo_offset != info64->lo_offset) return -EOVERFLOW; return 0; } static int loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) { struct loop_info info; struct loop_info64 info64; if (copy_from_user(&info, arg, sizeof (struct loop_info))) return -EFAULT; loop_info64_from_old(&info, &info64); return loop_set_status(lo, &info64); } static int loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) { struct loop_info64 info64; if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) return -EFAULT; return loop_set_status(lo, &info64); } static int loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { struct loop_info info; struct loop_info64 info64; int err; if (!arg) return -EINVAL; err = loop_get_status(lo, &info64); if (!err) err = loop_info64_to_old(&info64, &info); if (!err && copy_to_user(arg, &info, sizeof(info))) err = -EFAULT; return err; } static int loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { struct loop_info64 info64; int err; if (!arg) return -EINVAL; err = loop_get_status(lo, &info64); if (!err && copy_to_user(arg, &info64, sizeof(info64))) err = -EFAULT; return err; } static int loop_set_capacity(struct loop_device *lo) { loff_t size; if (unlikely(lo->lo_state != Lo_bound)) return -ENXIO; size = get_loop_size(lo, lo->lo_backing_file); loop_set_size(lo, size); return 0; } static int loop_set_dio(struct loop_device *lo, unsigned long arg) { bool use_dio = !!arg; unsigned int memflags; if (lo->lo_state != Lo_bound) return -ENXIO; if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) return 0; if (use_dio) { if (!lo_can_use_dio(lo)) return -EINVAL; /* flush dirty pages before starting to use direct I/O */ vfs_fsync(lo->lo_backing_file, 0); } memflags = blk_mq_freeze_queue(lo->lo_queue); if (use_dio) lo->lo_flags |= LO_FLAGS_DIRECT_IO; else lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; blk_mq_unfreeze_queue(lo->lo_queue, memflags); return 0; } static int loop_set_block_size(struct loop_device *lo, unsigned long arg) { struct queue_limits lim; unsigned int memflags; int err = 0; if (lo->lo_state != Lo_bound) return -ENXIO; if (lo->lo_queue->limits.logical_block_size == arg) return 0; sync_blockdev(lo->lo_device); invalidate_bdev(lo->lo_device); lim = queue_limits_start_update(lo->lo_queue); loop_update_limits(lo, &lim, arg); memflags = blk_mq_freeze_queue(lo->lo_queue); err = queue_limits_commit_update(lo->lo_queue, &lim); loop_update_dio(lo); blk_mq_unfreeze_queue(lo->lo_queue, memflags); return err; } static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, unsigned long arg) { int err; err = mutex_lock_killable(&lo->lo_mutex); if (err) return err; switch (cmd) { case LOOP_SET_CAPACITY: err = loop_set_capacity(lo); break; case LOOP_SET_DIRECT_IO: err = loop_set_dio(lo, arg); break; case LOOP_SET_BLOCK_SIZE: err = loop_set_block_size(lo, arg); break; default: err = -EINVAL; } mutex_unlock(&lo->lo_mutex); return err; } static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { struct loop_device *lo = bdev->bd_disk->private_data; void __user *argp = (void __user *) arg; int err; switch (cmd) { case LOOP_SET_FD: { /* * Legacy case - pass in a zeroed out struct loop_config with * only the file descriptor set , which corresponds with the * default parameters we'd have used otherwise. */ struct loop_config config; memset(&config, 0, sizeof(config)); config.fd = arg; return loop_configure(lo, mode, bdev, &config); } case LOOP_CONFIGURE: { struct loop_config config; if (copy_from_user(&config, argp, sizeof(config))) return -EFAULT; return loop_configure(lo, mode, bdev, &config); } case LOOP_CHANGE_FD: return loop_change_fd(lo, bdev, arg); case LOOP_CLR_FD: return loop_clr_fd(lo); case LOOP_SET_STATUS: err = -EPERM; if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) err = loop_set_status_old(lo, argp); break; case LOOP_GET_STATUS: return loop_get_status_old(lo, argp); case LOOP_SET_STATUS64: err = -EPERM; if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) err = loop_set_status64(lo, argp); break; case LOOP_GET_STATUS64: return loop_get_status64(lo, argp); case LOOP_SET_CAPACITY: case LOOP_SET_DIRECT_IO: case LOOP_SET_BLOCK_SIZE: if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) return -EPERM; fallthrough; default: err = lo_simple_ioctl(lo, cmd, arg); break; } return err; } #ifdef CONFIG_COMPAT struct compat_loop_info { compat_int_t lo_number; /* ioctl r/o */ compat_dev_t lo_device; /* ioctl r/o */ compat_ulong_t lo_inode; /* ioctl r/o */ compat_dev_t lo_rdevice; /* ioctl r/o */ compat_int_t lo_offset; compat_int_t lo_encrypt_type; /* obsolete, ignored */ compat_int_t lo_encrypt_key_size; /* ioctl w/o */ compat_int_t lo_flags; /* ioctl r/o */ char lo_name[LO_NAME_SIZE]; unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ compat_ulong_t lo_init[2]; char reserved[4]; }; /* * Transfer 32-bit compatibility structure in userspace to 64-bit loop info * - noinlined to reduce stack space usage in main part of driver */ static noinline int loop_info64_from_compat(const struct compat_loop_info __user *arg, struct loop_info64 *info64) { struct compat_loop_info info; if (copy_from_user(&info, arg, sizeof(info))) return -EFAULT; memset(info64, 0, sizeof(*info64)); info64->lo_number = info.lo_number; info64->lo_device = info.lo_device; info64->lo_inode = info.lo_inode; info64->lo_rdevice = info.lo_rdevice; info64->lo_offset = info.lo_offset; info64->lo_sizelimit = 0; info64->lo_flags = info.lo_flags; memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); return 0; } /* * Transfer 64-bit loop info to 32-bit compatibility structure in userspace * - noinlined to reduce stack space usage in main part of driver */ static noinline int loop_info64_to_compat(const struct loop_info64 *info64, struct compat_loop_info __user *arg) { struct compat_loop_info info; memset(&info, 0, sizeof(info)); info.lo_number = info64->lo_number; info.lo_device = info64->lo_device; info.lo_inode = info64->lo_inode; info.lo_rdevice = info64->lo_rdevice; info.lo_offset = info64->lo_offset; info.lo_flags = info64->lo_flags; memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); /* error in case values were truncated */ if (info.lo_device != info64->lo_device || info.lo_rdevice != info64->lo_rdevice || info.lo_inode != info64->lo_inode || info.lo_offset != info64->lo_offset) return -EOVERFLOW; if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int loop_set_status_compat(struct loop_device *lo, const struct compat_loop_info __user *arg) { struct loop_info64 info64; int ret; ret = loop_info64_from_compat(arg, &info64); if (ret < 0) return ret; return loop_set_status(lo, &info64); } static int loop_get_status_compat(struct loop_device *lo, struct compat_loop_info __user *arg) { struct loop_info64 info64; int err; if (!arg) return -EINVAL; err = loop_get_status(lo, &info64); if (!err) err = loop_info64_to_compat(&info64, arg); return err; } static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { struct loop_device *lo = bdev->bd_disk->private_data; int err; switch(cmd) { case LOOP_SET_STATUS: err = loop_set_status_compat(lo, (const struct compat_loop_info __user *)arg); break; case LOOP_GET_STATUS: err = loop_get_status_compat(lo, (struct compat_loop_info __user *)arg); break; case LOOP_SET_CAPACITY: case LOOP_CLR_FD: case LOOP_GET_STATUS64: case LOOP_SET_STATUS64: case LOOP_CONFIGURE: arg = (unsigned long) compat_ptr(arg); fallthrough; case LOOP_SET_FD: case LOOP_CHANGE_FD: case LOOP_SET_BLOCK_SIZE: case LOOP_SET_DIRECT_IO: err = lo_ioctl(bdev, mode, cmd, arg); break; default: err = -ENOIOCTLCMD; break; } return err; } #endif static int lo_open(struct gendisk *disk, blk_mode_t mode) { struct loop_device *lo = disk->private_data; int err; err = mutex_lock_killable(&lo->lo_mutex); if (err) return err; if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) err = -ENXIO; mutex_unlock(&lo->lo_mutex); return err; } static void lo_release(struct gendisk *disk) { struct loop_device *lo = disk->private_data; bool need_clear = false; if (disk_openers(disk) > 0) return; /* * Clear the backing device information if this is the last close of * a device that's been marked for auto clear, or on which LOOP_CLR_FD * has been called. */ mutex_lock(&lo->lo_mutex); if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) lo->lo_state = Lo_rundown; need_clear = (lo->lo_state == Lo_rundown); mutex_unlock(&lo->lo_mutex); if (need_clear) __loop_clr_fd(lo); } static void lo_free_disk(struct gendisk *disk) { struct loop_device *lo = disk->private_data; if (lo->workqueue) destroy_workqueue(lo->workqueue); loop_free_idle_workers(lo, true); timer_shutdown_sync(&lo->timer); mutex_destroy(&lo->lo_mutex); kfree(lo); } static const struct block_device_operations lo_fops = { .owner = THIS_MODULE, .open = lo_open, .release = lo_release, .ioctl = lo_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = lo_compat_ioctl, #endif .free_disk = lo_free_disk, }; /* * And now the modules code and kernel interface. */ /* * If max_loop is specified, create that many devices upfront. * This also becomes a hard limit. If max_loop is not specified, * the default isn't a hard limit (as before commit 85c50197716c * changed the default value from 0 for max_loop=0 reasons), just * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module * init time. Loop devices can be requested on-demand with the * /dev/loop-control interface, or be instantiated by accessing * a 'dead' device node. */ static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD static bool max_loop_specified; static int max_loop_param_set_int(const char *val, const struct kernel_param *kp) { int ret; ret = param_set_int(val, kp); if (ret < 0) return ret; max_loop_specified = true; return 0; } static const struct kernel_param_ops max_loop_param_ops = { .set = max_loop_param_set_int, .get = param_get_int, }; module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); #else module_param(max_loop, int, 0444); MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); #endif module_param(max_part, int, 0444); MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) { int qd, ret; ret = kstrtoint(s, 0, &qd); if (ret < 0) return ret; if (qd < 1) return -EINVAL; hw_queue_depth = qd; return 0; } static const struct kernel_param_ops loop_hw_qdepth_param_ops = { .set = loop_set_hw_queue_depth, .get = param_get_int, }; device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); MODULE_DESCRIPTION("Loopback device support"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request *rq = bd->rq; struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); struct loop_device *lo = rq->q->queuedata; blk_mq_start_request(rq); if (lo->lo_state != Lo_bound) return BLK_STS_IOERR; switch (req_op(rq)) { case REQ_OP_FLUSH: case REQ_OP_DISCARD: case REQ_OP_WRITE_ZEROES: cmd->use_aio = false; break; default: cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; break; } /* always use the first bio's css */ cmd->blkcg_css = NULL; cmd->memcg_css = NULL; #ifdef CONFIG_BLK_CGROUP if (rq->bio) { cmd->blkcg_css = bio_blkcg_css(rq->bio); #ifdef CONFIG_MEMCG if (cmd->blkcg_css) { cmd->memcg_css = cgroup_get_e_css(cmd->blkcg_css->cgroup, &memory_cgrp_subsys); } #endif } #endif loop_queue_work(lo, cmd); return BLK_STS_OK; } static void loop_handle_cmd(struct loop_cmd *cmd) { struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; struct request *rq = blk_mq_rq_from_pdu(cmd); const bool write = op_is_write(req_op(rq)); struct loop_device *lo = rq->q->queuedata; int ret = 0; struct mem_cgroup *old_memcg = NULL; if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { ret = -EIO; goto failed; } if (cmd_blkcg_css) kthread_associate_blkcg(cmd_blkcg_css); if (cmd_memcg_css) old_memcg = set_active_memcg( mem_cgroup_from_css(cmd_memcg_css)); /* * do_req_filebacked() may call blk_mq_complete_request() synchronously * or asynchronously if using aio. Hence, do not touch 'cmd' after * do_req_filebacked() has returned unless we are sure that 'cmd' has * not yet been completed. */ ret = do_req_filebacked(lo, rq); if (cmd_blkcg_css) kthread_associate_blkcg(NULL); if (cmd_memcg_css) { set_active_memcg(old_memcg); css_put(cmd_memcg_css); } failed: /* complete non-aio request */ if (ret != -EIOCBQUEUED) { if (ret == -EOPNOTSUPP) cmd->ret = ret; else cmd->ret = ret ? -EIO : 0; if (likely(!blk_should_fake_timeout(rq->q))) blk_mq_complete_request(rq); } } static void loop_process_work(struct loop_worker *worker, struct list_head *cmd_list, struct loop_device *lo) { int orig_flags = current->flags; struct loop_cmd *cmd; current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; spin_lock_irq(&lo->lo_work_lock); while (!list_empty(cmd_list)) { cmd = container_of( cmd_list->next, struct loop_cmd, list_entry); list_del(cmd_list->next); spin_unlock_irq(&lo->lo_work_lock); loop_handle_cmd(cmd); cond_resched(); spin_lock_irq(&lo->lo_work_lock); } /* * We only add to the idle list if there are no pending cmds * *and* the worker will not run again which ensures that it * is safe to free any worker on the idle list */ if (worker && !work_pending(&worker->work)) { worker->last_ran_at = jiffies; list_add_tail(&worker->idle_list, &lo->idle_worker_list); loop_set_timer(lo); } spin_unlock_irq(&lo->lo_work_lock); current->flags = orig_flags; } static void loop_workfn(struct work_struct *work) { struct loop_worker *worker = container_of(work, struct loop_worker, work); loop_process_work(worker, &worker->cmd_list, worker->lo); } static void loop_rootcg_workfn(struct work_struct *work) { struct loop_device *lo = container_of(work, struct loop_device, rootcg_work); loop_process_work(NULL, &lo->rootcg_cmd_list, lo); } static const struct blk_mq_ops loop_mq_ops = { .queue_rq = loop_queue_rq, .complete = lo_complete_rq, }; static int loop_add(int i) { struct queue_limits lim = { /* * Random number picked from the historic block max_sectors cap. */ .max_hw_sectors = 2560u, }; struct loop_device *lo; struct gendisk *disk; int err; err = -ENOMEM; lo = kzalloc(sizeof(*lo), GFP_KERNEL); if (!lo) goto out; lo->worker_tree = RB_ROOT; INIT_LIST_HEAD(&lo->idle_worker_list); timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); lo->lo_state = Lo_unbound; err = mutex_lock_killable(&loop_ctl_mutex); if (err) goto out_free_dev; /* allocate id, if @id >= 0, we're requesting that specific id */ if (i >= 0) { err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); if (err == -ENOSPC) err = -EEXIST; } else { err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); } mutex_unlock(&loop_ctl_mutex); if (err < 0) goto out_free_dev; i = err; lo->tag_set.ops = &loop_mq_ops; lo->tag_set.nr_hw_queues = 1; lo->tag_set.queue_depth = hw_queue_depth; lo->tag_set.numa_node = NUMA_NO_NODE; lo->tag_set.cmd_size = sizeof(struct loop_cmd); lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; lo->tag_set.driver_data = lo; err = blk_mq_alloc_tag_set(&lo->tag_set); if (err) goto out_free_idr; disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); if (IS_ERR(disk)) { err = PTR_ERR(disk); goto out_cleanup_tags; } lo->lo_queue = lo->lo_disk->queue; /* * Disable partition scanning by default. The in-kernel partition * scanning can be requested individually per-device during its * setup. Userspace can always add and remove partitions from all * devices. The needed partition minors are allocated from the * extended minor space, the main loop device numbers will continue * to match the loop minors, regardless of the number of partitions * used. * * If max_part is given, partition scanning is globally enabled for * all loop devices. The minors for the main loop devices will be * multiples of max_part. * * Note: Global-for-all-devices, set-only-at-init, read-only module * parameteters like 'max_loop' and 'max_part' make things needlessly * complicated, are too static, inflexible and may surprise * userspace tools. Parameters like this in general should be avoided. */ if (!part_shift) set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); mutex_init(&lo->lo_mutex); lo->lo_number = i; spin_lock_init(&lo->lo_lock); spin_lock_init(&lo->lo_work_lock); INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); INIT_LIST_HEAD(&lo->rootcg_cmd_list); disk->major = LOOP_MAJOR; disk->first_minor = i << part_shift; disk->minors = 1 << part_shift; disk->fops = &lo_fops; disk->private_data = lo; disk->queue = lo->lo_queue; disk->events = DISK_EVENT_MEDIA_CHANGE; disk->event_flags = DISK_EVENT_FLAG_UEVENT; sprintf(disk->disk_name, "loop%d", i); /* Make this loop device reachable from pathname. */ err = add_disk(disk); if (err) goto out_cleanup_disk; /* Show this loop device. */ mutex_lock(&loop_ctl_mutex); lo->idr_visible = true; mutex_unlock(&loop_ctl_mutex); return i; out_cleanup_disk: put_disk(disk); out_cleanup_tags: blk_mq_free_tag_set(&lo->tag_set); out_free_idr: mutex_lock(&loop_ctl_mutex); idr_remove(&loop_index_idr, i); mutex_unlock(&loop_ctl_mutex); out_free_dev: kfree(lo); out: return err; } static void loop_remove(struct loop_device *lo) { /* Make this loop device unreachable from pathname. */ del_gendisk(lo->lo_disk); blk_mq_free_tag_set(&lo->tag_set); mutex_lock(&loop_ctl_mutex); idr_remove(&loop_index_idr, lo->lo_number); mutex_unlock(&loop_ctl_mutex); put_disk(lo->lo_disk); } #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD static void loop_probe(dev_t dev) { int idx = MINOR(dev) >> part_shift; if (max_loop_specified && max_loop && idx >= max_loop) return; loop_add(idx); } #else #define loop_probe NULL #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ static int loop_control_remove(int idx) { struct loop_device *lo; int ret; if (idx < 0) { pr_warn_once("deleting an unspecified loop device is not supported.\n"); return -EINVAL; } /* Hide this loop device for serialization. */ ret = mutex_lock_killable(&loop_ctl_mutex); if (ret) return ret; lo = idr_find(&loop_index_idr, idx); if (!lo || !lo->idr_visible) ret = -ENODEV; else lo->idr_visible = false; mutex_unlock(&loop_ctl_mutex); if (ret) return ret; /* Check whether this loop device can be removed. */ ret = mutex_lock_killable(&lo->lo_mutex); if (ret) goto mark_visible; if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { mutex_unlock(&lo->lo_mutex); ret = -EBUSY; goto mark_visible; } /* Mark this loop device as no more bound, but not quite unbound yet */ lo->lo_state = Lo_deleting; mutex_unlock(&lo->lo_mutex); loop_remove(lo); return 0; mark_visible: /* Show this loop device again. */ mutex_lock(&loop_ctl_mutex); lo->idr_visible = true; mutex_unlock(&loop_ctl_mutex); return ret; } static int loop_control_get_free(int idx) { struct loop_device *lo; int id, ret; ret = mutex_lock_killable(&loop_ctl_mutex); if (ret) return ret; idr_for_each_entry(&loop_index_idr, lo, id) { /* Hitting a race results in creating a new loop device which is harmless. */ if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) goto found; } mutex_unlock(&loop_ctl_mutex); return loop_add(-1); found: mutex_unlock(&loop_ctl_mutex); return id; } static long loop_control_ioctl(struct file *file, unsigned int cmd, unsigned long parm) { switch (cmd) { case LOOP_CTL_ADD: return loop_add(parm); case LOOP_CTL_REMOVE: return loop_control_remove(parm); case LOOP_CTL_GET_FREE: return loop_control_get_free(parm); default: return -ENOSYS; } } static const struct file_operations loop_ctl_fops = { .open = nonseekable_open, .unlocked_ioctl = loop_control_ioctl, .compat_ioctl = loop_control_ioctl, .owner = THIS_MODULE, .llseek = noop_llseek, }; static struct miscdevice loop_misc = { .minor = LOOP_CTRL_MINOR, .name = "loop-control", .fops = &loop_ctl_fops, }; MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); MODULE_ALIAS("devname:loop-control"); static int __init loop_init(void) { int i; int err; part_shift = 0; if (max_part > 0) { part_shift = fls(max_part); /* * Adjust max_part according to part_shift as it is exported * to user space so that user can decide correct minor number * if [s]he want to create more devices. * * Note that -1 is required because partition 0 is reserved * for the whole disk. */ max_part = (1UL << part_shift) - 1; } if ((1UL << part_shift) > DISK_MAX_PARTS) { err = -EINVAL; goto err_out; } if (max_loop > 1UL << (MINORBITS - part_shift)) { err = -EINVAL; goto err_out; } err = misc_register(&loop_misc); if (err < 0) goto err_out; if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { err = -EIO; goto misc_out; } /* pre-create number of devices given by config or max_loop */ for (i = 0; i < max_loop; i++) loop_add(i); printk(KERN_INFO "loop: module loaded\n"); return 0; misc_out: misc_deregister(&loop_misc); err_out: return err; } static void __exit loop_exit(void) { struct loop_device *lo; int id; unregister_blkdev(LOOP_MAJOR, "loop"); misc_deregister(&loop_misc); /* * There is no need to use loop_ctl_mutex here, for nobody else can * access loop_index_idr when this module is unloading (unless forced * module unloading is requested). If this is not a clean unloading, * we have no means to avoid kernel crash. */ idr_for_each_entry(&loop_index_idr, lo, id) loop_remove(lo); idr_destroy(&loop_index_idr); } module_init(loop_init); module_exit(loop_exit); #ifndef MODULE static int __init max_loop_setup(char *str) { max_loop = simple_strtol(str, NULL, 0); #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD max_loop_specified = true; #endif return 1; } __setup("max_loop=", max_loop_setup); #endif
88 5 5 1 5915 82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_EVENTS_INTERNAL_H #define _KERNEL_EVENTS_INTERNAL_H #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/refcount.h> /* Buffer handling */ #define RING_BUFFER_WRITABLE 0x01 struct perf_buffer { refcount_t refcount; struct rcu_head rcu_head; #ifdef CONFIG_PERF_USE_VMALLOC struct work_struct work; int page_order; /* allocation order */ #endif int nr_pages; /* nr of data pages */ int overwrite; /* can overwrite itself */ int paused; /* can write into ring buffer */ atomic_t poll; /* POLL_ for wakeups */ local_t head; /* write position */ unsigned int nest; /* nested writers */ local_t events; /* event limit */ local_t wakeup; /* wakeup stamp */ local_t lost; /* nr records lost */ long watermark; /* wakeup watermark */ long aux_watermark; /* poll crap */ spinlock_t event_lock; struct list_head event_list; atomic_t mmap_count; unsigned long mmap_locked; struct user_struct *mmap_user; /* AUX area */ struct mutex aux_mutex; long aux_head; unsigned int aux_nest; long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */ unsigned long aux_pgoff; int aux_nr_pages; int aux_overwrite; atomic_t aux_mmap_count; unsigned long aux_mmap_locked; void (*free_aux)(void *); refcount_t aux_refcount; int aux_in_sampling; int aux_in_pause_resume; void **aux_pages; void *aux_priv; struct perf_event_mmap_page *user_page; void *data_pages[]; }; extern void rb_free(struct perf_buffer *rb); static inline void rb_free_rcu(struct rcu_head *rcu_head) { struct perf_buffer *rb; rb = container_of(rcu_head, struct perf_buffer, rcu_head); rb_free(rb); } static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause) { if (!pause && rb->nr_pages) rb->paused = 0; else rb->paused = 1; } extern struct perf_buffer * rb_alloc(int nr_pages, long watermark, int cpu, int flags); extern void perf_event_wakeup(struct perf_event *event); extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags); extern void rb_free_aux(struct perf_buffer *rb); extern struct perf_buffer *ring_buffer_get(struct perf_event *event); extern void ring_buffer_put(struct perf_buffer *rb); static inline bool rb_has_aux(struct perf_buffer *rb) { return !!rb->aux_nr_pages; } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags); extern struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff); #ifdef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with vmalloc memory. * * Required for architectures that have d-cache aliasing issues. */ static inline int page_order(struct perf_buffer *rb) { return rb->page_order; } #else static inline int page_order(struct perf_buffer *rb) { return 0; } #endif static inline int data_page_nr(struct perf_buffer *rb) { return rb->nr_pages << page_order(rb); } static inline unsigned long perf_data_size(struct perf_buffer *rb) { return rb->nr_pages << (PAGE_SHIFT + page_order(rb)); } static inline unsigned long perf_aux_size(struct perf_buffer *rb) { return (unsigned long)rb->aux_nr_pages << PAGE_SHIFT; } #define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \ { \ unsigned long size, written; \ \ do { \ size = min(handle->size, len); \ written = memcpy_func(__VA_ARGS__); \ written = size - written; \ \ len -= written; \ handle->addr += written; \ if (advance_buf) \ buf += written; \ handle->size -= written; \ if (!handle->size) { \ struct perf_buffer *rb = handle->rb; \ \ handle->page++; \ handle->page &= rb->nr_pages - 1; \ handle->addr = rb->data_pages[handle->page]; \ handle->size = PAGE_SIZE << page_order(rb); \ } \ } while (len && written == size); \ \ return len; \ } #define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \ static inline unsigned long \ func_name(struct perf_output_handle *handle, \ const void *buf, unsigned long len) \ __DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf, size) static inline unsigned long __output_custom(struct perf_output_handle *handle, perf_copy_f copy_func, const void *buf, unsigned long len) { unsigned long orig_len = len; __DEFINE_OUTPUT_COPY_BODY(false, copy_func, handle->addr, buf, orig_len - len, size) } static inline unsigned long memcpy_common(void *dst, const void *src, unsigned long n) { memcpy(dst, src, n); return 0; } DEFINE_OUTPUT_COPY(__output_copy, memcpy_common) static inline unsigned long memcpy_skip(void *dst, const void *src, unsigned long n) { return 0; } DEFINE_OUTPUT_COPY(__output_skip, memcpy_skip) #ifndef arch_perf_out_copy_user #define arch_perf_out_copy_user arch_perf_out_copy_user static inline unsigned long arch_perf_out_copy_user(void *dst, const void *src, unsigned long n) { unsigned long ret; pagefault_disable(); ret = __copy_from_user_inatomic(dst, src, n); pagefault_enable(); return ret; } #endif DEFINE_OUTPUT_COPY(__output_copy_user, arch_perf_out_copy_user) static inline int get_recursion_context(u8 *recursion) { unsigned char rctx = interrupt_context_level(); if (recursion[rctx]) return -1; recursion[rctx]++; barrier(); return rctx; } static inline void put_recursion_context(u8 *recursion, unsigned char rctx) { barrier(); recursion[rctx]--; } #ifdef CONFIG_HAVE_PERF_USER_STACK_DUMP static inline bool arch_perf_have_user_stack_dump(void) { return true; } #define perf_user_stack_pointer(regs) user_stack_pointer(regs) #else static inline bool arch_perf_have_user_stack_dump(void) { return false; } #define perf_user_stack_pointer(regs) 0 #endif /* CONFIG_HAVE_PERF_USER_STACK_DUMP */ #endif /* _KERNEL_EVENTS_INTERNAL_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 // SPDX-License-Identifier: GPL-2.0-or-later /* * DSA tagging protocol handling * * Copyright (c) 2008-2009 Marvell Semiconductor * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch> */ #include <linux/netdevice.h> #include <linux/ptp_classify.h> #include <linux/skbuff.h> #include <net/dsa.h> #include <net/dst_metadata.h> #include "tag.h" #include "user.h" static LIST_HEAD(dsa_tag_drivers_list); static DEFINE_MUTEX(dsa_tag_drivers_lock); /* Determine if we should defer delivery of skb until we have a rx timestamp. * * Called from dsa_switch_rcv. For now, this will only work if tagging is * enabled on the switch. Normally the MAC driver would retrieve the hardware * timestamp when it reads the packet out of the hardware. However in a DSA * switch, the DSA driver owning the interface to which the packet is * delivered is never notified unless we do so here. */ static bool dsa_skb_defer_rx_timestamp(struct dsa_user_priv *p, struct sk_buff *skb) { struct dsa_switch *ds = p->dp->ds; unsigned int type; if (!ds->ops->port_rxtstamp) return false; if (skb_headroom(skb) < ETH_HLEN) return false; __skb_push(skb, ETH_HLEN); type = ptp_classify_raw(skb); __skb_pull(skb, ETH_HLEN); if (type == PTP_CLASS_NONE) return false; return ds->ops->port_rxtstamp(ds, p->dp->index, skb, type); } static int dsa_switch_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *unused) { struct metadata_dst *md_dst = skb_metadata_dst(skb); struct dsa_port *cpu_dp = dev->dsa_ptr; struct sk_buff *nskb = NULL; struct dsa_user_priv *p; if (unlikely(!cpu_dp)) { kfree_skb(skb); return 0; } skb = skb_unshare(skb, GFP_ATOMIC); if (!skb) return 0; if (md_dst && md_dst->type == METADATA_HW_PORT_MUX) { unsigned int port = md_dst->u.port_info.port_id; skb_dst_drop(skb); if (!skb_has_extensions(skb)) skb->slow_gro = 0; skb->dev = dsa_conduit_find_user(dev, 0, port); if (likely(skb->dev)) { dsa_default_offload_fwd_mark(skb); nskb = skb; } } else { nskb = cpu_dp->rcv(skb, dev); } if (!nskb) { kfree_skb(skb); return 0; } skb = nskb; skb_push(skb, ETH_HLEN); skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, skb->dev); if (unlikely(!dsa_user_dev_check(skb->dev))) { /* Packet is to be injected directly on an upper * device, e.g. a team/bond, so skip all DSA-port * specific actions. */ netif_rx(skb); return 0; } p = netdev_priv(skb->dev); if (unlikely(cpu_dp->ds->untag_bridge_pvid || cpu_dp->ds->untag_vlan_aware_bridge_pvid)) { nskb = dsa_software_vlan_untag(skb); if (!nskb) { kfree_skb(skb); return 0; } skb = nskb; } dev_sw_netstats_rx_add(skb->dev, skb->len + ETH_HLEN); if (dsa_skb_defer_rx_timestamp(p, skb)) return 0; gro_cells_receive(&p->gcells, skb); return 0; } struct packet_type dsa_pack_type __read_mostly = { .type = cpu_to_be16(ETH_P_XDSA), .func = dsa_switch_rcv, }; static void dsa_tag_driver_register(struct dsa_tag_driver *dsa_tag_driver, struct module *owner) { dsa_tag_driver->owner = owner; mutex_lock(&dsa_tag_drivers_lock); list_add_tail(&dsa_tag_driver->list, &dsa_tag_drivers_list); mutex_unlock(&dsa_tag_drivers_lock); } void dsa_tag_drivers_register(struct dsa_tag_driver *dsa_tag_driver_array[], unsigned int count, struct module *owner) { unsigned int i; for (i = 0; i < count; i++) dsa_tag_driver_register(dsa_tag_driver_array[i], owner); } static void dsa_tag_driver_unregister(struct dsa_tag_driver *dsa_tag_driver) { mutex_lock(&dsa_tag_drivers_lock); list_del(&dsa_tag_driver->list); mutex_unlock(&dsa_tag_drivers_lock); } EXPORT_SYMBOL_GPL(dsa_tag_drivers_register); void dsa_tag_drivers_unregister(struct dsa_tag_driver *dsa_tag_driver_array[], unsigned int count) { unsigned int i; for (i = 0; i < count; i++) dsa_tag_driver_unregister(dsa_tag_driver_array[i]); } EXPORT_SYMBOL_GPL(dsa_tag_drivers_unregister); const char *dsa_tag_protocol_to_str(const struct dsa_device_ops *ops) { return ops->name; }; /* Function takes a reference on the module owning the tagger, * so dsa_tag_driver_put must be called afterwards. */ const struct dsa_device_ops *dsa_tag_driver_get_by_name(const char *name) { const struct dsa_device_ops *ops = ERR_PTR(-ENOPROTOOPT); struct dsa_tag_driver *dsa_tag_driver; request_module("%s%s", DSA_TAG_DRIVER_ALIAS, name); mutex_lock(&dsa_tag_drivers_lock); list_for_each_entry(dsa_tag_driver, &dsa_tag_drivers_list, list) { const struct dsa_device_ops *tmp = dsa_tag_driver->ops; if (strcmp(name, tmp->name)) continue; if (!try_module_get(dsa_tag_driver->owner)) break; ops = tmp; break; } mutex_unlock(&dsa_tag_drivers_lock); return ops; } const struct dsa_device_ops *dsa_tag_driver_get_by_id(int tag_protocol) { struct dsa_tag_driver *dsa_tag_driver; const struct dsa_device_ops *ops; bool found = false; request_module("%sid-%d", DSA_TAG_DRIVER_ALIAS, tag_protocol); mutex_lock(&dsa_tag_drivers_lock); list_for_each_entry(dsa_tag_driver, &dsa_tag_drivers_list, list) { ops = dsa_tag_driver->ops; if (ops->proto == tag_protocol) { found = true; break; } } if (found) { if (!try_module_get(dsa_tag_driver->owner)) ops = ERR_PTR(-ENOPROTOOPT); } else { ops = ERR_PTR(-ENOPROTOOPT); } mutex_unlock(&dsa_tag_drivers_lock); return ops; } void dsa_tag_driver_put(const struct dsa_device_ops *ops) { struct dsa_tag_driver *dsa_tag_driver; mutex_lock(&dsa_tag_drivers_lock); list_for_each_entry(dsa_tag_driver, &dsa_tag_drivers_list, list) { if (dsa_tag_driver->ops == ops) { module_put(dsa_tag_driver->owner); break; } } mutex_unlock(&dsa_tag_drivers_lock); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2020 Intel Corporation. */ #ifndef XSK_BUFF_POOL_H_ #define XSK_BUFF_POOL_H_ #include <linux/if_xdp.h> #include <linux/types.h> #include <linux/dma-mapping.h> #include <linux/bpf.h> #include <net/xdp.h> struct xsk_buff_pool; struct xdp_rxq_info; struct xsk_cb_desc; struct xsk_queue; struct xdp_desc; struct xdp_umem; struct xdp_sock; struct device; struct page; #define XSK_PRIV_MAX 24 struct xdp_buff_xsk { struct xdp_buff xdp; u8 cb[XSK_PRIV_MAX]; dma_addr_t dma; dma_addr_t frame_dma; struct xsk_buff_pool *pool; struct list_head list_node; } __aligned_largest; #define XSK_CHECK_PRIV_TYPE(t) BUILD_BUG_ON(sizeof(t) > offsetofend(struct xdp_buff_xsk, cb)) #define XSK_TX_COMPL_FITS(t) BUILD_BUG_ON(sizeof(struct xsk_tx_metadata_compl) > sizeof(t)) struct xsk_dma_map { dma_addr_t *dma_pages; struct device *dev; struct net_device *netdev; refcount_t users; struct list_head list; /* Protected by the RTNL_LOCK */ u32 dma_pages_cnt; }; struct xsk_buff_pool { /* Members only used in the control path first. */ struct device *dev; struct net_device *netdev; struct list_head xsk_tx_list; /* Protects modifications to the xsk_tx_list */ spinlock_t xsk_tx_list_lock; refcount_t users; struct xdp_umem *umem; struct work_struct work; /* Protects generic receive in shared and non-shared umem mode. */ spinlock_t rx_lock; struct list_head free_list; struct list_head xskb_list; u32 heads_cnt; u16 queue_id; /* Data path members as close to free_heads at the end as possible. */ struct xsk_queue *fq ____cacheline_aligned_in_smp; struct xsk_queue *cq; /* For performance reasons, each buff pool has its own array of dma_pages * even when they are identical. */ dma_addr_t *dma_pages; struct xdp_buff_xsk *heads; struct xdp_desc *tx_descs; u64 chunk_mask; u64 addrs_cnt; u32 free_list_cnt; u32 dma_pages_cnt; u32 free_heads_cnt; u32 headroom; u32 chunk_size; u32 chunk_shift; u32 frame_len; u32 xdp_zc_max_segs; u8 tx_metadata_len; /* inherited from umem */ u8 cached_need_wakeup; bool uses_need_wakeup; bool unaligned; bool tx_sw_csum; void *addrs; /* Mutual exclusion of the completion ring in the SKB mode. Two cases to protect: * NAPI TX thread and sendmsg error paths in the SKB destructor callback and when * sockets share a single cq when the same netdev and queue id is shared. */ spinlock_t cq_lock; struct xdp_buff_xsk *free_heads[]; }; /* Masks for xdp_umem_page flags. * The low 12-bits of the addr will be 0 since this is the page address, so we * can use them for flags. */ #define XSK_NEXT_PG_CONTIG_SHIFT 0 #define XSK_NEXT_PG_CONTIG_MASK BIT_ULL(XSK_NEXT_PG_CONTIG_SHIFT) /* AF_XDP core. */ struct xsk_buff_pool *xp_create_and_assign_umem(struct xdp_sock *xs, struct xdp_umem *umem); int xp_assign_dev(struct xsk_buff_pool *pool, struct net_device *dev, u16 queue_id, u16 flags); int xp_assign_dev_shared(struct xsk_buff_pool *pool, struct xdp_sock *umem_xs, struct net_device *dev, u16 queue_id); int xp_alloc_tx_descs(struct xsk_buff_pool *pool, struct xdp_sock *xs); void xp_destroy(struct xsk_buff_pool *pool); void xp_get_pool(struct xsk_buff_pool *pool); bool xp_put_pool(struct xsk_buff_pool *pool); void xp_clear_dev(struct xsk_buff_pool *pool); void xp_add_xsk(struct xsk_buff_pool *pool, struct xdp_sock *xs); void xp_del_xsk(struct xsk_buff_pool *pool, struct xdp_sock *xs); /* AF_XDP, and XDP core. */ void xp_free(struct xdp_buff_xsk *xskb); static inline void xp_init_xskb_addr(struct xdp_buff_xsk *xskb, struct xsk_buff_pool *pool, u64 addr) { xskb->xdp.data_hard_start = pool->addrs + addr + pool->headroom; } static inline void xp_init_xskb_dma(struct xdp_buff_xsk *xskb, struct xsk_buff_pool *pool, dma_addr_t *dma_pages, u64 addr) { xskb->frame_dma = (dma_pages[addr >> PAGE_SHIFT] & ~XSK_NEXT_PG_CONTIG_MASK) + (addr & ~PAGE_MASK); xskb->dma = xskb->frame_dma + pool->headroom + XDP_PACKET_HEADROOM; } /* AF_XDP ZC drivers, via xdp_sock_buff.h */ void xp_set_rxq_info(struct xsk_buff_pool *pool, struct xdp_rxq_info *rxq); void xp_fill_cb(struct xsk_buff_pool *pool, struct xsk_cb_desc *desc); int xp_dma_map(struct xsk_buff_pool *pool, struct device *dev, unsigned long attrs, struct page **pages, u32 nr_pages); void xp_dma_unmap(struct xsk_buff_pool *pool, unsigned long attrs); struct xdp_buff *xp_alloc(struct xsk_buff_pool *pool); u32 xp_alloc_batch(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 max); bool xp_can_alloc(struct xsk_buff_pool *pool, u32 count); void *xp_raw_get_data(struct xsk_buff_pool *pool, u64 addr); dma_addr_t xp_raw_get_dma(struct xsk_buff_pool *pool, u64 addr); struct xdp_desc_ctx { dma_addr_t dma; struct xsk_tx_metadata *meta; }; struct xdp_desc_ctx xp_raw_get_ctx(const struct xsk_buff_pool *pool, u64 addr); static inline dma_addr_t xp_get_dma(struct xdp_buff_xsk *xskb) { return xskb->dma; } static inline dma_addr_t xp_get_frame_dma(struct xdp_buff_xsk *xskb) { return xskb->frame_dma; } static inline void xp_dma_sync_for_cpu(struct xdp_buff_xsk *xskb) { dma_sync_single_for_cpu(xskb->pool->dev, xskb->dma, xskb->pool->frame_len, DMA_BIDIRECTIONAL); } static inline void xp_dma_sync_for_device(struct xsk_buff_pool *pool, dma_addr_t dma, size_t size) { dma_sync_single_for_device(pool->dev, dma, size, DMA_BIDIRECTIONAL); } /* Masks for xdp_umem_page flags. * The low 12-bits of the addr will be 0 since this is the page address, so we * can use them for flags. */ #define XSK_NEXT_PG_CONTIG_SHIFT 0 #define XSK_NEXT_PG_CONTIG_MASK BIT_ULL(XSK_NEXT_PG_CONTIG_SHIFT) static inline bool xp_desc_crosses_non_contig_pg(struct xsk_buff_pool *pool, u64 addr, u32 len) { bool cross_pg = (addr & (PAGE_SIZE - 1)) + len > PAGE_SIZE;