2 3 3 13 6 3 1 1 13 2 13 8 1 1 1 10 6 12 1 1 13 13 2 4 2 22 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | // SPDX-License-Identifier: GPL-2.0 /* XDP user-space packet buffer * Copyright(c) 2018 Intel Corporation. */ #include <linux/init.h> #include <linux/sched/mm.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/bpf.h> #include <linux/mm.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/idr.h> #include <linux/vmalloc.h> #include "xdp_umem.h" #include "xsk_queue.h" static DEFINE_IDA(umem_ida); static void xdp_umem_unpin_pages(struct xdp_umem *umem) { unpin_user_pages_dirty_lock(umem->pgs, umem->npgs, true); kvfree(umem->pgs); umem->pgs = NULL; } static void xdp_umem_unaccount_pages(struct xdp_umem *umem) { if (umem->user) { atomic_long_sub(umem->npgs, &umem->user->locked_vm); free_uid(umem->user); } } static void xdp_umem_addr_unmap(struct xdp_umem *umem) { vunmap(umem->addrs); umem->addrs = NULL; } static int xdp_umem_addr_map(struct xdp_umem *umem, struct page **pages, u32 nr_pages) { umem->addrs = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); if (!umem->addrs) return -ENOMEM; return 0; } static void xdp_umem_release(struct xdp_umem *umem) { umem->zc = false; ida_free(&umem_ida, umem->id); xdp_umem_addr_unmap(umem); xdp_umem_unpin_pages(umem); xdp_umem_unaccount_pages(umem); kfree(umem); } static void xdp_umem_release_deferred(struct work_struct *work) { struct xdp_umem *umem = container_of(work, struct xdp_umem, work); xdp_umem_release(umem); } void xdp_get_umem(struct xdp_umem *umem) { refcount_inc(&umem->users); } void xdp_put_umem(struct xdp_umem *umem, bool defer_cleanup) { if (!umem) return; if (refcount_dec_and_test(&umem->users)) { if (defer_cleanup) { INIT_WORK(&umem->work, xdp_umem_release_deferred); schedule_work(&umem->work); } else { xdp_umem_release(umem); } } } static int xdp_umem_pin_pages(struct xdp_umem *umem, unsigned long address) { unsigned int gup_flags = FOLL_WRITE; long npgs; int err; umem->pgs = kvcalloc(umem->npgs, sizeof(*umem->pgs), GFP_KERNEL | __GFP_NOWARN); if (!umem->pgs) return -ENOMEM; mmap_read_lock(current->mm); npgs = pin_user_pages(address, umem->npgs, gup_flags | FOLL_LONGTERM, &umem->pgs[0]); mmap_read_unlock(current->mm); if (npgs != umem->npgs) { if (npgs >= 0) { umem->npgs = npgs; err = -ENOMEM; goto out_pin; } err = npgs; goto out_pgs; } return 0; out_pin: xdp_umem_unpin_pages(umem); out_pgs: kvfree(umem->pgs); umem->pgs = NULL; return err; } static int xdp_umem_account_pages(struct xdp_umem *umem) { unsigned long lock_limit, new_npgs, old_npgs; if (capable(CAP_IPC_LOCK)) return 0; lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; umem->user = get_uid(current_user()); do { old_npgs = atomic_long_read(&umem->user->locked_vm); new_npgs = old_npgs + umem->npgs; if (new_npgs > lock_limit) { free_uid(umem->user); umem->user = NULL; return -ENOBUFS; } } while (atomic_long_cmpxchg(&umem->user->locked_vm, old_npgs, new_npgs) != old_npgs); return 0; } #define XDP_UMEM_FLAGS_VALID ( \ XDP_UMEM_UNALIGNED_CHUNK_FLAG | \ XDP_UMEM_TX_SW_CSUM | \ XDP_UMEM_TX_METADATA_LEN | \ 0) static int xdp_umem_reg(struct xdp_umem *umem, struct xdp_umem_reg *mr) { bool unaligned_chunks = mr->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG; u32 chunk_size = mr->chunk_size, headroom = mr->headroom; u64 addr = mr->addr, size = mr->len; u32 chunks_rem, npgs_rem; u64 chunks, npgs; int err; if (chunk_size < XDP_UMEM_MIN_CHUNK_SIZE || chunk_size > PAGE_SIZE) { /* Strictly speaking we could support this, if: * - huge pages, or* * - using an IOMMU, or * - making sure the memory area is consecutive * but for now, we simply say "computer says no". */ return -EINVAL; } if (mr->flags & ~XDP_UMEM_FLAGS_VALID) return -EINVAL; if (!unaligned_chunks && !is_power_of_2(chunk_size)) return -EINVAL; if (!PAGE_ALIGNED(addr)) { /* Memory area has to be page size aligned. For * simplicity, this might change. */ return -EINVAL; } if ((addr + size) < addr) return -EINVAL; npgs = div_u64_rem(size, PAGE_SIZE, &npgs_rem); if (npgs_rem) npgs++; if (npgs > U32_MAX) return -EINVAL; chunks = div_u64_rem(size, chunk_size, &chunks_rem); if (!chunks || chunks > U32_MAX) return -EINVAL; if (!unaligned_chunks && chunks_rem) return -EINVAL; if (headroom >= chunk_size - XDP_PACKET_HEADROOM) return -EINVAL; if (mr->flags & XDP_UMEM_TX_METADATA_LEN) { if (mr->tx_metadata_len >= 256 || mr->tx_metadata_len % 8) return -EINVAL; umem->tx_metadata_len = mr->tx_metadata_len; } umem->size = size; umem->headroom = headroom; umem->chunk_size = chunk_size; umem->chunks = chunks; umem->npgs = npgs; umem->pgs = NULL; umem->user = NULL; umem->flags = mr->flags; INIT_LIST_HEAD(&umem->xsk_dma_list); refcount_set(&umem->users, 1); err = xdp_umem_account_pages(umem); if (err) return err; err = xdp_umem_pin_pages(umem, (unsigned long)addr); if (err) goto out_account; err = xdp_umem_addr_map(umem, umem->pgs, umem->npgs); if (err) goto out_unpin; return 0; out_unpin: xdp_umem_unpin_pages(umem); out_account: xdp_umem_unaccount_pages(umem); return err; } struct xdp_umem *xdp_umem_create(struct xdp_umem_reg *mr) { struct xdp_umem *umem; int err; umem = kzalloc(sizeof(*umem), GFP_KERNEL); if (!umem) return ERR_PTR(-ENOMEM); err = ida_alloc(&umem_ida, GFP_KERNEL); if (err < 0) { kfree(umem); return ERR_PTR(err); } umem->id = err; err = xdp_umem_reg(umem, mr); if (err) { ida_free(&umem_ida, umem->id); kfree(umem); return ERR_PTR(err); } return umem; } |
2 1 1 2 3 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | // SPDX-License-Identifier: GPL-2.0-only /* * (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org> * Copyright (c) 2011 Patrick McHardy <kaber@trash.net> * * Based on Rusty Russell's IPv4 REDIRECT target. Development of IPv6 * NAT funded by Astaro. */ #include <linux/if.h> #include <linux/inetdevice.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/netfilter.h> #include <linux/types.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter/x_tables.h> #include <net/addrconf.h> #include <net/checksum.h> #include <net/protocol.h> #include <net/netfilter/nf_nat.h> #include <net/netfilter/nf_nat_redirect.h> static unsigned int redirect_tg6(struct sk_buff *skb, const struct xt_action_param *par) { return nf_nat_redirect_ipv6(skb, par->targinfo, xt_hooknum(par)); } static int redirect_tg6_checkentry(const struct xt_tgchk_param *par) { const struct nf_nat_range2 *range = par->targinfo; if (range->flags & NF_NAT_RANGE_MAP_IPS) return -EINVAL; return nf_ct_netns_get(par->net, par->family); } static void redirect_tg_destroy(const struct xt_tgdtor_param *par) { nf_ct_netns_put(par->net, par->family); } static int redirect_tg4_check(const struct xt_tgchk_param *par) { const struct nf_nat_ipv4_multi_range_compat *mr = par->targinfo; if (mr->range[0].flags & NF_NAT_RANGE_MAP_IPS) { pr_debug("bad MAP_IPS.\n"); return -EINVAL; } if (mr->rangesize != 1) { pr_debug("bad rangesize %u.\n", mr->rangesize); return -EINVAL; } return nf_ct_netns_get(par->net, par->family); } static unsigned int redirect_tg4(struct sk_buff *skb, const struct xt_action_param *par) { const struct nf_nat_ipv4_multi_range_compat *mr = par->targinfo; struct nf_nat_range2 range = { .flags = mr->range[0].flags, .min_proto = mr->range[0].min, .max_proto = mr->range[0].max, }; return nf_nat_redirect_ipv4(skb, &range, xt_hooknum(par)); } static struct xt_target redirect_tg_reg[] __read_mostly = { { .name = "REDIRECT", .family = NFPROTO_IPV6, .revision = 0, .table = "nat", .checkentry = redirect_tg6_checkentry, .destroy = redirect_tg_destroy, .target = redirect_tg6, .targetsize = sizeof(struct nf_nat_range), .hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_OUT), .me = THIS_MODULE, }, { .name = "REDIRECT", .family = NFPROTO_IPV4, .revision = 0, .table = "nat", .target = redirect_tg4, .checkentry = redirect_tg4_check, .destroy = redirect_tg_destroy, .targetsize = sizeof(struct nf_nat_ipv4_multi_range_compat), .hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_OUT), .me = THIS_MODULE, }, }; static int __init redirect_tg_init(void) { return xt_register_targets(redirect_tg_reg, ARRAY_SIZE(redirect_tg_reg)); } static void __exit redirect_tg_exit(void) { xt_unregister_targets(redirect_tg_reg, ARRAY_SIZE(redirect_tg_reg)); } module_init(redirect_tg_init); module_exit(redirect_tg_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_DESCRIPTION("Xtables: Connection redirection to localhost"); MODULE_ALIAS("ip6t_REDIRECT"); MODULE_ALIAS("ipt_REDIRECT"); |
79 14 1 78 78 75 12 8 73 1 73 75 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | // SPDX-License-Identifier: GPL-2.0 #include <linux/proc_fs.h> #include <linux/nsproxy.h> #include <linux/ptrace.h> #include <linux/namei.h> #include <linux/file.h> #include <linux/utsname.h> #include <net/net_namespace.h> #include <linux/ipc_namespace.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include "internal.h" static const struct proc_ns_operations *ns_entries[] = { #ifdef CONFIG_NET_NS &netns_operations, #endif #ifdef CONFIG_UTS_NS &utsns_operations, #endif #ifdef CONFIG_IPC_NS &ipcns_operations, #endif #ifdef CONFIG_PID_NS &pidns_operations, &pidns_for_children_operations, #endif #ifdef CONFIG_USER_NS &userns_operations, #endif &mntns_operations, #ifdef CONFIG_CGROUPS &cgroupns_operations, #endif #ifdef CONFIG_TIME_NS &timens_operations, &timens_for_children_operations, #endif }; static const char *proc_ns_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { const struct proc_ns_operations *ns_ops = PROC_I(inode)->ns_ops; struct task_struct *task; struct path ns_path; int error = -EACCES; if (!dentry) return ERR_PTR(-ECHILD); task = get_proc_task(inode); if (!task) return ERR_PTR(-EACCES); if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) goto out; error = ns_get_path(&ns_path, task, ns_ops); if (error) goto out; error = nd_jump_link(&ns_path); out: put_task_struct(task); return ERR_PTR(error); } static int proc_ns_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct inode *inode = d_inode(dentry); const struct proc_ns_operations *ns_ops = PROC_I(inode)->ns_ops; struct task_struct *task; char name[50]; int res = -EACCES; task = get_proc_task(inode); if (!task) return res; if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { res = ns_get_name(name, sizeof(name), task, ns_ops); if (res >= 0) res = readlink_copy(buffer, buflen, name); } put_task_struct(task); return res; } static const struct inode_operations proc_ns_link_inode_operations = { .readlink = proc_ns_readlink, .get_link = proc_ns_get_link, .setattr = proc_setattr, }; static struct dentry *proc_ns_instantiate(struct dentry *dentry, struct task_struct *task, const void *ptr) { const struct proc_ns_operations *ns_ops = ptr; struct inode *inode; struct proc_inode *ei; inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | S_IRWXUGO); if (!inode) return ERR_PTR(-ENOENT); ei = PROC_I(inode); inode->i_op = &proc_ns_link_inode_operations; ei->ns_ops = ns_ops; pid_update_inode(task, inode); d_set_d_op(dentry, &pid_dentry_operations); return d_splice_alias(inode, dentry); } static int proc_ns_dir_readdir(struct file *file, struct dir_context *ctx) { struct task_struct *task = get_proc_task(file_inode(file)); const struct proc_ns_operations **entry, **last; if (!task) return -ENOENT; if (!dir_emit_dots(file, ctx)) goto out; if (ctx->pos >= 2 + ARRAY_SIZE(ns_entries)) goto out; entry = ns_entries + (ctx->pos - 2); last = &ns_entries[ARRAY_SIZE(ns_entries) - 1]; while (entry <= last) { const struct proc_ns_operations *ops = *entry; if (!proc_fill_cache(file, ctx, ops->name, strlen(ops->name), proc_ns_instantiate, task, ops)) break; ctx->pos++; entry++; } out: put_task_struct(task); return 0; } const struct file_operations proc_ns_dir_operations = { .read = generic_read_dir, .iterate_shared = proc_ns_dir_readdir, .llseek = generic_file_llseek, }; static struct dentry *proc_ns_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct task_struct *task = get_proc_task(dir); const struct proc_ns_operations **entry, **last; unsigned int len = dentry->d_name.len; struct dentry *res = ERR_PTR(-ENOENT); if (!task) goto out_no_task; last = &ns_entries[ARRAY_SIZE(ns_entries)]; for (entry = ns_entries; entry < last; entry++) { if (strlen((*entry)->name) != len) continue; if (!memcmp(dentry->d_name.name, (*entry)->name, len)) break; } if (entry == last) goto out; res = proc_ns_instantiate(dentry, task, *entry); out: put_task_struct(task); out_no_task: return res; } const struct inode_operations proc_ns_dir_inode_operations = { .lookup = proc_ns_dir_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; |
1 1 1 1 1 1 1 1 1 42 42 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson AB 2010 * Authors: Sjur Brendeland * Daniel Martensson */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s(): " fmt, __func__ #include <linux/fs.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/if_ether.h> #include <linux/ip.h> #include <linux/sched.h> #include <linux/sockios.h> #include <linux/caif/if_caif.h> #include <net/rtnetlink.h> #include <net/caif/caif_layer.h> #include <net/caif/cfpkt.h> #include <net/caif/caif_dev.h> /* GPRS PDP connection has MTU to 1500 */ #define GPRS_PDP_MTU 1500 /* 5 sec. connect timeout */ #define CONNECT_TIMEOUT (5 * HZ) #define CAIF_NET_DEFAULT_QUEUE_LEN 500 #define UNDEF_CONNID 0xffffffff /*This list is protected by the rtnl lock. */ static LIST_HEAD(chnl_net_list); MODULE_DESCRIPTION("ST-Ericsson CAIF modem protocol GPRS network device"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("caif"); enum caif_states { CAIF_CONNECTED = 1, CAIF_CONNECTING, CAIF_DISCONNECTED, CAIF_SHUTDOWN }; struct chnl_net { struct cflayer chnl; struct caif_connect_request conn_req; struct list_head list_field; struct net_device *netdev; wait_queue_head_t netmgmt_wq; /* Flow status to remember and control the transmission. */ bool flowenabled; enum caif_states state; }; static int chnl_recv_cb(struct cflayer *layr, struct cfpkt *pkt) { struct sk_buff *skb; struct chnl_net *priv; int pktlen; const u8 *ip_version; u8 buf; priv = container_of(layr, struct chnl_net, chnl); skb = (struct sk_buff *) cfpkt_tonative(pkt); /* Get length of CAIF packet. */ pktlen = skb->len; /* Pass some minimum information and * send the packet to the net stack. */ skb->dev = priv->netdev; /* check the version of IP */ ip_version = skb_header_pointer(skb, 0, 1, &buf); if (!ip_version) { kfree_skb(skb); return -EINVAL; } switch (*ip_version >> 4) { case 4: skb->protocol = htons(ETH_P_IP); break; case 6: skb->protocol = htons(ETH_P_IPV6); break; default: kfree_skb(skb); priv->netdev->stats.rx_errors++; return -EINVAL; } /* If we change the header in loop mode, the checksum is corrupted. */ if (priv->conn_req.protocol == CAIFPROTO_DATAGRAM_LOOP) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; netif_rx(skb); /* Update statistics. */ priv->netdev->stats.rx_packets++; priv->netdev->stats.rx_bytes += pktlen; return 0; } static int delete_device(struct chnl_net *dev) { ASSERT_RTNL(); if (dev->netdev) unregister_netdevice(dev->netdev); return 0; } static void close_work(struct work_struct *work) { struct chnl_net *dev = NULL; struct list_head *list_node; struct list_head *_tmp; rtnl_lock(); list_for_each_safe(list_node, _tmp, &chnl_net_list) { dev = list_entry(list_node, struct chnl_net, list_field); if (dev->state == CAIF_SHUTDOWN) dev_close(dev->netdev); } rtnl_unlock(); } static DECLARE_WORK(close_worker, close_work); static void chnl_hold(struct cflayer *lyr) { struct chnl_net *priv = container_of(lyr, struct chnl_net, chnl); dev_hold(priv->netdev); } static void chnl_put(struct cflayer *lyr) { struct chnl_net *priv = container_of(lyr, struct chnl_net, chnl); dev_put(priv->netdev); } static void chnl_flowctrl_cb(struct cflayer *layr, enum caif_ctrlcmd flow, int phyid) { struct chnl_net *priv = container_of(layr, struct chnl_net, chnl); pr_debug("NET flowctrl func called flow: %s\n", flow == CAIF_CTRLCMD_FLOW_ON_IND ? "ON" : flow == CAIF_CTRLCMD_INIT_RSP ? "INIT" : flow == CAIF_CTRLCMD_FLOW_OFF_IND ? "OFF" : flow == CAIF_CTRLCMD_DEINIT_RSP ? "CLOSE/DEINIT" : flow == CAIF_CTRLCMD_INIT_FAIL_RSP ? "OPEN_FAIL" : flow == CAIF_CTRLCMD_REMOTE_SHUTDOWN_IND ? "REMOTE_SHUTDOWN" : "UNKNOWN CTRL COMMAND"); switch (flow) { case CAIF_CTRLCMD_FLOW_OFF_IND: priv->flowenabled = false; netif_stop_queue(priv->netdev); break; case CAIF_CTRLCMD_DEINIT_RSP: priv->state = CAIF_DISCONNECTED; break; case CAIF_CTRLCMD_INIT_FAIL_RSP: priv->state = CAIF_DISCONNECTED; wake_up_interruptible(&priv->netmgmt_wq); break; case CAIF_CTRLCMD_REMOTE_SHUTDOWN_IND: priv->state = CAIF_SHUTDOWN; netif_tx_disable(priv->netdev); schedule_work(&close_worker); break; case CAIF_CTRLCMD_FLOW_ON_IND: priv->flowenabled = true; netif_wake_queue(priv->netdev); break; case CAIF_CTRLCMD_INIT_RSP: caif_client_register_refcnt(&priv->chnl, chnl_hold, chnl_put); priv->state = CAIF_CONNECTED; priv->flowenabled = true; netif_wake_queue(priv->netdev); wake_up_interruptible(&priv->netmgmt_wq); break; default: break; } } static netdev_tx_t chnl_net_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct chnl_net *priv; struct cfpkt *pkt = NULL; int len; int result = -1; /* Get our private data. */ priv = netdev_priv(dev); if (skb->len > priv->netdev->mtu) { pr_warn("Size of skb exceeded MTU\n"); kfree_skb(skb); dev->stats.tx_errors++; return NETDEV_TX_OK; } if (!priv->flowenabled) { pr_debug("dropping packets flow off\n"); kfree_skb(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } if (priv->conn_req.protocol == CAIFPROTO_DATAGRAM_LOOP) swap(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); /* Store original SKB length. */ len = skb->len; pkt = cfpkt_fromnative(CAIF_DIR_OUT, (void *) skb); /* Send the packet down the stack. */ result = priv->chnl.dn->transmit(priv->chnl.dn, pkt); if (result) { dev->stats.tx_dropped++; return NETDEV_TX_OK; } /* Update statistics. */ dev->stats.tx_packets++; dev->stats.tx_bytes += len; return NETDEV_TX_OK; } static int chnl_net_open(struct net_device *dev) { struct chnl_net *priv = NULL; int result = -1; int llifindex, headroom, tailroom, mtu; struct net_device *lldev; ASSERT_RTNL(); priv = netdev_priv(dev); if (!priv) { pr_debug("chnl_net_open: no priv\n"); return -ENODEV; } if (priv->state != CAIF_CONNECTING) { priv->state = CAIF_CONNECTING; result = caif_connect_client(dev_net(dev), &priv->conn_req, &priv->chnl, &llifindex, &headroom, &tailroom); if (result != 0) { pr_debug("err: " "Unable to register and open device," " Err:%d\n", result); goto error; } lldev = __dev_get_by_index(dev_net(dev), llifindex); if (lldev == NULL) { pr_debug("no interface?\n"); result = -ENODEV; goto error; } dev->needed_tailroom = tailroom + lldev->needed_tailroom; dev->hard_header_len = headroom + lldev->hard_header_len + lldev->needed_tailroom; /* * MTU, head-room etc is not know before we have a * CAIF link layer device available. MTU calculation may * override initial RTNL configuration. * MTU is minimum of current mtu, link layer mtu pluss * CAIF head and tail, and PDP GPRS contexts max MTU. */ mtu = min_t(int, dev->mtu, lldev->mtu - (headroom + tailroom)); mtu = min_t(int, GPRS_PDP_MTU, mtu); dev_set_mtu(dev, mtu); if (mtu < 100) { pr_warn("CAIF Interface MTU too small (%d)\n", mtu); result = -ENODEV; goto error; } } rtnl_unlock(); /* Release RTNL lock during connect wait */ result = wait_event_interruptible_timeout(priv->netmgmt_wq, priv->state != CAIF_CONNECTING, CONNECT_TIMEOUT); rtnl_lock(); if (result == -ERESTARTSYS) { pr_debug("wait_event_interruptible woken by a signal\n"); result = -ERESTARTSYS; goto error; } if (result == 0) { pr_debug("connect timeout\n"); result = -ETIMEDOUT; goto error; } if (priv->state != CAIF_CONNECTED) { pr_debug("connect failed\n"); result = -ECONNREFUSED; goto error; } pr_debug("CAIF Netdevice connected\n"); return 0; error: caif_disconnect_client(dev_net(dev), &priv->chnl); priv->state = CAIF_DISCONNECTED; pr_debug("state disconnected\n"); return result; } static int chnl_net_stop(struct net_device *dev) { struct chnl_net *priv; ASSERT_RTNL(); priv = netdev_priv(dev); priv->state = CAIF_DISCONNECTED; caif_disconnect_client(dev_net(dev), &priv->chnl); return 0; } static int chnl_net_init(struct net_device *dev) { struct chnl_net *priv; ASSERT_RTNL(); priv = netdev_priv(dev); INIT_LIST_HEAD(&priv->list_field); return 0; } static void chnl_net_uninit(struct net_device *dev) { struct chnl_net *priv; ASSERT_RTNL(); priv = netdev_priv(dev); list_del_init(&priv->list_field); } static const struct net_device_ops netdev_ops = { .ndo_open = chnl_net_open, .ndo_stop = chnl_net_stop, .ndo_init = chnl_net_init, .ndo_uninit = chnl_net_uninit, .ndo_start_xmit = chnl_net_start_xmit, }; static void chnl_net_destructor(struct net_device *dev) { struct chnl_net *priv = netdev_priv(dev); caif_free_client(&priv->chnl); } static void ipcaif_net_setup(struct net_device *dev) { struct chnl_net *priv; dev->netdev_ops = &netdev_ops; dev->needs_free_netdev = true; dev->priv_destructor = chnl_net_destructor; dev->flags |= IFF_NOARP; dev->flags |= IFF_POINTOPOINT; dev->mtu = GPRS_PDP_MTU; dev->tx_queue_len = CAIF_NET_DEFAULT_QUEUE_LEN; priv = netdev_priv(dev); priv->chnl.receive = chnl_recv_cb; priv->chnl.ctrlcmd = chnl_flowctrl_cb; priv->netdev = dev; priv->conn_req.protocol = CAIFPROTO_DATAGRAM; priv->conn_req.link_selector = CAIF_LINK_HIGH_BANDW; priv->conn_req.priority = CAIF_PRIO_LOW; /* Insert illegal value */ priv->conn_req.sockaddr.u.dgm.connection_id = UNDEF_CONNID; priv->flowenabled = false; init_waitqueue_head(&priv->netmgmt_wq); } static int ipcaif_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct chnl_net *priv; u8 loop; priv = netdev_priv(dev); if (nla_put_u32(skb, IFLA_CAIF_IPV4_CONNID, priv->conn_req.sockaddr.u.dgm.connection_id) || nla_put_u32(skb, IFLA_CAIF_IPV6_CONNID, priv->conn_req.sockaddr.u.dgm.connection_id)) goto nla_put_failure; loop = priv->conn_req.protocol == CAIFPROTO_DATAGRAM_LOOP; if (nla_put_u8(skb, IFLA_CAIF_LOOPBACK, loop)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static void caif_netlink_parms(struct nlattr *data[], struct caif_connect_request *conn_req) { if (!data) { pr_warn("no params data found\n"); return; } if (data[IFLA_CAIF_IPV4_CONNID]) conn_req->sockaddr.u.dgm.connection_id = nla_get_u32(data[IFLA_CAIF_IPV4_CONNID]); if (data[IFLA_CAIF_IPV6_CONNID]) conn_req->sockaddr.u.dgm.connection_id = nla_get_u32(data[IFLA_CAIF_IPV6_CONNID]); if (data[IFLA_CAIF_LOOPBACK]) { if (nla_get_u8(data[IFLA_CAIF_LOOPBACK])) conn_req->protocol = CAIFPROTO_DATAGRAM_LOOP; else conn_req->protocol = CAIFPROTO_DATAGRAM; } } static int ipcaif_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { int ret; struct chnl_net *caifdev; ASSERT_RTNL(); caifdev = netdev_priv(dev); caif_netlink_parms(data, &caifdev->conn_req); ret = register_netdevice(dev); if (ret) pr_warn("device rtml registration failed\n"); else list_add(&caifdev->list_field, &chnl_net_list); /* Use ifindex as connection id, and use loopback channel default. */ if (caifdev->conn_req.sockaddr.u.dgm.connection_id == UNDEF_CONNID) { caifdev->conn_req.sockaddr.u.dgm.connection_id = dev->ifindex; caifdev->conn_req.protocol = CAIFPROTO_DATAGRAM_LOOP; } return ret; } static int ipcaif_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct chnl_net *caifdev; ASSERT_RTNL(); caifdev = netdev_priv(dev); caif_netlink_parms(data, &caifdev->conn_req); netdev_state_change(dev); return 0; } static size_t ipcaif_get_size(const struct net_device *dev) { return /* IFLA_CAIF_IPV4_CONNID */ nla_total_size(4) + /* IFLA_CAIF_IPV6_CONNID */ nla_total_size(4) + /* IFLA_CAIF_LOOPBACK */ nla_total_size(2) + 0; } static const struct nla_policy ipcaif_policy[IFLA_CAIF_MAX + 1] = { [IFLA_CAIF_IPV4_CONNID] = { .type = NLA_U32 }, [IFLA_CAIF_IPV6_CONNID] = { .type = NLA_U32 }, [IFLA_CAIF_LOOPBACK] = { .type = NLA_U8 } }; static struct rtnl_link_ops ipcaif_link_ops __read_mostly = { .kind = "caif", .priv_size = sizeof(struct chnl_net), .setup = ipcaif_net_setup, .maxtype = IFLA_CAIF_MAX, .policy = ipcaif_policy, .newlink = ipcaif_newlink, .changelink = ipcaif_changelink, .get_size = ipcaif_get_size, .fill_info = ipcaif_fill_info, }; static int __init chnl_init_module(void) { return rtnl_link_register(&ipcaif_link_ops); } static void __exit chnl_exit_module(void) { struct chnl_net *dev = NULL; struct list_head *list_node; struct list_head *_tmp; rtnl_link_unregister(&ipcaif_link_ops); rtnl_lock(); list_for_each_safe(list_node, _tmp, &chnl_net_list) { dev = list_entry(list_node, struct chnl_net, list_field); list_del_init(list_node); delete_device(dev); } rtnl_unlock(); } module_init(chnl_init_module); module_exit(chnl_exit_module); |
1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/core/netclassid_cgroup.c Classid Cgroupfs Handling * * Authors: Thomas Graf <tgraf@suug.ch> */ #include <linux/slab.h> #include <linux/cgroup.h> #include <linux/fdtable.h> #include <linux/sched/task.h> #include <net/cls_cgroup.h> #include <net/sock.h> static inline struct cgroup_cls_state *css_cls_state(struct cgroup_subsys_state *css) { return css ? container_of(css, struct cgroup_cls_state, css) : NULL; } struct cgroup_cls_state *task_cls_state(struct task_struct *p) { return css_cls_state(task_css_check(p, net_cls_cgrp_id, rcu_read_lock_bh_held())); } EXPORT_SYMBOL_GPL(task_cls_state); static struct cgroup_subsys_state * cgrp_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_cls_state *cs; cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return ERR_PTR(-ENOMEM); return &cs->css; } static int cgrp_css_online(struct cgroup_subsys_state *css) { struct cgroup_cls_state *cs = css_cls_state(css); struct cgroup_cls_state *parent = css_cls_state(css->parent); if (parent) cs->classid = parent->classid; return 0; } static void cgrp_css_free(struct cgroup_subsys_state *css) { kfree(css_cls_state(css)); } /* * To avoid freezing of sockets creation for tasks with big number of threads * and opened sockets lets release file_lock every 1000 iterated descriptors. * New sockets will already have been created with new classid. */ struct update_classid_context { u32 classid; unsigned int batch; }; #define UPDATE_CLASSID_BATCH 1000 static int update_classid_sock(const void *v, struct file *file, unsigned int n) { struct update_classid_context *ctx = (void *)v; struct socket *sock = sock_from_file(file); if (sock) sock_cgroup_set_classid(&sock->sk->sk_cgrp_data, ctx->classid); if (--ctx->batch == 0) { ctx->batch = UPDATE_CLASSID_BATCH; return n + 1; } return 0; } static void update_classid_task(struct task_struct *p, u32 classid) { struct update_classid_context ctx = { .classid = classid, .batch = UPDATE_CLASSID_BATCH }; unsigned int fd = 0; /* Only update the leader task, when many threads in this task, * so it can avoid the useless traversal. */ if (p != p->group_leader) return; do { task_lock(p); fd = iterate_fd(p->files, fd, update_classid_sock, &ctx); task_unlock(p); cond_resched(); } while (fd); } static void cgrp_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; struct task_struct *p; cgroup_taskset_for_each(p, css, tset) { update_classid_task(p, css_cls_state(css)->classid); } } static u64 read_classid(struct cgroup_subsys_state *css, struct cftype *cft) { return css_cls_state(css)->classid; } static int write_classid(struct cgroup_subsys_state *css, struct cftype *cft, u64 value) { struct cgroup_cls_state *cs = css_cls_state(css); struct css_task_iter it; struct task_struct *p; cs->classid = (u32)value; css_task_iter_start(css, 0, &it); while ((p = css_task_iter_next(&it))) update_classid_task(p, cs->classid); css_task_iter_end(&it); return 0; } static struct cftype ss_files[] = { { .name = "classid", .read_u64 = read_classid, .write_u64 = write_classid, }, { } /* terminate */ }; struct cgroup_subsys net_cls_cgrp_subsys = { .css_alloc = cgrp_css_alloc, .css_online = cgrp_css_online, .css_free = cgrp_css_free, .attach = cgrp_attach, .legacy_cftypes = ss_files, }; |
1 1 1 7 1 1 2 2 3 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007-2012 Siemens AG * * Written by: * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <net/netlink.h> #include <net/nl802154.h> #include <net/mac802154.h> #include <net/ieee802154_netdev.h> #include <net/route.h> #include <net/cfg802154.h> #include "ieee802154_i.h" #include "cfg.h" static void ieee802154_tasklet_handler(struct tasklet_struct *t) { struct ieee802154_local *local = from_tasklet(local, t, tasklet); struct sk_buff *skb; while ((skb = skb_dequeue(&local->skb_queue))) { switch (skb->pkt_type) { case IEEE802154_RX_MSG: /* Clear skb->pkt_type in order to not confuse kernel * netstack. */ skb->pkt_type = 0; ieee802154_rx(local, skb); break; default: WARN(1, "mac802154: Packet is of unknown type %d\n", skb->pkt_type); kfree_skb(skb); break; } } } struct ieee802154_hw * ieee802154_alloc_hw(size_t priv_data_len, const struct ieee802154_ops *ops) { struct wpan_phy *phy; struct ieee802154_local *local; size_t priv_size; if (WARN_ON(!ops || !(ops->xmit_async || ops->xmit_sync) || !ops->ed || !ops->start || !ops->stop || !ops->set_channel)) return NULL; /* Ensure 32-byte alignment of our private data and hw private data. * We use the wpan_phy priv data for both our ieee802154_local and for * the driver's private data * * in memory it'll be like this: * * +-------------------------+ * | struct wpan_phy | * +-------------------------+ * | struct ieee802154_local | * +-------------------------+ * | driver's private data | * +-------------------------+ * * Due to ieee802154 layer isn't aware of driver and MAC structures, * so lets align them here. */ priv_size = ALIGN(sizeof(*local), NETDEV_ALIGN) + priv_data_len; phy = wpan_phy_new(&mac802154_config_ops, priv_size); if (!phy) { pr_err("failure to allocate master IEEE802.15.4 device\n"); return NULL; } phy->privid = mac802154_wpan_phy_privid; local = wpan_phy_priv(phy); local->phy = phy; local->hw.phy = local->phy; local->hw.priv = (char *)local + ALIGN(sizeof(*local), NETDEV_ALIGN); local->ops = ops; INIT_LIST_HEAD(&local->interfaces); INIT_LIST_HEAD(&local->rx_beacon_list); INIT_LIST_HEAD(&local->rx_mac_cmd_list); mutex_init(&local->iflist_mtx); tasklet_setup(&local->tasklet, ieee802154_tasklet_handler); skb_queue_head_init(&local->skb_queue); INIT_WORK(&local->sync_tx_work, ieee802154_xmit_sync_worker); INIT_DELAYED_WORK(&local->scan_work, mac802154_scan_worker); INIT_WORK(&local->rx_beacon_work, mac802154_rx_beacon_worker); INIT_DELAYED_WORK(&local->beacon_work, mac802154_beacon_worker); INIT_WORK(&local->rx_mac_cmd_work, mac802154_rx_mac_cmd_worker); init_completion(&local->assoc_done); /* init supported flags with 802.15.4 default ranges */ phy->supported.max_minbe = 8; phy->supported.min_maxbe = 3; phy->supported.max_maxbe = 8; phy->supported.min_frame_retries = 0; phy->supported.max_frame_retries = 7; phy->supported.max_csma_backoffs = 5; phy->supported.lbt = NL802154_SUPPORTED_BOOL_FALSE; /* always supported */ phy->supported.iftypes = BIT(NL802154_IFTYPE_NODE) | BIT(NL802154_IFTYPE_COORD); return &local->hw; } EXPORT_SYMBOL(ieee802154_alloc_hw); void ieee802154_configure_durations(struct wpan_phy *phy, unsigned int page, unsigned int channel) { u32 duration = 0; switch (page) { case 0: if (BIT(channel) & 0x1) /* 868 MHz BPSK 802.15.4-2003: 20 ksym/s */ duration = 50 * NSEC_PER_USEC; else if (BIT(channel) & 0x7FE) /* 915 MHz BPSK 802.15.4-2003: 40 ksym/s */ duration = 25 * NSEC_PER_USEC; else if (BIT(channel) & 0x7FFF800) /* 2400 MHz O-QPSK 802.15.4-2006: 62.5 ksym/s */ duration = 16 * NSEC_PER_USEC; break; case 2: if (BIT(channel) & 0x1) /* 868 MHz O-QPSK 802.15.4-2006: 25 ksym/s */ duration = 40 * NSEC_PER_USEC; else if (BIT(channel) & 0x7FE) /* 915 MHz O-QPSK 802.15.4-2006: 62.5 ksym/s */ duration = 16 * NSEC_PER_USEC; break; case 3: if (BIT(channel) & 0x3FFF) /* 2.4 GHz CSS 802.15.4a-2007: 1/6 Msym/s */ duration = 6 * NSEC_PER_USEC; break; default: break; } if (!duration) { pr_debug("Unknown PHY symbol duration\n"); return; } phy->symbol_duration = duration; phy->lifs_period = (IEEE802154_LIFS_PERIOD * phy->symbol_duration) / NSEC_PER_USEC; phy->sifs_period = (IEEE802154_SIFS_PERIOD * phy->symbol_duration) / NSEC_PER_USEC; } EXPORT_SYMBOL(ieee802154_configure_durations); void ieee802154_free_hw(struct ieee802154_hw *hw) { struct ieee802154_local *local = hw_to_local(hw); BUG_ON(!list_empty(&local->interfaces)); mutex_destroy(&local->iflist_mtx); wpan_phy_free(local->phy); } EXPORT_SYMBOL(ieee802154_free_hw); static void ieee802154_setup_wpan_phy_pib(struct wpan_phy *wpan_phy) { /* TODO warn on empty symbol_duration * Should be done when all drivers sets this value. */ wpan_phy->lifs_period = (IEEE802154_LIFS_PERIOD * wpan_phy->symbol_duration) / NSEC_PER_USEC; wpan_phy->sifs_period = (IEEE802154_SIFS_PERIOD * wpan_phy->symbol_duration) / NSEC_PER_USEC; } int ieee802154_register_hw(struct ieee802154_hw *hw) { struct ieee802154_local *local = hw_to_local(hw); char mac_wq_name[IFNAMSIZ + 10] = {}; struct net_device *dev; int rc = -ENOSYS; local->workqueue = create_singlethread_workqueue(wpan_phy_name(local->phy)); if (!local->workqueue) { rc = -ENOMEM; goto out; } snprintf(mac_wq_name, IFNAMSIZ + 10, "%s-mac-cmds", wpan_phy_name(local->phy)); local->mac_wq = create_singlethread_workqueue(mac_wq_name); if (!local->mac_wq) { rc = -ENOMEM; goto out_wq; } hrtimer_init(&local->ifs_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); local->ifs_timer.function = ieee802154_xmit_ifs_timer; wpan_phy_set_dev(local->phy, local->hw.parent); ieee802154_setup_wpan_phy_pib(local->phy); ieee802154_configure_durations(local->phy, local->phy->current_page, local->phy->current_channel); if (!(hw->flags & IEEE802154_HW_CSMA_PARAMS)) { local->phy->supported.min_csma_backoffs = 4; local->phy->supported.max_csma_backoffs = 4; local->phy->supported.min_maxbe = 5; local->phy->supported.max_maxbe = 5; local->phy->supported.min_minbe = 3; local->phy->supported.max_minbe = 3; } if (!(hw->flags & IEEE802154_HW_FRAME_RETRIES)) { local->phy->supported.min_frame_retries = 3; local->phy->supported.max_frame_retries = 3; } if (hw->flags & IEEE802154_HW_PROMISCUOUS) local->phy->supported.iftypes |= BIT(NL802154_IFTYPE_MONITOR); rc = wpan_phy_register(local->phy); if (rc < 0) goto out_mac_wq; rtnl_lock(); dev = ieee802154_if_add(local, "wpan%d", NET_NAME_ENUM, NL802154_IFTYPE_NODE, cpu_to_le64(0x0000000000000000ULL)); if (IS_ERR(dev)) { rtnl_unlock(); rc = PTR_ERR(dev); goto out_phy; } rtnl_unlock(); return 0; out_phy: wpan_phy_unregister(local->phy); out_mac_wq: destroy_workqueue(local->mac_wq); out_wq: destroy_workqueue(local->workqueue); out: return rc; } EXPORT_SYMBOL(ieee802154_register_hw); void ieee802154_unregister_hw(struct ieee802154_hw *hw) { struct ieee802154_local *local = hw_to_local(hw); tasklet_kill(&local->tasklet); flush_workqueue(local->workqueue); rtnl_lock(); ieee802154_remove_interfaces(local); rtnl_unlock(); destroy_workqueue(local->mac_wq); destroy_workqueue(local->workqueue); wpan_phy_unregister(local->phy); } EXPORT_SYMBOL(ieee802154_unregister_hw); static int __init ieee802154_init(void) { return ieee802154_iface_init(); } static void __exit ieee802154_exit(void) { ieee802154_iface_exit(); rcu_barrier(); } subsys_initcall(ieee802154_init); module_exit(ieee802154_exit); MODULE_DESCRIPTION("IEEE 802.15.4 subsystem"); MODULE_LICENSE("GPL v2"); |
662 413 412 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM csd #if !defined(_TRACE_CSD_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CSD_H #include <linux/tracepoint.h> TRACE_EVENT(csd_queue_cpu, TP_PROTO(const unsigned int cpu, unsigned long callsite, smp_call_func_t func, call_single_data_t *csd), TP_ARGS(cpu, callsite, func, csd), TP_STRUCT__entry( __field(unsigned int, cpu) __field(void *, callsite) __field(void *, func) __field(void *, csd) ), TP_fast_assign( __entry->cpu = cpu; __entry->callsite = (void *)callsite; __entry->func = func; __entry->csd = csd; ), TP_printk("cpu=%u callsite=%pS func=%ps csd=%p", __entry->cpu, __entry->callsite, __entry->func, __entry->csd) ); /* * Tracepoints for a function which is called as an effect of smp_call_function.* */ DECLARE_EVENT_CLASS(csd_function, TP_PROTO(smp_call_func_t func, call_single_data_t *csd), TP_ARGS(func, csd), TP_STRUCT__entry( __field(void *, func) __field(void *, csd) ), TP_fast_assign( __entry->func = func; __entry->csd = csd; ), TP_printk("func=%ps, csd=%p", __entry->func, __entry->csd) ); DEFINE_EVENT(csd_function, csd_function_entry, TP_PROTO(smp_call_func_t func, call_single_data_t *csd), TP_ARGS(func, csd) ); DEFINE_EVENT(csd_function, csd_function_exit, TP_PROTO(smp_call_func_t func, call_single_data_t *csd), TP_ARGS(func, csd) ); #endif /* _TRACE_CSD_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
24 57 705 39 215 601 600 735 770 611 161 645 126 658 135 771 672 98 658 136 645 127 611 163 25 24 771 771 80 689 768 572 201 762 306 306 11 7 6 7 6 7 2 5 64 769 3 3 1 2 3 7 7 7 6 1 771 1 7 4 3 684 56 595 594 255 473 174 303 295 27 12 27 8 2 10 1 3 548 180 356 265 183 117 245 214 426 109 73 223 30 286 425 1 1 1 3 242 40 24 16 2 34 8 165 242 7 1 4 3 19 772 772 772 772 772 772 771 769 770 772 710 143 306 12 299 22 15 337 34 164 472 9 13 8 4 12 10 19 3 1 4 8 15 3 21 10 12 7 6 130 131 2 128 5 5 5 5 3 1 3 1 3 1 1 1 1 2 1 1 29 1 34 2 16 43 80 42 84 424 3 3 422 424 4 4 4 4 15 302 4 306 7 3 27 204 91 61 56 197 300 11 11 166 52 8 51 9 2 113 113 1 1 78 69 772 772 769 770 769 772 14 24 61 61 23 24 24 24 24 24 61 772 57 769 57 771 768 772 771 771 770 771 771 57 57 769 824 11 12 5 3 1 2 1 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 | // SPDX-License-Identifier: GPL-2.0-only /* * BPF JIT compiler * * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include <linux/bpf.h> #include <linux/memory.h> #include <linux/sort.h> #include <asm/extable.h> #include <asm/ftrace.h> #include <asm/set_memory.h> #include <asm/nospec-branch.h> #include <asm/text-patching.h> #include <asm/unwind.h> #include <asm/cfi.h> static bool all_callee_regs_used[4] = {true, true, true, true}; static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) { if (len == 1) *ptr = bytes; else if (len == 2) *(u16 *)ptr = bytes; else { *(u32 *)ptr = bytes; barrier(); } return ptr + len; } #define EMIT(bytes, len) \ do { prog = emit_code(prog, bytes, len); } while (0) #define EMIT1(b1) EMIT(b1, 1) #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) #define EMIT1_off32(b1, off) \ do { EMIT1(b1); EMIT(off, 4); } while (0) #define EMIT2_off32(b1, b2, off) \ do { EMIT2(b1, b2); EMIT(off, 4); } while (0) #define EMIT3_off32(b1, b2, b3, off) \ do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) #define EMIT4_off32(b1, b2, b3, b4, off) \ do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) #ifdef CONFIG_X86_KERNEL_IBT #define EMIT_ENDBR() EMIT(gen_endbr(), 4) #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) #else #define EMIT_ENDBR() #define EMIT_ENDBR_POISON() #endif static bool is_imm8(int value) { return value <= 127 && value >= -128; } static bool is_simm32(s64 value) { return value == (s64)(s32)value; } static bool is_uimm32(u64 value) { return value == (u64)(u32)value; } /* mov dst, src */ #define EMIT_mov(DST, SRC) \ do { \ if (DST != SRC) \ EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ } while (0) static int bpf_size_to_x86_bytes(int bpf_size) { if (bpf_size == BPF_W) return 4; else if (bpf_size == BPF_H) return 2; else if (bpf_size == BPF_B) return 1; else if (bpf_size == BPF_DW) return 4; /* imm32 */ else return 0; } /* * List of x86 cond jumps opcodes (. + s8) * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) */ #define X86_JB 0x72 #define X86_JAE 0x73 #define X86_JE 0x74 #define X86_JNE 0x75 #define X86_JBE 0x76 #define X86_JA 0x77 #define X86_JL 0x7C #define X86_JGE 0x7D #define X86_JLE 0x7E #define X86_JG 0x7F /* Pick a register outside of BPF range for JIT internal work */ #define AUX_REG (MAX_BPF_JIT_REG + 1) #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) /* * The following table maps BPF registers to x86-64 registers. * * x86-64 register R12 is unused, since if used as base address * register in load/store instructions, it always needs an * extra byte of encoding and is callee saved. * * x86-64 register R9 is not used by BPF programs, but can be used by BPF * trampoline. x86-64 register R10 is used for blinding (if enabled). */ static const int reg2hex[] = { [BPF_REG_0] = 0, /* RAX */ [BPF_REG_1] = 7, /* RDI */ [BPF_REG_2] = 6, /* RSI */ [BPF_REG_3] = 2, /* RDX */ [BPF_REG_4] = 1, /* RCX */ [BPF_REG_5] = 0, /* R8 */ [BPF_REG_6] = 3, /* RBX callee saved */ [BPF_REG_7] = 5, /* R13 callee saved */ [BPF_REG_8] = 6, /* R14 callee saved */ [BPF_REG_9] = 7, /* R15 callee saved */ [BPF_REG_FP] = 5, /* RBP readonly */ [BPF_REG_AX] = 2, /* R10 temp register */ [AUX_REG] = 3, /* R11 temp register */ [X86_REG_R9] = 1, /* R9 register, 6th function argument */ [X86_REG_R12] = 4, /* R12 callee saved */ }; static const int reg2pt_regs[] = { [BPF_REG_0] = offsetof(struct pt_regs, ax), [BPF_REG_1] = offsetof(struct pt_regs, di), [BPF_REG_2] = offsetof(struct pt_regs, si), [BPF_REG_3] = offsetof(struct pt_regs, dx), [BPF_REG_4] = offsetof(struct pt_regs, cx), [BPF_REG_5] = offsetof(struct pt_regs, r8), [BPF_REG_6] = offsetof(struct pt_regs, bx), [BPF_REG_7] = offsetof(struct pt_regs, r13), [BPF_REG_8] = offsetof(struct pt_regs, r14), [BPF_REG_9] = offsetof(struct pt_regs, r15), }; /* * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 * which need extra byte of encoding. * rax,rcx,...,rbp have simpler encoding */ static bool is_ereg(u32 reg) { return (1 << reg) & (BIT(BPF_REG_5) | BIT(AUX_REG) | BIT(BPF_REG_7) | BIT(BPF_REG_8) | BIT(BPF_REG_9) | BIT(X86_REG_R9) | BIT(X86_REG_R12) | BIT(BPF_REG_AX)); } /* * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte * of encoding. al,cl,dl,bl have simpler encoding. */ static bool is_ereg_8l(u32 reg) { return is_ereg(reg) || (1 << reg) & (BIT(BPF_REG_1) | BIT(BPF_REG_2) | BIT(BPF_REG_FP)); } static bool is_axreg(u32 reg) { return reg == BPF_REG_0; } /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ static u8 add_1mod(u8 byte, u32 reg) { if (is_ereg(reg)) byte |= 1; return byte; } static u8 add_2mod(u8 byte, u32 r1, u32 r2) { if (is_ereg(r1)) byte |= 1; if (is_ereg(r2)) byte |= 4; return byte; } static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) { if (is_ereg(r1)) byte |= 1; if (is_ereg(index)) byte |= 2; if (is_ereg(r2)) byte |= 4; return byte; } /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ static u8 add_1reg(u8 byte, u32 dst_reg) { return byte + reg2hex[dst_reg]; } /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) { return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); } /* Some 1-byte opcodes for binary ALU operations */ static u8 simple_alu_opcodes[] = { [BPF_ADD] = 0x01, [BPF_SUB] = 0x29, [BPF_AND] = 0x21, [BPF_OR] = 0x09, [BPF_XOR] = 0x31, [BPF_LSH] = 0xE0, [BPF_RSH] = 0xE8, [BPF_ARSH] = 0xF8, }; static void jit_fill_hole(void *area, unsigned int size) { /* Fill whole space with INT3 instructions */ memset(area, 0xcc, size); } int bpf_arch_text_invalidate(void *dst, size_t len) { return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); } struct jit_context { int cleanup_addr; /* Epilogue code offset */ /* * Program specific offsets of labels in the code; these rely on the * JIT doing at least 2 passes, recording the position on the first * pass, only to generate the correct offset on the second pass. */ int tail_call_direct_label; int tail_call_indirect_label; }; /* Maximum number of bytes emitted while JITing one eBPF insn */ #define BPF_MAX_INSN_SIZE 128 #define BPF_INSN_SAFETY 64 /* Number of bytes emit_patch() needs to generate instructions */ #define X86_PATCH_SIZE 5 /* Number of bytes that will be skipped on tailcall */ #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE) static void push_r12(u8 **pprog) { u8 *prog = *pprog; EMIT2(0x41, 0x54); /* push r12 */ *pprog = prog; } static void push_callee_regs(u8 **pprog, bool *callee_regs_used) { u8 *prog = *pprog; if (callee_regs_used[0]) EMIT1(0x53); /* push rbx */ if (callee_regs_used[1]) EMIT2(0x41, 0x55); /* push r13 */ if (callee_regs_used[2]) EMIT2(0x41, 0x56); /* push r14 */ if (callee_regs_used[3]) EMIT2(0x41, 0x57); /* push r15 */ *pprog = prog; } static void pop_r12(u8 **pprog) { u8 *prog = *pprog; EMIT2(0x41, 0x5C); /* pop r12 */ *pprog = prog; } static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) { u8 *prog = *pprog; if (callee_regs_used[3]) EMIT2(0x41, 0x5F); /* pop r15 */ if (callee_regs_used[2]) EMIT2(0x41, 0x5E); /* pop r14 */ if (callee_regs_used[1]) EMIT2(0x41, 0x5D); /* pop r13 */ if (callee_regs_used[0]) EMIT1(0x5B); /* pop rbx */ *pprog = prog; } static void emit_nops(u8 **pprog, int len) { u8 *prog = *pprog; int i, noplen; while (len > 0) { noplen = len; if (noplen > ASM_NOP_MAX) noplen = ASM_NOP_MAX; for (i = 0; i < noplen; i++) EMIT1(x86_nops[noplen][i]); len -= noplen; } *pprog = prog; } /* * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT * in arch/x86/kernel/alternative.c */ static void emit_fineibt(u8 **pprog, u32 hash) { u8 *prog = *pprog; EMIT_ENDBR(); EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */ EMIT2(0x74, 0x07); /* jz.d8 +7 */ EMIT2(0x0f, 0x0b); /* ud2 */ EMIT1(0x90); /* nop */ EMIT_ENDBR_POISON(); *pprog = prog; } static void emit_kcfi(u8 **pprog, u32 hash) { u8 *prog = *pprog; EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ #ifdef CONFIG_CALL_PADDING EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); #endif EMIT_ENDBR(); *pprog = prog; } static void emit_cfi(u8 **pprog, u32 hash) { u8 *prog = *pprog; switch (cfi_mode) { case CFI_FINEIBT: emit_fineibt(&prog, hash); break; case CFI_KCFI: emit_kcfi(&prog, hash); break; default: EMIT_ENDBR(); break; } *pprog = prog; } /* * Emit x86-64 prologue code for BPF program. * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes * while jumping to another program */ static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, bool tail_call_reachable, bool is_subprog, bool is_exception_cb) { u8 *prog = *pprog; emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash); /* BPF trampoline can be made to work without these nops, * but let's waste 5 bytes for now and optimize later */ emit_nops(&prog, X86_PATCH_SIZE); if (!ebpf_from_cbpf) { if (tail_call_reachable && !is_subprog) /* When it's the entry of the whole tailcall context, * zeroing rax means initialising tail_call_cnt. */ EMIT2(0x31, 0xC0); /* xor eax, eax */ else /* Keep the same instruction layout. */ EMIT2(0x66, 0x90); /* nop2 */ } /* Exception callback receives FP as third parameter */ if (is_exception_cb) { EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ /* The main frame must have exception_boundary as true, so we * first restore those callee-saved regs from stack, before * reusing the stack frame. */ pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); /* Reset the stack frame. */ EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ } else { EMIT1(0x55); /* push rbp */ EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ } /* X86_TAIL_CALL_OFFSET is here */ EMIT_ENDBR(); /* sub rsp, rounded_stack_depth */ if (stack_depth) EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); if (tail_call_reachable) EMIT1(0x50); /* push rax */ *pprog = prog; } static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) { u8 *prog = *pprog; s64 offset; offset = func - (ip + X86_PATCH_SIZE); if (!is_simm32(offset)) { pr_err("Target call %p is out of range\n", func); return -ERANGE; } EMIT1_off32(opcode, offset); *pprog = prog; return 0; } static int emit_call(u8 **pprog, void *func, void *ip) { return emit_patch(pprog, func, ip, 0xE8); } static int emit_rsb_call(u8 **pprog, void *func, void *ip) { OPTIMIZER_HIDE_VAR(func); ip += x86_call_depth_emit_accounting(pprog, func, ip); return emit_patch(pprog, func, ip, 0xE8); } static int emit_jump(u8 **pprog, void *func, void *ip) { return emit_patch(pprog, func, ip, 0xE9); } static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *old_addr, void *new_addr) { const u8 *nop_insn = x86_nops[5]; u8 old_insn[X86_PATCH_SIZE]; u8 new_insn[X86_PATCH_SIZE]; u8 *prog; int ret; memcpy(old_insn, nop_insn, X86_PATCH_SIZE); if (old_addr) { prog = old_insn; ret = t == BPF_MOD_CALL ? emit_call(&prog, old_addr, ip) : emit_jump(&prog, old_addr, ip); if (ret) return ret; } memcpy(new_insn, nop_insn, X86_PATCH_SIZE); if (new_addr) { prog = new_insn; ret = t == BPF_MOD_CALL ? emit_call(&prog, new_addr, ip) : emit_jump(&prog, new_addr, ip); if (ret) return ret; } ret = -EBUSY; mutex_lock(&text_mutex); if (memcmp(ip, old_insn, X86_PATCH_SIZE)) goto out; ret = 1; if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); ret = 0; } out: mutex_unlock(&text_mutex); return ret; } int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *old_addr, void *new_addr) { if (!is_kernel_text((long)ip) && !is_bpf_text_address((long)ip)) /* BPF poking in modules is not supported */ return -EINVAL; /* * See emit_prologue(), for IBT builds the trampoline hook is preceded * with an ENDBR instruction. */ if (is_endbr(*(u32 *)ip)) ip += ENDBR_INSN_SIZE; return __bpf_arch_text_poke(ip, t, old_addr, new_addr); } #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) { u8 *prog = *pprog; if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { EMIT_LFENCE(); EMIT2(0xFF, 0xE0 + reg); } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { OPTIMIZER_HIDE_VAR(reg); if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); else emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); } else { EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) EMIT1(0xCC); /* int3 */ } *pprog = prog; } static void emit_return(u8 **pprog, u8 *ip) { u8 *prog = *pprog; if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { emit_jump(&prog, x86_return_thunk, ip); } else { EMIT1(0xC3); /* ret */ if (IS_ENABLED(CONFIG_MITIGATION_SLS)) EMIT1(0xCC); /* int3 */ } *pprog = prog; } /* * Generate the following code: * * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... * if (index >= array->map.max_entries) * goto out; * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) * goto out; * prog = array->ptrs[index]; * if (prog == NULL) * goto out; * goto *(prog->bpf_func + prologue_size); * out: */ static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, u8 **pprog, bool *callee_regs_used, u32 stack_depth, u8 *ip, struct jit_context *ctx) { int tcc_off = -4 - round_up(stack_depth, 8); u8 *prog = *pprog, *start = *pprog; int offset; /* * rdi - pointer to ctx * rsi - pointer to bpf_array * rdx - index in bpf_array */ /* * if (index >= array->map.max_entries) * goto out; */ EMIT2(0x89, 0xD2); /* mov edx, edx */ EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ offsetof(struct bpf_array, map.max_entries)); offset = ctx->tail_call_indirect_label - (prog + 2 - start); EMIT2(X86_JBE, offset); /* jbe out */ /* * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) * goto out; */ EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ offset = ctx->tail_call_indirect_label - (prog + 2 - start); EMIT2(X86_JAE, offset); /* jae out */ EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ /* prog = array->ptrs[index]; */ EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ offsetof(struct bpf_array, ptrs)); /* * if (prog == NULL) * goto out; */ EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ offset = ctx->tail_call_indirect_label - (prog + 2 - start); EMIT2(X86_JE, offset); /* je out */ if (bpf_prog->aux->exception_boundary) { pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); } else { pop_callee_regs(&prog, callee_regs_used); if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) pop_r12(&prog); } EMIT1(0x58); /* pop rax */ if (stack_depth) EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ round_up(stack_depth, 8)); /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ offsetof(struct bpf_prog, bpf_func)); EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ X86_TAIL_CALL_OFFSET); /* * Now we're ready to jump into next BPF program * rdi == ctx (1st arg) * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET */ emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); /* out: */ ctx->tail_call_indirect_label = prog - start; *pprog = prog; } static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, struct bpf_jit_poke_descriptor *poke, u8 **pprog, u8 *ip, bool *callee_regs_used, u32 stack_depth, struct jit_context *ctx) { int tcc_off = -4 - round_up(stack_depth, 8); u8 *prog = *pprog, *start = *pprog; int offset; /* * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) * goto out; */ EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ offset = ctx->tail_call_direct_label - (prog + 2 - start); EMIT2(X86_JAE, offset); /* jae out */ EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ poke->tailcall_bypass = ip + (prog - start); poke->adj_off = X86_TAIL_CALL_OFFSET; poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, poke->tailcall_bypass); if (bpf_prog->aux->exception_boundary) { pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); } else { pop_callee_regs(&prog, callee_regs_used); if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) pop_r12(&prog); } EMIT1(0x58); /* pop rax */ if (stack_depth) EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); emit_nops(&prog, X86_PATCH_SIZE); /* out: */ ctx->tail_call_direct_label = prog - start; *pprog = prog; } static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) { struct bpf_jit_poke_descriptor *poke; struct bpf_array *array; struct bpf_prog *target; int i, ret; for (i = 0; i < prog->aux->size_poke_tab; i++) { poke = &prog->aux->poke_tab[i]; if (poke->aux && poke->aux != prog->aux) continue; WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); if (poke->reason != BPF_POKE_REASON_TAIL_CALL) continue; array = container_of(poke->tail_call.map, struct bpf_array, map); mutex_lock(&array->aux->poke_mutex); target = array->ptrs[poke->tail_call.key]; if (target) { ret = __bpf_arch_text_poke(poke->tailcall_target, BPF_MOD_JUMP, NULL, (u8 *)target->bpf_func + poke->adj_off); BUG_ON(ret < 0); ret = __bpf_arch_text_poke(poke->tailcall_bypass, BPF_MOD_JUMP, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, NULL); BUG_ON(ret < 0); } WRITE_ONCE(poke->tailcall_target_stable, true); mutex_unlock(&array->aux->poke_mutex); } } static void emit_mov_imm32(u8 **pprog, bool sign_propagate, u32 dst_reg, const u32 imm32) { u8 *prog = *pprog; u8 b1, b2, b3; /* * Optimization: if imm32 is positive, use 'mov %eax, imm32' * (which zero-extends imm32) to save 2 bytes. */ if (sign_propagate && (s32)imm32 < 0) { /* 'mov %rax, imm32' sign extends imm32 */ b1 = add_1mod(0x48, dst_reg); b2 = 0xC7; b3 = 0xC0; EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); goto done; } /* * Optimization: if imm32 is zero, use 'xor %eax, %eax' * to save 3 bytes. */ if (imm32 == 0) { if (is_ereg(dst_reg)) EMIT1(add_2mod(0x40, dst_reg, dst_reg)); b2 = 0x31; /* xor */ b3 = 0xC0; EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); goto done; } /* mov %eax, imm32 */ if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); done: *pprog = prog; } static void emit_mov_imm64(u8 **pprog, u32 dst_reg, const u32 imm32_hi, const u32 imm32_lo) { u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo; u8 *prog = *pprog; if (is_uimm32(imm64)) { /* * For emitting plain u32, where sign bit must not be * propagated LLVM tends to load imm64 over mov32 * directly, so save couple of bytes by just doing * 'mov %eax, imm32' instead. */ emit_mov_imm32(&prog, false, dst_reg, imm32_lo); } else if (is_simm32(imm64)) { emit_mov_imm32(&prog, true, dst_reg, imm32_lo); } else { /* movabsq rax, imm64 */ EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); EMIT(imm32_lo, 4); EMIT(imm32_hi, 4); } *pprog = prog; } static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) { u8 *prog = *pprog; if (is64) { /* mov dst, src */ EMIT_mov(dst_reg, src_reg); } else { /* mov32 dst, src */ if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, dst_reg, src_reg)); EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); } *pprog = prog; } static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, u32 src_reg) { u8 *prog = *pprog; if (is64) { /* movs[b,w,l]q dst, src */ if (num_bits == 8) EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, add_2reg(0xC0, src_reg, dst_reg)); else if (num_bits == 16) EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, add_2reg(0xC0, src_reg, dst_reg)); else if (num_bits == 32) EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, add_2reg(0xC0, src_reg, dst_reg)); } else { /* movs[b,w]l dst, src */ if (num_bits == 8) { EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, add_2reg(0xC0, src_reg, dst_reg)); } else if (num_bits == 16) { if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, src_reg, dst_reg)); EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, add_2reg(0xC0, src_reg, dst_reg)); } } *pprog = prog; } /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) { u8 *prog = *pprog; if (is_imm8(off)) { /* 1-byte signed displacement. * * If off == 0 we could skip this and save one extra byte, but * special case of x86 R13 which always needs an offset is not * worth the hassle */ EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); } else { /* 4-byte signed displacement */ EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); } *pprog = prog; } static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) { u8 *prog = *pprog; if (is_imm8(off)) { EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); } else { EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); } *pprog = prog; } /* * Emit a REX byte if it will be necessary to address these registers */ static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) { u8 *prog = *pprog; if (is64) EMIT1(add_2mod(0x48, dst_reg, src_reg)); else if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, dst_reg, src_reg)); *pprog = prog; } /* * Similar version of maybe_emit_mod() for a single register */ static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) { u8 *prog = *pprog; if (is64) EMIT1(add_1mod(0x48, reg)); else if (is_ereg(reg)) EMIT1(add_1mod(0x40, reg)); *pprog = prog; } /* LDX: dst_reg = *(u8*)(src_reg + off) */ static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* Emit 'movzx rax, byte ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); break; case BPF_H: /* Emit 'movzx rax, word ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); break; case BPF_W: /* Emit 'mov eax, dword ptr [rax+0x14]' */ if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); else EMIT1(0x8B); break; case BPF_DW: /* Emit 'mov rax, qword ptr [rax+0x14]' */ EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); break; } emit_insn_suffix(&prog, src_reg, dst_reg, off); *pprog = prog; } /* LDSX: dst_reg = *(s8*)(src_reg + off) */ static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* Emit 'movsx rax, byte ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); break; case BPF_H: /* Emit 'movsx rax, word ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); break; case BPF_W: /* Emit 'movsx rax, dword ptr [rax+0x14]' */ EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); break; } emit_insn_suffix(&prog, src_reg, dst_reg, off); *pprog = prog; } static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* movzx rax, byte ptr [rax + r12 + off] */ EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); break; case BPF_H: /* movzx rax, word ptr [rax + r12 + off] */ EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); break; case BPF_W: /* mov eax, dword ptr [rax + r12 + off] */ EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); break; case BPF_DW: /* mov rax, qword ptr [rax + r12 + off] */ EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); break; } emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); *pprog = prog; } static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); } /* STX: *(u8*)(dst_reg + off) = src_reg */ static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* Emit 'mov byte ptr [rax + off], al' */ if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); else EMIT1(0x88); break; case BPF_H: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); else EMIT2(0x66, 0x89); break; case BPF_W: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); else EMIT1(0x89); break; case BPF_DW: EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); break; } emit_insn_suffix(&prog, dst_reg, src_reg, off); *pprog = prog; } /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* mov byte ptr [rax + r12 + off], al */ EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); break; case BPF_H: /* mov word ptr [rax + r12 + off], ax */ EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); break; case BPF_W: /* mov dword ptr [rax + r12 + 1], eax */ EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); break; case BPF_DW: /* mov qword ptr [rax + r12 + 1], rax */ EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); break; } emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); *pprog = prog; } static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); } /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) { u8 *prog = *pprog; switch (size) { case BPF_B: /* mov byte ptr [rax + r12 + off], imm8 */ EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); break; case BPF_H: /* mov word ptr [rax + r12 + off], imm16 */ EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); break; case BPF_W: /* mov dword ptr [rax + r12 + 1], imm32 */ EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); break; case BPF_DW: /* mov qword ptr [rax + r12 + 1], imm32 */ EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); break; } emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); EMIT(imm, bpf_size_to_x86_bytes(size)); *pprog = prog; } static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) { emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); } static int emit_atomic(u8 **pprog, u8 atomic_op, u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) { u8 *prog = *pprog; EMIT1(0xF0); /* lock prefix */ maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); /* emit opcode */ switch (atomic_op) { case BPF_ADD: case BPF_AND: case BPF_OR: case BPF_XOR: /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ EMIT1(simple_alu_opcodes[atomic_op]); break; case BPF_ADD | BPF_FETCH: /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ EMIT2(0x0F, 0xC1); break; case BPF_XCHG: /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ EMIT1(0x87); break; case BPF_CMPXCHG: /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ EMIT2(0x0F, 0xB1); break; default: pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); return -EFAULT; } emit_insn_suffix(&prog, dst_reg, src_reg, off); *pprog = prog; return 0; } static int emit_atomic_index(u8 **pprog, u8 atomic_op, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) { u8 *prog = *pprog; EMIT1(0xF0); /* lock prefix */ switch (size) { case BPF_W: EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg)); break; case BPF_DW: EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg)); break; default: pr_err("bpf_jit: 1 and 2 byte atomics are not supported\n"); return -EFAULT; } /* emit opcode */ switch (atomic_op) { case BPF_ADD: case BPF_AND: case BPF_OR: case BPF_XOR: /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */ EMIT1(simple_alu_opcodes[atomic_op]); break; case BPF_ADD | BPF_FETCH: /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */ EMIT2(0x0F, 0xC1); break; case BPF_XCHG: /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */ EMIT1(0x87); break; case BPF_CMPXCHG: /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */ EMIT2(0x0F, 0xB1); break; default: pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); return -EFAULT; } emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); *pprog = prog; return 0; } #define DONT_CLEAR 1 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) { u32 reg = x->fixup >> 8; /* jump over faulting load and clear dest register */ if (reg != DONT_CLEAR) *(unsigned long *)((void *)regs + reg) = 0; regs->ip += x->fixup & 0xff; return true; } static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, bool *regs_used) { int i; for (i = 1; i <= insn_cnt; i++, insn++) { if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) regs_used[0] = true; if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) regs_used[1] = true; if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) regs_used[2] = true; if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) regs_used[3] = true; } } /* emit the 3-byte VEX prefix * * r: same as rex.r, extra bit for ModRM reg field * x: same as rex.x, extra bit for SIB index field * b: same as rex.b, extra bit for ModRM r/m, or SIB base * m: opcode map select, encoding escape bytes e.g. 0x0f38 * w: same as rex.w (32 bit or 64 bit) or opcode specific * src_reg2: additional source reg (encoded as BPF reg) * l: vector length (128 bit or 256 bit) or reserved * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) */ static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, bool w, u8 src_reg2, bool l, u8 pp) { u8 *prog = *pprog; const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ u8 b1, b2; u8 vvvv = reg2hex[src_reg2]; /* reg2hex gives only the lower 3 bit of vvvv */ if (is_ereg(src_reg2)) vvvv |= 1 << 3; /* * 2nd byte of 3-byte VEX prefix * ~ means bit inverted encoding * * 7 0 * +---+---+---+---+---+---+---+---+ * |~R |~X |~B | m | * +---+---+---+---+---+---+---+---+ */ b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); /* * 3rd byte of 3-byte VEX prefix * * 7 0 * +---+---+---+---+---+---+---+---+ * | W | ~vvvv | L | pp | * +---+---+---+---+---+---+---+---+ */ b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); EMIT3(b0, b1, b2); *pprog = prog; } /* emit BMI2 shift instruction */ static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) { u8 *prog = *pprog; bool r = is_ereg(dst_reg); u8 m = 2; /* escape code 0f38 */ emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); *pprog = prog; } #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ #define RESTORE_TAIL_CALL_CNT(stack) \ EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8) static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, int oldproglen, struct jit_context *ctx, bool jmp_padding) { bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; struct bpf_insn *insn = bpf_prog->insnsi; bool callee_regs_used[4] = {}; int insn_cnt = bpf_prog->len; bool seen_exit = false; u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; u64 arena_vm_start, user_vm_start; int i, excnt = 0; int ilen, proglen = 0; u8 *prog = temp; int err; arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); detect_reg_usage(insn, insn_cnt, callee_regs_used); emit_prologue(&prog, bpf_prog->aux->stack_depth, bpf_prog_was_classic(bpf_prog), tail_call_reachable, bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); /* Exception callback will clobber callee regs for its own use, and * restore the original callee regs from main prog's stack frame. */ if (bpf_prog->aux->exception_boundary) { /* We also need to save r12, which is not mapped to any BPF * register, as we throw after entry into the kernel, which may * overwrite r12. */ push_r12(&prog); push_callee_regs(&prog, all_callee_regs_used); } else { if (arena_vm_start) push_r12(&prog); push_callee_regs(&prog, callee_regs_used); } if (arena_vm_start) emit_mov_imm64(&prog, X86_REG_R12, arena_vm_start >> 32, (u32) arena_vm_start); ilen = prog - temp; if (rw_image) memcpy(rw_image + proglen, temp, ilen); proglen += ilen; addrs[0] = proglen; prog = temp; for (i = 1; i <= insn_cnt; i++, insn++) { const s32 imm32 = insn->imm; u32 dst_reg = insn->dst_reg; u32 src_reg = insn->src_reg; u8 b2 = 0, b3 = 0; u8 *start_of_ldx; s64 jmp_offset; s16 insn_off; u8 jmp_cond; u8 *func; int nops; switch (insn->code) { /* ALU */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: maybe_emit_mod(&prog, dst_reg, src_reg, BPF_CLASS(insn->code) == BPF_ALU64); b2 = simple_alu_opcodes[BPF_OP(insn->code)]; EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); break; case BPF_ALU64 | BPF_MOV | BPF_X: if (insn_is_cast_user(insn)) { if (dst_reg != src_reg) /* 32-bit mov */ emit_mov_reg(&prog, false, dst_reg, src_reg); /* shl dst_reg, 32 */ maybe_emit_1mod(&prog, dst_reg, true); EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); /* or dst_reg, user_vm_start */ maybe_emit_1mod(&prog, dst_reg, true); if (is_axreg(dst_reg)) EMIT1_off32(0x0D, user_vm_start >> 32); else EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); /* rol dst_reg, 32 */ maybe_emit_1mod(&prog, dst_reg, true); EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); /* xor r11, r11 */ EMIT3(0x4D, 0x31, 0xDB); /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ maybe_emit_mod(&prog, dst_reg, dst_reg, false); EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); /* cmove r11, dst_reg; if so, set dst_reg to zero */ /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ maybe_emit_mod(&prog, AUX_REG, dst_reg, true); EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); break; } else if (insn_is_mov_percpu_addr(insn)) { /* mov <dst>, <src> (if necessary) */ EMIT_mov(dst_reg, src_reg); #ifdef CONFIG_SMP /* add <dst>, gs:[<off>] */ EMIT2(0x65, add_1mod(0x48, dst_reg)); EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25); EMIT((u32)(unsigned long)&this_cpu_off, 4); #endif break; } fallthrough; case BPF_ALU | BPF_MOV | BPF_X: if (insn->off == 0) emit_mov_reg(&prog, BPF_CLASS(insn->code) == BPF_ALU64, dst_reg, src_reg); else emit_movsx_reg(&prog, insn->off, BPF_CLASS(insn->code) == BPF_ALU64, dst_reg, src_reg); break; /* neg dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); EMIT2(0xF7, add_1reg(0xD8, dst_reg)); break; case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); /* * b3 holds 'normal' opcode, b2 short form only valid * in case dst is eax/rax. */ switch (BPF_OP(insn->code)) { case BPF_ADD: b3 = 0xC0; b2 = 0x05; break; case BPF_SUB: b3 = 0xE8; b2 = 0x2D; break; case BPF_AND: b3 = 0xE0; b2 = 0x25; break; case BPF_OR: b3 = 0xC8; b2 = 0x0D; break; case BPF_XOR: b3 = 0xF0; b2 = 0x35; break; } if (is_imm8(imm32)) EMIT3(0x83, add_1reg(b3, dst_reg), imm32); else if (is_axreg(dst_reg)) EMIT1_off32(b2, imm32); else EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); break; case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU | BPF_MOV | BPF_K: emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, dst_reg, imm32); break; case BPF_LD | BPF_IMM | BPF_DW: emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); insn++; i++; break; /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; if (dst_reg != BPF_REG_0) EMIT1(0x50); /* push rax */ if (dst_reg != BPF_REG_3) EMIT1(0x52); /* push rdx */ if (BPF_SRC(insn->code) == BPF_X) { if (src_reg == BPF_REG_0 || src_reg == BPF_REG_3) { /* mov r11, src_reg */ EMIT_mov(AUX_REG, src_reg); src_reg = AUX_REG; } } else { /* mov r11, imm32 */ EMIT3_off32(0x49, 0xC7, 0xC3, imm32); src_reg = AUX_REG; } if (dst_reg != BPF_REG_0) /* mov rax, dst_reg */ emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); if (insn->off == 0) { /* * xor edx, edx * equivalent to 'xor rdx, rdx', but one byte less */ EMIT2(0x31, 0xd2); /* div src_reg */ maybe_emit_1mod(&prog, src_reg, is64); EMIT2(0xF7, add_1reg(0xF0, src_reg)); } else { if (BPF_CLASS(insn->code) == BPF_ALU) EMIT1(0x99); /* cdq */ else EMIT2(0x48, 0x99); /* cqo */ /* idiv src_reg */ maybe_emit_1mod(&prog, src_reg, is64); EMIT2(0xF7, add_1reg(0xF8, src_reg)); } if (BPF_OP(insn->code) == BPF_MOD && dst_reg != BPF_REG_3) /* mov dst_reg, rdx */ emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); else if (BPF_OP(insn->code) == BPF_DIV && dst_reg != BPF_REG_0) /* mov dst_reg, rax */ emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); if (dst_reg != BPF_REG_3) EMIT1(0x5A); /* pop rdx */ if (dst_reg != BPF_REG_0) EMIT1(0x58); /* pop rax */ break; } case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: maybe_emit_mod(&prog, dst_reg, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); if (is_imm8(imm32)) /* imul dst_reg, dst_reg, imm8 */ EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), imm32); else /* imul dst_reg, dst_reg, imm32 */ EMIT2_off32(0x69, add_2reg(0xC0, dst_reg, dst_reg), imm32); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: maybe_emit_mod(&prog, src_reg, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); /* imul dst_reg, src_reg */ EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); break; /* Shifts */ case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); b3 = simple_alu_opcodes[BPF_OP(insn->code)]; if (imm32 == 1) EMIT2(0xD1, add_1reg(b3, dst_reg)); else EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: /* BMI2 shifts aren't better when shift count is already in rcx */ if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ bool w = (BPF_CLASS(insn->code) == BPF_ALU64); u8 op; switch (BPF_OP(insn->code)) { case BPF_LSH: op = 1; /* prefix 0x66 */ break; case BPF_RSH: op = 3; /* prefix 0xf2 */ break; case BPF_ARSH: op = 2; /* prefix 0xf3 */ break; } emit_shiftx(&prog, dst_reg, src_reg, w, op); break; } if (src_reg != BPF_REG_4) { /* common case */ /* Check for bad case when dst_reg == rcx */ if (dst_reg == BPF_REG_4) { /* mov r11, dst_reg */ EMIT_mov(AUX_REG, dst_reg); dst_reg = AUX_REG; } else { EMIT1(0x51); /* push rcx */ } /* mov rcx, src_reg */ EMIT_mov(BPF_REG_4, src_reg); } /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); b3 = simple_alu_opcodes[BPF_OP(insn->code)]; EMIT2(0xD3, add_1reg(b3, dst_reg)); if (src_reg != BPF_REG_4) { if (insn->dst_reg == BPF_REG_4) /* mov dst_reg, r11 */ EMIT_mov(insn->dst_reg, AUX_REG); else EMIT1(0x59); /* pop rcx */ } break; case BPF_ALU | BPF_END | BPF_FROM_BE: case BPF_ALU64 | BPF_END | BPF_FROM_LE: switch (imm32) { case 16: /* Emit 'ror %ax, 8' to swap lower 2 bytes */ EMIT1(0x66); if (is_ereg(dst_reg)) EMIT1(0x41); EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); /* Emit 'movzwl eax, ax' */ if (is_ereg(dst_reg)) EMIT3(0x45, 0x0F, 0xB7); else EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); break; case 32: /* Emit 'bswap eax' to swap lower 4 bytes */ if (is_ereg(dst_reg)) EMIT2(0x41, 0x0F); else EMIT1(0x0F); EMIT1(add_1reg(0xC8, dst_reg)); break; case 64: /* Emit 'bswap rax' to swap 8 bytes */ EMIT3(add_1mod(0x48, dst_reg), 0x0F, add_1reg(0xC8, dst_reg)); break; } break; case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm32) { case 16: /* * Emit 'movzwl eax, ax' to zero extend 16-bit * into 64 bit */ if (is_ereg(dst_reg)) EMIT3(0x45, 0x0F, 0xB7); else EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); break; case 32: /* Emit 'mov eax, eax' to clear upper 32-bits */ if (is_ereg(dst_reg)) EMIT1(0x45); EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); break; case 64: /* nop */ break; } break; /* speculation barrier */ case BPF_ST | BPF_NOSPEC: EMIT_LFENCE(); break; /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: if (is_ereg(dst_reg)) EMIT2(0x41, 0xC6); else EMIT1(0xC6); goto st; case BPF_ST | BPF_MEM | BPF_H: if (is_ereg(dst_reg)) EMIT3(0x66, 0x41, 0xC7); else EMIT2(0x66, 0xC7); goto st; case BPF_ST | BPF_MEM | BPF_W: if (is_ereg(dst_reg)) EMIT2(0x41, 0xC7); else EMIT1(0xC7); goto st; case BPF_ST | BPF_MEM | BPF_DW: EMIT2(add_1mod(0x48, dst_reg), 0xC7); st: if (is_imm8(insn->off)) EMIT2(add_1reg(0x40, dst_reg), insn->off); else EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); break; /* STX: *(u8*)(dst_reg + off) = src_reg */ case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_DW: emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); break; case BPF_ST | BPF_PROBE_MEM32 | BPF_B: case BPF_ST | BPF_PROBE_MEM32 | BPF_H: case BPF_ST | BPF_PROBE_MEM32 | BPF_W: case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: start_of_ldx = prog; emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); goto populate_extable; /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: case BPF_STX | BPF_PROBE_MEM32 | BPF_B: case BPF_STX | BPF_PROBE_MEM32 | BPF_H: case BPF_STX | BPF_PROBE_MEM32 | BPF_W: case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: start_of_ldx = prog; if (BPF_CLASS(insn->code) == BPF_LDX) emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); else emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); populate_extable: { struct exception_table_entry *ex; u8 *_insn = image + proglen + (start_of_ldx - temp); s64 delta; if (!bpf_prog->aux->extable) break; if (excnt >= bpf_prog->aux->num_exentries) { pr_err("mem32 extable bug\n"); return -EFAULT; } ex = &bpf_prog->aux->extable[excnt++]; delta = _insn - (u8 *)&ex->insn; /* switch ex to rw buffer for writes */ ex = (void *)rw_image + ((void *)ex - (void *)image); ex->insn = delta; ex->data = EX_TYPE_BPF; ex->fixup = (prog - start_of_ldx) | ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8); } break; /* LDX: dst_reg = *(u8*)(src_reg + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_PROBE_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_PROBE_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_PROBE_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: case BPF_LDX | BPF_PROBE_MEM | BPF_DW: /* LDXS: dst_reg = *(s8*)(src_reg + off) */ case BPF_LDX | BPF_MEMSX | BPF_B: case BPF_LDX | BPF_MEMSX | BPF_H: case BPF_LDX | BPF_MEMSX | BPF_W: case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: insn_off = insn->off; if (BPF_MODE(insn->code) == BPF_PROBE_MEM || BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { /* Conservatively check that src_reg + insn->off is a kernel address: * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE * and * src_reg + insn->off < VSYSCALL_ADDR */ u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR; u8 *end_of_jmp; /* movabsq r10, VSYSCALL_ADDR */ emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32, (u32)(long)VSYSCALL_ADDR); /* mov src_reg, r11 */ EMIT_mov(AUX_REG, src_reg); if (insn->off) { /* add r11, insn->off */ maybe_emit_1mod(&prog, AUX_REG, true); EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off); } /* sub r11, r10 */ maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); /* movabsq r10, limit */ emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32, (u32)(long)limit); /* cmp r10, r11 */ maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); /* if unsigned '>', goto load */ EMIT2(X86_JA, 0); end_of_jmp = prog; /* xor dst_reg, dst_reg */ emit_mov_imm32(&prog, false, dst_reg, 0); /* jmp byte_after_ldx */ EMIT2(0xEB, 0); /* populate jmp_offset for JAE above to jump to start_of_ldx */ start_of_ldx = prog; end_of_jmp[-1] = start_of_ldx - end_of_jmp; } if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || BPF_MODE(insn->code) == BPF_MEMSX) emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); else emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); if (BPF_MODE(insn->code) == BPF_PROBE_MEM || BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { struct exception_table_entry *ex; u8 *_insn = image + proglen + (start_of_ldx - temp); s64 delta; /* populate jmp_offset for JMP above */ start_of_ldx[-1] = prog - start_of_ldx; if (!bpf_prog->aux->extable) break; if (excnt >= bpf_prog->aux->num_exentries) { pr_err("ex gen bug\n"); return -EFAULT; } ex = &bpf_prog->aux->extable[excnt++]; delta = _insn - (u8 *)&ex->insn; if (!is_simm32(delta)) { pr_err("extable->insn doesn't fit into 32-bit\n"); return -EFAULT; } /* switch ex to rw buffer for writes */ ex = (void *)rw_image + ((void *)ex - (void *)image); ex->insn = delta; ex->data = EX_TYPE_BPF; if (dst_reg > BPF_REG_9) { pr_err("verifier error\n"); return -EFAULT; } /* * Compute size of x86 insn and its target dest x86 register. * ex_handler_bpf() will use lower 8 bits to adjust * pt_regs->ip to jump over this x86 instruction * and upper bits to figure out which pt_regs to zero out. * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" * of 4 bytes will be ignored and rbx will be zero inited. */ ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8); } break; case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: if (insn->imm == (BPF_AND | BPF_FETCH) || insn->imm == (BPF_OR | BPF_FETCH) || insn->imm == (BPF_XOR | BPF_FETCH)) { bool is64 = BPF_SIZE(insn->code) == BPF_DW; u32 real_src_reg = src_reg; u32 real_dst_reg = dst_reg; u8 *branch_target; /* * Can't be implemented with a single x86 insn. * Need to do a CMPXCHG loop. */ /* Will need RAX as a CMPXCHG operand so save R0 */ emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); if (src_reg == BPF_REG_0) real_src_reg = BPF_REG_AX; if (dst_reg == BPF_REG_0) real_dst_reg = BPF_REG_AX; branch_target = prog; /* Load old value */ emit_ldx(&prog, BPF_SIZE(insn->code), BPF_REG_0, real_dst_reg, insn->off); /* * Perform the (commutative) operation locally, * put the result in the AUX_REG. */ emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], add_2reg(0xC0, AUX_REG, real_src_reg)); /* Attempt to swap in new value */ err = emit_atomic(&prog, BPF_CMPXCHG, real_dst_reg, AUX_REG, insn->off, BPF_SIZE(insn->code)); if (WARN_ON(err)) return err; /* * ZF tells us whether we won the race. If it's * cleared we need to try again. */ EMIT2(X86_JNE, -(prog - branch_target) - 2); /* Return the pre-modification value */ emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); /* Restore R0 after clobbering RAX */ emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); break; } err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, insn->off, BPF_SIZE(insn->code)); if (err) return err; break; case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: start_of_ldx = prog; err = emit_atomic_index(&prog, insn->imm, BPF_SIZE(insn->code), dst_reg, src_reg, X86_REG_R12, insn->off); if (err) return err; goto populate_extable; /* call */ case BPF_JMP | BPF_CALL: { u8 *ip = image + addrs[i - 1]; func = (u8 *) __bpf_call_base + imm32; if (tail_call_reachable) { RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth); ip += 7; } if (!imm32) return -EINVAL; ip += x86_call_depth_emit_accounting(&prog, func, ip); if (emit_call(&prog, func, ip)) return -EINVAL; break; } case BPF_JMP | BPF_TAIL_CALL: if (imm32) emit_bpf_tail_call_direct(bpf_prog, &bpf_prog->aux->poke_tab[imm32 - 1], &prog, image + addrs[i - 1], callee_regs_used, bpf_prog->aux->stack_depth, ctx); else emit_bpf_tail_call_indirect(bpf_prog, &prog, callee_regs_used, bpf_prog->aux->stack_depth, image + addrs[i - 1], ctx); break; /* cond jump */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: /* cmp dst_reg, src_reg */ maybe_emit_mod(&prog, dst_reg, src_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: /* test dst_reg, src_reg */ maybe_emit_mod(&prog, dst_reg, src_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: /* test dst_reg, imm32 */ maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); goto emit_cond_jmp; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: /* test dst_reg, dst_reg to save one extra byte */ if (imm32 == 0) { maybe_emit_mod(&prog, dst_reg, dst_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); goto emit_cond_jmp; } /* cmp dst_reg, imm8/32 */ maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_JMP); if (is_imm8(imm32)) EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); else EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); emit_cond_jmp: /* Convert BPF opcode to x86 */ switch (BPF_OP(insn->code)) { case BPF_JEQ: jmp_cond = X86_JE; break; case BPF_JSET: case BPF_JNE: jmp_cond = X86_JNE; break; case BPF_JGT: /* GT is unsigned '>', JA in x86 */ jmp_cond = X86_JA; break; case BPF_JLT: /* LT is unsigned '<', JB in x86 */ jmp_cond = X86_JB; break; case BPF_JGE: /* GE is unsigned '>=', JAE in x86 */ jmp_cond = X86_JAE; break; case BPF_JLE: /* LE is unsigned '<=', JBE in x86 */ jmp_cond = X86_JBE; break; case BPF_JSGT: /* Signed '>', GT in x86 */ jmp_cond = X86_JG; break; case BPF_JSLT: /* Signed '<', LT in x86 */ jmp_cond = X86_JL; break; case BPF_JSGE: /* Signed '>=', GE in x86 */ jmp_cond = X86_JGE; break; case BPF_JSLE: /* Signed '<=', LE in x86 */ jmp_cond = X86_JLE; break; default: /* to silence GCC warning */ return -EFAULT; } jmp_offset = addrs[i + insn->off] - addrs[i]; if (is_imm8(jmp_offset)) { if (jmp_padding) { /* To keep the jmp_offset valid, the extra bytes are * padded before the jump insn, so we subtract the * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. * * If the previous pass already emits an imm8 * jmp_cond, then this BPF insn won't shrink, so * "nops" is 0. * * On the other hand, if the previous pass emits an * imm32 jmp_cond, the extra 4 bytes(*) is padded to * keep the image from shrinking further. * * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond * is 2 bytes, so the size difference is 4 bytes. */ nops = INSN_SZ_DIFF - 2; if (nops != 0 && nops != 4) { pr_err("unexpected jmp_cond padding: %d bytes\n", nops); return -EFAULT; } emit_nops(&prog, nops); } EMIT2(jmp_cond, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); } else { pr_err("cond_jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_JMP | BPF_JA: case BPF_JMP32 | BPF_JA: if (BPF_CLASS(insn->code) == BPF_JMP) { if (insn->off == -1) /* -1 jmp instructions will always jump * backwards two bytes. Explicitly handling * this case avoids wasting too many passes * when there are long sequences of replaced * dead code. */ jmp_offset = -2; else jmp_offset = addrs[i + insn->off] - addrs[i]; } else { if (insn->imm == -1) jmp_offset = -2; else jmp_offset = addrs[i + insn->imm] - addrs[i]; } if (!jmp_offset) { /* * If jmp_padding is enabled, the extra nops will * be inserted. Otherwise, optimize out nop jumps. */ if (jmp_padding) { /* There are 3 possible conditions. * (1) This BPF_JA is already optimized out in * the previous run, so there is no need * to pad any extra byte (0 byte). * (2) The previous pass emits an imm8 jmp, * so we pad 2 bytes to match the previous * insn size. * (3) Similarly, the previous pass emits an * imm32 jmp, and 5 bytes is padded. */ nops = INSN_SZ_DIFF; if (nops != 0 && nops != 2 && nops != 5) { pr_err("unexpected nop jump padding: %d bytes\n", nops); return -EFAULT; } emit_nops(&prog, nops); } break; } emit_jmp: if (is_imm8(jmp_offset)) { if (jmp_padding) { /* To avoid breaking jmp_offset, the extra bytes * are padded before the actual jmp insn, so * 2 bytes is subtracted from INSN_SZ_DIFF. * * If the previous pass already emits an imm8 * jmp, there is nothing to pad (0 byte). * * If it emits an imm32 jmp (5 bytes) previously * and now an imm8 jmp (2 bytes), then we pad * (5 - 2 = 3) bytes to stop the image from * shrinking further. */ nops = INSN_SZ_DIFF - 2; if (nops != 0 && nops != 3) { pr_err("unexpected jump padding: %d bytes\n", nops); return -EFAULT; } emit_nops(&prog, INSN_SZ_DIFF - 2); } EMIT2(0xEB, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT1_off32(0xE9, jmp_offset); } else { pr_err("jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_JMP | BPF_EXIT: if (seen_exit) { jmp_offset = ctx->cleanup_addr - addrs[i]; goto emit_jmp; } seen_exit = true; /* Update cleanup_addr */ ctx->cleanup_addr = proglen; if (bpf_prog->aux->exception_boundary) { pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); } else { pop_callee_regs(&prog, callee_regs_used); if (arena_vm_start) pop_r12(&prog); } EMIT1(0xC9); /* leave */ emit_return(&prog, image + addrs[i - 1] + (prog - temp)); break; default: /* * By design x86-64 JIT should support all BPF instructions. * This error will be seen if new instruction was added * to the interpreter, but not to the JIT, or if there is * junk in bpf_prog. */ pr_err("bpf_jit: unknown opcode %02x\n", insn->code); return -EINVAL; } ilen = prog - temp; if (ilen > BPF_MAX_INSN_SIZE) { pr_err("bpf_jit: fatal insn size error\n"); return -EFAULT; } if (image) { /* * When populating the image, assert that: * * i) We do not write beyond the allocated space, and * ii) addrs[i] did not change from the prior run, in order * to validate assumptions made for computing branch * displacements. */ if (unlikely(proglen + ilen > oldproglen || proglen + ilen != addrs[i])) { pr_err("bpf_jit: fatal error\n"); return -EFAULT; } memcpy(rw_image + proglen, temp, ilen); } proglen += ilen; addrs[i] = proglen; prog = temp; } if (image && excnt != bpf_prog->aux->num_exentries) { pr_err("extable is not populated\n"); return -EFAULT; } return proglen; } static void clean_stack_garbage(const struct btf_func_model *m, u8 **pprog, int nr_stack_slots, int stack_size) { int arg_size, off; u8 *prog; /* Generally speaking, the compiler will pass the arguments * on-stack with "push" instruction, which will take 8-byte * on the stack. In this case, there won't be garbage values * while we copy the arguments from origin stack frame to current * in BPF_DW. * * However, sometimes the compiler will only allocate 4-byte on * the stack for the arguments. For now, this case will only * happen if there is only one argument on-stack and its size * not more than 4 byte. In this case, there will be garbage * values on the upper 4-byte where we store the argument on * current stack frame. * * arguments on origin stack: * * stack_arg_1(4-byte) xxx(4-byte) * * what we copy: * * stack_arg_1(8-byte): stack_arg_1(origin) xxx * * and the xxx is the garbage values which we should clean here. */ if (nr_stack_slots != 1) return; /* the size of the last argument */ arg_size = m->arg_size[m->nr_args - 1]; if (arg_size <= 4) { off = -(stack_size - 4); prog = *pprog; /* mov DWORD PTR [rbp + off], 0 */ if (!is_imm8(off)) EMIT2_off32(0xC7, 0x85, off); else EMIT3(0xC7, 0x45, off); EMIT(0, 4); *pprog = prog; } } /* get the count of the regs that are used to pass arguments */ static int get_nr_used_regs(const struct btf_func_model *m) { int i, arg_regs, nr_used_regs = 0; for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { arg_regs = (m->arg_size[i] + 7) / 8; if (nr_used_regs + arg_regs <= 6) nr_used_regs += arg_regs; if (nr_used_regs >= 6) break; } return nr_used_regs; } static void save_args(const struct btf_func_model *m, u8 **prog, int stack_size, bool for_call_origin) { int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; int i, j; /* Store function arguments to stack. * For a function that accepts two pointers the sequence will be: * mov QWORD PTR [rbp-0x10],rdi * mov QWORD PTR [rbp-0x8],rsi */ for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { arg_regs = (m->arg_size[i] + 7) / 8; /* According to the research of Yonghong, struct members * should be all in register or all on the stack. * Meanwhile, the compiler will pass the argument on regs * if the remaining regs can hold the argument. * * Disorder of the args can happen. For example: * * struct foo_struct { * long a; * int b; * }; * int foo(char, char, char, char, char, struct foo_struct, * char); * * the arg1-5,arg7 will be passed by regs, and arg6 will * by stack. */ if (nr_regs + arg_regs > 6) { /* copy function arguments from origin stack frame * into current stack frame. * * The starting address of the arguments on-stack * is: * rbp + 8(push rbp) + * 8(return addr of origin call) + * 8(return addr of the caller) * which means: rbp + 24 */ for (j = 0; j < arg_regs; j++) { emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, nr_stack_slots * 8 + 0x18); emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -stack_size); if (!nr_stack_slots) first_off = stack_size; stack_size -= 8; nr_stack_slots++; } } else { /* Only copy the arguments on-stack to current * 'stack_size' and ignore the regs, used to * prepare the arguments on-stack for origin call. */ if (for_call_origin) { nr_regs += arg_regs; continue; } /* copy the arguments from regs into stack */ for (j = 0; j < arg_regs; j++) { emit_stx(prog, BPF_DW, BPF_REG_FP, nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, -stack_size); stack_size -= 8; nr_regs++; } } } clean_stack_garbage(m, prog, nr_stack_slots, first_off); } static void restore_regs(const struct btf_func_model *m, u8 **prog, int stack_size) { int i, j, arg_regs, nr_regs = 0; /* Restore function arguments from stack. * For a function that accepts two pointers the sequence will be: * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] * * The logic here is similar to what we do in save_args() */ for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { arg_regs = (m->arg_size[i] + 7) / 8; if (nr_regs + arg_regs <= 6) { for (j = 0; j < arg_regs; j++) { emit_ldx(prog, BPF_DW, nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, BPF_REG_FP, -stack_size); stack_size -= 8; nr_regs++; } } else { stack_size -= 8 * arg_regs; } if (nr_regs >= 6) break; } } static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_link *l, int stack_size, int run_ctx_off, bool save_ret, void *image, void *rw_image) { u8 *prog = *pprog; u8 *jmp_insn; int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); struct bpf_prog *p = l->link.prog; u64 cookie = l->cookie; /* mov rdi, cookie */ emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); /* Prepare struct bpf_tramp_run_ctx. * * bpf_tramp_run_ctx is already preserved by * arch_prepare_bpf_trampoline(). * * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi */ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); /* arg1: mov rdi, progs[i] */ emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); /* arg2: lea rsi, [rbp - ctx_cookie_off] */ if (!is_imm8(-run_ctx_off)) EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); else EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) return -EINVAL; /* remember prog start time returned by __bpf_prog_enter */ emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); /* if (__bpf_prog_enter*(prog) == 0) * goto skip_exec_of_prog; */ EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ /* emit 2 nops that will be replaced with JE insn */ jmp_insn = prog; emit_nops(&prog, 2); /* arg1: lea rdi, [rbp - stack_size] */ if (!is_imm8(-stack_size)) EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); else EMIT4(0x48, 0x8D, 0x7D, -stack_size); /* arg2: progs[i]->insnsi for interpreter */ if (!p->jited) emit_mov_imm64(&prog, BPF_REG_2, (long) p->insnsi >> 32, (u32) (long) p->insnsi); /* call JITed bpf program or interpreter */ if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) return -EINVAL; /* * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return * of the previous call which is then passed on the stack to * the next BPF program. * * BPF_TRAMP_FENTRY trampoline may need to return the return * value of BPF_PROG_TYPE_STRUCT_OPS prog. */ if (save_ret) emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); /* replace 2 nops with JE insn, since jmp target is known */ jmp_insn[0] = X86_JE; jmp_insn[1] = prog - jmp_insn - 2; /* arg1: mov rdi, progs[i] */ emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); /* arg2: mov rsi, rbx <- start time in nsec */ emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); /* arg3: lea rdx, [rbp - run_ctx_off] */ if (!is_imm8(-run_ctx_off)) EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); else EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) return -EINVAL; *pprog = prog; return 0; } static void emit_align(u8 **pprog, u32 align) { u8 *target, *prog = *pprog; target = PTR_ALIGN(prog, align); if (target != prog) emit_nops(&prog, target - prog); *pprog = prog; } static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) { u8 *prog = *pprog; s64 offset; offset = func - (ip + 2 + 4); if (!is_simm32(offset)) { pr_err("Target %p is out of range\n", func); return -EINVAL; } EMIT2_off32(0x0F, jmp_cond + 0x10, offset); *pprog = prog; return 0; } static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_links *tl, int stack_size, int run_ctx_off, bool save_ret, void *image, void *rw_image) { int i; u8 *prog = *pprog; for (i = 0; i < tl->nr_links; i++) { if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, save_ret, image, rw_image)) return -EINVAL; } *pprog = prog; return 0; } static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_links *tl, int stack_size, int run_ctx_off, u8 **branches, void *image, void *rw_image) { u8 *prog = *pprog; int i; /* The first fmod_ret program will receive a garbage return value. * Set this to 0 to avoid confusing the program. */ emit_mov_imm32(&prog, false, BPF_REG_0, 0); emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); for (i = 0; i < tl->nr_links; i++) { if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, image, rw_image)) return -EINVAL; /* mod_ret prog stored return value into [rbp - 8]. Emit: * if (*(u64 *)(rbp - 8) != 0) * goto do_fexit; */ /* cmp QWORD PTR [rbp - 0x8], 0x0 */ EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); /* Save the location of the branch and Generate 6 nops * (4 bytes for an offset and 2 bytes for the jump) These nops * are replaced with a conditional jump once do_fexit (i.e. the * start of the fexit invocation) is finalized. */ branches[i] = prog; emit_nops(&prog, 4 + 2); } *pprog = prog; return 0; } /* Example: * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); * its 'struct btf_func_model' will be nr_args=2 * The assembly code when eth_type_trans is executing after trampoline: * * push rbp * mov rbp, rsp * sub rsp, 16 // space for skb and dev * push rbx // temp regs to pass start time * mov qword ptr [rbp - 16], rdi // save skb pointer to stack * mov qword ptr [rbp - 8], rsi // save dev pointer to stack * call __bpf_prog_enter // rcu_read_lock and preempt_disable * mov rbx, rax // remember start time in bpf stats are enabled * lea rdi, [rbp - 16] // R1==ctx of bpf prog * call addr_of_jited_FENTRY_prog * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off * mov rsi, rbx // prog start time * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack * pop rbx * leave * ret * * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be * replaced with 'call generated_bpf_trampoline'. When it returns * eth_type_trans will continue executing with original skb and dev pointers. * * The assembly code when eth_type_trans is called from trampoline: * * push rbp * mov rbp, rsp * sub rsp, 24 // space for skb, dev, return value * push rbx // temp regs to pass start time * mov qword ptr [rbp - 24], rdi // save skb pointer to stack * mov qword ptr [rbp - 16], rsi // save dev pointer to stack * call __bpf_prog_enter // rcu_read_lock and preempt_disable * mov rbx, rax // remember start time if bpf stats are enabled * lea rdi, [rbp - 24] // R1==ctx of bpf prog * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off * mov rsi, rbx // prog start time * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack * call eth_type_trans+5 // execute body of eth_type_trans * mov qword ptr [rbp - 8], rax // save return value * call __bpf_prog_enter // rcu_read_lock and preempt_disable * mov rbx, rax // remember start time in bpf stats are enabled * lea rdi, [rbp - 24] // R1==ctx of bpf prog * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off * mov rsi, rbx // prog start time * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value * pop rbx * leave * add rsp, 8 // skip eth_type_trans's frame * ret // return to its caller */ static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, void *rw_image_end, void *image, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { int i, ret, nr_regs = m->nr_args, stack_size = 0; int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; void *orig_call = func_addr; u8 **branches = NULL; u8 *prog; bool save_ret; /* * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG * because @func_addr. */ WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); /* extra registers for struct arguments */ for (i = 0; i < m->nr_args; i++) { if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) nr_regs += (m->arg_size[i] + 7) / 8 - 1; } /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 * are passed through regs, the remains are through stack. */ if (nr_regs > MAX_BPF_FUNC_ARGS) return -ENOTSUPP; /* Generated trampoline stack layout: * * RBP + 8 [ return address ] * RBP + 0 [ RBP ] * * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or * BPF_TRAMP_F_RET_FENTRY_RET flags * * [ reg_argN ] always * [ ... ] * RBP - regs_off [ reg_arg1 ] program's ctx pointer * * RBP - nregs_off [ regs count ] always * * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag * * RBP - rbx_off [ rbx value ] always * * RBP - run_ctx_off [ bpf_tramp_run_ctx ] * * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG * [ ... ] * [ stack_arg2 ] * RBP - arg_stack_off [ stack_arg1 ] * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX */ /* room for return value of orig_call or fentry prog */ save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); if (save_ret) stack_size += 8; stack_size += nr_regs * 8; regs_off = stack_size; /* regs count */ stack_size += 8; nregs_off = stack_size; if (flags & BPF_TRAMP_F_IP_ARG) stack_size += 8; /* room for IP address argument */ ip_off = stack_size; stack_size += 8; rbx_off = stack_size; stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; run_ctx_off = stack_size; if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { /* the space that used to pass arguments on-stack */ stack_size += (nr_regs - get_nr_used_regs(m)) * 8; /* make sure the stack pointer is 16-byte aligned if we * need pass arguments on stack, which means * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] * should be 16-byte aligned. Following code depend on * that stack_size is already 8-byte aligned. */ stack_size += (stack_size % 16) ? 0 : 8; } arg_stack_off = stack_size; if (flags & BPF_TRAMP_F_SKIP_FRAME) { /* skip patched call instruction and point orig_call to actual * body of the kernel function. */ if (is_endbr(*(u32 *)orig_call)) orig_call += ENDBR_INSN_SIZE; orig_call += X86_PATCH_SIZE; } prog = rw_image; if (flags & BPF_TRAMP_F_INDIRECT) { /* * Indirect call for bpf_struct_ops */ emit_cfi(&prog, cfi_get_func_hash(func_addr)); } else { /* * Direct-call fentry stub, as such it needs accounting for the * __fentry__ call. */ x86_call_depth_emit_accounting(&prog, NULL, image); } EMIT1(0x55); /* push rbp */ EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ if (!is_imm8(stack_size)) { /* sub rsp, stack_size */ EMIT3_off32(0x48, 0x81, 0xEC, stack_size); } else { /* sub rsp, stack_size */ EMIT4(0x48, 0x83, 0xEC, stack_size); } if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) EMIT1(0x50); /* push rax */ /* mov QWORD PTR [rbp - rbx_off], rbx */ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); /* Store number of argument registers of the traced function: * mov rax, nr_regs * mov QWORD PTR [rbp - nregs_off], rax */ emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); if (flags & BPF_TRAMP_F_IP_ARG) { /* Store IP address of the traced function: * movabsq rax, func_addr * mov QWORD PTR [rbp - ip_off], rax */ emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); } save_args(m, &prog, regs_off, false); if (flags & BPF_TRAMP_F_CALL_ORIG) { /* arg1: mov rdi, im */ emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); if (emit_rsb_call(&prog, __bpf_tramp_enter, image + (prog - (u8 *)rw_image))) { ret = -EINVAL; goto cleanup; } } if (fentry->nr_links) { if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) return -EINVAL; } if (fmod_ret->nr_links) { branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), GFP_KERNEL); if (!branches) return -ENOMEM; if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, run_ctx_off, branches, image, rw_image)) { ret = -EINVAL; goto cleanup; } } if (flags & BPF_TRAMP_F_CALL_ORIG) { restore_regs(m, &prog, regs_off); save_args(m, &prog, arg_stack_off, true); if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { /* Before calling the original function, restore the * tail_call_cnt from stack to rax. */ RESTORE_TAIL_CALL_CNT(stack_size); } if (flags & BPF_TRAMP_F_ORIG_STACK) { emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); EMIT2(0xff, 0xd3); /* call *rbx */ } else { /* call original function */ if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { ret = -EINVAL; goto cleanup; } } /* remember return value in a stack for bpf prog to access */ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); im->ip_after_call = image + (prog - (u8 *)rw_image); emit_nops(&prog, X86_PATCH_SIZE); } if (fmod_ret->nr_links) { /* From Intel 64 and IA-32 Architectures Optimization * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler * Coding Rule 11: All branch targets should be 16-byte * aligned. */ emit_align(&prog, 16); /* Update the branches saved in invoke_bpf_mod_ret with the * aligned address of do_fexit. */ for (i = 0; i < fmod_ret->nr_links; i++) { emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), image + (branches[i] - (u8 *)rw_image), X86_JNE); } } if (fexit->nr_links) { if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false, image, rw_image)) { ret = -EINVAL; goto cleanup; } } if (flags & BPF_TRAMP_F_RESTORE_REGS) restore_regs(m, &prog, regs_off); /* This needs to be done regardless. If there were fmod_ret programs, * the return value is only updated on the stack and still needs to be * restored to R0. */ if (flags & BPF_TRAMP_F_CALL_ORIG) { im->ip_epilogue = image + (prog - (u8 *)rw_image); /* arg1: mov rdi, im */ emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { ret = -EINVAL; goto cleanup; } } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { /* Before running the original function, restore the * tail_call_cnt from stack to rax. */ RESTORE_TAIL_CALL_CNT(stack_size); } /* restore return value of orig_call or fentry prog back into RAX */ if (save_ret) emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); EMIT1(0xC9); /* leave */ if (flags & BPF_TRAMP_F_SKIP_FRAME) { /* skip our return address and return to parent */ EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ } emit_return(&prog, image + (prog - (u8 *)rw_image)); /* Make sure the trampoline generation logic doesn't overflow */ if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { ret = -EFAULT; goto cleanup; } ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; cleanup: kfree(branches); return ret; } void *arch_alloc_bpf_trampoline(unsigned int size) { return bpf_prog_pack_alloc(size, jit_fill_hole); } void arch_free_bpf_trampoline(void *image, unsigned int size) { bpf_prog_pack_free(image, size); } int arch_protect_bpf_trampoline(void *image, unsigned int size) { return 0; } int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { void *rw_image, *tmp; int ret; u32 size = image_end - image; /* rw_image doesn't need to be in module memory range, so we can * use kvmalloc. */ rw_image = kvmalloc(size, GFP_KERNEL); if (!rw_image) return -ENOMEM; ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, flags, tlinks, func_addr); if (ret < 0) goto out; tmp = bpf_arch_text_copy(image, rw_image, size); if (IS_ERR(tmp)) ret = PTR_ERR(tmp); out: kvfree(rw_image); return ret; } int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { struct bpf_tramp_image im; void *image; int ret; /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). * This will NOT cause fragmentation in direct map, as we do not * call set_memory_*() on this buffer. * * We cannot use kvmalloc here, because we need image to be in * module memory range. */ image = bpf_jit_alloc_exec(PAGE_SIZE); if (!image) return -ENOMEM; ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, m, flags, tlinks, func_addr); bpf_jit_free_exec(image); return ret; } static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) { u8 *jg_reloc, *prog = *pprog; int pivot, err, jg_bytes = 1; s64 jg_offset; if (a == b) { /* Leaf node of recursion, i.e. not a range of indices * anymore. */ EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ if (!is_simm32(progs[a])) return -1; EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a]); err = emit_cond_near_jump(&prog, /* je func */ (void *)progs[a], image + (prog - buf), X86_JE); if (err) return err; emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); *pprog = prog; return 0; } /* Not a leaf node, so we pivot, and recursively descend into * the lower and upper ranges. */ pivot = (b - a) / 2; EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ if (!is_simm32(progs[a + pivot])) return -1; EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); if (pivot > 2) { /* jg upper_part */ /* Require near jump. */ jg_bytes = 4; EMIT2_off32(0x0F, X86_JG + 0x10, 0); } else { EMIT2(X86_JG, 0); } jg_reloc = prog; err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ progs, image, buf); if (err) return err; /* From Intel 64 and IA-32 Architectures Optimization * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler * Coding Rule 11: All branch targets should be 16-byte * aligned. */ emit_align(&prog, 16); jg_offset = prog - jg_reloc; emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ b, progs, image, buf); if (err) return err; *pprog = prog; return 0; } static int cmp_ips(const void *a, const void *b) { const s64 *ipa = a; const s64 *ipb = b; if (*ipa > *ipb) return 1; if (*ipa < *ipb) return -1; return 0; } int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) { u8 *prog = buf; sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); } struct x64_jit_data { struct bpf_binary_header *rw_header; struct bpf_binary_header *header; int *addrs; u8 *image; int proglen; struct jit_context ctx; }; #define MAX_PASSES 20 #define PADDING_PASSES (MAX_PASSES - 5) struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_binary_header *rw_header = NULL; struct bpf_binary_header *header = NULL; struct bpf_prog *tmp, *orig_prog = prog; struct x64_jit_data *jit_data; int proglen, oldproglen = 0; struct jit_context ctx = {}; bool tmp_blinded = false; bool extra_pass = false; bool padding = false; u8 *rw_image = NULL; u8 *image = NULL; int *addrs; int pass; int i; if (!prog->jit_requested) return orig_prog; tmp = bpf_jit_blind_constants(prog); /* * If blinding was requested and we failed during blinding, * we must fall back to the interpreter. */ if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } jit_data = prog->aux->jit_data; if (!jit_data) { jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); if (!jit_data) { prog = orig_prog; goto out; } prog->aux->jit_data = jit_data; } addrs = jit_data->addrs; if (addrs) { ctx = jit_data->ctx; oldproglen = jit_data->proglen; image = jit_data->image; header = jit_data->header; rw_header = jit_data->rw_header; rw_image = (void *)rw_header + ((void *)image - (void *)header); extra_pass = true; padding = true; goto skip_init_addrs; } addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); if (!addrs) { prog = orig_prog; goto out_addrs; } /* * Before first pass, make a rough estimation of addrs[] * each BPF instruction is translated to less than 64 bytes */ for (proglen = 0, i = 0; i <= prog->len; i++) { proglen += 64; addrs[i] = proglen; } ctx.cleanup_addr = proglen; skip_init_addrs: /* * JITed image shrinks with every pass and the loop iterates * until the image stops shrinking. Very large BPF programs * may converge on the last pass. In such case do one more * pass to emit the final image. */ for (pass = 0; pass < MAX_PASSES || image; pass++) { if (!padding && pass >= PADDING_PASSES) padding = true; proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); if (proglen <= 0) { out_image: image = NULL; if (header) { bpf_arch_text_copy(&header->size, &rw_header->size, sizeof(rw_header->size)); bpf_jit_binary_pack_free(header, rw_header); } /* Fall back to interpreter mode */ prog = orig_prog; if (extra_pass) { prog->bpf_func = NULL; prog->jited = 0; prog->jited_len = 0; } goto out_addrs; } if (image) { if (proglen != oldproglen) { pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", proglen, oldproglen); goto out_image; } break; } if (proglen == oldproglen) { /* * The number of entries in extable is the number of BPF_LDX * insns that access kernel memory via "pointer to BTF type". * The verifier changed their opcode from LDX|MEM|size * to LDX|PROBE_MEM|size to make JITing easier. */ u32 align = __alignof__(struct exception_table_entry); u32 extable_size = prog->aux->num_exentries * sizeof(struct exception_table_entry); /* allocate module memory for x86 insns and extable */ header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, &image, align, &rw_header, &rw_image, jit_fill_hole); if (!header) { prog = orig_prog; goto out_addrs; } prog->aux->extable = (void *) image + roundup(proglen, align); } oldproglen = proglen; cond_resched(); } if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); if (image) { if (!prog->is_func || extra_pass) { /* * bpf_jit_binary_pack_finalize fails in two scenarios: * 1) header is not pointing to proper module memory; * 2) the arch doesn't support bpf_arch_text_copy(). * * Both cases are serious bugs and justify WARN_ON. */ if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) { /* header has been freed */ header = NULL; goto out_image; } bpf_tail_call_direct_fixup(prog); } else { jit_data->addrs = addrs; jit_data->ctx = ctx; jit_data->proglen = proglen; jit_data->image = image; jit_data->header = header; jit_data->rw_header = rw_header; } /* * ctx.prog_offset is used when CFI preambles put code *before* * the function. See emit_cfi(). For FineIBT specifically this code * can also be executed and bpf_prog_kallsyms_add() will * generate an additional symbol to cover this, hence also * decrement proglen. */ prog->bpf_func = (void *)image + cfi_get_offset(); prog->jited = 1; prog->jited_len = proglen - cfi_get_offset(); } else { prog = orig_prog; } if (!image || !prog->is_func || extra_pass) { if (image) bpf_prog_fill_jited_linfo(prog, addrs + 1); out_addrs: kvfree(addrs); kfree(jit_data); prog->aux->jit_data = NULL; } out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); return prog; } bool bpf_jit_supports_kfunc_call(void) { return true; } void *bpf_arch_text_copy(void *dst, void *src, size_t len) { if (text_poke_copy(dst, src, len) == NULL) return ERR_PTR(-EINVAL); return dst; } /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ bool bpf_jit_supports_subprog_tailcalls(void) { return true; } bool bpf_jit_supports_percpu_insn(void) { return true; } void bpf_jit_free(struct bpf_prog *prog) { if (prog->jited) { struct x64_jit_data *jit_data = prog->aux->jit_data; struct bpf_binary_header *hdr; /* * If we fail the final pass of JIT (from jit_subprogs), * the program may not be finalized yet. Call finalize here * before freeing it. */ if (jit_data) { bpf_jit_binary_pack_finalize(jit_data->header, jit_data->rw_header); kvfree(jit_data->addrs); kfree(jit_data); } prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); hdr = bpf_jit_binary_pack_hdr(prog); bpf_jit_binary_pack_free(hdr, NULL); WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); } bpf_prog_unlock_free(prog); } bool bpf_jit_supports_exceptions(void) { /* We unwind through both kernel frames (starting from within bpf_throw * call) and BPF frames. Therefore we require ORC unwinder to be enabled * to walk kernel frames and reach BPF frames in the stack trace. */ return IS_ENABLED(CONFIG_UNWINDER_ORC); } void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) { #if defined(CONFIG_UNWINDER_ORC) struct unwind_state state; unsigned long addr; for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); unwind_next_frame(&state)) { addr = unwind_get_return_address(&state); if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) break; } return; #endif WARN(1, "verification of programs using bpf_throw should have failed\n"); } void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, struct bpf_prog *new, struct bpf_prog *old) { u8 *old_addr, *new_addr, *old_bypass_addr; int ret; old_bypass_addr = old ? NULL : poke->bypass_addr; old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; /* * On program loading or teardown, the program's kallsym entry * might not be in place, so we use __bpf_arch_text_poke to skip * the kallsyms check. */ if (new) { ret = __bpf_arch_text_poke(poke->tailcall_target, BPF_MOD_JUMP, old_addr, new_addr); BUG_ON(ret < 0); if (!old) { ret = __bpf_arch_text_poke(poke->tailcall_bypass, BPF_MOD_JUMP, poke->bypass_addr, NULL); BUG_ON(ret < 0); } } else { ret = __bpf_arch_text_poke(poke->tailcall_bypass, BPF_MOD_JUMP, old_bypass_addr, poke->bypass_addr); BUG_ON(ret < 0); /* let other CPUs finish the execution of program * so that it will not possible to expose them * to invalid nop, stack unwind, nop state */ if (!ret) synchronize_rcu(); ret = __bpf_arch_text_poke(poke->tailcall_target, BPF_MOD_JUMP, old_addr, NULL); BUG_ON(ret < 0); } } bool bpf_jit_supports_arena(void) { return true; } bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) { if (!in_arena) return true; switch (insn->code) { case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: if (insn->imm == (BPF_AND | BPF_FETCH) || insn->imm == (BPF_OR | BPF_FETCH) || insn->imm == (BPF_XOR | BPF_FETCH)) return false; } return true; } bool bpf_jit_supports_ptr_xchg(void) { return true; } /* x86-64 JIT emits its own code to filter user addresses so return 0 here */ u64 bpf_arch_uaddress_limit(void) { return 0; } |
4 4 7 6 7 5 4 7 4 1 3 10 6 9 3 1 2 3 7 5 6 6 6 6 3 3 5 8 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | // SPDX-License-Identifier: GPL-2.0 /* * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum * * Copyright 2018 Google LLC */ /* * "NHPoly1305" is the main component of Adiantum hashing. * Specifically, it is the calculation * * H_L ← Poly1305_{K_L}(NH_{K_N}(pad_{128}(L))) * * from the procedure in section 6.4 of the Adiantum paper [1]. It is an * ε-almost-∆-universal (ε-∆U) hash function for equal-length inputs over * Z/(2^{128}Z), where the "∆" operation is addition. It hashes 1024-byte * chunks of the input with the NH hash function [2], reducing the input length * by 32x. The resulting NH digests are evaluated as a polynomial in * GF(2^{130}-5), like in the Poly1305 MAC [3]. Note that the polynomial * evaluation by itself would suffice to achieve the ε-∆U property; NH is used * for performance since it's over twice as fast as Poly1305. * * This is *not* a cryptographic hash function; do not use it as such! * * [1] Adiantum: length-preserving encryption for entry-level processors * (https://eprint.iacr.org/2018/720.pdf) * [2] UMAC: Fast and Secure Message Authentication * (https://fastcrypto.org/umac/umac_proc.pdf) * [3] The Poly1305-AES message-authentication code * (https://cr.yp.to/mac/poly1305-20050329.pdf) */ #include <asm/unaligned.h> #include <crypto/algapi.h> #include <crypto/internal/hash.h> #include <crypto/internal/poly1305.h> #include <crypto/nhpoly1305.h> #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/module.h> static void nh_generic(const u32 *key, const u8 *message, size_t message_len, __le64 hash[NH_NUM_PASSES]) { u64 sums[4] = { 0, 0, 0, 0 }; BUILD_BUG_ON(NH_PAIR_STRIDE != 2); BUILD_BUG_ON(NH_NUM_PASSES != 4); while (message_len) { u32 m0 = get_unaligned_le32(message + 0); u32 m1 = get_unaligned_le32(message + 4); u32 m2 = get_unaligned_le32(message + 8); u32 m3 = get_unaligned_le32(message + 12); sums[0] += (u64)(u32)(m0 + key[ 0]) * (u32)(m2 + key[ 2]); sums[1] += (u64)(u32)(m0 + key[ 4]) * (u32)(m2 + key[ 6]); sums[2] += (u64)(u32)(m0 + key[ 8]) * (u32)(m2 + key[10]); sums[3] += (u64)(u32)(m0 + key[12]) * (u32)(m2 + key[14]); sums[0] += (u64)(u32)(m1 + key[ 1]) * (u32)(m3 + key[ 3]); sums[1] += (u64)(u32)(m1 + key[ 5]) * (u32)(m3 + key[ 7]); sums[2] += (u64)(u32)(m1 + key[ 9]) * (u32)(m3 + key[11]); sums[3] += (u64)(u32)(m1 + key[13]) * (u32)(m3 + key[15]); key += NH_MESSAGE_UNIT / sizeof(key[0]); message += NH_MESSAGE_UNIT; message_len -= NH_MESSAGE_UNIT; } hash[0] = cpu_to_le64(sums[0]); hash[1] = cpu_to_le64(sums[1]); hash[2] = cpu_to_le64(sums[2]); hash[3] = cpu_to_le64(sums[3]); } /* Pass the next NH hash value through Poly1305 */ static void process_nh_hash_value(struct nhpoly1305_state *state, const struct nhpoly1305_key *key) { BUILD_BUG_ON(NH_HASH_BYTES % POLY1305_BLOCK_SIZE != 0); poly1305_core_blocks(&state->poly_state, &key->poly_key, state->nh_hash, NH_HASH_BYTES / POLY1305_BLOCK_SIZE, 1); } /* * Feed the next portion of the source data, as a whole number of 16-byte * "NH message units", through NH and Poly1305. Each NH hash is taken over * 1024 bytes, except possibly the final one which is taken over a multiple of * 16 bytes up to 1024. Also, in the case where data is passed in misaligned * chunks, we combine partial hashes; the end result is the same either way. */ static void nhpoly1305_units(struct nhpoly1305_state *state, const struct nhpoly1305_key *key, const u8 *src, unsigned int srclen, nh_t nh_fn) { do { unsigned int bytes; if (state->nh_remaining == 0) { /* Starting a new NH message */ bytes = min_t(unsigned int, srclen, NH_MESSAGE_BYTES); nh_fn(key->nh_key, src, bytes, state->nh_hash); state->nh_remaining = NH_MESSAGE_BYTES - bytes; } else { /* Continuing a previous NH message */ __le64 tmp_hash[NH_NUM_PASSES]; unsigned int pos; int i; pos = NH_MESSAGE_BYTES - state->nh_remaining; bytes = min(srclen, state->nh_remaining); nh_fn(&key->nh_key[pos / 4], src, bytes, tmp_hash); for (i = 0; i < NH_NUM_PASSES; i++) le64_add_cpu(&state->nh_hash[i], le64_to_cpu(tmp_hash[i])); state->nh_remaining -= bytes; } if (state->nh_remaining == 0) process_nh_hash_value(state, key); src += bytes; srclen -= bytes; } while (srclen); } int crypto_nhpoly1305_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct nhpoly1305_key *ctx = crypto_shash_ctx(tfm); int i; if (keylen != NHPOLY1305_KEY_SIZE) return -EINVAL; poly1305_core_setkey(&ctx->poly_key, key); key += POLY1305_BLOCK_SIZE; for (i = 0; i < NH_KEY_WORDS; i++) ctx->nh_key[i] = get_unaligned_le32(key + i * sizeof(u32)); return 0; } EXPORT_SYMBOL(crypto_nhpoly1305_setkey); int crypto_nhpoly1305_init(struct shash_desc *desc) { struct nhpoly1305_state *state = shash_desc_ctx(desc); poly1305_core_init(&state->poly_state); state->buflen = 0; state->nh_remaining = 0; return 0; } EXPORT_SYMBOL(crypto_nhpoly1305_init); int crypto_nhpoly1305_update_helper(struct shash_desc *desc, const u8 *src, unsigned int srclen, nh_t nh_fn) { struct nhpoly1305_state *state = shash_desc_ctx(desc); const struct nhpoly1305_key *key = crypto_shash_ctx(desc->tfm); unsigned int bytes; if (state->buflen) { bytes = min(srclen, (int)NH_MESSAGE_UNIT - state->buflen); memcpy(&state->buffer[state->buflen], src, bytes); state->buflen += bytes; if (state->buflen < NH_MESSAGE_UNIT) return 0; nhpoly1305_units(state, key, state->buffer, NH_MESSAGE_UNIT, nh_fn); state->buflen = 0; src += bytes; srclen -= bytes; } if (srclen >= NH_MESSAGE_UNIT) { bytes = round_down(srclen, NH_MESSAGE_UNIT); nhpoly1305_units(state, key, src, bytes, nh_fn); src += bytes; srclen -= bytes; } if (srclen) { memcpy(state->buffer, src, srclen); state->buflen = srclen; } return 0; } EXPORT_SYMBOL(crypto_nhpoly1305_update_helper); int crypto_nhpoly1305_update(struct shash_desc *desc, const u8 *src, unsigned int srclen) { return crypto_nhpoly1305_update_helper(desc, src, srclen, nh_generic); } EXPORT_SYMBOL(crypto_nhpoly1305_update); int crypto_nhpoly1305_final_helper(struct shash_desc *desc, u8 *dst, nh_t nh_fn) { struct nhpoly1305_state *state = shash_desc_ctx(desc); const struct nhpoly1305_key *key = crypto_shash_ctx(desc->tfm); if (state->buflen) { memset(&state->buffer[state->buflen], 0, NH_MESSAGE_UNIT - state->buflen); nhpoly1305_units(state, key, state->buffer, NH_MESSAGE_UNIT, nh_fn); } if (state->nh_remaining) process_nh_hash_value(state, key); poly1305_core_emit(&state->poly_state, NULL, dst); return 0; } EXPORT_SYMBOL(crypto_nhpoly1305_final_helper); int crypto_nhpoly1305_final(struct shash_desc *desc, u8 *dst) { return crypto_nhpoly1305_final_helper(desc, dst, nh_generic); } EXPORT_SYMBOL(crypto_nhpoly1305_final); static struct shash_alg nhpoly1305_alg = { .base.cra_name = "nhpoly1305", .base.cra_driver_name = "nhpoly1305-generic", .base.cra_priority = 100, .base.cra_ctxsize = sizeof(struct nhpoly1305_key), .base.cra_module = THIS_MODULE, .digestsize = POLY1305_DIGEST_SIZE, .init = crypto_nhpoly1305_init, .update = crypto_nhpoly1305_update, .final = crypto_nhpoly1305_final, .setkey = crypto_nhpoly1305_setkey, .descsize = sizeof(struct nhpoly1305_state), }; static int __init nhpoly1305_mod_init(void) { return crypto_register_shash(&nhpoly1305_alg); } static void __exit nhpoly1305_mod_exit(void) { crypto_unregister_shash(&nhpoly1305_alg); } subsys_initcall(nhpoly1305_mod_init); module_exit(nhpoly1305_mod_exit); MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); MODULE_ALIAS_CRYPTO("nhpoly1305"); MODULE_ALIAS_CRYPTO("nhpoly1305-generic"); |
257 1 174 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions of the Internet Protocol. * * Version: @(#)in.h 1.0.1 04/21/93 * * Authors: Original taken from the GNU Project <netinet/in.h> file. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_IN_H #define _LINUX_IN_H #include <linux/errno.h> #include <uapi/linux/in.h> static inline int proto_ports_offset(int proto) { switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_DCCP: case IPPROTO_ESP: /* SPI */ case IPPROTO_SCTP: case IPPROTO_UDPLITE: return 0; case IPPROTO_AH: /* SPI */ return 4; default: return -EINVAL; } } static inline bool ipv4_is_loopback(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x7f000000); } static inline bool ipv4_is_multicast(__be32 addr) { return (addr & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ipv4_is_local_multicast(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xe0000000); } static inline bool ipv4_is_lbcast(__be32 addr) { /* limited broadcast */ return addr == htonl(INADDR_BROADCAST); } static inline bool ipv4_is_all_snoopers(__be32 addr) { return addr == htonl(INADDR_ALLSNOOPERS_GROUP); } static inline bool ipv4_is_zeronet(__be32 addr) { return (addr == 0); } /* Special-Use IPv4 Addresses (RFC3330) */ static inline bool ipv4_is_private_10(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x0a000000); } static inline bool ipv4_is_private_172(__be32 addr) { return (addr & htonl(0xfff00000)) == htonl(0xac100000); } static inline bool ipv4_is_private_192(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xc0a80000); } static inline bool ipv4_is_linklocal_169(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xa9fe0000); } static inline bool ipv4_is_anycast_6to4(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0586300); } static inline bool ipv4_is_test_192(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0000200); } static inline bool ipv4_is_test_198(__be32 addr) { return (addr & htonl(0xfffe0000)) == htonl(0xc6120000); } #endif /* _LINUX_IN_H */ |
4 4 3 3 2 2 2 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2007 The University of Aberdeen, Scotland, UK * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand. * * An implementation of the DCCP protocol * * This code has been developed by the University of Waikato WAND * research group. For further information please see https://www.wand.net.nz/ * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz * * This code also uses code from Lulea University, rereleased as GPL by its * authors: * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon * * Changes to meet Linux coding standards, to make it meet latest ccid3 draft * and to make it work as a loadable module in the DCCP stack written by * Arnaldo Carvalho de Melo <acme@conectiva.com.br>. * * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #include <linux/string.h> #include <linux/slab.h> #include "packet_history.h" #include "../../dccp.h" /* * Transmitter History Routines */ static struct kmem_cache *tfrc_tx_hist_slab; int __init tfrc_tx_packet_history_init(void) { tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist", sizeof(struct tfrc_tx_hist_entry), 0, SLAB_HWCACHE_ALIGN, NULL); return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0; } void tfrc_tx_packet_history_exit(void) { if (tfrc_tx_hist_slab != NULL) { kmem_cache_destroy(tfrc_tx_hist_slab); tfrc_tx_hist_slab = NULL; } } int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno) { struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any()); if (entry == NULL) return -ENOBUFS; entry->seqno = seqno; entry->stamp = ktime_get_real(); entry->next = *headp; *headp = entry; return 0; } void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp) { struct tfrc_tx_hist_entry *head = *headp; while (head != NULL) { struct tfrc_tx_hist_entry *next = head->next; kmem_cache_free(tfrc_tx_hist_slab, head); head = next; } *headp = NULL; } /* * Receiver History Routines */ static struct kmem_cache *tfrc_rx_hist_slab; int __init tfrc_rx_packet_history_init(void) { tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache", sizeof(struct tfrc_rx_hist_entry), 0, SLAB_HWCACHE_ALIGN, NULL); return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0; } void tfrc_rx_packet_history_exit(void) { if (tfrc_rx_hist_slab != NULL) { kmem_cache_destroy(tfrc_rx_hist_slab); tfrc_rx_hist_slab = NULL; } } static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry, const struct sk_buff *skb, const u64 ndp) { const struct dccp_hdr *dh = dccp_hdr(skb); entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq; entry->tfrchrx_ccval = dh->dccph_ccval; entry->tfrchrx_type = dh->dccph_type; entry->tfrchrx_ndp = ndp; entry->tfrchrx_tstamp = ktime_get_real(); } void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h, const struct sk_buff *skb, const u64 ndp) { struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h); tfrc_rx_hist_entry_from_skb(entry, skb, ndp); } /* has the packet contained in skb been seen before? */ int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb) { const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq; int i; if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0) return 1; for (i = 1; i <= h->loss_count; i++) if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq) return 1; return 0; } static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b) { const u8 idx_a = tfrc_rx_hist_index(h, a), idx_b = tfrc_rx_hist_index(h, b); swap(h->ring[idx_a], h->ring[idx_b]); } /* * Private helper functions for loss detection. * * In the descriptions, `Si' refers to the sequence number of entry number i, * whose NDP count is `Ni' (lower case is used for variables). * Note: All __xxx_loss functions expect that a test against duplicates has been * performed already: the seqno of the skb must not be less than the seqno * of loss_prev; and it must not equal that of any valid history entry. */ static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1) { u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, s1 = DCCP_SKB_CB(skb)->dccpd_seq; if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */ h->loss_count = 1; tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1); } } static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2) { u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno, s2 = DCCP_SKB_CB(skb)->dccpd_seq; if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */ h->loss_count = 2; tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2); return; } /* S0 < S2 < S1 */ if (dccp_loss_free(s0, s2, n2)) { u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp; if (dccp_loss_free(s2, s1, n1)) { /* hole is filled: S0, S2, and S1 are consecutive */ h->loss_count = 0; h->loss_start = tfrc_rx_hist_index(h, 1); } else /* gap between S2 and S1: just update loss_prev */ tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2); } else { /* gap between S0 and S2 */ /* * Reorder history to insert S2 between S0 and S1 */ tfrc_rx_hist_swap(h, 0, 3); h->loss_start = tfrc_rx_hist_index(h, 3); tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2); h->loss_count = 2; } } /* return 1 if a new loss event has been identified */ static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3) { u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno, s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno, s3 = DCCP_SKB_CB(skb)->dccpd_seq; if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */ h->loss_count = 3; tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3); return 1; } /* S3 < S2 */ if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */ /* * Reorder history to insert S3 between S1 and S2 */ tfrc_rx_hist_swap(h, 2, 3); tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3); h->loss_count = 3; return 1; } /* S0 < S3 < S1 */ if (dccp_loss_free(s0, s3, n3)) { u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp; if (dccp_loss_free(s3, s1, n1)) { /* hole between S0 and S1 filled by S3 */ u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp; if (dccp_loss_free(s1, s2, n2)) { /* entire hole filled by S0, S3, S1, S2 */ h->loss_start = tfrc_rx_hist_index(h, 2); h->loss_count = 0; } else { /* gap remains between S1 and S2 */ h->loss_start = tfrc_rx_hist_index(h, 1); h->loss_count = 1; } } else /* gap exists between S3 and S1, loss_count stays at 2 */ tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3); return 0; } /* * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3 * Reorder history to insert S3 between S0 and S1. */ tfrc_rx_hist_swap(h, 0, 3); h->loss_start = tfrc_rx_hist_index(h, 3); tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3); h->loss_count = 3; return 1; } /* recycle RX history records to continue loss detection if necessary */ static void __three_after_loss(struct tfrc_rx_hist *h) { /* * At this stage we know already that there is a gap between S0 and S1 * (since S0 was the highest sequence number received before detecting * the loss). To recycle the loss record, it is thus only necessary to * check for other possible gaps between S1/S2 and between S2/S3. */ u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno, s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno, s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno; u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp, n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp; if (dccp_loss_free(s1, s2, n2)) { if (dccp_loss_free(s2, s3, n3)) { /* no gap between S2 and S3: entire hole is filled */ h->loss_start = tfrc_rx_hist_index(h, 3); h->loss_count = 0; } else { /* gap between S2 and S3 */ h->loss_start = tfrc_rx_hist_index(h, 2); h->loss_count = 1; } } else { /* gap between S1 and S2 */ h->loss_start = tfrc_rx_hist_index(h, 1); h->loss_count = 2; } } /** * tfrc_rx_handle_loss - Loss detection and further processing * @h: The non-empty RX history object * @lh: Loss Intervals database to update * @skb: Currently received packet * @ndp: The NDP count belonging to @skb * @calc_first_li: Caller-dependent computation of first loss interval in @lh * @sk: Used by @calc_first_li (see tfrc_lh_interval_add) * * Chooses action according to pending loss, updates LI database when a new * loss was detected, and does required post-processing. Returns 1 when caller * should send feedback, 0 otherwise. * Since it also takes care of reordering during loss detection and updates the * records accordingly, the caller should not perform any more RX history * operations when loss_count is greater than 0 after calling this function. */ int tfrc_rx_handle_loss(struct tfrc_rx_hist *h, struct tfrc_loss_hist *lh, struct sk_buff *skb, const u64 ndp, u32 (*calc_first_li)(struct sock *), struct sock *sk) { int is_new_loss = 0; if (h->loss_count == 0) { __do_track_loss(h, skb, ndp); } else if (h->loss_count == 1) { __one_after_loss(h, skb, ndp); } else if (h->loss_count != 2) { DCCP_BUG("invalid loss_count %d", h->loss_count); } else if (__two_after_loss(h, skb, ndp)) { /* * Update Loss Interval database and recycle RX records */ is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk); __three_after_loss(h); } return is_new_loss; } int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h) { int i; for (i = 0; i <= TFRC_NDUPACK; i++) { h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC); if (h->ring[i] == NULL) goto out_free; } h->loss_count = h->loss_start = 0; return 0; out_free: while (i-- != 0) { kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]); h->ring[i] = NULL; } return -ENOBUFS; } void tfrc_rx_hist_purge(struct tfrc_rx_hist *h) { int i; for (i = 0; i <= TFRC_NDUPACK; ++i) if (h->ring[i] != NULL) { kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]); h->ring[i] = NULL; } } /** * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against * @h: The non-empty RX history object */ static inline struct tfrc_rx_hist_entry * tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h) { return h->ring[0]; } /** * tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry * @h: The non-empty RX history object */ static inline struct tfrc_rx_hist_entry * tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h) { return h->ring[h->rtt_sample_prev]; } /** * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal * @h: receive histogram * @skb: packet containing timestamp. * * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able * to compute a sample with given data - calling function should check this. */ u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb) { u32 sample = 0, delta_v = SUB16(dccp_hdr(skb)->dccph_ccval, tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval); if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */ if (h->rtt_sample_prev == 2) { /* previous candidate stored */ sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval, tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval); if (sample) sample = 4 / sample * ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp, tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp); else /* * FIXME: This condition is in principle not * possible but occurs when CCID is used for * two-way data traffic. I have tried to trace * it, but the cause does not seem to be here. */ DCCP_BUG("please report to dccp@vger.kernel.org" " => prev = %u, last = %u", tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval, tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval); } else if (delta_v < 1) { h->rtt_sample_prev = 1; goto keep_ref_for_next_time; } } else if (delta_v == 4) /* optimal match */ sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp)); else { /* suboptimal match */ h->rtt_sample_prev = 2; goto keep_ref_for_next_time; } if (unlikely(sample > DCCP_SANE_RTT_MAX)) { DCCP_WARN("RTT sample %u too large, using max\n", sample); sample = DCCP_SANE_RTT_MAX; } h->rtt_sample_prev = 0; /* use current entry as next reference */ keep_ref_for_next_time: return sample; } |
7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | /* SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) */ /* Copyright (C) 2019 Netronome Systems, Inc. */ #ifndef __NET_TC_MPLS_H #define __NET_TC_MPLS_H #include <linux/tc_act/tc_mpls.h> #include <net/act_api.h> struct tcf_mpls_params { int tcfm_action; u32 tcfm_label; u8 tcfm_tc; u8 tcfm_ttl; u8 tcfm_bos; __be16 tcfm_proto; struct rcu_head rcu; }; #define ACT_MPLS_TC_NOT_SET 0xff #define ACT_MPLS_BOS_NOT_SET 0xff #define ACT_MPLS_LABEL_NOT_SET 0xffffffff struct tcf_mpls { struct tc_action common; struct tcf_mpls_params __rcu *mpls_p; }; #define to_mpls(a) ((struct tcf_mpls *)a) static inline bool is_tcf_mpls(const struct tc_action *a) { #ifdef CONFIG_NET_CLS_ACT if (a->ops && a->ops->id == TCA_ID_MPLS) return true; #endif return false; } static inline u32 tcf_mpls_action(const struct tc_action *a) { u32 tcfm_action; rcu_read_lock(); tcfm_action = rcu_dereference(to_mpls(a)->mpls_p)->tcfm_action; rcu_read_unlock(); return tcfm_action; } static inline __be16 tcf_mpls_proto(const struct tc_action *a) { __be16 tcfm_proto; rcu_read_lock(); tcfm_proto = rcu_dereference(to_mpls(a)->mpls_p)->tcfm_proto; rcu_read_unlock(); return tcfm_proto; } static inline u32 tcf_mpls_label(const struct tc_action *a) { u32 tcfm_label; rcu_read_lock(); tcfm_label = rcu_dereference(to_mpls(a)->mpls_p)->tcfm_label; rcu_read_unlock(); return tcfm_label; } static inline u8 tcf_mpls_tc(const struct tc_action *a) { u8 tcfm_tc; rcu_read_lock(); tcfm_tc = rcu_dereference(to_mpls(a)->mpls_p)->tcfm_tc; rcu_read_unlock(); return tcfm_tc; } static inline u8 tcf_mpls_bos(const struct tc_action *a) { u8 tcfm_bos; rcu_read_lock(); tcfm_bos = rcu_dereference(to_mpls(a)->mpls_p)->tcfm_bos; rcu_read_unlock(); return tcfm_bos; } static inline u8 tcf_mpls_ttl(const struct tc_action *a) { u8 tcfm_ttl; rcu_read_lock(); tcfm_ttl = rcu_dereference(to_mpls(a)->mpls_p)->tcfm_ttl; rcu_read_unlock(); return tcfm_ttl; } #endif /* __NET_TC_MPLS_H */ |
5 32 2 35 4 31 12 21 31 31 7 1 6 5 5 1 4 5 1 5 1 3 3 5 1 5 1 6 6 33 23 21 12 12 2 9 7 1 9 9 9 6 4 35 35 11 11 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2013 Cisco Systems, Inc, 2013. * * Author: Vijay Subramanian <vijaynsu@cisco.com> * Author: Mythili Prabhu <mysuryan@cisco.com> * * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no> * University of Oslo, Norway. * * References: * RFC 8033: https://tools.ietf.org/html/rfc8033 */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #include <net/pie.h> /* private data for the Qdisc */ struct pie_sched_data { struct pie_vars vars; struct pie_params params; struct pie_stats stats; struct timer_list adapt_timer; struct Qdisc *sch; }; bool pie_drop_early(struct Qdisc *sch, struct pie_params *params, struct pie_vars *vars, u32 backlog, u32 packet_size) { u64 rnd; u64 local_prob = vars->prob; u32 mtu = psched_mtu(qdisc_dev(sch)); /* If there is still burst allowance left skip random early drop */ if (vars->burst_time > 0) return false; /* If current delay is less than half of target, and * if drop prob is low already, disable early_drop */ if ((vars->qdelay < params->target / 2) && (vars->prob < MAX_PROB / 5)) return false; /* If we have fewer than 2 mtu-sized packets, disable pie_drop_early, * similar to min_th in RED */ if (backlog < 2 * mtu) return false; /* If bytemode is turned on, use packet size to compute new * probablity. Smaller packets will have lower drop prob in this case */ if (params->bytemode && packet_size <= mtu) local_prob = (u64)packet_size * div_u64(local_prob, mtu); else local_prob = vars->prob; if (local_prob == 0) vars->accu_prob = 0; else vars->accu_prob += local_prob; if (vars->accu_prob < (MAX_PROB / 100) * 85) return false; if (vars->accu_prob >= (MAX_PROB / 2) * 17) return true; get_random_bytes(&rnd, 8); if ((rnd >> BITS_PER_BYTE) < local_prob) { vars->accu_prob = 0; return true; } return false; } EXPORT_SYMBOL_GPL(pie_drop_early); static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct pie_sched_data *q = qdisc_priv(sch); bool enqueue = false; if (unlikely(qdisc_qlen(sch) >= sch->limit)) { q->stats.overlimit++; goto out; } if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog, skb->len)) { enqueue = true; } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && INET_ECN_set_ce(skb)) { /* If packet is ecn capable, mark it if drop probability * is lower than 10%, else drop it. */ q->stats.ecn_mark++; enqueue = true; } /* we can enqueue the packet */ if (enqueue) { /* Set enqueue time only when dq_rate_estimator is disabled. */ if (!q->params.dq_rate_estimator) pie_set_enqueue_time(skb); q->stats.packets_in++; if (qdisc_qlen(sch) > q->stats.maxq) q->stats.maxq = qdisc_qlen(sch); return qdisc_enqueue_tail(skb, sch); } out: q->stats.dropped++; q->vars.accu_prob = 0; return qdisc_drop(skb, sch, to_free); } static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { [TCA_PIE_TARGET] = {.type = NLA_U32}, [TCA_PIE_LIMIT] = {.type = NLA_U32}, [TCA_PIE_TUPDATE] = {.type = NLA_U32}, [TCA_PIE_ALPHA] = {.type = NLA_U32}, [TCA_PIE_BETA] = {.type = NLA_U32}, [TCA_PIE_ECN] = {.type = NLA_U32}, [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, [TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32}, }; static int pie_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_PIE_MAX + 1]; unsigned int qlen, dropped = 0; int err; err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy, NULL); if (err < 0) return err; sch_tree_lock(sch); /* convert from microseconds to pschedtime */ if (tb[TCA_PIE_TARGET]) { /* target is in us */ u32 target = nla_get_u32(tb[TCA_PIE_TARGET]); /* convert to pschedtime */ WRITE_ONCE(q->params.target, PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC)); } /* tupdate is in jiffies */ if (tb[TCA_PIE_TUPDATE]) WRITE_ONCE(q->params.tupdate, usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]))); if (tb[TCA_PIE_LIMIT]) { u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); WRITE_ONCE(q->params.limit, limit); WRITE_ONCE(sch->limit, limit); } if (tb[TCA_PIE_ALPHA]) WRITE_ONCE(q->params.alpha, nla_get_u32(tb[TCA_PIE_ALPHA])); if (tb[TCA_PIE_BETA]) WRITE_ONCE(q->params.beta, nla_get_u32(tb[TCA_PIE_BETA])); if (tb[TCA_PIE_ECN]) WRITE_ONCE(q->params.ecn, nla_get_u32(tb[TCA_PIE_ECN])); if (tb[TCA_PIE_BYTEMODE]) WRITE_ONCE(q->params.bytemode, nla_get_u32(tb[TCA_PIE_BYTEMODE])); if (tb[TCA_PIE_DQ_RATE_ESTIMATOR]) WRITE_ONCE(q->params.dq_rate_estimator, nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR])); /* Drop excess packets if new limit is lower */ qlen = sch->q.qlen; while (sch->q.qlen > sch->limit) { struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); dropped += qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); rtnl_qdisc_drop(skb, sch); } qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); sch_tree_unlock(sch); return 0; } void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params, struct pie_vars *vars, u32 backlog) { psched_time_t now = psched_get_time(); u32 dtime = 0; /* If dq_rate_estimator is disabled, calculate qdelay using the * packet timestamp. */ if (!params->dq_rate_estimator) { vars->qdelay = now - pie_get_enqueue_time(skb); if (vars->dq_tstamp != DTIME_INVALID) dtime = now - vars->dq_tstamp; vars->dq_tstamp = now; if (backlog == 0) vars->qdelay = 0; if (dtime == 0) return; goto burst_allowance_reduction; } /* If current queue is about 10 packets or more and dq_count is unset * we have enough packets to calculate the drain rate. Save * current time as dq_tstamp and start measurement cycle. */ if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) { vars->dq_tstamp = psched_get_time(); vars->dq_count = 0; } /* Calculate the average drain rate from this value. If queue length * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset * the dq_count to -1 as we don't have enough packets to calculate the * drain rate anymore. The following if block is entered only when we * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) * and we calculate the drain rate for the threshold here. dq_count is * in bytes, time difference in psched_time, hence rate is in * bytes/psched_time. */ if (vars->dq_count != DQCOUNT_INVALID) { vars->dq_count += skb->len; if (vars->dq_count >= QUEUE_THRESHOLD) { u32 count = vars->dq_count << PIE_SCALE; dtime = now - vars->dq_tstamp; if (dtime == 0) return; count = count / dtime; if (vars->avg_dq_rate == 0) vars->avg_dq_rate = count; else vars->avg_dq_rate = (vars->avg_dq_rate - (vars->avg_dq_rate >> 3)) + (count >> 3); /* If the queue has receded below the threshold, we hold * on to the last drain rate calculated, else we reset * dq_count to 0 to re-enter the if block when the next * packet is dequeued */ if (backlog < QUEUE_THRESHOLD) { vars->dq_count = DQCOUNT_INVALID; } else { vars->dq_count = 0; vars->dq_tstamp = psched_get_time(); } goto burst_allowance_reduction; } } return; burst_allowance_reduction: if (vars->burst_time > 0) { if (vars->burst_time > dtime) vars->burst_time -= dtime; else vars->burst_time = 0; } } EXPORT_SYMBOL_GPL(pie_process_dequeue); void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars, u32 backlog) { psched_time_t qdelay = 0; /* in pschedtime */ psched_time_t qdelay_old = 0; /* in pschedtime */ s64 delta = 0; /* determines the change in probability */ u64 oldprob; u64 alpha, beta; u32 power; bool update_prob = true; if (params->dq_rate_estimator) { qdelay_old = vars->qdelay; vars->qdelay_old = vars->qdelay; if (vars->avg_dq_rate > 0) qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate; else qdelay = 0; } else { qdelay = vars->qdelay; qdelay_old = vars->qdelay_old; } /* If qdelay is zero and backlog is not, it means backlog is very small, * so we do not update probability in this round. */ if (qdelay == 0 && backlog != 0) update_prob = false; /* In the algorithm, alpha and beta are between 0 and 2 with typical * value for alpha as 0.125. In this implementation, we use values 0-32 * passed from user space to represent this. Also, alpha and beta have * unit of HZ and need to be scaled before they can used to update * probability. alpha/beta are updated locally below by scaling down * by 16 to come to 0-2 range. */ alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; /* We scale alpha and beta differently depending on how heavy the * congestion is. Please see RFC 8033 for details. */ if (vars->prob < MAX_PROB / 10) { alpha >>= 1; beta >>= 1; power = 100; while (vars->prob < div_u64(MAX_PROB, power) && power <= 1000000) { alpha >>= 2; beta >>= 2; power *= 10; } } /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ delta += alpha * (qdelay - params->target); delta += beta * (qdelay - qdelay_old); oldprob = vars->prob; /* to ensure we increase probability in steps of no more than 2% */ if (delta > (s64)(MAX_PROB / (100 / 2)) && vars->prob >= MAX_PROB / 10) delta = (MAX_PROB / 100) * 2; /* Non-linear drop: * Tune drop probability to increase quickly for high delays(>= 250ms) * 250ms is derived through experiments and provides error protection */ if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) delta += MAX_PROB / (100 / 2); vars->prob += delta; if (delta > 0) { /* prevent overflow */ if (vars->prob < oldprob) { vars->prob = MAX_PROB; /* Prevent normalization error. If probability is at * maximum value already, we normalize it here, and * skip the check to do a non-linear drop in the next * section. */ update_prob = false; } } else { /* prevent underflow */ if (vars->prob > oldprob) vars->prob = 0; } /* Non-linear drop in probability: Reduce drop probability quickly if * delay is 0 for 2 consecutive Tupdate periods. */ if (qdelay == 0 && qdelay_old == 0 && update_prob) /* Reduce drop probability to 98.4% */ vars->prob -= vars->prob / 64; vars->qdelay = qdelay; vars->backlog_old = backlog; /* We restart the measurement cycle if the following conditions are met * 1. If the delay has been low for 2 consecutive Tupdate periods * 2. Calculated drop probability is zero * 3. If average dq_rate_estimator is enabled, we have at least one * estimate for the avg_dq_rate ie., is a non-zero value */ if ((vars->qdelay < params->target / 2) && (vars->qdelay_old < params->target / 2) && vars->prob == 0 && (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) { pie_vars_init(vars); } if (!params->dq_rate_estimator) vars->qdelay_old = qdelay; } EXPORT_SYMBOL_GPL(pie_calculate_probability); static void pie_timer(struct timer_list *t) { struct pie_sched_data *q = from_timer(q, t, adapt_timer); struct Qdisc *sch = q->sch; spinlock_t *root_lock; rcu_read_lock(); root_lock = qdisc_lock(qdisc_root_sleeping(sch)); spin_lock(root_lock); pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog); /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ if (q->params.tupdate) mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); spin_unlock(root_lock); rcu_read_unlock(); } static int pie_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct pie_sched_data *q = qdisc_priv(sch); pie_params_init(&q->params); pie_vars_init(&q->vars); sch->limit = q->params.limit; q->sch = sch; timer_setup(&q->adapt_timer, pie_timer, 0); if (opt) { int err = pie_change(sch, opt, extack); if (err) return err; } mod_timer(&q->adapt_timer, jiffies + HZ / 2); return 0; } static int pie_dump(struct Qdisc *sch, struct sk_buff *skb) { struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *opts; opts = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!opts) goto nla_put_failure; /* convert target from pschedtime to us */ if (nla_put_u32(skb, TCA_PIE_TARGET, ((u32)PSCHED_TICKS2NS(READ_ONCE(q->params.target))) / NSEC_PER_USEC) || nla_put_u32(skb, TCA_PIE_LIMIT, READ_ONCE(sch->limit)) || nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(READ_ONCE(q->params.tupdate))) || nla_put_u32(skb, TCA_PIE_ALPHA, READ_ONCE(q->params.alpha)) || nla_put_u32(skb, TCA_PIE_BETA, READ_ONCE(q->params.beta)) || nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || nla_put_u32(skb, TCA_PIE_BYTEMODE, READ_ONCE(q->params.bytemode)) || nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR, READ_ONCE(q->params.dq_rate_estimator))) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: nla_nest_cancel(skb, opts); return -1; } static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct pie_sched_data *q = qdisc_priv(sch); struct tc_pie_xstats st = { .prob = q->vars.prob << BITS_PER_BYTE, .delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) / NSEC_PER_USEC, .packets_in = q->stats.packets_in, .overlimit = q->stats.overlimit, .maxq = q->stats.maxq, .dropped = q->stats.dropped, .ecn_mark = q->stats.ecn_mark, }; /* avg_dq_rate is only valid if dq_rate_estimator is enabled */ st.dq_rate_estimating = q->params.dq_rate_estimator; /* unscale and return dq_rate in bytes per sec */ if (q->params.dq_rate_estimator) st.avg_dq_rate = q->vars.avg_dq_rate * (PSCHED_TICKS_PER_SEC) >> PIE_SCALE; return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); struct sk_buff *skb = qdisc_dequeue_head(sch); if (!skb) return NULL; pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog); return skb; } static void pie_reset(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); qdisc_reset_queue(sch); pie_vars_init(&q->vars); } static void pie_destroy(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); q->params.tupdate = 0; del_timer_sync(&q->adapt_timer); } static struct Qdisc_ops pie_qdisc_ops __read_mostly = { .id = "pie", .priv_size = sizeof(struct pie_sched_data), .enqueue = pie_qdisc_enqueue, .dequeue = pie_qdisc_dequeue, .peek = qdisc_peek_dequeued, .init = pie_init, .destroy = pie_destroy, .reset = pie_reset, .change = pie_change, .dump = pie_dump, .dump_stats = pie_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("pie"); static int __init pie_module_init(void) { return register_qdisc(&pie_qdisc_ops); } static void __exit pie_module_exit(void) { unregister_qdisc(&pie_qdisc_ops); } module_init(pie_module_init); module_exit(pie_module_exit); MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler"); MODULE_AUTHOR("Vijay Subramanian"); MODULE_AUTHOR("Mythili Prabhu"); MODULE_LICENSE("GPL"); |
2 2 2 2 3 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | // SPDX-License-Identifier: GPL-2.0-or-later /* * X.25 Packet Layer release 002 * * This is ALPHA test software. This code may break your machine, * randomly fail to work with new releases, misbehave and/or generally * screw up. It might even work. * * This code REQUIRES 2.1.15 or higher * * History * X.25 001 Jonathan Naylor Started coding. * X.25 002 Jonathan Naylor New timer architecture. * mar/20/00 Daniela Squassoni Disabling/enabling of facilities * negotiation. * 2000-09-04 Henner Eisen dev_hold() / dev_put() for x25_neigh. */ #define pr_fmt(fmt) "X25: " fmt #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/uaccess.h> #include <linux/init.h> #include <net/x25.h> LIST_HEAD(x25_neigh_list); DEFINE_RWLOCK(x25_neigh_list_lock); static void x25_t20timer_expiry(struct timer_list *); static void x25_transmit_restart_confirmation(struct x25_neigh *nb); static void x25_transmit_restart_request(struct x25_neigh *nb); /* * Linux set/reset timer routines */ static inline void x25_start_t20timer(struct x25_neigh *nb) { mod_timer(&nb->t20timer, jiffies + nb->t20); } static void x25_t20timer_expiry(struct timer_list *t) { struct x25_neigh *nb = from_timer(nb, t, t20timer); x25_transmit_restart_request(nb); x25_start_t20timer(nb); } static inline void x25_stop_t20timer(struct x25_neigh *nb) { del_timer(&nb->t20timer); } /* * This handles all restart and diagnostic frames. */ void x25_link_control(struct sk_buff *skb, struct x25_neigh *nb, unsigned short frametype) { struct sk_buff *skbn; switch (frametype) { case X25_RESTART_REQUEST: switch (nb->state) { case X25_LINK_STATE_0: /* This can happen when the x25 module just gets loaded * and doesn't know layer 2 has already connected */ nb->state = X25_LINK_STATE_3; x25_transmit_restart_confirmation(nb); break; case X25_LINK_STATE_2: x25_stop_t20timer(nb); nb->state = X25_LINK_STATE_3; break; case X25_LINK_STATE_3: /* clear existing virtual calls */ x25_kill_by_neigh(nb); x25_transmit_restart_confirmation(nb); break; } break; case X25_RESTART_CONFIRMATION: switch (nb->state) { case X25_LINK_STATE_2: x25_stop_t20timer(nb); nb->state = X25_LINK_STATE_3; break; case X25_LINK_STATE_3: /* clear existing virtual calls */ x25_kill_by_neigh(nb); x25_transmit_restart_request(nb); nb->state = X25_LINK_STATE_2; x25_start_t20timer(nb); break; } break; case X25_DIAGNOSTIC: if (!pskb_may_pull(skb, X25_STD_MIN_LEN + 4)) break; pr_warn("diagnostic #%d - %02X %02X %02X\n", skb->data[3], skb->data[4], skb->data[5], skb->data[6]); break; default: pr_warn("received unknown %02X with LCI 000\n", frametype); break; } if (nb->state == X25_LINK_STATE_3) while ((skbn = skb_dequeue(&nb->queue)) != NULL) x25_send_frame(skbn, nb); } /* * This routine is called when a Restart Request is needed */ static void x25_transmit_restart_request(struct x25_neigh *nb) { unsigned char *dptr; int len = X25_MAX_L2_LEN + X25_STD_MIN_LEN + 2; struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); if (!skb) return; skb_reserve(skb, X25_MAX_L2_LEN); dptr = skb_put(skb, X25_STD_MIN_LEN + 2); *dptr++ = nb->extended ? X25_GFI_EXTSEQ : X25_GFI_STDSEQ; *dptr++ = 0x00; *dptr++ = X25_RESTART_REQUEST; *dptr++ = 0x00; *dptr++ = 0; skb->sk = NULL; x25_send_frame(skb, nb); } /* * This routine is called when a Restart Confirmation is needed */ static void x25_transmit_restart_confirmation(struct x25_neigh *nb) { unsigned char *dptr; int len = X25_MAX_L2_LEN + X25_STD_MIN_LEN; struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); if (!skb) return; skb_reserve(skb, X25_MAX_L2_LEN); dptr = skb_put(skb, X25_STD_MIN_LEN); *dptr++ = nb->extended ? X25_GFI_EXTSEQ : X25_GFI_STDSEQ; *dptr++ = 0x00; *dptr++ = X25_RESTART_CONFIRMATION; skb->sk = NULL; x25_send_frame(skb, nb); } /* * This routine is called when a Clear Request is needed outside of the context * of a connected socket. */ void x25_transmit_clear_request(struct x25_neigh *nb, unsigned int lci, unsigned char cause) { unsigned char *dptr; int len = X25_MAX_L2_LEN + X25_STD_MIN_LEN + 2; struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); if (!skb) return; skb_reserve(skb, X25_MAX_L2_LEN); dptr = skb_put(skb, X25_STD_MIN_LEN + 2); *dptr++ = ((lci >> 8) & 0x0F) | (nb->extended ? X25_GFI_EXTSEQ : X25_GFI_STDSEQ); *dptr++ = (lci >> 0) & 0xFF; *dptr++ = X25_CLEAR_REQUEST; *dptr++ = cause; *dptr++ = 0x00; skb->sk = NULL; x25_send_frame(skb, nb); } void x25_transmit_link(struct sk_buff *skb, struct x25_neigh *nb) { switch (nb->state) { case X25_LINK_STATE_0: skb_queue_tail(&nb->queue, skb); nb->state = X25_LINK_STATE_1; x25_establish_link(nb); break; case X25_LINK_STATE_1: case X25_LINK_STATE_2: skb_queue_tail(&nb->queue, skb); break; case X25_LINK_STATE_3: x25_send_frame(skb, nb); break; } } /* * Called when the link layer has become established. */ void x25_link_established(struct x25_neigh *nb) { switch (nb->state) { case X25_LINK_STATE_0: case X25_LINK_STATE_1: x25_transmit_restart_request(nb); nb->state = X25_LINK_STATE_2; x25_start_t20timer(nb); break; } } /* * Called when the link layer has terminated, or an establishment * request has failed. */ void x25_link_terminated(struct x25_neigh *nb) { nb->state = X25_LINK_STATE_0; skb_queue_purge(&nb->queue); x25_stop_t20timer(nb); /* Out of order: clear existing virtual calls (X.25 03/93 4.6.3) */ x25_kill_by_neigh(nb); } /* * Add a new device. */ void x25_link_device_up(struct net_device *dev) { struct x25_neigh *nb = kmalloc(sizeof(*nb), GFP_ATOMIC); if (!nb) return; skb_queue_head_init(&nb->queue); timer_setup(&nb->t20timer, x25_t20timer_expiry, 0); dev_hold(dev); nb->dev = dev; nb->state = X25_LINK_STATE_0; nb->extended = 0; /* * Enables negotiation */ nb->global_facil_mask = X25_MASK_REVERSE | X25_MASK_THROUGHPUT | X25_MASK_PACKET_SIZE | X25_MASK_WINDOW_SIZE; nb->t20 = sysctl_x25_restart_request_timeout; refcount_set(&nb->refcnt, 1); write_lock_bh(&x25_neigh_list_lock); list_add(&nb->node, &x25_neigh_list); write_unlock_bh(&x25_neigh_list_lock); } /** * __x25_remove_neigh - remove neighbour from x25_neigh_list * @nb: - neigh to remove * * Remove neighbour from x25_neigh_list. If it was there. * Caller must hold x25_neigh_list_lock. */ static void __x25_remove_neigh(struct x25_neigh *nb) { if (nb->node.next) { list_del(&nb->node); x25_neigh_put(nb); } } /* * A device has been removed, remove its links. */ void x25_link_device_down(struct net_device *dev) { struct x25_neigh *nb; struct list_head *entry, *tmp; write_lock_bh(&x25_neigh_list_lock); list_for_each_safe(entry, tmp, &x25_neigh_list) { nb = list_entry(entry, struct x25_neigh, node); if (nb->dev == dev) { __x25_remove_neigh(nb); dev_put(dev); } } write_unlock_bh(&x25_neigh_list_lock); } /* * Given a device, return the neighbour address. */ struct x25_neigh *x25_get_neigh(struct net_device *dev) { struct x25_neigh *nb, *use = NULL; read_lock_bh(&x25_neigh_list_lock); list_for_each_entry(nb, &x25_neigh_list, node) { if (nb->dev == dev) { use = nb; break; } } if (use) x25_neigh_hold(use); read_unlock_bh(&x25_neigh_list_lock); return use; } /* * Handle the ioctls that control the subscription functions. */ int x25_subscr_ioctl(unsigned int cmd, void __user *arg) { struct x25_subscrip_struct x25_subscr; struct x25_neigh *nb; struct net_device *dev; int rc = -EINVAL; if (cmd != SIOCX25GSUBSCRIP && cmd != SIOCX25SSUBSCRIP) goto out; rc = -EFAULT; if (copy_from_user(&x25_subscr, arg, sizeof(x25_subscr))) goto out; rc = -EINVAL; if ((dev = x25_dev_get(x25_subscr.device)) == NULL) goto out; if ((nb = x25_get_neigh(dev)) == NULL) goto out_dev_put; dev_put(dev); if (cmd == SIOCX25GSUBSCRIP) { read_lock_bh(&x25_neigh_list_lock); x25_subscr.extended = nb->extended; x25_subscr.global_facil_mask = nb->global_facil_mask; read_unlock_bh(&x25_neigh_list_lock); rc = copy_to_user(arg, &x25_subscr, sizeof(x25_subscr)) ? -EFAULT : 0; } else { rc = -EINVAL; if (!(x25_subscr.extended && x25_subscr.extended != 1)) { rc = 0; write_lock_bh(&x25_neigh_list_lock); nb->extended = x25_subscr.extended; nb->global_facil_mask = x25_subscr.global_facil_mask; write_unlock_bh(&x25_neigh_list_lock); } } x25_neigh_put(nb); out: return rc; out_dev_put: dev_put(dev); goto out; } /* * Release all memory associated with X.25 neighbour structures. */ void __exit x25_link_free(void) { struct x25_neigh *nb; struct list_head *entry, *tmp; write_lock_bh(&x25_neigh_list_lock); list_for_each_safe(entry, tmp, &x25_neigh_list) { struct net_device *dev; nb = list_entry(entry, struct x25_neigh, node); dev = nb->dev; __x25_remove_neigh(nb); dev_put(dev); } write_unlock_bh(&x25_neigh_list_lock); } |
9 1 1 1 6 2 2 1 1 2 1 1 2 2 1 4 4 2 2 1 1 2 2 2 2 2 2 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | // SPDX-License-Identifier: GPL-2.0-only /* * net/sched/act_sample.c - Packet sampling tc action * Copyright (c) 2017 Yotam Gigi <yotamg@mellanox.com> */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/module.h> #include <linux/init.h> #include <linux/gfp.h> #include <net/net_namespace.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <linux/tc_act/tc_sample.h> #include <net/tc_act/tc_sample.h> #include <net/psample.h> #include <net/pkt_cls.h> #include <net/tc_wrapper.h> #include <linux/if_arp.h> static struct tc_action_ops act_sample_ops; static const struct nla_policy sample_policy[TCA_SAMPLE_MAX + 1] = { [TCA_SAMPLE_PARMS] = { .len = sizeof(struct tc_sample) }, [TCA_SAMPLE_RATE] = { .type = NLA_U32 }, [TCA_SAMPLE_TRUNC_SIZE] = { .type = NLA_U32 }, [TCA_SAMPLE_PSAMPLE_GROUP] = { .type = NLA_U32 }, }; static int tcf_sample_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_sample_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_SAMPLE_MAX + 1]; struct psample_group *psample_group; u32 psample_group_num, rate, index; struct tcf_chain *goto_ch = NULL; struct tc_sample *parm; struct tcf_sample *s; bool exists = false; int ret, err; if (!nla) return -EINVAL; ret = nla_parse_nested_deprecated(tb, TCA_SAMPLE_MAX, nla, sample_policy, NULL); if (ret < 0) return ret; if (!tb[TCA_SAMPLE_PARMS]) return -EINVAL; parm = nla_data(tb[TCA_SAMPLE_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return ACT_P_BOUND; if (!exists) { ret = tcf_idr_create(tn, index, est, a, &act_sample_ops, bind, true, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } if (!tb[TCA_SAMPLE_RATE] || !tb[TCA_SAMPLE_PSAMPLE_GROUP]) { NL_SET_ERR_MSG(extack, "sample rate and group are required"); err = -EINVAL; goto release_idr; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; rate = nla_get_u32(tb[TCA_SAMPLE_RATE]); if (!rate) { NL_SET_ERR_MSG(extack, "invalid sample rate"); err = -EINVAL; goto put_chain; } psample_group_num = nla_get_u32(tb[TCA_SAMPLE_PSAMPLE_GROUP]); psample_group = psample_group_get(net, psample_group_num); if (!psample_group) { err = -ENOMEM; goto put_chain; } s = to_sample(*a); spin_lock_bh(&s->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); s->rate = rate; s->psample_group_num = psample_group_num; psample_group = rcu_replace_pointer(s->psample_group, psample_group, lockdep_is_held(&s->tcf_lock)); if (tb[TCA_SAMPLE_TRUNC_SIZE]) { s->truncate = true; s->trunc_size = nla_get_u32(tb[TCA_SAMPLE_TRUNC_SIZE]); } spin_unlock_bh(&s->tcf_lock); if (psample_group) psample_group_put(psample_group); if (goto_ch) tcf_chain_put_by_act(goto_ch); return ret; put_chain: if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static void tcf_sample_cleanup(struct tc_action *a) { struct tcf_sample *s = to_sample(a); struct psample_group *psample_group; /* last reference to action, no need to lock */ psample_group = rcu_dereference_protected(s->psample_group, 1); RCU_INIT_POINTER(s->psample_group, NULL); if (psample_group) psample_group_put(psample_group); } static bool tcf_sample_dev_ok_push(struct net_device *dev) { switch (dev->type) { case ARPHRD_TUNNEL: case ARPHRD_TUNNEL6: case ARPHRD_SIT: case ARPHRD_IPGRE: case ARPHRD_IP6GRE: case ARPHRD_VOID: case ARPHRD_NONE: return false; default: return true; } } TC_INDIRECT_SCOPE int tcf_sample_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_sample *s = to_sample(a); struct psample_group *psample_group; u8 cookie_data[TC_COOKIE_MAX_SIZE]; struct psample_metadata md = {}; struct tc_cookie *user_cookie; int retval; tcf_lastuse_update(&s->tcf_tm); bstats_update(this_cpu_ptr(s->common.cpu_bstats), skb); retval = READ_ONCE(s->tcf_action); psample_group = rcu_dereference_bh(s->psample_group); /* randomly sample packets according to rate */ if (psample_group && (get_random_u32_below(s->rate) == 0)) { if (!skb_at_tc_ingress(skb)) { md.in_ifindex = skb->skb_iif; md.out_ifindex = skb->dev->ifindex; } else { md.in_ifindex = skb->dev->ifindex; } /* on ingress, the mac header gets popped, so push it back */ if (skb_at_tc_ingress(skb) && tcf_sample_dev_ok_push(skb->dev)) skb_push(skb, skb->mac_len); rcu_read_lock(); user_cookie = rcu_dereference(a->user_cookie); if (user_cookie) { memcpy(cookie_data, user_cookie->data, user_cookie->len); md.user_cookie = cookie_data; md.user_cookie_len = user_cookie->len; } rcu_read_unlock(); md.trunc_size = s->truncate ? s->trunc_size : skb->len; psample_sample_packet(psample_group, skb, s->rate, &md); if (skb_at_tc_ingress(skb) && tcf_sample_dev_ok_push(skb->dev)) skb_pull(skb, skb->mac_len); } return retval; } static void tcf_sample_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_sample *s = to_sample(a); struct tcf_t *tm = &s->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_sample_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_sample *s = to_sample(a); struct tc_sample opt = { .index = s->tcf_index, .refcnt = refcount_read(&s->tcf_refcnt) - ref, .bindcnt = atomic_read(&s->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&s->tcf_lock); opt.action = s->tcf_action; if (nla_put(skb, TCA_SAMPLE_PARMS, sizeof(opt), &opt)) goto nla_put_failure; tcf_tm_dump(&t, &s->tcf_tm); if (nla_put_64bit(skb, TCA_SAMPLE_TM, sizeof(t), &t, TCA_SAMPLE_PAD)) goto nla_put_failure; if (nla_put_u32(skb, TCA_SAMPLE_RATE, s->rate)) goto nla_put_failure; if (s->truncate) if (nla_put_u32(skb, TCA_SAMPLE_TRUNC_SIZE, s->trunc_size)) goto nla_put_failure; if (nla_put_u32(skb, TCA_SAMPLE_PSAMPLE_GROUP, s->psample_group_num)) goto nla_put_failure; spin_unlock_bh(&s->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&s->tcf_lock); nlmsg_trim(skb, b); return -1; } static void tcf_psample_group_put(void *priv) { struct psample_group *group = priv; psample_group_put(group); } static struct psample_group * tcf_sample_get_group(const struct tc_action *a, tc_action_priv_destructor *destructor) { struct tcf_sample *s = to_sample(a); struct psample_group *group; group = rcu_dereference_protected(s->psample_group, lockdep_is_held(&s->tcf_lock)); if (group) { psample_group_take(group); *destructor = tcf_psample_group_put; } return group; } static void tcf_offload_sample_get_group(struct flow_action_entry *entry, const struct tc_action *act) { entry->sample.psample_group = act->ops->get_psample_group(act, &entry->destructor); entry->destructor_priv = entry->sample.psample_group; } static int tcf_sample_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; entry->id = FLOW_ACTION_SAMPLE; entry->sample.trunc_size = tcf_sample_trunc_size(act); entry->sample.truncate = tcf_sample_truncate(act); entry->sample.rate = tcf_sample_rate(act); tcf_offload_sample_get_group(entry, act); *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; fl_action->id = FLOW_ACTION_SAMPLE; } return 0; } static struct tc_action_ops act_sample_ops = { .kind = "sample", .id = TCA_ID_SAMPLE, .owner = THIS_MODULE, .act = tcf_sample_act, .stats_update = tcf_sample_stats_update, .dump = tcf_sample_dump, .init = tcf_sample_init, .cleanup = tcf_sample_cleanup, .get_psample_group = tcf_sample_get_group, .offload_act_setup = tcf_sample_offload_act_setup, .size = sizeof(struct tcf_sample), }; MODULE_ALIAS_NET_ACT("sample"); static __net_init int sample_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_sample_ops.net_id); return tc_action_net_init(net, tn, &act_sample_ops); } static void __net_exit sample_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_sample_ops.net_id); } static struct pernet_operations sample_net_ops = { .init = sample_init_net, .exit_batch = sample_exit_net, .id = &act_sample_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init sample_init_module(void) { return tcf_register_action(&act_sample_ops, &sample_net_ops); } static void __exit sample_cleanup_module(void) { tcf_unregister_action(&act_sample_ops, &sample_net_ops); } module_init(sample_init_module); module_exit(sample_cleanup_module); MODULE_AUTHOR("Yotam Gigi <yotam.gi@gmail.com>"); MODULE_DESCRIPTION("Packet sampling action"); MODULE_LICENSE("GPL v2"); |
184 183 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | // SPDX-License-Identifier: GPL-2.0 #include <linux/rtnetlink.h> #include <linux/notifier.h> #include <linux/socket.h> #include <linux/kernel.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/fib_notifier.h> #include <net/ip_fib.h> int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET; return call_fib_notifier(nb, event_type, info); } int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info) { ASSERT_RTNL(); info->family = AF_INET; net->ipv4.fib_seq++; return call_fib_notifiers(net, event_type, info); } static unsigned int fib4_seq_read(struct net *net) { ASSERT_RTNL(); return net->ipv4.fib_seq + fib4_rules_seq_read(net); } static int fib4_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { int err; err = fib4_rules_dump(net, nb, extack); if (err) return err; return fib_notify(net, nb, extack); } static const struct fib_notifier_ops fib4_notifier_ops_template = { .family = AF_INET, .fib_seq_read = fib4_seq_read, .fib_dump = fib4_dump, .owner = THIS_MODULE, }; int __net_init fib4_notifier_init(struct net *net) { struct fib_notifier_ops *ops; net->ipv4.fib_seq = 0; ops = fib_notifier_ops_register(&fib4_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv4.notifier_ops = ops; return 0; } void __net_exit fib4_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv4.notifier_ops); } |
5 2 2 1 1 6 12 6 5 1 12 12 2 11 11 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016 Tom Herbert <tom@herbertland.com> */ #include <linux/skbuff.h> #include <linux/skbuff_ref.h> #include <linux/workqueue.h> #include <net/strparser.h> #include <net/tcp.h> #include <net/sock.h> #include <net/tls.h> #include "tls.h" static struct workqueue_struct *tls_strp_wq; static void tls_strp_abort_strp(struct tls_strparser *strp, int err) { if (strp->stopped) return; strp->stopped = 1; /* Report an error on the lower socket */ WRITE_ONCE(strp->sk->sk_err, -err); /* Paired with smp_rmb() in tcp_poll() */ smp_wmb(); sk_error_report(strp->sk); } static void tls_strp_anchor_free(struct tls_strparser *strp) { struct skb_shared_info *shinfo = skb_shinfo(strp->anchor); DEBUG_NET_WARN_ON_ONCE(atomic_read(&shinfo->dataref) != 1); if (!strp->copy_mode) shinfo->frag_list = NULL; consume_skb(strp->anchor); strp->anchor = NULL; } static struct sk_buff * tls_strp_skb_copy(struct tls_strparser *strp, struct sk_buff *in_skb, int offset, int len) { struct sk_buff *skb; int i, err; skb = alloc_skb_with_frags(0, len, TLS_PAGE_ORDER, &err, strp->sk->sk_allocation); if (!skb) return NULL; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; WARN_ON_ONCE(skb_copy_bits(in_skb, offset, skb_frag_address(frag), skb_frag_size(frag))); offset += skb_frag_size(frag); } skb->len = len; skb->data_len = len; skb_copy_header(skb, in_skb); return skb; } /* Create a new skb with the contents of input copied to its page frags */ static struct sk_buff *tls_strp_msg_make_copy(struct tls_strparser *strp) { struct strp_msg *rxm; struct sk_buff *skb; skb = tls_strp_skb_copy(strp, strp->anchor, strp->stm.offset, strp->stm.full_len); if (!skb) return NULL; rxm = strp_msg(skb); rxm->offset = 0; return skb; } /* Steal the input skb, input msg is invalid after calling this function */ struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx) { struct tls_strparser *strp = &ctx->strp; #ifdef CONFIG_TLS_DEVICE DEBUG_NET_WARN_ON_ONCE(!strp->anchor->decrypted); #else /* This function turns an input into an output, * that can only happen if we have offload. */ WARN_ON(1); #endif if (strp->copy_mode) { struct sk_buff *skb; /* Replace anchor with an empty skb, this is a little * dangerous but __tls_cur_msg() warns on empty skbs * so hopefully we'll catch abuses. */ skb = alloc_skb(0, strp->sk->sk_allocation); if (!skb) return NULL; swap(strp->anchor, skb); return skb; } return tls_strp_msg_make_copy(strp); } /* Force the input skb to be in copy mode. The data ownership remains * with the input skb itself (meaning unpause will wipe it) but it can * be modified. */ int tls_strp_msg_cow(struct tls_sw_context_rx *ctx) { struct tls_strparser *strp = &ctx->strp; struct sk_buff *skb; if (strp->copy_mode) return 0; skb = tls_strp_msg_make_copy(strp); if (!skb) return -ENOMEM; tls_strp_anchor_free(strp); strp->anchor = skb; tcp_read_done(strp->sk, strp->stm.full_len); strp->copy_mode = 1; return 0; } /* Make a clone (in the skb sense) of the input msg to keep a reference * to the underlying data. The reference-holding skbs get placed on * @dst. */ int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst) { struct skb_shared_info *shinfo = skb_shinfo(strp->anchor); if (strp->copy_mode) { struct sk_buff *skb; WARN_ON_ONCE(!shinfo->nr_frags); /* We can't skb_clone() the anchor, it gets wiped by unpause */ skb = alloc_skb(0, strp->sk->sk_allocation); if (!skb) return -ENOMEM; __skb_queue_tail(dst, strp->anchor); strp->anchor = skb; } else { struct sk_buff *iter, *clone; int chunk, len, offset; offset = strp->stm.offset; len = strp->stm.full_len; iter = shinfo->frag_list; while (len > 0) { if (iter->len <= offset) { offset -= iter->len; goto next; } chunk = iter->len - offset; offset = 0; clone = skb_clone(iter, strp->sk->sk_allocation); if (!clone) return -ENOMEM; __skb_queue_tail(dst, clone); len -= chunk; next: iter = iter->next; } } return 0; } static void tls_strp_flush_anchor_copy(struct tls_strparser *strp) { struct skb_shared_info *shinfo = skb_shinfo(strp->anchor); int i; DEBUG_NET_WARN_ON_ONCE(atomic_read(&shinfo->dataref) != 1); for (i = 0; i < shinfo->nr_frags; i++) __skb_frag_unref(&shinfo->frags[i], false); shinfo->nr_frags = 0; if (strp->copy_mode) { kfree_skb_list(shinfo->frag_list); shinfo->frag_list = NULL; } strp->copy_mode = 0; strp->mixed_decrypted = 0; } static int tls_strp_copyin_frag(struct tls_strparser *strp, struct sk_buff *skb, struct sk_buff *in_skb, unsigned int offset, size_t in_len) { size_t len, chunk; skb_frag_t *frag; int sz; frag = &skb_shinfo(skb)->frags[skb->len / PAGE_SIZE]; len = in_len; /* First make sure we got the header */ if (!strp->stm.full_len) { /* Assume one page is more than enough for headers */ chunk = min_t(size_t, len, PAGE_SIZE - skb_frag_size(frag)); WARN_ON_ONCE(skb_copy_bits(in_skb, offset, skb_frag_address(frag) + skb_frag_size(frag), chunk)); skb->len += chunk; skb->data_len += chunk; skb_frag_size_add(frag, chunk); sz = tls_rx_msg_size(strp, skb); if (sz < 0) return sz; /* We may have over-read, sz == 0 is guaranteed under-read */ if (unlikely(sz && sz < skb->len)) { int over = skb->len - sz; WARN_ON_ONCE(over > chunk); skb->len -= over; skb->data_len -= over; skb_frag_size_add(frag, -over); chunk -= over; } frag++; len -= chunk; offset += chunk; strp->stm.full_len = sz; if (!strp->stm.full_len) goto read_done; } /* Load up more data */ while (len && strp->stm.full_len > skb->len) { chunk = min_t(size_t, len, strp->stm.full_len - skb->len); chunk = min_t(size_t, chunk, PAGE_SIZE - skb_frag_size(frag)); WARN_ON_ONCE(skb_copy_bits(in_skb, offset, skb_frag_address(frag) + skb_frag_size(frag), chunk)); skb->len += chunk; skb->data_len += chunk; skb_frag_size_add(frag, chunk); frag++; len -= chunk; offset += chunk; } read_done: return in_len - len; } static int tls_strp_copyin_skb(struct tls_strparser *strp, struct sk_buff *skb, struct sk_buff *in_skb, unsigned int offset, size_t in_len) { struct sk_buff *nskb, *first, *last; struct skb_shared_info *shinfo; size_t chunk; int sz; if (strp->stm.full_len) chunk = strp->stm.full_len - skb->len; else chunk = TLS_MAX_PAYLOAD_SIZE + PAGE_SIZE; chunk = min(chunk, in_len); nskb = tls_strp_skb_copy(strp, in_skb, offset, chunk); if (!nskb) return -ENOMEM; shinfo = skb_shinfo(skb); if (!shinfo->frag_list) { shinfo->frag_list = nskb; nskb->prev = nskb; } else { first = shinfo->frag_list; last = first->prev; last->next = nskb; first->prev = nskb; } skb->len += chunk; skb->data_len += chunk; if (!strp->stm.full_len) { sz = tls_rx_msg_size(strp, skb); if (sz < 0) return sz; /* We may have over-read, sz == 0 is guaranteed under-read */ if (unlikely(sz && sz < skb->len)) { int over = skb->len - sz; WARN_ON_ONCE(over > chunk); skb->len -= over; skb->data_len -= over; __pskb_trim(nskb, nskb->len - over); chunk -= over; } strp->stm.full_len = sz; } return chunk; } static int tls_strp_copyin(read_descriptor_t *desc, struct sk_buff *in_skb, unsigned int offset, size_t in_len) { struct tls_strparser *strp = (struct tls_strparser *)desc->arg.data; struct sk_buff *skb; int ret; if (strp->msg_ready) return 0; skb = strp->anchor; if (!skb->len) skb_copy_decrypted(skb, in_skb); else strp->mixed_decrypted |= !!skb_cmp_decrypted(skb, in_skb); if (IS_ENABLED(CONFIG_TLS_DEVICE) && strp->mixed_decrypted) ret = tls_strp_copyin_skb(strp, skb, in_skb, offset, in_len); else ret = tls_strp_copyin_frag(strp, skb, in_skb, offset, in_len); if (ret < 0) { desc->error = ret; ret = 0; } if (strp->stm.full_len && strp->stm.full_len == skb->len) { desc->count = 0; WRITE_ONCE(strp->msg_ready, 1); tls_rx_msg_ready(strp); } return ret; } static int tls_strp_read_copyin(struct tls_strparser *strp) { read_descriptor_t desc; desc.arg.data = strp; desc.error = 0; desc.count = 1; /* give more than one skb per call */ /* sk should be locked here, so okay to do read_sock */ tcp_read_sock(strp->sk, &desc, tls_strp_copyin); return desc.error; } static int tls_strp_read_copy(struct tls_strparser *strp, bool qshort) { struct skb_shared_info *shinfo; struct page *page; int need_spc, len; /* If the rbuf is small or rcv window has collapsed to 0 we need * to read the data out. Otherwise the connection will stall. * Without pressure threshold of INT_MAX will never be ready. */ if (likely(qshort && !tcp_epollin_ready(strp->sk, INT_MAX))) return 0; shinfo = skb_shinfo(strp->anchor); shinfo->frag_list = NULL; /* If we don't know the length go max plus page for cipher overhead */ need_spc = strp->stm.full_len ?: TLS_MAX_PAYLOAD_SIZE + PAGE_SIZE; for (len = need_spc; len > 0; len -= PAGE_SIZE) { page = alloc_page(strp->sk->sk_allocation); if (!page) { tls_strp_flush_anchor_copy(strp); return -ENOMEM; } skb_fill_page_desc(strp->anchor, shinfo->nr_frags++, page, 0, 0); } strp->copy_mode = 1; strp->stm.offset = 0; strp->anchor->len = 0; strp->anchor->data_len = 0; strp->anchor->truesize = round_up(need_spc, PAGE_SIZE); tls_strp_read_copyin(strp); return 0; } static bool tls_strp_check_queue_ok(struct tls_strparser *strp) { unsigned int len = strp->stm.offset + strp->stm.full_len; struct sk_buff *first, *skb; u32 seq; first = skb_shinfo(strp->anchor)->frag_list; skb = first; seq = TCP_SKB_CB(first)->seq; /* Make sure there's no duplicate data in the queue, * and the decrypted status matches. */ while (skb->len < len) { seq += skb->len; len -= skb->len; skb = skb->next; if (TCP_SKB_CB(skb)->seq != seq) return false; if (skb_cmp_decrypted(first, skb)) return false; } return true; } static void tls_strp_load_anchor_with_queue(struct tls_strparser *strp, int len) { struct tcp_sock *tp = tcp_sk(strp->sk); struct sk_buff *first; u32 offset; first = tcp_recv_skb(strp->sk, tp->copied_seq, &offset); if (WARN_ON_ONCE(!first)) return; /* Bestow the state onto the anchor */ strp->anchor->len = offset + len; strp->anchor->data_len = offset + len; strp->anchor->truesize = offset + len; skb_shinfo(strp->anchor)->frag_list = first; skb_copy_header(strp->anchor, first); strp->anchor->destructor = NULL; strp->stm.offset = offset; } void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh) { struct strp_msg *rxm; struct tls_msg *tlm; DEBUG_NET_WARN_ON_ONCE(!strp->msg_ready); DEBUG_NET_WARN_ON_ONCE(!strp->stm.full_len); if (!strp->copy_mode && force_refresh) { if (WARN_ON(tcp_inq(strp->sk) < strp->stm.full_len)) return; tls_strp_load_anchor_with_queue(strp, strp->stm.full_len); } rxm = strp_msg(strp->anchor); rxm->full_len = strp->stm.full_len; rxm->offset = strp->stm.offset; tlm = tls_msg(strp->anchor); tlm->control = strp->mark; } /* Called with lock held on lower socket */ static int tls_strp_read_sock(struct tls_strparser *strp) { int sz, inq; inq = tcp_inq(strp->sk); if (inq < 1) return 0; if (unlikely(strp->copy_mode)) return tls_strp_read_copyin(strp); if (inq < strp->stm.full_len) return tls_strp_read_copy(strp, true); if (!strp->stm.full_len) { tls_strp_load_anchor_with_queue(strp, inq); sz = tls_rx_msg_size(strp, strp->anchor); if (sz < 0) { tls_strp_abort_strp(strp, sz); return sz; } strp->stm.full_len = sz; if (!strp->stm.full_len || inq < strp->stm.full_len) return tls_strp_read_copy(strp, true); } if (!tls_strp_check_queue_ok(strp)) return tls_strp_read_copy(strp, false); WRITE_ONCE(strp->msg_ready, 1); tls_rx_msg_ready(strp); return 0; } void tls_strp_check_rcv(struct tls_strparser *strp) { if (unlikely(strp->stopped) || strp->msg_ready) return; if (tls_strp_read_sock(strp) == -ENOMEM) queue_work(tls_strp_wq, &strp->work); } /* Lower sock lock held */ void tls_strp_data_ready(struct tls_strparser *strp) { /* This check is needed to synchronize with do_tls_strp_work. * do_tls_strp_work acquires a process lock (lock_sock) whereas * the lock held here is bh_lock_sock. The two locks can be * held by different threads at the same time, but bh_lock_sock * allows a thread in BH context to safely check if the process * lock is held. In this case, if the lock is held, queue work. */ if (sock_owned_by_user_nocheck(strp->sk)) { queue_work(tls_strp_wq, &strp->work); return; } tls_strp_check_rcv(strp); } static void tls_strp_work(struct work_struct *w) { struct tls_strparser *strp = container_of(w, struct tls_strparser, work); lock_sock(strp->sk); tls_strp_check_rcv(strp); release_sock(strp->sk); } void tls_strp_msg_done(struct tls_strparser *strp) { WARN_ON(!strp->stm.full_len); if (likely(!strp->copy_mode)) tcp_read_done(strp->sk, strp->stm.full_len); else tls_strp_flush_anchor_copy(strp); WRITE_ONCE(strp->msg_ready, 0); memset(&strp->stm, 0, sizeof(strp->stm)); tls_strp_check_rcv(strp); } void tls_strp_stop(struct tls_strparser *strp) { strp->stopped = 1; } int tls_strp_init(struct tls_strparser *strp, struct sock *sk) { memset(strp, 0, sizeof(*strp)); strp->sk = sk; strp->anchor = alloc_skb(0, GFP_KERNEL); if (!strp->anchor) return -ENOMEM; INIT_WORK(&strp->work, tls_strp_work); return 0; } /* strp must already be stopped so that tls_strp_recv will no longer be called. * Note that tls_strp_done is not called with the lower socket held. */ void tls_strp_done(struct tls_strparser *strp) { WARN_ON(!strp->stopped); cancel_work_sync(&strp->work); tls_strp_anchor_free(strp); } int __init tls_strp_dev_init(void) { tls_strp_wq = create_workqueue("tls-strp"); if (unlikely(!tls_strp_wq)) return -ENOMEM; return 0; } void tls_strp_dev_exit(void) { destroy_workqueue(tls_strp_wq); } |
13 1 1 2 5 1 2 1 7 4 2 6 1 4 3 4 4 6 6 3 1 1 3 1 2 1 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_gact.c Generic actions * * copyright Jamal Hadi Salim (2002-4) */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/module.h> #include <linux/init.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <linux/tc_act/tc_gact.h> #include <net/tc_act/tc_gact.h> #include <net/tc_wrapper.h> static struct tc_action_ops act_gact_ops; #ifdef CONFIG_GACT_PROB static int gact_net_rand(struct tcf_gact *gact) { smp_rmb(); /* coupled with smp_wmb() in tcf_gact_init() */ if (get_random_u32_below(gact->tcfg_pval)) return gact->tcf_action; return gact->tcfg_paction; } static int gact_determ(struct tcf_gact *gact) { u32 pack = atomic_inc_return(&gact->packets); smp_rmb(); /* coupled with smp_wmb() in tcf_gact_init() */ if (pack % gact->tcfg_pval) return gact->tcf_action; return gact->tcfg_paction; } typedef int (*g_rand)(struct tcf_gact *gact); static g_rand gact_rand[MAX_RAND] = { NULL, gact_net_rand, gact_determ }; #endif /* CONFIG_GACT_PROB */ static const struct nla_policy gact_policy[TCA_GACT_MAX + 1] = { [TCA_GACT_PARMS] = { .len = sizeof(struct tc_gact) }, [TCA_GACT_PROB] = { .len = sizeof(struct tc_gact_p) }, }; static int tcf_gact_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_gact_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_GACT_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_gact *parm; struct tcf_gact *gact; int ret = 0; u32 index; int err; #ifdef CONFIG_GACT_PROB struct tc_gact_p *p_parm = NULL; #endif if (nla == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_GACT_MAX, nla, gact_policy, NULL); if (err < 0) return err; if (tb[TCA_GACT_PARMS] == NULL) return -EINVAL; parm = nla_data(tb[TCA_GACT_PARMS]); index = parm->index; #ifndef CONFIG_GACT_PROB if (tb[TCA_GACT_PROB] != NULL) return -EOPNOTSUPP; #else if (tb[TCA_GACT_PROB]) { p_parm = nla_data(tb[TCA_GACT_PROB]); if (p_parm->ptype >= MAX_RAND) return -EINVAL; if (TC_ACT_EXT_CMP(p_parm->paction, TC_ACT_GOTO_CHAIN)) { NL_SET_ERR_MSG(extack, "goto chain not allowed on fallback"); return -EINVAL; } } #endif err = tcf_idr_check_alloc(tn, &index, a, bind); if (!err) { ret = tcf_idr_create_from_flags(tn, index, est, a, &act_gact_ops, bind, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (err > 0) { if (bind)/* dont override defaults */ return ACT_P_BOUND; if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } } else { return err; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; gact = to_gact(*a); spin_lock_bh(&gact->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); #ifdef CONFIG_GACT_PROB if (p_parm) { gact->tcfg_paction = p_parm->paction; gact->tcfg_pval = max_t(u16, 1, p_parm->pval); /* Make sure tcfg_pval is written before tcfg_ptype * coupled with smp_rmb() in gact_net_rand() & gact_determ() */ smp_wmb(); gact->tcfg_ptype = p_parm->ptype; } #endif spin_unlock_bh(&gact->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); return ret; release_idr: tcf_idr_release(*a, bind); return err; } TC_INDIRECT_SCOPE int tcf_gact_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_gact *gact = to_gact(a); int action = READ_ONCE(gact->tcf_action); #ifdef CONFIG_GACT_PROB { u32 ptype = READ_ONCE(gact->tcfg_ptype); if (ptype) action = gact_rand[ptype](gact); } #endif tcf_action_update_bstats(&gact->common, skb); if (action == TC_ACT_SHOT) tcf_action_inc_drop_qstats(&gact->common); tcf_lastuse_update(&gact->tcf_tm); return action; } static void tcf_gact_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_gact *gact = to_gact(a); int action = READ_ONCE(gact->tcf_action); struct tcf_t *tm = &gact->tcf_tm; tcf_action_update_stats(a, bytes, packets, action == TC_ACT_SHOT ? packets : drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_gact_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_gact *gact = to_gact(a); struct tc_gact opt = { .index = gact->tcf_index, .refcnt = refcount_read(&gact->tcf_refcnt) - ref, .bindcnt = atomic_read(&gact->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&gact->tcf_lock); opt.action = gact->tcf_action; if (nla_put(skb, TCA_GACT_PARMS, sizeof(opt), &opt)) goto nla_put_failure; #ifdef CONFIG_GACT_PROB if (gact->tcfg_ptype) { struct tc_gact_p p_opt = { .paction = gact->tcfg_paction, .pval = gact->tcfg_pval, .ptype = gact->tcfg_ptype, }; if (nla_put(skb, TCA_GACT_PROB, sizeof(p_opt), &p_opt)) goto nla_put_failure; } #endif tcf_tm_dump(&t, &gact->tcf_tm); if (nla_put_64bit(skb, TCA_GACT_TM, sizeof(t), &t, TCA_GACT_PAD)) goto nla_put_failure; spin_unlock_bh(&gact->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&gact->tcf_lock); nlmsg_trim(skb, b); return -1; } static size_t tcf_gact_get_fill_size(const struct tc_action *act) { size_t sz = nla_total_size(sizeof(struct tc_gact)); /* TCA_GACT_PARMS */ #ifdef CONFIG_GACT_PROB if (to_gact(act)->tcfg_ptype) /* TCA_GACT_PROB */ sz += nla_total_size(sizeof(struct tc_gact_p)); #endif return sz; } static int tcf_gact_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; if (is_tcf_gact_ok(act)) { entry->id = FLOW_ACTION_ACCEPT; } else if (is_tcf_gact_shot(act)) { entry->id = FLOW_ACTION_DROP; } else if (is_tcf_gact_trap(act)) { entry->id = FLOW_ACTION_TRAP; } else if (is_tcf_gact_goto_chain(act)) { entry->id = FLOW_ACTION_GOTO; entry->chain_index = tcf_gact_goto_chain_index(act); } else if (is_tcf_gact_continue(act)) { NL_SET_ERR_MSG_MOD(extack, "Offload of \"continue\" action is not supported"); return -EOPNOTSUPP; } else if (is_tcf_gact_reclassify(act)) { NL_SET_ERR_MSG_MOD(extack, "Offload of \"reclassify\" action is not supported"); return -EOPNOTSUPP; } else if (is_tcf_gact_pipe(act)) { NL_SET_ERR_MSG_MOD(extack, "Offload of \"pipe\" action is not supported"); return -EOPNOTSUPP; } else { NL_SET_ERR_MSG_MOD(extack, "Unsupported generic action offload"); return -EOPNOTSUPP; } *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; if (is_tcf_gact_ok(act)) fl_action->id = FLOW_ACTION_ACCEPT; else if (is_tcf_gact_shot(act)) fl_action->id = FLOW_ACTION_DROP; else if (is_tcf_gact_trap(act)) fl_action->id = FLOW_ACTION_TRAP; else if (is_tcf_gact_goto_chain(act)) fl_action->id = FLOW_ACTION_GOTO; else return -EOPNOTSUPP; } return 0; } static struct tc_action_ops act_gact_ops = { .kind = "gact", .id = TCA_ID_GACT, .owner = THIS_MODULE, .act = tcf_gact_act, .stats_update = tcf_gact_stats_update, .dump = tcf_gact_dump, .init = tcf_gact_init, .get_fill_size = tcf_gact_get_fill_size, .offload_act_setup = tcf_gact_offload_act_setup, .size = sizeof(struct tcf_gact), }; MODULE_ALIAS_NET_ACT("gact"); static __net_init int gact_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_gact_ops.net_id); return tc_action_net_init(net, tn, &act_gact_ops); } static void __net_exit gact_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_gact_ops.net_id); } static struct pernet_operations gact_net_ops = { .init = gact_init_net, .exit_batch = gact_exit_net, .id = &act_gact_ops.net_id, .size = sizeof(struct tc_action_net), }; MODULE_AUTHOR("Jamal Hadi Salim(2002-4)"); MODULE_DESCRIPTION("Generic Classifier actions"); MODULE_LICENSE("GPL"); static int __init gact_init_module(void) { #ifdef CONFIG_GACT_PROB pr_info("GACT probability on\n"); #else pr_info("GACT probability NOT on\n"); #endif return tcf_register_action(&act_gact_ops, &gact_net_ops); } static void __exit gact_cleanup_module(void) { tcf_unregister_action(&act_gact_ops, &gact_net_ops); } module_init(gact_init_module); module_exit(gact_cleanup_module); |
3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TTY_PORT_H #define _LINUX_TTY_PORT_H #include <linux/kfifo.h> #include <linux/kref.h> #include <linux/mutex.h> #include <linux/tty_buffer.h> #include <linux/wait.h> struct attribute_group; struct tty_driver; struct tty_port; struct tty_struct; /** * struct tty_port_operations -- operations on tty_port * @carrier_raised: return true if the carrier is raised on @port * @dtr_rts: raise the DTR line if @active is true, otherwise lower DTR * @shutdown: called when the last close completes or a hangup finishes IFF the * port was initialized. Do not use to free resources. Turn off the device * only. Called under the port mutex to serialize against @activate and * @shutdown. * @activate: called under the port mutex from tty_port_open(), serialized using * the port mutex. Supposed to turn on the device. * * FIXME: long term getting the tty argument *out* of this would be good * for consoles. * * @destruct: called on the final put of a port. Free resources, possibly incl. * the port itself. */ struct tty_port_operations { bool (*carrier_raised)(struct tty_port *port); void (*dtr_rts)(struct tty_port *port, bool active); void (*shutdown)(struct tty_port *port); int (*activate)(struct tty_port *port, struct tty_struct *tty); void (*destruct)(struct tty_port *port); }; struct tty_port_client_operations { size_t (*receive_buf)(struct tty_port *port, const u8 *cp, const u8 *fp, size_t count); void (*lookahead_buf)(struct tty_port *port, const u8 *cp, const u8 *fp, size_t count); void (*write_wakeup)(struct tty_port *port); }; extern const struct tty_port_client_operations tty_port_default_client_ops; /** * struct tty_port -- port level information * * @buf: buffer for this port, locked internally * @tty: back pointer to &struct tty_struct, valid only if the tty is open. Use * tty_port_tty_get() to obtain it (and tty_kref_put() to release). * @itty: internal back pointer to &struct tty_struct. Avoid this. It should be * eliminated in the long term. * @ops: tty port operations (like activate, shutdown), see &struct * tty_port_operations * @client_ops: tty port client operations (like receive_buf, write_wakeup). * By default, tty_port_default_client_ops is used. * @lock: lock protecting @tty * @blocked_open: # of procs waiting for open in tty_port_block_til_ready() * @count: usage count * @open_wait: open waiters queue (waiting e.g. for a carrier) * @delta_msr_wait: modem status change queue (waiting for MSR changes) * @flags: user TTY flags (%ASYNC_) * @iflags: internal flags (%TTY_PORT_) * @console: when set, the port is a console * @mutex: locking, for open, shutdown and other port operations * @buf_mutex: @xmit_buf alloc lock * @xmit_buf: optional xmit buffer used by some drivers * @xmit_fifo: optional xmit buffer used by some drivers * @close_delay: delay in jiffies to wait when closing the port * @closing_wait: delay in jiffies for output to be sent before closing * @drain_delay: set to zero if no pure time based drain is needed else set to * size of fifo * @kref: references counter. Reaching zero calls @ops->destruct() if non-%NULL * or frees the port otherwise. * @client_data: pointer to private data, for @client_ops * * Each device keeps its own port level information. &struct tty_port was * introduced as a common structure for such information. As every TTY device * shall have a backing tty_port structure, every driver can use these members. * * The tty port has a different lifetime to the tty so must be kept apart. * In addition be careful as tty -> port mappings are valid for the life * of the tty object but in many cases port -> tty mappings are valid only * until a hangup so don't use the wrong path. * * Tty port shall be initialized by tty_port_init() and shut down either by * tty_port_destroy() (refcounting not used), or tty_port_put() (refcounting). * * There is a lot of helpers around &struct tty_port too. To name the most * significant ones: tty_port_open(), tty_port_close() (or * tty_port_close_start() and tty_port_close_end() separately if need be), and * tty_port_hangup(). These call @ops->activate() and @ops->shutdown() as * needed. */ struct tty_port { struct tty_bufhead buf; struct tty_struct *tty; struct tty_struct *itty; const struct tty_port_operations *ops; const struct tty_port_client_operations *client_ops; spinlock_t lock; int blocked_open; int count; wait_queue_head_t open_wait; wait_queue_head_t delta_msr_wait; unsigned long flags; unsigned long iflags; unsigned char console:1; struct mutex mutex; struct mutex buf_mutex; u8 *xmit_buf; DECLARE_KFIFO_PTR(xmit_fifo, u8); unsigned int close_delay; unsigned int closing_wait; int drain_delay; struct kref kref; void *client_data; }; /* tty_port::iflags bits -- use atomic bit ops */ #define TTY_PORT_INITIALIZED 0 /* device is initialized */ #define TTY_PORT_SUSPENDED 1 /* device is suspended */ #define TTY_PORT_ACTIVE 2 /* device is open */ /* * uart drivers: use the uart_port::status field and the UPSTAT_* defines * for s/w-based flow control steering and carrier detection status */ #define TTY_PORT_CTS_FLOW 3 /* h/w flow control enabled */ #define TTY_PORT_CHECK_CD 4 /* carrier detect enabled */ #define TTY_PORT_KOPENED 5 /* device exclusively opened by kernel */ void tty_port_init(struct tty_port *port); void tty_port_link_device(struct tty_port *port, struct tty_driver *driver, unsigned index); struct device *tty_port_register_device(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); struct device *tty_port_register_device_attr(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); struct device *tty_port_register_device_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *host, struct device *parent); struct device *tty_port_register_device_attr_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *host, struct device *parent, void *drvdata, const struct attribute_group **attr_grp); void tty_port_unregister_device(struct tty_port *port, struct tty_driver *driver, unsigned index); int tty_port_alloc_xmit_buf(struct tty_port *port); void tty_port_free_xmit_buf(struct tty_port *port); void tty_port_destroy(struct tty_port *port); void tty_port_put(struct tty_port *port); static inline struct tty_port *tty_port_get(struct tty_port *port) { if (port && kref_get_unless_zero(&port->kref)) return port; return NULL; } /* If the cts flow control is enabled, return true. */ static inline bool tty_port_cts_enabled(const struct tty_port *port) { return test_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline void tty_port_set_cts_flow(struct tty_port *port, bool val) { assign_bit(TTY_PORT_CTS_FLOW, &port->iflags, val); } static inline bool tty_port_active(const struct tty_port *port) { return test_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline void tty_port_set_active(struct tty_port *port, bool val) { assign_bit(TTY_PORT_ACTIVE, &port->iflags, val); } static inline bool tty_port_check_carrier(const struct tty_port *port) { return test_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline void tty_port_set_check_carrier(struct tty_port *port, bool val) { assign_bit(TTY_PORT_CHECK_CD, &port->iflags, val); } static inline bool tty_port_suspended(const struct tty_port *port) { return test_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline void tty_port_set_suspended(struct tty_port *port, bool val) { assign_bit(TTY_PORT_SUSPENDED, &port->iflags, val); } static inline bool tty_port_initialized(const struct tty_port *port) { return test_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline void tty_port_set_initialized(struct tty_port *port, bool val) { assign_bit(TTY_PORT_INITIALIZED, &port->iflags, val); } static inline bool tty_port_kopened(const struct tty_port *port) { return test_bit(TTY_PORT_KOPENED, &port->iflags); } static inline void tty_port_set_kopened(struct tty_port *port, bool val) { assign_bit(TTY_PORT_KOPENED, &port->iflags, val); } struct tty_struct *tty_port_tty_get(struct tty_port *port); void tty_port_tty_set(struct tty_port *port, struct tty_struct *tty); bool tty_port_carrier_raised(struct tty_port *port); void tty_port_raise_dtr_rts(struct tty_port *port); void tty_port_lower_dtr_rts(struct tty_port *port); void tty_port_hangup(struct tty_port *port); void tty_port_tty_hangup(struct tty_port *port, bool check_clocal); void tty_port_tty_wakeup(struct tty_port *port); int tty_port_block_til_ready(struct tty_port *port, struct tty_struct *tty, struct file *filp); int tty_port_close_start(struct tty_port *port, struct tty_struct *tty, struct file *filp); void tty_port_close_end(struct tty_port *port, struct tty_struct *tty); void tty_port_close(struct tty_port *port, struct tty_struct *tty, struct file *filp); int tty_port_install(struct tty_port *port, struct tty_driver *driver, struct tty_struct *tty); int tty_port_open(struct tty_port *port, struct tty_struct *tty, struct file *filp); static inline int tty_port_users(struct tty_port *port) { return port->count + port->blocked_open; } #endif |
1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022-2023 NXP */ #include "common.h" #include "netlink.h" struct mm_req_info { struct ethnl_req_info base; }; struct mm_reply_data { struct ethnl_reply_data base; struct ethtool_mm_state state; struct ethtool_mm_stats stats; }; #define MM_REPDATA(__reply_base) \ container_of(__reply_base, struct mm_reply_data, base) #define ETHTOOL_MM_STAT_CNT \ (__ETHTOOL_A_MM_STAT_CNT - (ETHTOOL_A_MM_STAT_PAD + 1)) const struct nla_policy ethnl_mm_get_policy[ETHTOOL_A_MM_HEADER + 1] = { [ETHTOOL_A_MM_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy_stats), }; static int mm_prepare_data(const struct ethnl_req_info *req_base, struct ethnl_reply_data *reply_base, const struct genl_info *info) { struct mm_reply_data *data = MM_REPDATA(reply_base); struct net_device *dev = reply_base->dev; const struct ethtool_ops *ops; int ret; ops = dev->ethtool_ops; if (!ops->get_mm) return -EOPNOTSUPP; ethtool_stats_init((u64 *)&data->stats, sizeof(data->stats) / sizeof(u64)); ret = ethnl_ops_begin(dev); if (ret < 0) return ret; ret = ops->get_mm(dev, &data->state); if (ret) goto out_complete; if (ops->get_mm_stats && (req_base->flags & ETHTOOL_FLAG_STATS)) ops->get_mm_stats(dev, &data->stats); out_complete: ethnl_ops_complete(dev); return ret; } static int mm_reply_size(const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { int len = 0; len += nla_total_size(sizeof(u8)); /* _MM_PMAC_ENABLED */ len += nla_total_size(sizeof(u8)); /* _MM_TX_ENABLED */ len += nla_total_size(sizeof(u8)); /* _MM_TX_ACTIVE */ len += nla_total_size(sizeof(u8)); /* _MM_VERIFY_ENABLED */ len += nla_total_size(sizeof(u8)); /* _MM_VERIFY_STATUS */ len += nla_total_size(sizeof(u32)); /* _MM_VERIFY_TIME */ len += nla_total_size(sizeof(u32)); /* _MM_MAX_VERIFY_TIME */ len += nla_total_size(sizeof(u32)); /* _MM_TX_MIN_FRAG_SIZE */ len += nla_total_size(sizeof(u32)); /* _MM_RX_MIN_FRAG_SIZE */ if (req_base->flags & ETHTOOL_FLAG_STATS) len += nla_total_size(0) + /* _MM_STATS */ nla_total_size_64bit(sizeof(u64)) * ETHTOOL_MM_STAT_CNT; return len; } static int mm_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) { if (val == ETHTOOL_STAT_NOT_SET) return 0; if (nla_put_u64_64bit(skb, attrtype, val, ETHTOOL_A_MM_STAT_PAD)) return -EMSGSIZE; return 0; } static int mm_put_stats(struct sk_buff *skb, const struct ethtool_mm_stats *stats) { struct nlattr *nest; nest = nla_nest_start(skb, ETHTOOL_A_MM_STATS); if (!nest) return -EMSGSIZE; if (mm_put_stat(skb, stats->MACMergeFrameAssErrorCount, ETHTOOL_A_MM_STAT_REASSEMBLY_ERRORS) || mm_put_stat(skb, stats->MACMergeFrameSmdErrorCount, ETHTOOL_A_MM_STAT_SMD_ERRORS) || mm_put_stat(skb, stats->MACMergeFrameAssOkCount, ETHTOOL_A_MM_STAT_REASSEMBLY_OK) || mm_put_stat(skb, stats->MACMergeFragCountRx, ETHTOOL_A_MM_STAT_RX_FRAG_COUNT) || mm_put_stat(skb, stats->MACMergeFragCountTx, ETHTOOL_A_MM_STAT_TX_FRAG_COUNT) || mm_put_stat(skb, stats->MACMergeHoldCount, ETHTOOL_A_MM_STAT_HOLD_COUNT)) goto err_cancel; nla_nest_end(skb, nest); return 0; err_cancel: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int mm_fill_reply(struct sk_buff *skb, const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { const struct mm_reply_data *data = MM_REPDATA(reply_base); const struct ethtool_mm_state *state = &data->state; if (nla_put_u8(skb, ETHTOOL_A_MM_TX_ENABLED, state->tx_enabled) || nla_put_u8(skb, ETHTOOL_A_MM_TX_ACTIVE, state->tx_active) || nla_put_u8(skb, ETHTOOL_A_MM_PMAC_ENABLED, state->pmac_enabled) || nla_put_u8(skb, ETHTOOL_A_MM_VERIFY_ENABLED, state->verify_enabled) || nla_put_u8(skb, ETHTOOL_A_MM_VERIFY_STATUS, state->verify_status) || nla_put_u32(skb, ETHTOOL_A_MM_VERIFY_TIME, state->verify_time) || nla_put_u32(skb, ETHTOOL_A_MM_MAX_VERIFY_TIME, state->max_verify_time) || nla_put_u32(skb, ETHTOOL_A_MM_TX_MIN_FRAG_SIZE, state->tx_min_frag_size) || nla_put_u32(skb, ETHTOOL_A_MM_RX_MIN_FRAG_SIZE, state->rx_min_frag_size)) return -EMSGSIZE; if (req_base->flags & ETHTOOL_FLAG_STATS && mm_put_stats(skb, &data->stats)) return -EMSGSIZE; return 0; } const struct nla_policy ethnl_mm_set_policy[ETHTOOL_A_MM_MAX + 1] = { [ETHTOOL_A_MM_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), [ETHTOOL_A_MM_VERIFY_ENABLED] = NLA_POLICY_MAX(NLA_U8, 1), [ETHTOOL_A_MM_VERIFY_TIME] = NLA_POLICY_RANGE(NLA_U32, 1, 128), [ETHTOOL_A_MM_TX_ENABLED] = NLA_POLICY_MAX(NLA_U8, 1), [ETHTOOL_A_MM_PMAC_ENABLED] = NLA_POLICY_MAX(NLA_U8, 1), [ETHTOOL_A_MM_TX_MIN_FRAG_SIZE] = NLA_POLICY_RANGE(NLA_U32, 60, 252), }; static void mm_state_to_cfg(const struct ethtool_mm_state *state, struct ethtool_mm_cfg *cfg) { /* We could also compare state->verify_status against * ETHTOOL_MM_VERIFY_STATUS_DISABLED, but state->verify_enabled * is more like an administrative state which should be seen in * ETHTOOL_MSG_MM_GET replies. For example, a port with verification * disabled might be in the ETHTOOL_MM_VERIFY_STATUS_INITIAL * if it's down. */ cfg->verify_enabled = state->verify_enabled; cfg->verify_time = state->verify_time; cfg->tx_enabled = state->tx_enabled; cfg->pmac_enabled = state->pmac_enabled; cfg->tx_min_frag_size = state->tx_min_frag_size; } static int ethnl_set_mm_validate(struct ethnl_req_info *req_info, struct genl_info *info) { const struct ethtool_ops *ops = req_info->dev->ethtool_ops; return ops->get_mm && ops->set_mm ? 1 : -EOPNOTSUPP; } static int ethnl_set_mm(struct ethnl_req_info *req_info, struct genl_info *info) { struct netlink_ext_ack *extack = info->extack; struct net_device *dev = req_info->dev; struct ethtool_mm_state state = {}; struct nlattr **tb = info->attrs; struct ethtool_mm_cfg cfg = {}; bool mod = false; int ret; ret = dev->ethtool_ops->get_mm(dev, &state); if (ret) return ret; mm_state_to_cfg(&state, &cfg); ethnl_update_bool(&cfg.verify_enabled, tb[ETHTOOL_A_MM_VERIFY_ENABLED], &mod); ethnl_update_u32(&cfg.verify_time, tb[ETHTOOL_A_MM_VERIFY_TIME], &mod); ethnl_update_bool(&cfg.tx_enabled, tb[ETHTOOL_A_MM_TX_ENABLED], &mod); ethnl_update_bool(&cfg.pmac_enabled, tb[ETHTOOL_A_MM_PMAC_ENABLED], &mod); ethnl_update_u32(&cfg.tx_min_frag_size, tb[ETHTOOL_A_MM_TX_MIN_FRAG_SIZE], &mod); if (!mod) return 0; if (cfg.verify_time > state.max_verify_time) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_MM_VERIFY_TIME], "verifyTime exceeds device maximum"); return -ERANGE; } if (cfg.verify_enabled && !cfg.tx_enabled) { NL_SET_ERR_MSG(extack, "Verification requires TX enabled"); return -EINVAL; } if (cfg.tx_enabled && !cfg.pmac_enabled) { NL_SET_ERR_MSG(extack, "TX enabled requires pMAC enabled"); return -EINVAL; } ret = dev->ethtool_ops->set_mm(dev, &cfg, extack); return ret < 0 ? ret : 1; } const struct ethnl_request_ops ethnl_mm_request_ops = { .request_cmd = ETHTOOL_MSG_MM_GET, .reply_cmd = ETHTOOL_MSG_MM_GET_REPLY, .hdr_attr = ETHTOOL_A_MM_HEADER, .req_info_size = sizeof(struct mm_req_info), .reply_data_size = sizeof(struct mm_reply_data), .prepare_data = mm_prepare_data, .reply_size = mm_reply_size, .fill_reply = mm_fill_reply, .set_validate = ethnl_set_mm_validate, .set = ethnl_set_mm, .set_ntf_cmd = ETHTOOL_MSG_MM_NTF, }; /* Returns whether a given device supports the MAC merge layer * (has an eMAC and a pMAC). Must be called under rtnl_lock() and * ethnl_ops_begin(). */ bool __ethtool_dev_mm_supported(struct net_device *dev) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_mm_state state = {}; int ret = -EOPNOTSUPP; if (ops && ops->get_mm) ret = ops->get_mm(dev, &state); return !ret; } bool ethtool_dev_mm_supported(struct net_device *dev) { const struct ethtool_ops *ops = dev->ethtool_ops; bool supported; int ret; ASSERT_RTNL(); if (!ops) return false; ret = ethnl_ops_begin(dev); if (ret < 0) return false; supported = __ethtool_dev_mm_supported(dev); ethnl_ops_complete(dev); return supported; } EXPORT_SYMBOL_GPL(ethtool_dev_mm_supported); |
1241 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_HARDIRQ_H #define _ASM_X86_HARDIRQ_H #include <linux/threads.h> #include <asm/current.h> typedef struct { #if IS_ENABLED(CONFIG_KVM_INTEL) u8 kvm_cpu_l1tf_flush_l1d; #endif unsigned int __nmi_count; /* arch dependent */ #ifdef CONFIG_X86_LOCAL_APIC unsigned int apic_timer_irqs; /* arch dependent */ unsigned int irq_spurious_count; unsigned int icr_read_retry_count; #endif #if IS_ENABLED(CONFIG_KVM) unsigned int kvm_posted_intr_ipis; unsigned int kvm_posted_intr_wakeup_ipis; unsigned int kvm_posted_intr_nested_ipis; #endif unsigned int x86_platform_ipis; /* arch dependent */ unsigned int apic_perf_irqs; unsigned int apic_irq_work_irqs; #ifdef CONFIG_SMP unsigned int irq_resched_count; unsigned int irq_call_count; #endif unsigned int irq_tlb_count; #ifdef CONFIG_X86_THERMAL_VECTOR unsigned int irq_thermal_count; #endif #ifdef CONFIG_X86_MCE_THRESHOLD unsigned int irq_threshold_count; #endif #ifdef CONFIG_X86_MCE_AMD unsigned int irq_deferred_error_count; #endif #ifdef CONFIG_X86_HV_CALLBACK_VECTOR unsigned int irq_hv_callback_count; #endif #if IS_ENABLED(CONFIG_HYPERV) unsigned int irq_hv_reenlightenment_count; unsigned int hyperv_stimer0_count; #endif #ifdef CONFIG_X86_POSTED_MSI unsigned int posted_msi_notification_count; #endif } ____cacheline_aligned irq_cpustat_t; DECLARE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); #ifdef CONFIG_X86_POSTED_MSI DECLARE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc); #endif #define __ARCH_IRQ_STAT #define inc_irq_stat(member) this_cpu_inc(irq_stat.member) extern void ack_bad_irq(unsigned int irq); extern u64 arch_irq_stat_cpu(unsigned int cpu); #define arch_irq_stat_cpu arch_irq_stat_cpu extern u64 arch_irq_stat(void); #define arch_irq_stat arch_irq_stat #define local_softirq_pending_ref pcpu_hot.softirq_pending #if IS_ENABLED(CONFIG_KVM_INTEL) static inline void kvm_set_cpu_l1tf_flush_l1d(void) { __this_cpu_write(irq_stat.kvm_cpu_l1tf_flush_l1d, 1); } static __always_inline void kvm_clear_cpu_l1tf_flush_l1d(void) { __this_cpu_write(irq_stat.kvm_cpu_l1tf_flush_l1d, 0); } static __always_inline bool kvm_get_cpu_l1tf_flush_l1d(void) { return __this_cpu_read(irq_stat.kvm_cpu_l1tf_flush_l1d); } #else /* !IS_ENABLED(CONFIG_KVM_INTEL) */ static inline void kvm_set_cpu_l1tf_flush_l1d(void) { } #endif /* IS_ENABLED(CONFIG_KVM_INTEL) */ #endif /* _ASM_X86_HARDIRQ_H */ |
2 2 1 47 2 2 2 2 881 881 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 | // SPDX-License-Identifier: GPL-2.0 /* drivers/net/wireless/virt_wifi.c * * A fake implementation of cfg80211_ops that can be tacked on to an ethernet * net_device to make it appear as a wireless connection. * * Copyright (C) 2018 Google, Inc. * * Author: schuffelen@google.com */ #include <net/cfg80211.h> #include <net/rtnetlink.h> #include <linux/etherdevice.h> #include <linux/math64.h> #include <linux/module.h> static struct wiphy *common_wiphy; struct virt_wifi_wiphy_priv { struct delayed_work scan_result; struct cfg80211_scan_request *scan_request; bool being_deleted; }; static struct ieee80211_channel channel_2ghz = { .band = NL80211_BAND_2GHZ, .center_freq = 2432, .hw_value = 2432, .max_power = 20, }; static struct ieee80211_rate bitrates_2ghz[] = { { .bitrate = 10 }, { .bitrate = 20 }, { .bitrate = 55 }, { .bitrate = 110 }, { .bitrate = 60 }, { .bitrate = 120 }, { .bitrate = 240 }, }; static struct ieee80211_supported_band band_2ghz = { .channels = &channel_2ghz, .bitrates = bitrates_2ghz, .band = NL80211_BAND_2GHZ, .n_channels = 1, .n_bitrates = ARRAY_SIZE(bitrates_2ghz), .ht_cap = { .ht_supported = true, .cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40, .ampdu_factor = 0x3, .ampdu_density = 0x6, .mcs = { .rx_mask = {0xff, 0xff}, .tx_params = IEEE80211_HT_MCS_TX_DEFINED, }, }, }; static struct ieee80211_channel channel_5ghz = { .band = NL80211_BAND_5GHZ, .center_freq = 5240, .hw_value = 5240, .max_power = 20, }; static struct ieee80211_rate bitrates_5ghz[] = { { .bitrate = 60 }, { .bitrate = 120 }, { .bitrate = 240 }, }; #define RX_MCS_MAP (IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 6 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 8 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 14) #define TX_MCS_MAP (IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 6 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 8 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 | \ IEEE80211_VHT_MCS_SUPPORT_0_9 << 14) static struct ieee80211_supported_band band_5ghz = { .channels = &channel_5ghz, .bitrates = bitrates_5ghz, .band = NL80211_BAND_5GHZ, .n_channels = 1, .n_bitrates = ARRAY_SIZE(bitrates_5ghz), .ht_cap = { .ht_supported = true, .cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40, .ampdu_factor = 0x3, .ampdu_density = 0x6, .mcs = { .rx_mask = {0xff, 0xff}, .tx_params = IEEE80211_HT_MCS_TX_DEFINED, }, }, .vht_cap = { .vht_supported = true, .cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ | IEEE80211_VHT_CAP_RXLDPC | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_TXSTBC | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_RXSTBC_2 | IEEE80211_VHT_CAP_RXSTBC_3 | IEEE80211_VHT_CAP_RXSTBC_4 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK, .vht_mcs = { .rx_mcs_map = cpu_to_le16(RX_MCS_MAP), .tx_mcs_map = cpu_to_le16(TX_MCS_MAP), } }, }; /* Assigned at module init. Guaranteed locally-administered and unicast. */ static u8 fake_router_bssid[ETH_ALEN] __ro_after_init = {}; #define VIRT_WIFI_SSID "VirtWifi" #define VIRT_WIFI_SSID_LEN 8 static void virt_wifi_inform_bss(struct wiphy *wiphy) { u64 tsf = div_u64(ktime_get_boottime_ns(), 1000); struct cfg80211_bss *informed_bss; static const struct { u8 tag; u8 len; u8 ssid[8]; } __packed ssid = { .tag = WLAN_EID_SSID, .len = VIRT_WIFI_SSID_LEN, .ssid = VIRT_WIFI_SSID, }; informed_bss = cfg80211_inform_bss(wiphy, &channel_5ghz, CFG80211_BSS_FTYPE_PRESP, fake_router_bssid, tsf, WLAN_CAPABILITY_ESS, 0, (void *)&ssid, sizeof(ssid), DBM_TO_MBM(-50), GFP_KERNEL); cfg80211_put_bss(wiphy, informed_bss); } /* Called with the rtnl lock held. */ static int virt_wifi_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct virt_wifi_wiphy_priv *priv = wiphy_priv(wiphy); wiphy_debug(wiphy, "scan\n"); if (priv->scan_request || priv->being_deleted) return -EBUSY; priv->scan_request = request; schedule_delayed_work(&priv->scan_result, HZ * 2); return 0; } /* Acquires and releases the rdev BSS lock. */ static void virt_wifi_scan_result(struct work_struct *work) { struct virt_wifi_wiphy_priv *priv = container_of(work, struct virt_wifi_wiphy_priv, scan_result.work); struct wiphy *wiphy = priv_to_wiphy(priv); struct cfg80211_scan_info scan_info = { .aborted = false }; virt_wifi_inform_bss(wiphy); /* Schedules work which acquires and releases the rtnl lock. */ cfg80211_scan_done(priv->scan_request, &scan_info); priv->scan_request = NULL; } /* May acquire and release the rdev BSS lock. */ static void virt_wifi_cancel_scan(struct wiphy *wiphy) { struct virt_wifi_wiphy_priv *priv = wiphy_priv(wiphy); cancel_delayed_work_sync(&priv->scan_result); /* Clean up dangling callbacks if necessary. */ if (priv->scan_request) { struct cfg80211_scan_info scan_info = { .aborted = true }; /* Schedules work which acquires and releases the rtnl lock. */ cfg80211_scan_done(priv->scan_request, &scan_info); priv->scan_request = NULL; } } struct virt_wifi_netdev_priv { struct delayed_work connect; struct net_device *lowerdev; struct net_device *upperdev; u32 tx_packets; u32 tx_failed; u32 connect_requested_ssid_len; u8 connect_requested_ssid[IEEE80211_MAX_SSID_LEN]; u8 connect_requested_bss[ETH_ALEN]; bool is_up; bool is_connected; bool being_deleted; }; /* Called with the rtnl lock held. */ static int virt_wifi_connect(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_connect_params *sme) { struct virt_wifi_netdev_priv *priv = netdev_priv(netdev); bool could_schedule; if (priv->being_deleted || !priv->is_up) return -EBUSY; if (!sme->ssid) return -EINVAL; priv->connect_requested_ssid_len = sme->ssid_len; memcpy(priv->connect_requested_ssid, sme->ssid, sme->ssid_len); could_schedule = schedule_delayed_work(&priv->connect, HZ * 2); if (!could_schedule) return -EBUSY; if (sme->bssid) { ether_addr_copy(priv->connect_requested_bss, sme->bssid); } else { virt_wifi_inform_bss(wiphy); eth_zero_addr(priv->connect_requested_bss); } wiphy_debug(wiphy, "connect\n"); return 0; } /* Acquires and releases the rdev event lock. */ static void virt_wifi_connect_complete(struct work_struct *work) { struct virt_wifi_netdev_priv *priv = container_of(work, struct virt_wifi_netdev_priv, connect.work); u8 *requested_bss = priv->connect_requested_bss; bool right_addr = ether_addr_equal(requested_bss, fake_router_bssid); bool right_ssid = priv->connect_requested_ssid_len == VIRT_WIFI_SSID_LEN && !memcmp(priv->connect_requested_ssid, VIRT_WIFI_SSID, priv->connect_requested_ssid_len); u16 status = WLAN_STATUS_SUCCESS; if (is_zero_ether_addr(requested_bss)) requested_bss = NULL; if (!priv->is_up || (requested_bss && !right_addr) || !right_ssid) status = WLAN_STATUS_UNSPECIFIED_FAILURE; else priv->is_connected = true; /* Schedules an event that acquires the rtnl lock. */ cfg80211_connect_result(priv->upperdev, requested_bss, NULL, 0, NULL, 0, status, GFP_KERNEL); netif_carrier_on(priv->upperdev); } /* May acquire and release the rdev event lock. */ static void virt_wifi_cancel_connect(struct net_device *netdev) { struct virt_wifi_netdev_priv *priv = netdev_priv(netdev); /* If there is work pending, clean up dangling callbacks. */ if (cancel_delayed_work_sync(&priv->connect)) { /* Schedules an event that acquires the rtnl lock. */ cfg80211_connect_result(priv->upperdev, priv->connect_requested_bss, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); } } /* Called with the rtnl lock held. Acquires the rdev event lock. */ static int virt_wifi_disconnect(struct wiphy *wiphy, struct net_device *netdev, u16 reason_code) { struct virt_wifi_netdev_priv *priv = netdev_priv(netdev); if (priv->being_deleted) return -EBUSY; wiphy_debug(wiphy, "disconnect\n"); virt_wifi_cancel_connect(netdev); cfg80211_disconnected(netdev, reason_code, NULL, 0, true, GFP_KERNEL); priv->is_connected = false; netif_carrier_off(netdev); return 0; } /* Called with the rtnl lock held. */ static int virt_wifi_get_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); wiphy_debug(wiphy, "get_station\n"); if (!priv->is_connected || !ether_addr_equal(mac, fake_router_bssid)) return -ENOENT; sinfo->filled = BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | BIT_ULL(NL80211_STA_INFO_TX_FAILED) | BIT_ULL(NL80211_STA_INFO_SIGNAL) | BIT_ULL(NL80211_STA_INFO_TX_BITRATE); sinfo->tx_packets = priv->tx_packets; sinfo->tx_failed = priv->tx_failed; /* For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_ */ sinfo->signal = -50; sinfo->txrate = (struct rate_info) { .legacy = 10, /* units are 100kbit/s */ }; return 0; } /* Called with the rtnl lock held. */ static int virt_wifi_dump_station(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); wiphy_debug(wiphy, "dump_station\n"); if (idx != 0 || !priv->is_connected) return -ENOENT; ether_addr_copy(mac, fake_router_bssid); return virt_wifi_get_station(wiphy, dev, fake_router_bssid, sinfo); } static const struct cfg80211_ops virt_wifi_cfg80211_ops = { .scan = virt_wifi_scan, .connect = virt_wifi_connect, .disconnect = virt_wifi_disconnect, .get_station = virt_wifi_get_station, .dump_station = virt_wifi_dump_station, }; /* Acquires and releases the rtnl lock. */ static struct wiphy *virt_wifi_make_wiphy(void) { struct wiphy *wiphy; struct virt_wifi_wiphy_priv *priv; int err; wiphy = wiphy_new(&virt_wifi_cfg80211_ops, sizeof(*priv)); if (!wiphy) return NULL; wiphy->max_scan_ssids = 4; wiphy->max_scan_ie_len = 1000; wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wiphy->bands[NL80211_BAND_2GHZ] = &band_2ghz; wiphy->bands[NL80211_BAND_5GHZ] = &band_5ghz; wiphy->bands[NL80211_BAND_60GHZ] = NULL; wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); priv = wiphy_priv(wiphy); priv->being_deleted = false; priv->scan_request = NULL; INIT_DELAYED_WORK(&priv->scan_result, virt_wifi_scan_result); err = wiphy_register(wiphy); if (err < 0) { wiphy_free(wiphy); return NULL; } return wiphy; } /* Acquires and releases the rtnl lock. */ static void virt_wifi_destroy_wiphy(struct wiphy *wiphy) { struct virt_wifi_wiphy_priv *priv; WARN(!wiphy, "%s called with null wiphy", __func__); if (!wiphy) return; priv = wiphy_priv(wiphy); priv->being_deleted = true; virt_wifi_cancel_scan(wiphy); if (wiphy->registered) wiphy_unregister(wiphy); wiphy_free(wiphy); } /* Enters and exits a RCU-bh critical section. */ static netdev_tx_t virt_wifi_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); priv->tx_packets++; if (!priv->is_connected) { priv->tx_failed++; return NET_XMIT_DROP; } skb->dev = priv->lowerdev; return dev_queue_xmit(skb); } /* Called with rtnl lock held. */ static int virt_wifi_net_device_open(struct net_device *dev) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); priv->is_up = true; return 0; } /* Called with rtnl lock held. */ static int virt_wifi_net_device_stop(struct net_device *dev) { struct virt_wifi_netdev_priv *n_priv = netdev_priv(dev); n_priv->is_up = false; if (!dev->ieee80211_ptr) return 0; virt_wifi_cancel_scan(dev->ieee80211_ptr->wiphy); virt_wifi_cancel_connect(dev); netif_carrier_off(dev); return 0; } static int virt_wifi_net_device_get_iflink(const struct net_device *dev) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); return READ_ONCE(priv->lowerdev->ifindex); } static const struct net_device_ops virt_wifi_ops = { .ndo_start_xmit = virt_wifi_start_xmit, .ndo_open = virt_wifi_net_device_open, .ndo_stop = virt_wifi_net_device_stop, .ndo_get_iflink = virt_wifi_net_device_get_iflink, }; /* Invoked as part of rtnl lock release. */ static void virt_wifi_net_device_destructor(struct net_device *dev) { /* Delayed past dellink to allow nl80211 to react to the device being * deleted. */ kfree(dev->ieee80211_ptr); dev->ieee80211_ptr = NULL; } /* No lock interaction. */ static void virt_wifi_setup(struct net_device *dev) { ether_setup(dev); dev->netdev_ops = &virt_wifi_ops; dev->needs_free_netdev = true; } /* Called in a RCU read critical section from netif_receive_skb */ static rx_handler_result_t virt_wifi_rx_handler(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; struct virt_wifi_netdev_priv *priv = rcu_dereference(skb->dev->rx_handler_data); if (!priv->is_connected) return RX_HANDLER_PASS; /* GFP_ATOMIC because this is a packet interrupt handler. */ skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) { dev_err(&priv->upperdev->dev, "can't skb_share_check\n"); return RX_HANDLER_CONSUMED; } *pskb = skb; skb->dev = priv->upperdev; skb->pkt_type = PACKET_HOST; return RX_HANDLER_ANOTHER; } /* Called with rtnl lock held. */ static int virt_wifi_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); int err; if (!tb[IFLA_LINK]) return -EINVAL; netif_carrier_off(dev); priv->upperdev = dev; priv->lowerdev = __dev_get_by_index(src_net, nla_get_u32(tb[IFLA_LINK])); if (!priv->lowerdev) return -ENODEV; if (!tb[IFLA_MTU]) dev->mtu = priv->lowerdev->mtu; else if (dev->mtu > priv->lowerdev->mtu) return -EINVAL; err = netdev_rx_handler_register(priv->lowerdev, virt_wifi_rx_handler, priv); if (err) { dev_err(&priv->lowerdev->dev, "can't netdev_rx_handler_register: %d\n", err); return err; } eth_hw_addr_inherit(dev, priv->lowerdev); netif_stacked_transfer_operstate(priv->lowerdev, dev); SET_NETDEV_DEV(dev, &priv->lowerdev->dev); dev->ieee80211_ptr = kzalloc(sizeof(*dev->ieee80211_ptr), GFP_KERNEL); if (!dev->ieee80211_ptr) { err = -ENOMEM; goto remove_handler; } dev->ieee80211_ptr->iftype = NL80211_IFTYPE_STATION; dev->ieee80211_ptr->wiphy = common_wiphy; err = register_netdevice(dev); if (err) { dev_err(&priv->lowerdev->dev, "can't register_netdevice: %d\n", err); goto free_wireless_dev; } err = netdev_upper_dev_link(priv->lowerdev, dev, extack); if (err) { dev_err(&priv->lowerdev->dev, "can't netdev_upper_dev_link: %d\n", err); goto unregister_netdev; } dev->priv_destructor = virt_wifi_net_device_destructor; priv->being_deleted = false; priv->is_connected = false; priv->is_up = false; INIT_DELAYED_WORK(&priv->connect, virt_wifi_connect_complete); __module_get(THIS_MODULE); return 0; unregister_netdev: unregister_netdevice(dev); free_wireless_dev: kfree(dev->ieee80211_ptr); dev->ieee80211_ptr = NULL; remove_handler: netdev_rx_handler_unregister(priv->lowerdev); return err; } /* Called with rtnl lock held. */ static void virt_wifi_dellink(struct net_device *dev, struct list_head *head) { struct virt_wifi_netdev_priv *priv = netdev_priv(dev); if (dev->ieee80211_ptr) virt_wifi_cancel_scan(dev->ieee80211_ptr->wiphy); priv->being_deleted = true; virt_wifi_cancel_connect(dev); netif_carrier_off(dev); netdev_rx_handler_unregister(priv->lowerdev); netdev_upper_dev_unlink(priv->lowerdev, dev); unregister_netdevice_queue(dev, head); module_put(THIS_MODULE); /* Deleting the wiphy is handled in the module destructor. */ } static struct rtnl_link_ops virt_wifi_link_ops = { .kind = "virt_wifi", .setup = virt_wifi_setup, .newlink = virt_wifi_newlink, .dellink = virt_wifi_dellink, .priv_size = sizeof(struct virt_wifi_netdev_priv), }; static bool netif_is_virt_wifi_dev(const struct net_device *dev) { return rcu_access_pointer(dev->rx_handler) == virt_wifi_rx_handler; } static int virt_wifi_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *lower_dev = netdev_notifier_info_to_dev(ptr); struct virt_wifi_netdev_priv *priv; struct net_device *upper_dev; LIST_HEAD(list_kill); if (!netif_is_virt_wifi_dev(lower_dev)) return NOTIFY_DONE; switch (event) { case NETDEV_UNREGISTER: priv = rtnl_dereference(lower_dev->rx_handler_data); if (!priv) return NOTIFY_DONE; upper_dev = priv->upperdev; upper_dev->rtnl_link_ops->dellink(upper_dev, &list_kill); unregister_netdevice_many(&list_kill); break; } return NOTIFY_DONE; } static struct notifier_block virt_wifi_notifier = { .notifier_call = virt_wifi_event, }; /* Acquires and releases the rtnl lock. */ static int __init virt_wifi_init_module(void) { int err; /* Guaranteed to be locally-administered and not multicast. */ eth_random_addr(fake_router_bssid); err = register_netdevice_notifier(&virt_wifi_notifier); if (err) return err; err = -ENOMEM; common_wiphy = virt_wifi_make_wiphy(); if (!common_wiphy) goto notifier; err = rtnl_link_register(&virt_wifi_link_ops); if (err) goto destroy_wiphy; return 0; destroy_wiphy: virt_wifi_destroy_wiphy(common_wiphy); notifier: unregister_netdevice_notifier(&virt_wifi_notifier); return err; } /* Acquires and releases the rtnl lock. */ static void __exit virt_wifi_cleanup_module(void) { /* Will delete any devices that depend on the wiphy. */ rtnl_link_unregister(&virt_wifi_link_ops); virt_wifi_destroy_wiphy(common_wiphy); unregister_netdevice_notifier(&virt_wifi_notifier); } module_init(virt_wifi_init_module); module_exit(virt_wifi_cleanup_module); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Cody Schuffelen <schuffelen@google.com>"); MODULE_DESCRIPTION("Driver for a wireless wrapper of ethernet devices"); MODULE_ALIAS_RTNL_LINK("virt_wifi"); |
41 41 21 40 49 49 41 25 25 13 13 26 25 26 5 30 31 10 10 10 12 12 12 2 185 185 27 27 9 9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/core/dst_cache.c - dst entry cache * * Copyright (c) 2016 Paolo Abeni <pabeni@redhat.com> */ #include <linux/kernel.h> #include <linux/percpu.h> #include <net/dst_cache.h> #include <net/route.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ip6_fib.h> #endif #include <uapi/linux/in.h> struct dst_cache_pcpu { unsigned long refresh_ts; struct dst_entry *dst; u32 cookie; union { struct in_addr in_saddr; struct in6_addr in6_saddr; }; }; static void dst_cache_per_cpu_dst_set(struct dst_cache_pcpu *dst_cache, struct dst_entry *dst, u32 cookie) { DEBUG_NET_WARN_ON_ONCE(!in_softirq()); dst_release(dst_cache->dst); if (dst) dst_hold(dst); dst_cache->cookie = cookie; dst_cache->dst = dst; } static struct dst_entry *dst_cache_per_cpu_get(struct dst_cache *dst_cache, struct dst_cache_pcpu *idst) { struct dst_entry *dst; DEBUG_NET_WARN_ON_ONCE(!in_softirq()); dst = idst->dst; if (!dst) goto fail; /* the cache already hold a dst reference; it can't go away */ dst_hold(dst); if (unlikely(!time_after(idst->refresh_ts, READ_ONCE(dst_cache->reset_ts)) || (dst->obsolete && !dst->ops->check(dst, idst->cookie)))) { dst_cache_per_cpu_dst_set(idst, NULL, 0); dst_release(dst); goto fail; } return dst; fail: idst->refresh_ts = jiffies; return NULL; } struct dst_entry *dst_cache_get(struct dst_cache *dst_cache) { if (!dst_cache->cache) return NULL; return dst_cache_per_cpu_get(dst_cache, this_cpu_ptr(dst_cache->cache)); } EXPORT_SYMBOL_GPL(dst_cache_get); struct rtable *dst_cache_get_ip4(struct dst_cache *dst_cache, __be32 *saddr) { struct dst_cache_pcpu *idst; struct dst_entry *dst; if (!dst_cache->cache) return NULL; idst = this_cpu_ptr(dst_cache->cache); dst = dst_cache_per_cpu_get(dst_cache, idst); if (!dst) return NULL; *saddr = idst->in_saddr.s_addr; return dst_rtable(dst); } EXPORT_SYMBOL_GPL(dst_cache_get_ip4); void dst_cache_set_ip4(struct dst_cache *dst_cache, struct dst_entry *dst, __be32 saddr) { struct dst_cache_pcpu *idst; if (!dst_cache->cache) return; idst = this_cpu_ptr(dst_cache->cache); dst_cache_per_cpu_dst_set(idst, dst, 0); idst->in_saddr.s_addr = saddr; } EXPORT_SYMBOL_GPL(dst_cache_set_ip4); #if IS_ENABLED(CONFIG_IPV6) void dst_cache_set_ip6(struct dst_cache *dst_cache, struct dst_entry *dst, const struct in6_addr *saddr) { struct dst_cache_pcpu *idst; if (!dst_cache->cache) return; idst = this_cpu_ptr(dst_cache->cache); dst_cache_per_cpu_dst_set(idst, dst, rt6_get_cookie(dst_rt6_info(dst))); idst->in6_saddr = *saddr; } EXPORT_SYMBOL_GPL(dst_cache_set_ip6); struct dst_entry *dst_cache_get_ip6(struct dst_cache *dst_cache, struct in6_addr *saddr) { struct dst_cache_pcpu *idst; struct dst_entry *dst; if (!dst_cache->cache) return NULL; idst = this_cpu_ptr(dst_cache->cache); dst = dst_cache_per_cpu_get(dst_cache, idst); if (!dst) return NULL; *saddr = idst->in6_saddr; return dst; } EXPORT_SYMBOL_GPL(dst_cache_get_ip6); #endif int dst_cache_init(struct dst_cache *dst_cache, gfp_t gfp) { dst_cache->cache = alloc_percpu_gfp(struct dst_cache_pcpu, gfp | __GFP_ZERO); if (!dst_cache->cache) return -ENOMEM; dst_cache_reset(dst_cache); return 0; } EXPORT_SYMBOL_GPL(dst_cache_init); void dst_cache_destroy(struct dst_cache *dst_cache) { int i; if (!dst_cache->cache) return; for_each_possible_cpu(i) dst_release(per_cpu_ptr(dst_cache->cache, i)->dst); free_percpu(dst_cache->cache); } EXPORT_SYMBOL_GPL(dst_cache_destroy); void dst_cache_reset_now(struct dst_cache *dst_cache) { int i; if (!dst_cache->cache) return; dst_cache_reset(dst_cache); for_each_possible_cpu(i) { struct dst_cache_pcpu *idst = per_cpu_ptr(dst_cache->cache, i); struct dst_entry *dst = idst->dst; idst->cookie = 0; idst->dst = NULL; dst_release(dst); } } EXPORT_SYMBOL_GPL(dst_cache_reset_now); |
11 11 1 9 1 1 3 3 4 4 2 5 5 1 5 2 4 3 5 5 4 1 1 1 1 1 1 22 21 1 22 1 21 19 8 12 1 11 11 11 11 7 4 3 3 5 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 fragment reassembly * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Based on: net/ipv4/ip_fragment.c */ /* * Fixes: * Andi Kleen Make it work with multiple hosts. * More RFC compliance. * * Horst von Brand Add missing #include <linux/string.h> * Alexey Kuznetsov SMP races, threading, cleanup. * Patrick McHardy LRU queue of frag heads for evictor. * Mitsuru KANDA @USAGI Register inet6_protocol{}. * David Stevens and * YOSHIFUJI,H. @USAGI Always remove fragment header to * calculate ICV correctly. */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/errno.h> #include <linux/types.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/jiffies.h> #include <linux/net.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/random.h> #include <linux/jhash.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/tcp.h> #include <linux/udp.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/ipv6_frag.h> #include <net/inet_ecn.h> static const char ip6_frag_cache_name[] = "ip6-frags"; static u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h) { return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK); } static struct inet_frags ip6_frags; static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev); static void ip6_frag_expire(struct timer_list *t) { struct inet_frag_queue *frag = from_timer(frag, t, timer); struct frag_queue *fq; fq = container_of(frag, struct frag_queue, q); ip6frag_expire_frag_queue(fq->q.fqdir->net, fq); } static struct frag_queue * fq_find(struct net *net, __be32 id, const struct ipv6hdr *hdr, int iif) { struct frag_v6_compare_key key = { .id = id, .saddr = hdr->saddr, .daddr = hdr->daddr, .user = IP6_DEFRAG_LOCAL_DELIVER, .iif = iif, }; struct inet_frag_queue *q; if (!(ipv6_addr_type(&hdr->daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL))) key.iif = 0; q = inet_frag_find(net->ipv6.fqdir, &key); if (!q) return NULL; return container_of(q, struct frag_queue, q); } static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb, struct frag_hdr *fhdr, int nhoff, u32 *prob_offset) { struct net *net = dev_net(skb_dst(skb)->dev); int offset, end, fragsize; struct sk_buff *prev_tail; struct net_device *dev; int err = -ENOENT; SKB_DR(reason); u8 ecn; /* If reassembly is already done, @skb must be a duplicate frag. */ if (fq->q.flags & INET_FRAG_COMPLETE) { SKB_DR_SET(reason, DUP_FRAG); goto err; } err = -EINVAL; offset = ntohs(fhdr->frag_off) & ~0x7; end = offset + (ntohs(ipv6_hdr(skb)->payload_len) - ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1))); if ((unsigned int)end > IPV6_MAXPLEN) { *prob_offset = (u8 *)&fhdr->frag_off - skb_network_header(skb); /* note that if prob_offset is set, the skb is freed elsewhere, * we do not free it here. */ return -1; } ecn = ip6_frag_ecn(ipv6_hdr(skb)); if (skb->ip_summed == CHECKSUM_COMPLETE) { const unsigned char *nh = skb_network_header(skb); skb->csum = csum_sub(skb->csum, csum_partial(nh, (u8 *)(fhdr + 1) - nh, 0)); } /* Is this the final fragment? */ if (!(fhdr->frag_off & htons(IP6_MF))) { /* If we already have some bits beyond end * or have different end, the segment is corrupted. */ if (end < fq->q.len || ((fq->q.flags & INET_FRAG_LAST_IN) && end != fq->q.len)) goto discard_fq; fq->q.flags |= INET_FRAG_LAST_IN; fq->q.len = end; } else { /* Check if the fragment is rounded to 8 bytes. * Required by the RFC. */ if (end & 0x7) { /* RFC2460 says always send parameter problem in * this case. -DaveM */ *prob_offset = offsetof(struct ipv6hdr, payload_len); return -1; } if (end > fq->q.len) { /* Some bits beyond end -> corruption. */ if (fq->q.flags & INET_FRAG_LAST_IN) goto discard_fq; fq->q.len = end; } } if (end == offset) goto discard_fq; err = -ENOMEM; /* Point into the IP datagram 'data' part. */ if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) goto discard_fq; err = pskb_trim_rcsum(skb, end - offset); if (err) goto discard_fq; /* Note : skb->rbnode and skb->dev share the same location. */ dev = skb->dev; /* Makes sure compiler wont do silly aliasing games */ barrier(); prev_tail = fq->q.fragments_tail; err = inet_frag_queue_insert(&fq->q, skb, offset, end); if (err) goto insert_error; if (dev) fq->iif = dev->ifindex; fq->q.stamp = skb->tstamp; fq->q.tstamp_type = skb->tstamp_type; fq->q.meat += skb->len; fq->ecn |= ecn; add_frag_mem_limit(fq->q.fqdir, skb->truesize); fragsize = -skb_network_offset(skb) + skb->len; if (fragsize > fq->q.max_size) fq->q.max_size = fragsize; /* The first fragment. * nhoffset is obtained from the first fragment, of course. */ if (offset == 0) { fq->nhoffset = nhoff; fq->q.flags |= INET_FRAG_FIRST_IN; } if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && fq->q.meat == fq->q.len) { unsigned long orefdst = skb->_skb_refdst; skb->_skb_refdst = 0UL; err = ip6_frag_reasm(fq, skb, prev_tail, dev); skb->_skb_refdst = orefdst; return err; } skb_dst_drop(skb); return -EINPROGRESS; insert_error: if (err == IPFRAG_DUP) { SKB_DR_SET(reason, DUP_FRAG); err = -EINVAL; goto err; } err = -EINVAL; __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASM_OVERLAPS); discard_fq: inet_frag_kill(&fq->q); __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS); err: kfree_skb_reason(skb, reason); return err; } /* * Check if this packet is complete. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev) { struct net *net = fq->q.fqdir->net; unsigned int nhoff; void *reasm_data; int payload_len; u8 ecn; inet_frag_kill(&fq->q); ecn = ip_frag_ecn_table[fq->ecn]; if (unlikely(ecn == 0xff)) goto out_fail; reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail); if (!reasm_data) goto out_oom; payload_len = -skb_network_offset(skb) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr); if (payload_len > IPV6_MAXPLEN) goto out_oversize; /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ nhoff = fq->nhoffset; skb_network_header(skb)[nhoff] = skb_transport_header(skb)[0]; memmove(skb->head + sizeof(struct frag_hdr), skb->head, (skb->data - skb->head) - sizeof(struct frag_hdr)); if (skb_mac_header_was_set(skb)) skb->mac_header += sizeof(struct frag_hdr); skb->network_header += sizeof(struct frag_hdr); skb_reset_transport_header(skb); inet_frag_reasm_finish(&fq->q, skb, reasm_data, true); skb->dev = dev; ipv6_hdr(skb)->payload_len = htons(payload_len); ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn); IP6CB(skb)->nhoff = nhoff; IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; IP6CB(skb)->frag_max_size = fq->q.max_size; /* Yes, and fold redundant checksum back. 8) */ skb_postpush_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_stats_get(dev, skb), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.rb_fragments = RB_ROOT; fq->q.fragments_tail = NULL; fq->q.last_run_head = NULL; return 1; out_oversize: net_dbg_ratelimited("ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: net_dbg_ratelimited("ip6_frag_reasm: no memory for reassembly\n"); out_fail: rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_stats_get(dev, skb), IPSTATS_MIB_REASMFAILS); rcu_read_unlock(); inet_frag_kill(&fq->q); return -1; } static int ipv6_frag_rcv(struct sk_buff *skb) { struct frag_hdr *fhdr; struct frag_queue *fq; const struct ipv6hdr *hdr = ipv6_hdr(skb); struct net *net = dev_net(skb_dst(skb)->dev); u8 nexthdr; int iif; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED) goto fail_hdr; __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMREQDS); /* Jumbo payload inhibits frag. header */ if (hdr->payload_len == 0) goto fail_hdr; if (!pskb_may_pull(skb, (skb_transport_offset(skb) + sizeof(struct frag_hdr)))) goto fail_hdr; hdr = ipv6_hdr(skb); fhdr = (struct frag_hdr *)skb_transport_header(skb); if (!(fhdr->frag_off & htons(IP6_OFFSET | IP6_MF))) { /* It is not a fragmented frame */ skb->transport_header += sizeof(struct frag_hdr); __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMOKS); IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb); IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; IP6CB(skb)->frag_max_size = ntohs(hdr->payload_len) + sizeof(struct ipv6hdr); return 1; } /* RFC 8200, Section 4.5 Fragment Header: * If the first fragment does not include all headers through an * Upper-Layer header, then that fragment should be discarded and * an ICMP Parameter Problem, Code 3, message should be sent to * the source of the fragment, with the Pointer field set to zero. */ nexthdr = hdr->nexthdr; if (ipv6frag_thdr_truncated(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr), &nexthdr)) { __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); icmpv6_param_prob(skb, ICMPV6_HDR_INCOMP, 0); return -1; } iif = skb->dev ? skb->dev->ifindex : 0; fq = fq_find(net, fhdr->identification, hdr, iif); if (fq) { u32 prob_offset = 0; int ret; spin_lock(&fq->q.lock); fq->iif = iif; ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff, &prob_offset); spin_unlock(&fq->q.lock); inet_frag_put(&fq->q); if (prob_offset) { __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); /* icmpv6_param_prob() calls kfree_skb(skb) */ icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, prob_offset); } return ret; } __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS); kfree_skb(skb); return -1; fail_hdr: __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, skb_network_header_len(skb)); return -1; } static const struct inet6_protocol frag_protocol = { .handler = ipv6_frag_rcv, .flags = INET6_PROTO_NOPOLICY, }; #ifdef CONFIG_SYSCTL static struct ctl_table ip6_frags_ns_ctl_table[] = { { .procname = "ip6frag_high_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "ip6frag_low_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "ip6frag_time", .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, }; /* secret interval has been deprecated */ static int ip6_frags_secret_interval_unused; static struct ctl_table ip6_frags_ctl_table[] = { { .procname = "ip6frag_secret_interval", .data = &ip6_frags_secret_interval_unused, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, }; static int __net_init ip6_frags_ns_sysctl_register(struct net *net) { struct ctl_table *table; struct ctl_table_header *hdr; table = ip6_frags_ns_ctl_table; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(ip6_frags_ns_ctl_table), GFP_KERNEL); if (!table) goto err_alloc; } table[0].data = &net->ipv6.fqdir->high_thresh; table[0].extra1 = &net->ipv6.fqdir->low_thresh; table[1].data = &net->ipv6.fqdir->low_thresh; table[1].extra2 = &net->ipv6.fqdir->high_thresh; table[2].data = &net->ipv6.fqdir->timeout; hdr = register_net_sysctl_sz(net, "net/ipv6", table, ARRAY_SIZE(ip6_frags_ns_ctl_table)); if (!hdr) goto err_reg; net->ipv6.sysctl.frags_hdr = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static void __net_exit ip6_frags_ns_sysctl_unregister(struct net *net) { const struct ctl_table *table; table = net->ipv6.sysctl.frags_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv6.sysctl.frags_hdr); if (!net_eq(net, &init_net)) kfree(table); } static struct ctl_table_header *ip6_ctl_header; static int ip6_frags_sysctl_register(void) { ip6_ctl_header = register_net_sysctl(&init_net, "net/ipv6", ip6_frags_ctl_table); return ip6_ctl_header == NULL ? -ENOMEM : 0; } static void ip6_frags_sysctl_unregister(void) { unregister_net_sysctl_table(ip6_ctl_header); } #else static int ip6_frags_ns_sysctl_register(struct net *net) { return 0; } static void ip6_frags_ns_sysctl_unregister(struct net *net) { } static int ip6_frags_sysctl_register(void) { return 0; } static void ip6_frags_sysctl_unregister(void) { } #endif static int __net_init ipv6_frags_init_net(struct net *net) { int res; res = fqdir_init(&net->ipv6.fqdir, &ip6_frags, net); if (res < 0) return res; net->ipv6.fqdir->high_thresh = IPV6_FRAG_HIGH_THRESH; net->ipv6.fqdir->low_thresh = IPV6_FRAG_LOW_THRESH; net->ipv6.fqdir->timeout = IPV6_FRAG_TIMEOUT; res = ip6_frags_ns_sysctl_register(net); if (res < 0) fqdir_exit(net->ipv6.fqdir); return res; } static void __net_exit ipv6_frags_pre_exit_net(struct net *net) { fqdir_pre_exit(net->ipv6.fqdir); } static void __net_exit ipv6_frags_exit_net(struct net *net) { ip6_frags_ns_sysctl_unregister(net); fqdir_exit(net->ipv6.fqdir); } static struct pernet_operations ip6_frags_ops = { .init = ipv6_frags_init_net, .pre_exit = ipv6_frags_pre_exit_net, .exit = ipv6_frags_exit_net, }; static const struct rhashtable_params ip6_rhash_params = { .head_offset = offsetof(struct inet_frag_queue, node), .hashfn = ip6frag_key_hashfn, .obj_hashfn = ip6frag_obj_hashfn, .obj_cmpfn = ip6frag_obj_cmpfn, .automatic_shrinking = true, }; int __init ipv6_frag_init(void) { int ret; ip6_frags.constructor = ip6frag_init; ip6_frags.destructor = NULL; ip6_frags.qsize = sizeof(struct frag_queue); ip6_frags.frag_expire = ip6_frag_expire; ip6_frags.frags_cache_name = ip6_frag_cache_name; ip6_frags.rhash_params = ip6_rhash_params; ret = inet_frags_init(&ip6_frags); if (ret) goto out; ret = inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT); if (ret) goto err_protocol; ret = ip6_frags_sysctl_register(); if (ret) goto err_sysctl; ret = register_pernet_subsys(&ip6_frags_ops); if (ret) goto err_pernet; out: return ret; err_pernet: ip6_frags_sysctl_unregister(); err_sysctl: inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT); err_protocol: inet_frags_fini(&ip6_frags); goto out; } void ipv6_frag_exit(void) { ip6_frags_sysctl_unregister(); unregister_pernet_subsys(&ip6_frags_ops); inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT); inet_frags_fini(&ip6_frags); } |
1 1 1 1 6 1 2 1 1 1 1 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | // SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) * Copyright (C) Steven Whitehouse GW7RRM (stevew@acm.org) * Copyright (C) Joerg Reuter DL1BKE (jreuter@yaina.de) * Copyright (C) Hans-Joachim Hetscher DD8NE (dd8ne@bnv-bamberg.de) * Copyright (C) Frederic Rible F1OAT (frible@teaser.fr) */ #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/timer.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/slab.h> #include <net/ax25.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <net/sock.h> #include <linux/uaccess.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/seq_file.h> #include <linux/export.h> static ax25_route *ax25_route_list; DEFINE_RWLOCK(ax25_route_lock); void ax25_rt_device_down(struct net_device *dev) { ax25_route *s, *t, *ax25_rt; write_lock_bh(&ax25_route_lock); ax25_rt = ax25_route_list; while (ax25_rt != NULL) { s = ax25_rt; ax25_rt = ax25_rt->next; if (s->dev == dev) { if (ax25_route_list == s) { ax25_route_list = s->next; kfree(s->digipeat); kfree(s); } else { for (t = ax25_route_list; t != NULL; t = t->next) { if (t->next == s) { t->next = s->next; kfree(s->digipeat); kfree(s); break; } } } } } write_unlock_bh(&ax25_route_lock); } static int __must_check ax25_rt_add(struct ax25_routes_struct *route) { ax25_route *ax25_rt; ax25_dev *ax25_dev; int i; if (route->digi_count > AX25_MAX_DIGIS) return -EINVAL; ax25_dev = ax25_addr_ax25dev(&route->port_addr); if (!ax25_dev) return -EINVAL; write_lock_bh(&ax25_route_lock); ax25_rt = ax25_route_list; while (ax25_rt != NULL) { if (ax25cmp(&ax25_rt->callsign, &route->dest_addr) == 0 && ax25_rt->dev == ax25_dev->dev) { kfree(ax25_rt->digipeat); ax25_rt->digipeat = NULL; if (route->digi_count != 0) { if ((ax25_rt->digipeat = kmalloc(sizeof(ax25_digi), GFP_ATOMIC)) == NULL) { write_unlock_bh(&ax25_route_lock); ax25_dev_put(ax25_dev); return -ENOMEM; } ax25_rt->digipeat->lastrepeat = -1; ax25_rt->digipeat->ndigi = route->digi_count; for (i = 0; i < route->digi_count; i++) { ax25_rt->digipeat->repeated[i] = 0; ax25_rt->digipeat->calls[i] = route->digi_addr[i]; } } write_unlock_bh(&ax25_route_lock); ax25_dev_put(ax25_dev); return 0; } ax25_rt = ax25_rt->next; } if ((ax25_rt = kmalloc(sizeof(ax25_route), GFP_ATOMIC)) == NULL) { write_unlock_bh(&ax25_route_lock); ax25_dev_put(ax25_dev); return -ENOMEM; } ax25_rt->callsign = route->dest_addr; ax25_rt->dev = ax25_dev->dev; ax25_rt->digipeat = NULL; ax25_rt->ip_mode = ' '; if (route->digi_count != 0) { if ((ax25_rt->digipeat = kmalloc(sizeof(ax25_digi), GFP_ATOMIC)) == NULL) { write_unlock_bh(&ax25_route_lock); kfree(ax25_rt); ax25_dev_put(ax25_dev); return -ENOMEM; } ax25_rt->digipeat->lastrepeat = -1; ax25_rt->digipeat->ndigi = route->digi_count; for (i = 0; i < route->digi_count; i++) { ax25_rt->digipeat->repeated[i] = 0; ax25_rt->digipeat->calls[i] = route->digi_addr[i]; } } ax25_rt->next = ax25_route_list; ax25_route_list = ax25_rt; write_unlock_bh(&ax25_route_lock); ax25_dev_put(ax25_dev); return 0; } void __ax25_put_route(ax25_route *ax25_rt) { kfree(ax25_rt->digipeat); kfree(ax25_rt); } static int ax25_rt_del(struct ax25_routes_struct *route) { ax25_route *s, *t, *ax25_rt; ax25_dev *ax25_dev; if ((ax25_dev = ax25_addr_ax25dev(&route->port_addr)) == NULL) return -EINVAL; write_lock_bh(&ax25_route_lock); ax25_rt = ax25_route_list; while (ax25_rt != NULL) { s = ax25_rt; ax25_rt = ax25_rt->next; if (s->dev == ax25_dev->dev && ax25cmp(&route->dest_addr, &s->callsign) == 0) { if (ax25_route_list == s) { ax25_route_list = s->next; __ax25_put_route(s); } else { for (t = ax25_route_list; t != NULL; t = t->next) { if (t->next == s) { t->next = s->next; __ax25_put_route(s); break; } } } } } write_unlock_bh(&ax25_route_lock); ax25_dev_put(ax25_dev); return 0; } static int ax25_rt_opt(struct ax25_route_opt_struct *rt_option) { ax25_route *ax25_rt; ax25_dev *ax25_dev; int err = 0; if ((ax25_dev = ax25_addr_ax25dev(&rt_option->port_addr)) == NULL) return -EINVAL; write_lock_bh(&ax25_route_lock); ax25_rt = ax25_route_list; while (ax25_rt != NULL) { if (ax25_rt->dev == ax25_dev->dev && ax25cmp(&rt_option->dest_addr, &ax25_rt->callsign) == 0) { switch (rt_option->cmd) { case AX25_SET_RT_IPMODE: switch (rt_option->arg) { case ' ': case 'D': case 'V': ax25_rt->ip_mode = rt_option->arg; break; default: err = -EINVAL; goto out; } break; default: err = -EINVAL; goto out; } } ax25_rt = ax25_rt->next; } out: write_unlock_bh(&ax25_route_lock); ax25_dev_put(ax25_dev); return err; } int ax25_rt_ioctl(unsigned int cmd, void __user *arg) { struct ax25_route_opt_struct rt_option; struct ax25_routes_struct route; switch (cmd) { case SIOCADDRT: if (copy_from_user(&route, arg, sizeof(route))) return -EFAULT; return ax25_rt_add(&route); case SIOCDELRT: if (copy_from_user(&route, arg, sizeof(route))) return -EFAULT; return ax25_rt_del(&route); case SIOCAX25OPTRT: if (copy_from_user(&rt_option, arg, sizeof(rt_option))) return -EFAULT; return ax25_rt_opt(&rt_option); default: return -EINVAL; } } #ifdef CONFIG_PROC_FS static void *ax25_rt_seq_start(struct seq_file *seq, loff_t *pos) __acquires(ax25_route_lock) { struct ax25_route *ax25_rt; int i = 1; read_lock(&ax25_route_lock); if (*pos == 0) return SEQ_START_TOKEN; for (ax25_rt = ax25_route_list; ax25_rt != NULL; ax25_rt = ax25_rt->next) { if (i == *pos) return ax25_rt; ++i; } return NULL; } static void *ax25_rt_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return (v == SEQ_START_TOKEN) ? ax25_route_list : ((struct ax25_route *) v)->next; } static void ax25_rt_seq_stop(struct seq_file *seq, void *v) __releases(ax25_route_lock) { read_unlock(&ax25_route_lock); } static int ax25_rt_seq_show(struct seq_file *seq, void *v) { char buf[11]; if (v == SEQ_START_TOKEN) seq_puts(seq, "callsign dev mode digipeaters\n"); else { struct ax25_route *ax25_rt = v; const char *callsign; int i; if (ax25cmp(&ax25_rt->callsign, &null_ax25_address) == 0) callsign = "default"; else callsign = ax2asc(buf, &ax25_rt->callsign); seq_printf(seq, "%-9s %-4s", callsign, ax25_rt->dev ? ax25_rt->dev->name : "???"); switch (ax25_rt->ip_mode) { case 'V': seq_puts(seq, " vc"); break; case 'D': seq_puts(seq, " dg"); break; default: seq_puts(seq, " *"); break; } if (ax25_rt->digipeat != NULL) for (i = 0; i < ax25_rt->digipeat->ndigi; i++) seq_printf(seq, " %s", ax2asc(buf, &ax25_rt->digipeat->calls[i])); seq_puts(seq, "\n"); } return 0; } const struct seq_operations ax25_rt_seqops = { .start = ax25_rt_seq_start, .next = ax25_rt_seq_next, .stop = ax25_rt_seq_stop, .show = ax25_rt_seq_show, }; #endif /* * Find AX.25 route * * Only routes with a reference count of zero can be destroyed. * Must be called with ax25_route_lock read locked. */ ax25_route *ax25_get_route(ax25_address *addr, struct net_device *dev) { ax25_route *ax25_spe_rt = NULL; ax25_route *ax25_def_rt = NULL; ax25_route *ax25_rt; /* * Bind to the physical interface we heard them on, or the default * route if none is found; */ for (ax25_rt = ax25_route_list; ax25_rt != NULL; ax25_rt = ax25_rt->next) { if (dev == NULL) { if (ax25cmp(&ax25_rt->callsign, addr) == 0 && ax25_rt->dev != NULL) ax25_spe_rt = ax25_rt; if (ax25cmp(&ax25_rt->callsign, &null_ax25_address) == 0 && ax25_rt->dev != NULL) ax25_def_rt = ax25_rt; } else { if (ax25cmp(&ax25_rt->callsign, addr) == 0 && ax25_rt->dev == dev) ax25_spe_rt = ax25_rt; if (ax25cmp(&ax25_rt->callsign, &null_ax25_address) == 0 && ax25_rt->dev == dev) ax25_def_rt = ax25_rt; } } ax25_rt = ax25_def_rt; if (ax25_spe_rt != NULL) ax25_rt = ax25_spe_rt; return ax25_rt; } /* * Adjust path: If you specify a default route and want to connect * a target on the digipeater path but w/o having a special route * set before, the path has to be truncated from your target on. */ static inline void ax25_adjust_path(ax25_address *addr, ax25_digi *digipeat) { int k; for (k = 0; k < digipeat->ndigi; k++) { if (ax25cmp(addr, &digipeat->calls[k]) == 0) break; } digipeat->ndigi = k; } /* * Find which interface to use. */ int ax25_rt_autobind(ax25_cb *ax25, ax25_address *addr) { ax25_uid_assoc *user; ax25_route *ax25_rt; int err = 0; ax25_route_lock_use(); ax25_rt = ax25_get_route(addr, NULL); if (!ax25_rt) { ax25_route_lock_unuse(); return -EHOSTUNREACH; } if ((ax25->ax25_dev = ax25_dev_ax25dev(ax25_rt->dev)) == NULL) { err = -EHOSTUNREACH; goto put; } user = ax25_findbyuid(current_euid()); if (user) { ax25->source_addr = user->call; ax25_uid_put(user); } else { if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { err = -EPERM; goto put; } ax25->source_addr = *(ax25_address *)ax25->ax25_dev->dev->dev_addr; } if (ax25_rt->digipeat != NULL) { ax25->digipeat = kmemdup(ax25_rt->digipeat, sizeof(ax25_digi), GFP_ATOMIC); if (ax25->digipeat == NULL) { err = -ENOMEM; goto put; } ax25_adjust_path(addr, ax25->digipeat); } if (ax25->sk != NULL) { local_bh_disable(); bh_lock_sock(ax25->sk); sock_reset_flag(ax25->sk, SOCK_ZAPPED); bh_unlock_sock(ax25->sk); local_bh_enable(); } put: ax25_route_lock_unuse(); return err; } struct sk_buff *ax25_rt_build_path(struct sk_buff *skb, ax25_address *src, ax25_address *dest, ax25_digi *digi) { unsigned char *bp; int len; len = digi->ndigi * AX25_ADDR_LEN; if (unlikely(skb_headroom(skb) < len)) { skb = skb_expand_head(skb, len); if (!skb) { printk(KERN_CRIT "AX.25: ax25_dg_build_path - out of memory\n"); return NULL; } } bp = skb_push(skb, len); ax25_addr_build(bp, src, dest, digi, AX25_COMMAND, AX25_MODULUS); return skb; } /* * Free all memory associated with routing structures. */ void __exit ax25_rt_free(void) { ax25_route *s, *ax25_rt = ax25_route_list; write_lock_bh(&ax25_route_lock); while (ax25_rt != NULL) { s = ax25_rt; ax25_rt = ax25_rt->next; kfree(s->digipeat); kfree(s); } write_unlock_bh(&ax25_route_lock); } |
6 2 4 2 35 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | // SPDX-License-Identifier: GPL-2.0-only /* * IEEE 802.1Q GARP VLAN Registration Protocol (GVRP) * * Copyright (c) 2008 Patrick McHardy <kaber@trash.net> */ #include <linux/types.h> #include <linux/if_vlan.h> #include <net/garp.h> #include "vlan.h" #define GARP_GVRP_ADDRESS { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x21 } enum gvrp_attributes { GVRP_ATTR_INVALID, GVRP_ATTR_VID, __GVRP_ATTR_MAX }; #define GVRP_ATTR_MAX (__GVRP_ATTR_MAX - 1) static struct garp_application vlan_gvrp_app __read_mostly = { .proto.group_address = GARP_GVRP_ADDRESS, .maxattr = GVRP_ATTR_MAX, .type = GARP_APPLICATION_GVRP, }; int vlan_gvrp_request_join(const struct net_device *dev) { const struct vlan_dev_priv *vlan = vlan_dev_priv(dev); __be16 vlan_id = htons(vlan->vlan_id); if (vlan->vlan_proto != htons(ETH_P_8021Q)) return 0; return garp_request_join(vlan->real_dev, &vlan_gvrp_app, &vlan_id, sizeof(vlan_id), GVRP_ATTR_VID); } void vlan_gvrp_request_leave(const struct net_device *dev) { const struct vlan_dev_priv *vlan = vlan_dev_priv(dev); __be16 vlan_id = htons(vlan->vlan_id); if (vlan->vlan_proto != htons(ETH_P_8021Q)) return; garp_request_leave(vlan->real_dev, &vlan_gvrp_app, &vlan_id, sizeof(vlan_id), GVRP_ATTR_VID); } int vlan_gvrp_init_applicant(struct net_device *dev) { return garp_init_applicant(dev, &vlan_gvrp_app); } void vlan_gvrp_uninit_applicant(struct net_device *dev) { garp_uninit_applicant(dev, &vlan_gvrp_app); } int __init vlan_gvrp_init(void) { return garp_register_application(&vlan_gvrp_app); } void vlan_gvrp_uninit(void) { garp_unregister_application(&vlan_gvrp_app); } |
17 664 413 412 112 366 252 111 425 421 426 427 113 112 111 111 112 111 111 109 108 113 113 113 113 112 112 298 300 297 298 300 297 297 223 229 297 298 301 251 62 252 250 1 251 254 63 298 299 301 301 298 254 299 299 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 | // SPDX-License-Identifier: GPL-2.0-only /* * Generic helpers for smp ipi calls * * (C) Jens Axboe <jens.axboe@oracle.com> 2008 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/irq_work.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/gfp.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/sched/idle.h> #include <linux/hypervisor.h> #include <linux/sched/clock.h> #include <linux/nmi.h> #include <linux/sched/debug.h> #include <linux/jump_label.h> #include <linux/string_choices.h> #include <trace/events/ipi.h> #define CREATE_TRACE_POINTS #include <trace/events/csd.h> #undef CREATE_TRACE_POINTS #include "smpboot.h" #include "sched/smp.h" #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) struct call_function_data { call_single_data_t __percpu *csd; cpumask_var_t cpumask; cpumask_var_t cpumask_ipi; }; static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1); static void __flush_smp_call_function_queue(bool warn_cpu_offline); int smpcfd_prepare_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, cpu_to_node(cpu))) return -ENOMEM; if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, cpu_to_node(cpu))) { free_cpumask_var(cfd->cpumask); return -ENOMEM; } cfd->csd = alloc_percpu(call_single_data_t); if (!cfd->csd) { free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); return -ENOMEM; } return 0; } int smpcfd_dead_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); free_percpu(cfd->csd); return 0; } int smpcfd_dying_cpu(unsigned int cpu) { /* * The IPIs for the smp-call-function callbacks queued by other * CPUs might arrive late, either due to hardware latencies or * because this CPU disabled interrupts (inside stop-machine) * before the IPIs were sent. So flush out any pending callbacks * explicitly (without waiting for the IPIs to arrive), to * ensure that the outgoing CPU doesn't go offline with work * still pending. */ __flush_smp_call_function_queue(false); irq_work_run(); return 0; } void __init call_function_init(void) { int i; for_each_possible_cpu(i) init_llist_head(&per_cpu(call_single_queue, i)); smpcfd_prepare_cpu(smp_processor_id()); } static __always_inline void send_call_function_single_ipi(int cpu) { if (call_function_single_prep_ipi(cpu)) { trace_ipi_send_cpu(cpu, _RET_IP_, generic_smp_call_function_single_interrupt); arch_send_call_function_single_ipi(cpu); } } static __always_inline void send_call_function_ipi_mask(struct cpumask *mask) { trace_ipi_send_cpumask(mask, _RET_IP_, generic_smp_call_function_single_interrupt); arch_send_call_function_ipi_mask(mask); } static __always_inline void csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd) { trace_csd_function_entry(func, csd); func(info); trace_csd_function_exit(func, csd); } #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled); /* * Parse the csdlock_debug= kernel boot parameter. * * If you need to restore the old "ext" value that once provided * additional debugging information, reapply the following commits: * * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging") * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging") */ static int __init csdlock_debug(char *str) { int ret; unsigned int val = 0; ret = get_option(&str, &val); if (ret) { if (val) static_branch_enable(&csdlock_debug_enabled); else static_branch_disable(&csdlock_debug_enabled); } return 1; } __setup("csdlock_debug=", csdlock_debug); static DEFINE_PER_CPU(call_single_data_t *, cur_csd); static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); static DEFINE_PER_CPU(void *, cur_csd_info); static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ module_param(csd_lock_timeout, ulong, 0444); static int panic_on_ipistall; /* CSD panic timeout in milliseconds, 300000 for five minutes. */ module_param(panic_on_ipistall, int, 0444); static atomic_t csd_bug_count = ATOMIC_INIT(0); /* Record current CSD work for current CPU, NULL to erase. */ static void __csd_lock_record(call_single_data_t *csd) { if (!csd) { smp_mb(); /* NULL cur_csd after unlock. */ __this_cpu_write(cur_csd, NULL); return; } __this_cpu_write(cur_csd_func, csd->func); __this_cpu_write(cur_csd_info, csd->info); smp_wmb(); /* func and info before csd. */ __this_cpu_write(cur_csd, csd); smp_mb(); /* Update cur_csd before function call. */ /* Or before unlock, as the case may be. */ } static __always_inline void csd_lock_record(call_single_data_t *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) __csd_lock_record(csd); } static int csd_lock_wait_getcpu(call_single_data_t *csd) { unsigned int csd_type; csd_type = CSD_TYPE(csd); if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ return -1; } /* * Complain if too much time spent waiting. Note that only * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, * so waiting on other types gets much less information. */ static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id) { int cpu = -1; int cpux; bool firsttime; u64 ts2, ts_delta; call_single_data_t *cpu_cur_csd; unsigned int flags = READ_ONCE(csd->node.u_flags); unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; if (!(flags & CSD_FLAG_LOCK)) { if (!unlikely(*bug_id)) return true; cpu = csd_lock_wait_getcpu(csd); pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", *bug_id, raw_smp_processor_id(), cpu); return true; } ts2 = sched_clock(); /* How long since we last checked for a stuck CSD lock.*/ ts_delta = ts2 - *ts1; if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0)) return false; firsttime = !*bug_id; if (firsttime) *bug_id = atomic_inc_return(&csd_bug_count); cpu = csd_lock_wait_getcpu(csd); if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) cpux = 0; else cpux = cpu; cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ /* How long since this CSD lock was stuck. */ ts_delta = ts2 - ts0; pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n", firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts_delta, cpu, csd->func, csd->info); /* * If the CSD lock is still stuck after 5 minutes, it is unlikely * to become unstuck. Use a signed comparison to avoid triggering * on underflows when the TSC is out of sync between sockets. */ BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC)); if (cpu_cur_csd && csd != cpu_cur_csd) { pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), READ_ONCE(per_cpu(cur_csd_info, cpux))); } else { pr_alert("\tcsd: CSD lock (#%d) %s.\n", *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); } if (cpu >= 0) { if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0)) dump_cpu_task(cpu); if (!cpu_cur_csd) { pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); arch_send_call_function_single_ipi(cpu); } } if (firsttime) dump_stack(); *ts1 = ts2; return false; } /* * csd_lock/csd_unlock used to serialize access to per-cpu csd resources * * For non-synchronous ipi calls the csd can still be in use by the * previous function call. For multi-cpu calls its even more interesting * as we'll have to ensure no other cpu is observing our csd. */ static void __csd_lock_wait(call_single_data_t *csd) { int bug_id = 0; u64 ts0, ts1; ts1 = ts0 = sched_clock(); for (;;) { if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id)) break; cpu_relax(); } smp_acquire__after_ctrl_dep(); } static __always_inline void csd_lock_wait(call_single_data_t *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) { __csd_lock_wait(csd); return; } smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } #else static void csd_lock_record(call_single_data_t *csd) { } static __always_inline void csd_lock_wait(call_single_data_t *csd) { smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } #endif static __always_inline void csd_lock(call_single_data_t *csd) { csd_lock_wait(csd); csd->node.u_flags |= CSD_FLAG_LOCK; /* * prevent CPU from reordering the above assignment * to ->flags with any subsequent assignments to other * fields of the specified call_single_data_t structure: */ smp_wmb(); } static __always_inline void csd_unlock(call_single_data_t *csd) { WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); /* * ensure we're all done before releasing data: */ smp_store_release(&csd->node.u_flags, 0); } static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); void __smp_call_single_queue(int cpu, struct llist_node *node) { /* * We have to check the type of the CSD before queueing it, because * once queued it can have its flags cleared by * flush_smp_call_function_queue() * even if we haven't sent the smp_call IPI yet (e.g. the stopper * executes migration_cpu_stop() on the remote CPU). */ if (trace_csd_queue_cpu_enabled()) { call_single_data_t *csd; smp_call_func_t func; csd = container_of(node, call_single_data_t, node.llist); func = CSD_TYPE(csd) == CSD_TYPE_TTWU ? sched_ttwu_pending : csd->func; trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); } /* * The list addition should be visible to the target CPU when it pops * the head of the list to pull the entry off it in the IPI handler * because of normal cache coherency rules implied by the underlying * llist ops. * * If IPIs can go out of order to the cache coherency protocol * in an architecture, sufficient synchronisation should be added * to arch code to make it appear to obey cache coherency WRT * locking and barrier primitives. Generic code isn't really * equipped to do the right thing... */ if (llist_add(node, &per_cpu(call_single_queue, cpu))) send_call_function_single_ipi(cpu); } /* * Insert a previously allocated call_single_data_t element * for execution on the given CPU. data must already have * ->func, ->info, and ->flags set. */ static int generic_exec_single(int cpu, call_single_data_t *csd) { if (cpu == smp_processor_id()) { smp_call_func_t func = csd->func; void *info = csd->info; unsigned long flags; /* * We can unlock early even for the synchronous on-stack case, * since we're doing this from the same CPU.. */ csd_lock_record(csd); csd_unlock(csd); local_irq_save(flags); csd_do_func(func, info, NULL); csd_lock_record(NULL); local_irq_restore(flags); return 0; } if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { csd_unlock(csd); return -ENXIO; } __smp_call_single_queue(cpu, &csd->node.llist); return 0; } /** * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks * * Invoked by arch to handle an IPI for call function single. * Must be called with interrupts disabled. */ void generic_smp_call_function_single_interrupt(void) { __flush_smp_call_function_queue(true); } /** * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks * * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an * offline CPU. Skip this check if set to 'false'. * * Flush any pending smp-call-function callbacks queued on this CPU. This is * invoked by the generic IPI handler, as well as by a CPU about to go offline, * to ensure that all pending IPI callbacks are run before it goes completely * offline. * * Loop through the call_single_queue and run all the queued callbacks. * Must be called with interrupts disabled. */ static void __flush_smp_call_function_queue(bool warn_cpu_offline) { call_single_data_t *csd, *csd_next; struct llist_node *entry, *prev; struct llist_head *head; static bool warned; atomic_t *tbt; lockdep_assert_irqs_disabled(); /* Allow waiters to send backtrace NMI from here onwards */ tbt = this_cpu_ptr(&trigger_backtrace); atomic_set_release(tbt, 1); head = this_cpu_ptr(&call_single_queue); entry = llist_del_all(head); entry = llist_reverse_order(entry); /* There shouldn't be any pending callbacks on an offline CPU. */ if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && !warned && entry != NULL)) { warned = true; WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); /* * We don't have to use the _safe() variant here * because we are not invoking the IPI handlers yet. */ llist_for_each_entry(csd, entry, node.llist) { switch (CSD_TYPE(csd)) { case CSD_TYPE_ASYNC: case CSD_TYPE_SYNC: case CSD_TYPE_IRQ_WORK: pr_warn("IPI callback %pS sent to offline CPU\n", csd->func); break; case CSD_TYPE_TTWU: pr_warn("IPI task-wakeup sent to offline CPU\n"); break; default: pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", CSD_TYPE(csd)); break; } } } /* * First; run all SYNC callbacks, people are waiting for us. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { /* Do we wait until *after* callback? */ if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { smp_call_func_t func = csd->func; void *info = csd->info; if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } csd_lock_record(csd); csd_do_func(func, info, csd); csd_unlock(csd); csd_lock_record(NULL); } else { prev = &csd->node.llist; } } if (!entry) return; /* * Second; run all !SYNC callbacks. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { int type = CSD_TYPE(csd); if (type != CSD_TYPE_TTWU) { if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } if (type == CSD_TYPE_ASYNC) { smp_call_func_t func = csd->func; void *info = csd->info; csd_lock_record(csd); csd_unlock(csd); csd_do_func(func, info, csd); csd_lock_record(NULL); } else if (type == CSD_TYPE_IRQ_WORK) { irq_work_single(csd); } } else { prev = &csd->node.llist; } } /* * Third; only CSD_TYPE_TTWU is left, issue those. */ if (entry) { csd = llist_entry(entry, typeof(*csd), node.llist); csd_do_func(sched_ttwu_pending, entry, csd); } } /** * flush_smp_call_function_queue - Flush pending smp-call-function callbacks * from task context (idle, migration thread) * * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to * handle queued SMP function calls before scheduling. * * The migration thread has to ensure that an eventually pending wakeup has * been handled before it migrates a task. */ void flush_smp_call_function_queue(void) { unsigned int was_pending; unsigned long flags; if (llist_empty(this_cpu_ptr(&call_single_queue))) return; local_irq_save(flags); /* Get the already pending soft interrupts for RT enabled kernels */ was_pending = local_softirq_pending(); __flush_smp_call_function_queue(true); if (local_softirq_pending()) do_softirq_post_smp_call_flush(was_pending); local_irq_restore(flags); } /* * smp_call_function_single - Run a function on a specific CPU * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed on other CPUs. * * Returns 0 on success, else a negative status code. */ int smp_call_function_single(int cpu, smp_call_func_t func, void *info, int wait) { call_single_data_t *csd; call_single_data_t csd_stack = { .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, }; int this_cpu; int err; /* * prevent preemption and reschedule on another processor, * as well as CPU removal */ this_cpu = get_cpu(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() && !oops_in_progress); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); csd = &csd_stack; if (!wait) { csd = this_cpu_ptr(&csd_data); csd_lock(csd); } csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif err = generic_exec_single(cpu, csd); if (wait) csd_lock_wait(csd); put_cpu(); return err; } EXPORT_SYMBOL(smp_call_function_single); /** * smp_call_function_single_async() - Run an asynchronous function on a * specific CPU. * @cpu: The CPU to run on. * @csd: Pre-allocated and setup data structure * * Like smp_call_function_single(), but the call is asynchonous and * can thus be done from contexts with disabled interrupts. * * The caller passes his own pre-allocated data structure * (ie: embedded in an object) and is responsible for synchronizing it * such that the IPIs performed on the @csd are strictly serialized. * * If the function is called with one csd which has not yet been * processed by previous call to smp_call_function_single_async(), the * function will return immediately with -EBUSY showing that the csd * object is still in progress. * * NOTE: Be careful, there is unfortunately no current debugging facility to * validate the correctness of this serialization. * * Return: %0 on success or negative errno value on error */ int smp_call_function_single_async(int cpu, call_single_data_t *csd) { int err = 0; preempt_disable(); if (csd->node.u_flags & CSD_FLAG_LOCK) { err = -EBUSY; goto out; } csd->node.u_flags = CSD_FLAG_LOCK; smp_wmb(); err = generic_exec_single(cpu, csd); out: preempt_enable(); return err; } EXPORT_SYMBOL_GPL(smp_call_function_single_async); /* * smp_call_function_any - Run a function on any of the given cpus * @mask: The mask of cpus it can run on. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed. * * Returns 0 on success, else a negative status code (if no cpus were online). * * Selection preference: * 1) current cpu if in @mask * 2) any cpu of current node if in @mask * 3) any other online cpu in @mask */ int smp_call_function_any(const struct cpumask *mask, smp_call_func_t func, void *info, int wait) { unsigned int cpu; const struct cpumask *nodemask; int ret; /* Try for same CPU (cheapest) */ cpu = get_cpu(); if (cpumask_test_cpu(cpu, mask)) goto call; /* Try for same node. */ nodemask = cpumask_of_node(cpu_to_node(cpu)); for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; cpu = cpumask_next_and(cpu, nodemask, mask)) { if (cpu_online(cpu)) goto call; } /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ cpu = cpumask_any_and(mask, cpu_online_mask); call: ret = smp_call_function_single(cpu, func, info, wait); put_cpu(); return ret; } EXPORT_SYMBOL_GPL(smp_call_function_any); /* * Flags to be used as scf_flags argument of smp_call_function_many_cond(). * * %SCF_WAIT: Wait until function execution is completed * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask */ #define SCF_WAIT (1U << 0) #define SCF_RUN_LOCAL (1U << 1) static void smp_call_function_many_cond(const struct cpumask *mask, smp_call_func_t func, void *info, unsigned int scf_flags, smp_cond_func_t cond_func) { int cpu, last_cpu, this_cpu = smp_processor_id(); struct call_function_data *cfd; bool wait = scf_flags & SCF_WAIT; int nr_cpus = 0; bool run_remote = false; bool run_local = false; lockdep_assert_preemption_disabled(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ if (cpu_online(this_cpu) && !oops_in_progress && !early_boot_irqs_disabled) lockdep_assert_irqs_enabled(); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); /* Check if we need local execution. */ if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask)) run_local = true; /* Check if we need remote execution, i.e., any CPU excluding this one. */ cpu = cpumask_first_and(mask, cpu_online_mask); if (cpu == this_cpu) cpu = cpumask_next_and(cpu, mask, cpu_online_mask); if (cpu < nr_cpu_ids) run_remote = true; if (run_remote) { cfd = this_cpu_ptr(&cfd_data); cpumask_and(cfd->cpumask, mask, cpu_online_mask); __cpumask_clear_cpu(this_cpu, cfd->cpumask); cpumask_clear(cfd->cpumask_ipi); for_each_cpu(cpu, cfd->cpumask) { call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu); if (cond_func && !cond_func(cpu, info)) { __cpumask_clear_cpu(cpu, cfd->cpumask); continue; } csd_lock(csd); if (wait) csd->node.u_flags |= CSD_TYPE_SYNC; csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { __cpumask_set_cpu(cpu, cfd->cpumask_ipi); nr_cpus++; last_cpu = cpu; } } /* * Choose the most efficient way to send an IPI. Note that the * number of CPUs might be zero due to concurrent changes to the * provided mask. */ if (nr_cpus == 1) send_call_function_single_ipi(last_cpu); else if (likely(nr_cpus > 1)) send_call_function_ipi_mask(cfd->cpumask_ipi); } if (run_local && (!cond_func || cond_func(this_cpu, info))) { unsigned long flags; local_irq_save(flags); csd_do_func(func, info, NULL); local_irq_restore(flags); } if (run_remote && wait) { for_each_cpu(cpu, cfd->cpumask) { call_single_data_t *csd; csd = per_cpu_ptr(cfd->csd, cpu); csd_lock_wait(csd); } } } /** * smp_call_function_many(): Run a function on a set of CPUs. * @mask: The set of cpus to run on (only runs on online subset). * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait * (atomically) until function has completed on other CPUs. If * %SCF_RUN_LOCAL is set, the function will also be run locally * if the local CPU is set in the @cpumask. * * If @wait is true, then returns once @func has returned. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. Preemption * must be disabled when calling this function. */ void smp_call_function_many(const struct cpumask *mask, smp_call_func_t func, void *info, bool wait) { smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); } EXPORT_SYMBOL(smp_call_function_many); /** * smp_call_function(): Run a function on all other CPUs. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait (atomically) until function has completed * on other CPUs. * * Returns 0. * * If @wait is true, then returns once @func has returned; otherwise * it returns just before the target cpu calls @func. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ void smp_call_function(smp_call_func_t func, void *info, int wait) { preempt_disable(); smp_call_function_many(cpu_online_mask, func, info, wait); preempt_enable(); } EXPORT_SYMBOL(smp_call_function); /* Setup configured maximum number of CPUs to activate */ unsigned int setup_max_cpus = NR_CPUS; EXPORT_SYMBOL(setup_max_cpus); /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */ void __weak __init arch_disable_smp_support(void) { } static int __init nosmp(char *str) { setup_max_cpus = 0; arch_disable_smp_support(); return 0; } early_param("nosmp", nosmp); /* this is hard limit */ static int __init nrcpus(char *str) { int nr_cpus; if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) set_nr_cpu_ids(nr_cpus); return 0; } early_param("nr_cpus", nrcpus); static int __init maxcpus(char *str) { get_option(&str, &setup_max_cpus); if (setup_max_cpus == 0) arch_disable_smp_support(); return 0; } early_param("maxcpus", maxcpus); #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS) /* Setup number of possible processor ids */ unsigned int nr_cpu_ids __read_mostly = NR_CPUS; EXPORT_SYMBOL(nr_cpu_ids); #endif /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ void __init setup_nr_cpu_ids(void) { set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1); } /* Called by boot processor to activate the rest. */ void __init smp_init(void) { int num_nodes, num_cpus; idle_threads_init(); cpuhp_threads_init(); pr_info("Bringing up secondary CPUs ...\n"); bringup_nonboot_cpus(setup_max_cpus); num_nodes = num_online_nodes(); num_cpus = num_online_cpus(); pr_info("Brought up %d node%s, %d CPU%s\n", num_nodes, str_plural(num_nodes), num_cpus, str_plural(num_cpus)); /* Any cleanup work */ smp_cpus_done(setup_max_cpus); } /* * on_each_cpu_cond(): Call a function on each processor for which * the supplied function cond_func returns true, optionally waiting * for all the required CPUs to finish. This may include the local * processor. * @cond_func: A callback function that is passed a cpu id and * the info parameter. The function is called * with preemption disabled. The function should * return a blooean value indicating whether to IPI * the specified CPU. * @func: The function to run on all applicable CPUs. * This must be fast and non-blocking. * @info: An arbitrary pointer to pass to both functions. * @wait: If true, wait (atomically) until function has * completed on other CPUs. * * Preemption is disabled to protect against CPUs going offline but not online. * CPUs going online during the call will not be seen or sent an IPI. * * You must not call this function with disabled interrupts or * from a hardware interrupt handler or from a bottom half handler. */ void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, void *info, bool wait, const struct cpumask *mask) { unsigned int scf_flags = SCF_RUN_LOCAL; if (wait) scf_flags |= SCF_WAIT; preempt_disable(); smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); preempt_enable(); } EXPORT_SYMBOL(on_each_cpu_cond_mask); static void do_nothing(void *unused) { } /** * kick_all_cpus_sync - Force all cpus out of idle * * Used to synchronize the update of pm_idle function pointer. It's * called after the pointer is updated and returns after the dummy * callback function has been executed on all cpus. The execution of * the function can only happen on the remote cpus after they have * left the idle function which had been called via pm_idle function * pointer. So it's guaranteed that nothing uses the previous pointer * anymore. */ void kick_all_cpus_sync(void) { /* Make sure the change is visible before we kick the cpus */ smp_mb(); smp_call_function(do_nothing, NULL, 1); } EXPORT_SYMBOL_GPL(kick_all_cpus_sync); /** * wake_up_all_idle_cpus - break all cpus out of idle * wake_up_all_idle_cpus try to break all cpus which is in idle state even * including idle polling cpus, for non-idle cpus, we will do nothing * for them. */ void wake_up_all_idle_cpus(void) { int cpu; for_each_possible_cpu(cpu) { preempt_disable(); if (cpu != smp_processor_id() && cpu_online(cpu)) wake_up_if_idle(cpu); preempt_enable(); } } EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); /** * struct smp_call_on_cpu_struct - Call a function on a specific CPU * @work: &work_struct * @done: &completion to signal * @func: function to call * @data: function's data argument * @ret: return value from @func * @cpu: target CPU (%-1 for any CPU) * * Used to call a function on a specific cpu and wait for it to return. * Optionally make sure the call is done on a specified physical cpu via vcpu * pinning in order to support virtualized environments. */ struct smp_call_on_cpu_struct { struct work_struct work; struct completion done; int (*func)(void *); void *data; int ret; int cpu; }; static void smp_call_on_cpu_callback(struct work_struct *work) { struct smp_call_on_cpu_struct *sscs; sscs = container_of(work, struct smp_call_on_cpu_struct, work); if (sscs->cpu >= 0) hypervisor_pin_vcpu(sscs->cpu); sscs->ret = sscs->func(sscs->data); if (sscs->cpu >= 0) hypervisor_pin_vcpu(-1); complete(&sscs->done); } int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) { struct smp_call_on_cpu_struct sscs = { .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), .func = func, .data = par, .cpu = phys ? cpu : -1, }; INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); if (cpu >= nr_cpu_ids || !cpu_online(cpu)) return -ENXIO; queue_work_on(cpu, system_wq, &sscs.work); wait_for_completion(&sscs.done); destroy_work_on_stack(&sscs.work); return sscs.ret; } EXPORT_SYMBOL_GPL(smp_call_on_cpu); |
204 1 1549 18 141 40 140 142 140 1623 1637 1549 1314 65 139 141 141 140 1624 1623 1603 18 1618 1613 1617 141 10 131 38 141 12 11 12 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/file.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/slab.h> /* * Mapping table from "enum tomoyo_path_acl_index" to "enum tomoyo_mac_index". */ static const u8 tomoyo_p2mac[TOMOYO_MAX_PATH_OPERATION] = { [TOMOYO_TYPE_EXECUTE] = TOMOYO_MAC_FILE_EXECUTE, [TOMOYO_TYPE_READ] = TOMOYO_MAC_FILE_OPEN, [TOMOYO_TYPE_WRITE] = TOMOYO_MAC_FILE_OPEN, [TOMOYO_TYPE_APPEND] = TOMOYO_MAC_FILE_OPEN, [TOMOYO_TYPE_UNLINK] = TOMOYO_MAC_FILE_UNLINK, [TOMOYO_TYPE_GETATTR] = TOMOYO_MAC_FILE_GETATTR, [TOMOYO_TYPE_RMDIR] = TOMOYO_MAC_FILE_RMDIR, [TOMOYO_TYPE_TRUNCATE] = TOMOYO_MAC_FILE_TRUNCATE, [TOMOYO_TYPE_SYMLINK] = TOMOYO_MAC_FILE_SYMLINK, [TOMOYO_TYPE_CHROOT] = TOMOYO_MAC_FILE_CHROOT, [TOMOYO_TYPE_UMOUNT] = TOMOYO_MAC_FILE_UMOUNT, }; /* * Mapping table from "enum tomoyo_mkdev_acl_index" to "enum tomoyo_mac_index". */ const u8 tomoyo_pnnn2mac[TOMOYO_MAX_MKDEV_OPERATION] = { [TOMOYO_TYPE_MKBLOCK] = TOMOYO_MAC_FILE_MKBLOCK, [TOMOYO_TYPE_MKCHAR] = TOMOYO_MAC_FILE_MKCHAR, }; /* * Mapping table from "enum tomoyo_path2_acl_index" to "enum tomoyo_mac_index". */ const u8 tomoyo_pp2mac[TOMOYO_MAX_PATH2_OPERATION] = { [TOMOYO_TYPE_LINK] = TOMOYO_MAC_FILE_LINK, [TOMOYO_TYPE_RENAME] = TOMOYO_MAC_FILE_RENAME, [TOMOYO_TYPE_PIVOT_ROOT] = TOMOYO_MAC_FILE_PIVOT_ROOT, }; /* * Mapping table from "enum tomoyo_path_number_acl_index" to * "enum tomoyo_mac_index". */ const u8 tomoyo_pn2mac[TOMOYO_MAX_PATH_NUMBER_OPERATION] = { [TOMOYO_TYPE_CREATE] = TOMOYO_MAC_FILE_CREATE, [TOMOYO_TYPE_MKDIR] = TOMOYO_MAC_FILE_MKDIR, [TOMOYO_TYPE_MKFIFO] = TOMOYO_MAC_FILE_MKFIFO, [TOMOYO_TYPE_MKSOCK] = TOMOYO_MAC_FILE_MKSOCK, [TOMOYO_TYPE_IOCTL] = TOMOYO_MAC_FILE_IOCTL, [TOMOYO_TYPE_CHMOD] = TOMOYO_MAC_FILE_CHMOD, [TOMOYO_TYPE_CHOWN] = TOMOYO_MAC_FILE_CHOWN, [TOMOYO_TYPE_CHGRP] = TOMOYO_MAC_FILE_CHGRP, }; /** * tomoyo_put_name_union - Drop reference on "struct tomoyo_name_union". * * @ptr: Pointer to "struct tomoyo_name_union". * * Returns nothing. */ void tomoyo_put_name_union(struct tomoyo_name_union *ptr) { tomoyo_put_group(ptr->group); tomoyo_put_name(ptr->filename); } /** * tomoyo_compare_name_union - Check whether a name matches "struct tomoyo_name_union" or not. * * @name: Pointer to "struct tomoyo_path_info". * @ptr: Pointer to "struct tomoyo_name_union". * * Returns "struct tomoyo_path_info" if @name matches @ptr, NULL otherwise. */ const struct tomoyo_path_info * tomoyo_compare_name_union(const struct tomoyo_path_info *name, const struct tomoyo_name_union *ptr) { if (ptr->group) return tomoyo_path_matches_group(name, ptr->group); if (tomoyo_path_matches_pattern(name, ptr->filename)) return ptr->filename; return NULL; } /** * tomoyo_put_number_union - Drop reference on "struct tomoyo_number_union". * * @ptr: Pointer to "struct tomoyo_number_union". * * Returns nothing. */ void tomoyo_put_number_union(struct tomoyo_number_union *ptr) { tomoyo_put_group(ptr->group); } /** * tomoyo_compare_number_union - Check whether a value matches "struct tomoyo_number_union" or not. * * @value: Number to check. * @ptr: Pointer to "struct tomoyo_number_union". * * Returns true if @value matches @ptr, false otherwise. */ bool tomoyo_compare_number_union(const unsigned long value, const struct tomoyo_number_union *ptr) { if (ptr->group) return tomoyo_number_matches_group(value, value, ptr->group); return value >= ptr->values[0] && value <= ptr->values[1]; } /** * tomoyo_add_slash - Add trailing '/' if needed. * * @buf: Pointer to "struct tomoyo_path_info". * * Returns nothing. * * @buf must be generated by tomoyo_encode() because this function does not * allocate memory for adding '/'. */ static void tomoyo_add_slash(struct tomoyo_path_info *buf) { if (buf->is_dir) return; /* * This is OK because tomoyo_encode() reserves space for appending "/". */ strcat((char *) buf->name, "/"); tomoyo_fill_path_info(buf); } /** * tomoyo_get_realpath - Get realpath. * * @buf: Pointer to "struct tomoyo_path_info". * @path: Pointer to "struct path". * * Returns true on success, false otherwise. */ static bool tomoyo_get_realpath(struct tomoyo_path_info *buf, const struct path *path) { buf->name = tomoyo_realpath_from_path(path); if (buf->name) { tomoyo_fill_path_info(buf); return true; } return false; } /** * tomoyo_audit_path_log - Audit path request log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_path_log(struct tomoyo_request_info *r) { return tomoyo_supervisor(r, "file %s %s\n", tomoyo_path_keyword [r->param.path.operation], r->param.path.filename->name); } /** * tomoyo_audit_path2_log - Audit path/path request log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_path2_log(struct tomoyo_request_info *r) { return tomoyo_supervisor(r, "file %s %s %s\n", tomoyo_mac_keywords [tomoyo_pp2mac[r->param.path2.operation]], r->param.path2.filename1->name, r->param.path2.filename2->name); } /** * tomoyo_audit_mkdev_log - Audit path/number/number/number request log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_mkdev_log(struct tomoyo_request_info *r) { return tomoyo_supervisor(r, "file %s %s 0%o %u %u\n", tomoyo_mac_keywords [tomoyo_pnnn2mac[r->param.mkdev.operation]], r->param.mkdev.filename->name, r->param.mkdev.mode, r->param.mkdev.major, r->param.mkdev.minor); } /** * tomoyo_audit_path_number_log - Audit path/number request log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_path_number_log(struct tomoyo_request_info *r) { const u8 type = r->param.path_number.operation; u8 radix; char buffer[64]; switch (type) { case TOMOYO_TYPE_CREATE: case TOMOYO_TYPE_MKDIR: case TOMOYO_TYPE_MKFIFO: case TOMOYO_TYPE_MKSOCK: case TOMOYO_TYPE_CHMOD: radix = TOMOYO_VALUE_TYPE_OCTAL; break; case TOMOYO_TYPE_IOCTL: radix = TOMOYO_VALUE_TYPE_HEXADECIMAL; break; default: radix = TOMOYO_VALUE_TYPE_DECIMAL; break; } tomoyo_print_ulong(buffer, sizeof(buffer), r->param.path_number.number, radix); return tomoyo_supervisor(r, "file %s %s %s\n", tomoyo_mac_keywords [tomoyo_pn2mac[type]], r->param.path_number.filename->name, buffer); } /** * tomoyo_check_path_acl - Check permission for path operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. * * To be able to use wildcard for domain transition, this function sets * matching entry on success. Since the caller holds tomoyo_read_lock(), * it is safe to set matching entry. */ static bool tomoyo_check_path_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_path_acl *acl = container_of(ptr, typeof(*acl), head); if (acl->perm & (1 << r->param.path.operation)) { r->param.path.matched_path = tomoyo_compare_name_union(r->param.path.filename, &acl->name); return r->param.path.matched_path != NULL; } return false; } /** * tomoyo_check_path_number_acl - Check permission for path number operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_path_number_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_path_number_acl *acl = container_of(ptr, typeof(*acl), head); return (acl->perm & (1 << r->param.path_number.operation)) && tomoyo_compare_number_union(r->param.path_number.number, &acl->number) && tomoyo_compare_name_union(r->param.path_number.filename, &acl->name); } /** * tomoyo_check_path2_acl - Check permission for path path operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_path2_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_path2_acl *acl = container_of(ptr, typeof(*acl), head); return (acl->perm & (1 << r->param.path2.operation)) && tomoyo_compare_name_union(r->param.path2.filename1, &acl->name1) && tomoyo_compare_name_union(r->param.path2.filename2, &acl->name2); } /** * tomoyo_check_mkdev_acl - Check permission for path number number number operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_mkdev_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_mkdev_acl *acl = container_of(ptr, typeof(*acl), head); return (acl->perm & (1 << r->param.mkdev.operation)) && tomoyo_compare_number_union(r->param.mkdev.mode, &acl->mode) && tomoyo_compare_number_union(r->param.mkdev.major, &acl->major) && tomoyo_compare_number_union(r->param.mkdev.minor, &acl->minor) && tomoyo_compare_name_union(r->param.mkdev.filename, &acl->name); } /** * tomoyo_same_path_acl - Check for duplicated "struct tomoyo_path_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_path_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_path_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_path_acl *p2 = container_of(b, typeof(*p2), head); return tomoyo_same_name_union(&p1->name, &p2->name); } /** * tomoyo_merge_path_acl - Merge duplicated "struct tomoyo_path_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_path_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u16 * const a_perm = &container_of(a, struct tomoyo_path_acl, head) ->perm; u16 perm = READ_ONCE(*a_perm); const u16 b_perm = container_of(b, struct tomoyo_path_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_update_path_acl - Update "struct tomoyo_path_acl" list. * * @perm: Permission. * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_update_path_acl(const u16 perm, struct tomoyo_acl_param *param) { struct tomoyo_path_acl e = { .head.type = TOMOYO_TYPE_PATH_ACL, .perm = perm }; int error; if (!tomoyo_parse_name_union(param, &e.name)) error = -EINVAL; else error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_path_acl, tomoyo_merge_path_acl); tomoyo_put_name_union(&e.name); return error; } /** * tomoyo_same_mkdev_acl - Check for duplicated "struct tomoyo_mkdev_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_mkdev_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_mkdev_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_mkdev_acl *p2 = container_of(b, typeof(*p2), head); return tomoyo_same_name_union(&p1->name, &p2->name) && tomoyo_same_number_union(&p1->mode, &p2->mode) && tomoyo_same_number_union(&p1->major, &p2->major) && tomoyo_same_number_union(&p1->minor, &p2->minor); } /** * tomoyo_merge_mkdev_acl - Merge duplicated "struct tomoyo_mkdev_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_mkdev_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 *const a_perm = &container_of(a, struct tomoyo_mkdev_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_mkdev_acl, head) ->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_update_mkdev_acl - Update "struct tomoyo_mkdev_acl" list. * * @perm: Permission. * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_update_mkdev_acl(const u8 perm, struct tomoyo_acl_param *param) { struct tomoyo_mkdev_acl e = { .head.type = TOMOYO_TYPE_MKDEV_ACL, .perm = perm }; int error; if (!tomoyo_parse_name_union(param, &e.name) || !tomoyo_parse_number_union(param, &e.mode) || !tomoyo_parse_number_union(param, &e.major) || !tomoyo_parse_number_union(param, &e.minor)) error = -EINVAL; else error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_mkdev_acl, tomoyo_merge_mkdev_acl); tomoyo_put_name_union(&e.name); tomoyo_put_number_union(&e.mode); tomoyo_put_number_union(&e.major); tomoyo_put_number_union(&e.minor); return error; } /** * tomoyo_same_path2_acl - Check for duplicated "struct tomoyo_path2_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_path2_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_path2_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_path2_acl *p2 = container_of(b, typeof(*p2), head); return tomoyo_same_name_union(&p1->name1, &p2->name1) && tomoyo_same_name_union(&p1->name2, &p2->name2); } /** * tomoyo_merge_path2_acl - Merge duplicated "struct tomoyo_path2_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_path2_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_path2_acl, head) ->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_path2_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_update_path2_acl - Update "struct tomoyo_path2_acl" list. * * @perm: Permission. * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_update_path2_acl(const u8 perm, struct tomoyo_acl_param *param) { struct tomoyo_path2_acl e = { .head.type = TOMOYO_TYPE_PATH2_ACL, .perm = perm }; int error; if (!tomoyo_parse_name_union(param, &e.name1) || !tomoyo_parse_name_union(param, &e.name2)) error = -EINVAL; else error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_path2_acl, tomoyo_merge_path2_acl); tomoyo_put_name_union(&e.name1); tomoyo_put_name_union(&e.name2); return error; } /** * tomoyo_path_permission - Check permission for single path operation. * * @r: Pointer to "struct tomoyo_request_info". * @operation: Type of operation. * @filename: Filename to check. * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_path_permission(struct tomoyo_request_info *r, u8 operation, const struct tomoyo_path_info *filename) { int error; r->type = tomoyo_p2mac[operation]; r->mode = tomoyo_get_mode(r->domain->ns, r->profile, r->type); if (r->mode == TOMOYO_CONFIG_DISABLED) return 0; r->param_type = TOMOYO_TYPE_PATH_ACL; r->param.path.filename = filename; r->param.path.operation = operation; do { tomoyo_check_acl(r, tomoyo_check_path_acl); error = tomoyo_audit_path_log(r); } while (error == TOMOYO_RETRY_REQUEST); return error; } /** * tomoyo_execute_permission - Check permission for execute operation. * * @r: Pointer to "struct tomoyo_request_info". * @filename: Filename to check. * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ int tomoyo_execute_permission(struct tomoyo_request_info *r, const struct tomoyo_path_info *filename) { /* * Unlike other permission checks, this check is done regardless of * profile mode settings in order to check for domain transition * preference. */ r->type = TOMOYO_MAC_FILE_EXECUTE; r->mode = tomoyo_get_mode(r->domain->ns, r->profile, r->type); r->param_type = TOMOYO_TYPE_PATH_ACL; r->param.path.filename = filename; r->param.path.operation = TOMOYO_TYPE_EXECUTE; tomoyo_check_acl(r, tomoyo_check_path_acl); r->ee->transition = r->matched_acl && r->matched_acl->cond ? r->matched_acl->cond->transit : NULL; if (r->mode != TOMOYO_CONFIG_DISABLED) return tomoyo_audit_path_log(r); return 0; } /** * tomoyo_same_path_number_acl - Check for duplicated "struct tomoyo_path_number_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_path_number_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_path_number_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_path_number_acl *p2 = container_of(b, typeof(*p2), head); return tomoyo_same_name_union(&p1->name, &p2->name) && tomoyo_same_number_union(&p1->number, &p2->number); } /** * tomoyo_merge_path_number_acl - Merge duplicated "struct tomoyo_path_number_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_path_number_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_path_number_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_path_number_acl, head) ->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_update_path_number_acl - Update ioctl/chmod/chown/chgrp ACL. * * @perm: Permission. * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_update_path_number_acl(const u8 perm, struct tomoyo_acl_param *param) { struct tomoyo_path_number_acl e = { .head.type = TOMOYO_TYPE_PATH_NUMBER_ACL, .perm = perm }; int error; if (!tomoyo_parse_name_union(param, &e.name) || !tomoyo_parse_number_union(param, &e.number)) error = -EINVAL; else error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_path_number_acl, tomoyo_merge_path_number_acl); tomoyo_put_name_union(&e.name); tomoyo_put_number_union(&e.number); return error; } /** * tomoyo_path_number_perm - Check permission for "create", "mkdir", "mkfifo", "mksock", "ioctl", "chmod", "chown", "chgrp". * * @type: Type of operation. * @path: Pointer to "struct path". * @number: Number. * * Returns 0 on success, negative value otherwise. */ int tomoyo_path_number_perm(const u8 type, const struct path *path, unsigned long number) { struct tomoyo_request_info r; struct tomoyo_obj_info obj = { .path1 = { .mnt = path->mnt, .dentry = path->dentry }, }; int error = -ENOMEM; struct tomoyo_path_info buf; int idx; if (tomoyo_init_request_info(&r, NULL, tomoyo_pn2mac[type]) == TOMOYO_CONFIG_DISABLED) return 0; idx = tomoyo_read_lock(); if (!tomoyo_get_realpath(&buf, path)) goto out; r.obj = &obj; if (type == TOMOYO_TYPE_MKDIR) tomoyo_add_slash(&buf); r.param_type = TOMOYO_TYPE_PATH_NUMBER_ACL; r.param.path_number.operation = type; r.param.path_number.filename = &buf; r.param.path_number.number = number; do { tomoyo_check_acl(&r, tomoyo_check_path_number_acl); error = tomoyo_audit_path_number_log(&r); } while (error == TOMOYO_RETRY_REQUEST); kfree(buf.name); out: tomoyo_read_unlock(idx); if (r.mode != TOMOYO_CONFIG_ENFORCING) error = 0; return error; } /** * tomoyo_check_open_permission - Check permission for "read" and "write". * * @domain: Pointer to "struct tomoyo_domain_info". * @path: Pointer to "struct path". * @flag: Flags for open(). * * Returns 0 on success, negative value otherwise. */ int tomoyo_check_open_permission(struct tomoyo_domain_info *domain, const struct path *path, const int flag) { const u8 acc_mode = ACC_MODE(flag); int error = 0; struct tomoyo_path_info buf; struct tomoyo_request_info r; struct tomoyo_obj_info obj = { .path1 = { .mnt = path->mnt, .dentry = path->dentry }, }; int idx; buf.name = NULL; r.mode = TOMOYO_CONFIG_DISABLED; idx = tomoyo_read_lock(); if (acc_mode && tomoyo_init_request_info(&r, domain, TOMOYO_MAC_FILE_OPEN) != TOMOYO_CONFIG_DISABLED) { if (!tomoyo_get_realpath(&buf, path)) { error = -ENOMEM; goto out; } r.obj = &obj; if (acc_mode & MAY_READ) error = tomoyo_path_permission(&r, TOMOYO_TYPE_READ, &buf); if (!error && (acc_mode & MAY_WRITE)) error = tomoyo_path_permission(&r, (flag & O_APPEND) ? TOMOYO_TYPE_APPEND : TOMOYO_TYPE_WRITE, &buf); } out: kfree(buf.name); tomoyo_read_unlock(idx); if (r.mode != TOMOYO_CONFIG_ENFORCING) error = 0; return error; } /** * tomoyo_path_perm - Check permission for "unlink", "rmdir", "truncate", "symlink", "append", "chroot" and "unmount". * * @operation: Type of operation. * @path: Pointer to "struct path". * @target: Symlink's target if @operation is TOMOYO_TYPE_SYMLINK, * NULL otherwise. * * Returns 0 on success, negative value otherwise. */ int tomoyo_path_perm(const u8 operation, const struct path *path, const char *target) { struct tomoyo_request_info r; struct tomoyo_obj_info obj = { .path1 = { .mnt = path->mnt, .dentry = path->dentry }, }; int error; struct tomoyo_path_info buf; bool is_enforce; struct tomoyo_path_info symlink_target; int idx; if (tomoyo_init_request_info(&r, NULL, tomoyo_p2mac[operation]) == TOMOYO_CONFIG_DISABLED) return 0; is_enforce = (r.mode == TOMOYO_CONFIG_ENFORCING); error = -ENOMEM; buf.name = NULL; idx = tomoyo_read_lock(); if (!tomoyo_get_realpath(&buf, path)) goto out; r.obj = &obj; switch (operation) { case TOMOYO_TYPE_RMDIR: case TOMOYO_TYPE_CHROOT: tomoyo_add_slash(&buf); break; case TOMOYO_TYPE_SYMLINK: symlink_target.name = tomoyo_encode(target); if (!symlink_target.name) goto out; tomoyo_fill_path_info(&symlink_target); obj.symlink_target = &symlink_target; break; } error = tomoyo_path_permission(&r, operation, &buf); if (operation == TOMOYO_TYPE_SYMLINK) kfree(symlink_target.name); out: kfree(buf.name); tomoyo_read_unlock(idx); if (!is_enforce) error = 0; return error; } /** * tomoyo_mkdev_perm - Check permission for "mkblock" and "mkchar". * * @operation: Type of operation. (TOMOYO_TYPE_MKCHAR or TOMOYO_TYPE_MKBLOCK) * @path: Pointer to "struct path". * @mode: Create mode. * @dev: Device number. * * Returns 0 on success, negative value otherwise. */ int tomoyo_mkdev_perm(const u8 operation, const struct path *path, const unsigned int mode, unsigned int dev) { struct tomoyo_request_info r; struct tomoyo_obj_info obj = { .path1 = { .mnt = path->mnt, .dentry = path->dentry }, }; int error = -ENOMEM; struct tomoyo_path_info buf; int idx; if (tomoyo_init_request_info(&r, NULL, tomoyo_pnnn2mac[operation]) == TOMOYO_CONFIG_DISABLED) return 0; idx = tomoyo_read_lock(); error = -ENOMEM; if (tomoyo_get_realpath(&buf, path)) { r.obj = &obj; dev = new_decode_dev(dev); r.param_type = TOMOYO_TYPE_MKDEV_ACL; r.param.mkdev.filename = &buf; r.param.mkdev.operation = operation; r.param.mkdev.mode = mode; r.param.mkdev.major = MAJOR(dev); r.param.mkdev.minor = MINOR(dev); tomoyo_check_acl(&r, tomoyo_check_mkdev_acl); error = tomoyo_audit_mkdev_log(&r); kfree(buf.name); } tomoyo_read_unlock(idx); if (r.mode != TOMOYO_CONFIG_ENFORCING) error = 0; return error; } /** * tomoyo_path2_perm - Check permission for "rename", "link" and "pivot_root". * * @operation: Type of operation. * @path1: Pointer to "struct path". * @path2: Pointer to "struct path". * * Returns 0 on success, negative value otherwise. */ int tomoyo_path2_perm(const u8 operation, const struct path *path1, const struct path *path2) { int error = -ENOMEM; struct tomoyo_path_info buf1; struct tomoyo_path_info buf2; struct tomoyo_request_info r; struct tomoyo_obj_info obj = { .path1 = { .mnt = path1->mnt, .dentry = path1->dentry }, .path2 = { .mnt = path2->mnt, .dentry = path2->dentry } }; int idx; if (tomoyo_init_request_info(&r, NULL, tomoyo_pp2mac[operation]) == TOMOYO_CONFIG_DISABLED) return 0; buf1.name = NULL; buf2.name = NULL; idx = tomoyo_read_lock(); if (!tomoyo_get_realpath(&buf1, path1) || !tomoyo_get_realpath(&buf2, path2)) goto out; switch (operation) { case TOMOYO_TYPE_RENAME: case TOMOYO_TYPE_LINK: if (!d_is_dir(path1->dentry)) break; fallthrough; case TOMOYO_TYPE_PIVOT_ROOT: tomoyo_add_slash(&buf1); tomoyo_add_slash(&buf2); break; } r.obj = &obj; r.param_type = TOMOYO_TYPE_PATH2_ACL; r.param.path2.operation = operation; r.param.path2.filename1 = &buf1; r.param.path2.filename2 = &buf2; do { tomoyo_check_acl(&r, tomoyo_check_path2_acl); error = tomoyo_audit_path2_log(&r); } while (error == TOMOYO_RETRY_REQUEST); out: kfree(buf1.name); kfree(buf2.name); tomoyo_read_unlock(idx); if (r.mode != TOMOYO_CONFIG_ENFORCING) error = 0; return error; } /** * tomoyo_same_mount_acl - Check for duplicated "struct tomoyo_mount_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b, false otherwise. */ static bool tomoyo_same_mount_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_mount_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_mount_acl *p2 = container_of(b, typeof(*p2), head); return tomoyo_same_name_union(&p1->dev_name, &p2->dev_name) && tomoyo_same_name_union(&p1->dir_name, &p2->dir_name) && tomoyo_same_name_union(&p1->fs_type, &p2->fs_type) && tomoyo_same_number_union(&p1->flags, &p2->flags); } /** * tomoyo_update_mount_acl - Write "struct tomoyo_mount_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_update_mount_acl(struct tomoyo_acl_param *param) { struct tomoyo_mount_acl e = { .head.type = TOMOYO_TYPE_MOUNT_ACL }; int error; if (!tomoyo_parse_name_union(param, &e.dev_name) || !tomoyo_parse_name_union(param, &e.dir_name) || !tomoyo_parse_name_union(param, &e.fs_type) || !tomoyo_parse_number_union(param, &e.flags)) error = -EINVAL; else error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_mount_acl, NULL); tomoyo_put_name_union(&e.dev_name); tomoyo_put_name_union(&e.dir_name); tomoyo_put_name_union(&e.fs_type); tomoyo_put_number_union(&e.flags); return error; } /** * tomoyo_write_file - Update file related list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ int tomoyo_write_file(struct tomoyo_acl_param *param) { u16 perm = 0; u8 type; const char *operation = tomoyo_read_token(param); for (type = 0; type < TOMOYO_MAX_PATH_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_path_keyword[type])) perm |= 1 << type; if (perm) return tomoyo_update_path_acl(perm, param); for (type = 0; type < TOMOYO_MAX_PATH2_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_mac_keywords[tomoyo_pp2mac[type]])) perm |= 1 << type; if (perm) return tomoyo_update_path2_acl(perm, param); for (type = 0; type < TOMOYO_MAX_PATH_NUMBER_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_mac_keywords[tomoyo_pn2mac[type]])) perm |= 1 << type; if (perm) return tomoyo_update_path_number_acl(perm, param); for (type = 0; type < TOMOYO_MAX_MKDEV_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_mac_keywords[tomoyo_pnnn2mac[type]])) perm |= 1 << type; if (perm) return tomoyo_update_mkdev_acl(perm, param); if (tomoyo_permstr(operation, tomoyo_mac_keywords[TOMOYO_MAC_FILE_MOUNT])) return tomoyo_update_mount_acl(param); return -EINVAL; } |
26 29 8 5 6 7 7 9 9 21 21 22 22 22 22 17 17 16 14 3 17 7 7 1 1 3 2 1 4 1 5 5 2 2 1 2 1 1 3 1 97 61 99 96 101 100 1 101 9 98 16 99 3 93 1 4 8 35 5 23 13 10 3 1 1 3 2 1 2 1 3 3 3 1 23 2 6 3 3 26 13 13 254 1 1 9 2 1 2 1 27 9 1 8 35 3 2 5 18 4 5 4 1 2 1 4 1 2 1 6 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 3 4 4 6 1 2 3 1 1 1 8 1 1 75 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include <linux/bpf.h> #include <linux/btf.h> #include <linux/bpf-cgroup.h> #include <linux/cgroup.h> #include <linux/rcupdate.h> #include <linux/random.h> #include <linux/smp.h> #include <linux/topology.h> #include <linux/ktime.h> #include <linux/sched.h> #include <linux/uidgid.h> #include <linux/filter.h> #include <linux/ctype.h> #include <linux/jiffies.h> #include <linux/pid_namespace.h> #include <linux/poison.h> #include <linux/proc_ns.h> #include <linux/sched/task.h> #include <linux/security.h> #include <linux/btf_ids.h> #include <linux/bpf_mem_alloc.h> #include <linux/kasan.h> #include "../../lib/kstrtox.h" /* If kernel subsystem is allowing eBPF programs to call this function, * inside its own verifier_ops->get_func_proto() callback it should return * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments * * Different map implementations will rely on rcu in map methods * lookup/update/delete, therefore eBPF programs must run under rcu lock * if program is allowed to access maps, so check rcu_read_lock_held() or * rcu_read_lock_trace_held() in all three functions. */ BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_elem(map, key); } const struct bpf_func_proto bpf_map_lookup_elem_proto = { .func = bpf_map_lookup_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, void *, value, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); return map->ops->map_update_elem(map, key, value, flags); } const struct bpf_func_proto bpf_map_update_elem_proto = { .func = bpf_map_update_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_PTR_TO_MAP_VALUE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); return map->ops->map_delete_elem(map, key); } const struct bpf_func_proto bpf_map_delete_elem_proto = { .func = bpf_map_delete_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) { return map->ops->map_push_elem(map, value, flags); } const struct bpf_func_proto bpf_map_push_elem_proto = { .func = bpf_map_push_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) { return map->ops->map_pop_elem(map, value); } const struct bpf_func_proto bpf_map_pop_elem_proto = { .func = bpf_map_pop_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, }; BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) { return map->ops->map_peek_elem(map, value); } const struct bpf_func_proto bpf_map_peek_elem_proto = { .func = bpf_map_peek_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, }; BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); } const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { .func = bpf_map_lookup_percpu_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_get_prandom_u32_proto = { .func = bpf_user_rnd_u32, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_smp_processor_id) { return smp_processor_id(); } const struct bpf_func_proto bpf_get_smp_processor_id_proto = { .func = bpf_get_smp_processor_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_numa_node_id) { return numa_node_id(); } const struct bpf_func_proto bpf_get_numa_node_id_proto = { .func = bpf_get_numa_node_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_ns) { /* NMI safe access to clock monotonic */ return ktime_get_mono_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_ns_proto = { .func = bpf_ktime_get_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_boot_ns) { /* NMI safe access to clock boottime */ return ktime_get_boot_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { .func = bpf_ktime_get_boot_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_coarse_ns) { return ktime_get_coarse_ns(); } const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { .func = bpf_ktime_get_coarse_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_tai_ns) { /* NMI safe access to clock tai */ return ktime_get_tai_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { .func = bpf_ktime_get_tai_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_pid_tgid) { struct task_struct *task = current; if (unlikely(!task)) return -EINVAL; return (u64) task->tgid << 32 | task->pid; } const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { .func = bpf_get_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_uid_gid) { struct task_struct *task = current; kuid_t uid; kgid_t gid; if (unlikely(!task)) return -EINVAL; current_uid_gid(&uid, &gid); return (u64) from_kgid(&init_user_ns, gid) << 32 | from_kuid(&init_user_ns, uid); } const struct bpf_func_proto bpf_get_current_uid_gid_proto = { .func = bpf_get_current_uid_gid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) { struct task_struct *task = current; if (unlikely(!task)) goto err_clear; /* Verifier guarantees that size > 0 */ strscpy_pad(buf, task->comm, size); return 0; err_clear: memset(buf, 0, size); return -EINVAL; } const struct bpf_func_proto bpf_get_current_comm_proto = { .func = bpf_get_current_comm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE, }; #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; union { __u32 val; arch_spinlock_t lock; } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); preempt_disable(); arch_spin_lock(l); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; arch_spin_unlock(l); preempt_enable(); } #else static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); do { atomic_cond_read_relaxed(l, !VAL); } while (atomic_xchg(l, 1)); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; atomic_set_release(l, 0); } #endif static DEFINE_PER_CPU(unsigned long, irqsave_flags); static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) { unsigned long flags; local_irq_save(flags); __bpf_spin_lock(lock); __this_cpu_write(irqsave_flags, flags); } NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) { __bpf_spin_lock_irqsave(lock); return 0; } const struct bpf_func_proto bpf_spin_lock_proto = { .func = bpf_spin_lock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) { unsigned long flags; flags = __this_cpu_read(irqsave_flags); __bpf_spin_unlock(lock); local_irq_restore(flags); } NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) { __bpf_spin_unlock_irqrestore(lock); return 0; } const struct bpf_func_proto bpf_spin_unlock_proto = { .func = bpf_spin_unlock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src) { struct bpf_spin_lock *lock; if (lock_src) lock = src + map->record->spin_lock_off; else lock = dst + map->record->spin_lock_off; preempt_disable(); __bpf_spin_lock_irqsave(lock); copy_map_value(map, dst, src); __bpf_spin_unlock_irqrestore(lock); preempt_enable(); } BPF_CALL_0(bpf_jiffies64) { return get_jiffies_64(); } const struct bpf_func_proto bpf_jiffies64_proto = { .func = bpf_jiffies64, .gpl_only = false, .ret_type = RET_INTEGER, }; #ifdef CONFIG_CGROUPS BPF_CALL_0(bpf_get_current_cgroup_id) { struct cgroup *cgrp; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); cgrp_id = cgroup_id(cgrp); rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { .func = bpf_get_current_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) { struct cgroup *cgrp; struct cgroup *ancestor; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); ancestor = cgroup_ancestor(cgrp, ancestor_level); cgrp_id = ancestor ? cgroup_id(ancestor) : 0; rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { .func = bpf_get_current_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; #endif /* CONFIG_CGROUPS */ #define BPF_STRTOX_BASE_MASK 0x1F static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, unsigned long long *res, bool *is_negative) { unsigned int base = flags & BPF_STRTOX_BASE_MASK; const char *cur_buf = buf; size_t cur_len = buf_len; unsigned int consumed; size_t val_len; char str[64]; if (!buf || !buf_len || !res || !is_negative) return -EINVAL; if (base != 0 && base != 8 && base != 10 && base != 16) return -EINVAL; if (flags & ~BPF_STRTOX_BASE_MASK) return -EINVAL; while (cur_buf < buf + buf_len && isspace(*cur_buf)) ++cur_buf; *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); if (*is_negative) ++cur_buf; consumed = cur_buf - buf; cur_len -= consumed; if (!cur_len) return -EINVAL; cur_len = min(cur_len, sizeof(str) - 1); memcpy(str, cur_buf, cur_len); str[cur_len] = '\0'; cur_buf = str; cur_buf = _parse_integer_fixup_radix(cur_buf, &base); val_len = _parse_integer(cur_buf, base, res); if (val_len & KSTRTOX_OVERFLOW) return -ERANGE; if (val_len == 0) return -EINVAL; cur_buf += val_len; consumed += cur_buf - str; return consumed; } static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, long long *res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) { if ((long long)-_res > 0) return -ERANGE; *res = -_res; } else { if ((long long)_res < 0) return -ERANGE; *res = _res; } return err; } BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, long *, res) { long long _res; int err; err = __bpf_strtoll(buf, buf_len, flags, &_res); if (err < 0) return err; if (_res != (long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtol_proto = { .func = bpf_strtol, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, unsigned long *, res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) return -EINVAL; if (_res != (unsigned long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtoul_proto = { .func = bpf_strtoul, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) { return strncmp(s1, s2, s1_sz); } static const struct bpf_func_proto bpf_strncmp_proto = { .func = bpf_strncmp, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_PTR_TO_CONST_STR, }; BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, struct bpf_pidns_info *, nsdata, u32, size) { struct task_struct *task = current; struct pid_namespace *pidns; int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_pidns_info))) goto clear; if (unlikely((u64)(dev_t)dev != dev)) goto clear; if (unlikely(!task)) goto clear; pidns = task_active_pid_ns(task); if (unlikely(!pidns)) { err = -ENOENT; goto clear; } if (!ns_match(&pidns->ns, (dev_t)dev, ino)) goto clear; nsdata->pid = task_pid_nr_ns(task, pidns); nsdata->tgid = task_tgid_nr_ns(task, pidns); return 0; clear: memset((void *)nsdata, 0, (size_t) size); return err; } const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { .func = bpf_get_ns_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { .func = bpf_get_raw_cpu_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags, void *, data, u64, size) { if (unlikely(flags & ~(BPF_F_INDEX_MASK))) return -EINVAL; return bpf_event_output(map, flags, data, size, NULL, 0, NULL); } const struct bpf_func_proto bpf_event_output_data_proto = { .func = bpf_event_output_data, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, const void __user *, user_ptr) { int ret = copy_from_user(dst, user_ptr, size); if (unlikely(ret)) { memset(dst, 0, size); ret = -EFAULT; } return ret; } const struct bpf_func_proto bpf_copy_from_user_proto = { .func = bpf_copy_from_user, .gpl_only = false, .might_sleep = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) { int ret; /* flags is not used yet */ if (unlikely(flags)) return -EINVAL; if (unlikely(!size)) return 0; ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); if (ret == size) return 0; memset(dst, 0, size); /* Return -EFAULT for partial read */ return ret < 0 ? ret : -EFAULT; } const struct bpf_func_proto bpf_copy_from_user_task_proto = { .func = bpf_copy_from_user_task, .gpl_only = true, .might_sleep = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_BTF_ID, .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], .arg5_type = ARG_ANYTHING }; BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) { if (cpu >= nr_cpu_ids) return (unsigned long)NULL; return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); } const struct bpf_func_proto bpf_per_cpu_ptr_proto = { .func = bpf_per_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) { return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); } const struct bpf_func_proto bpf_this_cpu_ptr_proto = { .func = bpf_this_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, }; static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, size_t bufsz) { void __user *user_ptr = (__force void __user *)unsafe_ptr; buf[0] = 0; switch (fmt_ptype) { case 's': #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if ((unsigned long)unsafe_ptr < TASK_SIZE) return strncpy_from_user_nofault(buf, user_ptr, bufsz); fallthrough; #endif case 'k': return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); case 'u': return strncpy_from_user_nofault(buf, user_ptr, bufsz); } return -EINVAL; } /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary * arguments representation. */ #define MAX_BPRINTF_BIN_ARGS 512 /* Support executing three nested bprintf helper calls on a given CPU */ #define MAX_BPRINTF_NEST_LEVEL 3 struct bpf_bprintf_buffers { char bin_args[MAX_BPRINTF_BIN_ARGS]; char buf[MAX_BPRINTF_BUF]; }; static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); static int try_get_buffers(struct bpf_bprintf_buffers **bufs) { int nest_level; preempt_disable(); nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); return -EBUSY; } *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); return 0; } void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) { if (!data->bin_args && !data->buf) return; if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) return; this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); } /* * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers * * Returns a negative value if fmt is an invalid format string or 0 otherwise. * * This can be used in two ways: * - Format string verification only: when data->get_bin_args is false * - Arguments preparation: in addition to the above verification, it writes in * data->bin_args a binary representation of arguments usable by bstr_printf * where pointers from BPF have been sanitized. * * In argument preparation mode, if 0 is returned, safe temporary buffers are * allocated and bpf_bprintf_cleanup should be called to free them after use. */ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 num_args, struct bpf_bprintf_data *data) { bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; struct bpf_bprintf_buffers *buffers = NULL; size_t sizeof_cur_arg, sizeof_cur_ip; int err, i, num_spec = 0; u64 cur_arg; char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; fmt_end = strnchr(fmt, fmt_size, 0); if (!fmt_end) return -EINVAL; fmt_size = fmt_end - fmt; if (get_buffers && try_get_buffers(&buffers)) return -EBUSY; if (data->get_bin_args) { if (num_args) tmp_buf = buffers->bin_args; tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; data->bin_args = (u32 *)tmp_buf; } if (data->get_buf) data->buf = buffers->buf; for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; goto out; } if (fmt[i] != '%') continue; if (fmt[i + 1] == '%') { i++; continue; } if (num_spec >= num_args) { err = -EINVAL; goto out; } /* The string is zero-terminated so if fmt[i] != 0, we can * always access fmt[i + 1], in the worst case it will be a 0 */ i++; /* skip optional "[0 +-][num]" width formatting field */ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || fmt[i] == ' ') i++; if (fmt[i] >= '1' && fmt[i] <= '9') { i++; while (fmt[i] >= '0' && fmt[i] <= '9') i++; } if (fmt[i] == 'p') { sizeof_cur_arg = sizeof(long); if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; i += 2; goto fmt_str; } if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 's' || fmt[i + 1] == 'S') { /* just kernel pointers */ if (tmp_buf) cur_arg = raw_args[num_spec]; i++; goto nocopy_fmt; } if (fmt[i + 1] == 'B') { if (tmp_buf) { err = snprintf(tmp_buf, (tmp_buf_end - tmp_buf), "%pB", (void *)(long)raw_args[num_spec]); tmp_buf += (err + 1); } i++; num_spec++; continue; } /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { err = -EINVAL; goto out; } i += 2; if (!tmp_buf) goto nocopy_fmt; sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, sizeof_cur_ip); if (err < 0) memset(cur_ip, 0, sizeof_cur_ip); /* hack: bstr_printf expects IP addresses to be * pre-formatted as strings, ironically, the easiest way * to do that is to call snprintf. */ ip_spec[2] = fmt[i - 1]; ip_spec[3] = fmt[i]; err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, ip_spec, &cur_ip); tmp_buf += err + 1; num_spec++; continue; } else if (fmt[i] == 's') { fmt_ptype = fmt[i]; fmt_str: if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) { err = -EINVAL; goto out; } if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, fmt_ptype, tmp_buf_end - tmp_buf); if (err < 0) { tmp_buf[0] = '\0'; err = 1; } tmp_buf += err; num_spec++; continue; } else if (fmt[i] == 'c') { if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } *tmp_buf = raw_args[num_spec]; tmp_buf++; num_spec++; continue; } sizeof_cur_arg = sizeof(int); if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long); i++; } if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long long); i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x' && fmt[i] != 'X') { err = -EINVAL; goto out; } if (tmp_buf) cur_arg = raw_args[num_spec]; nocopy_fmt: if (tmp_buf) { tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { err = -ENOSPC; goto out; } if (sizeof_cur_arg == 8) { *(u32 *)tmp_buf = *(u32 *)&cur_arg; *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); } else { *(u32 *)tmp_buf = (u32)(long)cur_arg; } tmp_buf += sizeof_cur_arg; } num_spec++; } err = 0; out: if (err) bpf_bprintf_cleanup(data); return err; } BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, const void *, args, u32, data_len) { struct bpf_bprintf_data data = { .get_bin_args = true, }; int err, num_args; if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || (data_len && !args)) return -EINVAL; num_args = data_len / 8; /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we * can safely give an unbounded size. */ err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); if (err < 0) return err; err = bstr_printf(str, str_size, fmt, data.bin_args); bpf_bprintf_cleanup(&data); return err + 1; } const struct bpf_func_proto bpf_snprintf_proto = { .func = bpf_snprintf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_CONST_STR, .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; struct bpf_async_cb { struct bpf_map *map; struct bpf_prog *prog; void __rcu *callback_fn; void *value; union { struct rcu_head rcu; struct work_struct delete_work; }; u64 flags; }; /* BPF map elements can contain 'struct bpf_timer'. * Such map owns all of its BPF timers. * 'struct bpf_timer' is allocated as part of map element allocation * and it's zero initialized. * That space is used to keep 'struct bpf_async_kern'. * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and * remembers 'struct bpf_map *' pointer it's part of. * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. * bpf_timer_start() arms the timer. * If user space reference to a map goes to zero at this point * ops->map_release_uref callback is responsible for cancelling the timers, * freeing their memory, and decrementing prog's refcnts. * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. * Inner maps can contain bpf timers as well. ops->map_release_uref is * freeing the timers when inner map is replaced or deleted by user space. */ struct bpf_hrtimer { struct bpf_async_cb cb; struct hrtimer timer; atomic_t cancelling; }; struct bpf_work { struct bpf_async_cb cb; struct work_struct work; struct work_struct delete_work; }; /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ struct bpf_async_kern { union { struct bpf_async_cb *cb; struct bpf_hrtimer *timer; struct bpf_work *work; }; /* bpf_spin_lock is used here instead of spinlock_t to make * sure that it always fits into space reserved by struct bpf_timer * regardless of LOCKDEP and spinlock debug flags. */ struct bpf_spin_lock lock; } __attribute__((aligned(8))); enum bpf_async_type { BPF_ASYNC_TYPE_TIMER = 0, BPF_ASYNC_TYPE_WQ, }; static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) { struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); struct bpf_map *map = t->cb.map; void *value = t->cb.value; bpf_callback_t callback_fn; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_timer); callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); if (!callback_fn) goto out; /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and * cannot be preempted by another bpf_timer_cb() on the same cpu. * Remember the timer this callback is servicing to prevent * deadlock if callback_fn() calls bpf_timer_cancel() or * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ this_cpu_write(hrtimer_running, NULL); out: return HRTIMER_NORESTART; } static void bpf_wq_work(struct work_struct *work) { struct bpf_work *w = container_of(work, struct bpf_work, work); struct bpf_async_cb *cb = &w->cb; struct bpf_map *map = cb->map; bpf_callback_t callback_fn; void *value = cb->value; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_wq); callback_fn = READ_ONCE(cb->callback_fn); if (!callback_fn) return; if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } rcu_read_lock_trace(); migrate_disable(); callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); migrate_enable(); rcu_read_unlock_trace(); } static void bpf_wq_delete_work(struct work_struct *work) { struct bpf_work *w = container_of(work, struct bpf_work, delete_work); cancel_work_sync(&w->work); kfree_rcu(w, cb.rcu); } static void bpf_timer_delete_work(struct work_struct *work) { struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); /* Cancel the timer and wait for callback to complete if it was running. * If hrtimer_cancel() can be safely called it's safe to call * kfree_rcu(t) right after for both preallocated and non-preallocated * maps. The async->cb = NULL was already done and no code path can see * address 't' anymore. Timer if armed for existing bpf_hrtimer before * bpf_timer_cancel_and_free will have been cancelled. */ hrtimer_cancel(&t->timer); kfree_rcu(t, cb.rcu); } static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, enum bpf_async_type type) { struct bpf_async_cb *cb; struct bpf_hrtimer *t; struct bpf_work *w; clockid_t clockid; size_t size; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; switch (type) { case BPF_ASYNC_TYPE_TIMER: size = sizeof(struct bpf_hrtimer); break; case BPF_ASYNC_TYPE_WQ: size = sizeof(struct bpf_work); break; default: return -EINVAL; } __bpf_spin_lock_irqsave(&async->lock); t = async->timer; if (t) { ret = -EBUSY; goto out; } /* allocate hrtimer via map_kmalloc to use memcg accounting */ cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); if (!cb) { ret = -ENOMEM; goto out; } switch (type) { case BPF_ASYNC_TYPE_TIMER: clockid = flags & (MAX_CLOCKS - 1); t = (struct bpf_hrtimer *)cb; atomic_set(&t->cancelling, 0); INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); t->timer.function = bpf_timer_cb; cb->value = (void *)async - map->record->timer_off; break; case BPF_ASYNC_TYPE_WQ: w = (struct bpf_work *)cb; INIT_WORK(&w->work, bpf_wq_work); INIT_WORK(&w->delete_work, bpf_wq_delete_work); cb->value = (void *)async - map->record->wq_off; break; } cb->map = map; cb->prog = NULL; cb->flags = flags; rcu_assign_pointer(cb->callback_fn, NULL); WRITE_ONCE(async->cb, cb); /* Guarantee the order between async->cb and map->usercnt. So * when there are concurrent uref release and bpf timer init, either * bpf_timer_cancel_and_free() called by uref release reads a no-NULL * timer or atomic64_read() below returns a zero usercnt. */ smp_mb(); if (!atomic64_read(&map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. */ WRITE_ONCE(async->cb, NULL); kfree(cb); ret = -EPERM; } out: __bpf_spin_unlock_irqrestore(&async->lock); return ret; } BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, u64, flags) { clock_t clockid = flags & (MAX_CLOCKS - 1); BUILD_BUG_ON(MAX_CLOCKS != 16); BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); if (flags >= MAX_CLOCKS || /* similar to timerfd except _ALARM variants are not supported */ (clockid != CLOCK_MONOTONIC && clockid != CLOCK_REALTIME && clockid != CLOCK_BOOTTIME)) return -EINVAL; return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); } static const struct bpf_func_proto bpf_timer_init_proto = { .func = bpf_timer_init, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, struct bpf_prog_aux *aux, unsigned int flags, enum bpf_async_type type) { struct bpf_prog *prev, *prog = aux->prog; struct bpf_async_cb *cb; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&async->lock); cb = async->cb; if (!cb) { ret = -EINVAL; goto out; } if (!atomic64_read(&cb->map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. Otherwise timer might still be * running even when bpf prog is detached and user space * is gone, since map_release_uref won't ever be called. */ ret = -EPERM; goto out; } prev = cb->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() * can pick different callback_fn-s within the same prog. */ prog = bpf_prog_inc_not_zero(prog); if (IS_ERR(prog)) { ret = PTR_ERR(prog); goto out; } if (prev) /* Drop prev prog refcnt when swapping with new prog */ bpf_prog_put(prev); cb->prog = prog; } rcu_assign_pointer(cb->callback_fn, callback_fn); out: __bpf_spin_unlock_irqrestore(&async->lock); return ret; } BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, struct bpf_prog_aux *, aux) { return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); } static const struct bpf_func_proto bpf_timer_set_callback_proto = { .func = bpf_timer_set_callback, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_PTR_TO_FUNC, }; BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) { struct bpf_hrtimer *t; int ret = 0; enum hrtimer_mode mode; if (in_nmi()) return -EOPNOTSUPP; if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t || !t->cb.prog) { ret = -EINVAL; goto out; } if (flags & BPF_F_TIMER_ABS) mode = HRTIMER_MODE_ABS_SOFT; else mode = HRTIMER_MODE_REL_SOFT; if (flags & BPF_F_TIMER_CPU_PIN) mode |= HRTIMER_MODE_PINNED; hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_start_proto = { .func = bpf_timer_start, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static void drop_prog_refcnt(struct bpf_async_cb *async) { struct bpf_prog *prog = async->prog; if (prog) { bpf_prog_put(prog); async->prog = NULL; rcu_assign_pointer(async->callback_fn, NULL); } } BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) { struct bpf_hrtimer *t, *cur_t; bool inc = false; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; rcu_read_lock(); __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } cur_t = this_cpu_read(hrtimer_running); if (cur_t == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock * since it waits for callback_fn to finish. */ ret = -EDEADLK; goto out; } /* Only account in-flight cancellations when invoked from a timer * callback, since we want to avoid waiting only if other _callbacks_ * are waiting on us, to avoid introducing lockups. Non-callback paths * are ok, since nobody would synchronously wait for their completion. */ if (!cur_t) goto drop; atomic_inc(&t->cancelling); /* Need full barrier after relaxed atomic_inc */ smp_mb__after_atomic(); inc = true; if (atomic_read(&cur_t->cancelling)) { /* We're cancelling timer t, while some other timer callback is * attempting to cancel us. In such a case, it might be possible * that timer t belongs to the other callback, or some other * callback waiting upon it (creating transitive dependencies * upon us), and we will enter a deadlock if we continue * cancelling and waiting for it synchronously, since it might * do the same. Bail! */ ret = -EDEADLK; goto out; } drop: drop_prog_refcnt(&t->cb); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); if (inc) atomic_dec(&t->cancelling); rcu_read_unlock(); return ret; } static const struct bpf_func_proto bpf_timer_cancel_proto = { .func = bpf_timer_cancel, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, }; static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) { struct bpf_async_cb *cb; /* Performance optimization: read async->cb without lock first. */ if (!READ_ONCE(async->cb)) return NULL; __bpf_spin_lock_irqsave(&async->lock); /* re-read it under lock */ cb = async->cb; if (!cb) goto out; drop_prog_refcnt(cb); /* The subsequent bpf_timer_start/cancel() helpers won't be able to use * this timer, since it won't be initialized. */ WRITE_ONCE(async->cb, NULL); out: __bpf_spin_unlock_irqrestore(&async->lock); return cb; } /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_timer_cancel_and_free(void *val) { struct bpf_hrtimer *t; t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); if (!t) return; /* We check that bpf_map_delete/update_elem() was called from timer * callback_fn. In such case we don't call hrtimer_cancel() (since it * will deadlock) and don't call hrtimer_try_to_cancel() (since it will * just return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', * since async->cb = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. * * However, it is possible the timer callback_fn calling us armed the * timer _before_ calling us, such that failing to cancel it here will * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. * Therefore, we _need_ to cancel any outstanding timers before we do * kfree_rcu, even though no more timers can be armed. * * Moreover, we need to schedule work even if timer does not belong to * the calling callback_fn, as on two different CPUs, we can end up in a * situation where both sides run in parallel, try to cancel one * another, and we end up waiting on both sides in hrtimer_cancel * without making forward progress, since timer1 depends on time2 * callback to finish, and vice versa. * * CPU 1 (timer1_cb) CPU 2 (timer2_cb) * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) * * To avoid these issues, punt to workqueue context when we are in a * timer callback. */ if (this_cpu_read(hrtimer_running)) queue_work(system_unbound_wq, &t->cb.delete_work); else bpf_timer_delete_work(&t->cb.delete_work); } /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_wq_cancel_and_free(void *val) { struct bpf_work *work; BTF_TYPE_EMIT(struct bpf_wq); work = (struct bpf_work *)__bpf_async_cancel_and_free(val); if (!work) return; /* Trigger cancel of the sleepable work, but *do not* wait for * it to finish if it was running as we might not be in a * sleepable context. * kfree will be called once the work has finished. */ schedule_work(&work->delete_work); } BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) { unsigned long *kptr = map_value; /* This helper may be inlined by verifier. */ return xchg(kptr, (unsigned long)ptr); } /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to * denote type that verifier will determine. */ static const struct bpf_func_proto bpf_kptr_xchg_proto = { .func = bpf_kptr_xchg, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .ret_btf_id = BPF_PTR_POISON, .arg1_type = ARG_PTR_TO_KPTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, .arg2_btf_id = BPF_PTR_POISON, }; /* Since the upper 8 bits of dynptr->size is reserved, the * maximum supported size is 2^24 - 1. */ #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) #define DYNPTR_TYPE_SHIFT 28 #define DYNPTR_SIZE_MASK 0xFFFFFF #define DYNPTR_RDONLY_BIT BIT(31) bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_RDONLY_BIT; } void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) { ptr->size |= DYNPTR_RDONLY_BIT; } static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) { ptr->size |= type << DYNPTR_TYPE_SHIFT; } static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) { return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; } u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_SIZE_MASK; } static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) { u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; ptr->size = new_size | metadata; } int bpf_dynptr_check_size(u32 size) { return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; } void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size) { ptr->data = data; ptr->offset = offset; ptr->size = size; bpf_dynptr_set_type(ptr, type); } void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) { memset(ptr, 0, sizeof(*ptr)); } static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) { u32 size = __bpf_dynptr_size(ptr); if (len > size || offset > size - len) return -E2BIG; return 0; } BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) { int err; BTF_TYPE_EMIT(struct bpf_dynptr); err = bpf_dynptr_check_size(size); if (err) goto error; /* flags is currently unsupported */ if (flags) { err = -EINVAL; goto error; } bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); return 0; error: bpf_dynptr_set_null(ptr); return err; } static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { .func = bpf_dynptr_from_mem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, }; BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, u32, offset, u64, flags) { enum bpf_dynptr_type type; int err; if (!src->data || flags) return -EINVAL; err = bpf_dynptr_check_off_len(src, offset, len); if (err) return err; type = bpf_dynptr_get_type(src); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: /* Source and destination may possibly overlap, hence use memmove to * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr * pointing to overlapping PTR_TO_MAP_VALUE regions. */ memmove(dst, src->data + src->offset + offset, len); return 0; case BPF_DYNPTR_TYPE_SKB: return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); case BPF_DYNPTR_TYPE_XDP: return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); default: WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); return -EFAULT; } } static const struct bpf_func_proto bpf_dynptr_read_proto = { .func = bpf_dynptr_read, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, u32, len, u64, flags) { enum bpf_dynptr_type type; int err; if (!dst->data || __bpf_dynptr_is_rdonly(dst)) return -EINVAL; err = bpf_dynptr_check_off_len(dst, offset, len); if (err) return err; type = bpf_dynptr_get_type(dst); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: if (flags) return -EINVAL; /* Source and destination may possibly overlap, hence use memmove to * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr * pointing to overlapping PTR_TO_MAP_VALUE regions. */ memmove(dst->data + dst->offset + offset, src, len); return 0; case BPF_DYNPTR_TYPE_SKB: return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, flags); case BPF_DYNPTR_TYPE_XDP: if (flags) return -EINVAL; return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); default: WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); return -EFAULT; } } static const struct bpf_func_proto bpf_dynptr_write_proto = { .func = bpf_dynptr_write, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) { enum bpf_dynptr_type type; int err; if (!ptr->data) return 0; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return 0; if (__bpf_dynptr_is_rdonly(ptr)) return 0; type = bpf_dynptr_get_type(ptr); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: return (unsigned long)(ptr->data + ptr->offset + offset); case BPF_DYNPTR_TYPE_SKB: case BPF_DYNPTR_TYPE_XDP: /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ return 0; default: WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); return 0; } } static const struct bpf_func_proto bpf_dynptr_data_proto = { .func = bpf_dynptr_data, .gpl_only = false, .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, }; const struct bpf_func_proto bpf_get_current_task_proto __weak; const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; const struct bpf_func_proto bpf_probe_read_user_proto __weak; const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; const struct bpf_func_proto bpf_task_pt_regs_proto __weak; const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_map_push_elem: return &bpf_map_push_elem_proto; case BPF_FUNC_map_pop_elem: return &bpf_map_pop_elem_proto; case BPF_FUNC_map_peek_elem: return &bpf_map_peek_elem_proto; case BPF_FUNC_map_lookup_percpu_elem: return &bpf_map_lookup_percpu_elem_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_raw_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_ktime_get_boot_ns: return &bpf_ktime_get_boot_ns_proto; case BPF_FUNC_ktime_get_tai_ns: return &bpf_ktime_get_tai_ns_proto; case BPF_FUNC_ringbuf_output: return &bpf_ringbuf_output_proto; case BPF_FUNC_ringbuf_reserve: return &bpf_ringbuf_reserve_proto; case BPF_FUNC_ringbuf_submit: return &bpf_ringbuf_submit_proto; case BPF_FUNC_ringbuf_discard: return &bpf_ringbuf_discard_proto; case BPF_FUNC_ringbuf_query: return &bpf_ringbuf_query_proto; case BPF_FUNC_strncmp: return &bpf_strncmp_proto; case BPF_FUNC_strtol: return &bpf_strtol_proto; case BPF_FUNC_strtoul: return &bpf_strtoul_proto; case BPF_FUNC_get_current_pid_tgid: return &bpf_get_current_pid_tgid_proto; case BPF_FUNC_get_ns_current_pid_tgid: return &bpf_get_ns_current_pid_tgid_proto; default: break; } if (!bpf_token_capable(prog->aux->token, CAP_BPF)) return NULL; switch (func_id) { case BPF_FUNC_spin_lock: return &bpf_spin_lock_proto; case BPF_FUNC_spin_unlock: return &bpf_spin_unlock_proto; case BPF_FUNC_jiffies64: return &bpf_jiffies64_proto; case BPF_FUNC_per_cpu_ptr: return &bpf_per_cpu_ptr_proto; case BPF_FUNC_this_cpu_ptr: return &bpf_this_cpu_ptr_proto; case BPF_FUNC_timer_init: return &bpf_timer_init_proto; case BPF_FUNC_timer_set_callback: return &bpf_timer_set_callback_proto; case BPF_FUNC_timer_start: return &bpf_timer_start_proto; case BPF_FUNC_timer_cancel: return &bpf_timer_cancel_proto; case BPF_FUNC_kptr_xchg: return &bpf_kptr_xchg_proto; case BPF_FUNC_for_each_map_elem: return &bpf_for_each_map_elem_proto; case BPF_FUNC_loop: return &bpf_loop_proto; case BPF_FUNC_user_ringbuf_drain: return &bpf_user_ringbuf_drain_proto; case BPF_FUNC_ringbuf_reserve_dynptr: return &bpf_ringbuf_reserve_dynptr_proto; case BPF_FUNC_ringbuf_submit_dynptr: return &bpf_ringbuf_submit_dynptr_proto; case BPF_FUNC_ringbuf_discard_dynptr: return &bpf_ringbuf_discard_dynptr_proto; case BPF_FUNC_dynptr_from_mem: return &bpf_dynptr_from_mem_proto; case BPF_FUNC_dynptr_read: return &bpf_dynptr_read_proto; case BPF_FUNC_dynptr_write: return &bpf_dynptr_write_proto; case BPF_FUNC_dynptr_data: return &bpf_dynptr_data_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_cgrp_storage_get: return &bpf_cgrp_storage_get_proto; case BPF_FUNC_cgrp_storage_delete: return &bpf_cgrp_storage_delete_proto; case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; case BPF_FUNC_get_current_ancestor_cgroup_id: return &bpf_get_current_ancestor_cgroup_id_proto; #endif default: break; } if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) return NULL; switch (func_id) { case BPF_FUNC_trace_printk: return bpf_get_trace_printk_proto(); case BPF_FUNC_get_current_task: return &bpf_get_current_task_proto; case BPF_FUNC_get_current_task_btf: return &bpf_get_current_task_btf_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_proto; case BPF_FUNC_probe_read_user_str: return &bpf_probe_read_user_str_proto; case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_snprintf: return &bpf_snprintf_proto; case BPF_FUNC_task_pt_regs: return &bpf_task_pt_regs_proto; case BPF_FUNC_trace_vprintk: return bpf_get_trace_vprintk_proto(); default: return NULL; } } void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock) { struct list_head *head = list_head, *orig_head = list_head; BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); /* Do the actual list draining outside the lock to not hold the lock for * too long, and also prevent deadlocks if tracing programs end up * executing on entry/exit of functions called inside the critical * section, and end up doing map ops that call bpf_list_head_free for * the same map value again. */ __bpf_spin_lock_irqsave(spin_lock); if (!head->next || list_empty(head)) goto unlock; head = head->next; unlock: INIT_LIST_HEAD(orig_head); __bpf_spin_unlock_irqrestore(spin_lock); while (head != orig_head) { void *obj = head; obj -= field->graph_root.node_offset; head = head->next; /* The contained type can also have resources, including a * bpf_list_head which needs to be freed. */ migrate_disable(); __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); migrate_enable(); } } /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are * 'rb_node *', so field name of rb_node within containing struct is not * needed. * * Since bpf_rb_tree's node type has a corresponding struct btf_field with * graph_root.node_offset, it's not necessary to know field name * or type of node struct */ #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ for (pos = rb_first_postorder(root); \ pos && ({ n = rb_next_postorder(pos); 1; }); \ pos = n) void bpf_rb_root_free(const struct btf_field *field, void *rb_root, struct bpf_spin_lock *spin_lock) { struct rb_root_cached orig_root, *root = rb_root; struct rb_node *pos, *n; void *obj; BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); __bpf_spin_lock_irqsave(spin_lock); orig_root = *root; *root = RB_ROOT_CACHED; __bpf_spin_unlock_irqrestore(spin_lock); bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { obj = pos; obj -= field->graph_root.node_offset; migrate_disable(); __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); migrate_enable(); } } __bpf_kfunc_start_defs(); __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; u64 size = local_type_id__k; void *p; p = bpf_mem_alloc(&bpf_global_ma, size); if (!p) return NULL; if (meta) bpf_obj_init(meta->record, p); return p; } __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) { u64 size = local_type_id__k; /* The verifier has ensured that meta__ign must be NULL */ return bpf_mem_alloc(&bpf_global_percpu_ma, size); } /* Must be called under migrate_disable(), as required by bpf_mem_free */ void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) { struct bpf_mem_alloc *ma; if (rec && rec->refcount_off >= 0 && !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { /* Object is refcounted and refcount_dec didn't result in 0 * refcount. Return without freeing the object */ return; } if (rec) bpf_obj_free_fields(rec, p); if (percpu) ma = &bpf_global_percpu_ma; else ma = &bpf_global_ma; bpf_mem_free_rcu(ma, p); } __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; void *p = p__alloc; __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); } __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) { /* The verifier has ensured that meta__ign must be NULL */ bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); } __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; struct bpf_refcount *ref; /* Could just cast directly to refcount_t *, but need some code using * bpf_refcount type so that it is emitted in vmlinux BTF */ ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); if (!refcount_inc_not_zero((refcount_t *)ref)) return NULL; /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null * in verifier.c */ return (void *)p__refcounted_kptr; } static int __bpf_list_add(struct bpf_list_node_kern *node, struct bpf_list_head *head, bool tail, struct btf_record *rec, u64 off) { struct list_head *n = &node->list_head, *h = (void *)head; /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't * called on its fields, so init here */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); /* node->owner != NULL implies !list_empty(n), no need to separately * check the latter */ if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { /* Only called from BPF prog, no need to migrate_disable */ __bpf_obj_drop_impl((void *)n - off, rec, false); return -EINVAL; } tail ? list_add_tail(n, h) : list_add(n, h); WRITE_ONCE(node->owner, head); return 0; } __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, struct bpf_list_node *node, void *meta__ign, u64 off) { struct bpf_list_node_kern *n = (void *)node; struct btf_struct_meta *meta = meta__ign; return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); } __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, struct bpf_list_node *node, void *meta__ign, u64 off) { struct bpf_list_node_kern *n = (void *)node; struct btf_struct_meta *meta = meta__ign; return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); } static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) { struct list_head *n, *h = (void *)head; struct bpf_list_node_kern *node; /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't * called on its fields, so init here */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (list_empty(h)) return NULL; n = tail ? h->prev : h->next; node = container_of(n, struct bpf_list_node_kern, list_head); if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) return NULL; list_del_init(n); WRITE_ONCE(node->owner, NULL); return (struct bpf_list_node *)n; } __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) { return __bpf_list_del(head, false); } __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) { return __bpf_list_del(head, true); } __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, struct bpf_rb_node *node) { struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; struct rb_root_cached *r = (struct rb_root_cached *)root; struct rb_node *n = &node_internal->rb_node; /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) */ if (READ_ONCE(node_internal->owner) != root) return NULL; rb_erase_cached(n, r); RB_CLEAR_NODE(n); WRITE_ONCE(node_internal->owner, NULL); return (struct bpf_rb_node *)n; } /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF * program */ static int __bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node_kern *node, void *less, struct btf_record *rec, u64 off) { struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; struct rb_node *parent = NULL, *n = &node->rb_node; bpf_callback_t cb = (bpf_callback_t)less; bool leftmost = true; /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately * check the latter */ if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { /* Only called from BPF prog, no need to migrate_disable */ __bpf_obj_drop_impl((void *)n - off, rec, false); return -EINVAL; } while (*link) { parent = *link; if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { link = &parent->rb_left; } else { link = &parent->rb_right; leftmost = false; } } rb_link_node(n, parent, link); rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); WRITE_ONCE(node->owner, root); return 0; } __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), void *meta__ign, u64 off) { struct btf_struct_meta *meta = meta__ign; struct bpf_rb_node_kern *n = (void *)node; return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); } __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) { struct rb_root_cached *r = (struct rb_root_cached *)root; return (struct bpf_rb_node *)rb_first_cached(r); } /** * bpf_task_acquire - Acquire a reference to a task. A task acquired by this * kfunc which is not stored in a map as a kptr, must be released by calling * bpf_task_release(). * @p: The task on which a reference is being acquired. */ __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) { if (refcount_inc_not_zero(&p->rcu_users)) return p; return NULL; } /** * bpf_task_release - Release the reference acquired on a task. * @p: The task on which a reference is being released. */ __bpf_kfunc void bpf_task_release(struct task_struct *p) { put_task_struct_rcu_user(p); } __bpf_kfunc void bpf_task_release_dtor(void *p) { put_task_struct_rcu_user(p); } CFI_NOSEAL(bpf_task_release_dtor); #ifdef CONFIG_CGROUPS /** * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by * this kfunc which is not stored in a map as a kptr, must be released by * calling bpf_cgroup_release(). * @cgrp: The cgroup on which a reference is being acquired. */ __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) { return cgroup_tryget(cgrp) ? cgrp : NULL; } /** * bpf_cgroup_release - Release the reference acquired on a cgroup. * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to * not be freed until the current grace period has ended, even if its refcount * drops to 0. * @cgrp: The cgroup on which a reference is being released. */ __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) { cgroup_put(cgrp); } __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) { cgroup_put(cgrp); } CFI_NOSEAL(bpf_cgroup_release_dtor); /** * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor * array. A cgroup returned by this kfunc which is not subsequently stored in a * map, must be released by calling bpf_cgroup_release(). * @cgrp: The cgroup for which we're performing a lookup. * @level: The level of ancestor to look up. */ __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) { struct cgroup *ancestor; if (level > cgrp->level || level < 0) return NULL; /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ ancestor = cgrp->ancestors[level]; if (!cgroup_tryget(ancestor)) return NULL; return ancestor; } /** * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this * kfunc which is not subsequently stored in a map, must be released by calling * bpf_cgroup_release(). * @cgid: cgroup id. */ __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) { struct cgroup *cgrp; cgrp = cgroup_get_from_id(cgid); if (IS_ERR(cgrp)) return NULL; return cgrp; } /** * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test * task's membership of cgroup ancestry. * @task: the task to be tested * @ancestor: possible ancestor of @task's cgroup * * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. * It follows all the same rules as cgroup_is_descendant, and only applies * to the default hierarchy. */ __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, struct cgroup *ancestor) { long ret; rcu_read_lock(); ret = task_under_cgroup_hierarchy(task, ancestor); rcu_read_unlock(); return ret; } /** * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its * hierarchy ID. * @task: The target task * @hierarchy_id: The ID of a cgroup1 hierarchy * * On success, the cgroup is returen. On failure, NULL is returned. */ __bpf_kfunc struct cgroup * bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) { struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); if (IS_ERR(cgrp)) return NULL; return cgrp; } #endif /* CONFIG_CGROUPS */ /** * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up * in the root pid namespace idr. If a task is returned, it must either be * stored in a map, or released with bpf_task_release(). * @pid: The pid of the task being looked up. */ __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) { struct task_struct *p; rcu_read_lock(); p = find_task_by_pid_ns(pid, &init_pid_ns); if (p) p = bpf_task_acquire(p); rcu_read_unlock(); return p; } /** * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. * @p: The dynptr whose data slice to retrieve * @offset: Offset into the dynptr * @buffer__opt: User-provided buffer to copy contents into. May be NULL * @buffer__szk: Size (in bytes) of the buffer if present. This is the * length of the requested slice. This must be a constant. * * For non-skb and non-xdp type dynptrs, there is no difference between * bpf_dynptr_slice and bpf_dynptr_data. * * If buffer__opt is NULL, the call will fail if buffer_opt was needed. * * If the intention is to write to the data slice, please use * bpf_dynptr_slice_rdwr. * * The user must check that the returned pointer is not null before using it. * * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice * does not change the underlying packet data pointers, so a call to * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in * the bpf program. * * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only * data slice (can be either direct pointer to the data or a pointer to the user * provided buffer, with its contents containing the data, if unable to obtain * direct pointer) */ __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset, void *buffer__opt, u32 buffer__szk) { const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; enum bpf_dynptr_type type; u32 len = buffer__szk; int err; if (!ptr->data) return NULL; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return NULL; type = bpf_dynptr_get_type(ptr); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: return ptr->data + ptr->offset + offset; case BPF_DYNPTR_TYPE_SKB: if (buffer__opt) return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); else return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); case BPF_DYNPTR_TYPE_XDP: { void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); if (!IS_ERR_OR_NULL(xdp_ptr)) return xdp_ptr; if (!buffer__opt) return NULL; bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); return buffer__opt; } default: WARN_ONCE(true, "unknown dynptr type %d\n", type); return NULL; } } /** * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. * @p: The dynptr whose data slice to retrieve * @offset: Offset into the dynptr * @buffer__opt: User-provided buffer to copy contents into. May be NULL * @buffer__szk: Size (in bytes) of the buffer if present. This is the * length of the requested slice. This must be a constant. * * For non-skb and non-xdp type dynptrs, there is no difference between * bpf_dynptr_slice and bpf_dynptr_data. * * If buffer__opt is NULL, the call will fail if buffer_opt was needed. * * The returned pointer is writable and may point to either directly the dynptr * data at the requested offset or to the buffer if unable to obtain a direct * data pointer to (example: the requested slice is to the paged area of an skb * packet). In the case where the returned pointer is to the buffer, the user * is responsible for persisting writes through calling bpf_dynptr_write(). This * usually looks something like this pattern: * * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); * if (!eth) * return TC_ACT_SHOT; * * // mutate eth header // * * if (eth == buffer) * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); * * Please note that, as in the example above, the user must check that the * returned pointer is not null before using it. * * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr * does not change the underlying packet data pointers, so a call to * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in * the bpf program. * * Return: NULL if the call failed (eg invalid dynptr), pointer to a * data slice (can be either direct pointer to the data or a pointer to the user * provided buffer, with its contents containing the data, if unable to obtain * direct pointer) */ __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, void *buffer__opt, u32 buffer__szk) { const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) return NULL; /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. * * For skb-type dynptrs, it is safe to write into the returned pointer * if the bpf program allows skb data writes. There are two possibilities * that may occur when calling bpf_dynptr_slice_rdwr: * * 1) The requested slice is in the head of the skb. In this case, the * returned pointer is directly to skb data, and if the skb is cloned, the * verifier will have uncloned it (see bpf_unclone_prologue()) already. * The pointer can be directly written into. * * 2) Some portion of the requested slice is in the paged buffer area. * In this case, the requested data will be copied out into the buffer * and the returned pointer will be a pointer to the buffer. The skb * will not be pulled. To persist the write, the user will need to call * bpf_dynptr_write(), which will pull the skb and commit the write. * * Similarly for xdp programs, if the requested slice is not across xdp * fragments, then a direct pointer will be returned, otherwise the data * will be copied out into the buffer and the user will need to call * bpf_dynptr_write() to commit changes. */ return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); } __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; u32 size; if (!ptr->data || start > end) return -EINVAL; size = __bpf_dynptr_size(ptr); if (start > size || end > size) return -ERANGE; ptr->offset += start; bpf_dynptr_set_size(ptr, end - start); return 0; } __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; return !ptr->data; } __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data) return false; return __bpf_dynptr_is_rdonly(ptr); } __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data) return -EINVAL; return __bpf_dynptr_size(ptr); } __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, struct bpf_dynptr *clone__uninit) { struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data) { bpf_dynptr_set_null(clone); return -EINVAL; } *clone = *ptr; return 0; } __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) { return obj; } __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) { return (void *)obj__ign; } __bpf_kfunc void bpf_rcu_read_lock(void) { rcu_read_lock(); } __bpf_kfunc void bpf_rcu_read_unlock(void) { rcu_read_unlock(); } struct bpf_throw_ctx { struct bpf_prog_aux *aux; u64 sp; u64 bp; int cnt; }; static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) { struct bpf_throw_ctx *ctx = cookie; struct bpf_prog *prog; if (!is_bpf_text_address(ip)) return !ctx->cnt; prog = bpf_prog_ksym_find(ip); ctx->cnt++; if (bpf_is_subprog(prog)) return true; ctx->aux = prog->aux; ctx->sp = sp; ctx->bp = bp; return false; } __bpf_kfunc void bpf_throw(u64 cookie) { struct bpf_throw_ctx ctx = {}; arch_bpf_stack_walk(bpf_stack_walker, &ctx); WARN_ON_ONCE(!ctx.aux); if (ctx.aux) WARN_ON_ONCE(!ctx.aux->exception_boundary); WARN_ON_ONCE(!ctx.bp); WARN_ON_ONCE(!ctx.cnt); /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning * deeper stack depths than ctx.sp as we do not return from bpf_throw, * which skips compiler generated instrumentation to do the same. */ kasan_unpoison_task_stack_below((void *)(long)ctx.sp); ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); WARN(1, "A call to BPF exception callback should never return\n"); } __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) { struct bpf_async_kern *async = (struct bpf_async_kern *)wq; struct bpf_map *map = p__map; BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); if (flags) return -EINVAL; return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); } __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) { struct bpf_async_kern *async = (struct bpf_async_kern *)wq; struct bpf_work *w; if (in_nmi()) return -EOPNOTSUPP; if (flags) return -EINVAL; w = READ_ONCE(async->work); if (!w || !READ_ONCE(w->cb.prog)) return -EINVAL; schedule_work(&w->work); return 0; } __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, int (callback_fn)(void *map, int *key, void *value), unsigned int flags, void *aux__ign) { struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign; struct bpf_async_kern *async = (struct bpf_async_kern *)wq; if (flags) return -EINVAL; return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); } __bpf_kfunc void bpf_preempt_disable(void) { preempt_disable(); } __bpf_kfunc void bpf_preempt_enable(void) { preempt_enable(); } struct bpf_iter_bits { __u64 __opaque[2]; } __aligned(8); struct bpf_iter_bits_kern { union { unsigned long *bits; unsigned long bits_copy; }; u32 nr_bits; int bit; } __aligned(8); /** * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area * @it: The new bpf_iter_bits to be created * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over * @nr_words: The size of the specified memory area, measured in 8-byte units. * Due to the limitation of memalloc, it can't be greater than 512. * * This function initializes a new bpf_iter_bits structure for iterating over * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It * copies the data of the memory area to the newly created bpf_iter_bits @it for * subsequent iteration operations. * * On success, 0 is returned. On failure, ERR is returned. */ __bpf_kfunc int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) { struct bpf_iter_bits_kern *kit = (void *)it; u32 nr_bytes = nr_words * sizeof(u64); u32 nr_bits = BYTES_TO_BITS(nr_bytes); int err; BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != __alignof__(struct bpf_iter_bits)); kit->nr_bits = 0; kit->bits_copy = 0; kit->bit = -1; if (!unsafe_ptr__ign || !nr_words) return -EINVAL; /* Optimization for u64 mask */ if (nr_bits == 64) { err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); if (err) return -EFAULT; kit->nr_bits = nr_bits; return 0; } /* Fallback to memalloc */ kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); if (!kit->bits) return -ENOMEM; err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); if (err) { bpf_mem_free(&bpf_global_ma, kit->bits); return err; } kit->nr_bits = nr_bits; return 0; } /** * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits * @it: The bpf_iter_bits to be checked * * This function returns a pointer to a number representing the value of the * next bit in the bits. * * If there are no further bits available, it returns NULL. */ __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) { struct bpf_iter_bits_kern *kit = (void *)it; u32 nr_bits = kit->nr_bits; const unsigned long *bits; int bit; if (nr_bits == 0) return NULL; bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; bit = find_next_bit(bits, nr_bits, kit->bit + 1); if (bit >= nr_bits) { kit->nr_bits = 0; return NULL; } kit->bit = bit; return &kit->bit; } /** * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits * @it: The bpf_iter_bits to be destroyed * * Destroy the resource associated with the bpf_iter_bits. */ __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) { struct bpf_iter_bits_kern *kit = (void *)it; if (kit->nr_bits <= 64) return; bpf_mem_free(&bpf_global_ma, kit->bits); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(generic_btf_ids) #ifdef CONFIG_CRASH_DUMP BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) #endif BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) BTF_ID_FLAGS(func, bpf_list_push_front_impl) BTF_ID_FLAGS(func, bpf_list_push_back_impl) BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_rbtree_add_impl) BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) #ifdef CONFIG_CGROUPS BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) #endif BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_throw) BTF_KFUNCS_END(generic_btf_ids) static const struct btf_kfunc_id_set generic_kfunc_set = { .owner = THIS_MODULE, .set = &generic_btf_ids, }; BTF_ID_LIST(generic_dtor_ids) BTF_ID(struct, task_struct) BTF_ID(func, bpf_task_release_dtor) #ifdef CONFIG_CGROUPS BTF_ID(struct, cgroup) BTF_ID(func, bpf_cgroup_release_dtor) #endif BTF_KFUNCS_START(common_btf_ids) BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) BTF_ID_FLAGS(func, bpf_rdonly_cast) BTF_ID_FLAGS(func, bpf_rcu_read_lock) BTF_ID_FLAGS(func, bpf_rcu_read_unlock) BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) #ifdef CONFIG_CGROUPS BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) #endif BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_dynptr_adjust) BTF_ID_FLAGS(func, bpf_dynptr_is_null) BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) BTF_ID_FLAGS(func, bpf_dynptr_size) BTF_ID_FLAGS(func, bpf_dynptr_clone) BTF_ID_FLAGS(func, bpf_modify_return_test_tp) BTF_ID_FLAGS(func, bpf_wq_init) BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) BTF_ID_FLAGS(func, bpf_wq_start) BTF_ID_FLAGS(func, bpf_preempt_disable) BTF_ID_FLAGS(func, bpf_preempt_enable) BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) BTF_KFUNCS_END(common_btf_ids) static const struct btf_kfunc_id_set common_kfunc_set = { .owner = THIS_MODULE, .set = &common_btf_ids, }; static int __init kfunc_init(void) { int ret; const struct btf_id_dtor_kfunc generic_dtors[] = { { .btf_id = generic_dtor_ids[0], .kfunc_btf_id = generic_dtor_ids[1] }, #ifdef CONFIG_CGROUPS { .btf_id = generic_dtor_ids[2], .kfunc_btf_id = generic_dtor_ids[3] }, #endif }; ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, ARRAY_SIZE(generic_dtors), THIS_MODULE); return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); } late_initcall(kfunc_init); /* Get a pointer to dynptr data up to len bytes for read only access. If * the dynptr doesn't have continuous data up to len bytes, return NULL. */ const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) { const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; return bpf_dynptr_slice(p, 0, NULL, len); } /* Get a pointer to dynptr data up to len bytes for read write access. If * the dynptr doesn't have continuous data up to len bytes, or the dynptr * is read only, return NULL. */ void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) { if (__bpf_dynptr_is_rdonly(ptr)) return NULL; return (void *)__bpf_dynptr_data(ptr, len); } |
14947 10 10 10 10 9 10 9 10 10 10 10 10 2167 2167 2164 7 13 2173 2162 2169 2178 2168 2178 2170 2178 2307 2318 78 2304 2318 20 2308 2318 2318 2318 2309 2300 10 2318 10 9 10 8 2303 1505 1500 2302 2167 1447 1447 2276 2273 2276 2309 2304 2305 2307 24 2293 2265 2313 2318 10 118 2180 2174 118 1444 2311 2319 2318 10 10 10 10 1447 1446 1447 22 1433 1441 1436 118 1437 10 117 1444 1431 10 1447 1447 1447 1421 402 1431 1917 7 2309 2302 1430 1918 2307 2317 1440 1919 1439 1447 2316 2312 2305 2167 2167 2166 2178 2165 104 2205 2222 2204 2171 2178 2174 2311 2311 2290 6 1 7 2169 2171 79 2171 52 2154 1 1 7 7 7 10 2234 2295 50 2298 70 70 8 68 10 71 12 2296 2306 2142 2199 2299 2293 2301 2312 11 2299 10 2306 2295 2190 2046 2025 3 49 7 7 2 4 5 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/set_memory.h> #include <linux/debugobjects.h> #include <linux/kallsyms.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/rbtree.h> #include <linux/xarray.h> #include <linux/io.h> #include <linux/rcupdate.h> #include <linux/pfn.h> #include <linux/kmemleak.h> #include <linux/atomic.h> #include <linux/compiler.h> #include <linux/memcontrol.h> #include <linux/llist.h> #include <linux/uio.h> #include <linux/bitops.h> #include <linux/rbtree_augmented.h> #include <linux/overflow.h> #include <linux/pgtable.h> #include <linux/hugetlb.h> #include <linux/sched/mm.h> #include <asm/tlbflush.h> #include <asm/shmparam.h> #include <linux/page_owner.h> #define CREATE_TRACE_POINTS #include <trace/events/vmalloc.h> #include "internal.h" #include "pgalloc-track.h" #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; static int __init set_nohugeiomap(char *str) { ioremap_max_page_shift = PAGE_SHIFT; return 0; } early_param("nohugeiomap", set_nohugeiomap); #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC static bool __ro_after_init vmap_allow_huge = true; static int __init set_nohugevmalloc(char *str) { vmap_allow_huge = false; return 0; } early_param("nohugevmalloc", set_nohugevmalloc); #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ static const bool vmap_allow_huge = false; #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ bool is_vmalloc_addr(const void *x) { unsigned long addr = (unsigned long)kasan_reset_tag(x); return addr >= VMALLOC_START && addr < VMALLOC_END; } EXPORT_SYMBOL(is_vmalloc_addr); struct vfree_deferred { struct llist_head list; struct work_struct wq; }; static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); /*** Page table manipulation functions ***/ static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pte_t *pte; u64 pfn; struct page *page; unsigned long size = PAGE_SIZE; pfn = phys_addr >> PAGE_SHIFT; pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { if (!pte_none(ptep_get(pte))) { if (pfn_valid(pfn)) { page = pfn_to_page(pfn); dump_page(page, "remapping already mapped page"); } BUG(); } #ifdef CONFIG_HUGETLB_PAGE size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); if (size != PAGE_SIZE) { pte_t entry = pfn_pte(pfn, prot); entry = arch_make_huge_pte(entry, ilog2(size), 0); set_huge_pte_at(&init_mm, addr, pte, entry, size); pfn += PFN_DOWN(size); continue; } #endif set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); pfn++; } while (pte += PFN_DOWN(size), addr += size, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < PMD_SHIFT) return 0; if (!arch_vmap_pmd_supported(prot)) return 0; if ((end - addr) != PMD_SIZE) return 0; if (!IS_ALIGNED(addr, PMD_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, PMD_SIZE)) return 0; if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) return 0; return pmd_set_huge(pmd, phys_addr, prot); } static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_PMD_MODIFIED; continue; } if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < PUD_SHIFT) return 0; if (!arch_vmap_pud_supported(prot)) return 0; if ((end - addr) != PUD_SIZE) return 0; if (!IS_ALIGNED(addr, PUD_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, PUD_SIZE)) return 0; if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) return 0; return pud_set_huge(pud, phys_addr, prot); } static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_PUD_MODIFIED; continue; } if (vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (pud++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < P4D_SHIFT) return 0; if (!arch_vmap_p4d_supported(prot)) return 0; if ((end - addr) != P4D_SIZE) return 0; if (!IS_ALIGNED(addr, P4D_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, P4D_SIZE)) return 0; if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) return 0; return p4d_set_huge(p4d, phys_addr, prot); } static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_P4D_MODIFIED; continue; } if (vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_range_noflush(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { pgd_t *pgd; unsigned long start; unsigned long next; int err; pgtbl_mod_mask mask = 0; might_sleep(); BUG_ON(addr >= end); start = addr; pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, max_page_shift, &mask); if (err) break; } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return err; } int vmap_page_range(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot) { int err; err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), ioremap_max_page_shift); flush_cache_vmap(addr, end); if (!err) err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, ioremap_max_page_shift); return err; } int ioremap_page_range(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot) { struct vm_struct *area; area = find_vm_area((void *)addr); if (!area || !(area->flags & VM_IOREMAP)) { WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); return -EINVAL; } if (addr != (unsigned long)area->addr || (void *)end != area->addr + get_vm_area_size(area)) { WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", addr, end, (long)area->addr, (long)area->addr + get_vm_area_size(area)); return -ERANGE; } return vmap_page_range(addr, end, phys_addr, prot); } static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; } static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int cleared; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); cleared = pmd_clear_huge(pmd); if (cleared || pmd_bad(*pmd)) *mask |= PGTBL_PMD_MODIFIED; if (cleared) continue; if (pmd_none_or_clear_bad(pmd)) continue; vunmap_pte_range(pmd, addr, next, mask); cond_resched(); } while (pmd++, addr = next, addr != end); } static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int cleared; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); cleared = pud_clear_huge(pud); if (cleared || pud_bad(*pud)) *mask |= PGTBL_PUD_MODIFIED; if (cleared) continue; if (pud_none_or_clear_bad(pud)) continue; vunmap_pmd_range(pud, addr, next, mask); } while (pud++, addr = next, addr != end); } static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); p4d_clear_huge(p4d); if (p4d_bad(*p4d)) *mask |= PGTBL_P4D_MODIFIED; if (p4d_none_or_clear_bad(p4d)) continue; vunmap_pud_range(p4d, addr, next, mask); } while (p4d++, addr = next, addr != end); } /* * vunmap_range_noflush is similar to vunmap_range, but does not * flush caches or TLBs. * * The caller is responsible for calling flush_cache_vmap() before calling * this function, and flush_tlb_kernel_range after it has returned * successfully (and before the addresses are expected to cause a page fault * or be re-mapped for something else, if TLB flushes are being delayed or * coalesced). * * This is an internal function only. Do not use outside mm/. */ void __vunmap_range_noflush(unsigned long start, unsigned long end) { unsigned long next; pgd_t *pgd; unsigned long addr = start; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; if (pgd_none_or_clear_bad(pgd)) continue; vunmap_p4d_range(pgd, addr, next, &mask); } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); } void vunmap_range_noflush(unsigned long start, unsigned long end) { kmsan_vunmap_range_noflush(start, end); __vunmap_range_noflush(start, end); } /** * vunmap_range - unmap kernel virtual addresses * @addr: start of the VM area to unmap * @end: end of the VM area to unmap (non-inclusive) * * Clears any present PTEs in the virtual address range, flushes TLBs and * caches. Any subsequent access to the address before it has been re-mapped * is a kernel bug. */ void vunmap_range(unsigned long addr, unsigned long end) { flush_cache_vunmap(addr, end); vunmap_range_noflush(addr, end); flush_tlb_kernel_range(addr, end); } static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pte_t *pte; /* * nr is a running index into the array which helps higher level * callers keep track of where we're up to. */ pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { struct page *page = pages[*nr]; if (WARN_ON(!pte_none(ptep_get(pte)))) return -EBUSY; if (WARN_ON(!page)) return -ENOMEM; if (WARN_ON(!pfn_valid(page_to_pfn(page)))) return -EINVAL; set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (p4d++, addr = next, addr != end); return 0; } static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages) { unsigned long start = addr; pgd_t *pgd; unsigned long next; int err = 0; int nr = 0; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); if (err) return err; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return 0; } /* * vmap_pages_range_noflush is similar to vmap_pages_range, but does not * flush caches. * * The caller is responsible for calling flush_cache_vmap() after this * function returns successfully and before the addresses are accessed. * * This is an internal function only. Do not use outside mm/. */ int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { unsigned int i, nr = (end - addr) >> PAGE_SHIFT; WARN_ON(page_shift < PAGE_SHIFT); if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || page_shift == PAGE_SHIFT) return vmap_small_pages_range_noflush(addr, end, prot, pages); for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { int err; err = vmap_range_noflush(addr, addr + (1UL << page_shift), page_to_phys(pages[i]), prot, page_shift); if (err) return err; addr += 1UL << page_shift; } return 0; } int vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); if (ret) return ret; return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); } /** * vmap_pages_range - map pages to a kernel virtual address * @addr: start of the VM area to map * @end: end of the VM area to map (non-inclusive) * @prot: page protection flags to use * @pages: pages to map (always PAGE_SIZE pages) * @page_shift: maximum shift that the pages may be mapped with, @pages must * be aligned and contiguous up to at least this shift. * * RETURNS: * 0 on success, -errno on failure. */ static int vmap_pages_range(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { int err; err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); flush_cache_vmap(addr, end); return err; } static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, unsigned long end) { might_sleep(); if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) return -EINVAL; if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) return -EINVAL; if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) return -EINVAL; if ((end - start) >> PAGE_SHIFT > totalram_pages()) return -E2BIG; if (start < (unsigned long)area->addr || (void *)end > area->addr + get_vm_area_size(area)) return -ERANGE; return 0; } /** * vm_area_map_pages - map pages inside given sparse vm_area * @area: vm_area * @start: start address inside vm_area * @end: end address inside vm_area * @pages: pages to map (always PAGE_SIZE pages) */ int vm_area_map_pages(struct vm_struct *area, unsigned long start, unsigned long end, struct page **pages) { int err; err = check_sparse_vm_area(area, start, end); if (err) return err; return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); } /** * vm_area_unmap_pages - unmap pages inside given sparse vm_area * @area: vm_area * @start: start address inside vm_area * @end: end address inside vm_area */ void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, unsigned long end) { if (check_sparse_vm_area(area, start, end)) return; vunmap_range(start, end); } int is_vmalloc_or_module_addr(const void *x) { /* * ARM, x86-64 and sparc64 put modules in a special place, * and fall back on vmalloc() if that fails. Others * just put it in the vmalloc space. */ #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) unsigned long addr = (unsigned long)kasan_reset_tag(x); if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif return is_vmalloc_addr(x); } EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); /* * Walk a vmap address to the struct page it maps. Huge vmap mappings will * return the tail page that corresponds to the base page address, which * matches small vmap mappings. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; /* * XXX we might need to change this if we add VIRTUAL_BUG_ON for * architectures that do not vmalloc module space */ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); if (pgd_none(*pgd)) return NULL; if (WARN_ON_ONCE(pgd_leaf(*pgd))) return NULL; /* XXX: no allowance for huge pgd */ if (WARN_ON_ONCE(pgd_bad(*pgd))) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return NULL; if (p4d_leaf(*p4d)) return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(p4d_bad(*p4d))) return NULL; pud = pud_offset(p4d, addr); if (pud_none(*pud)) return NULL; if (pud_leaf(*pud)) return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(pud_bad(*pud))) return NULL; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return NULL; if (pmd_leaf(*pmd)) return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(pmd_bad(*pmd))) return NULL; ptep = pte_offset_kernel(pmd, addr); pte = ptep_get(ptep); if (pte_present(pte)) page = pte_page(pte); return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 static DEFINE_SPINLOCK(free_vmap_area_lock); static bool vmap_initialized __read_mostly; /* * This kmem_cache is used for vmap_area objects. Instead of * allocating from slab we reuse an object from this cache to * make things faster. Especially in "no edge" splitting of * free block. */ static struct kmem_cache *vmap_area_cachep; /* * This linked list is used in pair with free_vmap_area_root. * It gives O(1) access to prev/next to perform fast coalescing. */ static LIST_HEAD(free_vmap_area_list); /* * This augment red-black tree represents the free vmap space. * All vmap_area objects in this tree are sorted by va->va_start * address. It is used for allocation and merging when a vmap * object is released. * * Each vmap_area node contains a maximum available free block * of its sub-tree, right or left. Therefore it is possible to * find a lowest match of free area. */ static struct rb_root free_vmap_area_root = RB_ROOT; /* * Preload a CPU with one object for "no edge" split case. The * aim is to get rid of allocations from the atomic context, thus * to use more permissive allocation masks. */ static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); /* * This structure defines a single, solid model where a list and * rb-tree are part of one entity protected by the lock. Nodes are * sorted in ascending order, thus for O(1) access to left/right * neighbors a list is used as well as for sequential traversal. */ struct rb_list { struct rb_root root; struct list_head head; spinlock_t lock; }; /* * A fast size storage contains VAs up to 1M size. A pool consists * of linked between each other ready to go VAs of certain sizes. * An index in the pool-array corresponds to number of pages + 1. */ #define MAX_VA_SIZE_PAGES 256 struct vmap_pool { struct list_head head; unsigned long len; }; /* * An effective vmap-node logic. Users make use of nodes instead * of a global heap. It allows to balance an access and mitigate * contention. */ static struct vmap_node { /* Simple size segregated storage. */ struct vmap_pool pool[MAX_VA_SIZE_PAGES]; spinlock_t pool_lock; bool skip_populate; /* Bookkeeping data of this node. */ struct rb_list busy; struct rb_list lazy; /* * Ready-to-free areas. */ struct list_head purge_list; struct work_struct purge_work; unsigned long nr_purged; } single; /* * Initial setup consists of one single node, i.e. a balancing * is fully disabled. Later on, after vmap is initialized these * parameters are updated based on a system capacity. */ static struct vmap_node *vmap_nodes = &single; static __read_mostly unsigned int nr_vmap_nodes = 1; static __read_mostly unsigned int vmap_zone_size = 1; static inline unsigned int addr_to_node_id(unsigned long addr) { return (addr / vmap_zone_size) % nr_vmap_nodes; } static inline struct vmap_node * addr_to_node(unsigned long addr) { return &vmap_nodes[addr_to_node_id(addr)]; } static inline struct vmap_node * id_to_node(unsigned int id) { return &vmap_nodes[id % nr_vmap_nodes]; } /* * We use the value 0 to represent "no node", that is why * an encoded value will be the node-id incremented by 1. * It is always greater then 0. A valid node_id which can * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id * is not valid 0 is returned. */ static unsigned int encode_vn_id(unsigned int node_id) { /* Can store U8_MAX [0:254] nodes. */ if (node_id < nr_vmap_nodes) return (node_id + 1) << BITS_PER_BYTE; /* Warn and no node encoded. */ WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); return 0; } /* * Returns an encoded node-id, the valid range is within * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is * returned if extracted data is wrong. */ static unsigned int decode_vn_id(unsigned int val) { unsigned int node_id = (val >> BITS_PER_BYTE) - 1; /* Can store U8_MAX [0:254] nodes. */ if (node_id < nr_vmap_nodes) return node_id; /* If it was _not_ zero, warn. */ WARN_ONCE(node_id != UINT_MAX, "Decode wrong node id (%d)\n", node_id); return nr_vmap_nodes; } static bool is_vn_id_valid(unsigned int node_id) { if (node_id < nr_vmap_nodes) return true; return false; } static __always_inline unsigned long va_size(struct vmap_area *va) { return (va->va_end - va->va_start); } static __always_inline unsigned long get_subtree_max_size(struct rb_node *node) { struct vmap_area *va; va = rb_entry_safe(node, struct vmap_area, rb_node); return va ? va->subtree_max_size : 0; } RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) static void reclaim_and_purge_vmap_areas(void); static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); static void drain_vmap_area_work(struct work_struct *work); static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); static atomic_long_t nr_vmalloc_pages; unsigned long vmalloc_nr_pages(void) { return atomic_long_read(&nr_vmalloc_pages); } static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) { struct rb_node *n = root->rb_node; addr = (unsigned long)kasan_reset_tag((void *)addr); while (n) { struct vmap_area *va; va = rb_entry(n, struct vmap_area, rb_node); if (addr < va->va_start) n = n->rb_left; else if (addr >= va->va_end) n = n->rb_right; else return va; } return NULL; } /* Look up the first VA which satisfies addr < va_end, NULL if none. */ static struct vmap_area * __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) { struct vmap_area *va = NULL; struct rb_node *n = root->rb_node; addr = (unsigned long)kasan_reset_tag((void *)addr); while (n) { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end > addr) { va = tmp; if (tmp->va_start <= addr) break; n = n->rb_left; } else n = n->rb_right; } return va; } /* * Returns a node where a first VA, that satisfies addr < va_end, resides. * If success, a node is locked. A user is responsible to unlock it when a * VA is no longer needed to be accessed. * * Returns NULL if nothing found. */ static struct vmap_node * find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) { unsigned long va_start_lowest; struct vmap_node *vn; int i; repeat: for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); if (*va) if (!va_start_lowest || (*va)->va_start < va_start_lowest) va_start_lowest = (*va)->va_start; spin_unlock(&vn->busy.lock); } /* * Check if found VA exists, it might have gone away. In this case we * repeat the search because a VA has been removed concurrently and we * need to proceed to the next one, which is a rare case. */ if (va_start_lowest) { vn = addr_to_node(va_start_lowest); spin_lock(&vn->busy.lock); *va = __find_vmap_area(va_start_lowest, &vn->busy.root); if (*va) return vn; spin_unlock(&vn->busy.lock); goto repeat; } return NULL; } /* * This function returns back addresses of parent node * and its left or right link for further processing. * * Otherwise NULL is returned. In that case all further * steps regarding inserting of conflicting overlap range * have to be declined and actually considered as a bug. */ static __always_inline struct rb_node ** find_va_links(struct vmap_area *va, struct rb_root *root, struct rb_node *from, struct rb_node **parent) { struct vmap_area *tmp_va; struct rb_node **link; if (root) { link = &root->rb_node; if (unlikely(!*link)) { *parent = NULL; return link; } } else { link = &from; } /* * Go to the bottom of the tree. When we hit the last point * we end up with parent rb_node and correct direction, i name * it link, where the new va->rb_node will be attached to. */ do { tmp_va = rb_entry(*link, struct vmap_area, rb_node); /* * During the traversal we also do some sanity check. * Trigger the BUG() if there are sides(left/right) * or full overlaps. */ if (va->va_end <= tmp_va->va_start) link = &(*link)->rb_left; else if (va->va_start >= tmp_va->va_end) link = &(*link)->rb_right; else { WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); return NULL; } } while (*link); *parent = &tmp_va->rb_node; return link; } static __always_inline struct list_head * get_va_next_sibling(struct rb_node *parent, struct rb_node **link) { struct list_head *list; if (unlikely(!parent)) /* * The red-black tree where we try to find VA neighbors * before merging or inserting is empty, i.e. it means * there is no free vmap space. Normally it does not * happen but we handle this case anyway. */ return NULL; list = &rb_entry(parent, struct vmap_area, rb_node)->list; return (&parent->rb_right == link ? list->next : list); } static __always_inline void __link_va(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head, bool augment) { /* * VA is still not in the list, but we can * identify its future previous list_head node. */ if (likely(parent)) { head = &rb_entry(parent, struct vmap_area, rb_node)->list; if (&parent->rb_right != link) head = head->prev; } /* Insert to the rb-tree */ rb_link_node(&va->rb_node, parent, link); if (augment) { /* * Some explanation here. Just perform simple insertion * to the tree. We do not set va->subtree_max_size to * its current size before calling rb_insert_augmented(). * It is because we populate the tree from the bottom * to parent levels when the node _is_ in the tree. * * Therefore we set subtree_max_size to zero after insertion, * to let __augment_tree_propagate_from() puts everything to * the correct order later on. */ rb_insert_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); va->subtree_max_size = 0; } else { rb_insert_color(&va->rb_node, root); } /* Address-sort this list */ list_add(&va->list, head); } static __always_inline void link_va(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head) { __link_va(va, root, parent, link, head, false); } static __always_inline void link_va_augment(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head) { __link_va(va, root, parent, link, head, true); } static __always_inline void __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) { if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) return; if (augment) rb_erase_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); else rb_erase(&va->rb_node, root); list_del_init(&va->list); RB_CLEAR_NODE(&va->rb_node); } static __always_inline void unlink_va(struct vmap_area *va, struct rb_root *root) { __unlink_va(va, root, false); } static __always_inline void unlink_va_augment(struct vmap_area *va, struct rb_root *root) { __unlink_va(va, root, true); } #if DEBUG_AUGMENT_PROPAGATE_CHECK /* * Gets called when remove the node and rotate. */ static __always_inline unsigned long compute_subtree_max_size(struct vmap_area *va) { return max3(va_size(va), get_subtree_max_size(va->rb_node.rb_left), get_subtree_max_size(va->rb_node.rb_right)); } static void augment_tree_propagate_check(void) { struct vmap_area *va; unsigned long computed_size; list_for_each_entry(va, &free_vmap_area_list, list) { computed_size = compute_subtree_max_size(va); if (computed_size != va->subtree_max_size) pr_emerg("tree is corrupted: %lu, %lu\n", va_size(va), va->subtree_max_size); } } #endif /* * This function populates subtree_max_size from bottom to upper * levels starting from VA point. The propagation must be done * when VA size is modified by changing its va_start/va_end. Or * in case of newly inserting of VA to the tree. * * It means that __augment_tree_propagate_from() must be called: * - After VA has been inserted to the tree(free path); * - After VA has been shrunk(allocation path); * - After VA has been increased(merging path). * * Please note that, it does not mean that upper parent nodes * and their subtree_max_size are recalculated all the time up * to the root node. * * 4--8 * /\ * / \ * / \ * 2--2 8--8 * * For example if we modify the node 4, shrinking it to 2, then * no any modification is required. If we shrink the node 2 to 1 * its subtree_max_size is updated only, and set to 1. If we shrink * the node 8 to 6, then its subtree_max_size is set to 6 and parent * node becomes 4--6. */ static __always_inline void augment_tree_propagate_from(struct vmap_area *va) { /* * Populate the tree from bottom towards the root until * the calculated maximum available size of checked node * is equal to its current one. */ free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); #if DEBUG_AUGMENT_PROPAGATE_CHECK augment_tree_propagate_check(); #endif } static void insert_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; link = find_va_links(va, root, NULL, &parent); if (link) link_va(va, root, parent, link, head); } static void insert_vmap_area_augment(struct vmap_area *va, struct rb_node *from, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; if (from) link = find_va_links(va, NULL, from, &parent); else link = find_va_links(va, root, NULL, &parent); if (link) { link_va_augment(va, root, parent, link, head); augment_tree_propagate_from(va); } } /* * Merge de-allocated chunk of VA memory with previous * and next free blocks. If coalesce is not done a new * free area is inserted. If VA has been merged, it is * freed. * * Please note, it can return NULL in case of overlap * ranges, followed by WARN() report. Despite it is a * buggy behaviour, a system can be alive and keep * ongoing. */ static __always_inline struct vmap_area * __merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head, bool augment) { struct vmap_area *sibling; struct list_head *next; struct rb_node **link; struct rb_node *parent; bool merged = false; /* * Find a place in the tree where VA potentially will be * inserted, unless it is merged with its sibling/siblings. */ link = find_va_links(va, root, NULL, &parent); if (!link) return NULL; /* * Get next node of VA to check if merging can be done. */ next = get_va_next_sibling(parent, link); if (unlikely(next == NULL)) goto insert; /* * start end * | | * |<------VA------>|<-----Next----->| * | | * start end */ if (next != head) { sibling = list_entry(next, struct vmap_area, list); if (sibling->va_start == va->va_end) { sibling->va_start = va->va_start; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } /* * start end * | | * |<-----Prev----->|<------VA------>| * | | * start end */ if (next->prev != head) { sibling = list_entry(next->prev, struct vmap_area, list); if (sibling->va_end == va->va_start) { /* * If both neighbors are coalesced, it is important * to unlink the "next" node first, followed by merging * with "previous" one. Otherwise the tree might not be * fully populated if a sibling's augmented value is * "normalized" because of rotation operations. */ if (merged) __unlink_va(va, root, augment); sibling->va_end = va->va_end; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } insert: if (!merged) __link_va(va, root, parent, link, head, augment); return va; } static __always_inline struct vmap_area * merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { return __merge_or_add_vmap_area(va, root, head, false); } static __always_inline struct vmap_area * merge_or_add_vmap_area_augment(struct vmap_area *va, struct rb_root *root, struct list_head *head) { va = __merge_or_add_vmap_area(va, root, head, true); if (va) augment_tree_propagate_from(va); return va; } static __always_inline bool is_within_this_va(struct vmap_area *va, unsigned long size, unsigned long align, unsigned long vstart) { unsigned long nva_start_addr; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Can be overflowed due to big size or alignment. */ if (nva_start_addr + size < nva_start_addr || nva_start_addr < vstart) return false; return (nva_start_addr + size <= va->va_end); } /* * Find the first free block(lowest start address) in the tree, * that will accomplish the request corresponding to passing * parameters. Please note, with an alignment bigger than PAGE_SIZE, * a search length is adjusted to account for worst case alignment * overhead. */ static __always_inline struct vmap_area * find_vmap_lowest_match(struct rb_root *root, unsigned long size, unsigned long align, unsigned long vstart, bool adjust_search_size) { struct vmap_area *va; struct rb_node *node; unsigned long length; /* Start from the root. */ node = root->rb_node; /* Adjust the search size for alignment overhead. */ length = adjust_search_size ? size + align - 1 : size; while (node) { va = rb_entry(node, struct vmap_area, rb_node); if (get_subtree_max_size(node->rb_left) >= length && vstart < va->va_start) { node = node->rb_left; } else { if (is_within_this_va(va, size, align, vstart)) return va; /* * Does not make sense to go deeper towards the right * sub-tree if it does not have a free block that is * equal or bigger to the requested search length. */ if (get_subtree_max_size(node->rb_right) >= length) { node = node->rb_right; continue; } /* * OK. We roll back and find the first right sub-tree, * that will satisfy the search criteria. It can happen * due to "vstart" restriction or an alignment overhead * that is bigger then PAGE_SIZE. */ while ((node = rb_parent(node))) { va = rb_entry(node, struct vmap_area, rb_node); if (is_within_this_va(va, size, align, vstart)) return va; if (get_subtree_max_size(node->rb_right) >= length && vstart <= va->va_start) { /* * Shift the vstart forward. Please note, we update it with * parent's start address adding "1" because we do not want * to enter same sub-tree after it has already been checked * and no suitable free block found there. */ vstart = va->va_start + 1; node = node->rb_right; break; } } } } return NULL; } #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK #include <linux/random.h> static struct vmap_area * find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; list_for_each_entry(va, head, list) { if (!is_within_this_va(va, size, align, vstart)) continue; return va; } return NULL; } static void find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, unsigned long size, unsigned long align) { struct vmap_area *va_1, *va_2; unsigned long vstart; unsigned int rnd; get_random_bytes(&rnd, sizeof(rnd)); vstart = VMALLOC_START + rnd; va_1 = find_vmap_lowest_match(root, size, align, vstart, false); va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); if (va_1 != va_2) pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", va_1, va_2, vstart); } #endif enum fit_type { NOTHING_FIT = 0, FL_FIT_TYPE = 1, /* full fit */ LE_FIT_TYPE = 2, /* left edge fit */ RE_FIT_TYPE = 3, /* right edge fit */ NE_FIT_TYPE = 4 /* no edge fit */ }; static __always_inline enum fit_type classify_va_fit_type(struct vmap_area *va, unsigned long nva_start_addr, unsigned long size) { enum fit_type type; /* Check if it is within VA. */ if (nva_start_addr < va->va_start || nva_start_addr + size > va->va_end) return NOTHING_FIT; /* Now classify. */ if (va->va_start == nva_start_addr) { if (va->va_end == nva_start_addr + size) type = FL_FIT_TYPE; else type = LE_FIT_TYPE; } else if (va->va_end == nva_start_addr + size) { type = RE_FIT_TYPE; } else { type = NE_FIT_TYPE; } return type; } static __always_inline int va_clip(struct rb_root *root, struct list_head *head, struct vmap_area *va, unsigned long nva_start_addr, unsigned long size) { struct vmap_area *lva = NULL; enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); if (type == FL_FIT_TYPE) { /* * No need to split VA, it fully fits. * * | | * V NVA V * |---------------| */ unlink_va_augment(va, root); kmem_cache_free(vmap_area_cachep, va); } else if (type == LE_FIT_TYPE) { /* * Split left edge of fit VA. * * | | * V NVA V R * |-------|-------| */ va->va_start += size; } else if (type == RE_FIT_TYPE) { /* * Split right edge of fit VA. * * | | * L V NVA V * |-------|-------| */ va->va_end = nva_start_addr; } else if (type == NE_FIT_TYPE) { /* * Split no edge of fit VA. * * | | * L V NVA V R * |---|-------|---| */ lva = __this_cpu_xchg(ne_fit_preload_node, NULL); if (unlikely(!lva)) { /* * For percpu allocator we do not do any pre-allocation * and leave it as it is. The reason is it most likely * never ends up with NE_FIT_TYPE splitting. In case of * percpu allocations offsets and sizes are aligned to * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE * are its main fitting cases. * * There are a few exceptions though, as an example it is * a first allocation (early boot up) when we have "one" * big free space that has to be split. * * Also we can hit this path in case of regular "vmap" * allocations, if "this" current CPU was not preloaded. * See the comment in alloc_vmap_area() why. If so, then * GFP_NOWAIT is used instead to get an extra object for * split purpose. That is rare and most time does not * occur. * * What happens if an allocation gets failed. Basically, * an "overflow" path is triggered to purge lazily freed * areas to free some memory, then, the "retry" path is * triggered to repeat one more time. See more details * in alloc_vmap_area() function. */ lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); if (!lva) return -1; } /* * Build the remainder. */ lva->va_start = va->va_start; lva->va_end = nva_start_addr; /* * Shrink this VA to remaining size. */ va->va_start = nva_start_addr + size; } else { return -1; } if (type != FL_FIT_TYPE) { augment_tree_propagate_from(va); if (lva) /* type == NE_FIT_TYPE */ insert_vmap_area_augment(lva, &va->rb_node, root, head); } return 0; } static unsigned long va_alloc(struct vmap_area *va, struct rb_root *root, struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { unsigned long nva_start_addr; int ret; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Check the "vend" restriction. */ if (nva_start_addr + size > vend) return vend; /* Update the free vmap_area. */ ret = va_clip(root, head, va, nva_start_addr, size); if (WARN_ON_ONCE(ret)) return vend; return nva_start_addr; } /* * Returns a start address of the newly allocated area, if success. * Otherwise a vend is returned that indicates failure. */ static __always_inline unsigned long __alloc_vmap_area(struct rb_root *root, struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { bool adjust_search_size = true; unsigned long nva_start_addr; struct vmap_area *va; /* * Do not adjust when: * a) align <= PAGE_SIZE, because it does not make any sense. * All blocks(their start addresses) are at least PAGE_SIZE * aligned anyway; * b) a short range where a requested size corresponds to exactly * specified [vstart:vend] interval and an alignment > PAGE_SIZE. * With adjusted search length an allocation would not succeed. */ if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) adjust_search_size = false; va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); if (unlikely(!va)) return vend; nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); if (nva_start_addr == vend) return vend; #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK find_vmap_lowest_match_check(root, head, size, align); #endif return nva_start_addr; } /* * Free a region of KVA allocated by alloc_vmap_area */ static void free_vmap_area(struct vmap_area *va) { struct vmap_node *vn = addr_to_node(va->va_start); /* * Remove from the busy tree/list. */ spin_lock(&vn->busy.lock); unlink_va(va, &vn->busy.root); spin_unlock(&vn->busy.lock); /* * Insert/Merge it back to the free tree/list. */ spin_lock(&free_vmap_area_lock); merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } static inline void preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) { struct vmap_area *va = NULL, *tmp; /* * Preload this CPU with one extra vmap_area object. It is used * when fit type of free area is NE_FIT_TYPE. It guarantees that * a CPU that does an allocation is preloaded. * * We do it in non-atomic context, thus it allows us to use more * permissive allocation masks to be more stable under low memory * condition and high memory pressure. */ if (!this_cpu_read(ne_fit_preload_node)) va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); spin_lock(lock); tmp = NULL; if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) kmem_cache_free(vmap_area_cachep, va); } static struct vmap_pool * size_to_va_pool(struct vmap_node *vn, unsigned long size) { unsigned int idx = (size - 1) / PAGE_SIZE; if (idx < MAX_VA_SIZE_PAGES) return &vn->pool[idx]; return NULL; } static bool node_pool_add_va(struct vmap_node *n, struct vmap_area *va) { struct vmap_pool *vp; vp = size_to_va_pool(n, va_size(va)); if (!vp) return false; spin_lock(&n->pool_lock); list_add(&va->list, &vp->head); WRITE_ONCE(vp->len, vp->len + 1); spin_unlock(&n->pool_lock); return true; } static struct vmap_area * node_pool_del_va(struct vmap_node *vn, unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { struct vmap_area *va = NULL; struct vmap_pool *vp; int err = 0; vp = size_to_va_pool(vn, size); if (!vp || list_empty(&vp->head)) return NULL; spin_lock(&vn->pool_lock); if (!list_empty(&vp->head)) { va = list_first_entry(&vp->head, struct vmap_area, list); if (IS_ALIGNED(va->va_start, align)) { /* * Do some sanity check and emit a warning * if one of below checks detects an error. */ err |= (va_size(va) != size); err |= (va->va_start < vstart); err |= (va->va_end > vend); if (!WARN_ON_ONCE(err)) { list_del_init(&va->list); WRITE_ONCE(vp->len, vp->len - 1); } else { va = NULL; } } else { list_move_tail(&va->list, &vp->head); va = NULL; } } spin_unlock(&vn->pool_lock); return va; } static struct vmap_area * node_alloc(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, unsigned long *addr, unsigned int *vn_id) { struct vmap_area *va; *vn_id = 0; *addr = vend; /* * Fallback to a global heap if not vmalloc or there * is only one node. */ if (vstart != VMALLOC_START || vend != VMALLOC_END || nr_vmap_nodes == 1) return NULL; *vn_id = raw_smp_processor_id() % nr_vmap_nodes; va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); *vn_id = encode_vn_id(*vn_id); if (va) *addr = va->va_start; return va; } static inline void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { vm->flags = flags; vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; vm->caller = caller; va->vm = vm; } /* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. If vm is passed in, the two will also be bound. */ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask, unsigned long va_flags, struct vm_struct *vm) { struct vmap_node *vn; struct vmap_area *va; unsigned long freed; unsigned long addr; unsigned int vn_id; int purged = 0; int ret; if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) return ERR_PTR(-EINVAL); if (unlikely(!vmap_initialized)) return ERR_PTR(-EBUSY); might_sleep(); /* * If a VA is obtained from a global heap(if it fails here) * it is anyway marked with this "vn_id" so it is returned * to this pool's node later. Such way gives a possibility * to populate pools based on users demand. * * On success a ready to go VA is returned. */ va = node_alloc(size, align, vstart, vend, &addr, &vn_id); if (!va) { gfp_mask = gfp_mask & GFP_RECLAIM_MASK; va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); /* * Only scan the relevant parts containing pointers to other objects * to avoid false negatives. */ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); } retry: if (addr == vend) { preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, size, align, vstart, vend); spin_unlock(&free_vmap_area_lock); } trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); /* * If an allocation fails, the "vend" address is * returned. Therefore trigger the overflow path. */ if (unlikely(addr == vend)) goto overflow; va->va_start = addr; va->va_end = addr + size; va->vm = NULL; va->flags = (va_flags | vn_id); if (vm) { vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; va->vm = vm; } vn = addr_to_node(va->va_start); spin_lock(&vn->busy.lock); insert_vmap_area(va, &vn->busy.root, &vn->busy.head); spin_unlock(&vn->busy.lock); BUG_ON(!IS_ALIGNED(va->va_start, align)); BUG_ON(va->va_start < vstart); BUG_ON(va->va_end > vend); ret = kasan_populate_vmalloc(addr, size); if (ret) { free_vmap_area(va); return ERR_PTR(ret); } return va; overflow: if (!purged) { reclaim_and_purge_vmap_areas(); purged = 1; goto retry; } freed = 0; blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); if (freed > 0) { purged = 0; goto retry; } if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", size, vstart, vend); kmem_cache_free(vmap_area_cachep, va); return ERR_PTR(-EBUSY); } int register_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); int unregister_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); /* * lazy_max_pages is the maximum amount of virtual address space we gather up * before attempting to purge with a TLB flush. * * There is a tradeoff here: a larger number will cover more kernel page tables * and take slightly longer to purge, but it will linearly reduce the number of * global TLB flushes that must be performed. It would seem natural to scale * this number up linearly with the number of CPUs (because vmapping activity * could also scale linearly with the number of CPUs), however it is likely * that in practice, workloads might be constrained in other ways that mean * vmap activity will not scale linearly with CPUs. Also, I want to be * conservative and not introduce a big latency on huge systems, so go with * a less aggressive log scale. It will still be an improvement over the old * code, and it will be simple to change the scale factor if we find that it * becomes a problem on bigger systems. */ static unsigned long lazy_max_pages(void) { unsigned int log; log = fls(num_online_cpus()); return log * (32UL * 1024 * 1024 / PAGE_SIZE); } static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); /* * Serialize vmap purging. There is no actual critical section protected * by this lock, but we want to avoid concurrent calls for performance * reasons and to make the pcpu_get_vm_areas more deterministic. */ static DEFINE_MUTEX(vmap_purge_lock); /* for per-CPU blocks */ static void purge_fragmented_blocks_allcpus(void); static cpumask_t purge_nodes; static void reclaim_list_global(struct list_head *head) { struct vmap_area *va, *n; if (list_empty(head)) return; spin_lock(&free_vmap_area_lock); list_for_each_entry_safe(va, n, head, list) merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } static void decay_va_pool_node(struct vmap_node *vn, bool full_decay) { struct vmap_area *va, *nva; struct list_head decay_list; struct rb_root decay_root; unsigned long n_decay; int i; decay_root = RB_ROOT; INIT_LIST_HEAD(&decay_list); for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { struct list_head tmp_list; if (list_empty(&vn->pool[i].head)) continue; INIT_LIST_HEAD(&tmp_list); /* Detach the pool, so no-one can access it. */ spin_lock(&vn->pool_lock); list_replace_init(&vn->pool[i].head, &tmp_list); spin_unlock(&vn->pool_lock); if (full_decay) WRITE_ONCE(vn->pool[i].len, 0); /* Decay a pool by ~25% out of left objects. */ n_decay = vn->pool[i].len >> 2; list_for_each_entry_safe(va, nva, &tmp_list, list) { list_del_init(&va->list); merge_or_add_vmap_area(va, &decay_root, &decay_list); if (!full_decay) { WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); if (!--n_decay) break; } } /* * Attach the pool back if it has been partly decayed. * Please note, it is supposed that nobody(other contexts) * can populate the pool therefore a simple list replace * operation takes place here. */ if (!full_decay && !list_empty(&tmp_list)) { spin_lock(&vn->pool_lock); list_replace_init(&tmp_list, &vn->pool[i].head); spin_unlock(&vn->pool_lock); } } reclaim_list_global(&decay_list); } static void purge_vmap_node(struct work_struct *work) { struct vmap_node *vn = container_of(work, struct vmap_node, purge_work); unsigned long nr_purged_pages = 0; struct vmap_area *va, *n_va; LIST_HEAD(local_list); vn->nr_purged = 0; list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; unsigned long orig_start = va->va_start; unsigned long orig_end = va->va_end; unsigned int vn_id = decode_vn_id(va->flags); list_del_init(&va->list); if (is_vmalloc_or_module_addr((void *)orig_start)) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); nr_purged_pages += nr; vn->nr_purged++; if (is_vn_id_valid(vn_id) && !vn->skip_populate) if (node_pool_add_va(vn, va)) continue; /* Go back to global. */ list_add(&va->list, &local_list); } atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); reclaim_list_global(&local_list); } /* * Purges all lazily-freed vmap areas. */ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, bool full_pool_decay) { unsigned long nr_purged_areas = 0; unsigned int nr_purge_helpers; unsigned int nr_purge_nodes; struct vmap_node *vn; int i; lockdep_assert_held(&vmap_purge_lock); /* * Use cpumask to mark which node has to be processed. */ purge_nodes = CPU_MASK_NONE; for (i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; INIT_LIST_HEAD(&vn->purge_list); vn->skip_populate = full_pool_decay; decay_va_pool_node(vn, full_pool_decay); if (RB_EMPTY_ROOT(&vn->lazy.root)) continue; spin_lock(&vn->lazy.lock); WRITE_ONCE(vn->lazy.root.rb_node, NULL); list_replace_init(&vn->lazy.head, &vn->purge_list); spin_unlock(&vn->lazy.lock); start = min(start, list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start); end = max(end, list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end); cpumask_set_cpu(i, &purge_nodes); } nr_purge_nodes = cpumask_weight(&purge_nodes); if (nr_purge_nodes > 0) { flush_tlb_kernel_range(start, end); /* One extra worker is per a lazy_max_pages() full set minus one. */ nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; for_each_cpu(i, &purge_nodes) { vn = &vmap_nodes[i]; if (nr_purge_helpers > 0) { INIT_WORK(&vn->purge_work, purge_vmap_node); if (cpumask_test_cpu(i, cpu_online_mask)) schedule_work_on(i, &vn->purge_work); else schedule_work(&vn->purge_work); nr_purge_helpers--; } else { vn->purge_work.func = NULL; purge_vmap_node(&vn->purge_work); nr_purged_areas += vn->nr_purged; } } for_each_cpu(i, &purge_nodes) { vn = &vmap_nodes[i]; if (vn->purge_work.func) { flush_work(&vn->purge_work); nr_purged_areas += vn->nr_purged; } } } trace_purge_vmap_area_lazy(start, end, nr_purged_areas); return nr_purged_areas > 0; } /* * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. */ static void reclaim_and_purge_vmap_areas(void) { mutex_lock(&vmap_purge_lock); purge_fragmented_blocks_allcpus(); __purge_vmap_area_lazy(ULONG_MAX, 0, true); mutex_unlock(&vmap_purge_lock); } static void drain_vmap_area_work(struct work_struct *work) { mutex_lock(&vmap_purge_lock); __purge_vmap_area_lazy(ULONG_MAX, 0, false); mutex_unlock(&vmap_purge_lock); } /* * Free a vmap area, caller ensuring that the area has been unmapped, * unlinked and flush_cache_vunmap had been called for the correct * range previously. */ static void free_vmap_area_noflush(struct vmap_area *va) { unsigned long nr_lazy_max = lazy_max_pages(); unsigned long va_start = va->va_start; unsigned int vn_id = decode_vn_id(va->flags); struct vmap_node *vn; unsigned long nr_lazy; if (WARN_ON_ONCE(!list_empty(&va->list))) return; nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); /* * If it was request by a certain node we would like to * return it to that node, i.e. its pool for later reuse. */ vn = is_vn_id_valid(vn_id) ? id_to_node(vn_id):addr_to_node(va->va_start); spin_lock(&vn->lazy.lock); insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); spin_unlock(&vn->lazy.lock); trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); /* After this point, we may free va at any time */ if (unlikely(nr_lazy > nr_lazy_max)) schedule_work(&drain_vmap_work); } /* * Free and unmap a vmap area */ static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); vunmap_range_noflush(va->va_start, va->va_end); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(va->va_start, va->va_end); free_vmap_area_noflush(va); } struct vmap_area *find_vmap_area(unsigned long addr) { struct vmap_node *vn; struct vmap_area *va; int i, j; if (unlikely(!vmap_initialized)) return NULL; /* * An addr_to_node_id(addr) converts an address to a node index * where a VA is located. If VA spans several zones and passed * addr is not the same as va->va_start, what is not common, we * may need to scan extra nodes. See an example: * * <----va----> * -|-----|-----|-----|-----|- * 1 2 0 1 * * VA resides in node 1 whereas it spans 1, 2 an 0. If passed * addr is within 2 or 0 nodes we should do extra work. */ i = j = addr_to_node_id(addr); do { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); va = __find_vmap_area(addr, &vn->busy.root); spin_unlock(&vn->busy.lock); if (va) return va; } while ((i = (i + 1) % nr_vmap_nodes) != j); return NULL; } static struct vmap_area *find_unlink_vmap_area(unsigned long addr) { struct vmap_node *vn; struct vmap_area *va; int i, j; /* * Check the comment in the find_vmap_area() about the loop. */ i = j = addr_to_node_id(addr); do { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); va = __find_vmap_area(addr, &vn->busy.root); if (va) unlink_va(va, &vn->busy.root); spin_unlock(&vn->busy.lock); if (va) return va; } while ((i = (i + 1) % nr_vmap_nodes) != j); return NULL; } /*** Per cpu kva allocator ***/ /* * vmap space is limited especially on 32 bit architectures. Ensure there is * room for at least 16 percpu vmap blocks per CPU. */ /* * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess * instead (we just need a rough idea) */ #if BITS_PER_LONG == 32 #define VMALLOC_SPACE (128UL*1024*1024) #else #define VMALLOC_SPACE (128UL*1024*1024*1024) #endif #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ #define VMAP_BBMAP_BITS \ VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) /* * Purge threshold to prevent overeager purging of fragmented blocks for * regular operations: Purge if vb->free is less than 1/4 of the capacity. */ #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ #define VMAP_FLAGS_MASK 0x3 struct vmap_block_queue { spinlock_t lock; struct list_head free; /* * An xarray requires an extra memory dynamically to * be allocated. If it is an issue, we can use rb-tree * instead. */ struct xarray vmap_blocks; }; struct vmap_block { spinlock_t lock; struct vmap_area *va; unsigned long free, dirty; DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); unsigned long dirty_min, dirty_max; /*< dirty range */ struct list_head free_list; struct rcu_head rcu_head; struct list_head purge; unsigned int cpu; }; /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* * In order to fast access to any "vmap_block" associated with a * specific address, we use a hash. * * A per-cpu vmap_block_queue is used in both ways, to serialize * an access to free block chains among CPUs(alloc path) and it * also acts as a vmap_block hash(alloc/free paths). It means we * overload it, since we already have the per-cpu array which is * used as a hash table. When used as a hash a 'cpu' passed to * per_cpu() is not actually a CPU but rather a hash index. * * A hash function is addr_to_vb_xa() which hashes any address * to a specific index(in a hash) it belongs to. This then uses a * per_cpu() macro to access an array with generated index. * * An example: * * CPU_1 CPU_2 CPU_0 * | | | * V V V * 0 10 20 30 40 50 60 * |------|------|------|------|------|------|...<vmap address space> * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 * * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; * * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; * * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. * * This technique almost always avoids lock contention on insert/remove, * however xarray spinlocks protect against any contention that remains. */ static struct xarray * addr_to_vb_xa(unsigned long addr) { int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; /* * Please note, nr_cpu_ids points on a highest set * possible bit, i.e. we never invoke cpumask_next() * if an index points on it which is nr_cpu_ids - 1. */ if (!cpu_possible(index)) index = cpumask_next(index, cpu_possible_mask); return &per_cpu(vmap_block_queue, index).vmap_blocks; } /* * We should probably have a fallback mechanism to allocate virtual memory * out of partially filled vmap blocks. However vmap block sizing should be * fairly reasonable according to the vmalloc size, so it shouldn't be a * big problem. */ static unsigned long addr_to_vb_idx(unsigned long addr) { addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); addr /= VMAP_BLOCK_SIZE; return addr; } static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) { unsigned long addr; addr = va_start + (pages_off << PAGE_SHIFT); BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); return (void *)addr; } /** * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this * block. Of course pages number can't exceed VMAP_BBMAP_BITS * @order: how many 2^order pages should be occupied in newly allocated block * @gfp_mask: flags for the page level allocator * * Return: virtual address in a newly allocated block or ERR_PTR(-errno) */ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; struct xarray *xa; unsigned long vb_idx; int node, err; void *vaddr; node = numa_node_id(); vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!vb)) return ERR_PTR(-ENOMEM); va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, VMALLOC_START, VMALLOC_END, node, gfp_mask, VMAP_RAM|VMAP_BLOCK, NULL); if (IS_ERR(va)) { kfree(vb); return ERR_CAST(va); } vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; /* At least something should be left free */ BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); vb->free = VMAP_BBMAP_BITS - (1UL << order); vb->dirty = 0; vb->dirty_min = VMAP_BBMAP_BITS; vb->dirty_max = 0; bitmap_set(vb->used_map, 0, (1UL << order)); INIT_LIST_HEAD(&vb->free_list); vb->cpu = raw_smp_processor_id(); xa = addr_to_vb_xa(va->va_start); vb_idx = addr_to_vb_idx(va->va_start); err = xa_insert(xa, vb_idx, vb, gfp_mask); if (err) { kfree(vb); free_vmap_area(va); return ERR_PTR(err); } /* * list_add_tail_rcu could happened in another core * rather than vb->cpu due to task migration, which * is safe as list_add_tail_rcu will ensure the list's * integrity together with list_for_each_rcu from read * side. */ vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); spin_lock(&vbq->lock); list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); return vaddr; } static void free_vmap_block(struct vmap_block *vb) { struct vmap_node *vn; struct vmap_block *tmp; struct xarray *xa; xa = addr_to_vb_xa(vb->va->va_start); tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); vn = addr_to_node(vb->va->va_start); spin_lock(&vn->busy.lock); unlink_va(vb->va, &vn->busy.root); spin_unlock(&vn->busy.lock); free_vmap_area_noflush(vb->va); kfree_rcu(vb, rcu_head); } static bool purge_fragmented_block(struct vmap_block *vb, struct list_head *purge_list, bool force_purge) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); if (vb->free + vb->dirty != VMAP_BBMAP_BITS || vb->dirty == VMAP_BBMAP_BITS) return false; /* Don't overeagerly purge usable blocks unless requested */ if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) return false; /* prevent further allocs after releasing lock */ WRITE_ONCE(vb->free, 0); /* prevent purging it again */ WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); vb->dirty_min = 0; vb->dirty_max = VMAP_BBMAP_BITS; spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); list_add_tail(&vb->purge, purge_list); return true; } static void free_purged_blocks(struct list_head *purge_list) { struct vmap_block *vb, *n_vb; list_for_each_entry_safe(vb, n_vb, purge_list, purge) { list_del(&vb->purge); free_vmap_block(vb); } } static void purge_fragmented_blocks(int cpu) { LIST_HEAD(purge); struct vmap_block *vb; struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long free = READ_ONCE(vb->free); unsigned long dirty = READ_ONCE(vb->dirty); if (free + dirty != VMAP_BBMAP_BITS || dirty == VMAP_BBMAP_BITS) continue; spin_lock(&vb->lock); purge_fragmented_block(vb, &purge, true); spin_unlock(&vb->lock); } rcu_read_unlock(); free_purged_blocks(&purge); } static void purge_fragmented_blocks_allcpus(void) { int cpu; for_each_possible_cpu(cpu) purge_fragmented_blocks(cpu); } static void *vb_alloc(unsigned long size, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; void *vaddr = NULL; unsigned int order; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); if (WARN_ON(size == 0)) { /* * Allocating 0 bytes isn't what caller wants since * get_order(0) returns funny result. Just warn and terminate * early. */ return ERR_PTR(-EINVAL); } order = get_order(size); rcu_read_lock(); vbq = raw_cpu_ptr(&vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long pages_off; if (READ_ONCE(vb->free) < (1UL << order)) continue; spin_lock(&vb->lock); if (vb->free < (1UL << order)) { spin_unlock(&vb->lock); continue; } pages_off = VMAP_BBMAP_BITS - vb->free; vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); WRITE_ONCE(vb->free, vb->free - (1UL << order)); bitmap_set(vb->used_map, pages_off, (1UL << order)); if (vb->free == 0) { spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); } spin_unlock(&vb->lock); break; } rcu_read_unlock(); /* Allocate new block if nothing was found */ if (!vaddr) vaddr = new_vmap_block(order, gfp_mask); return vaddr; } static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; unsigned int order; struct vmap_block *vb; struct xarray *xa; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); flush_cache_vunmap(addr, addr + size); order = get_order(size); offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; xa = addr_to_vb_xa(addr); vb = xa_load(xa, addr_to_vb_idx(addr)); spin_lock(&vb->lock); bitmap_clear(vb->used_map, offset, (1UL << order)); spin_unlock(&vb->lock); vunmap_range_noflush(addr, addr + size); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(addr, addr + size); spin_lock(&vb->lock); /* Expand the not yet TLB flushed dirty range */ vb->dirty_min = min(vb->dirty_min, offset); vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); if (vb->dirty == VMAP_BBMAP_BITS) { BUG_ON(vb->free); spin_unlock(&vb->lock); free_vmap_block(vb); } else spin_unlock(&vb->lock); } static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) { LIST_HEAD(purge_list); int cpu; if (unlikely(!vmap_initialized)) return; mutex_lock(&vmap_purge_lock); for_each_possible_cpu(cpu) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); struct vmap_block *vb; unsigned long idx; rcu_read_lock(); xa_for_each(&vbq->vmap_blocks, idx, vb) { spin_lock(&vb->lock); /* * Try to purge a fragmented block first. If it's * not purgeable, check whether there is dirty * space to be flushed. */ if (!purge_fragmented_block(vb, &purge_list, false) && vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { unsigned long va_start = vb->va->va_start; unsigned long s, e; s = va_start + (vb->dirty_min << PAGE_SHIFT); e = va_start + (vb->dirty_max << PAGE_SHIFT); start = min(s, start); end = max(e, end); /* Prevent that this is flushed again */ vb->dirty_min = VMAP_BBMAP_BITS; vb->dirty_max = 0; flush = 1; } spin_unlock(&vb->lock); } rcu_read_unlock(); } free_purged_blocks(&purge_list); if (!__purge_vmap_area_lazy(start, end, false) && flush) flush_tlb_kernel_range(start, end); mutex_unlock(&vmap_purge_lock); } /** * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer * * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily * to amortize TLB flushing overheads. What this means is that any page you * have now, may, in a former life, have been mapped into kernel virtual * address by the vmap layer and so there might be some CPUs with TLB entries * still referencing that page (additional to the regular 1:1 kernel mapping). * * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can * be sure that none of the pages we have control over will have any aliases * from the vmap layer. */ void vm_unmap_aliases(void) { unsigned long start = ULONG_MAX, end = 0; int flush = 0; _vm_unmap_aliases(start, end, flush); } EXPORT_SYMBOL_GPL(vm_unmap_aliases); /** * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram * @mem: the pointer returned by vm_map_ram * @count: the count passed to that vm_map_ram call (cannot unmap partial) */ void vm_unmap_ram(const void *mem, unsigned int count) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr = (unsigned long)kasan_reset_tag(mem); struct vmap_area *va; might_sleep(); BUG_ON(!addr); BUG_ON(addr < VMALLOC_START); BUG_ON(addr > VMALLOC_END); BUG_ON(!PAGE_ALIGNED(addr)); kasan_poison_vmalloc(mem, size); if (likely(count <= VMAP_MAX_ALLOC)) { debug_check_no_locks_freed(mem, size); vb_free(addr, size); return; } va = find_unlink_vmap_area(addr); if (WARN_ON_ONCE(!va)) return; debug_check_no_locks_freed((void *)va->va_start, (va->va_end - va->va_start)); free_unmap_vmap_area(va); } EXPORT_SYMBOL(vm_unmap_ram); /** * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node * * If you use this function for less than VMAP_MAX_ALLOC pages, it could be * faster than vmap so it's good. But if you mix long-life and short-life * objects with vm_map_ram(), it could consume lots of address space through * fragmentation (especially on a 32bit machine). You could see failures in * the end. Please use this function for short-lived objects. * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ void *vm_map_ram(struct page **pages, unsigned int count, int node) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr; void *mem; if (likely(count <= VMAP_MAX_ALLOC)) { mem = vb_alloc(size, GFP_KERNEL); if (IS_ERR(mem)) return NULL; addr = (unsigned long)mem; } else { struct vmap_area *va; va = alloc_vmap_area(size, PAGE_SIZE, VMALLOC_START, VMALLOC_END, node, GFP_KERNEL, VMAP_RAM, NULL); if (IS_ERR(va)) return NULL; addr = va->va_start; mem = (void *)addr; } if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, pages, PAGE_SHIFT) < 0) { vm_unmap_ram(mem, count); return NULL; } /* * Mark the pages as accessible, now that they are mapped. * With hardware tag-based KASAN, marking is skipped for * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). */ mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); return mem; } EXPORT_SYMBOL(vm_map_ram); static struct vm_struct *vmlist __initdata; static inline unsigned int vm_area_page_order(struct vm_struct *vm) { #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC return vm->page_order; #else return 0; #endif } static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) { #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC vm->page_order = order; #else BUG_ON(order != 0); #endif } /** * vm_area_add_early - add vmap area early during boot * @vm: vm_struct to add * * This function is used to add fixed kernel vm area to vmlist before * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags * should contain proper values and the other fields should be zero. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_add_early(struct vm_struct *vm) { struct vm_struct *tmp, **p; BUG_ON(vmap_initialized); for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { if (tmp->addr >= vm->addr) { BUG_ON(tmp->addr < vm->addr + vm->size); break; } else BUG_ON(tmp->addr + tmp->size > vm->addr); } vm->next = *p; *p = vm; } /** * vm_area_register_early - register vmap area early during boot * @vm: vm_struct to register * @align: requested alignment * * This function is used to register kernel vm area before * vmalloc_init() is called. @vm->size and @vm->flags should contain * proper values on entry and other fields should be zero. On return, * vm->addr contains the allocated address. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { unsigned long addr = ALIGN(VMALLOC_START, align); struct vm_struct *cur, **p; BUG_ON(vmap_initialized); for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { if ((unsigned long)cur->addr - addr >= vm->size) break; addr = ALIGN((unsigned long)cur->addr + cur->size, align); } BUG_ON(addr > VMALLOC_END - vm->size); vm->addr = (void *)addr; vm->next = *p; *p = vm; kasan_populate_early_vm_area_shadow(vm->addr, vm->size); } static void clear_vm_uninitialized_flag(struct vm_struct *vm) { /* * Before removing VM_UNINITIALIZED, * we should make sure that vm has proper values. * Pair with smp_rmb() in show_numa_info(). */ smp_wmb(); vm->flags &= ~VM_UNINITIALIZED; } static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long shift, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; unsigned long requested_size = size; BUG_ON(in_interrupt()); size = ALIGN(size, 1ul << shift); if (unlikely(!size)) return NULL; if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; if (!(flags & VM_NO_GUARD)) size += PAGE_SIZE; area->flags = flags; area->caller = caller; va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); if (IS_ERR(va)) { kfree(area); return NULL; } /* * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a * best-effort approach, as they can be mapped outside of vmalloc code. * For VM_ALLOC mappings, the pages are marked as accessible after * getting mapped in __vmalloc_node_range(). * With hardware tag-based KASAN, marking is skipped for * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). */ if (!(flags & VM_ALLOC)) area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, KASAN_VMALLOC_PROT_NORMAL); return area; } struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * get_vm_area - reserve a contiguous kernel virtual area * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); } struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * find_vm_area - find a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and return it. * It is up to the caller to do all required locking to keep the returned * pointer valid. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *find_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); if (!va) return NULL; return va->vm; } /** * remove_vm_area - find and remove a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *remove_vm_area(const void *addr) { struct vmap_area *va; struct vm_struct *vm; might_sleep(); if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", addr)) return NULL; va = find_unlink_vmap_area((unsigned long)addr); if (!va || !va->vm) return NULL; vm = va->vm; debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); kasan_free_module_shadow(vm); kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); free_unmap_vmap_area(va); return vm; } static inline void set_area_direct_map(const struct vm_struct *area, int (*set_direct_map)(struct page *page)) { int i; /* HUGE_VMALLOC passes small pages to set_direct_map */ for (i = 0; i < area->nr_pages; i++) if (page_address(area->pages[i])) set_direct_map(area->pages[i]); } /* * Flush the vm mapping and reset the direct map. */ static void vm_reset_perms(struct vm_struct *area) { unsigned long start = ULONG_MAX, end = 0; unsigned int page_order = vm_area_page_order(area); int flush_dmap = 0; int i; /* * Find the start and end range of the direct mappings to make sure that * the vm_unmap_aliases() flush includes the direct map. */ for (i = 0; i < area->nr_pages; i += 1U << page_order) { unsigned long addr = (unsigned long)page_address(area->pages[i]); if (addr) { unsigned long page_size; page_size = PAGE_SIZE << page_order; start = min(addr, start); end = max(addr + page_size, end); flush_dmap = 1; } } /* * Set direct map to something invalid so that it won't be cached if * there are any accesses after the TLB flush, then flush the TLB and * reset the direct map permissions to the default. */ set_area_direct_map(area, set_direct_map_invalid_noflush); _vm_unmap_aliases(start, end, flush_dmap); set_area_direct_map(area, set_direct_map_default_noflush); } static void delayed_vfree_work(struct work_struct *w) { struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); struct llist_node *t, *llnode; llist_for_each_safe(llnode, t, llist_del_all(&p->list)) vfree(llnode); } /** * vfree_atomic - release memory allocated by vmalloc() * @addr: memory base address * * This one is just like vfree() but can be called in any atomic context * except NMIs. */ void vfree_atomic(const void *addr) { struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); BUG_ON(in_nmi()); kmemleak_free(addr); /* * Use raw_cpu_ptr() because this can be called from preemptible * context. Preemption is absolutely fine here, because the llist_add() * implementation is lockless, so it works even if we are adding to * another cpu's list. schedule_work() should be fine with this too. */ if (addr && llist_add((struct llist_node *)addr, &p->list)) schedule_work(&p->wq); } /** * vfree - Release memory allocated by vmalloc() * @addr: Memory base address * * Free the virtually continuous memory area starting at @addr, as obtained * from one of the vmalloc() family of APIs. This will usually also free the * physical memory underlying the virtual allocation, but that memory is * reference counted, so it will not be freed until the last user goes away. * * If @addr is NULL, no operation is performed. * * Context: * May sleep if called *not* from interrupt context. * Must not be called in NMI context (strictly speaking, it could be * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling * conventions for vfree() arch-dependent would be a really bad idea). */ void vfree(const void *addr) { struct vm_struct *vm; int i; if (unlikely(in_interrupt())) { vfree_atomic(addr); return; } BUG_ON(in_nmi()); kmemleak_free(addr); might_sleep(); if (!addr) return; vm = remove_vm_area(addr); if (unlikely(!vm)) { WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); return; } if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) vm_reset_perms(vm); for (i = 0; i < vm->nr_pages; i++) { struct page *page = vm->pages[i]; BUG_ON(!page); mod_memcg_page_state(page, MEMCG_VMALLOC, -1); /* * High-order allocs for huge vmallocs are split, so * can be freed as an array of order-0 allocations */ __free_page(page); cond_resched(); } atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); kvfree(vm->pages); kfree(vm); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * Must not be called in interrupt context. */ void vunmap(const void *addr) { struct vm_struct *vm; BUG_ON(in_interrupt()); might_sleep(); if (!addr) return; vm = remove_vm_area(addr); if (unlikely(!vm)) { WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", addr); return; } kfree(vm); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual space. * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself * (which must be kmalloc or vmalloc memory) and one reference per pages in it * are transferred from the caller to vmap(), and will be freed / dropped when * vfree() is called on the return value. * * Return: the address of the area or %NULL on failure */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; unsigned long addr; unsigned long size; /* In bytes */ might_sleep(); if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) return NULL; /* * Your top guard is someone else's bottom guard. Not having a top * guard compromises someone else's mappings too. */ if (WARN_ON_ONCE(flags & VM_NO_GUARD)) flags &= ~VM_NO_GUARD; if (count > totalram_pages()) return NULL; size = (unsigned long)count << PAGE_SHIFT; area = get_vm_area_caller(size, flags, __builtin_return_address(0)); if (!area) return NULL; addr = (unsigned long)area->addr; if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), pages, PAGE_SHIFT) < 0) { vunmap(area->addr); return NULL; } if (flags & VM_MAP_PUT_PAGES) { area->pages = pages; area->nr_pages = count; } return area->addr; } EXPORT_SYMBOL(vmap); #ifdef CONFIG_VMAP_PFN struct vmap_pfn_data { unsigned long *pfns; pgprot_t prot; unsigned int idx; }; static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) { struct vmap_pfn_data *data = private; unsigned long pfn = data->pfns[data->idx]; pte_t ptent; if (WARN_ON_ONCE(pfn_valid(pfn))) return -EINVAL; ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); set_pte_at(&init_mm, addr, pte, ptent); data->idx++; return 0; } /** * vmap_pfn - map an array of PFNs into virtually contiguous space * @pfns: array of PFNs * @count: number of pages to map * @prot: page protection for the mapping * * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns * the start address of the mapping. */ void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) { struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; struct vm_struct *area; area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, __builtin_return_address(0)); if (!area) return NULL; if (apply_to_page_range(&init_mm, (unsigned long)area->addr, count * PAGE_SIZE, vmap_pfn_apply, &data)) { free_vm_area(area); return NULL; } flush_cache_vmap((unsigned long)area->addr, (unsigned long)area->addr + count * PAGE_SIZE); return area->addr; } EXPORT_SYMBOL_GPL(vmap_pfn); #endif /* CONFIG_VMAP_PFN */ static inline unsigned int vm_area_alloc_pages(gfp_t gfp, int nid, unsigned int order, unsigned int nr_pages, struct page **pages) { unsigned int nr_allocated = 0; gfp_t alloc_gfp = gfp; bool nofail = gfp & __GFP_NOFAIL; struct page *page; int i; /* * For order-0 pages we make use of bulk allocator, if * the page array is partly or not at all populated due * to fails, fallback to a single page allocator that is * more permissive. */ if (!order) { /* bulk allocator doesn't support nofail req. officially */ gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; while (nr_allocated < nr_pages) { unsigned int nr, nr_pages_request; /* * A maximum allowed request is hard-coded and is 100 * pages per call. That is done in order to prevent a * long preemption off scenario in the bulk-allocator * so the range is [1:100]. */ nr_pages_request = min(100U, nr_pages - nr_allocated); /* memory allocation should consider mempolicy, we can't * wrongly use nearest node when nid == NUMA_NO_NODE, * otherwise memory may be allocated in only one node, * but mempolicy wants to alloc memory by interleaving. */ if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) nr = alloc_pages_bulk_array_mempolicy_noprof(bulk_gfp, nr_pages_request, pages + nr_allocated); else nr = alloc_pages_bulk_array_node_noprof(bulk_gfp, nid, nr_pages_request, pages + nr_allocated); nr_allocated += nr; cond_resched(); /* * If zero or pages were obtained partly, * fallback to a single page allocator. */ if (nr != nr_pages_request) break; } } else if (gfp & __GFP_NOFAIL) { /* * Higher order nofail allocations are really expensive and * potentially dangerous (pre-mature OOM, disruptive reclaim * and compaction etc. */ alloc_gfp &= ~__GFP_NOFAIL; } /* High-order pages or fallback path if "bulk" fails. */ while (nr_allocated < nr_pages) { if (!nofail && fatal_signal_pending(current)) break; if (nid == NUMA_NO_NODE) page = alloc_pages_noprof(alloc_gfp, order); else page = alloc_pages_node_noprof(nid, alloc_gfp, order); if (unlikely(!page)) break; /* * Higher order allocations must be able to be treated as * indepdenent small pages by callers (as they can with * small-page vmallocs). Some drivers do their own refcounting * on vmalloc_to_page() pages, some use page->mapping, * page->lru, etc. */ if (order) split_page(page, order); /* * Careful, we allocate and map page-order pages, but * tracking is done per PAGE_SIZE page so as to keep the * vm_struct APIs independent of the physical/mapped size. */ for (i = 0; i < (1U << order); i++) pages[nr_allocated + i] = page + i; cond_resched(); nr_allocated += 1U << order; } return nr_allocated; } static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, unsigned int page_shift, int node) { const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; bool nofail = gfp_mask & __GFP_NOFAIL; unsigned long addr = (unsigned long)area->addr; unsigned long size = get_vm_area_size(area); unsigned long array_size; unsigned int nr_small_pages = size >> PAGE_SHIFT; unsigned int page_order; unsigned int flags; int ret; array_size = (unsigned long)nr_small_pages * sizeof(struct page *); if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) gfp_mask |= __GFP_HIGHMEM; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, area->caller); } else { area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); } if (!area->pages) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to allocated page array size %lu", nr_small_pages * PAGE_SIZE, array_size); free_vm_area(area); return NULL; } set_vm_area_page_order(area, page_shift - PAGE_SHIFT); page_order = vm_area_page_order(area); area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, node, page_order, nr_small_pages, area->pages); atomic_long_add(area->nr_pages, &nr_vmalloc_pages); if (gfp_mask & __GFP_ACCOUNT) { int i; for (i = 0; i < area->nr_pages; i++) mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); } /* * If not enough pages were obtained to accomplish an * allocation request, free them via vfree() if any. */ if (area->nr_pages != nr_small_pages) { /* * vm_area_alloc_pages() can fail due to insufficient memory but * also:- * * - a pending fatal signal * - insufficient huge page-order pages * * Since we always retry allocations at order-0 in the huge page * case a warning for either is spurious. */ if (!fatal_signal_pending(current) && page_order == 0) warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to allocate pages", area->nr_pages * PAGE_SIZE); goto fail; } /* * page tables allocations ignore external gfp mask, enforce it * by the scope API */ if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) flags = memalloc_nofs_save(); else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) flags = memalloc_noio_save(); do { ret = vmap_pages_range(addr, addr + size, prot, area->pages, page_shift); if (nofail && (ret < 0)) schedule_timeout_uninterruptible(1); } while (nofail && (ret < 0)); if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) memalloc_nofs_restore(flags); else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) memalloc_noio_restore(flags); if (ret < 0) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to map pages", area->nr_pages * PAGE_SIZE); goto fail; } return area->addr; fail: vfree(area->addr); return NULL; } /** * __vmalloc_node_range - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @start: vm area range start * @end: vm area range end * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Please note that the full set of gfp * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all * supported. * Zone modifiers are not supported. From the reclaim modifiers * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and * __GFP_RETRY_MAYFAIL are not supported). * * __GFP_NOWARN can be used to suppress failures messages. * * Map them into contiguous kernel virtual space, using a pagetable * protection of @prot. * * Return: the address of the area or %NULL on failure */ void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller) { struct vm_struct *area; void *ret; kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; unsigned long real_size = size; unsigned long real_align = align; unsigned int shift = PAGE_SHIFT; if (WARN_ON_ONCE(!size)) return NULL; if ((size >> PAGE_SHIFT) > totalram_pages()) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, exceeds total pages", real_size); return NULL; } if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { unsigned long size_per_node; /* * Try huge pages. Only try for PAGE_KERNEL allocations, * others like modules don't yet expect huge pages in * their allocations due to apply_to_page_range not * supporting them. */ size_per_node = size; if (node == NUMA_NO_NODE) size_per_node /= num_online_nodes(); if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) shift = PMD_SHIFT; else shift = arch_vmap_pte_supported_shift(size_per_node); align = max(real_align, 1UL << shift); size = ALIGN(real_size, 1UL << shift); } again: area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | VM_UNINITIALIZED | vm_flags, start, end, node, gfp_mask, caller); if (!area) { bool nofail = gfp_mask & __GFP_NOFAIL; warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, vm_struct allocation failed%s", real_size, (nofail) ? ". Retrying." : ""); if (nofail) { schedule_timeout_uninterruptible(1); goto again; } goto fail; } /* * Prepare arguments for __vmalloc_area_node() and * kasan_unpoison_vmalloc(). */ if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { if (kasan_hw_tags_enabled()) { /* * Modify protection bits to allow tagging. * This must be done before mapping. */ prot = arch_vmap_pgprot_tagged(prot); /* * Skip page_alloc poisoning and zeroing for physical * pages backing VM_ALLOC mapping. Memory is instead * poisoned and zeroed by kasan_unpoison_vmalloc(). */ gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; } /* Take note that the mapping is PAGE_KERNEL. */ kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; } /* Allocate physical pages and map them into vmalloc space. */ ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); if (!ret) goto fail; /* * Mark the pages as accessible, now that they are mapped. * The condition for setting KASAN_VMALLOC_INIT should complement the * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check * to make sure that memory is initialized under the same conditions. * Tag-based KASAN modes only assign tags to normal non-executable * allocations, see __kasan_unpoison_vmalloc(). */ kasan_flags |= KASAN_VMALLOC_VM_ALLOC; if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && (gfp_mask & __GFP_SKIP_ZERO)) kasan_flags |= KASAN_VMALLOC_INIT; /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED * flag. It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ clear_vm_uninitialized_flag(area); size = PAGE_ALIGN(size); if (!(vm_flags & VM_DEFER_KMEMLEAK)) kmemleak_vmalloc(area, size, gfp_mask); return area->addr; fail: if (shift > PAGE_SHIFT) { shift = PAGE_SHIFT; align = real_align; size = real_size; goto again; } return NULL; } /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level allocator with * @gfp_mask flags. Map them into contiguous kernel virtual space. * * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL * and __GFP_NOFAIL are not supported * * Any use of gfp flags outside of GFP_KERNEL should be consulted * with mm people. * * Return: pointer to the allocated memory or %NULL on error */ void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller) { return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, gfp_mask, PAGE_KERNEL, 0, node, caller); } /* * This is only for performance analysis of vmalloc and stress purpose. * It is required by vmalloc test module, therefore do not use it other * than that. */ #ifdef CONFIG_TEST_VMALLOC_MODULE EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); #endif void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) { return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(__vmalloc_noprof); /** * vmalloc - allocate virtually contiguous memory * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_noprof(unsigned long size) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_noprof); /** * vmalloc_huge - allocate virtually contiguous memory, allow huge pages * @size: allocation size * @gfp_mask: flags for the page level allocator * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * If @size is greater than or equal to PMD_SIZE, allow using * huge pages for the memory * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) { return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL_GPL(vmalloc_huge_noprof); /** * vzalloc - allocate virtually contiguous memory with zero fill * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_noprof(unsigned long size) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_noprof); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace * @size: allocation size * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_user_noprof(unsigned long size) { return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_user_noprof); /** * vmalloc_node - allocate memory on a specific node * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_node_noprof(unsigned long size, int node) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_node_noprof); /** * vzalloc_node - allocate memory on a specific node with zero fill * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_node_noprof(unsigned long size, int node) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_node_noprof); #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) #else /* * 64b systems should always have either DMA or DMA32 zones. For others * GFP_DMA32 should do the right thing and use the normal zone. */ #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #endif /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32_noprof(unsigned long size) { return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32_noprof); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32_user_noprof(unsigned long size) { return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32_user_noprof); /* * Atomically zero bytes in the iterator. * * Returns the number of zeroed bytes. */ static size_t zero_iter(struct iov_iter *iter, size_t count) { size_t remains = count; while (remains > 0) { size_t num, copied; num = min_t(size_t, remains, PAGE_SIZE); copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); remains -= copied; if (copied < num) break; } return count - remains; } /* * small helper routine, copy contents to iter from addr. * If the page is not present, fill zero. * * Returns the number of copied bytes. */ static size_t aligned_vread_iter(struct iov_iter *iter, const char *addr, size_t count) { size_t remains = count; struct page *page; while (remains > 0) { unsigned long offset, length; size_t copied = 0; offset = offset_in_page(addr); length = PAGE_SIZE - offset; if (length > remains) length = remains; page = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need lock. But * adding lock here means that we need to add overhead of * vmalloc()/vfree() calls for this _debug_ interface, rarely * used. Instead of that, we'll use an local mapping via * copy_page_to_iter_nofault() and accept a small overhead in * this access function. */ if (page) copied = copy_page_to_iter_nofault(page, offset, length, iter); else copied = zero_iter(iter, length); addr += copied; remains -= copied; if (copied != length) break; } return count - remains; } /* * Read from a vm_map_ram region of memory. * * Returns the number of copied bytes. */ static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, size_t count, unsigned long flags) { char *start; struct vmap_block *vb; struct xarray *xa; unsigned long offset; unsigned int rs, re; size_t remains, n; /* * If it's area created by vm_map_ram() interface directly, but * not further subdividing and delegating management to vmap_block, * handle it here. */ if (!(flags & VMAP_BLOCK)) return aligned_vread_iter(iter, addr, count); remains = count; /* * Area is split into regions and tracked with vmap_block, read out * each region and zero fill the hole between regions. */ xa = addr_to_vb_xa((unsigned long) addr); vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); if (!vb) goto finished_zero; spin_lock(&vb->lock); if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { spin_unlock(&vb->lock); goto finished_zero; } for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { size_t copied; if (remains == 0) goto finished; start = vmap_block_vaddr(vb->va->va_start, rs); if (addr < start) { size_t to_zero = min_t(size_t, start - addr, remains); size_t zeroed = zero_iter(iter, to_zero); addr += zeroed; remains -= zeroed; if (remains == 0 || zeroed != to_zero) goto finished; } /*it could start reading from the middle of used region*/ offset = offset_in_page(addr); n = ((re - rs + 1) << PAGE_SHIFT) - offset; if (n > remains) n = remains; copied = aligned_vread_iter(iter, start + offset, n); addr += copied; remains -= copied; if (copied != n) goto finished; } spin_unlock(&vb->lock); finished_zero: /* zero-fill the left dirty or free regions */ return count - remains + zero_iter(iter, remains); finished: /* We couldn't copy/zero everything */ spin_unlock(&vb->lock); return count - remains; } /** * vread_iter() - read vmalloc area in a safe way to an iterator. * @iter: the iterator to which data should be written. * @addr: vm address. * @count: number of bytes to be read. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from that area to a given buffer. If the given memory range * of [addr...addr+count) includes some valid address, data is copied to * proper area of @buf. If there are memory holes, they'll be zero-filled. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. @buf should be kernel's buffer. * * Note: In usual ops, vread() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any information, as /proc/kcore. * * Return: number of bytes for which addr and buf should be increased * (same number as @count) or %0 if [addr...addr+count) doesn't * include any intersection with valid vmalloc area */ long vread_iter(struct iov_iter *iter, const char *addr, size_t count) { struct vmap_node *vn; struct vmap_area *va; struct vm_struct *vm; char *vaddr; size_t n, size, flags, remains; unsigned long next; addr = kasan_reset_tag(addr); /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; remains = count; vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); if (!vn) goto finished_zero; /* no intersects with alive vmap_area */ if ((unsigned long)addr + remains <= va->va_start) goto finished_zero; do { size_t copied; if (remains == 0) goto finished; vm = va->vm; flags = va->flags & VMAP_FLAGS_MASK; /* * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need * be set together with VMAP_RAM. */ WARN_ON(flags == VMAP_BLOCK); if (!vm && !flags) goto next_va; if (vm && (vm->flags & VM_UNINITIALIZED)) goto next_va; /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ smp_rmb(); vaddr = (char *) va->va_start; size = vm ? get_vm_area_size(vm) : va_size(va); if (addr >= vaddr + size) goto next_va; if (addr < vaddr) { size_t to_zero = min_t(size_t, vaddr - addr, remains); size_t zeroed = zero_iter(iter, to_zero); addr += zeroed; remains -= zeroed; if (remains == 0 || zeroed != to_zero) goto finished; } n = vaddr + size - addr; if (n > remains) n = remains; if (flags & VMAP_RAM) copied = vmap_ram_vread_iter(iter, addr, n, flags); else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) copied = aligned_vread_iter(iter, addr, n); else /* IOREMAP | SPARSE area is treated as memory hole */ copied = zero_iter(iter, n); addr += copied; remains -= copied; if (copied != n) goto finished; next_va: next = va->va_end; spin_unlock(&vn->busy.lock); } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); finished_zero: if (vn) spin_unlock(&vn->busy.lock); /* zero-fill memory holes */ return count - remains + zero_iter(iter, remains); finished: /* Nothing remains, or We couldn't copy/zero everything. */ if (vn) spin_unlock(&vn->busy.lock); return count - remains; } /** * remap_vmalloc_range_partial - map vmalloc pages to userspace * @vma: vma to cover * @uaddr: target user address to start at * @kaddr: virtual address of vmalloc kernel memory * @pgoff: offset from @kaddr to start at * @size: size of map area * * Returns: 0 for success, -Exxx on failure * * This function checks that @kaddr is a valid vmalloc'ed area, * and that it is big enough to cover the range starting at * @uaddr in @vma. Will return failure if that criteria isn't * met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size) { struct vm_struct *area; unsigned long off; unsigned long end_index; if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) return -EINVAL; size = PAGE_ALIGN(size); if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) return -EINVAL; area = find_vm_area(kaddr); if (!area) return -EINVAL; if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) return -EINVAL; if (check_add_overflow(size, off, &end_index) || end_index > get_vm_area_size(area)) return -EINVAL; kaddr += off; do { struct page *page = vmalloc_to_page(kaddr); int ret; ret = vm_insert_page(vma, uaddr, page); if (ret) return ret; uaddr += PAGE_SIZE; kaddr += PAGE_SIZE; size -= PAGE_SIZE; } while (size > 0); vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); return 0; } /** * remap_vmalloc_range - map vmalloc pages to userspace * @vma: vma to cover (map full range of vma) * @addr: vmalloc memory * @pgoff: number of pages into addr before first page to map * * Returns: 0 for success, -Exxx on failure * * This function checks that addr is a valid vmalloc'ed area, and * that it is big enough to cover the vma. Will return failure if * that criteria isn't met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { return remap_vmalloc_range_partial(vma, vma->vm_start, addr, pgoff, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(remap_vmalloc_range); void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; ret = remove_vm_area(area->addr); BUG_ON(ret != area); kfree(area); } EXPORT_SYMBOL_GPL(free_vm_area); #ifdef CONFIG_SMP static struct vmap_area *node_to_va(struct rb_node *n) { return rb_entry_safe(n, struct vmap_area, rb_node); } /** * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to * @addr: target address * * Returns: vmap_area if it is found. If there is no such area * the first highest(reverse order) vmap_area is returned * i.e. va->va_start < addr && va->va_end < addr or NULL * if there are no any areas before @addr. */ static struct vmap_area * pvm_find_va_enclose_addr(unsigned long addr) { struct vmap_area *va, *tmp; struct rb_node *n; n = free_vmap_area_root.rb_node; va = NULL; while (n) { tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_start <= addr) { va = tmp; if (tmp->va_end >= addr) break; n = n->rb_right; } else { n = n->rb_left; } } return va; } /** * pvm_determine_end_from_reverse - find the highest aligned address * of free block below VMALLOC_END * @va: * in - the VA we start the search(reverse order); * out - the VA with the highest aligned end address. * @align: alignment for required highest address * * Returns: determined end address within vmap_area */ static unsigned long pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) { unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); unsigned long addr; if (likely(*va)) { list_for_each_entry_from_reverse((*va), &free_vmap_area_list, list) { addr = min((*va)->va_end & ~(align - 1), vmalloc_end); if ((*va)->va_start < addr) return addr; } } return 0; } /** * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator * @offsets: array containing offset of each area * @sizes: array containing size of each area * @nr_vms: the number of areas to allocate * @align: alignment, all entries in @offsets and @sizes must be aligned to this * * Returns: kmalloc'd vm_struct pointer array pointing to allocated * vm_structs on success, %NULL on failure * * Percpu allocator wants to use congruent vm areas so that it can * maintain the offsets among percpu areas. This function allocates * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to * be scattered pretty far, distance between two areas easily going up * to gigabytes. To avoid interacting with regular vmallocs, these * areas are allocated from top. * * Despite its complicated look, this allocator is rather simple. It * does everything top-down and scans free blocks from the end looking * for matching base. While scanning, if any of the areas do not fit the * base address is pulled down to fit the area. Scanning is repeated till * all the areas fit and then all necessary data structures are inserted * and the result is returned. */ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); struct vmap_area **vas, *va; struct vm_struct **vms; int area, area2, last_area, term_area; unsigned long base, start, size, end, last_end, orig_start, orig_end; bool purged = false; /* verify parameters and allocate data structures */ BUG_ON(offset_in_page(align) || !is_power_of_2(align)); for (last_area = 0, area = 0; area < nr_vms; area++) { start = offsets[area]; end = start + sizes[area]; /* is everything aligned properly? */ BUG_ON(!IS_ALIGNED(offsets[area], align)); BUG_ON(!IS_ALIGNED(sizes[area], align)); /* detect the area with the highest address */ if (start > offsets[last_area]) last_area = area; for (area2 = area + 1; area2 < nr_vms; area2++) { unsigned long start2 = offsets[area2]; unsigned long end2 = start2 + sizes[area2]; BUG_ON(start2 < end && start < end2); } } last_end = offsets[last_area] + sizes[last_area]; if (vmalloc_end - vmalloc_start < last_end) { WARN_ON(true); return NULL; } vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); if (!vas || !vms) goto err_free2; for (area = 0; area < nr_vms; area++) { vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); if (!vas[area] || !vms[area]) goto err_free; } retry: spin_lock(&free_vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(vmalloc_end); base = pvm_determine_end_from_reverse(&va, align) - end; while (true) { /* * base might have underflowed, add last_end before * comparing. */ if (base + last_end < vmalloc_start + last_end) goto overflow; /* * Fitting base has not been found. */ if (va == NULL) goto overflow; /* * If required width exceeds current VA block, move * base downwards and then recheck. */ if (base + end > va->va_end) { base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * If this VA does not fit, move base downwards and recheck. */ if (base + start < va->va_start) { va = node_to_va(rb_prev(&va->rb_node)); base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * This area fits, move on to the previous one. If * the previous one is the terminal one, we're done. */ area = (area + nr_vms - 1) % nr_vms; if (area == term_area) break; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(base + end); } /* we've found a fitting base, insert all va's */ for (area = 0; area < nr_vms; area++) { int ret; start = base + offsets[area]; size = sizes[area]; va = pvm_find_va_enclose_addr(start); if (WARN_ON_ONCE(va == NULL)) /* It is a BUG(), but trigger recovery instead. */ goto recovery; ret = va_clip(&free_vmap_area_root, &free_vmap_area_list, va, start, size); if (WARN_ON_ONCE(unlikely(ret))) /* It is a BUG(), but trigger recovery instead. */ goto recovery; /* Allocated area. */ va = vas[area]; va->va_start = start; va->va_end = start + size; } spin_unlock(&free_vmap_area_lock); /* populate the kasan shadow space */ for (area = 0; area < nr_vms; area++) { if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) goto err_free_shadow; } /* insert all vm's */ for (area = 0; area < nr_vms; area++) { struct vmap_node *vn = addr_to_node(vas[area]->va_start); spin_lock(&vn->busy.lock); insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); spin_unlock(&vn->busy.lock); } /* * Mark allocated areas as accessible. Do it now as a best-effort * approach, as they can be mapped outside of vmalloc code. * With hardware tag-based KASAN, marking is skipped for * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). */ for (area = 0; area < nr_vms; area++) vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); kfree(vas); return vms; recovery: /* * Remove previously allocated areas. There is no * need in removing these areas from the busy tree, * because they are inserted only on the final step * and when pcpu_get_vm_areas() is success. */ while (area--) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; } overflow: spin_unlock(&free_vmap_area_lock); if (!purged) { reclaim_and_purge_vmap_areas(); purged = true; /* Before "retry", check if we recover. */ for (area = 0; area < nr_vms; area++) { if (vas[area]) continue; vas[area] = kmem_cache_zalloc( vmap_area_cachep, GFP_KERNEL); if (!vas[area]) goto err_free; } goto retry; } err_free: for (area = 0; area < nr_vms; area++) { if (vas[area]) kmem_cache_free(vmap_area_cachep, vas[area]); kfree(vms[area]); } err_free2: kfree(vas); kfree(vms); return NULL; err_free_shadow: spin_lock(&free_vmap_area_lock); /* * We release all the vmalloc shadows, even the ones for regions that * hadn't been successfully added. This relies on kasan_release_vmalloc * being able to tolerate this case. */ for (area = 0; area < nr_vms; area++) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; kfree(vms[area]); } spin_unlock(&free_vmap_area_lock); kfree(vas); kfree(vms); return NULL; } /** * pcpu_free_vm_areas - free vmalloc areas for percpu allocator * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() * @nr_vms: the number of allocated areas * * Free vm_structs and the array allocated by pcpu_get_vm_areas(). */ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { int i; for (i = 0; i < nr_vms; i++) free_vm_area(vms[i]); kfree(vms); } #endif /* CONFIG_SMP */ #ifdef CONFIG_PRINTK bool vmalloc_dump_obj(void *object) { const void *caller; struct vm_struct *vm; struct vmap_area *va; struct vmap_node *vn; unsigned long addr; unsigned int nr_pages; addr = PAGE_ALIGN((unsigned long) object); vn = addr_to_node(addr); if (!spin_trylock(&vn->busy.lock)) return false; va = __find_vmap_area(addr, &vn->busy.root); if (!va || !va->vm) { spin_unlock(&vn->busy.lock); return false; } vm = va->vm; addr = (unsigned long) vm->addr; caller = vm->caller; nr_pages = vm->nr_pages; spin_unlock(&vn->busy.lock); pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", nr_pages, addr, caller); return true; } #endif #ifdef CONFIG_PROC_FS static void show_numa_info(struct seq_file *m, struct vm_struct *v) { if (IS_ENABLED(CONFIG_NUMA)) { unsigned int nr, *counters = m->private; unsigned int step = 1U << vm_area_page_order(v); if (!counters) return; if (v->flags & VM_UNINITIALIZED) return; /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ smp_rmb(); memset(counters, 0, nr_node_ids * sizeof(unsigned int)); for (nr = 0; nr < v->nr_pages; nr += step) counters[page_to_nid(v->pages[nr])] += step; for_each_node_state(nr, N_HIGH_MEMORY) if (counters[nr]) seq_printf(m, " N%u=%u", nr, counters[nr]); } } static void show_purge_info(struct seq_file *m) { struct vmap_node *vn; struct vmap_area *va; int i; for (i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; spin_lock(&vn->lazy.lock); list_for_each_entry(va, &vn->lazy.head, list) { seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); } spin_unlock(&vn->lazy.lock); } } static int vmalloc_info_show(struct seq_file *m, void *p) { struct vmap_node *vn; struct vmap_area *va; struct vm_struct *v; int i; for (i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); list_for_each_entry(va, &vn->busy.head, list) { if (!va->vm) { if (va->flags & VMAP_RAM) seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); continue; } v = va->vm; seq_printf(m, "0x%pK-0x%pK %7ld", v->addr, v->addr + v->size, v->size); if (v->caller) seq_printf(m, " %pS", v->caller); if (v->nr_pages) seq_printf(m, " pages=%d", v->nr_pages); if (v->phys_addr) seq_printf(m, " phys=%pa", &v->phys_addr); if (v->flags & VM_IOREMAP) seq_puts(m, " ioremap"); if (v->flags & VM_SPARSE) seq_puts(m, " sparse"); if (v->flags & VM_ALLOC) seq_puts(m, " vmalloc"); if (v->flags & VM_MAP) seq_puts(m, " vmap"); if (v->flags & VM_USERMAP) seq_puts(m, " user"); if (v->flags & VM_DMA_COHERENT) seq_puts(m, " dma-coherent"); if (is_vmalloc_addr(v->pages)) seq_puts(m, " vpages"); show_numa_info(m, v); seq_putc(m, '\n'); } spin_unlock(&vn->busy.lock); } /* * As a final step, dump "unpurged" areas. */ show_purge_info(m); return 0; } static int __init proc_vmalloc_init(void) { void *priv_data = NULL; if (IS_ENABLED(CONFIG_NUMA)) priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); proc_create_single_data("vmallocinfo", 0400, NULL, vmalloc_info_show, priv_data); return 0; } module_init(proc_vmalloc_init); #endif static void __init vmap_init_free_space(void) { unsigned long vmap_start = 1; const unsigned long vmap_end = ULONG_MAX; struct vmap_area *free; struct vm_struct *busy; /* * B F B B B F * -|-----|.....|-----|-----|-----|.....|- * | The KVA space | * |<--------------------------------->| */ for (busy = vmlist; busy; busy = busy->next) { if ((unsigned long) busy->addr - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = (unsigned long) busy->addr; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } vmap_start = (unsigned long) busy->addr + busy->size; } if (vmap_end - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = vmap_end; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } } static void vmap_init_nodes(void) { struct vmap_node *vn; int i, n; #if BITS_PER_LONG == 64 /* * A high threshold of max nodes is fixed and bound to 128, * thus a scale factor is 1 for systems where number of cores * are less or equal to specified threshold. * * As for NUMA-aware notes. For bigger systems, for example * NUMA with multi-sockets, where we can end-up with thousands * of cores in total, a "sub-numa-clustering" should be added. * * In this case a NUMA domain is considered as a single entity * with dedicated sub-nodes in it which describe one group or * set of cores. Therefore a per-domain purging is supposed to * be added as well as a per-domain balancing. */ n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); if (n > 1) { vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); if (vn) { /* Node partition is 16 pages. */ vmap_zone_size = (1 << 4) * PAGE_SIZE; nr_vmap_nodes = n; vmap_nodes = vn; } else { pr_err("Failed to allocate an array. Disable a node layer\n"); } } #endif for (n = 0; n < nr_vmap_nodes; n++) { vn = &vmap_nodes[n]; vn->busy.root = RB_ROOT; INIT_LIST_HEAD(&vn->busy.head); spin_lock_init(&vn->busy.lock); vn->lazy.root = RB_ROOT; INIT_LIST_HEAD(&vn->lazy.head); spin_lock_init(&vn->lazy.lock); for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { INIT_LIST_HEAD(&vn->pool[i].head); WRITE_ONCE(vn->pool[i].len, 0); } spin_lock_init(&vn->pool_lock); } } static unsigned long vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long count; struct vmap_node *vn; int i, j; for (count = 0, i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; for (j = 0; j < MAX_VA_SIZE_PAGES; j++) count += READ_ONCE(vn->pool[j].len); } return count ? count : SHRINK_EMPTY; } static unsigned long vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { int i; for (i = 0; i < nr_vmap_nodes; i++) decay_va_pool_node(&vmap_nodes[i], true); return SHRINK_STOP; } void __init vmalloc_init(void) { struct shrinker *vmap_node_shrinker; struct vmap_area *va; struct vmap_node *vn; struct vm_struct *tmp; int i; /* * Create the cache for vmap_area objects. */ vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); for_each_possible_cpu(i) { struct vmap_block_queue *vbq; struct vfree_deferred *p; vbq = &per_cpu(vmap_block_queue, i); spin_lock_init(&vbq->lock); INIT_LIST_HEAD(&vbq->free); p = &per_cpu(vfree_deferred, i); init_llist_head(&p->list); INIT_WORK(&p->wq, delayed_vfree_work); xa_init(&vbq->vmap_blocks); } /* * Setup nodes before importing vmlist. */ vmap_init_nodes(); /* Import existing vmlist entries. */ for (tmp = vmlist; tmp; tmp = tmp->next) { va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (WARN_ON_ONCE(!va)) continue; va->va_start = (unsigned long)tmp->addr; va->va_end = va->va_start + tmp->size; va->vm = tmp; vn = addr_to_node(va->va_start); insert_vmap_area(va, &vn->busy.root, &vn->busy.head); } /* * Now we can initialize a free vmap space. */ vmap_init_free_space(); vmap_initialized = true; vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); if (!vmap_node_shrinker) { pr_err("Failed to allocate vmap-node shrinker!\n"); return; } vmap_node_shrinker->count_objects = vmap_node_shrink_count; vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; shrinker_register(vmap_node_shrinker); } |
7 1 1 1 1 1 1 1 5 7 1 1 5 2 5 9 5 6 2 1 5 1 1 4 1 1 2 30 8 1 1 1 1 28 6 5 3 1 1 2 1 3 5 1 4 11 11 12 66 15 1 2 1 1 1 14 2 1 1 1 1 1 1 1 17 1 2 1 1 1 1 1 3 1 1 1 2 2 4 2 2 1 2 6 1 3 1 1 1 1 2 1 3 1 2 5 5 1 7 7 7 9 1 1 7 7 1 1 2 4 1 10 10 10 10 5 5 5 6 6 6 10 28 28 28 28 28 28 28 28 28 11 16 3 1 1 16 3 6 3 7 9 26 1 25 28 28 25 1 1 1 3 2 2 3 3 3 3 4 1 3 3 1 2 3 15 15 15 3 1 2 12 1 11 11 17 1 1 2 13 10 2 9 9 2 1 1 4 2 1 6 6 5 1 1 11 11 1 5 4 1 4 1 4 1 1 1 2 2 1 1 1 1 1 1 11 11 1 1 1 11 11 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Generic PPP layer for Linux. * * Copyright 1999-2002 Paul Mackerras. * * The generic PPP layer handles the PPP network interfaces, the * /dev/ppp device, packet and VJ compression, and multilink. * It talks to PPP `channels' via the interface defined in * include/linux/ppp_channel.h. Channels provide the basic means for * sending and receiving PPP frames on some kind of communications * channel. * * Part of the code in this driver was inspired by the old async-only * PPP driver, written by Michael Callahan and Al Longyear, and * subsequently hacked by Paul Mackerras. * * ==FILEVERSION 20041108== */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/kmod.h> #include <linux/init.h> #include <linux/list.h> #include <linux/idr.h> #include <linux/netdevice.h> #include <linux/poll.h> #include <linux/ppp_defs.h> #include <linux/filter.h> #include <linux/ppp-ioctl.h> #include <linux/ppp_channel.h> #include <linux/ppp-comp.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/spinlock.h> #include <linux/rwsem.h> #include <linux/stddef.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/file.h> #include <asm/unaligned.h> #include <net/slhc_vj.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/nsproxy.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #define PPP_VERSION "2.4.2" /* * Network protocols we support. */ #define NP_IP 0 /* Internet Protocol V4 */ #define NP_IPV6 1 /* Internet Protocol V6 */ #define NP_IPX 2 /* IPX protocol */ #define NP_AT 3 /* Appletalk protocol */ #define NP_MPLS_UC 4 /* MPLS unicast */ #define NP_MPLS_MC 5 /* MPLS multicast */ #define NUM_NP 6 /* Number of NPs. */ #define MPHDRLEN 6 /* multilink protocol header length */ #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ #define PPP_PROTO_LEN 2 #define PPP_LCP_HDRLEN 4 /* * An instance of /dev/ppp can be associated with either a ppp * interface unit or a ppp channel. In both cases, file->private_data * points to one of these. */ struct ppp_file { enum { INTERFACE=1, CHANNEL } kind; struct sk_buff_head xq; /* pppd transmit queue */ struct sk_buff_head rq; /* receive queue for pppd */ wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ refcount_t refcnt; /* # refs (incl /dev/ppp attached) */ int hdrlen; /* space to leave for headers */ int index; /* interface unit / channel number */ int dead; /* unit/channel has been shut down */ }; #define PF_TO_X(pf, X) container_of(pf, X, file) #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) /* * Data structure to hold primary network stats for which * we want to use 64 bit storage. Other network stats * are stored in dev->stats of the ppp strucute. */ struct ppp_link_stats { u64 rx_packets; u64 tx_packets; u64 rx_bytes; u64 tx_bytes; }; /* * Data structure describing one ppp unit. * A ppp unit corresponds to a ppp network interface device * and represents a multilink bundle. * It can have 0 or more ppp channels connected to it. */ struct ppp { struct ppp_file file; /* stuff for read/write/poll 0 */ struct file *owner; /* file that owns this unit 48 */ struct list_head channels; /* list of attached channels 4c */ int n_channels; /* how many channels are attached 54 */ spinlock_t rlock; /* lock for receive side 58 */ spinlock_t wlock; /* lock for transmit side 5c */ int __percpu *xmit_recursion; /* xmit recursion detect */ int mru; /* max receive unit 60 */ unsigned int flags; /* control bits 64 */ unsigned int xstate; /* transmit state bits 68 */ unsigned int rstate; /* receive state bits 6c */ int debug; /* debug flags 70 */ struct slcompress *vj; /* state for VJ header compression */ enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ struct compressor *xcomp; /* transmit packet compressor 8c */ void *xc_state; /* its internal state 90 */ struct compressor *rcomp; /* receive decompressor 94 */ void *rc_state; /* its internal state 98 */ unsigned long last_xmit; /* jiffies when last pkt sent 9c */ unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ struct net_device *dev; /* network interface device a4 */ int closing; /* is device closing down? a8 */ #ifdef CONFIG_PPP_MULTILINK int nxchan; /* next channel to send something on */ u32 nxseq; /* next sequence number to send */ int mrru; /* MP: max reconst. receive unit */ u32 nextseq; /* MP: seq no of next packet */ u32 minseq; /* MP: min of most recent seqnos */ struct sk_buff_head mrq; /* MP: receive reconstruction queue */ #endif /* CONFIG_PPP_MULTILINK */ #ifdef CONFIG_PPP_FILTER struct bpf_prog *pass_filter; /* filter for packets to pass */ struct bpf_prog *active_filter; /* filter for pkts to reset idle */ #endif /* CONFIG_PPP_FILTER */ struct net *ppp_net; /* the net we belong to */ struct ppp_link_stats stats64; /* 64 bit network stats */ }; /* * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, * SC_MUST_COMP * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. * Bits in xstate: SC_COMP_RUN */ #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) /* * Private data structure for each channel. * This includes the data structure used for multilink. */ struct channel { struct ppp_file file; /* stuff for read/write/poll */ struct list_head list; /* link in all/new_channels list */ struct ppp_channel *chan; /* public channel data structure */ struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ spinlock_t downl; /* protects `chan', file.xq dequeue */ struct ppp *ppp; /* ppp unit we're connected to */ struct net *chan_net; /* the net channel belongs to */ netns_tracker ns_tracker; struct list_head clist; /* link in list of channels per unit */ rwlock_t upl; /* protects `ppp' and 'bridge' */ struct channel __rcu *bridge; /* "bridged" ppp channel */ #ifdef CONFIG_PPP_MULTILINK u8 avail; /* flag used in multilink stuff */ u8 had_frag; /* >= 1 fragments have been sent */ u32 lastseq; /* MP: last sequence # received */ int speed; /* speed of the corresponding ppp channel*/ #endif /* CONFIG_PPP_MULTILINK */ }; struct ppp_config { struct file *file; s32 unit; bool ifname_is_set; }; /* * SMP locking issues: * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels * list and the ppp.n_channels field, you need to take both locks * before you modify them. * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> * channel.downl. */ static DEFINE_MUTEX(ppp_mutex); static atomic_t ppp_unit_count = ATOMIC_INIT(0); static atomic_t channel_count = ATOMIC_INIT(0); /* per-net private data for this module */ static unsigned int ppp_net_id __read_mostly; struct ppp_net { /* units to ppp mapping */ struct idr units_idr; /* * all_ppp_mutex protects the units_idr mapping. * It also ensures that finding a ppp unit in the units_idr * map and updating its file.refcnt field is atomic. */ struct mutex all_ppp_mutex; /* channels */ struct list_head all_channels; struct list_head new_channels; int last_channel_index; /* * all_channels_lock protects all_channels and * last_channel_index, and the atomicity of find * a channel and updating its file.refcnt field. */ spinlock_t all_channels_lock; }; /* Get the PPP protocol number from a skb */ #define PPP_PROTO(skb) get_unaligned_be16((skb)->data) /* We limit the length of ppp->file.rq to this (arbitrary) value */ #define PPP_MAX_RQLEN 32 /* * Maximum number of multilink fragments queued up. * This has to be large enough to cope with the maximum latency of * the slowest channel relative to the others. Strictly it should * depend on the number of channels and their characteristics. */ #define PPP_MP_MAX_QLEN 128 /* Multilink header bits. */ #define B 0x80 /* this fragment begins a packet */ #define E 0x40 /* this fragment ends a packet */ /* Compare multilink sequence numbers (assumed to be 32 bits wide) */ #define seq_before(a, b) ((s32)((a) - (b)) < 0) #define seq_after(a, b) ((s32)((a) - (b)) > 0) /* Prototypes. */ static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, struct file *file, unsigned int cmd, unsigned long arg); static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb); static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); static void ppp_push(struct ppp *ppp); static void ppp_channel_push(struct channel *pch); static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch); static void ppp_receive_error(struct ppp *ppp); static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb); #ifdef CONFIG_PPP_MULTILINK static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch); static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); #endif /* CONFIG_PPP_MULTILINK */ static int ppp_set_compress(struct ppp *ppp, struct ppp_option_data *data); static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); static void ppp_ccp_closed(struct ppp *ppp); static struct compressor *find_compressor(int type); static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); static int ppp_create_interface(struct net *net, struct file *file, int *unit); static void init_ppp_file(struct ppp_file *pf, int kind); static void ppp_destroy_interface(struct ppp *ppp); static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit); static struct channel *ppp_find_channel(struct ppp_net *pn, int unit); static int ppp_connect_channel(struct channel *pch, int unit); static int ppp_disconnect_channel(struct channel *pch); static void ppp_destroy_channel(struct channel *pch); static int unit_get(struct idr *p, void *ptr, int min); static int unit_set(struct idr *p, void *ptr, int n); static void unit_put(struct idr *p, int n); static void *unit_find(struct idr *p, int n); static void ppp_setup(struct net_device *dev); static const struct net_device_ops ppp_netdev_ops; static const struct class ppp_class = { .name = "ppp", }; /* per net-namespace data */ static inline struct ppp_net *ppp_pernet(struct net *net) { return net_generic(net, ppp_net_id); } /* Translates a PPP protocol number to a NP index (NP == network protocol) */ static inline int proto_to_npindex(int proto) { switch (proto) { case PPP_IP: return NP_IP; case PPP_IPV6: return NP_IPV6; case PPP_IPX: return NP_IPX; case PPP_AT: return NP_AT; case PPP_MPLS_UC: return NP_MPLS_UC; case PPP_MPLS_MC: return NP_MPLS_MC; } return -EINVAL; } /* Translates an NP index into a PPP protocol number */ static const int npindex_to_proto[NUM_NP] = { PPP_IP, PPP_IPV6, PPP_IPX, PPP_AT, PPP_MPLS_UC, PPP_MPLS_MC, }; /* Translates an ethertype into an NP index */ static inline int ethertype_to_npindex(int ethertype) { switch (ethertype) { case ETH_P_IP: return NP_IP; case ETH_P_IPV6: return NP_IPV6; case ETH_P_IPX: return NP_IPX; case ETH_P_PPPTALK: case ETH_P_ATALK: return NP_AT; case ETH_P_MPLS_UC: return NP_MPLS_UC; case ETH_P_MPLS_MC: return NP_MPLS_MC; } return -1; } /* Translates an NP index into an ethertype */ static const int npindex_to_ethertype[NUM_NP] = { ETH_P_IP, ETH_P_IPV6, ETH_P_IPX, ETH_P_PPPTALK, ETH_P_MPLS_UC, ETH_P_MPLS_MC, }; /* * Locking shorthand. */ #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ ppp_recv_lock(ppp); } while (0) #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ ppp_xmit_unlock(ppp); } while (0) /* * /dev/ppp device routines. * The /dev/ppp device is used by pppd to control the ppp unit. * It supports the read, write, ioctl and poll functions. * Open instances of /dev/ppp can be in one of three states: * unattached, attached to a ppp unit, or attached to a ppp channel. */ static int ppp_open(struct inode *inode, struct file *file) { /* * This could (should?) be enforced by the permissions on /dev/ppp. */ if (!ns_capable(file->f_cred->user_ns, CAP_NET_ADMIN)) return -EPERM; return 0; } static int ppp_release(struct inode *unused, struct file *file) { struct ppp_file *pf = file->private_data; struct ppp *ppp; if (pf) { file->private_data = NULL; if (pf->kind == INTERFACE) { ppp = PF_TO_PPP(pf); rtnl_lock(); if (file == ppp->owner) unregister_netdevice(ppp->dev); rtnl_unlock(); } if (refcount_dec_and_test(&pf->refcnt)) { switch (pf->kind) { case INTERFACE: ppp_destroy_interface(PF_TO_PPP(pf)); break; case CHANNEL: ppp_destroy_channel(PF_TO_CHANNEL(pf)); break; } } } return 0; } static ssize_t ppp_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct ppp_file *pf = file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; struct sk_buff *skb = NULL; struct iovec iov; struct iov_iter to; ret = count; if (!pf) return -ENXIO; add_wait_queue(&pf->rwait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); skb = skb_dequeue(&pf->rq); if (skb) break; ret = 0; if (pf->dead) break; if (pf->kind == INTERFACE) { /* * Return 0 (EOF) on an interface that has no * channels connected, unless it is looping * network traffic (demand mode). */ struct ppp *ppp = PF_TO_PPP(pf); ppp_recv_lock(ppp); if (ppp->n_channels == 0 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) { ppp_recv_unlock(ppp); break; } ppp_recv_unlock(ppp); } ret = -EAGAIN; if (file->f_flags & O_NONBLOCK) break; ret = -ERESTARTSYS; if (signal_pending(current)) break; schedule(); } set_current_state(TASK_RUNNING); remove_wait_queue(&pf->rwait, &wait); if (!skb) goto out; ret = -EOVERFLOW; if (skb->len > count) goto outf; ret = -EFAULT; iov.iov_base = buf; iov.iov_len = count; iov_iter_init(&to, ITER_DEST, &iov, 1, count); if (skb_copy_datagram_iter(skb, 0, &to, skb->len)) goto outf; ret = skb->len; outf: kfree_skb(skb); out: return ret; } static bool ppp_check_packet(struct sk_buff *skb, size_t count) { /* LCP packets must include LCP header which 4 bytes long: * 1-byte code, 1-byte identifier, and 2-byte length. */ return get_unaligned_be16(skb->data) != PPP_LCP || count >= PPP_PROTO_LEN + PPP_LCP_HDRLEN; } static ssize_t ppp_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct ppp_file *pf = file->private_data; struct sk_buff *skb; ssize_t ret; if (!pf) return -ENXIO; /* All PPP packets should start with the 2-byte protocol */ if (count < PPP_PROTO_LEN) return -EINVAL; ret = -ENOMEM; skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); if (!skb) goto out; skb_reserve(skb, pf->hdrlen); ret = -EFAULT; if (copy_from_user(skb_put(skb, count), buf, count)) { kfree_skb(skb); goto out; } ret = -EINVAL; if (unlikely(!ppp_check_packet(skb, count))) { kfree_skb(skb); goto out; } switch (pf->kind) { case INTERFACE: ppp_xmit_process(PF_TO_PPP(pf), skb); break; case CHANNEL: skb_queue_tail(&pf->xq, skb); ppp_channel_push(PF_TO_CHANNEL(pf)); break; } ret = count; out: return ret; } /* No kernel lock - fine */ static __poll_t ppp_poll(struct file *file, poll_table *wait) { struct ppp_file *pf = file->private_data; __poll_t mask; if (!pf) return 0; poll_wait(file, &pf->rwait, wait); mask = EPOLLOUT | EPOLLWRNORM; if (skb_peek(&pf->rq)) mask |= EPOLLIN | EPOLLRDNORM; if (pf->dead) mask |= EPOLLHUP; else if (pf->kind == INTERFACE) { /* see comment in ppp_read */ struct ppp *ppp = PF_TO_PPP(pf); ppp_recv_lock(ppp); if (ppp->n_channels == 0 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) mask |= EPOLLIN | EPOLLRDNORM; ppp_recv_unlock(ppp); } return mask; } #ifdef CONFIG_PPP_FILTER static struct bpf_prog *get_filter(struct sock_fprog *uprog) { struct sock_fprog_kern fprog; struct bpf_prog *res = NULL; int err; if (!uprog->len) return NULL; /* uprog->len is unsigned short, so no overflow here */ fprog.len = uprog->len; fprog.filter = memdup_array_user(uprog->filter, uprog->len, sizeof(struct sock_filter)); if (IS_ERR(fprog.filter)) return ERR_CAST(fprog.filter); err = bpf_prog_create(&res, &fprog); kfree(fprog.filter); return err ? ERR_PTR(err) : res; } static struct bpf_prog *ppp_get_filter(struct sock_fprog __user *p) { struct sock_fprog uprog; if (copy_from_user(&uprog, p, sizeof(struct sock_fprog))) return ERR_PTR(-EFAULT); return get_filter(&uprog); } #ifdef CONFIG_COMPAT struct sock_fprog32 { unsigned short len; compat_caddr_t filter; }; #define PPPIOCSPASS32 _IOW('t', 71, struct sock_fprog32) #define PPPIOCSACTIVE32 _IOW('t', 70, struct sock_fprog32) static struct bpf_prog *compat_ppp_get_filter(struct sock_fprog32 __user *p) { struct sock_fprog32 uprog32; struct sock_fprog uprog; if (copy_from_user(&uprog32, p, sizeof(struct sock_fprog32))) return ERR_PTR(-EFAULT); uprog.len = uprog32.len; uprog.filter = compat_ptr(uprog32.filter); return get_filter(&uprog); } #endif #endif /* Bridge one PPP channel to another. * When two channels are bridged, ppp_input on one channel is redirected to * the other's ops->start_xmit handler. * In order to safely bridge channels we must reject channels which are already * part of a bridge instance, or which form part of an existing unit. * Once successfully bridged, each channel holds a reference on the other * to prevent it being freed while the bridge is extant. */ static int ppp_bridge_channels(struct channel *pch, struct channel *pchb) { write_lock_bh(&pch->upl); if (pch->ppp || rcu_dereference_protected(pch->bridge, lockdep_is_held(&pch->upl))) { write_unlock_bh(&pch->upl); return -EALREADY; } refcount_inc(&pchb->file.refcnt); rcu_assign_pointer(pch->bridge, pchb); write_unlock_bh(&pch->upl); write_lock_bh(&pchb->upl); if (pchb->ppp || rcu_dereference_protected(pchb->bridge, lockdep_is_held(&pchb->upl))) { write_unlock_bh(&pchb->upl); goto err_unset; } refcount_inc(&pch->file.refcnt); rcu_assign_pointer(pchb->bridge, pch); write_unlock_bh(&pchb->upl); return 0; err_unset: write_lock_bh(&pch->upl); /* Re-read pch->bridge with upl held in case it was modified concurrently */ pchb = rcu_dereference_protected(pch->bridge, lockdep_is_held(&pch->upl)); RCU_INIT_POINTER(pch->bridge, NULL); write_unlock_bh(&pch->upl); synchronize_rcu(); if (pchb) if (refcount_dec_and_test(&pchb->file.refcnt)) ppp_destroy_channel(pchb); return -EALREADY; } static int ppp_unbridge_channels(struct channel *pch) { struct channel *pchb, *pchbb; write_lock_bh(&pch->upl); pchb = rcu_dereference_protected(pch->bridge, lockdep_is_held(&pch->upl)); if (!pchb) { write_unlock_bh(&pch->upl); return -EINVAL; } RCU_INIT_POINTER(pch->bridge, NULL); write_unlock_bh(&pch->upl); /* Only modify pchb if phcb->bridge points back to pch. * If not, it implies that there has been a race unbridging (and possibly * even rebridging) pchb. We should leave pchb alone to avoid either a * refcount underflow, or breaking another established bridge instance. */ write_lock_bh(&pchb->upl); pchbb = rcu_dereference_protected(pchb->bridge, lockdep_is_held(&pchb->upl)); if (pchbb == pch) RCU_INIT_POINTER(pchb->bridge, NULL); write_unlock_bh(&pchb->upl); synchronize_rcu(); if (pchbb == pch) if (refcount_dec_and_test(&pch->file.refcnt)) ppp_destroy_channel(pch); if (refcount_dec_and_test(&pchb->file.refcnt)) ppp_destroy_channel(pchb); return 0; } static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ppp_file *pf; struct ppp *ppp; int err = -EFAULT, val, val2, i; struct ppp_idle32 idle32; struct ppp_idle64 idle64; struct npioctl npi; int unit, cflags; struct slcompress *vj; void __user *argp = (void __user *)arg; int __user *p = argp; mutex_lock(&ppp_mutex); pf = file->private_data; if (!pf) { err = ppp_unattached_ioctl(current->nsproxy->net_ns, pf, file, cmd, arg); goto out; } if (cmd == PPPIOCDETACH) { /* * PPPIOCDETACH is no longer supported as it was heavily broken, * and is only known to have been used by pppd older than * ppp-2.4.2 (released November 2003). */ pr_warn_once("%s (%d) used obsolete PPPIOCDETACH ioctl\n", current->comm, current->pid); err = -EINVAL; goto out; } if (pf->kind == CHANNEL) { struct channel *pch, *pchb; struct ppp_channel *chan; struct ppp_net *pn; pch = PF_TO_CHANNEL(pf); switch (cmd) { case PPPIOCCONNECT: if (get_user(unit, p)) break; err = ppp_connect_channel(pch, unit); break; case PPPIOCDISCONN: err = ppp_disconnect_channel(pch); break; case PPPIOCBRIDGECHAN: if (get_user(unit, p)) break; err = -ENXIO; pn = ppp_pernet(current->nsproxy->net_ns); spin_lock_bh(&pn->all_channels_lock); pchb = ppp_find_channel(pn, unit); /* Hold a reference to prevent pchb being freed while * we establish the bridge. */ if (pchb) refcount_inc(&pchb->file.refcnt); spin_unlock_bh(&pn->all_channels_lock); if (!pchb) break; err = ppp_bridge_channels(pch, pchb); /* Drop earlier refcount now bridge establishment is complete */ if (refcount_dec_and_test(&pchb->file.refcnt)) ppp_destroy_channel(pchb); break; case PPPIOCUNBRIDGECHAN: err = ppp_unbridge_channels(pch); break; default: down_read(&pch->chan_sem); chan = pch->chan; err = -ENOTTY; if (chan && chan->ops->ioctl) err = chan->ops->ioctl(chan, cmd, arg); up_read(&pch->chan_sem); } goto out; } if (pf->kind != INTERFACE) { /* can't happen */ pr_err("PPP: not interface or channel??\n"); err = -EINVAL; goto out; } ppp = PF_TO_PPP(pf); switch (cmd) { case PPPIOCSMRU: if (get_user(val, p)) break; ppp->mru = val; err = 0; break; case PPPIOCSFLAGS: if (get_user(val, p)) break; ppp_lock(ppp); cflags = ppp->flags & ~val; #ifdef CONFIG_PPP_MULTILINK if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK)) ppp->nextseq = 0; #endif ppp->flags = val & SC_FLAG_BITS; ppp_unlock(ppp); if (cflags & SC_CCP_OPEN) ppp_ccp_closed(ppp); err = 0; break; case PPPIOCGFLAGS: val = ppp->flags | ppp->xstate | ppp->rstate; if (put_user(val, p)) break; err = 0; break; case PPPIOCSCOMPRESS: { struct ppp_option_data data; if (copy_from_user(&data, argp, sizeof(data))) err = -EFAULT; else err = ppp_set_compress(ppp, &data); break; } case PPPIOCGUNIT: if (put_user(ppp->file.index, p)) break; err = 0; break; case PPPIOCSDEBUG: if (get_user(val, p)) break; ppp->debug = val; err = 0; break; case PPPIOCGDEBUG: if (put_user(ppp->debug, p)) break; err = 0; break; case PPPIOCGIDLE32: idle32.xmit_idle = (jiffies - ppp->last_xmit) / HZ; idle32.recv_idle = (jiffies - ppp->last_recv) / HZ; if (copy_to_user(argp, &idle32, sizeof(idle32))) break; err = 0; break; case PPPIOCGIDLE64: idle64.xmit_idle = (jiffies - ppp->last_xmit) / HZ; idle64.recv_idle = (jiffies - ppp->last_recv) / HZ; if (copy_to_user(argp, &idle64, sizeof(idle64))) break; err = 0; break; case PPPIOCSMAXCID: if (get_user(val, p)) break; val2 = 15; if ((val >> 16) != 0) { val2 = val >> 16; val &= 0xffff; } vj = slhc_init(val2+1, val+1); if (IS_ERR(vj)) { err = PTR_ERR(vj); break; } ppp_lock(ppp); if (ppp->vj) slhc_free(ppp->vj); ppp->vj = vj; ppp_unlock(ppp); err = 0; break; case PPPIOCGNPMODE: case PPPIOCSNPMODE: if (copy_from_user(&npi, argp, sizeof(npi))) break; err = proto_to_npindex(npi.protocol); if (err < 0) break; i = err; if (cmd == PPPIOCGNPMODE) { err = -EFAULT; npi.mode = ppp->npmode[i]; if (copy_to_user(argp, &npi, sizeof(npi))) break; } else { ppp->npmode[i] = npi.mode; /* we may be able to transmit more packets now (??) */ netif_wake_queue(ppp->dev); } err = 0; break; #ifdef CONFIG_PPP_FILTER case PPPIOCSPASS: case PPPIOCSACTIVE: { struct bpf_prog *filter = ppp_get_filter(argp); struct bpf_prog **which; if (IS_ERR(filter)) { err = PTR_ERR(filter); break; } if (cmd == PPPIOCSPASS) which = &ppp->pass_filter; else which = &ppp->active_filter; ppp_lock(ppp); if (*which) bpf_prog_destroy(*which); *which = filter; ppp_unlock(ppp); err = 0; break; } #endif /* CONFIG_PPP_FILTER */ #ifdef CONFIG_PPP_MULTILINK case PPPIOCSMRRU: if (get_user(val, p)) break; ppp_recv_lock(ppp); ppp->mrru = val; ppp_recv_unlock(ppp); err = 0; break; #endif /* CONFIG_PPP_MULTILINK */ default: err = -ENOTTY; } out: mutex_unlock(&ppp_mutex); return err; } #ifdef CONFIG_COMPAT struct ppp_option_data32 { compat_uptr_t ptr; u32 length; compat_int_t transmit; }; #define PPPIOCSCOMPRESS32 _IOW('t', 77, struct ppp_option_data32) static long ppp_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ppp_file *pf; int err = -ENOIOCTLCMD; void __user *argp = (void __user *)arg; mutex_lock(&ppp_mutex); pf = file->private_data; if (pf && pf->kind == INTERFACE) { struct ppp *ppp = PF_TO_PPP(pf); switch (cmd) { #ifdef CONFIG_PPP_FILTER case PPPIOCSPASS32: case PPPIOCSACTIVE32: { struct bpf_prog *filter = compat_ppp_get_filter(argp); struct bpf_prog **which; if (IS_ERR(filter)) { err = PTR_ERR(filter); break; } if (cmd == PPPIOCSPASS32) which = &ppp->pass_filter; else which = &ppp->active_filter; ppp_lock(ppp); if (*which) bpf_prog_destroy(*which); *which = filter; ppp_unlock(ppp); err = 0; break; } #endif /* CONFIG_PPP_FILTER */ case PPPIOCSCOMPRESS32: { struct ppp_option_data32 data32; if (copy_from_user(&data32, argp, sizeof(data32))) { err = -EFAULT; } else { struct ppp_option_data data = { .ptr = compat_ptr(data32.ptr), .length = data32.length, .transmit = data32.transmit }; err = ppp_set_compress(ppp, &data); } break; } } } mutex_unlock(&ppp_mutex); /* all other commands have compatible arguments */ if (err == -ENOIOCTLCMD) err = ppp_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); return err; } #endif static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, struct file *file, unsigned int cmd, unsigned long arg) { int unit, err = -EFAULT; struct ppp *ppp; struct channel *chan; struct ppp_net *pn; int __user *p = (int __user *)arg; switch (cmd) { case PPPIOCNEWUNIT: /* Create a new ppp unit */ if (get_user(unit, p)) break; err = ppp_create_interface(net, file, &unit); if (err < 0) break; err = -EFAULT; if (put_user(unit, p)) break; err = 0; break; case PPPIOCATTACH: /* Attach to an existing ppp unit */ if (get_user(unit, p)) break; err = -ENXIO; pn = ppp_pernet(net); mutex_lock(&pn->all_ppp_mutex); ppp = ppp_find_unit(pn, unit); if (ppp) { refcount_inc(&ppp->file.refcnt); file->private_data = &ppp->file; err = 0; } mutex_unlock(&pn->all_ppp_mutex); break; case PPPIOCATTCHAN: if (get_user(unit, p)) break; err = -ENXIO; pn = ppp_pernet(net); spin_lock_bh(&pn->all_channels_lock); chan = ppp_find_channel(pn, unit); if (chan) { refcount_inc(&chan->file.refcnt); file->private_data = &chan->file; err = 0; } spin_unlock_bh(&pn->all_channels_lock); break; default: err = -ENOTTY; } return err; } static const struct file_operations ppp_device_fops = { .owner = THIS_MODULE, .read = ppp_read, .write = ppp_write, .poll = ppp_poll, .unlocked_ioctl = ppp_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ppp_compat_ioctl, #endif .open = ppp_open, .release = ppp_release, .llseek = noop_llseek, }; static __net_init int ppp_init_net(struct net *net) { struct ppp_net *pn = net_generic(net, ppp_net_id); idr_init(&pn->units_idr); mutex_init(&pn->all_ppp_mutex); INIT_LIST_HEAD(&pn->all_channels); INIT_LIST_HEAD(&pn->new_channels); spin_lock_init(&pn->all_channels_lock); return 0; } static __net_exit void ppp_exit_net(struct net *net) { struct ppp_net *pn = net_generic(net, ppp_net_id); struct net_device *dev; struct net_device *aux; struct ppp *ppp; LIST_HEAD(list); int id; rtnl_lock(); for_each_netdev_safe(net, dev, aux) { if (dev->netdev_ops == &ppp_netdev_ops) unregister_netdevice_queue(dev, &list); } idr_for_each_entry(&pn->units_idr, ppp, id) /* Skip devices already unregistered by previous loop */ if (!net_eq(dev_net(ppp->dev), net)) unregister_netdevice_queue(ppp->dev, &list); unregister_netdevice_many(&list); rtnl_unlock(); mutex_destroy(&pn->all_ppp_mutex); idr_destroy(&pn->units_idr); WARN_ON_ONCE(!list_empty(&pn->all_channels)); WARN_ON_ONCE(!list_empty(&pn->new_channels)); } static struct pernet_operations ppp_net_ops = { .init = ppp_init_net, .exit = ppp_exit_net, .id = &ppp_net_id, .size = sizeof(struct ppp_net), }; static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set) { struct ppp_net *pn = ppp_pernet(ppp->ppp_net); int ret; mutex_lock(&pn->all_ppp_mutex); if (unit < 0) { ret = unit_get(&pn->units_idr, ppp, 0); if (ret < 0) goto err; if (!ifname_is_set) { while (1) { snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ret); if (!netdev_name_in_use(ppp->ppp_net, ppp->dev->name)) break; unit_put(&pn->units_idr, ret); ret = unit_get(&pn->units_idr, ppp, ret + 1); if (ret < 0) goto err; } } } else { /* Caller asked for a specific unit number. Fail with -EEXIST * if unavailable. For backward compatibility, return -EEXIST * too if idr allocation fails; this makes pppd retry without * requesting a specific unit number. */ if (unit_find(&pn->units_idr, unit)) { ret = -EEXIST; goto err; } ret = unit_set(&pn->units_idr, ppp, unit); if (ret < 0) { /* Rewrite error for backward compatibility */ ret = -EEXIST; goto err; } } ppp->file.index = ret; if (!ifname_is_set) snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index); mutex_unlock(&pn->all_ppp_mutex); ret = register_netdevice(ppp->dev); if (ret < 0) goto err_unit; atomic_inc(&ppp_unit_count); return 0; err_unit: mutex_lock(&pn->all_ppp_mutex); unit_put(&pn->units_idr, ppp->file.index); err: mutex_unlock(&pn->all_ppp_mutex); return ret; } static int ppp_dev_configure(struct net *src_net, struct net_device *dev, const struct ppp_config *conf) { struct ppp *ppp = netdev_priv(dev); int indx; int err; int cpu; ppp->dev = dev; ppp->ppp_net = src_net; ppp->mru = PPP_MRU; ppp->owner = conf->file; init_ppp_file(&ppp->file, INTERFACE); ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ for (indx = 0; indx < NUM_NP; ++indx) ppp->npmode[indx] = NPMODE_PASS; INIT_LIST_HEAD(&ppp->channels); spin_lock_init(&ppp->rlock); spin_lock_init(&ppp->wlock); ppp->xmit_recursion = alloc_percpu(int); if (!ppp->xmit_recursion) { err = -ENOMEM; goto err1; } for_each_possible_cpu(cpu) (*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0; #ifdef CONFIG_PPP_MULTILINK ppp->minseq = -1; skb_queue_head_init(&ppp->mrq); #endif /* CONFIG_PPP_MULTILINK */ #ifdef CONFIG_PPP_FILTER ppp->pass_filter = NULL; ppp->active_filter = NULL; #endif /* CONFIG_PPP_FILTER */ err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set); if (err < 0) goto err2; conf->file->private_data = &ppp->file; return 0; err2: free_percpu(ppp->xmit_recursion); err1: return err; } static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = { [IFLA_PPP_DEV_FD] = { .type = NLA_S32 }, }; static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (!data) return -EINVAL; if (!data[IFLA_PPP_DEV_FD]) return -EINVAL; if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0) return -EBADF; return 0; } static int ppp_nl_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ppp_config conf = { .unit = -1, .ifname_is_set = true, }; struct file *file; int err; file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD])); if (!file) return -EBADF; /* rtnl_lock is already held here, but ppp_create_interface() locks * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids * possible deadlock due to lock order inversion, at the cost of * pushing the problem back to userspace. */ if (!mutex_trylock(&ppp_mutex)) { err = -EBUSY; goto out; } if (file->f_op != &ppp_device_fops || file->private_data) { err = -EBADF; goto out_unlock; } conf.file = file; /* Don't use device name generated by the rtnetlink layer when ifname * isn't specified. Let ppp_dev_configure() set the device name using * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows * userspace to infer the device name using to the PPPIOCGUNIT ioctl. */ if (!tb[IFLA_IFNAME] || !nla_len(tb[IFLA_IFNAME]) || !*(char *)nla_data(tb[IFLA_IFNAME])) conf.ifname_is_set = false; err = ppp_dev_configure(src_net, dev, &conf); out_unlock: mutex_unlock(&ppp_mutex); out: fput(file); return err; } static void ppp_nl_dellink(struct net_device *dev, struct list_head *head) { unregister_netdevice_queue(dev, head); } static size_t ppp_nl_get_size(const struct net_device *dev) { return 0; } static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev) { return 0; } static struct net *ppp_nl_get_link_net(const struct net_device *dev) { struct ppp *ppp = netdev_priv(dev); return READ_ONCE(ppp->ppp_net); } static struct rtnl_link_ops ppp_link_ops __read_mostly = { .kind = "ppp", .maxtype = IFLA_PPP_MAX, .policy = ppp_nl_policy, .priv_size = sizeof(struct ppp), .setup = ppp_setup, .validate = ppp_nl_validate, .newlink = ppp_nl_newlink, .dellink = ppp_nl_dellink, .get_size = ppp_nl_get_size, .fill_info = ppp_nl_fill_info, .get_link_net = ppp_nl_get_link_net, }; #define PPP_MAJOR 108 /* Called at boot time if ppp is compiled into the kernel, or at module load time (from init_module) if compiled as a module. */ static int __init ppp_init(void) { int err; pr_info("PPP generic driver version " PPP_VERSION "\n"); err = register_pernet_device(&ppp_net_ops); if (err) { pr_err("failed to register PPP pernet device (%d)\n", err); goto out; } err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); if (err) { pr_err("failed to register PPP device (%d)\n", err); goto out_net; } err = class_register(&ppp_class); if (err) goto out_chrdev; err = rtnl_link_register(&ppp_link_ops); if (err) { pr_err("failed to register rtnetlink PPP handler\n"); goto out_class; } /* not a big deal if we fail here :-) */ device_create(&ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); return 0; out_class: class_unregister(&ppp_class); out_chrdev: unregister_chrdev(PPP_MAJOR, "ppp"); out_net: unregister_pernet_device(&ppp_net_ops); out: return err; } /* * Network interface unit routines. */ static netdev_tx_t ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ppp *ppp = netdev_priv(dev); int npi, proto; unsigned char *pp; npi = ethertype_to_npindex(ntohs(skb->protocol)); if (npi < 0) goto outf; /* Drop, accept or reject the packet */ switch (ppp->npmode[npi]) { case NPMODE_PASS: break; case NPMODE_QUEUE: /* it would be nice to have a way to tell the network system to queue this one up for later. */ goto outf; case NPMODE_DROP: case NPMODE_ERROR: goto outf; } /* Put the 2-byte PPP protocol number on the front, making sure there is room for the address and control fields. */ if (skb_cow_head(skb, PPP_HDRLEN)) goto outf; pp = skb_push(skb, 2); proto = npindex_to_proto[npi]; put_unaligned_be16(proto, pp); skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev))); ppp_xmit_process(ppp, skb); return NETDEV_TX_OK; outf: kfree_skb(skb); ++dev->stats.tx_dropped; return NETDEV_TX_OK; } static int ppp_net_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *addr, int cmd) { struct ppp *ppp = netdev_priv(dev); int err = -EFAULT; struct ppp_stats stats; struct ppp_comp_stats cstats; char *vers; switch (cmd) { case SIOCGPPPSTATS: ppp_get_stats(ppp, &stats); if (copy_to_user(addr, &stats, sizeof(stats))) break; err = 0; break; case SIOCGPPPCSTATS: memset(&cstats, 0, sizeof(cstats)); if (ppp->xc_state) ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); if (ppp->rc_state) ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); if (copy_to_user(addr, &cstats, sizeof(cstats))) break; err = 0; break; case SIOCGPPPVER: vers = PPP_VERSION; if (copy_to_user(addr, vers, strlen(vers) + 1)) break; err = 0; break; default: err = -EINVAL; } return err; } static void ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64) { struct ppp *ppp = netdev_priv(dev); ppp_recv_lock(ppp); stats64->rx_packets = ppp->stats64.rx_packets; stats64->rx_bytes = ppp->stats64.rx_bytes; ppp_recv_unlock(ppp); ppp_xmit_lock(ppp); stats64->tx_packets = ppp->stats64.tx_packets; stats64->tx_bytes = ppp->stats64.tx_bytes; ppp_xmit_unlock(ppp); stats64->rx_errors = dev->stats.rx_errors; stats64->tx_errors = dev->stats.tx_errors; stats64->rx_dropped = dev->stats.rx_dropped; stats64->tx_dropped = dev->stats.tx_dropped; stats64->rx_length_errors = dev->stats.rx_length_errors; } static int ppp_dev_init(struct net_device *dev) { struct ppp *ppp; netdev_lockdep_set_classes(dev); ppp = netdev_priv(dev); /* Let the netdevice take a reference on the ppp file. This ensures * that ppp_destroy_interface() won't run before the device gets * unregistered. */ refcount_inc(&ppp->file.refcnt); return 0; } static void ppp_dev_uninit(struct net_device *dev) { struct ppp *ppp = netdev_priv(dev); struct ppp_net *pn = ppp_pernet(ppp->ppp_net); ppp_lock(ppp); ppp->closing = 1; ppp_unlock(ppp); mutex_lock(&pn->all_ppp_mutex); unit_put(&pn->units_idr, ppp->file.index); mutex_unlock(&pn->all_ppp_mutex); ppp->owner = NULL; ppp->file.dead = 1; wake_up_interruptible(&ppp->file.rwait); } static void ppp_dev_priv_destructor(struct net_device *dev) { struct ppp *ppp; ppp = netdev_priv(dev); if (refcount_dec_and_test(&ppp->file.refcnt)) ppp_destroy_interface(ppp); } static int ppp_fill_forward_path(struct net_device_path_ctx *ctx, struct net_device_path *path) { struct ppp *ppp = netdev_priv(ctx->dev); struct ppp_channel *chan; struct channel *pch; if (ppp->flags & SC_MULTILINK) return -EOPNOTSUPP; if (list_empty(&ppp->channels)) return -ENODEV; pch = list_first_entry(&ppp->channels, struct channel, clist); chan = pch->chan; if (!chan->ops->fill_forward_path) return -EOPNOTSUPP; return chan->ops->fill_forward_path(ctx, path, chan); } static const struct net_device_ops ppp_netdev_ops = { .ndo_init = ppp_dev_init, .ndo_uninit = ppp_dev_uninit, .ndo_start_xmit = ppp_start_xmit, .ndo_siocdevprivate = ppp_net_siocdevprivate, .ndo_get_stats64 = ppp_get_stats64, .ndo_fill_forward_path = ppp_fill_forward_path, }; static const struct device_type ppp_type = { .name = "ppp", }; static void ppp_setup(struct net_device *dev) { dev->netdev_ops = &ppp_netdev_ops; SET_NETDEV_DEVTYPE(dev, &ppp_type); dev->lltx = true; dev->hard_header_len = PPP_HDRLEN; dev->mtu = PPP_MRU; dev->addr_len = 0; dev->tx_queue_len = 3; dev->type = ARPHRD_PPP; dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; dev->priv_destructor = ppp_dev_priv_destructor; netif_keep_dst(dev); } /* * Transmit-side routines. */ /* Called to do any work queued up on the transmit side that can now be done */ static void __ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb) { ppp_xmit_lock(ppp); if (!ppp->closing) { ppp_push(ppp); if (skb) skb_queue_tail(&ppp->file.xq, skb); while (!ppp->xmit_pending && (skb = skb_dequeue(&ppp->file.xq))) ppp_send_frame(ppp, skb); /* If there's no work left to do, tell the core net code that we can accept some more. */ if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) netif_wake_queue(ppp->dev); else netif_stop_queue(ppp->dev); } else { kfree_skb(skb); } ppp_xmit_unlock(ppp); } static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb) { local_bh_disable(); if (unlikely(*this_cpu_ptr(ppp->xmit_recursion))) goto err; (*this_cpu_ptr(ppp->xmit_recursion))++; __ppp_xmit_process(ppp, skb); (*this_cpu_ptr(ppp->xmit_recursion))--; local_bh_enable(); return; err: local_bh_enable(); kfree_skb(skb); if (net_ratelimit()) netdev_err(ppp->dev, "recursion detected\n"); } static inline struct sk_buff * pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) { struct sk_buff *new_skb; int len; int new_skb_size = ppp->dev->mtu + ppp->xcomp->comp_extra + ppp->dev->hard_header_len; int compressor_skb_size = ppp->dev->mtu + ppp->xcomp->comp_extra + PPP_HDRLEN; new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); if (!new_skb) { if (net_ratelimit()) netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n"); return NULL; } if (ppp->dev->hard_header_len > PPP_HDRLEN) skb_reserve(new_skb, ppp->dev->hard_header_len - PPP_HDRLEN); /* compressor still expects A/C bytes in hdr */ len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, new_skb->data, skb->len + 2, compressor_skb_size); if (len > 0 && (ppp->flags & SC_CCP_UP)) { consume_skb(skb); skb = new_skb; skb_put(skb, len); skb_pull(skb, 2); /* pull off A/C bytes */ } else if (len == 0) { /* didn't compress, or CCP not up yet */ consume_skb(new_skb); new_skb = skb; } else { /* * (len < 0) * MPPE requires that we do not send unencrypted * frames. The compressor will return -1 if we * should drop the frame. We cannot simply test * the compress_proto because MPPE and MPPC share * the same number. */ if (net_ratelimit()) netdev_err(ppp->dev, "ppp: compressor dropped pkt\n"); kfree_skb(skb); consume_skb(new_skb); new_skb = NULL; } return new_skb; } /* * Compress and send a frame. * The caller should have locked the xmit path, * and xmit_pending should be 0. */ static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) { int proto = PPP_PROTO(skb); struct sk_buff *new_skb; int len; unsigned char *cp; skb->dev = ppp->dev; if (proto < 0x8000) { #ifdef CONFIG_PPP_FILTER /* check if we should pass this packet */ /* the filter instructions are constructed assuming a four-byte PPP header on each packet */ *(u8 *)skb_push(skb, 2) = 1; if (ppp->pass_filter && bpf_prog_run(ppp->pass_filter, skb) == 0) { if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "PPP: outbound frame " "not passed\n"); kfree_skb(skb); return; } /* if this packet passes the active filter, record the time */ if (!(ppp->active_filter && bpf_prog_run(ppp->active_filter, skb) == 0)) ppp->last_xmit = jiffies; skb_pull(skb, 2); #else /* for data packets, record the time */ ppp->last_xmit = jiffies; #endif /* CONFIG_PPP_FILTER */ } ++ppp->stats64.tx_packets; ppp->stats64.tx_bytes += skb->len - PPP_PROTO_LEN; switch (proto) { case PPP_IP: if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0) break; /* try to do VJ TCP header compression */ new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, GFP_ATOMIC); if (!new_skb) { netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n"); goto drop; } skb_reserve(new_skb, ppp->dev->hard_header_len - 2); cp = skb->data + 2; len = slhc_compress(ppp->vj, cp, skb->len - 2, new_skb->data + 2, &cp, !(ppp->flags & SC_NO_TCP_CCID)); if (cp == skb->data + 2) { /* didn't compress */ consume_skb(new_skb); } else { if (cp[0] & SL_TYPE_COMPRESSED_TCP) { proto = PPP_VJC_COMP; cp[0] &= ~SL_TYPE_COMPRESSED_TCP; } else { proto = PPP_VJC_UNCOMP; cp[0] = skb->data[2]; } consume_skb(skb); skb = new_skb; cp = skb_put(skb, len + 2); cp[0] = 0; cp[1] = proto; } break; case PPP_CCP: /* peek at outbound CCP frames */ ppp_ccp_peek(ppp, skb, 0); break; } /* try to do packet compression */ if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state && proto != PPP_LCP && proto != PPP_CCP) { if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { if (net_ratelimit()) netdev_err(ppp->dev, "ppp: compression required but " "down - pkt dropped.\n"); goto drop; } skb = pad_compress_skb(ppp, skb); if (!skb) goto drop; } /* * If we are waiting for traffic (demand dialling), * queue it up for pppd to receive. */ if (ppp->flags & SC_LOOP_TRAFFIC) { if (ppp->file.rq.qlen > PPP_MAX_RQLEN) goto drop; skb_queue_tail(&ppp->file.rq, skb); wake_up_interruptible(&ppp->file.rwait); return; } ppp->xmit_pending = skb; ppp_push(ppp); return; drop: kfree_skb(skb); ++ppp->dev->stats.tx_errors; } /* * Try to send the frame in xmit_pending. * The caller should have the xmit path locked. */ static void ppp_push(struct ppp *ppp) { struct list_head *list; struct channel *pch; struct sk_buff *skb = ppp->xmit_pending; if (!skb) return; list = &ppp->channels; if (list_empty(list)) { /* nowhere to send the packet, just drop it */ ppp->xmit_pending = NULL; kfree_skb(skb); return; } if ((ppp->flags & SC_MULTILINK) == 0) { /* not doing multilink: send it down the first channel */ list = list->next; pch = list_entry(list, struct channel, clist); spin_lock(&pch->downl); if (pch->chan) { if (pch->chan->ops->start_xmit(pch->chan, skb)) ppp->xmit_pending = NULL; } else { /* channel got unregistered */ kfree_skb(skb); ppp->xmit_pending = NULL; } spin_unlock(&pch->downl); return; } #ifdef CONFIG_PPP_MULTILINK /* Multilink: fragment the packet over as many links as can take the packet at the moment. */ if (!ppp_mp_explode(ppp, skb)) return; #endif /* CONFIG_PPP_MULTILINK */ ppp->xmit_pending = NULL; kfree_skb(skb); } #ifdef CONFIG_PPP_MULTILINK static bool mp_protocol_compress __read_mostly = true; module_param(mp_protocol_compress, bool, 0644); MODULE_PARM_DESC(mp_protocol_compress, "compress protocol id in multilink fragments"); /* * Divide a packet to be transmitted into fragments and * send them out the individual links. */ static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) { int len, totlen; int i, bits, hdrlen, mtu; int flen; int navail, nfree, nzero; int nbigger; int totspeed; int totfree; unsigned char *p, *q; struct list_head *list; struct channel *pch; struct sk_buff *frag; struct ppp_channel *chan; totspeed = 0; /*total bitrate of the bundle*/ nfree = 0; /* # channels which have no packet already queued */ navail = 0; /* total # of usable channels (not deregistered) */ nzero = 0; /* number of channels with zero speed associated*/ totfree = 0; /*total # of channels available and *having no queued packets before *starting the fragmentation*/ hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; i = 0; list_for_each_entry(pch, &ppp->channels, clist) { if (pch->chan) { pch->avail = 1; navail++; pch->speed = pch->chan->speed; } else { pch->avail = 0; } if (pch->avail) { if (skb_queue_empty(&pch->file.xq) || !pch->had_frag) { if (pch->speed == 0) nzero++; else totspeed += pch->speed; pch->avail = 2; ++nfree; ++totfree; } if (!pch->had_frag && i < ppp->nxchan) ppp->nxchan = i; } ++i; } /* * Don't start sending this packet unless at least half of * the channels are free. This gives much better TCP * performance if we have a lot of channels. */ if (nfree == 0 || nfree < navail / 2) return 0; /* can't take now, leave it in xmit_pending */ /* Do protocol field compression */ p = skb->data; len = skb->len; if (*p == 0 && mp_protocol_compress) { ++p; --len; } totlen = len; nbigger = len % nfree; /* skip to the channel after the one we last used and start at that one */ list = &ppp->channels; for (i = 0; i < ppp->nxchan; ++i) { list = list->next; if (list == &ppp->channels) { i = 0; break; } } /* create a fragment for each channel */ bits = B; while (len > 0) { list = list->next; if (list == &ppp->channels) { i = 0; continue; } pch = list_entry(list, struct channel, clist); ++i; if (!pch->avail) continue; /* * Skip this channel if it has a fragment pending already and * we haven't given a fragment to all of the free channels. */ if (pch->avail == 1) { if (nfree > 0) continue; } else { pch->avail = 1; } /* check the channel's mtu and whether it is still attached. */ spin_lock(&pch->downl); if (pch->chan == NULL) { /* can't use this channel, it's being deregistered */ if (pch->speed == 0) nzero--; else totspeed -= pch->speed; spin_unlock(&pch->downl); pch->avail = 0; totlen = len; totfree--; nfree--; if (--navail == 0) break; continue; } /* *if the channel speed is not set divide *the packet evenly among the free channels; *otherwise divide it according to the speed *of the channel we are going to transmit on */ flen = len; if (nfree > 0) { if (pch->speed == 0) { flen = len/nfree; if (nbigger > 0) { flen++; nbigger--; } } else { flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) / ((totspeed*totfree)/pch->speed)) - hdrlen; if (nbigger > 0) { flen += ((totfree - nzero)*pch->speed)/totspeed; nbigger -= ((totfree - nzero)*pch->speed)/ totspeed; } } nfree--; } /* *check if we are on the last channel or *we exceded the length of the data to *fragment */ if ((nfree <= 0) || (flen > len)) flen = len; /* *it is not worth to tx on slow channels: *in that case from the resulting flen according to the *above formula will be equal or less than zero. *Skip the channel in this case */ if (flen <= 0) { pch->avail = 2; spin_unlock(&pch->downl); continue; } /* * hdrlen includes the 2-byte PPP protocol field, but the * MTU counts only the payload excluding the protocol field. * (RFC1661 Section 2) */ mtu = pch->chan->mtu - (hdrlen - 2); if (mtu < 4) mtu = 4; if (flen > mtu) flen = mtu; if (flen == len) bits |= E; frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); if (!frag) goto noskb; q = skb_put(frag, flen + hdrlen); /* make the MP header */ put_unaligned_be16(PPP_MP, q); if (ppp->flags & SC_MP_XSHORTSEQ) { q[2] = bits + ((ppp->nxseq >> 8) & 0xf); q[3] = ppp->nxseq; } else { q[2] = bits; q[3] = ppp->nxseq >> 16; q[4] = ppp->nxseq >> 8; q[5] = ppp->nxseq; } memcpy(q + hdrlen, p, flen); /* try to send it down the channel */ chan = pch->chan; if (!skb_queue_empty(&pch->file.xq) || !chan->ops->start_xmit(chan, frag)) skb_queue_tail(&pch->file.xq, frag); pch->had_frag = 1; p += flen; len -= flen; ++ppp->nxseq; bits = 0; spin_unlock(&pch->downl); } ppp->nxchan = i; return 1; noskb: spin_unlock(&pch->downl); if (ppp->debug & 1) netdev_err(ppp->dev, "PPP: no memory (fragment)\n"); ++ppp->dev->stats.tx_errors; ++ppp->nxseq; return 1; /* abandon the frame */ } #endif /* CONFIG_PPP_MULTILINK */ /* Try to send data out on a channel */ static void __ppp_channel_push(struct channel *pch) { struct sk_buff *skb; struct ppp *ppp; spin_lock(&pch->downl); if (pch->chan) { while (!skb_queue_empty(&pch->file.xq)) { skb = skb_dequeue(&pch->file.xq); if (!pch->chan->ops->start_xmit(pch->chan, skb)) { /* put the packet back and try again later */ skb_queue_head(&pch->file.xq, skb); break; } } } else { /* channel got deregistered */ skb_queue_purge(&pch->file.xq); } spin_unlock(&pch->downl); /* see if there is anything from the attached unit to be sent */ if (skb_queue_empty(&pch->file.xq)) { ppp = pch->ppp; if (ppp) __ppp_xmit_process(ppp, NULL); } } static void ppp_channel_push(struct channel *pch) { read_lock_bh(&pch->upl); if (pch->ppp) { (*this_cpu_ptr(pch->ppp->xmit_recursion))++; __ppp_channel_push(pch); (*this_cpu_ptr(pch->ppp->xmit_recursion))--; } else { __ppp_channel_push(pch); } read_unlock_bh(&pch->upl); } /* * Receive-side routines. */ struct ppp_mp_skb_parm { u32 sequence; u8 BEbits; }; #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb)) static inline void ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) { ppp_recv_lock(ppp); if (!ppp->closing) ppp_receive_frame(ppp, skb, pch); else kfree_skb(skb); ppp_recv_unlock(ppp); } /** * __ppp_decompress_proto - Decompress protocol field, slim version. * @skb: Socket buffer where protocol field should be decompressed. It must have * at least 1 byte of head room and 1 byte of linear data. First byte of * data must be a protocol field byte. * * Decompress protocol field in PPP header if it's compressed, e.g. when * Protocol-Field-Compression (PFC) was negotiated. No checks w.r.t. skb data * length are done in this function. */ static void __ppp_decompress_proto(struct sk_buff *skb) { if (skb->data[0] & 0x01) *(u8 *)skb_push(skb, 1) = 0x00; } /** * ppp_decompress_proto - Check skb data room and decompress protocol field. * @skb: Socket buffer where protocol field should be decompressed. First byte * of data must be a protocol field byte. * * Decompress protocol field in PPP header if it's compressed, e.g. when * Protocol-Field-Compression (PFC) was negotiated. This function also makes * sure that skb data room is sufficient for Protocol field, before and after * decompression. * * Return: true - decompressed successfully, false - not enough room in skb. */ static bool ppp_decompress_proto(struct sk_buff *skb) { /* At least one byte should be present (if protocol is compressed) */ if (!pskb_may_pull(skb, 1)) return false; __ppp_decompress_proto(skb); /* Protocol field should occupy 2 bytes when not compressed */ return pskb_may_pull(skb, 2); } /* Attempt to handle a frame via. a bridged channel, if one exists. * If the channel is bridged, the frame is consumed by the bridge. * If not, the caller must handle the frame by normal recv mechanisms. * Returns true if the frame is consumed, false otherwise. */ static bool ppp_channel_bridge_input(struct channel *pch, struct sk_buff *skb) { struct channel *pchb; rcu_read_lock(); pchb = rcu_dereference(pch->bridge); if (!pchb) goto out_rcu; spin_lock(&pchb->downl); if (!pchb->chan) { /* channel got unregistered */ kfree_skb(skb); goto outl; } skb_scrub_packet(skb, !net_eq(pch->chan_net, pchb->chan_net)); if (!pchb->chan->ops->start_xmit(pchb->chan, skb)) kfree_skb(skb); outl: spin_unlock(&pchb->downl); out_rcu: rcu_read_unlock(); /* If pchb is set then we've consumed the packet */ return !!pchb; } void ppp_input(struct ppp_channel *chan, struct sk_buff *skb) { struct channel *pch = chan->ppp; int proto; if (!pch) { kfree_skb(skb); return; } /* If the channel is bridged, transmit via. bridge */ if (ppp_channel_bridge_input(pch, skb)) return; read_lock_bh(&pch->upl); if (!ppp_decompress_proto(skb)) { kfree_skb(skb); if (pch->ppp) { ++pch->ppp->dev->stats.rx_length_errors; ppp_receive_error(pch->ppp); } goto done; } proto = PPP_PROTO(skb); if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) { /* put it on the channel queue */ skb_queue_tail(&pch->file.rq, skb); /* drop old frames if queue too long */ while (pch->file.rq.qlen > PPP_MAX_RQLEN && (skb = skb_dequeue(&pch->file.rq))) kfree_skb(skb); wake_up_interruptible(&pch->file.rwait); } else { ppp_do_recv(pch->ppp, skb, pch); } done: read_unlock_bh(&pch->upl); } /* Put a 0-length skb in the receive queue as an error indication */ void ppp_input_error(struct ppp_channel *chan, int code) { struct channel *pch = chan->ppp; struct sk_buff *skb; if (!pch) return; read_lock_bh(&pch->upl); if (pch->ppp) { skb = alloc_skb(0, GFP_ATOMIC); if (skb) { skb->len = 0; /* probably unnecessary */ skb->cb[0] = code; ppp_do_recv(pch->ppp, skb, pch); } } read_unlock_bh(&pch->upl); } /* * We come in here to process a received frame. * The receive side of the ppp unit is locked. */ static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) { /* note: a 0-length skb is used as an error indication */ if (skb->len > 0) { skb_checksum_complete_unset(skb); #ifdef CONFIG_PPP_MULTILINK /* XXX do channel-level decompression here */ if (PPP_PROTO(skb) == PPP_MP) ppp_receive_mp_frame(ppp, skb, pch); else #endif /* CONFIG_PPP_MULTILINK */ ppp_receive_nonmp_frame(ppp, skb); } else { kfree_skb(skb); ppp_receive_error(ppp); } } static void ppp_receive_error(struct ppp *ppp) { ++ppp->dev->stats.rx_errors; if (ppp->vj) slhc_toss(ppp->vj); } static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) { struct sk_buff *ns; int proto, len, npi; /* * Decompress the frame, if compressed. * Note that some decompressors need to see uncompressed frames * that come in as well as compressed frames. */ if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) skb = ppp_decompress_frame(ppp, skb); if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) goto err; /* At this point the "Protocol" field MUST be decompressed, either in * ppp_input(), ppp_decompress_frame() or in ppp_receive_mp_frame(). */ proto = PPP_PROTO(skb); switch (proto) { case PPP_VJC_COMP: /* decompress VJ compressed packets */ if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) goto err; if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { /* copy to a new sk_buff with more tailroom */ ns = dev_alloc_skb(skb->len + 128); if (!ns) { netdev_err(ppp->dev, "PPP: no memory " "(VJ decomp)\n"); goto err; } skb_reserve(ns, 2); skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); consume_skb(skb); skb = ns; } else skb->ip_summed = CHECKSUM_NONE; len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); if (len <= 0) { netdev_printk(KERN_DEBUG, ppp->dev, "PPP: VJ decompression error\n"); goto err; } len += 2; if (len > skb->len) skb_put(skb, len - skb->len); else if (len < skb->len) skb_trim(skb, len); proto = PPP_IP; break; case PPP_VJC_UNCOMP: if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) goto err; /* Until we fix the decompressor need to make sure * data portion is linear. */ if (!pskb_may_pull(skb, skb->len)) goto err; if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { netdev_err(ppp->dev, "PPP: VJ uncompressed error\n"); goto err; } proto = PPP_IP; break; case PPP_CCP: ppp_ccp_peek(ppp, skb, 1); break; } ++ppp->stats64.rx_packets; ppp->stats64.rx_bytes += skb->len - 2; npi = proto_to_npindex(proto); if (npi < 0) { /* control or unknown frame - pass it to pppd */ skb_queue_tail(&ppp->file.rq, skb); /* limit queue length by dropping old frames */ while (ppp->file.rq.qlen > PPP_MAX_RQLEN && (skb = skb_dequeue(&ppp->file.rq))) kfree_skb(skb); /* wake up any process polling or blocking on read */ wake_up_interruptible(&ppp->file.rwait); } else { /* network protocol frame - give it to the kernel */ #ifdef CONFIG_PPP_FILTER /* check if the packet passes the pass and active filters */ /* the filter instructions are constructed assuming a four-byte PPP header on each packet */ if (ppp->pass_filter || ppp->active_filter) { if (skb_unclone(skb, GFP_ATOMIC)) goto err; *(u8 *)skb_push(skb, 2) = 0; if (ppp->pass_filter && bpf_prog_run(ppp->pass_filter, skb) == 0) { if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "PPP: inbound frame " "not passed\n"); kfree_skb(skb); return; } if (!(ppp->active_filter && bpf_prog_run(ppp->active_filter, skb) == 0)) ppp->last_recv = jiffies; __skb_pull(skb, 2); } else #endif /* CONFIG_PPP_FILTER */ ppp->last_recv = jiffies; if ((ppp->dev->flags & IFF_UP) == 0 || ppp->npmode[npi] != NPMODE_PASS) { kfree_skb(skb); } else { /* chop off protocol */ skb_pull_rcsum(skb, 2); skb->dev = ppp->dev; skb->protocol = htons(npindex_to_ethertype[npi]); skb_reset_mac_header(skb); skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(ppp->dev))); netif_rx(skb); } } return; err: kfree_skb(skb); ppp_receive_error(ppp); } static struct sk_buff * ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) { int proto = PPP_PROTO(skb); struct sk_buff *ns; int len; /* Until we fix all the decompressor's need to make sure * data portion is linear. */ if (!pskb_may_pull(skb, skb->len)) goto err; if (proto == PPP_COMP) { int obuff_size; switch(ppp->rcomp->compress_proto) { case CI_MPPE: obuff_size = ppp->mru + PPP_HDRLEN + 1; break; default: obuff_size = ppp->mru + PPP_HDRLEN; break; } ns = dev_alloc_skb(obuff_size); if (!ns) { netdev_err(ppp->dev, "ppp_decompress_frame: " "no memory\n"); goto err; } /* the decompressor still expects the A/C bytes in the hdr */ len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, skb->len + 2, ns->data, obuff_size); if (len < 0) { /* Pass the compressed frame to pppd as an error indication. */ if (len == DECOMP_FATALERROR) ppp->rstate |= SC_DC_FERROR; kfree_skb(ns); goto err; } consume_skb(skb); skb = ns; skb_put(skb, len); skb_pull(skb, 2); /* pull off the A/C bytes */ /* Don't call __ppp_decompress_proto() here, but instead rely on * corresponding algo (mppe/bsd/deflate) to decompress it. */ } else { /* Uncompressed frame - pass to decompressor so it can update its dictionary if necessary. */ if (ppp->rcomp->incomp) ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, skb->len + 2); } return skb; err: ppp->rstate |= SC_DC_ERROR; ppp_receive_error(ppp); return skb; } #ifdef CONFIG_PPP_MULTILINK /* * Receive a multilink frame. * We put it on the reconstruction queue and then pull off * as many completed frames as we can. */ static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) { u32 mask, seq; struct channel *ch; int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) goto err; /* no good, throw it away */ /* Decode sequence number and begin/end bits */ if (ppp->flags & SC_MP_SHORTSEQ) { seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; mask = 0xfff; } else { seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; mask = 0xffffff; } PPP_MP_CB(skb)->BEbits = skb->data[2]; skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ /* * Do protocol ID decompression on the first fragment of each packet. * We have to do that here, because ppp_receive_nonmp_frame() expects * decompressed protocol field. */ if (PPP_MP_CB(skb)->BEbits & B) __ppp_decompress_proto(skb); /* * Expand sequence number to 32 bits, making it as close * as possible to ppp->minseq. */ seq |= ppp->minseq & ~mask; if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) seq += mask + 1; else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) seq -= mask + 1; /* should never happen */ PPP_MP_CB(skb)->sequence = seq; pch->lastseq = seq; /* * If this packet comes before the next one we were expecting, * drop it. */ if (seq_before(seq, ppp->nextseq)) { kfree_skb(skb); ++ppp->dev->stats.rx_dropped; ppp_receive_error(ppp); return; } /* * Reevaluate minseq, the minimum over all channels of the * last sequence number received on each channel. Because of * the increasing sequence number rule, we know that any fragment * before `minseq' which hasn't arrived is never going to arrive. * The list of channels can't change because we have the receive * side of the ppp unit locked. */ list_for_each_entry(ch, &ppp->channels, clist) { if (seq_before(ch->lastseq, seq)) seq = ch->lastseq; } if (seq_before(ppp->minseq, seq)) ppp->minseq = seq; /* Put the fragment on the reconstruction queue */ ppp_mp_insert(ppp, skb); /* If the queue is getting long, don't wait any longer for packets before the start of the queue. */ if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) { struct sk_buff *mskb = skb_peek(&ppp->mrq); if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence)) ppp->minseq = PPP_MP_CB(mskb)->sequence; } /* Pull completed packets off the queue and receive them. */ while ((skb = ppp_mp_reconstruct(ppp))) { if (pskb_may_pull(skb, 2)) ppp_receive_nonmp_frame(ppp, skb); else { ++ppp->dev->stats.rx_length_errors; kfree_skb(skb); ppp_receive_error(ppp); } } return; err: kfree_skb(skb); ppp_receive_error(ppp); } /* * Insert a fragment on the MP reconstruction queue. * The queue is ordered by increasing sequence number. */ static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) { struct sk_buff *p; struct sk_buff_head *list = &ppp->mrq; u32 seq = PPP_MP_CB(skb)->sequence; /* N.B. we don't need to lock the list lock because we have the ppp unit receive-side lock. */ skb_queue_walk(list, p) { if (seq_before(seq, PPP_MP_CB(p)->sequence)) break; } __skb_queue_before(list, p, skb); } /* * Reconstruct a packet from the MP fragment queue. * We go through increasing sequence numbers until we find a * complete packet, or we get to the sequence number for a fragment * which hasn't arrived but might still do so. */ static struct sk_buff * ppp_mp_reconstruct(struct ppp *ppp) { u32 seq = ppp->nextseq; u32 minseq = ppp->minseq; struct sk_buff_head *list = &ppp->mrq; struct sk_buff *p, *tmp; struct sk_buff *head, *tail; struct sk_buff *skb = NULL; int lost = 0, len = 0; if (ppp->mrru == 0) /* do nothing until mrru is set */ return NULL; head = __skb_peek(list); tail = NULL; skb_queue_walk_safe(list, p, tmp) { again: if (seq_before(PPP_MP_CB(p)->sequence, seq)) { /* this can't happen, anyway ignore the skb */ netdev_err(ppp->dev, "ppp_mp_reconstruct bad " "seq %u < %u\n", PPP_MP_CB(p)->sequence, seq); __skb_unlink(p, list); kfree_skb(p); continue; } if (PPP_MP_CB(p)->sequence != seq) { u32 oldseq; /* Fragment `seq' is missing. If it is after minseq, it might arrive later, so stop here. */ if (seq_after(seq, minseq)) break; /* Fragment `seq' is lost, keep going. */ lost = 1; oldseq = seq; seq = seq_before(minseq, PPP_MP_CB(p)->sequence)? minseq + 1: PPP_MP_CB(p)->sequence; if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "lost frag %u..%u\n", oldseq, seq-1); goto again; } /* * At this point we know that all the fragments from * ppp->nextseq to seq are either present or lost. * Also, there are no complete packets in the queue * that have no missing fragments and end before this * fragment. */ /* B bit set indicates this fragment starts a packet */ if (PPP_MP_CB(p)->BEbits & B) { head = p; lost = 0; len = 0; } len += p->len; /* Got a complete packet yet? */ if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) && (PPP_MP_CB(head)->BEbits & B)) { if (len > ppp->mrru + 2) { ++ppp->dev->stats.rx_length_errors; netdev_printk(KERN_DEBUG, ppp->dev, "PPP: reconstructed packet" " is too long (%d)\n", len); } else { tail = p; break; } ppp->nextseq = seq + 1; } /* * If this is the ending fragment of a packet, * and we haven't found a complete valid packet yet, * we can discard up to and including this fragment. */ if (PPP_MP_CB(p)->BEbits & E) { struct sk_buff *tmp2; skb_queue_reverse_walk_from_safe(list, p, tmp2) { if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "discarding frag %u\n", PPP_MP_CB(p)->sequence); __skb_unlink(p, list); kfree_skb(p); } head = skb_peek(list); if (!head) break; } ++seq; } /* If we have a complete packet, copy it all into one skb. */ if (tail != NULL) { /* If we have discarded any fragments, signal a receive error. */ if (PPP_MP_CB(head)->sequence != ppp->nextseq) { skb_queue_walk_safe(list, p, tmp) { if (p == head) break; if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "discarding frag %u\n", PPP_MP_CB(p)->sequence); __skb_unlink(p, list); kfree_skb(p); } if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, " missed pkts %u..%u\n", ppp->nextseq, PPP_MP_CB(head)->sequence-1); ++ppp->dev->stats.rx_dropped; ppp_receive_error(ppp); } skb = head; if (head != tail) { struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list; p = skb_queue_next(list, head); __skb_unlink(skb, list); skb_queue_walk_from_safe(list, p, tmp) { __skb_unlink(p, list); *fragpp = p; p->next = NULL; fragpp = &p->next; skb->len += p->len; skb->data_len += p->len; skb->truesize += p->truesize; if (p == tail) break; } } else { __skb_unlink(skb, list); } ppp->nextseq = PPP_MP_CB(tail)->sequence + 1; } return skb; } #endif /* CONFIG_PPP_MULTILINK */ /* * Channel interface. */ /* Create a new, unattached ppp channel. */ int ppp_register_channel(struct ppp_channel *chan) { return ppp_register_net_channel(current->nsproxy->net_ns, chan); } /* Create a new, unattached ppp channel for specified net. */ int ppp_register_net_channel(struct net *net, struct ppp_channel *chan) { struct channel *pch; struct ppp_net *pn; pch = kzalloc(sizeof(struct channel), GFP_KERNEL); if (!pch) return -ENOMEM; pn = ppp_pernet(net); pch->ppp = NULL; pch->chan = chan; pch->chan_net = get_net_track(net, &pch->ns_tracker, GFP_KERNEL); chan->ppp = pch; init_ppp_file(&pch->file, CHANNEL); pch->file.hdrlen = chan->hdrlen; #ifdef CONFIG_PPP_MULTILINK pch->lastseq = -1; #endif /* CONFIG_PPP_MULTILINK */ init_rwsem(&pch->chan_sem); spin_lock_init(&pch->downl); rwlock_init(&pch->upl); spin_lock_bh(&pn->all_channels_lock); pch->file.index = ++pn->last_channel_index; list_add(&pch->list, &pn->new_channels); atomic_inc(&channel_count); spin_unlock_bh(&pn->all_channels_lock); return 0; } /* * Return the index of a channel. */ int ppp_channel_index(struct ppp_channel *chan) { struct channel *pch = chan->ppp; if (pch) return pch->file.index; return -1; } /* * Return the PPP unit number to which a channel is connected. */ int ppp_unit_number(struct ppp_channel *chan) { struct channel *pch = chan->ppp; int unit = -1; if (pch) { read_lock_bh(&pch->upl); if (pch->ppp) unit = pch->ppp->file.index; read_unlock_bh(&pch->upl); } return unit; } /* * Return the PPP device interface name of a channel. */ char *ppp_dev_name(struct ppp_channel *chan) { struct channel *pch = chan->ppp; char *name = NULL; if (pch) { read_lock_bh(&pch->upl); if (pch->ppp && pch->ppp->dev) name = pch->ppp->dev->name; read_unlock_bh(&pch->upl); } return name; } /* * Disconnect a channel from the generic layer. * This must be called in process context. */ void ppp_unregister_channel(struct ppp_channel *chan) { struct channel *pch = chan->ppp; struct ppp_net *pn; if (!pch) return; /* should never happen */ chan->ppp = NULL; /* * This ensures that we have returned from any calls into * the channel's start_xmit or ioctl routine before we proceed. */ down_write(&pch->chan_sem); spin_lock_bh(&pch->downl); pch->chan = NULL; spin_unlock_bh(&pch->downl); up_write(&pch->chan_sem); ppp_disconnect_channel(pch); pn = ppp_pernet(pch->chan_net); spin_lock_bh(&pn->all_channels_lock); list_del(&pch->list); spin_unlock_bh(&pn->all_channels_lock); ppp_unbridge_channels(pch); pch->file.dead = 1; wake_up_interruptible(&pch->file.rwait); if (refcount_dec_and_test(&pch->file.refcnt)) ppp_destroy_channel(pch); } /* * Callback from a channel when it can accept more to transmit. * This should be called at BH/softirq level, not interrupt level. */ void ppp_output_wakeup(struct ppp_channel *chan) { struct channel *pch = chan->ppp; if (!pch) return; ppp_channel_push(pch); } /* * Compression control. */ /* Process the PPPIOCSCOMPRESS ioctl. */ static int ppp_set_compress(struct ppp *ppp, struct ppp_option_data *data) { int err = -EFAULT; struct compressor *cp, *ocomp; void *state, *ostate; unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; if (data->length > CCP_MAX_OPTION_LENGTH) goto out; if (copy_from_user(ccp_option, data->ptr, data->length)) goto out; err = -EINVAL; if (data->length < 2 || ccp_option[1] < 2 || ccp_option[1] > data->length) goto out; cp = try_then_request_module( find_compressor(ccp_option[0]), "ppp-compress-%d", ccp_option[0]); if (!cp) goto out; err = -ENOBUFS; if (data->transmit) { state = cp->comp_alloc(ccp_option, data->length); if (state) { ppp_xmit_lock(ppp); ppp->xstate &= ~SC_COMP_RUN; ocomp = ppp->xcomp; ostate = ppp->xc_state; ppp->xcomp = cp; ppp->xc_state = state; ppp_xmit_unlock(ppp); if (ostate) { ocomp->comp_free(ostate); module_put(ocomp->owner); } err = 0; } else module_put(cp->owner); } else { state = cp->decomp_alloc(ccp_option, data->length); if (state) { ppp_recv_lock(ppp); ppp->rstate &= ~SC_DECOMP_RUN; ocomp = ppp->rcomp; ostate = ppp->rc_state; ppp->rcomp = cp; ppp->rc_state = state; ppp_recv_unlock(ppp); if (ostate) { ocomp->decomp_free(ostate); module_put(ocomp->owner); } err = 0; } else module_put(cp->owner); } out: return err; } /* * Look at a CCP packet and update our state accordingly. * We assume the caller has the xmit or recv path locked. */ static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) { unsigned char *dp; int len; if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) return; /* no header */ dp = skb->data + 2; switch (CCP_CODE(dp)) { case CCP_CONFREQ: /* A ConfReq starts negotiation of compression * in one direction of transmission, * and hence brings it down...but which way? * * Remember: * A ConfReq indicates what the sender would like to receive */ if(inbound) /* He is proposing what I should send */ ppp->xstate &= ~SC_COMP_RUN; else /* I am proposing to what he should send */ ppp->rstate &= ~SC_DECOMP_RUN; break; case CCP_TERMREQ: case CCP_TERMACK: /* * CCP is going down, both directions of transmission */ ppp->rstate &= ~SC_DECOMP_RUN; ppp->xstate &= ~SC_COMP_RUN; break; case CCP_CONFACK: if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) break; len = CCP_LENGTH(dp); if (!pskb_may_pull(skb, len + 2)) return; /* too short */ dp += CCP_HDRLEN; len -= CCP_HDRLEN; if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) break; if (inbound) { /* we will start receiving compressed packets */ if (!ppp->rc_state) break; if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, ppp->file.index, 0, ppp->mru, ppp->debug)) { ppp->rstate |= SC_DECOMP_RUN; ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); } } else { /* we will soon start sending compressed packets */ if (!ppp->xc_state) break; if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, ppp->file.index, 0, ppp->debug)) ppp->xstate |= SC_COMP_RUN; } break; case CCP_RESETACK: /* reset the [de]compressor */ if ((ppp->flags & SC_CCP_UP) == 0) break; if (inbound) { if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { ppp->rcomp->decomp_reset(ppp->rc_state); ppp->rstate &= ~SC_DC_ERROR; } } else { if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) ppp->xcomp->comp_reset(ppp->xc_state); } break; } } /* Free up compression resources. */ static void ppp_ccp_closed(struct ppp *ppp) { void *xstate, *rstate; struct compressor *xcomp, *rcomp; ppp_lock(ppp); ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); ppp->xstate = 0; xcomp = ppp->xcomp; xstate = ppp->xc_state; ppp->xc_state = NULL; ppp->rstate = 0; rcomp = ppp->rcomp; rstate = ppp->rc_state; ppp->rc_state = NULL; ppp_unlock(ppp); if (xstate) { xcomp->comp_free(xstate); module_put(xcomp->owner); } if (rstate) { rcomp->decomp_free(rstate); module_put(rcomp->owner); } } /* List of compressors. */ static LIST_HEAD(compressor_list); static DEFINE_SPINLOCK(compressor_list_lock); struct compressor_entry { struct list_head list; struct compressor *comp; }; static struct compressor_entry * find_comp_entry(int proto) { struct compressor_entry *ce; list_for_each_entry(ce, &compressor_list, list) { if (ce->comp->compress_proto == proto) return ce; } return NULL; } /* Register a compressor */ int ppp_register_compressor(struct compressor *cp) { struct compressor_entry *ce; int ret; spin_lock(&compressor_list_lock); ret = -EEXIST; if (find_comp_entry(cp->compress_proto)) goto out; ret = -ENOMEM; ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); if (!ce) goto out; ret = 0; ce->comp = cp; list_add(&ce->list, &compressor_list); out: spin_unlock(&compressor_list_lock); return ret; } /* Unregister a compressor */ void ppp_unregister_compressor(struct compressor *cp) { struct compressor_entry *ce; spin_lock(&compressor_list_lock); ce = find_comp_entry(cp->compress_proto); if (ce && ce->comp == cp) { list_del(&ce->list); kfree(ce); } spin_unlock(&compressor_list_lock); } /* Find a compressor. */ static struct compressor * find_compressor(int type) { struct compressor_entry *ce; struct compressor *cp = NULL; spin_lock(&compressor_list_lock); ce = find_comp_entry(type); if (ce) { cp = ce->comp; if (!try_module_get(cp->owner)) cp = NULL; } spin_unlock(&compressor_list_lock); return cp; } /* * Miscelleneous stuff. */ static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) { struct slcompress *vj = ppp->vj; memset(st, 0, sizeof(*st)); st->p.ppp_ipackets = ppp->stats64.rx_packets; st->p.ppp_ierrors = ppp->dev->stats.rx_errors; st->p.ppp_ibytes = ppp->stats64.rx_bytes; st->p.ppp_opackets = ppp->stats64.tx_packets; st->p.ppp_oerrors = ppp->dev->stats.tx_errors; st->p.ppp_obytes = ppp->stats64.tx_bytes; if (!vj) return; st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; st->vj.vjs_compressed = vj->sls_o_compressed; st->vj.vjs_searches = vj->sls_o_searches; st->vj.vjs_misses = vj->sls_o_misses; st->vj.vjs_errorin = vj->sls_i_error; st->vj.vjs_tossed = vj->sls_i_tossed; st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; st->vj.vjs_compressedin = vj->sls_i_compressed; } /* * Stuff for handling the lists of ppp units and channels * and for initialization. */ /* * Create a new ppp interface unit. Fails if it can't allocate memory * or if there is already a unit with the requested number. * unit == -1 means allocate a new number. */ static int ppp_create_interface(struct net *net, struct file *file, int *unit) { struct ppp_config conf = { .file = file, .unit = *unit, .ifname_is_set = false, }; struct net_device *dev; struct ppp *ppp; int err; dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup); if (!dev) { err = -ENOMEM; goto err; } dev_net_set(dev, net); dev->rtnl_link_ops = &ppp_link_ops; rtnl_lock(); err = ppp_dev_configure(net, dev, &conf); if (err < 0) goto err_dev; ppp = netdev_priv(dev); *unit = ppp->file.index; rtnl_unlock(); return 0; err_dev: rtnl_unlock(); free_netdev(dev); err: return err; } /* * Initialize a ppp_file structure. */ static void init_ppp_file(struct ppp_file *pf, int kind) { pf->kind = kind; skb_queue_head_init(&pf->xq); skb_queue_head_init(&pf->rq); refcount_set(&pf->refcnt, 1); init_waitqueue_head(&pf->rwait); } /* * Free the memory used by a ppp unit. This is only called once * there are no channels connected to the unit and no file structs * that reference the unit. */ static void ppp_destroy_interface(struct ppp *ppp) { atomic_dec(&ppp_unit_count); if (!ppp->file.dead || ppp->n_channels) { /* "can't happen" */ netdev_err(ppp->dev, "ppp: destroying ppp struct %p " "but dead=%d n_channels=%d !\n", ppp, ppp->file.dead, ppp->n_channels); return; } ppp_ccp_closed(ppp); if (ppp->vj) { slhc_free(ppp->vj); ppp->vj = NULL; } skb_queue_purge(&ppp->file.xq); skb_queue_purge(&ppp->file.rq); #ifdef CONFIG_PPP_MULTILINK skb_queue_purge(&ppp->mrq); #endif /* CONFIG_PPP_MULTILINK */ #ifdef CONFIG_PPP_FILTER if (ppp->pass_filter) { bpf_prog_destroy(ppp->pass_filter); ppp->pass_filter = NULL; } if (ppp->active_filter) { bpf_prog_destroy(ppp->active_filter); ppp->active_filter = NULL; } #endif /* CONFIG_PPP_FILTER */ kfree_skb(ppp->xmit_pending); free_percpu(ppp->xmit_recursion); free_netdev(ppp->dev); } /* * Locate an existing ppp unit. * The caller should have locked the all_ppp_mutex. */ static struct ppp * ppp_find_unit(struct ppp_net *pn, int unit) { return unit_find(&pn->units_idr, unit); } /* * Locate an existing ppp channel. * The caller should have locked the all_channels_lock. * First we look in the new_channels list, then in the * all_channels list. If found in the new_channels list, * we move it to the all_channels list. This is for speed * when we have a lot of channels in use. */ static struct channel * ppp_find_channel(struct ppp_net *pn, int unit) { struct channel *pch; list_for_each_entry(pch, &pn->new_channels, list) { if (pch->file.index == unit) { list_move(&pch->list, &pn->all_channels); return pch; } } list_for_each_entry(pch, &pn->all_channels, list) { if (pch->file.index == unit) return pch; } return NULL; } /* * Connect a PPP channel to a PPP interface unit. */ static int ppp_connect_channel(struct channel *pch, int unit) { struct ppp *ppp; struct ppp_net *pn; int ret = -ENXIO; int hdrlen; pn = ppp_pernet(pch->chan_net); mutex_lock(&pn->all_ppp_mutex); ppp = ppp_find_unit(pn, unit); if (!ppp) goto out; write_lock_bh(&pch->upl); ret = -EINVAL; if (pch->ppp || rcu_dereference_protected(pch->bridge, lockdep_is_held(&pch->upl))) goto outl; ppp_lock(ppp); spin_lock_bh(&pch->downl); if (!pch->chan) { /* Don't connect unregistered channels */ spin_unlock_bh(&pch->downl); ppp_unlock(ppp); ret = -ENOTCONN; goto outl; } spin_unlock_bh(&pch->downl); if (pch->file.hdrlen > ppp->file.hdrlen) ppp->file.hdrlen = pch->file.hdrlen; hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ if (hdrlen > ppp->dev->hard_header_len) ppp->dev->hard_header_len = hdrlen; list_add_tail(&pch->clist, &ppp->channels); ++ppp->n_channels; pch->ppp = ppp; refcount_inc(&ppp->file.refcnt); ppp_unlock(ppp); ret = 0; outl: write_unlock_bh(&pch->upl); out: mutex_unlock(&pn->all_ppp_mutex); return ret; } /* * Disconnect a channel from its ppp unit. */ static int ppp_disconnect_channel(struct channel *pch) { struct ppp *ppp; int err = -EINVAL; write_lock_bh(&pch->upl); ppp = pch->ppp; pch->ppp = NULL; write_unlock_bh(&pch->upl); if (ppp) { /* remove it from the ppp unit's list */ ppp_lock(ppp); list_del(&pch->clist); if (--ppp->n_channels == 0) wake_up_interruptible(&ppp->file.rwait); ppp_unlock(ppp); if (refcount_dec_and_test(&ppp->file.refcnt)) ppp_destroy_interface(ppp); err = 0; } return err; } /* * Free up the resources used by a ppp channel. */ static void ppp_destroy_channel(struct channel *pch) { put_net_track(pch->chan_net, &pch->ns_tracker); pch->chan_net = NULL; atomic_dec(&channel_count); if (!pch->file.dead) { /* "can't happen" */ pr_err("ppp: destroying undead channel %p !\n", pch); return; } skb_queue_purge(&pch->file.xq); skb_queue_purge(&pch->file.rq); kfree(pch); } static void __exit ppp_cleanup(void) { /* should never happen */ if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) pr_err("PPP: removing module but units remain!\n"); rtnl_link_unregister(&ppp_link_ops); unregister_chrdev(PPP_MAJOR, "ppp"); device_destroy(&ppp_class, MKDEV(PPP_MAJOR, 0)); class_unregister(&ppp_class); unregister_pernet_device(&ppp_net_ops); } /* * Units handling. Caller must protect concurrent access * by holding all_ppp_mutex */ /* associate pointer with specified number */ static int unit_set(struct idr *p, void *ptr, int n) { int unit; unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL); if (unit == -ENOSPC) unit = -EINVAL; return unit; } /* get new free unit number and associate pointer with it */ static int unit_get(struct idr *p, void *ptr, int min) { return idr_alloc(p, ptr, min, 0, GFP_KERNEL); } /* put unit number back to a pool */ static void unit_put(struct idr *p, int n) { idr_remove(p, n); } /* get pointer associated with the number */ static void *unit_find(struct idr *p, int n) { return idr_find(p, n); } /* Module/initialization stuff */ module_init(ppp_init); module_exit(ppp_cleanup); EXPORT_SYMBOL(ppp_register_net_channel); EXPORT_SYMBOL(ppp_register_channel); EXPORT_SYMBOL(ppp_unregister_channel); EXPORT_SYMBOL(ppp_channel_index); EXPORT_SYMBOL(ppp_unit_number); EXPORT_SYMBOL(ppp_dev_name); EXPORT_SYMBOL(ppp_input); EXPORT_SYMBOL(ppp_input_error); EXPORT_SYMBOL(ppp_output_wakeup); EXPORT_SYMBOL(ppp_register_compressor); EXPORT_SYMBOL(ppp_unregister_compressor); MODULE_DESCRIPTION("Generic PPP layer driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0); MODULE_ALIAS_RTNL_LINK("ppp"); MODULE_ALIAS("devname:ppp"); |
7 1 1 1 9 7 1 4 1 2 1 11 1 10 4 4 2 1 1 2 1 1 12 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/if.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/openvswitch.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <net/netlink.h> #include <net/genetlink.h> #include "datapath.h" #include "meter.h" static const struct nla_policy meter_policy[OVS_METER_ATTR_MAX + 1] = { [OVS_METER_ATTR_ID] = { .type = NLA_U32, }, [OVS_METER_ATTR_KBPS] = { .type = NLA_FLAG }, [OVS_METER_ATTR_STATS] = { .len = sizeof(struct ovs_flow_stats) }, [OVS_METER_ATTR_BANDS] = { .type = NLA_NESTED }, [OVS_METER_ATTR_USED] = { .type = NLA_U64 }, [OVS_METER_ATTR_CLEAR] = { .type = NLA_FLAG }, [OVS_METER_ATTR_MAX_METERS] = { .type = NLA_U32 }, [OVS_METER_ATTR_MAX_BANDS] = { .type = NLA_U32 }, }; static const struct nla_policy band_policy[OVS_BAND_ATTR_MAX + 1] = { [OVS_BAND_ATTR_TYPE] = { .type = NLA_U32, }, [OVS_BAND_ATTR_RATE] = { .type = NLA_U32, }, [OVS_BAND_ATTR_BURST] = { .type = NLA_U32, }, [OVS_BAND_ATTR_STATS] = { .len = sizeof(struct ovs_flow_stats) }, }; static u32 meter_hash(struct dp_meter_instance *ti, u32 id) { return id % ti->n_meters; } static void ovs_meter_free(struct dp_meter *meter) { if (!meter) return; kfree_rcu(meter, rcu); } /* Call with ovs_mutex or RCU read lock. */ static struct dp_meter *lookup_meter(const struct dp_meter_table *tbl, u32 meter_id) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 hash = meter_hash(ti, meter_id); struct dp_meter *meter; meter = rcu_dereference_ovsl(ti->dp_meters[hash]); if (meter && likely(meter->id == meter_id)) return meter; return NULL; } static struct dp_meter_instance *dp_meter_instance_alloc(const u32 size) { struct dp_meter_instance *ti; ti = kvzalloc(struct_size(ti, dp_meters, size), GFP_KERNEL); if (!ti) return NULL; ti->n_meters = size; return ti; } static void dp_meter_instance_free(struct dp_meter_instance *ti) { kvfree(ti); } static void dp_meter_instance_free_rcu(struct rcu_head *rcu) { struct dp_meter_instance *ti; ti = container_of(rcu, struct dp_meter_instance, rcu); kvfree(ti); } static int dp_meter_instance_realloc(struct dp_meter_table *tbl, u32 size) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); int n_meters = min(size, ti->n_meters); struct dp_meter_instance *new_ti; int i; new_ti = dp_meter_instance_alloc(size); if (!new_ti) return -ENOMEM; for (i = 0; i < n_meters; i++) if (rcu_dereference_ovsl(ti->dp_meters[i])) new_ti->dp_meters[i] = ti->dp_meters[i]; rcu_assign_pointer(tbl->ti, new_ti); call_rcu(&ti->rcu, dp_meter_instance_free_rcu); return 0; } static void dp_meter_instance_insert(struct dp_meter_instance *ti, struct dp_meter *meter) { u32 hash; hash = meter_hash(ti, meter->id); rcu_assign_pointer(ti->dp_meters[hash], meter); } static void dp_meter_instance_remove(struct dp_meter_instance *ti, struct dp_meter *meter) { u32 hash; hash = meter_hash(ti, meter->id); RCU_INIT_POINTER(ti->dp_meters[hash], NULL); } static int attach_meter(struct dp_meter_table *tbl, struct dp_meter *meter) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 hash = meter_hash(ti, meter->id); int err; /* In generally, slots selected should be empty, because * OvS uses id-pool to fetch a available id. */ if (unlikely(rcu_dereference_ovsl(ti->dp_meters[hash]))) return -EBUSY; dp_meter_instance_insert(ti, meter); /* That function is thread-safe. */ tbl->count++; if (tbl->count >= tbl->max_meters_allowed) { err = -EFBIG; goto attach_err; } if (tbl->count >= ti->n_meters && dp_meter_instance_realloc(tbl, ti->n_meters * 2)) { err = -ENOMEM; goto attach_err; } return 0; attach_err: dp_meter_instance_remove(ti, meter); tbl->count--; return err; } static int detach_meter(struct dp_meter_table *tbl, struct dp_meter *meter) { struct dp_meter_instance *ti; ASSERT_OVSL(); if (!meter) return 0; ti = rcu_dereference_ovsl(tbl->ti); dp_meter_instance_remove(ti, meter); tbl->count--; /* Shrink the meter array if necessary. */ if (ti->n_meters > DP_METER_ARRAY_SIZE_MIN && tbl->count <= (ti->n_meters / 4)) { int half_size = ti->n_meters / 2; int i; /* Avoid hash collision, don't move slots to other place. * Make sure there are no references of meters in array * which will be released. */ for (i = half_size; i < ti->n_meters; i++) if (rcu_dereference_ovsl(ti->dp_meters[i])) goto out; if (dp_meter_instance_realloc(tbl, half_size)) goto shrink_err; } out: return 0; shrink_err: dp_meter_instance_insert(ti, meter); tbl->count++; return -ENOMEM; } static struct sk_buff * ovs_meter_cmd_reply_start(struct genl_info *info, u8 cmd, struct ovs_header **ovs_reply_header) { struct sk_buff *skb; struct ovs_header *ovs_header = genl_info_userhdr(info); skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return ERR_PTR(-ENOMEM); *ovs_reply_header = genlmsg_put(skb, info->snd_portid, info->snd_seq, &dp_meter_genl_family, 0, cmd); if (!*ovs_reply_header) { nlmsg_free(skb); return ERR_PTR(-EMSGSIZE); } (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; return skb; } static int ovs_meter_cmd_reply_stats(struct sk_buff *reply, u32 meter_id, struct dp_meter *meter) { struct nlattr *nla; struct dp_meter_band *band; u16 i; if (nla_put_u32(reply, OVS_METER_ATTR_ID, meter_id)) goto error; if (nla_put(reply, OVS_METER_ATTR_STATS, sizeof(struct ovs_flow_stats), &meter->stats)) goto error; if (nla_put_u64_64bit(reply, OVS_METER_ATTR_USED, meter->used, OVS_METER_ATTR_PAD)) goto error; nla = nla_nest_start_noflag(reply, OVS_METER_ATTR_BANDS); if (!nla) goto error; band = meter->bands; for (i = 0; i < meter->n_bands; ++i, ++band) { struct nlattr *band_nla; band_nla = nla_nest_start_noflag(reply, OVS_BAND_ATTR_UNSPEC); if (!band_nla || nla_put(reply, OVS_BAND_ATTR_STATS, sizeof(struct ovs_flow_stats), &band->stats)) goto error; nla_nest_end(reply, band_nla); } nla_nest_end(reply, nla); return 0; error: return -EMSGSIZE; } static int ovs_meter_cmd_features(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct ovs_header *ovs_reply_header; struct nlattr *nla, *band_nla; struct sk_buff *reply; struct datapath *dp; int err = -EMSGSIZE; reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_FEATURES, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } if (nla_put_u32(reply, OVS_METER_ATTR_MAX_METERS, dp->meter_tbl.max_meters_allowed)) goto exit_unlock; ovs_unlock(); if (nla_put_u32(reply, OVS_METER_ATTR_MAX_BANDS, DP_MAX_BANDS)) goto nla_put_failure; nla = nla_nest_start_noflag(reply, OVS_METER_ATTR_BANDS); if (!nla) goto nla_put_failure; band_nla = nla_nest_start_noflag(reply, OVS_BAND_ATTR_UNSPEC); if (!band_nla) goto nla_put_failure; /* Currently only DROP band type is supported. */ if (nla_put_u32(reply, OVS_BAND_ATTR_TYPE, OVS_METER_BAND_TYPE_DROP)) goto nla_put_failure; nla_nest_end(reply, band_nla); nla_nest_end(reply, nla); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nla_put_failure: nlmsg_free(reply); return err; } static struct dp_meter *dp_meter_create(struct nlattr **a) { struct nlattr *nla; int rem; u16 n_bands = 0; struct dp_meter *meter; struct dp_meter_band *band; int err; /* Validate attributes, count the bands. */ if (!a[OVS_METER_ATTR_BANDS]) return ERR_PTR(-EINVAL); nla_for_each_nested(nla, a[OVS_METER_ATTR_BANDS], rem) if (++n_bands > DP_MAX_BANDS) return ERR_PTR(-EINVAL); /* Allocate and set up the meter before locking anything. */ meter = kzalloc(struct_size(meter, bands, n_bands), GFP_KERNEL_ACCOUNT); if (!meter) return ERR_PTR(-ENOMEM); meter->id = nla_get_u32(a[OVS_METER_ATTR_ID]); meter->used = div_u64(ktime_get_ns(), 1000 * 1000); meter->kbps = a[OVS_METER_ATTR_KBPS] ? 1 : 0; meter->keep_stats = !a[OVS_METER_ATTR_CLEAR]; spin_lock_init(&meter->lock); if (meter->keep_stats && a[OVS_METER_ATTR_STATS]) { meter->stats = *(struct ovs_flow_stats *) nla_data(a[OVS_METER_ATTR_STATS]); } meter->n_bands = n_bands; /* Set up meter bands. */ band = meter->bands; nla_for_each_nested(nla, a[OVS_METER_ATTR_BANDS], rem) { struct nlattr *attr[OVS_BAND_ATTR_MAX + 1]; u32 band_max_delta_t; err = nla_parse_deprecated((struct nlattr **)&attr, OVS_BAND_ATTR_MAX, nla_data(nla), nla_len(nla), band_policy, NULL); if (err) goto exit_free_meter; if (!attr[OVS_BAND_ATTR_TYPE] || !attr[OVS_BAND_ATTR_RATE] || !attr[OVS_BAND_ATTR_BURST]) { err = -EINVAL; goto exit_free_meter; } band->type = nla_get_u32(attr[OVS_BAND_ATTR_TYPE]); band->rate = nla_get_u32(attr[OVS_BAND_ATTR_RATE]); if (band->rate == 0) { err = -EINVAL; goto exit_free_meter; } band->burst_size = nla_get_u32(attr[OVS_BAND_ATTR_BURST]); /* Figure out max delta_t that is enough to fill any bucket. * Keep max_delta_t size to the bucket units: * pkts => 1/1000 packets, kilobits => bits. * * Start with a full bucket. */ band->bucket = band->burst_size * 1000ULL; band_max_delta_t = div_u64(band->bucket, band->rate); if (band_max_delta_t > meter->max_delta_t) meter->max_delta_t = band_max_delta_t; band++; } return meter; exit_free_meter: kfree(meter); return ERR_PTR(err); } static int ovs_meter_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct dp_meter *meter, *old_meter; struct sk_buff *reply; struct ovs_header *ovs_reply_header; struct ovs_header *ovs_header = genl_info_userhdr(info); struct dp_meter_table *meter_tbl; struct datapath *dp; int err; u32 meter_id; bool failed; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; meter = dp_meter_create(a); if (IS_ERR(meter)) return PTR_ERR(meter); reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_SET, &ovs_reply_header); if (IS_ERR(reply)) { err = PTR_ERR(reply); goto exit_free_meter; } ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } meter_tbl = &dp->meter_tbl; meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); old_meter = lookup_meter(meter_tbl, meter_id); err = detach_meter(meter_tbl, old_meter); if (err) goto exit_unlock; err = attach_meter(meter_tbl, meter); if (err) goto exit_free_old_meter; ovs_unlock(); /* Build response with the meter_id and stats from * the old meter, if any. */ failed = nla_put_u32(reply, OVS_METER_ATTR_ID, meter_id); WARN_ON(failed); if (old_meter) { spin_lock_bh(&old_meter->lock); if (old_meter->keep_stats) { err = ovs_meter_cmd_reply_stats(reply, meter_id, old_meter); WARN_ON(err); } spin_unlock_bh(&old_meter->lock); ovs_meter_free(old_meter); } genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_free_old_meter: ovs_meter_free(old_meter); exit_unlock: ovs_unlock(); nlmsg_free(reply); exit_free_meter: kfree(meter); return err; } static int ovs_meter_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct ovs_header *ovs_reply_header; struct nlattr **a = info->attrs; struct dp_meter *meter; struct sk_buff *reply; struct datapath *dp; u32 meter_id; int err; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_GET, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } /* Locate meter, copy stats. */ meter = lookup_meter(&dp->meter_tbl, meter_id); if (!meter) { err = -ENOENT; goto exit_unlock; } spin_lock_bh(&meter->lock); err = ovs_meter_cmd_reply_stats(reply, meter_id, meter); spin_unlock_bh(&meter->lock); if (err) goto exit_unlock; ovs_unlock(); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nlmsg_free(reply); return err; } static int ovs_meter_cmd_del(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = genl_info_userhdr(info); struct ovs_header *ovs_reply_header; struct nlattr **a = info->attrs; struct dp_meter *old_meter; struct sk_buff *reply; struct datapath *dp; u32 meter_id; int err; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_DEL, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); old_meter = lookup_meter(&dp->meter_tbl, meter_id); if (old_meter) { spin_lock_bh(&old_meter->lock); err = ovs_meter_cmd_reply_stats(reply, meter_id, old_meter); WARN_ON(err); spin_unlock_bh(&old_meter->lock); err = detach_meter(&dp->meter_tbl, old_meter); if (err) goto exit_unlock; } ovs_unlock(); ovs_meter_free(old_meter); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nlmsg_free(reply); return err; } /* Meter action execution. * * Return true 'meter_id' drop band is triggered. The 'skb' should be * dropped by the caller'. */ bool ovs_meter_execute(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, u32 meter_id) { long long int now_ms = div_u64(ktime_get_ns(), 1000 * 1000); long long int long_delta_ms; struct dp_meter_band *band; struct dp_meter *meter; int i, band_exceeded_max = -1; u32 band_exceeded_rate = 0; u32 delta_ms; u32 cost; meter = lookup_meter(&dp->meter_tbl, meter_id); /* Do not drop the packet when there is no meter. */ if (!meter) return false; /* Lock the meter while using it. */ spin_lock(&meter->lock); long_delta_ms = (now_ms - meter->used); /* ms */ if (long_delta_ms < 0) { /* This condition means that we have several threads fighting * for a meter lock, and the one who received the packets a * bit later wins. Assuming that all racing threads received * packets at the same time to avoid overflow. */ long_delta_ms = 0; } /* Make sure delta_ms will not be too large, so that bucket will not * wrap around below. */ delta_ms = (long_delta_ms > (long long int)meter->max_delta_t) ? meter->max_delta_t : (u32)long_delta_ms; /* Update meter statistics. */ meter->used = now_ms; meter->stats.n_packets += 1; meter->stats.n_bytes += skb->len; /* Bucket rate is either in kilobits per second, or in packets per * second. We maintain the bucket in the units of either bits or * 1/1000th of a packet, correspondingly. * Then, when rate is multiplied with milliseconds, we get the * bucket units: * msec * kbps = bits, and * msec * packets/sec = 1/1000 packets. * * 'cost' is the number of bucket units in this packet. */ cost = (meter->kbps) ? skb->len * 8 : 1000; /* Update all bands and find the one hit with the highest rate. */ for (i = 0; i < meter->n_bands; ++i) { long long int max_bucket_size; band = &meter->bands[i]; max_bucket_size = band->burst_size * 1000LL; band->bucket += delta_ms * band->rate; if (band->bucket > max_bucket_size) band->bucket = max_bucket_size; if (band->bucket >= cost) { band->bucket -= cost; } else if (band->rate > band_exceeded_rate) { band_exceeded_rate = band->rate; band_exceeded_max = i; } } if (band_exceeded_max >= 0) { /* Update band statistics. */ band = &meter->bands[band_exceeded_max]; band->stats.n_packets += 1; band->stats.n_bytes += skb->len; /* Drop band triggered, let the caller drop the 'skb'. */ if (band->type == OVS_METER_BAND_TYPE_DROP) { spin_unlock(&meter->lock); return true; } } spin_unlock(&meter->lock); return false; } static const struct genl_small_ops dp_meter_genl_ops[] = { { .cmd = OVS_METER_CMD_FEATURES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_meter_cmd_features }, { .cmd = OVS_METER_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_meter_cmd_set, }, { .cmd = OVS_METER_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_meter_cmd_get, }, { .cmd = OVS_METER_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_meter_cmd_del }, }; static const struct genl_multicast_group ovs_meter_multicast_group = { .name = OVS_METER_MCGROUP, }; struct genl_family dp_meter_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_METER_FAMILY, .version = OVS_METER_VERSION, .maxattr = OVS_METER_ATTR_MAX, .policy = meter_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_meter_genl_ops, .n_small_ops = ARRAY_SIZE(dp_meter_genl_ops), .resv_start_op = OVS_METER_CMD_GET + 1, .mcgrps = &ovs_meter_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; int ovs_meters_init(struct datapath *dp) { struct dp_meter_table *tbl = &dp->meter_tbl; struct dp_meter_instance *ti; unsigned long free_mem_bytes; ti = dp_meter_instance_alloc(DP_METER_ARRAY_SIZE_MIN); if (!ti) return -ENOMEM; /* Allow meters in a datapath to use ~3.12% of physical memory. */ free_mem_bytes = nr_free_buffer_pages() * (PAGE_SIZE >> 5); tbl->max_meters_allowed = min(free_mem_bytes / sizeof(struct dp_meter), DP_METER_NUM_MAX); if (!tbl->max_meters_allowed) goto out_err; rcu_assign_pointer(tbl->ti, ti); tbl->count = 0; return 0; out_err: dp_meter_instance_free(ti); return -ENOMEM; } void ovs_meters_exit(struct datapath *dp) { struct dp_meter_table *tbl = &dp->meter_tbl; struct dp_meter_instance *ti = rcu_dereference_raw(tbl->ti); int i; for (i = 0; i < ti->n_meters; i++) ovs_meter_free(rcu_dereference_raw(ti->dp_meters[i])); dp_meter_instance_free(ti); } |
6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 | // SPDX-License-Identifier: GPL-2.0 /* * Zoned block device handling * * Copyright (c) 2015, Hannes Reinecke * Copyright (c) 2015, SUSE Linux GmbH * * Copyright (c) 2016, Damien Le Moal * Copyright (c) 2016, Western Digital * Copyright (c) 2024, Western Digital Corporation or its affiliates. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/blkdev.h> #include <linux/blk-mq.h> #include <linux/mm.h> #include <linux/vmalloc.h> #include <linux/sched/mm.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/mempool.h> #include "blk.h" #include "blk-mq-sched.h" #include "blk-mq-debugfs.h" #define ZONE_COND_NAME(name) [BLK_ZONE_COND_##name] = #name static const char *const zone_cond_name[] = { ZONE_COND_NAME(NOT_WP), ZONE_COND_NAME(EMPTY), ZONE_COND_NAME(IMP_OPEN), ZONE_COND_NAME(EXP_OPEN), ZONE_COND_NAME(CLOSED), ZONE_COND_NAME(READONLY), ZONE_COND_NAME(FULL), ZONE_COND_NAME(OFFLINE), }; #undef ZONE_COND_NAME /* * Per-zone write plug. * @node: hlist_node structure for managing the plug using a hash table. * @link: To list the plug in the zone write plug error list of the disk. * @ref: Zone write plug reference counter. A zone write plug reference is * always at least 1 when the plug is hashed in the disk plug hash table. * The reference is incremented whenever a new BIO needing plugging is * submitted and when a function needs to manipulate a plug. The * reference count is decremented whenever a plugged BIO completes and * when a function that referenced the plug returns. The initial * reference is dropped whenever the zone of the zone write plug is reset, * finished and when the zone becomes full (last write BIO to the zone * completes). * @lock: Spinlock to atomically manipulate the plug. * @flags: Flags indicating the plug state. * @zone_no: The number of the zone the plug is managing. * @wp_offset: The zone write pointer location relative to the start of the zone * as a number of 512B sectors. * @bio_list: The list of BIOs that are currently plugged. * @bio_work: Work struct to handle issuing of plugged BIOs * @rcu_head: RCU head to free zone write plugs with an RCU grace period. * @disk: The gendisk the plug belongs to. */ struct blk_zone_wplug { struct hlist_node node; struct list_head link; atomic_t ref; spinlock_t lock; unsigned int flags; unsigned int zone_no; unsigned int wp_offset; struct bio_list bio_list; struct work_struct bio_work; struct rcu_head rcu_head; struct gendisk *disk; }; /* * Zone write plug flags bits: * - BLK_ZONE_WPLUG_PLUGGED: Indicates that the zone write plug is plugged, * that is, that write BIOs are being throttled due to a write BIO already * being executed or the zone write plug bio list is not empty. * - BLK_ZONE_WPLUG_ERROR: Indicates that a write error happened which will be * recovered with a report zone to update the zone write pointer offset. * - BLK_ZONE_WPLUG_UNHASHED: Indicates that the zone write plug was removed * from the disk hash table and that the initial reference to the zone * write plug set when the plug was first added to the hash table has been * dropped. This flag is set when a zone is reset, finished or become full, * to prevent new references to the zone write plug to be taken for * newly incoming BIOs. A zone write plug flagged with this flag will be * freed once all remaining references from BIOs or functions are dropped. */ #define BLK_ZONE_WPLUG_PLUGGED (1U << 0) #define BLK_ZONE_WPLUG_ERROR (1U << 1) #define BLK_ZONE_WPLUG_UNHASHED (1U << 2) #define BLK_ZONE_WPLUG_BUSY (BLK_ZONE_WPLUG_PLUGGED | BLK_ZONE_WPLUG_ERROR) /** * blk_zone_cond_str - Return string XXX in BLK_ZONE_COND_XXX. * @zone_cond: BLK_ZONE_COND_XXX. * * Description: Centralize block layer function to convert BLK_ZONE_COND_XXX * into string format. Useful in the debugging and tracing zone conditions. For * invalid BLK_ZONE_COND_XXX it returns string "UNKNOWN". */ const char *blk_zone_cond_str(enum blk_zone_cond zone_cond) { static const char *zone_cond_str = "UNKNOWN"; if (zone_cond < ARRAY_SIZE(zone_cond_name) && zone_cond_name[zone_cond]) zone_cond_str = zone_cond_name[zone_cond]; return zone_cond_str; } EXPORT_SYMBOL_GPL(blk_zone_cond_str); /** * blkdev_report_zones - Get zones information * @bdev: Target block device * @sector: Sector from which to report zones * @nr_zones: Maximum number of zones to report * @cb: Callback function called for each reported zone * @data: Private data for the callback * * Description: * Get zone information starting from the zone containing @sector for at most * @nr_zones, and call @cb for each zone reported by the device. * To report all zones in a device starting from @sector, the BLK_ALL_ZONES * constant can be passed to @nr_zones. * Returns the number of zones reported by the device, or a negative errno * value in case of failure. * * Note: The caller must use memalloc_noXX_save/restore() calls to control * memory allocations done within this function. */ int blkdev_report_zones(struct block_device *bdev, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data) { struct gendisk *disk = bdev->bd_disk; sector_t capacity = get_capacity(disk); if (!bdev_is_zoned(bdev) || WARN_ON_ONCE(!disk->fops->report_zones)) return -EOPNOTSUPP; if (!nr_zones || sector >= capacity) return 0; return disk->fops->report_zones(disk, sector, nr_zones, cb, data); } EXPORT_SYMBOL_GPL(blkdev_report_zones); static int blkdev_zone_reset_all(struct block_device *bdev) { struct bio bio; bio_init(&bio, bdev, NULL, 0, REQ_OP_ZONE_RESET_ALL | REQ_SYNC); return submit_bio_wait(&bio); } /** * blkdev_zone_mgmt - Execute a zone management operation on a range of zones * @bdev: Target block device * @op: Operation to be performed on the zones * @sector: Start sector of the first zone to operate on * @nr_sectors: Number of sectors, should be at least the length of one zone and * must be zone size aligned. * * Description: * Perform the specified operation on the range of zones specified by * @sector..@sector+@nr_sectors. Specifying the entire disk sector range * is valid, but the specified range should not contain conventional zones. * The operation to execute on each zone can be a zone reset, open, close * or finish request. */ int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, sector_t sector, sector_t nr_sectors) { sector_t zone_sectors = bdev_zone_sectors(bdev); sector_t capacity = bdev_nr_sectors(bdev); sector_t end_sector = sector + nr_sectors; struct bio *bio = NULL; int ret = 0; if (!bdev_is_zoned(bdev)) return -EOPNOTSUPP; if (bdev_read_only(bdev)) return -EPERM; if (!op_is_zone_mgmt(op)) return -EOPNOTSUPP; if (end_sector <= sector || end_sector > capacity) /* Out of range */ return -EINVAL; /* Check alignment (handle eventual smaller last zone) */ if (!bdev_is_zone_start(bdev, sector)) return -EINVAL; if (!bdev_is_zone_start(bdev, nr_sectors) && end_sector != capacity) return -EINVAL; /* * In the case of a zone reset operation over all zones, use * REQ_OP_ZONE_RESET_ALL. */ if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) return blkdev_zone_reset_all(bdev); while (sector < end_sector) { bio = blk_next_bio(bio, bdev, 0, op | REQ_SYNC, GFP_KERNEL); bio->bi_iter.bi_sector = sector; sector += zone_sectors; /* This may take a while, so be nice to others */ cond_resched(); } ret = submit_bio_wait(bio); bio_put(bio); return ret; } EXPORT_SYMBOL_GPL(blkdev_zone_mgmt); struct zone_report_args { struct blk_zone __user *zones; }; static int blkdev_copy_zone_to_user(struct blk_zone *zone, unsigned int idx, void *data) { struct zone_report_args *args = data; if (copy_to_user(&args->zones[idx], zone, sizeof(struct blk_zone))) return -EFAULT; return 0; } /* * BLKREPORTZONE ioctl processing. * Called from blkdev_ioctl. */ int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct zone_report_args args; struct blk_zone_report rep; int ret; if (!argp) return -EINVAL; if (!bdev_is_zoned(bdev)) return -ENOTTY; if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report))) return -EFAULT; if (!rep.nr_zones) return -EINVAL; args.zones = argp + sizeof(struct blk_zone_report); ret = blkdev_report_zones(bdev, rep.sector, rep.nr_zones, blkdev_copy_zone_to_user, &args); if (ret < 0) return ret; rep.nr_zones = ret; rep.flags = BLK_ZONE_REP_CAPACITY; if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report))) return -EFAULT; return 0; } static int blkdev_truncate_zone_range(struct block_device *bdev, blk_mode_t mode, const struct blk_zone_range *zrange) { loff_t start, end; if (zrange->sector + zrange->nr_sectors <= zrange->sector || zrange->sector + zrange->nr_sectors > get_capacity(bdev->bd_disk)) /* Out of range */ return -EINVAL; start = zrange->sector << SECTOR_SHIFT; end = ((zrange->sector + zrange->nr_sectors) << SECTOR_SHIFT) - 1; return truncate_bdev_range(bdev, mode, start, end); } /* * BLKRESETZONE, BLKOPENZONE, BLKCLOSEZONE and BLKFINISHZONE ioctl processing. * Called from blkdev_ioctl. */ int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct blk_zone_range zrange; enum req_op op; int ret; if (!argp) return -EINVAL; if (!bdev_is_zoned(bdev)) return -ENOTTY; if (!(mode & BLK_OPEN_WRITE)) return -EBADF; if (copy_from_user(&zrange, argp, sizeof(struct blk_zone_range))) return -EFAULT; switch (cmd) { case BLKRESETZONE: op = REQ_OP_ZONE_RESET; /* Invalidate the page cache, including dirty pages. */ filemap_invalidate_lock(bdev->bd_mapping); ret = blkdev_truncate_zone_range(bdev, mode, &zrange); if (ret) goto fail; break; case BLKOPENZONE: op = REQ_OP_ZONE_OPEN; break; case BLKCLOSEZONE: op = REQ_OP_ZONE_CLOSE; break; case BLKFINISHZONE: op = REQ_OP_ZONE_FINISH; break; default: return -ENOTTY; } ret = blkdev_zone_mgmt(bdev, op, zrange.sector, zrange.nr_sectors); fail: if (cmd == BLKRESETZONE) filemap_invalidate_unlock(bdev->bd_mapping); return ret; } static inline bool disk_zone_is_conv(struct gendisk *disk, sector_t sector) { if (!disk->conv_zones_bitmap) return false; return test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); } static bool disk_zone_is_last(struct gendisk *disk, struct blk_zone *zone) { return zone->start + zone->len >= get_capacity(disk); } static bool disk_zone_is_full(struct gendisk *disk, unsigned int zno, unsigned int offset_in_zone) { if (zno < disk->nr_zones - 1) return offset_in_zone >= disk->zone_capacity; return offset_in_zone >= disk->last_zone_capacity; } static bool disk_zone_wplug_is_full(struct gendisk *disk, struct blk_zone_wplug *zwplug) { return disk_zone_is_full(disk, zwplug->zone_no, zwplug->wp_offset); } static bool disk_insert_zone_wplug(struct gendisk *disk, struct blk_zone_wplug *zwplug) { struct blk_zone_wplug *zwplg; unsigned long flags; unsigned int idx = hash_32(zwplug->zone_no, disk->zone_wplugs_hash_bits); /* * Add the new zone write plug to the hash table, but carefully as we * are racing with other submission context, so we may already have a * zone write plug for the same zone. */ spin_lock_irqsave(&disk->zone_wplugs_lock, flags); hlist_for_each_entry_rcu(zwplg, &disk->zone_wplugs_hash[idx], node) { if (zwplg->zone_no == zwplug->zone_no) { spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); return false; } } hlist_add_head_rcu(&zwplug->node, &disk->zone_wplugs_hash[idx]); spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); return true; } static struct blk_zone_wplug *disk_get_zone_wplug(struct gendisk *disk, sector_t sector) { unsigned int zno = disk_zone_no(disk, sector); unsigned int idx = hash_32(zno, disk->zone_wplugs_hash_bits); struct blk_zone_wplug *zwplug; rcu_read_lock(); hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[idx], node) { if (zwplug->zone_no == zno && atomic_inc_not_zero(&zwplug->ref)) { rcu_read_unlock(); return zwplug; } } rcu_read_unlock(); return NULL; } static void disk_free_zone_wplug_rcu(struct rcu_head *rcu_head) { struct blk_zone_wplug *zwplug = container_of(rcu_head, struct blk_zone_wplug, rcu_head); mempool_free(zwplug, zwplug->disk->zone_wplugs_pool); } static inline void disk_put_zone_wplug(struct blk_zone_wplug *zwplug) { if (atomic_dec_and_test(&zwplug->ref)) { WARN_ON_ONCE(!bio_list_empty(&zwplug->bio_list)); WARN_ON_ONCE(!list_empty(&zwplug->link)); WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_UNHASHED)); call_rcu(&zwplug->rcu_head, disk_free_zone_wplug_rcu); } } static inline bool disk_should_remove_zone_wplug(struct gendisk *disk, struct blk_zone_wplug *zwplug) { /* If the zone write plug was already removed, we are done. */ if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) return false; /* If the zone write plug is still busy, it cannot be removed. */ if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) return false; /* * Completions of BIOs with blk_zone_write_plug_bio_endio() may * happen after handling a request completion with * blk_zone_write_plug_finish_request() (e.g. with split BIOs * that are chained). In such case, disk_zone_wplug_unplug_bio() * should not attempt to remove the zone write plug until all BIO * completions are seen. Check by looking at the zone write plug * reference count, which is 2 when the plug is unused (one reference * taken when the plug was allocated and another reference taken by the * caller context). */ if (atomic_read(&zwplug->ref) > 2) return false; /* We can remove zone write plugs for zones that are empty or full. */ return !zwplug->wp_offset || disk_zone_wplug_is_full(disk, zwplug); } static void disk_remove_zone_wplug(struct gendisk *disk, struct blk_zone_wplug *zwplug) { unsigned long flags; /* If the zone write plug was already removed, we have nothing to do. */ if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) return; /* * Mark the zone write plug as unhashed and drop the extra reference we * took when the plug was inserted in the hash table. */ zwplug->flags |= BLK_ZONE_WPLUG_UNHASHED; spin_lock_irqsave(&disk->zone_wplugs_lock, flags); hlist_del_init_rcu(&zwplug->node); spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); disk_put_zone_wplug(zwplug); } static void blk_zone_wplug_bio_work(struct work_struct *work); /* * Get a reference on the write plug for the zone containing @sector. * If the plug does not exist, it is allocated and hashed. * Return a pointer to the zone write plug with the plug spinlock held. */ static struct blk_zone_wplug *disk_get_and_lock_zone_wplug(struct gendisk *disk, sector_t sector, gfp_t gfp_mask, unsigned long *flags) { unsigned int zno = disk_zone_no(disk, sector); struct blk_zone_wplug *zwplug; again: zwplug = disk_get_zone_wplug(disk, sector); if (zwplug) { /* * Check that a BIO completion or a zone reset or finish * operation has not already removed the zone write plug from * the hash table and dropped its reference count. In such case, * we need to get a new plug so start over from the beginning. */ spin_lock_irqsave(&zwplug->lock, *flags); if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { spin_unlock_irqrestore(&zwplug->lock, *flags); disk_put_zone_wplug(zwplug); goto again; } return zwplug; } /* * Allocate and initialize a zone write plug with an extra reference * so that it is not freed when the zone write plug becomes idle without * the zone being full. */ zwplug = mempool_alloc(disk->zone_wplugs_pool, gfp_mask); if (!zwplug) return NULL; INIT_HLIST_NODE(&zwplug->node); INIT_LIST_HEAD(&zwplug->link); atomic_set(&zwplug->ref, 2); spin_lock_init(&zwplug->lock); zwplug->flags = 0; zwplug->zone_no = zno; zwplug->wp_offset = sector & (disk->queue->limits.chunk_sectors - 1); bio_list_init(&zwplug->bio_list); INIT_WORK(&zwplug->bio_work, blk_zone_wplug_bio_work); zwplug->disk = disk; spin_lock_irqsave(&zwplug->lock, *flags); /* * Insert the new zone write plug in the hash table. This can fail only * if another context already inserted a plug. Retry from the beginning * in such case. */ if (!disk_insert_zone_wplug(disk, zwplug)) { spin_unlock_irqrestore(&zwplug->lock, *flags); mempool_free(zwplug, disk->zone_wplugs_pool); goto again; } return zwplug; } static inline void blk_zone_wplug_bio_io_error(struct blk_zone_wplug *zwplug, struct bio *bio) { struct request_queue *q = zwplug->disk->queue; bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); bio_io_error(bio); disk_put_zone_wplug(zwplug); blk_queue_exit(q); } /* * Abort (fail) all plugged BIOs of a zone write plug. */ static void disk_zone_wplug_abort(struct blk_zone_wplug *zwplug) { struct bio *bio; while ((bio = bio_list_pop(&zwplug->bio_list))) blk_zone_wplug_bio_io_error(zwplug, bio); } /* * Abort (fail) all plugged BIOs of a zone write plug that are not aligned * with the assumed write pointer location of the zone when the BIO will * be unplugged. */ static void disk_zone_wplug_abort_unaligned(struct gendisk *disk, struct blk_zone_wplug *zwplug) { unsigned int wp_offset = zwplug->wp_offset; struct bio_list bl = BIO_EMPTY_LIST; struct bio *bio; while ((bio = bio_list_pop(&zwplug->bio_list))) { if (disk_zone_is_full(disk, zwplug->zone_no, wp_offset) || (bio_op(bio) != REQ_OP_ZONE_APPEND && bio_offset_from_zone_start(bio) != wp_offset)) { blk_zone_wplug_bio_io_error(zwplug, bio); continue; } wp_offset += bio_sectors(bio); bio_list_add(&bl, bio); } bio_list_merge(&zwplug->bio_list, &bl); } static inline void disk_zone_wplug_set_error(struct gendisk *disk, struct blk_zone_wplug *zwplug) { unsigned long flags; if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) return; /* * At this point, we already have a reference on the zone write plug. * However, since we are going to add the plug to the disk zone write * plugs work list, increase its reference count. This reference will * be dropped in disk_zone_wplugs_work() once the error state is * handled, or in disk_zone_wplug_clear_error() if the zone is reset or * finished. */ zwplug->flags |= BLK_ZONE_WPLUG_ERROR; atomic_inc(&zwplug->ref); spin_lock_irqsave(&disk->zone_wplugs_lock, flags); list_add_tail(&zwplug->link, &disk->zone_wplugs_err_list); spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); } static inline void disk_zone_wplug_clear_error(struct gendisk *disk, struct blk_zone_wplug *zwplug) { unsigned long flags; if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) return; /* * We are racing with the error handling work which drops the reference * on the zone write plug after handling the error state. So remove the * plug from the error list and drop its reference count only if the * error handling has not yet started, that is, if the zone write plug * is still listed. */ spin_lock_irqsave(&disk->zone_wplugs_lock, flags); if (!list_empty(&zwplug->link)) { list_del_init(&zwplug->link); zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; disk_put_zone_wplug(zwplug); } spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); } /* * Set a zone write plug write pointer offset to either 0 (zone reset case) * or to the zone size (zone finish case). This aborts all plugged BIOs, which * is fine to do as doing a zone reset or zone finish while writes are in-flight * is a mistake from the user which will most likely cause all plugged BIOs to * fail anyway. */ static void disk_zone_wplug_set_wp_offset(struct gendisk *disk, struct blk_zone_wplug *zwplug, unsigned int wp_offset) { unsigned long flags; spin_lock_irqsave(&zwplug->lock, flags); /* * Make sure that a BIO completion or another zone reset or finish * operation has not already removed the plug from the hash table. */ if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { spin_unlock_irqrestore(&zwplug->lock, flags); return; } /* Update the zone write pointer and abort all plugged BIOs. */ zwplug->wp_offset = wp_offset; disk_zone_wplug_abort(zwplug); /* * Updating the write pointer offset puts back the zone * in a good state. So clear the error flag and decrement the * error count if we were in error state. */ disk_zone_wplug_clear_error(disk, zwplug); /* * The zone write plug now has no BIO plugged: remove it from the * hash table so that it cannot be seen. The plug will be freed * when the last reference is dropped. */ if (disk_should_remove_zone_wplug(disk, zwplug)) disk_remove_zone_wplug(disk, zwplug); spin_unlock_irqrestore(&zwplug->lock, flags); } static bool blk_zone_wplug_handle_reset_or_finish(struct bio *bio, unsigned int wp_offset) { struct gendisk *disk = bio->bi_bdev->bd_disk; sector_t sector = bio->bi_iter.bi_sector; struct blk_zone_wplug *zwplug; /* Conventional zones cannot be reset nor finished. */ if (disk_zone_is_conv(disk, sector)) { bio_io_error(bio); return true; } /* * If we have a zone write plug, set its write pointer offset to 0 * (reset case) or to the zone size (finish case). This will abort all * BIOs plugged for the target zone. It is fine as resetting or * finishing zones while writes are still in-flight will result in the * writes failing anyway. */ zwplug = disk_get_zone_wplug(disk, sector); if (zwplug) { disk_zone_wplug_set_wp_offset(disk, zwplug, wp_offset); disk_put_zone_wplug(zwplug); } return false; } static bool blk_zone_wplug_handle_reset_all(struct bio *bio) { struct gendisk *disk = bio->bi_bdev->bd_disk; struct blk_zone_wplug *zwplug; sector_t sector; /* * Set the write pointer offset of all zone write plugs to 0. This will * abort all plugged BIOs. It is fine as resetting zones while writes * are still in-flight will result in the writes failing anyway. */ for (sector = 0; sector < get_capacity(disk); sector += disk->queue->limits.chunk_sectors) { zwplug = disk_get_zone_wplug(disk, sector); if (zwplug) { disk_zone_wplug_set_wp_offset(disk, zwplug, 0); disk_put_zone_wplug(zwplug); } } return false; } static inline void blk_zone_wplug_add_bio(struct blk_zone_wplug *zwplug, struct bio *bio, unsigned int nr_segs) { /* * Grab an extra reference on the BIO request queue usage counter. * This reference will be reused to submit a request for the BIO for * blk-mq devices and dropped when the BIO is failed and after * it is issued in the case of BIO-based devices. */ percpu_ref_get(&bio->bi_bdev->bd_disk->queue->q_usage_counter); /* * The BIO is being plugged and thus will have to wait for the on-going * write and for all other writes already plugged. So polling makes * no sense. */ bio_clear_polled(bio); /* * Reuse the poll cookie field to store the number of segments when * split to the hardware limits. */ bio->__bi_nr_segments = nr_segs; /* * We always receive BIOs after they are split and ready to be issued. * The block layer passes the parts of a split BIO in order, and the * user must also issue write sequentially. So simply add the new BIO * at the tail of the list to preserve the sequential write order. */ bio_list_add(&zwplug->bio_list, bio); } /* * Called from bio_attempt_back_merge() when a BIO was merged with a request. */ void blk_zone_write_plug_bio_merged(struct bio *bio) { struct blk_zone_wplug *zwplug; unsigned long flags; /* * If the BIO was already plugged, then we were called through * blk_zone_write_plug_init_request() -> blk_attempt_bio_merge(). * For this case, we already hold a reference on the zone write plug for * the BIO and blk_zone_write_plug_init_request() will handle the * zone write pointer offset update. */ if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) return; bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); /* * Get a reference on the zone write plug of the target zone and advance * the zone write pointer offset. Given that this is a merge, we already * have at least one request and one BIO referencing the zone write * plug. So this should not fail. */ zwplug = disk_get_zone_wplug(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); if (WARN_ON_ONCE(!zwplug)) return; spin_lock_irqsave(&zwplug->lock, flags); zwplug->wp_offset += bio_sectors(bio); spin_unlock_irqrestore(&zwplug->lock, flags); } /* * Attempt to merge plugged BIOs with a newly prepared request for a BIO that * already went through zone write plugging (either a new BIO or one that was * unplugged). */ void blk_zone_write_plug_init_request(struct request *req) { sector_t req_back_sector = blk_rq_pos(req) + blk_rq_sectors(req); struct request_queue *q = req->q; struct gendisk *disk = q->disk; struct blk_zone_wplug *zwplug = disk_get_zone_wplug(disk, blk_rq_pos(req)); unsigned long flags; struct bio *bio; if (WARN_ON_ONCE(!zwplug)) return; /* * Indicate that completion of this request needs to be handled with * blk_zone_write_plug_finish_request(), which will drop the reference * on the zone write plug we took above on entry to this function. */ req->rq_flags |= RQF_ZONE_WRITE_PLUGGING; if (blk_queue_nomerges(q)) return; /* * Walk through the list of plugged BIOs to check if they can be merged * into the back of the request. */ spin_lock_irqsave(&zwplug->lock, flags); while (!disk_zone_wplug_is_full(disk, zwplug)) { bio = bio_list_peek(&zwplug->bio_list); if (!bio) break; if (bio->bi_iter.bi_sector != req_back_sector || !blk_rq_merge_ok(req, bio)) break; WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE_ZEROES && !bio->__bi_nr_segments); bio_list_pop(&zwplug->bio_list); if (bio_attempt_back_merge(req, bio, bio->__bi_nr_segments) != BIO_MERGE_OK) { bio_list_add_head(&zwplug->bio_list, bio); break; } /* * Drop the extra reference on the queue usage we got when * plugging the BIO and advance the write pointer offset. */ blk_queue_exit(q); zwplug->wp_offset += bio_sectors(bio); req_back_sector += bio_sectors(bio); } spin_unlock_irqrestore(&zwplug->lock, flags); } /* * Check and prepare a BIO for submission by incrementing the write pointer * offset of its zone write plug and changing zone append operations into * regular write when zone append emulation is needed. */ static bool blk_zone_wplug_prepare_bio(struct blk_zone_wplug *zwplug, struct bio *bio) { struct gendisk *disk = bio->bi_bdev->bd_disk; /* * Check that the user is not attempting to write to a full zone. * We know such BIO will fail, and that would potentially overflow our * write pointer offset beyond the end of the zone. */ if (disk_zone_wplug_is_full(disk, zwplug)) goto err; if (bio_op(bio) == REQ_OP_ZONE_APPEND) { /* * Use a regular write starting at the current write pointer. * Similarly to native zone append operations, do not allow * merging. */ bio->bi_opf &= ~REQ_OP_MASK; bio->bi_opf |= REQ_OP_WRITE | REQ_NOMERGE; bio->bi_iter.bi_sector += zwplug->wp_offset; /* * Remember that this BIO is in fact a zone append operation * so that we can restore its operation code on completion. */ bio_set_flag(bio, BIO_EMULATES_ZONE_APPEND); } else { /* * Check for non-sequential writes early because we avoid a * whole lot of error handling trouble if we don't send it off * to the driver. */ if (bio_offset_from_zone_start(bio) != zwplug->wp_offset) goto err; } /* Advance the zone write pointer offset. */ zwplug->wp_offset += bio_sectors(bio); return true; err: /* We detected an invalid write BIO: schedule error recovery. */ disk_zone_wplug_set_error(disk, zwplug); kblockd_schedule_work(&disk->zone_wplugs_work); return false; } static bool blk_zone_wplug_handle_write(struct bio *bio, unsigned int nr_segs) { struct gendisk *disk = bio->bi_bdev->bd_disk; sector_t sector = bio->bi_iter.bi_sector; struct blk_zone_wplug *zwplug; gfp_t gfp_mask = GFP_NOIO; unsigned long flags; /* * BIOs must be fully contained within a zone so that we use the correct * zone write plug for the entire BIO. For blk-mq devices, the block * layer should already have done any splitting required to ensure this * and this BIO should thus not be straddling zone boundaries. For * BIO-based devices, it is the responsibility of the driver to split * the bio before submitting it. */ if (WARN_ON_ONCE(bio_straddles_zones(bio))) { bio_io_error(bio); return true; } /* Conventional zones do not need write plugging. */ if (disk_zone_is_conv(disk, sector)) { /* Zone append to conventional zones is not allowed. */ if (bio_op(bio) == REQ_OP_ZONE_APPEND) { bio_io_error(bio); return true; } return false; } if (bio->bi_opf & REQ_NOWAIT) gfp_mask = GFP_NOWAIT; zwplug = disk_get_and_lock_zone_wplug(disk, sector, gfp_mask, &flags); if (!zwplug) { bio_io_error(bio); return true; } /* Indicate that this BIO is being handled using zone write plugging. */ bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); /* * If the zone is already plugged or has a pending error, add the BIO * to the plug BIO list. Otherwise, plug and let the BIO execute. */ if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) goto plug; /* * If an error is detected when preparing the BIO, add it to the BIO * list so that error recovery can deal with it. */ if (!blk_zone_wplug_prepare_bio(zwplug, bio)) goto plug; zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; spin_unlock_irqrestore(&zwplug->lock, flags); return false; plug: zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; blk_zone_wplug_add_bio(zwplug, bio, nr_segs); spin_unlock_irqrestore(&zwplug->lock, flags); return true; } /** * blk_zone_plug_bio - Handle a zone write BIO with zone write plugging * @bio: The BIO being submitted * @nr_segs: The number of physical segments of @bio * * Handle write, write zeroes and zone append operations requiring emulation * using zone write plugging. * * Return true whenever @bio execution needs to be delayed through the zone * write plug. Otherwise, return false to let the submission path process * @bio normally. */ bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) { struct block_device *bdev = bio->bi_bdev; if (!bdev->bd_disk->zone_wplugs_hash) return false; /* * If the BIO already has the plugging flag set, then it was already * handled through this path and this is a submission from the zone * plug bio submit work. */ if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) return false; /* * We do not need to do anything special for empty flush BIOs, e.g * BIOs such as issued by blkdev_issue_flush(). The is because it is * the responsibility of the user to first wait for the completion of * write operations for flush to have any effect on the persistence of * the written data. */ if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) return false; /* * Regular writes and write zeroes need to be handled through the target * zone write plug. This includes writes with REQ_FUA | REQ_PREFLUSH * which may need to go through the flush machinery depending on the * target device capabilities. Plugging such writes is fine as the flush * machinery operates at the request level, below the plug, and * completion of the flush sequence will go through the regular BIO * completion, which will handle zone write plugging. * Zone append operations for devices that requested emulation must * also be plugged so that these BIOs can be changed into regular * write BIOs. * Zone reset, reset all and finish commands need special treatment * to correctly track the write pointer offset of zones. These commands * are not plugged as we do not need serialization with write * operations. It is the responsibility of the user to not issue reset * and finish commands when write operations are in flight. */ switch (bio_op(bio)) { case REQ_OP_ZONE_APPEND: if (!bdev_emulates_zone_append(bdev)) return false; fallthrough; case REQ_OP_WRITE: case REQ_OP_WRITE_ZEROES: return blk_zone_wplug_handle_write(bio, nr_segs); case REQ_OP_ZONE_RESET: return blk_zone_wplug_handle_reset_or_finish(bio, 0); case REQ_OP_ZONE_FINISH: return blk_zone_wplug_handle_reset_or_finish(bio, bdev_zone_sectors(bdev)); case REQ_OP_ZONE_RESET_ALL: return blk_zone_wplug_handle_reset_all(bio); default: return false; } return false; } EXPORT_SYMBOL_GPL(blk_zone_plug_bio); static void disk_zone_wplug_schedule_bio_work(struct gendisk *disk, struct blk_zone_wplug *zwplug) { /* * Take a reference on the zone write plug and schedule the submission * of the next plugged BIO. blk_zone_wplug_bio_work() will release the * reference we take here. */ WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_PLUGGED)); atomic_inc(&zwplug->ref); queue_work(disk->zone_wplugs_wq, &zwplug->bio_work); } static void disk_zone_wplug_unplug_bio(struct gendisk *disk, struct blk_zone_wplug *zwplug) { unsigned long flags; spin_lock_irqsave(&zwplug->lock, flags); /* * If we had an error, schedule error recovery. The recovery work * will restart submission of plugged BIOs. */ if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) { spin_unlock_irqrestore(&zwplug->lock, flags); kblockd_schedule_work(&disk->zone_wplugs_work); return; } /* Schedule submission of the next plugged BIO if we have one. */ if (!bio_list_empty(&zwplug->bio_list)) { disk_zone_wplug_schedule_bio_work(disk, zwplug); spin_unlock_irqrestore(&zwplug->lock, flags); return; } zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; /* * If the zone is full (it was fully written or finished, or empty * (it was reset), remove its zone write plug from the hash table. */ if (disk_should_remove_zone_wplug(disk, zwplug)) disk_remove_zone_wplug(disk, zwplug); spin_unlock_irqrestore(&zwplug->lock, flags); } void blk_zone_write_plug_bio_endio(struct bio *bio) { struct gendisk *disk = bio->bi_bdev->bd_disk; struct blk_zone_wplug *zwplug = disk_get_zone_wplug(disk, bio->bi_iter.bi_sector); unsigned long flags; if (WARN_ON_ONCE(!zwplug)) return; /* Make sure we do not see this BIO again by clearing the plug flag. */ bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); /* * If this is a regular write emulating a zone append operation, * restore the original operation code. */ if (bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) { bio->bi_opf &= ~REQ_OP_MASK; bio->bi_opf |= REQ_OP_ZONE_APPEND; } /* * If the BIO failed, mark the plug as having an error to trigger * recovery. */ if (bio->bi_status != BLK_STS_OK) { spin_lock_irqsave(&zwplug->lock, flags); disk_zone_wplug_set_error(disk, zwplug); spin_unlock_irqrestore(&zwplug->lock, flags); } /* Drop the reference we took when the BIO was issued. */ disk_put_zone_wplug(zwplug); /* * For BIO-based devices, blk_zone_write_plug_finish_request() * is not called. So we need to schedule execution of the next * plugged BIO here. */ if (bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) disk_zone_wplug_unplug_bio(disk, zwplug); /* Drop the reference we took when entering this function. */ disk_put_zone_wplug(zwplug); } void blk_zone_write_plug_finish_request(struct request *req) { struct gendisk *disk = req->q->disk; struct blk_zone_wplug *zwplug; zwplug = disk_get_zone_wplug(disk, req->__sector); if (WARN_ON_ONCE(!zwplug)) return; req->rq_flags &= ~RQF_ZONE_WRITE_PLUGGING; /* * Drop the reference we took when the request was initialized in * blk_zone_write_plug_init_request(). */ disk_put_zone_wplug(zwplug); disk_zone_wplug_unplug_bio(disk, zwplug); /* Drop the reference we took when entering this function. */ disk_put_zone_wplug(zwplug); } static void blk_zone_wplug_bio_work(struct work_struct *work) { struct blk_zone_wplug *zwplug = container_of(work, struct blk_zone_wplug, bio_work); struct block_device *bdev; unsigned long flags; struct bio *bio; /* * Submit the next plugged BIO. If we do not have any, clear * the plugged flag. */ spin_lock_irqsave(&zwplug->lock, flags); bio = bio_list_pop(&zwplug->bio_list); if (!bio) { zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; spin_unlock_irqrestore(&zwplug->lock, flags); goto put_zwplug; } if (!blk_zone_wplug_prepare_bio(zwplug, bio)) { /* Error recovery will decide what to do with the BIO. */ bio_list_add_head(&zwplug->bio_list, bio); spin_unlock_irqrestore(&zwplug->lock, flags); goto put_zwplug; } spin_unlock_irqrestore(&zwplug->lock, flags); bdev = bio->bi_bdev; submit_bio_noacct_nocheck(bio); /* * blk-mq devices will reuse the extra reference on the request queue * usage counter we took when the BIO was plugged, but the submission * path for BIO-based devices will not do that. So drop this extra * reference here. */ if (bdev_test_flag(bdev, BD_HAS_SUBMIT_BIO)) blk_queue_exit(bdev->bd_disk->queue); put_zwplug: /* Drop the reference we took in disk_zone_wplug_schedule_bio_work(). */ disk_put_zone_wplug(zwplug); } static unsigned int blk_zone_wp_offset(struct blk_zone *zone) { switch (zone->cond) { case BLK_ZONE_COND_IMP_OPEN: case BLK_ZONE_COND_EXP_OPEN: case BLK_ZONE_COND_CLOSED: return zone->wp - zone->start; case BLK_ZONE_COND_FULL: return zone->len; case BLK_ZONE_COND_EMPTY: return 0; case BLK_ZONE_COND_NOT_WP: case BLK_ZONE_COND_OFFLINE: case BLK_ZONE_COND_READONLY: default: /* * Conventional, offline and read-only zones do not have a valid * write pointer. */ return UINT_MAX; } } static int blk_zone_wplug_report_zone_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct blk_zone *zonep = data; *zonep = *zone; return 0; } static void disk_zone_wplug_handle_error(struct gendisk *disk, struct blk_zone_wplug *zwplug) { sector_t zone_start_sector = bdev_zone_sectors(disk->part0) * zwplug->zone_no; unsigned int noio_flag; struct blk_zone zone; unsigned long flags; int ret; /* Get the current zone information from the device. */ noio_flag = memalloc_noio_save(); ret = disk->fops->report_zones(disk, zone_start_sector, 1, blk_zone_wplug_report_zone_cb, &zone); memalloc_noio_restore(noio_flag); spin_lock_irqsave(&zwplug->lock, flags); /* * A zone reset or finish may have cleared the error already. In such * case, do nothing as the report zones may have seen the "old" write * pointer value before the reset/finish operation completed. */ if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) goto unlock; zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; if (ret != 1) { /* * We failed to get the zone information, meaning that something * is likely really wrong with the device. Abort all remaining * plugged BIOs as otherwise we could endup waiting forever on * plugged BIOs to complete if there is a queue freeze on-going. */ disk_zone_wplug_abort(zwplug); goto unplug; } /* Update the zone write pointer offset. */ zwplug->wp_offset = blk_zone_wp_offset(&zone); disk_zone_wplug_abort_unaligned(disk, zwplug); /* Restart BIO submission if we still have any BIO left. */ if (!bio_list_empty(&zwplug->bio_list)) { disk_zone_wplug_schedule_bio_work(disk, zwplug); goto unlock; } unplug: zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; if (disk_should_remove_zone_wplug(disk, zwplug)) disk_remove_zone_wplug(disk, zwplug); unlock: spin_unlock_irqrestore(&zwplug->lock, flags); } static void disk_zone_wplugs_work(struct work_struct *work) { struct gendisk *disk = container_of(work, struct gendisk, zone_wplugs_work); struct blk_zone_wplug *zwplug; unsigned long flags; spin_lock_irqsave(&disk->zone_wplugs_lock, flags); while (!list_empty(&disk->zone_wplugs_err_list)) { zwplug = list_first_entry(&disk->zone_wplugs_err_list, struct blk_zone_wplug, link); list_del_init(&zwplug->link); spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); disk_zone_wplug_handle_error(disk, zwplug); disk_put_zone_wplug(zwplug); spin_lock_irqsave(&disk->zone_wplugs_lock, flags); } spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); } static inline unsigned int disk_zone_wplugs_hash_size(struct gendisk *disk) { return 1U << disk->zone_wplugs_hash_bits; } void disk_init_zone_resources(struct gendisk *disk) { spin_lock_init(&disk->zone_wplugs_lock); INIT_LIST_HEAD(&disk->zone_wplugs_err_list); INIT_WORK(&disk->zone_wplugs_work, disk_zone_wplugs_work); } /* * For the size of a disk zone write plug hash table, use the size of the * zone write plug mempool, which is the maximum of the disk open zones and * active zones limits. But do not exceed 4KB (512 hlist head entries), that is, * 9 bits. For a disk that has no limits, mempool size defaults to 128. */ #define BLK_ZONE_WPLUG_MAX_HASH_BITS 9 #define BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE 128 static int disk_alloc_zone_resources(struct gendisk *disk, unsigned int pool_size) { unsigned int i; disk->zone_wplugs_hash_bits = min(ilog2(pool_size) + 1, BLK_ZONE_WPLUG_MAX_HASH_BITS); disk->zone_wplugs_hash = kcalloc(disk_zone_wplugs_hash_size(disk), sizeof(struct hlist_head), GFP_KERNEL); if (!disk->zone_wplugs_hash) return -ENOMEM; for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) INIT_HLIST_HEAD(&disk->zone_wplugs_hash[i]); disk->zone_wplugs_pool = mempool_create_kmalloc_pool(pool_size, sizeof(struct blk_zone_wplug)); if (!disk->zone_wplugs_pool) goto free_hash; disk->zone_wplugs_wq = alloc_workqueue("%s_zwplugs", WQ_MEM_RECLAIM | WQ_HIGHPRI, pool_size, disk->disk_name); if (!disk->zone_wplugs_wq) goto destroy_pool; return 0; destroy_pool: mempool_destroy(disk->zone_wplugs_pool); disk->zone_wplugs_pool = NULL; free_hash: kfree(disk->zone_wplugs_hash); disk->zone_wplugs_hash = NULL; disk->zone_wplugs_hash_bits = 0; return -ENOMEM; } static void disk_destroy_zone_wplugs_hash_table(struct gendisk *disk) { struct blk_zone_wplug *zwplug; unsigned int i; if (!disk->zone_wplugs_hash) return; /* Free all the zone write plugs we have. */ for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { while (!hlist_empty(&disk->zone_wplugs_hash[i])) { zwplug = hlist_entry(disk->zone_wplugs_hash[i].first, struct blk_zone_wplug, node); atomic_inc(&zwplug->ref); disk_remove_zone_wplug(disk, zwplug); disk_put_zone_wplug(zwplug); } } kfree(disk->zone_wplugs_hash); disk->zone_wplugs_hash = NULL; disk->zone_wplugs_hash_bits = 0; } void disk_free_zone_resources(struct gendisk *disk) { if (!disk->zone_wplugs_pool) return; cancel_work_sync(&disk->zone_wplugs_work); if (disk->zone_wplugs_wq) { destroy_workqueue(disk->zone_wplugs_wq); disk->zone_wplugs_wq = NULL; } disk_destroy_zone_wplugs_hash_table(disk); /* * Wait for the zone write plugs to be RCU-freed before * destorying the mempool. */ rcu_barrier(); mempool_destroy(disk->zone_wplugs_pool); disk->zone_wplugs_pool = NULL; bitmap_free(disk->conv_zones_bitmap); disk->conv_zones_bitmap = NULL; disk->zone_capacity = 0; disk->last_zone_capacity = 0; disk->nr_zones = 0; } static inline bool disk_need_zone_resources(struct gendisk *disk) { /* * All mq zoned devices need zone resources so that the block layer * can automatically handle write BIO plugging. BIO-based device drivers * (e.g. DM devices) are normally responsible for handling zone write * ordering and do not need zone resources, unless the driver requires * zone append emulation. */ return queue_is_mq(disk->queue) || queue_emulates_zone_append(disk->queue); } static int disk_revalidate_zone_resources(struct gendisk *disk, unsigned int nr_zones) { struct queue_limits *lim = &disk->queue->limits; unsigned int pool_size; if (!disk_need_zone_resources(disk)) return 0; /* * If the device has no limit on the maximum number of open and active * zones, use BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE. */ pool_size = max(lim->max_open_zones, lim->max_active_zones); if (!pool_size) pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_zones); if (!disk->zone_wplugs_hash) return disk_alloc_zone_resources(disk, pool_size); return 0; } struct blk_revalidate_zone_args { struct gendisk *disk; unsigned long *conv_zones_bitmap; unsigned int nr_zones; unsigned int zone_capacity; unsigned int last_zone_capacity; sector_t sector; }; /* * Update the disk zone resources information and device queue limits. * The disk queue is frozen when this is executed. */ static int disk_update_zone_resources(struct gendisk *disk, struct blk_revalidate_zone_args *args) { struct request_queue *q = disk->queue; unsigned int nr_seq_zones, nr_conv_zones = 0; unsigned int pool_size; struct queue_limits lim; disk->nr_zones = args->nr_zones; disk->zone_capacity = args->zone_capacity; disk->last_zone_capacity = args->last_zone_capacity; swap(disk->conv_zones_bitmap, args->conv_zones_bitmap); if (disk->conv_zones_bitmap) nr_conv_zones = bitmap_weight(disk->conv_zones_bitmap, disk->nr_zones); if (nr_conv_zones >= disk->nr_zones) { pr_warn("%s: Invalid number of conventional zones %u / %u\n", disk->disk_name, nr_conv_zones, disk->nr_zones); return -ENODEV; } lim = queue_limits_start_update(q); /* * Some devices can advertize zone resource limits that are larger than * the number of sequential zones of the zoned block device, e.g. a * small ZNS namespace. For such case, assume that the zoned device has * no zone resource limits. */ nr_seq_zones = disk->nr_zones - nr_conv_zones; if (lim.max_open_zones >= nr_seq_zones) lim.max_open_zones = 0; if (lim.max_active_zones >= nr_seq_zones) lim.max_active_zones = 0; if (!disk->zone_wplugs_pool) goto commit; /* * If the device has no limit on the maximum number of open and active * zones, set its max open zone limit to the mempool size to indicate * to the user that there is a potential performance impact due to * dynamic zone write plug allocation when simultaneously writing to * more zones than the size of the mempool. */ pool_size = max(lim.max_open_zones, lim.max_active_zones); if (!pool_size) pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_seq_zones); mempool_resize(disk->zone_wplugs_pool, pool_size); if (!lim.max_open_zones && !lim.max_active_zones) { if (pool_size < nr_seq_zones) lim.max_open_zones = pool_size; else lim.max_open_zones = 0; } commit: return queue_limits_commit_update(q, &lim); } static int blk_revalidate_conv_zone(struct blk_zone *zone, unsigned int idx, struct blk_revalidate_zone_args *args) { struct gendisk *disk = args->disk; if (zone->capacity != zone->len) { pr_warn("%s: Invalid conventional zone capacity\n", disk->disk_name); return -ENODEV; } if (disk_zone_is_last(disk, zone)) args->last_zone_capacity = zone->capacity; if (!disk_need_zone_resources(disk)) return 0; if (!args->conv_zones_bitmap) { args->conv_zones_bitmap = bitmap_zalloc(args->nr_zones, GFP_NOIO); if (!args->conv_zones_bitmap) return -ENOMEM; } set_bit(idx, args->conv_zones_bitmap); return 0; } static int blk_revalidate_seq_zone(struct blk_zone *zone, unsigned int idx, struct blk_revalidate_zone_args *args) { struct gendisk *disk = args->disk; struct blk_zone_wplug *zwplug; unsigned int wp_offset; unsigned long flags; /* * Remember the capacity of the first sequential zone and check * if it is constant for all zones, ignoring the last zone as it can be * smaller. */ if (!args->zone_capacity) args->zone_capacity = zone->capacity; if (disk_zone_is_last(disk, zone)) { args->last_zone_capacity = zone->capacity; } else if (zone->capacity != args->zone_capacity) { pr_warn("%s: Invalid variable zone capacity\n", disk->disk_name); return -ENODEV; } /* * We need to track the write pointer of all zones that are not * empty nor full. So make sure we have a zone write plug for * such zone if the device has a zone write plug hash table. */ if (!disk->zone_wplugs_hash) return 0; wp_offset = blk_zone_wp_offset(zone); if (!wp_offset || wp_offset >= zone->capacity) return 0; zwplug = disk_get_and_lock_zone_wplug(disk, zone->wp, GFP_NOIO, &flags); if (!zwplug) return -ENOMEM; spin_unlock_irqrestore(&zwplug->lock, flags); disk_put_zone_wplug(zwplug); return 0; } /* * Helper function to check the validity of zones of a zoned block device. */ static int blk_revalidate_zone_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct blk_revalidate_zone_args *args = data; struct gendisk *disk = args->disk; sector_t zone_sectors = disk->queue->limits.chunk_sectors; int ret; /* Check for bad zones and holes in the zone report */ if (zone->start != args->sector) { pr_warn("%s: Zone gap at sectors %llu..%llu\n", disk->disk_name, args->sector, zone->start); return -ENODEV; } if (zone->start >= get_capacity(disk) || !zone->len) { pr_warn("%s: Invalid zone start %llu, length %llu\n", disk->disk_name, zone->start, zone->len); return -ENODEV; } /* * All zones must have the same size, with the exception on an eventual * smaller last zone. */ if (!disk_zone_is_last(disk, zone)) { if (zone->len != zone_sectors) { pr_warn("%s: Invalid zoned device with non constant zone size\n", disk->disk_name); return -ENODEV; } } else if (zone->len > zone_sectors) { pr_warn("%s: Invalid zoned device with larger last zone size\n", disk->disk_name); return -ENODEV; } if (!zone->capacity || zone->capacity > zone->len) { pr_warn("%s: Invalid zone capacity\n", disk->disk_name); return -ENODEV; } /* Check zone type */ switch (zone->type) { case BLK_ZONE_TYPE_CONVENTIONAL: ret = blk_revalidate_conv_zone(zone, idx, args); break; case BLK_ZONE_TYPE_SEQWRITE_REQ: ret = blk_revalidate_seq_zone(zone, idx, args); break; case BLK_ZONE_TYPE_SEQWRITE_PREF: default: pr_warn("%s: Invalid zone type 0x%x at sectors %llu\n", disk->disk_name, (int)zone->type, zone->start); ret = -ENODEV; } if (!ret) args->sector += zone->len; return ret; } /** * blk_revalidate_disk_zones - (re)allocate and initialize zone write plugs * @disk: Target disk * * Helper function for low-level device drivers to check, (re) allocate and * initialize resources used for managing zoned disks. This function should * normally be called by blk-mq based drivers when a zoned gendisk is probed * and when the zone configuration of the gendisk changes (e.g. after a format). * Before calling this function, the device driver must already have set the * device zone size (chunk_sector limit) and the max zone append limit. * BIO based drivers can also use this function as long as the device queue * can be safely frozen. */ int blk_revalidate_disk_zones(struct gendisk *disk) { struct request_queue *q = disk->queue; sector_t zone_sectors = q->limits.chunk_sectors; sector_t capacity = get_capacity(disk); struct blk_revalidate_zone_args args = { }; unsigned int noio_flag; int ret = -ENOMEM; if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) return -EIO; if (!capacity) return -ENODEV; /* * Checks that the device driver indicated a valid zone size and that * the max zone append limit is set. */ if (!zone_sectors || !is_power_of_2(zone_sectors)) { pr_warn("%s: Invalid non power of two zone size (%llu)\n", disk->disk_name, zone_sectors); return -ENODEV; } if (!queue_max_zone_append_sectors(q)) { pr_warn("%s: Invalid 0 maximum zone append limit\n", disk->disk_name); return -ENODEV; } /* * Ensure that all memory allocations in this context are done as if * GFP_NOIO was specified. */ args.disk = disk; args.nr_zones = (capacity + zone_sectors - 1) >> ilog2(zone_sectors); noio_flag = memalloc_noio_save(); ret = disk_revalidate_zone_resources(disk, args.nr_zones); if (ret) { memalloc_noio_restore(noio_flag); return ret; } ret = disk->fops->report_zones(disk, 0, UINT_MAX, blk_revalidate_zone_cb, &args); if (!ret) { pr_warn("%s: No zones reported\n", disk->disk_name); ret = -ENODEV; } memalloc_noio_restore(noio_flag); /* * If zones where reported, make sure that the entire disk capacity * has been checked. */ if (ret > 0 && args.sector != capacity) { pr_warn("%s: Missing zones from sector %llu\n", disk->disk_name, args.sector); ret = -ENODEV; } /* * Set the new disk zone parameters only once the queue is frozen and * all I/Os are completed. */ blk_mq_freeze_queue(q); if (ret > 0) ret = disk_update_zone_resources(disk, &args); else pr_warn("%s: failed to revalidate zones\n", disk->disk_name); if (ret) disk_free_zone_resources(disk); blk_mq_unfreeze_queue(q); kfree(args.conv_zones_bitmap); return ret; } EXPORT_SYMBOL_GPL(blk_revalidate_disk_zones); #ifdef CONFIG_BLK_DEBUG_FS int queue_zone_wplugs_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct gendisk *disk = q->disk; struct blk_zone_wplug *zwplug; unsigned int zwp_wp_offset, zwp_flags; unsigned int zwp_zone_no, zwp_ref; unsigned int zwp_bio_list_size, i; unsigned long flags; if (!disk->zone_wplugs_hash) return 0; rcu_read_lock(); for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[i], node) { spin_lock_irqsave(&zwplug->lock, flags); zwp_zone_no = zwplug->zone_no; zwp_flags = zwplug->flags; zwp_ref = atomic_read(&zwplug->ref); zwp_wp_offset = zwplug->wp_offset; zwp_bio_list_size = bio_list_size(&zwplug->bio_list); spin_unlock_irqrestore(&zwplug->lock, flags); seq_printf(m, "%u 0x%x %u %u %u\n", zwp_zone_no, zwp_flags, zwp_ref, zwp_wp_offset, zwp_bio_list_size); } } rcu_read_unlock(); return 0; } #endif |
1 1 1 1 1 1 1 1 1 3 3 1 1 3 3 3 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS: Source Hashing scheduling module * * Authors: Wensong Zhang <wensong@gnuchina.org> * * Changes: */ /* * The sh algorithm is to select server by the hash key of source IP * address. The pseudo code is as follows: * * n <- servernode[src_ip]; * if (n is dead) OR * (n is overloaded) or (n.weight <= 0) then * return NULL; * * return n; * * Notes that servernode is a 256-bucket hash table that maps the hash * index derived from packet source IP address to the current server * array. If the sh scheduler is used in cache cluster, it is good to * combine it with cache_bypass feature. When the statically assigned * server is dead or overloaded, the load balancer can bypass the cache * server and send requests to the original server directly. * * The weight destination attribute can be used to control the * distribution of connections to the destinations in servernode. The * greater the weight, the more connections the destination * will receive. * */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/ip.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <net/ip_vs.h> #include <net/tcp.h> #include <linux/udp.h> #include <linux/sctp.h> /* * IPVS SH bucket */ struct ip_vs_sh_bucket { struct ip_vs_dest __rcu *dest; /* real server (cache) */ }; /* * for IPVS SH entry hash table */ #ifndef CONFIG_IP_VS_SH_TAB_BITS #define CONFIG_IP_VS_SH_TAB_BITS 8 #endif #define IP_VS_SH_TAB_BITS CONFIG_IP_VS_SH_TAB_BITS #define IP_VS_SH_TAB_SIZE (1 << IP_VS_SH_TAB_BITS) #define IP_VS_SH_TAB_MASK (IP_VS_SH_TAB_SIZE - 1) struct ip_vs_sh_state { struct rcu_head rcu_head; struct ip_vs_sh_bucket buckets[IP_VS_SH_TAB_SIZE]; }; /* Helper function to determine if server is unavailable */ static inline bool is_unavailable(struct ip_vs_dest *dest) { return atomic_read(&dest->weight) <= 0 || dest->flags & IP_VS_DEST_F_OVERLOAD; } /* * Returns hash value for IPVS SH entry */ static inline unsigned int ip_vs_sh_hashkey(int af, const union nf_inet_addr *addr, __be16 port, unsigned int offset) { __be32 addr_fold = addr->ip; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) addr_fold = addr->ip6[0]^addr->ip6[1]^ addr->ip6[2]^addr->ip6[3]; #endif return (offset + hash_32(ntohs(port) + ntohl(addr_fold), IP_VS_SH_TAB_BITS)) & IP_VS_SH_TAB_MASK; } /* * Get ip_vs_dest associated with supplied parameters. */ static inline struct ip_vs_dest * ip_vs_sh_get(struct ip_vs_service *svc, struct ip_vs_sh_state *s, const union nf_inet_addr *addr, __be16 port) { unsigned int hash = ip_vs_sh_hashkey(svc->af, addr, port, 0); struct ip_vs_dest *dest = rcu_dereference(s->buckets[hash].dest); return (!dest || is_unavailable(dest)) ? NULL : dest; } /* As ip_vs_sh_get, but with fallback if selected server is unavailable * * The fallback strategy loops around the table starting from a "random" * point (in fact, it is chosen to be the original hash value to make the * algorithm deterministic) to find a new server. */ static inline struct ip_vs_dest * ip_vs_sh_get_fallback(struct ip_vs_service *svc, struct ip_vs_sh_state *s, const union nf_inet_addr *addr, __be16 port) { unsigned int offset, roffset; unsigned int hash, ihash; struct ip_vs_dest *dest; /* first try the dest it's supposed to go to */ ihash = ip_vs_sh_hashkey(svc->af, addr, port, 0); dest = rcu_dereference(s->buckets[ihash].dest); if (!dest) return NULL; if (!is_unavailable(dest)) return dest; IP_VS_DBG_BUF(6, "SH: selected unavailable server %s:%d, reselecting", IP_VS_DBG_ADDR(dest->af, &dest->addr), ntohs(dest->port)); /* if the original dest is unavailable, loop around the table * starting from ihash to find a new dest */ for (offset = 0; offset < IP_VS_SH_TAB_SIZE; offset++) { roffset = (offset + ihash) % IP_VS_SH_TAB_SIZE; hash = ip_vs_sh_hashkey(svc->af, addr, port, roffset); dest = rcu_dereference(s->buckets[hash].dest); if (!dest) break; if (!is_unavailable(dest)) return dest; IP_VS_DBG_BUF(6, "SH: selected unavailable " "server %s:%d (offset %d), reselecting", IP_VS_DBG_ADDR(dest->af, &dest->addr), ntohs(dest->port), roffset); } return NULL; } /* * Assign all the hash buckets of the specified table with the service. */ static int ip_vs_sh_reassign(struct ip_vs_sh_state *s, struct ip_vs_service *svc) { int i; struct ip_vs_sh_bucket *b; struct list_head *p; struct ip_vs_dest *dest; int d_count; bool empty; b = &s->buckets[0]; p = &svc->destinations; empty = list_empty(p); d_count = 0; for (i=0; i<IP_VS_SH_TAB_SIZE; i++) { dest = rcu_dereference_protected(b->dest, 1); if (dest) ip_vs_dest_put(dest); if (empty) RCU_INIT_POINTER(b->dest, NULL); else { if (p == &svc->destinations) p = p->next; dest = list_entry(p, struct ip_vs_dest, n_list); ip_vs_dest_hold(dest); RCU_INIT_POINTER(b->dest, dest); IP_VS_DBG_BUF(6, "assigned i: %d dest: %s weight: %d\n", i, IP_VS_DBG_ADDR(dest->af, &dest->addr), atomic_read(&dest->weight)); /* Don't move to next dest until filling weight */ if (++d_count >= atomic_read(&dest->weight)) { p = p->next; d_count = 0; } } b++; } return 0; } /* * Flush all the hash buckets of the specified table. */ static void ip_vs_sh_flush(struct ip_vs_sh_state *s) { int i; struct ip_vs_sh_bucket *b; struct ip_vs_dest *dest; b = &s->buckets[0]; for (i=0; i<IP_VS_SH_TAB_SIZE; i++) { dest = rcu_dereference_protected(b->dest, 1); if (dest) { ip_vs_dest_put(dest); RCU_INIT_POINTER(b->dest, NULL); } b++; } } static int ip_vs_sh_init_svc(struct ip_vs_service *svc) { struct ip_vs_sh_state *s; /* allocate the SH table for this service */ s = kzalloc(sizeof(struct ip_vs_sh_state), GFP_KERNEL); if (s == NULL) return -ENOMEM; svc->sched_data = s; IP_VS_DBG(6, "SH hash table (memory=%zdbytes) allocated for " "current service\n", sizeof(struct ip_vs_sh_bucket)*IP_VS_SH_TAB_SIZE); /* assign the hash buckets with current dests */ ip_vs_sh_reassign(s, svc); return 0; } static void ip_vs_sh_done_svc(struct ip_vs_service *svc) { struct ip_vs_sh_state *s = svc->sched_data; /* got to clean up hash buckets here */ ip_vs_sh_flush(s); /* release the table itself */ kfree_rcu(s, rcu_head); IP_VS_DBG(6, "SH hash table (memory=%zdbytes) released\n", sizeof(struct ip_vs_sh_bucket)*IP_VS_SH_TAB_SIZE); } static int ip_vs_sh_dest_changed(struct ip_vs_service *svc, struct ip_vs_dest *dest) { struct ip_vs_sh_state *s = svc->sched_data; /* assign the hash buckets with the updated service */ ip_vs_sh_reassign(s, svc); return 0; } /* Helper function to get port number */ static inline __be16 ip_vs_sh_get_port(const struct sk_buff *skb, struct ip_vs_iphdr *iph) { __be16 _ports[2], *ports; /* At this point we know that we have a valid packet of some kind. * Because ICMP packets are only guaranteed to have the first 8 * bytes, let's just grab the ports. Fortunately they're in the * same position for all three of the protocols we care about. */ switch (iph->protocol) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: ports = skb_header_pointer(skb, iph->len, sizeof(_ports), &_ports); if (unlikely(!ports)) return 0; if (likely(!ip_vs_iph_inverse(iph))) return ports[0]; else return ports[1]; default: return 0; } } /* * Source Hashing scheduling */ static struct ip_vs_dest * ip_vs_sh_schedule(struct ip_vs_service *svc, const struct sk_buff *skb, struct ip_vs_iphdr *iph) { struct ip_vs_dest *dest; struct ip_vs_sh_state *s; __be16 port = 0; const union nf_inet_addr *hash_addr; hash_addr = ip_vs_iph_inverse(iph) ? &iph->daddr : &iph->saddr; IP_VS_DBG(6, "ip_vs_sh_schedule(): Scheduling...\n"); if (svc->flags & IP_VS_SVC_F_SCHED_SH_PORT) port = ip_vs_sh_get_port(skb, iph); s = (struct ip_vs_sh_state *) svc->sched_data; if (svc->flags & IP_VS_SVC_F_SCHED_SH_FALLBACK) dest = ip_vs_sh_get_fallback(svc, s, hash_addr, port); else dest = ip_vs_sh_get(svc, s, hash_addr, port); if (!dest) { ip_vs_scheduler_err(svc, "no destination available"); return NULL; } IP_VS_DBG_BUF(6, "SH: source IP address %s --> server %s:%d\n", IP_VS_DBG_ADDR(svc->af, hash_addr), IP_VS_DBG_ADDR(dest->af, &dest->addr), ntohs(dest->port)); return dest; } /* * IPVS SH Scheduler structure */ static struct ip_vs_scheduler ip_vs_sh_scheduler = { .name = "sh", .refcnt = ATOMIC_INIT(0), .module = THIS_MODULE, .n_list = LIST_HEAD_INIT(ip_vs_sh_scheduler.n_list), .init_service = ip_vs_sh_init_svc, .done_service = ip_vs_sh_done_svc, .add_dest = ip_vs_sh_dest_changed, .del_dest = ip_vs_sh_dest_changed, .upd_dest = ip_vs_sh_dest_changed, .schedule = ip_vs_sh_schedule, }; static int __init ip_vs_sh_init(void) { return register_ip_vs_scheduler(&ip_vs_sh_scheduler); } static void __exit ip_vs_sh_cleanup(void) { unregister_ip_vs_scheduler(&ip_vs_sh_scheduler); synchronize_rcu(); } module_init(ip_vs_sh_init); module_exit(ip_vs_sh_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ipvs source hashing scheduler"); |
20 21 20 4 11 3 4 4 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | // SPDX-License-Identifier: GPL-2.0-only /* * AppArmor security module * * This file contains basic common functions used in AppArmor * * Copyright (C) 1998-2008 Novell/SUSE * Copyright 2009-2010 Canonical Ltd. */ #include <linux/ctype.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/vmalloc.h> #include "include/audit.h" #include "include/apparmor.h" #include "include/lib.h" #include "include/perms.h" #include "include/policy.h" struct aa_perms nullperms; struct aa_perms allperms = { .allow = ALL_PERMS_MASK, .quiet = ALL_PERMS_MASK, .hide = ALL_PERMS_MASK }; /** * aa_free_str_table - free entries str table * @t: the string table to free (MAYBE NULL) */ void aa_free_str_table(struct aa_str_table *t) { int i; if (t) { if (!t->table) return; for (i = 0; i < t->size; i++) kfree_sensitive(t->table[i]); kfree_sensitive(t->table); t->table = NULL; t->size = 0; } } /** * aa_split_fqname - split a fqname into a profile and namespace name * @fqname: a full qualified name in namespace profile format (NOT NULL) * @ns_name: pointer to portion of the string containing the ns name (NOT NULL) * * Returns: profile name or NULL if one is not specified * * Split a namespace name from a profile name (see policy.c for naming * description). If a portion of the name is missing it returns NULL for * that portion. * * NOTE: may modify the @fqname string. The pointers returned point * into the @fqname string. */ char *aa_split_fqname(char *fqname, char **ns_name) { char *name = strim(fqname); *ns_name = NULL; if (name[0] == ':') { char *split = strchr(&name[1], ':'); *ns_name = skip_spaces(&name[1]); if (split) { /* overwrite ':' with \0 */ *split++ = 0; if (strncmp(split, "//", 2) == 0) split += 2; name = skip_spaces(split); } else /* a ns name without a following profile is allowed */ name = NULL; } if (name && *name == 0) name = NULL; return name; } /** * skipn_spaces - Removes leading whitespace from @str. * @str: The string to be stripped. * @n: length of str to parse, will stop at \0 if encountered before n * * Returns a pointer to the first non-whitespace character in @str. * if all whitespace will return NULL */ const char *skipn_spaces(const char *str, size_t n) { for (; n && isspace(*str); --n) ++str; if (n) return (char *)str; return NULL; } const char *aa_splitn_fqname(const char *fqname, size_t n, const char **ns_name, size_t *ns_len) { const char *end = fqname + n; const char *name = skipn_spaces(fqname, n); *ns_name = NULL; *ns_len = 0; if (!name) return NULL; if (name[0] == ':') { char *split = strnchr(&name[1], end - &name[1], ':'); *ns_name = skipn_spaces(&name[1], end - &name[1]); if (!*ns_name) return NULL; if (split) { *ns_len = split - *ns_name; if (*ns_len == 0) *ns_name = NULL; split++; if (end - split > 1 && strncmp(split, "//", 2) == 0) split += 2; name = skipn_spaces(split, end - split); } else { /* a ns name without a following profile is allowed */ name = NULL; *ns_len = end - *ns_name; } } if (name && *name == 0) name = NULL; return name; } /** * aa_info_message - log a none profile related status message * @str: message to log */ void aa_info_message(const char *str) { if (audit_enabled) { DEFINE_AUDIT_DATA(ad, LSM_AUDIT_DATA_NONE, AA_CLASS_NONE, NULL); ad.info = str; aa_audit_msg(AUDIT_APPARMOR_STATUS, &ad, NULL); } printk(KERN_INFO "AppArmor: %s\n", str); } __counted char *aa_str_alloc(int size, gfp_t gfp) { struct counted_str *str; str = kmalloc(struct_size(str, name, size), gfp); if (!str) return NULL; kref_init(&str->count); return str->name; } void aa_str_kref(struct kref *kref) { kfree(container_of(kref, struct counted_str, count)); } const char aa_file_perm_chrs[] = "xwracd km l "; const char *aa_file_perm_names[] = { "exec", "write", "read", "append", "create", "delete", "open", "rename", "setattr", "getattr", "setcred", "getcred", "chmod", "chown", "chgrp", "lock", "mmap", "mprot", "link", "snapshot", "unknown", "unknown", "unknown", "unknown", "unknown", "unknown", "unknown", "unknown", "stack", "change_onexec", "change_profile", "change_hat", }; /** * aa_perm_mask_to_str - convert a perm mask to its short string * @str: character buffer to store string in (at least 10 characters) * @str_size: size of the @str buffer * @chrs: NUL-terminated character buffer of permission characters * @mask: permission mask to convert */ void aa_perm_mask_to_str(char *str, size_t str_size, const char *chrs, u32 mask) { unsigned int i, perm = 1; size_t num_chrs = strlen(chrs); for (i = 0; i < num_chrs; perm <<= 1, i++) { if (mask & perm) { /* Ensure that one byte is left for NUL-termination */ if (WARN_ON_ONCE(str_size <= 1)) break; *str++ = chrs[i]; str_size--; } } *str = '\0'; } void aa_audit_perm_names(struct audit_buffer *ab, const char * const *names, u32 mask) { const char *fmt = "%s"; unsigned int i, perm = 1; bool prev = false; for (i = 0; i < 32; perm <<= 1, i++) { if (mask & perm) { audit_log_format(ab, fmt, names[i]); if (!prev) { prev = true; fmt = " %s"; } } } } void aa_audit_perm_mask(struct audit_buffer *ab, u32 mask, const char *chrs, u32 chrsmask, const char * const *names, u32 namesmask) { char str[33]; audit_log_format(ab, "\""); if ((mask & chrsmask) && chrs) { aa_perm_mask_to_str(str, sizeof(str), chrs, mask & chrsmask); mask &= ~chrsmask; audit_log_format(ab, "%s", str); if (mask & namesmask) audit_log_format(ab, " "); } if ((mask & namesmask) && names) aa_audit_perm_names(ab, names, mask & namesmask); audit_log_format(ab, "\""); } /** * aa_audit_perms_cb - generic callback fn for auditing perms * @ab: audit buffer (NOT NULL) * @va: audit struct to audit values of (NOT NULL) */ static void aa_audit_perms_cb(struct audit_buffer *ab, void *va) { struct common_audit_data *sa = va; struct apparmor_audit_data *ad = aad(sa); if (ad->request) { audit_log_format(ab, " requested_mask="); aa_audit_perm_mask(ab, ad->request, aa_file_perm_chrs, PERMS_CHRS_MASK, aa_file_perm_names, PERMS_NAMES_MASK); } if (ad->denied) { audit_log_format(ab, "denied_mask="); aa_audit_perm_mask(ab, ad->denied, aa_file_perm_chrs, PERMS_CHRS_MASK, aa_file_perm_names, PERMS_NAMES_MASK); } audit_log_format(ab, " peer="); aa_label_xaudit(ab, labels_ns(ad->subj_label), ad->peer, FLAGS_NONE, GFP_ATOMIC); } /** * aa_apply_modes_to_perms - apply namespace and profile flags to perms * @profile: that perms where computed from * @perms: perms to apply mode modifiers to * * TODO: split into profile and ns based flags for when accumulating perms */ void aa_apply_modes_to_perms(struct aa_profile *profile, struct aa_perms *perms) { switch (AUDIT_MODE(profile)) { case AUDIT_ALL: perms->audit = ALL_PERMS_MASK; fallthrough; case AUDIT_NOQUIET: perms->quiet = 0; break; case AUDIT_QUIET: perms->audit = 0; fallthrough; case AUDIT_QUIET_DENIED: perms->quiet = ALL_PERMS_MASK; break; } if (KILL_MODE(profile)) perms->kill = ALL_PERMS_MASK; else if (COMPLAIN_MODE(profile)) perms->complain = ALL_PERMS_MASK; else if (USER_MODE(profile)) perms->prompt = ALL_PERMS_MASK; } void aa_profile_match_label(struct aa_profile *profile, struct aa_ruleset *rules, struct aa_label *label, int type, u32 request, struct aa_perms *perms) { /* TODO: doesn't yet handle extended types */ aa_state_t state; state = aa_dfa_next(rules->policy->dfa, rules->policy->start[AA_CLASS_LABEL], type); aa_label_match(profile, rules, label, state, false, request, perms); } /* currently unused */ int aa_profile_label_perm(struct aa_profile *profile, struct aa_profile *target, u32 request, int type, u32 *deny, struct apparmor_audit_data *ad) { struct aa_ruleset *rules = list_first_entry(&profile->rules, typeof(*rules), list); struct aa_perms perms; ad->peer = &target->label; ad->request = request; aa_profile_match_label(profile, rules, &target->label, type, request, &perms); aa_apply_modes_to_perms(profile, &perms); *deny |= request & perms.deny; return aa_check_perms(profile, &perms, request, ad, aa_audit_perms_cb); } /** * aa_check_perms - do audit mode selection based on perms set * @profile: profile being checked * @perms: perms computed for the request * @request: requested perms * @ad: initialized audit structure (MAY BE NULL if not auditing) * @cb: callback fn for type specific fields (MAY BE NULL) * * Returns: 0 if permission else error code * * Note: profile audit modes need to be set before calling by setting the * perm masks appropriately. * * If not auditing then complain mode is not enabled and the * error code will indicate whether there was an explicit deny * with a positive value. */ int aa_check_perms(struct aa_profile *profile, struct aa_perms *perms, u32 request, struct apparmor_audit_data *ad, void (*cb)(struct audit_buffer *, void *)) { int type, error; u32 denied = request & (~perms->allow | perms->deny); if (likely(!denied)) { /* mask off perms that are not being force audited */ request &= perms->audit; if (!request || !ad) return 0; type = AUDIT_APPARMOR_AUDIT; error = 0; } else { error = -EACCES; if (denied & perms->kill) type = AUDIT_APPARMOR_KILL; else if (denied == (denied & perms->complain)) type = AUDIT_APPARMOR_ALLOWED; else type = AUDIT_APPARMOR_DENIED; if (denied == (denied & perms->hide)) error = -ENOENT; denied &= ~perms->quiet; if (!ad || !denied) return error; } if (ad) { ad->subj_label = &profile->label; ad->request = request; ad->denied = denied; ad->error = error; aa_audit_msg(type, ad, cb); } if (type == AUDIT_APPARMOR_ALLOWED) error = 0; return error; } /** * aa_policy_init - initialize a policy structure * @policy: policy to initialize (NOT NULL) * @prefix: prefix name if any is required. (MAYBE NULL) * @name: name of the policy, init will make a copy of it (NOT NULL) * @gfp: allocation mode * * Note: this fn creates a copy of strings passed in * * Returns: true if policy init successful */ bool aa_policy_init(struct aa_policy *policy, const char *prefix, const char *name, gfp_t gfp) { char *hname; /* freed by policy_free */ if (prefix) { hname = aa_str_alloc(strlen(prefix) + strlen(name) + 3, gfp); if (hname) sprintf(hname, "%s//%s", prefix, name); } else { hname = aa_str_alloc(strlen(name) + 1, gfp); if (hname) strcpy(hname, name); } if (!hname) return false; policy->hname = hname; /* base.name is a substring of fqname */ policy->name = basename(policy->hname); INIT_LIST_HEAD(&policy->list); INIT_LIST_HEAD(&policy->profiles); return true; } /** * aa_policy_destroy - free the elements referenced by @policy * @policy: policy that is to have its elements freed (NOT NULL) */ void aa_policy_destroy(struct aa_policy *policy) { AA_BUG(on_list_rcu(&policy->profiles)); AA_BUG(on_list_rcu(&policy->list)); /* don't free name as its a subset of hname */ aa_put_str(policy->hname); } |
16167 16187 16198 16170 16213 16204 16196 16377 16374 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | // SPDX-License-Identifier: GPL-2.0-only /* * AppArmor security module * * This file contains AppArmor network mediation * * Copyright (C) 1998-2008 Novell/SUSE * Copyright 2009-2017 Canonical Ltd. */ #include "include/apparmor.h" #include "include/audit.h" #include "include/cred.h" #include "include/label.h" #include "include/net.h" #include "include/policy.h" #include "include/secid.h" #include "net_names.h" struct aa_sfs_entry aa_sfs_entry_network[] = { AA_SFS_FILE_STRING("af_mask", AA_SFS_AF_MASK), { } }; static const char * const net_mask_names[] = { "unknown", "send", "receive", "unknown", "create", "shutdown", "connect", "unknown", "setattr", "getattr", "setcred", "getcred", "chmod", "chown", "chgrp", "lock", "mmap", "mprot", "unknown", "unknown", "accept", "bind", "listen", "unknown", "setopt", "getopt", "unknown", "unknown", "unknown", "unknown", "unknown", "unknown", }; /* audit callback for net specific fields */ void audit_net_cb(struct audit_buffer *ab, void *va) { struct common_audit_data *sa = va; struct apparmor_audit_data *ad = aad(sa); if (address_family_names[sa->u.net->family]) audit_log_format(ab, " family=\"%s\"", address_family_names[sa->u.net->family]); else audit_log_format(ab, " family=\"unknown(%d)\"", sa->u.net->family); if (sock_type_names[ad->net.type]) audit_log_format(ab, " sock_type=\"%s\"", sock_type_names[ad->net.type]); else audit_log_format(ab, " sock_type=\"unknown(%d)\"", ad->net.type); audit_log_format(ab, " protocol=%d", ad->net.protocol); if (ad->request & NET_PERMS_MASK) { audit_log_format(ab, " requested_mask="); aa_audit_perm_mask(ab, ad->request, NULL, 0, net_mask_names, NET_PERMS_MASK); if (ad->denied & NET_PERMS_MASK) { audit_log_format(ab, " denied_mask="); aa_audit_perm_mask(ab, ad->denied, NULL, 0, net_mask_names, NET_PERMS_MASK); } } if (ad->peer) { audit_log_format(ab, " peer="); aa_label_xaudit(ab, labels_ns(ad->subj_label), ad->peer, FLAGS_NONE, GFP_ATOMIC); } } /* Generic af perm */ int aa_profile_af_perm(struct aa_profile *profile, struct apparmor_audit_data *ad, u32 request, u16 family, int type) { struct aa_ruleset *rules = list_first_entry(&profile->rules, typeof(*rules), list); struct aa_perms perms = { }; aa_state_t state; __be16 buffer[2]; AA_BUG(family >= AF_MAX); AA_BUG(type < 0 || type >= SOCK_MAX); if (profile_unconfined(profile)) return 0; state = RULE_MEDIATES(rules, AA_CLASS_NET); if (!state) return 0; buffer[0] = cpu_to_be16(family); buffer[1] = cpu_to_be16((u16) type); state = aa_dfa_match_len(rules->policy->dfa, state, (char *) &buffer, 4); perms = *aa_lookup_perms(rules->policy, state); aa_apply_modes_to_perms(profile, &perms); return aa_check_perms(profile, &perms, request, ad, audit_net_cb); } int aa_af_perm(const struct cred *subj_cred, struct aa_label *label, const char *op, u32 request, u16 family, int type, int protocol) { struct aa_profile *profile; DEFINE_AUDIT_NET(ad, op, NULL, family, type, protocol); return fn_for_each_confined(label, profile, aa_profile_af_perm(profile, &ad, request, family, type)); } static int aa_label_sk_perm(const struct cred *subj_cred, struct aa_label *label, const char *op, u32 request, struct sock *sk) { struct aa_sk_ctx *ctx = SK_CTX(sk); int error = 0; AA_BUG(!label); AA_BUG(!sk); if (ctx->label != kernel_t && !unconfined(label)) { struct aa_profile *profile; DEFINE_AUDIT_SK(ad, op, sk); ad.subj_cred = subj_cred; error = fn_for_each_confined(label, profile, aa_profile_af_sk_perm(profile, &ad, request, sk)); } return error; } int aa_sk_perm(const char *op, u32 request, struct sock *sk) { struct aa_label *label; int error; AA_BUG(!sk); AA_BUG(in_interrupt()); /* TODO: switch to begin_current_label ???? */ label = begin_current_label_crit_section(); error = aa_label_sk_perm(current_cred(), label, op, request, sk); end_current_label_crit_section(label); return error; } int aa_sock_file_perm(const struct cred *subj_cred, struct aa_label *label, const char *op, u32 request, struct socket *sock) { AA_BUG(!label); AA_BUG(!sock); AA_BUG(!sock->sk); return aa_label_sk_perm(subj_cred, label, op, request, sock->sk); } #ifdef CONFIG_NETWORK_SECMARK static int apparmor_secmark_init(struct aa_secmark *secmark) { struct aa_label *label; if (secmark->label[0] == '*') { secmark->secid = AA_SECID_WILDCARD; return 0; } label = aa_label_strn_parse(&root_ns->unconfined->label, secmark->label, strlen(secmark->label), GFP_ATOMIC, false, false); if (IS_ERR(label)) return PTR_ERR(label); secmark->secid = label->secid; return 0; } static int aa_secmark_perm(struct aa_profile *profile, u32 request, u32 secid, struct apparmor_audit_data *ad) { int i, ret; struct aa_perms perms = { }; struct aa_ruleset *rules = list_first_entry(&profile->rules, typeof(*rules), list); if (rules->secmark_count == 0) return 0; for (i = 0; i < rules->secmark_count; i++) { if (!rules->secmark[i].secid) { ret = apparmor_secmark_init(&rules->secmark[i]); if (ret) return ret; } if (rules->secmark[i].secid == secid || rules->secmark[i].secid == AA_SECID_WILDCARD) { if (rules->secmark[i].deny) perms.deny = ALL_PERMS_MASK; else perms.allow = ALL_PERMS_MASK; if (rules->secmark[i].audit) perms.audit = ALL_PERMS_MASK; } } aa_apply_modes_to_perms(profile, &perms); return aa_check_perms(profile, &perms, request, ad, audit_net_cb); } int apparmor_secmark_check(struct aa_label *label, char *op, u32 request, u32 secid, const struct sock *sk) { struct aa_profile *profile; DEFINE_AUDIT_SK(ad, op, sk); return fn_for_each_confined(label, profile, aa_secmark_perm(profile, request, secid, &ad)); } #endif |
3 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | // SPDX-License-Identifier: GPL-2.0-only /* * iptables module for DCCP protocol header matching * * (C) 2005 by Harald Welte <laforge@netfilter.org> */ #include <linux/module.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <net/ip.h> #include <linux/dccp.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_dccp.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); MODULE_DESCRIPTION("Xtables: DCCP protocol packet match"); MODULE_ALIAS("ipt_dccp"); MODULE_ALIAS("ip6t_dccp"); #define DCCHECK(cond, option, flag, invflag) (!((flag) & (option)) \ || (!!((invflag) & (option)) ^ (cond))) static unsigned char *dccp_optbuf; static DEFINE_SPINLOCK(dccp_buflock); static inline bool dccp_find_option(u_int8_t option, const struct sk_buff *skb, unsigned int protoff, const struct dccp_hdr *dh, bool *hotdrop) { /* tcp.doff is only 4 bits, ie. max 15 * 4 bytes */ const unsigned char *op; unsigned int optoff = __dccp_hdr_len(dh); unsigned int optlen = dh->dccph_doff*4 - __dccp_hdr_len(dh); unsigned int i; if (dh->dccph_doff * 4 < __dccp_hdr_len(dh)) goto invalid; if (!optlen) return false; spin_lock_bh(&dccp_buflock); op = skb_header_pointer(skb, protoff + optoff, optlen, dccp_optbuf); if (op == NULL) { /* If we don't have the whole header, drop packet. */ goto partial; } for (i = 0; i < optlen; ) { if (op[i] == option) { spin_unlock_bh(&dccp_buflock); return true; } if (op[i] < 2) i++; else i += op[i+1]?:1; } spin_unlock_bh(&dccp_buflock); return false; partial: spin_unlock_bh(&dccp_buflock); invalid: *hotdrop = true; return false; } static inline bool match_types(const struct dccp_hdr *dh, u_int16_t typemask) { return typemask & (1 << dh->dccph_type); } static inline bool match_option(u_int8_t option, const struct sk_buff *skb, unsigned int protoff, const struct dccp_hdr *dh, bool *hotdrop) { return dccp_find_option(option, skb, protoff, dh, hotdrop); } static bool dccp_mt(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_dccp_info *info = par->matchinfo; const struct dccp_hdr *dh; struct dccp_hdr _dh; if (par->fragoff != 0) return false; dh = skb_header_pointer(skb, par->thoff, sizeof(_dh), &_dh); if (dh == NULL) { par->hotdrop = true; return false; } return DCCHECK(ntohs(dh->dccph_sport) >= info->spts[0] && ntohs(dh->dccph_sport) <= info->spts[1], XT_DCCP_SRC_PORTS, info->flags, info->invflags) && DCCHECK(ntohs(dh->dccph_dport) >= info->dpts[0] && ntohs(dh->dccph_dport) <= info->dpts[1], XT_DCCP_DEST_PORTS, info->flags, info->invflags) && DCCHECK(match_types(dh, info->typemask), XT_DCCP_TYPE, info->flags, info->invflags) && DCCHECK(match_option(info->option, skb, par->thoff, dh, &par->hotdrop), XT_DCCP_OPTION, info->flags, info->invflags); } static int dccp_mt_check(const struct xt_mtchk_param *par) { const struct xt_dccp_info *info = par->matchinfo; if (info->flags & ~XT_DCCP_VALID_FLAGS) return -EINVAL; if (info->invflags & ~XT_DCCP_VALID_FLAGS) return -EINVAL; if (info->invflags & ~info->flags) return -EINVAL; return 0; } static struct xt_match dccp_mt_reg[] __read_mostly = { { .name = "dccp", .family = NFPROTO_IPV4, .checkentry = dccp_mt_check, .match = dccp_mt, .matchsize = sizeof(struct xt_dccp_info), .proto = IPPROTO_DCCP, .me = THIS_MODULE, }, { .name = "dccp", .family = NFPROTO_IPV6, .checkentry = dccp_mt_check, .match = dccp_mt, .matchsize = sizeof(struct xt_dccp_info), .proto = IPPROTO_DCCP, .me = THIS_MODULE, }, }; static int __init dccp_mt_init(void) { int ret; /* doff is 8 bits, so the maximum option size is (4*256). Don't put * this in BSS since DaveM is worried about locked TLB's for kernel * BSS. */ dccp_optbuf = kmalloc(256 * 4, GFP_KERNEL); if (!dccp_optbuf) return -ENOMEM; ret = xt_register_matches(dccp_mt_reg, ARRAY_SIZE(dccp_mt_reg)); if (ret) goto out_kfree; return ret; out_kfree: kfree(dccp_optbuf); return ret; } static void __exit dccp_mt_exit(void) { xt_unregister_matches(dccp_mt_reg, ARRAY_SIZE(dccp_mt_reg)); kfree(dccp_optbuf); } module_init(dccp_mt_init); module_exit(dccp_mt_exit); |
1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 | // SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/slab.h> #include <net/ax25.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/tcp_states.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <net/rose.h> static int rose_create_facilities(unsigned char *buffer, struct rose_sock *rose); /* * This routine purges all of the queues of frames. */ void rose_clear_queues(struct sock *sk) { skb_queue_purge(&sk->sk_write_queue); skb_queue_purge(&rose_sk(sk)->ack_queue); } /* * This routine purges the input queue of those frames that have been * acknowledged. This replaces the boxes labelled "V(a) <- N(r)" on the * SDL diagram. */ void rose_frames_acked(struct sock *sk, unsigned short nr) { struct sk_buff *skb; struct rose_sock *rose = rose_sk(sk); /* * Remove all the ack-ed frames from the ack queue. */ if (rose->va != nr) { while (skb_peek(&rose->ack_queue) != NULL && rose->va != nr) { skb = skb_dequeue(&rose->ack_queue); kfree_skb(skb); rose->va = (rose->va + 1) % ROSE_MODULUS; } } } void rose_requeue_frames(struct sock *sk) { struct sk_buff *skb, *skb_prev = NULL; /* * Requeue all the un-ack-ed frames on the output queue to be picked * up by rose_kick. This arrangement handles the possibility of an * empty output queue. */ while ((skb = skb_dequeue(&rose_sk(sk)->ack_queue)) != NULL) { if (skb_prev == NULL) skb_queue_head(&sk->sk_write_queue, skb); else skb_append(skb_prev, skb, &sk->sk_write_queue); skb_prev = skb; } } /* * Validate that the value of nr is between va and vs. Return true or * false for testing. */ int rose_validate_nr(struct sock *sk, unsigned short nr) { struct rose_sock *rose = rose_sk(sk); unsigned short vc = rose->va; while (vc != rose->vs) { if (nr == vc) return 1; vc = (vc + 1) % ROSE_MODULUS; } return nr == rose->vs; } /* * This routine is called when the packet layer internally generates a * control frame. */ void rose_write_internal(struct sock *sk, int frametype) { struct rose_sock *rose = rose_sk(sk); struct sk_buff *skb; unsigned char *dptr; unsigned char lci1, lci2; int maxfaclen = 0; int len, faclen; int reserve; reserve = AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + 1; len = ROSE_MIN_LEN; switch (frametype) { case ROSE_CALL_REQUEST: len += 1 + ROSE_ADDR_LEN + ROSE_ADDR_LEN; maxfaclen = 256; break; case ROSE_CALL_ACCEPTED: case ROSE_CLEAR_REQUEST: case ROSE_RESET_REQUEST: len += 2; break; } skb = alloc_skb(reserve + len + maxfaclen, GFP_ATOMIC); if (!skb) return; /* * Space for AX.25 header and PID. */ skb_reserve(skb, reserve); dptr = skb_put(skb, len); lci1 = (rose->lci >> 8) & 0x0F; lci2 = (rose->lci >> 0) & 0xFF; switch (frametype) { case ROSE_CALL_REQUEST: *dptr++ = ROSE_GFI | lci1; *dptr++ = lci2; *dptr++ = frametype; *dptr++ = ROSE_CALL_REQ_ADDR_LEN_VAL; memcpy(dptr, &rose->dest_addr, ROSE_ADDR_LEN); dptr += ROSE_ADDR_LEN; memcpy(dptr, &rose->source_addr, ROSE_ADDR_LEN); dptr += ROSE_ADDR_LEN; faclen = rose_create_facilities(dptr, rose); skb_put(skb, faclen); dptr += faclen; break; case ROSE_CALL_ACCEPTED: *dptr++ = ROSE_GFI | lci1; *dptr++ = lci2; *dptr++ = frametype; *dptr++ = 0x00; /* Address length */ *dptr++ = 0; /* Facilities length */ break; case ROSE_CLEAR_REQUEST: *dptr++ = ROSE_GFI | lci1; *dptr++ = lci2; *dptr++ = frametype; *dptr++ = rose->cause; *dptr++ = rose->diagnostic; break; case ROSE_RESET_REQUEST: *dptr++ = ROSE_GFI | lci1; *dptr++ = lci2; *dptr++ = frametype; *dptr++ = ROSE_DTE_ORIGINATED; *dptr++ = 0; break; case ROSE_RR: case ROSE_RNR: *dptr++ = ROSE_GFI | lci1; *dptr++ = lci2; *dptr = frametype; *dptr++ |= (rose->vr << 5) & 0xE0; break; case ROSE_CLEAR_CONFIRMATION: case ROSE_RESET_CONFIRMATION: *dptr++ = ROSE_GFI | lci1; *dptr++ = lci2; *dptr++ = frametype; break; default: printk(KERN_ERR "ROSE: rose_write_internal - invalid frametype %02X\n", frametype); kfree_skb(skb); return; } rose_transmit_link(skb, rose->neighbour); } int rose_decode(struct sk_buff *skb, int *ns, int *nr, int *q, int *d, int *m) { unsigned char *frame; frame = skb->data; *ns = *nr = *q = *d = *m = 0; switch (frame[2]) { case ROSE_CALL_REQUEST: case ROSE_CALL_ACCEPTED: case ROSE_CLEAR_REQUEST: case ROSE_CLEAR_CONFIRMATION: case ROSE_RESET_REQUEST: case ROSE_RESET_CONFIRMATION: return frame[2]; default: break; } if ((frame[2] & 0x1F) == ROSE_RR || (frame[2] & 0x1F) == ROSE_RNR) { *nr = (frame[2] >> 5) & 0x07; return frame[2] & 0x1F; } if ((frame[2] & 0x01) == ROSE_DATA) { *q = (frame[0] & ROSE_Q_BIT) == ROSE_Q_BIT; *d = (frame[0] & ROSE_D_BIT) == ROSE_D_BIT; *m = (frame[2] & ROSE_M_BIT) == ROSE_M_BIT; *nr = (frame[2] >> 5) & 0x07; *ns = (frame[2] >> 1) & 0x07; return ROSE_DATA; } return ROSE_ILLEGAL; } static int rose_parse_national(unsigned char *p, struct rose_facilities_struct *facilities, int len) { unsigned char *pt; unsigned char l, lg, n = 0; int fac_national_digis_received = 0; do { switch (*p & 0xC0) { case 0x00: if (len < 2) return -1; p += 2; n += 2; len -= 2; break; case 0x40: if (len < 3) return -1; if (*p == FAC_NATIONAL_RAND) facilities->rand = ((p[1] << 8) & 0xFF00) + ((p[2] << 0) & 0x00FF); p += 3; n += 3; len -= 3; break; case 0x80: if (len < 4) return -1; p += 4; n += 4; len -= 4; break; case 0xC0: if (len < 2) return -1; l = p[1]; if (len < 2 + l) return -1; if (*p == FAC_NATIONAL_DEST_DIGI) { if (!fac_national_digis_received) { if (l < AX25_ADDR_LEN) return -1; memcpy(&facilities->source_digis[0], p + 2, AX25_ADDR_LEN); facilities->source_ndigis = 1; } } else if (*p == FAC_NATIONAL_SRC_DIGI) { if (!fac_national_digis_received) { if (l < AX25_ADDR_LEN) return -1; memcpy(&facilities->dest_digis[0], p + 2, AX25_ADDR_LEN); facilities->dest_ndigis = 1; } } else if (*p == FAC_NATIONAL_FAIL_CALL) { if (l < AX25_ADDR_LEN) return -1; memcpy(&facilities->fail_call, p + 2, AX25_ADDR_LEN); } else if (*p == FAC_NATIONAL_FAIL_ADD) { if (l < 1 + ROSE_ADDR_LEN) return -1; memcpy(&facilities->fail_addr, p + 3, ROSE_ADDR_LEN); } else if (*p == FAC_NATIONAL_DIGIS) { if (l % AX25_ADDR_LEN) return -1; fac_national_digis_received = 1; facilities->source_ndigis = 0; facilities->dest_ndigis = 0; for (pt = p + 2, lg = 0 ; lg < l ; pt += AX25_ADDR_LEN, lg += AX25_ADDR_LEN) { if (pt[6] & AX25_HBIT) { if (facilities->dest_ndigis >= ROSE_MAX_DIGIS) return -1; memcpy(&facilities->dest_digis[facilities->dest_ndigis++], pt, AX25_ADDR_LEN); } else { if (facilities->source_ndigis >= ROSE_MAX_DIGIS) return -1; memcpy(&facilities->source_digis[facilities->source_ndigis++], pt, AX25_ADDR_LEN); } } } p += l + 2; n += l + 2; len -= l + 2; break; } } while (*p != 0x00 && len > 0); return n; } static int rose_parse_ccitt(unsigned char *p, struct rose_facilities_struct *facilities, int len) { unsigned char l, n = 0; char callsign[11]; do { switch (*p & 0xC0) { case 0x00: if (len < 2) return -1; p += 2; n += 2; len -= 2; break; case 0x40: if (len < 3) return -1; p += 3; n += 3; len -= 3; break; case 0x80: if (len < 4) return -1; p += 4; n += 4; len -= 4; break; case 0xC0: if (len < 2) return -1; l = p[1]; /* Prevent overflows*/ if (l < 10 || l > 20) return -1; if (*p == FAC_CCITT_DEST_NSAP) { memcpy(&facilities->source_addr, p + 7, ROSE_ADDR_LEN); memcpy(callsign, p + 12, l - 10); callsign[l - 10] = '\0'; asc2ax(&facilities->source_call, callsign); } if (*p == FAC_CCITT_SRC_NSAP) { memcpy(&facilities->dest_addr, p + 7, ROSE_ADDR_LEN); memcpy(callsign, p + 12, l - 10); callsign[l - 10] = '\0'; asc2ax(&facilities->dest_call, callsign); } p += l + 2; n += l + 2; len -= l + 2; break; } } while (*p != 0x00 && len > 0); return n; } int rose_parse_facilities(unsigned char *p, unsigned packet_len, struct rose_facilities_struct *facilities) { int facilities_len, len; facilities_len = *p++; if (facilities_len == 0 || (unsigned int)facilities_len > packet_len) return 0; while (facilities_len >= 3 && *p == 0x00) { facilities_len--; p++; switch (*p) { case FAC_NATIONAL: /* National */ len = rose_parse_national(p + 1, facilities, facilities_len - 1); break; case FAC_CCITT: /* CCITT */ len = rose_parse_ccitt(p + 1, facilities, facilities_len - 1); break; default: printk(KERN_DEBUG "ROSE: rose_parse_facilities - unknown facilities family %02X\n", *p); len = 1; break; } if (len < 0) return 0; if (WARN_ON(len >= facilities_len)) return 0; facilities_len -= len + 1; p += len + 1; } return facilities_len == 0; } static int rose_create_facilities(unsigned char *buffer, struct rose_sock *rose) { unsigned char *p = buffer + 1; char *callsign; char buf[11]; int len, nb; /* National Facilities */ if (rose->rand != 0 || rose->source_ndigis == 1 || rose->dest_ndigis == 1) { *p++ = 0x00; *p++ = FAC_NATIONAL; if (rose->rand != 0) { *p++ = FAC_NATIONAL_RAND; *p++ = (rose->rand >> 8) & 0xFF; *p++ = (rose->rand >> 0) & 0xFF; } /* Sent before older facilities */ if ((rose->source_ndigis > 0) || (rose->dest_ndigis > 0)) { int maxdigi = 0; *p++ = FAC_NATIONAL_DIGIS; *p++ = AX25_ADDR_LEN * (rose->source_ndigis + rose->dest_ndigis); for (nb = 0 ; nb < rose->source_ndigis ; nb++) { if (++maxdigi >= ROSE_MAX_DIGIS) break; memcpy(p, &rose->source_digis[nb], AX25_ADDR_LEN); p[6] |= AX25_HBIT; p += AX25_ADDR_LEN; } for (nb = 0 ; nb < rose->dest_ndigis ; nb++) { if (++maxdigi >= ROSE_MAX_DIGIS) break; memcpy(p, &rose->dest_digis[nb], AX25_ADDR_LEN); p[6] &= ~AX25_HBIT; p += AX25_ADDR_LEN; } } /* For compatibility */ if (rose->source_ndigis > 0) { *p++ = FAC_NATIONAL_SRC_DIGI; *p++ = AX25_ADDR_LEN; memcpy(p, &rose->source_digis[0], AX25_ADDR_LEN); p += AX25_ADDR_LEN; } /* For compatibility */ if (rose->dest_ndigis > 0) { *p++ = FAC_NATIONAL_DEST_DIGI; *p++ = AX25_ADDR_LEN; memcpy(p, &rose->dest_digis[0], AX25_ADDR_LEN); p += AX25_ADDR_LEN; } } *p++ = 0x00; *p++ = FAC_CCITT; *p++ = FAC_CCITT_DEST_NSAP; callsign = ax2asc(buf, &rose->dest_call); *p++ = strlen(callsign) + 10; *p++ = (strlen(callsign) + 9) * 2; /* ??? */ *p++ = 0x47; *p++ = 0x00; *p++ = 0x11; *p++ = ROSE_ADDR_LEN * 2; memcpy(p, &rose->dest_addr, ROSE_ADDR_LEN); p += ROSE_ADDR_LEN; memcpy(p, callsign, strlen(callsign)); p += strlen(callsign); *p++ = FAC_CCITT_SRC_NSAP; callsign = ax2asc(buf, &rose->source_call); *p++ = strlen(callsign) + 10; *p++ = (strlen(callsign) + 9) * 2; /* ??? */ *p++ = 0x47; *p++ = 0x00; *p++ = 0x11; *p++ = ROSE_ADDR_LEN * 2; memcpy(p, &rose->source_addr, ROSE_ADDR_LEN); p += ROSE_ADDR_LEN; memcpy(p, callsign, strlen(callsign)); p += strlen(callsign); len = p - buffer; buffer[0] = len - 1; return len; } void rose_disconnect(struct sock *sk, int reason, int cause, int diagnostic) { struct rose_sock *rose = rose_sk(sk); rose_stop_timer(sk); rose_stop_idletimer(sk); rose_clear_queues(sk); rose->lci = 0; rose->state = ROSE_STATE_0; if (cause != -1) rose->cause = cause; if (diagnostic != -1) rose->diagnostic = diagnostic; sk->sk_state = TCP_CLOSE; sk->sk_err = reason; sk->sk_shutdown |= SEND_SHUTDOWN; if (!sock_flag(sk, SOCK_DEAD)) { sk->sk_state_change(sk); sock_set_flag(sk, SOCK_DEAD); } } |
10 10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/types.h> #include <linux/module.h> #include <linux/crc64.h> #include <linux/err.h> #include <linux/init.h> #include <crypto/hash.h> #include <crypto/algapi.h> #include <linux/static_key.h> #include <linux/notifier.h> static struct crypto_shash __rcu *crc64_rocksoft_tfm; static DEFINE_STATIC_KEY_TRUE(crc64_rocksoft_fallback); static DEFINE_MUTEX(crc64_rocksoft_mutex); static struct work_struct crc64_rocksoft_rehash_work; static int crc64_rocksoft_notify(struct notifier_block *self, unsigned long val, void *data) { struct crypto_alg *alg = data; if (val != CRYPTO_MSG_ALG_LOADED || strcmp(alg->cra_name, CRC64_ROCKSOFT_STRING)) return NOTIFY_DONE; schedule_work(&crc64_rocksoft_rehash_work); return NOTIFY_OK; } static void crc64_rocksoft_rehash(struct work_struct *work) { struct crypto_shash *new, *old; mutex_lock(&crc64_rocksoft_mutex); old = rcu_dereference_protected(crc64_rocksoft_tfm, lockdep_is_held(&crc64_rocksoft_mutex)); new = crypto_alloc_shash(CRC64_ROCKSOFT_STRING, 0, 0); if (IS_ERR(new)) { mutex_unlock(&crc64_rocksoft_mutex); return; } rcu_assign_pointer(crc64_rocksoft_tfm, new); mutex_unlock(&crc64_rocksoft_mutex); if (old) { synchronize_rcu(); crypto_free_shash(old); } else { static_branch_disable(&crc64_rocksoft_fallback); } } static struct notifier_block crc64_rocksoft_nb = { .notifier_call = crc64_rocksoft_notify, }; u64 crc64_rocksoft_update(u64 crc, const unsigned char *buffer, size_t len) { struct { struct shash_desc shash; u64 crc; } desc; int err; if (static_branch_unlikely(&crc64_rocksoft_fallback)) return crc64_rocksoft_generic(crc, buffer, len); rcu_read_lock(); desc.shash.tfm = rcu_dereference(crc64_rocksoft_tfm); desc.crc = crc; err = crypto_shash_update(&desc.shash, buffer, len); rcu_read_unlock(); BUG_ON(err); return desc.crc; } EXPORT_SYMBOL_GPL(crc64_rocksoft_update); u64 crc64_rocksoft(const unsigned char *buffer, size_t len) { return crc64_rocksoft_update(0, buffer, len); } EXPORT_SYMBOL_GPL(crc64_rocksoft); static int __init crc64_rocksoft_mod_init(void) { INIT_WORK(&crc64_rocksoft_rehash_work, crc64_rocksoft_rehash); crypto_register_notifier(&crc64_rocksoft_nb); crc64_rocksoft_rehash(&crc64_rocksoft_rehash_work); return 0; } static void __exit crc64_rocksoft_mod_fini(void) { crypto_unregister_notifier(&crc64_rocksoft_nb); cancel_work_sync(&crc64_rocksoft_rehash_work); crypto_free_shash(rcu_dereference_protected(crc64_rocksoft_tfm, 1)); } module_init(crc64_rocksoft_mod_init); module_exit(crc64_rocksoft_mod_fini); static int crc64_rocksoft_transform_show(char *buffer, const struct kernel_param *kp) { struct crypto_shash *tfm; int len; if (static_branch_unlikely(&crc64_rocksoft_fallback)) return sprintf(buffer, "fallback\n"); rcu_read_lock(); tfm = rcu_dereference(crc64_rocksoft_tfm); len = snprintf(buffer, PAGE_SIZE, "%s\n", crypto_shash_driver_name(tfm)); rcu_read_unlock(); return len; } module_param_call(transform, NULL, crc64_rocksoft_transform_show, NULL, 0444); MODULE_AUTHOR("Keith Busch <kbusch@kernel.org>"); MODULE_DESCRIPTION("Rocksoft model CRC64 calculation (library API)"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crc64"); |
2 29 5 5 30 5 30 6 30 30 30 30 30 5 30 29 30 30 41 41 1 48 47 48 22 41 23 46 35 29 1 11 2 6 4 1 5 15 11 4 7 8 8 8 15 15 1 14 11 4 11 4 13 12 13 7 7 6 2 7 9 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | // SPDX-License-Identifier: GPL-2.0-or-later /* * inet fragments management * * Authors: Pavel Emelyanov <xemul@openvz.org> * Started as consolidation of ipv4/ip_fragment.c, * ipv6/reassembly. and ipv6 nf conntrack reassembly */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/rhashtable.h> #include <net/sock.h> #include <net/inet_frag.h> #include <net/inet_ecn.h> #include <net/ip.h> #include <net/ipv6.h> #include "../core/sock_destructor.h" /* Use skb->cb to track consecutive/adjacent fragments coming at * the end of the queue. Nodes in the rb-tree queue will * contain "runs" of one or more adjacent fragments. * * Invariants: * - next_frag is NULL at the tail of a "run"; * - the head of a "run" has the sum of all fragment lengths in frag_run_len. */ struct ipfrag_skb_cb { union { struct inet_skb_parm h4; struct inet6_skb_parm h6; }; struct sk_buff *next_frag; int frag_run_len; int ip_defrag_offset; }; #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) static void fragcb_clear(struct sk_buff *skb) { RB_CLEAR_NODE(&skb->rbnode); FRAG_CB(skb)->next_frag = NULL; FRAG_CB(skb)->frag_run_len = skb->len; } /* Append skb to the last "run". */ static void fragrun_append_to_last(struct inet_frag_queue *q, struct sk_buff *skb) { fragcb_clear(skb); FRAG_CB(q->last_run_head)->frag_run_len += skb->len; FRAG_CB(q->fragments_tail)->next_frag = skb; q->fragments_tail = skb; } /* Create a new "run" with the skb. */ static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) { BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); fragcb_clear(skb); if (q->last_run_head) rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, &q->last_run_head->rbnode.rb_right); else rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); rb_insert_color(&skb->rbnode, &q->rb_fragments); q->fragments_tail = skb; q->last_run_head = skb; } /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements * Value : 0xff if frame should be dropped. * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field */ const u8 ip_frag_ecn_table[16] = { /* at least one fragment had CE, and others ECT_0 or ECT_1 */ [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, /* invalid combinations : drop frame */ [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, }; EXPORT_SYMBOL(ip_frag_ecn_table); int inet_frags_init(struct inet_frags *f) { f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, NULL); if (!f->frags_cachep) return -ENOMEM; refcount_set(&f->refcnt, 1); init_completion(&f->completion); return 0; } EXPORT_SYMBOL(inet_frags_init); void inet_frags_fini(struct inet_frags *f) { if (refcount_dec_and_test(&f->refcnt)) complete(&f->completion); wait_for_completion(&f->completion); kmem_cache_destroy(f->frags_cachep); f->frags_cachep = NULL; } EXPORT_SYMBOL(inet_frags_fini); /* called from rhashtable_free_and_destroy() at netns_frags dismantle */ static void inet_frags_free_cb(void *ptr, void *arg) { struct inet_frag_queue *fq = ptr; int count; count = del_timer_sync(&fq->timer) ? 1 : 0; spin_lock_bh(&fq->lock); fq->flags |= INET_FRAG_DROP; if (!(fq->flags & INET_FRAG_COMPLETE)) { fq->flags |= INET_FRAG_COMPLETE; count++; } else if (fq->flags & INET_FRAG_HASH_DEAD) { count++; } spin_unlock_bh(&fq->lock); if (refcount_sub_and_test(count, &fq->refcnt)) inet_frag_destroy(fq); } static LLIST_HEAD(fqdir_free_list); static void fqdir_free_fn(struct work_struct *work) { struct llist_node *kill_list; struct fqdir *fqdir, *tmp; struct inet_frags *f; /* Atomically snapshot the list of fqdirs to free */ kill_list = llist_del_all(&fqdir_free_list); /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu) * have completed, since they need to dereference fqdir. * Would it not be nice to have kfree_rcu_barrier() ? :) */ rcu_barrier(); llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) { f = fqdir->f; if (refcount_dec_and_test(&f->refcnt)) complete(&f->completion); kfree(fqdir); } } static DECLARE_DELAYED_WORK(fqdir_free_work, fqdir_free_fn); static void fqdir_work_fn(struct work_struct *work) { struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work); rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL); if (llist_add(&fqdir->free_list, &fqdir_free_list)) queue_delayed_work(system_wq, &fqdir_free_work, HZ); } int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net) { struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL); int res; if (!fqdir) return -ENOMEM; fqdir->f = f; fqdir->net = net; res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params); if (res < 0) { kfree(fqdir); return res; } refcount_inc(&f->refcnt); *fqdirp = fqdir; return 0; } EXPORT_SYMBOL(fqdir_init); static struct workqueue_struct *inet_frag_wq; static int __init inet_frag_wq_init(void) { inet_frag_wq = create_workqueue("inet_frag_wq"); if (!inet_frag_wq) panic("Could not create inet frag workq"); return 0; } pure_initcall(inet_frag_wq_init); void fqdir_exit(struct fqdir *fqdir) { INIT_WORK(&fqdir->destroy_work, fqdir_work_fn); queue_work(inet_frag_wq, &fqdir->destroy_work); } EXPORT_SYMBOL(fqdir_exit); void inet_frag_kill(struct inet_frag_queue *fq) { if (del_timer(&fq->timer)) refcount_dec(&fq->refcnt); if (!(fq->flags & INET_FRAG_COMPLETE)) { struct fqdir *fqdir = fq->fqdir; fq->flags |= INET_FRAG_COMPLETE; rcu_read_lock(); /* The RCU read lock provides a memory barrier * guaranteeing that if fqdir->dead is false then * the hash table destruction will not start until * after we unlock. Paired with fqdir_pre_exit(). */ if (!READ_ONCE(fqdir->dead)) { rhashtable_remove_fast(&fqdir->rhashtable, &fq->node, fqdir->f->rhash_params); refcount_dec(&fq->refcnt); } else { fq->flags |= INET_FRAG_HASH_DEAD; } rcu_read_unlock(); } } EXPORT_SYMBOL(inet_frag_kill); static void inet_frag_destroy_rcu(struct rcu_head *head) { struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, rcu); struct inet_frags *f = q->fqdir->f; if (f->destructor) f->destructor(q); kmem_cache_free(f->frags_cachep, q); } unsigned int inet_frag_rbtree_purge(struct rb_root *root, enum skb_drop_reason reason) { struct rb_node *p = rb_first(root); unsigned int sum = 0; while (p) { struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); p = rb_next(p); rb_erase(&skb->rbnode, root); while (skb) { struct sk_buff *next = FRAG_CB(skb)->next_frag; sum += skb->truesize; kfree_skb_reason(skb, reason); skb = next; } } return sum; } EXPORT_SYMBOL(inet_frag_rbtree_purge); void inet_frag_destroy(struct inet_frag_queue *q) { unsigned int sum, sum_truesize = 0; enum skb_drop_reason reason; struct inet_frags *f; struct fqdir *fqdir; WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); reason = (q->flags & INET_FRAG_DROP) ? SKB_DROP_REASON_FRAG_REASM_TIMEOUT : SKB_CONSUMED; WARN_ON(del_timer(&q->timer) != 0); /* Release all fragment data. */ fqdir = q->fqdir; f = fqdir->f; sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason); sum = sum_truesize + f->qsize; call_rcu(&q->rcu, inet_frag_destroy_rcu); sub_frag_mem_limit(fqdir, sum); } EXPORT_SYMBOL(inet_frag_destroy); static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir, struct inet_frags *f, void *arg) { struct inet_frag_queue *q; q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); if (!q) return NULL; q->fqdir = fqdir; f->constructor(q, arg); add_frag_mem_limit(fqdir, f->qsize); timer_setup(&q->timer, f->frag_expire, 0); spin_lock_init(&q->lock); refcount_set(&q->refcnt, 3); return q; } static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir, void *arg, struct inet_frag_queue **prev) { struct inet_frags *f = fqdir->f; struct inet_frag_queue *q; q = inet_frag_alloc(fqdir, f, arg); if (!q) { *prev = ERR_PTR(-ENOMEM); return NULL; } mod_timer(&q->timer, jiffies + fqdir->timeout); *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key, &q->node, f->rhash_params); if (*prev) { q->flags |= INET_FRAG_COMPLETE; inet_frag_kill(q); inet_frag_destroy(q); return NULL; } return q; } /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key) { /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */ long high_thresh = READ_ONCE(fqdir->high_thresh); struct inet_frag_queue *fq = NULL, *prev; if (!high_thresh || frag_mem_limit(fqdir) > high_thresh) return NULL; rcu_read_lock(); prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params); if (!prev) fq = inet_frag_create(fqdir, key, &prev); if (!IS_ERR_OR_NULL(prev)) { fq = prev; if (!refcount_inc_not_zero(&fq->refcnt)) fq = NULL; } rcu_read_unlock(); return fq; } EXPORT_SYMBOL(inet_frag_find); int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end) { struct sk_buff *last = q->fragments_tail; /* RFC5722, Section 4, amended by Errata ID : 3089 * When reassembling an IPv6 datagram, if * one or more its constituent fragments is determined to be an * overlapping fragment, the entire datagram (and any constituent * fragments) MUST be silently discarded. * * Duplicates, however, should be ignored (i.e. skb dropped, but the * queue/fragments kept for later reassembly). */ if (!last) fragrun_create(q, skb); /* First fragment. */ else if (FRAG_CB(last)->ip_defrag_offset + last->len < end) { /* This is the common case: skb goes to the end. */ /* Detect and discard overlaps. */ if (offset < FRAG_CB(last)->ip_defrag_offset + last->len) return IPFRAG_OVERLAP; if (offset == FRAG_CB(last)->ip_defrag_offset + last->len) fragrun_append_to_last(q, skb); else fragrun_create(q, skb); } else { /* Binary search. Note that skb can become the first fragment, * but not the last (covered above). */ struct rb_node **rbn, *parent; rbn = &q->rb_fragments.rb_node; do { struct sk_buff *curr; int curr_run_end; parent = *rbn; curr = rb_to_skb(parent); curr_run_end = FRAG_CB(curr)->ip_defrag_offset + FRAG_CB(curr)->frag_run_len; if (end <= FRAG_CB(curr)->ip_defrag_offset) rbn = &parent->rb_left; else if (offset >= curr_run_end) rbn = &parent->rb_right; else if (offset >= FRAG_CB(curr)->ip_defrag_offset && end <= curr_run_end) return IPFRAG_DUP; else return IPFRAG_OVERLAP; } while (*rbn); /* Here we have parent properly set, and rbn pointing to * one of its NULL left/right children. Insert skb. */ fragcb_clear(skb); rb_link_node(&skb->rbnode, parent, rbn); rb_insert_color(&skb->rbnode, &q->rb_fragments); } FRAG_CB(skb)->ip_defrag_offset = offset; return IPFRAG_OK; } EXPORT_SYMBOL(inet_frag_queue_insert); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent) { struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); void (*destructor)(struct sk_buff *); unsigned int orig_truesize = 0; struct sk_buff **nextp = NULL; struct sock *sk = skb->sk; int delta; if (sk && is_skb_wmem(skb)) { /* TX: skb->sk might have been passed as argument to * dst->output and must remain valid until tx completes. * * Move sk to reassembled skb and fix up wmem accounting. */ orig_truesize = skb->truesize; destructor = skb->destructor; } if (head != skb) { fp = skb_clone(skb, GFP_ATOMIC); if (!fp) { head = skb; goto out_restore_sk; } FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; if (RB_EMPTY_NODE(&skb->rbnode)) FRAG_CB(parent)->next_frag = fp; else rb_replace_node(&skb->rbnode, &fp->rbnode, &q->rb_fragments); if (q->fragments_tail == skb) q->fragments_tail = fp; if (orig_truesize) { /* prevent skb_morph from releasing sk */ skb->sk = NULL; skb->destructor = NULL; } skb_morph(skb, head); FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; rb_replace_node(&head->rbnode, &skb->rbnode, &q->rb_fragments); consume_skb(head); head = skb; } WARN_ON(FRAG_CB(head)->ip_defrag_offset != 0); delta = -head->truesize; /* Head of list must not be cloned. */ if (skb_unclone(head, GFP_ATOMIC)) goto out_restore_sk; delta += head->truesize; if (delta) add_frag_mem_limit(q->fqdir, delta); /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; clone = alloc_skb(0, GFP_ATOMIC); if (!clone) goto out_restore_sk; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->data_len = head->data_len - plen; clone->len = clone->data_len; head->truesize += clone->truesize; clone->csum = 0; clone->ip_summed = head->ip_summed; add_frag_mem_limit(q->fqdir, clone->truesize); skb_shinfo(head)->frag_list = clone; nextp = &clone->next; } else { nextp = &skb_shinfo(head)->frag_list; } out_restore_sk: if (orig_truesize) { int ts_delta = head->truesize - orig_truesize; /* if this reassembled skb is fragmented later, * fraglist skbs will get skb->sk assigned from head->sk, * and each frag skb will be released via sock_wfree. * * Update sk_wmem_alloc. */ head->sk = sk; head->destructor = destructor; refcount_add(ts_delta, &sk->sk_wmem_alloc); } return nextp; } EXPORT_SYMBOL(inet_frag_reasm_prepare); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce) { struct sock *sk = is_skb_wmem(head) ? head->sk : NULL; const unsigned int head_truesize = head->truesize; struct sk_buff **nextp = reasm_data; struct rb_node *rbn; struct sk_buff *fp; int sum_truesize; skb_push(head, head->data - skb_network_header(head)); /* Traverse the tree in order, to build frag_list. */ fp = FRAG_CB(head)->next_frag; rbn = rb_next(&head->rbnode); rb_erase(&head->rbnode, &q->rb_fragments); sum_truesize = head->truesize; while (rbn || fp) { /* fp points to the next sk_buff in the current run; * rbn points to the next run. */ /* Go through the current run. */ while (fp) { struct sk_buff *next_frag = FRAG_CB(fp)->next_frag; bool stolen; int delta; sum_truesize += fp->truesize; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); if (try_coalesce && skb_try_coalesce(head, fp, &stolen, &delta)) { kfree_skb_partial(fp, stolen); } else { fp->prev = NULL; memset(&fp->rbnode, 0, sizeof(fp->rbnode)); fp->sk = NULL; head->data_len += fp->len; head->len += fp->len; head->truesize += fp->truesize; *nextp = fp; nextp = &fp->next; } fp = next_frag; } /* Move to the next run. */ if (rbn) { struct rb_node *rbnext = rb_next(rbn); fp = rb_to_skb(rbn); rb_erase(rbn, &q->rb_fragments); rbn = rbnext; } } sub_frag_mem_limit(q->fqdir, sum_truesize); *nextp = NULL; skb_mark_not_on_list(head); head->prev = NULL; head->tstamp = q->stamp; head->tstamp_type = q->tstamp_type; if (sk) refcount_add(sum_truesize - head_truesize, &sk->sk_wmem_alloc); } EXPORT_SYMBOL(inet_frag_reasm_finish); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) { struct sk_buff *head, *skb; head = skb_rb_first(&q->rb_fragments); if (!head) return NULL; skb = FRAG_CB(head)->next_frag; if (skb) rb_replace_node(&head->rbnode, &skb->rbnode, &q->rb_fragments); else rb_erase(&head->rbnode, &q->rb_fragments); memset(&head->rbnode, 0, sizeof(head->rbnode)); barrier(); if (head == q->fragments_tail) q->fragments_tail = NULL; sub_frag_mem_limit(q->fqdir, head->truesize); return head; } EXPORT_SYMBOL(inet_frag_pull_head); |
4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ u16 num_closed_socks; /* closed elements in socks */ u16 incoming_cpu; /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[] __counted_by(max_socks); }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); void reuseport_stop_listen_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); struct sock *reuseport_migrate_sock(struct sock *sk, struct sock *migrating_sk, struct sk_buff *skb); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse && reuse->has_conns) ret = true; rcu_read_unlock(); return ret; } void reuseport_has_conns_set(struct sock *sk); void reuseport_update_incoming_cpu(struct sock *sk, int val); #endif /* _SOCK_REUSEPORT_H */ |
5 4 5 5 5 2 3 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | /* * llc_s_ev.c - Defines SAP component events * * The followed event functions are SAP component events which are described * in 802.2 LLC protocol standard document. * * Copyright (c) 1997 by Procom Technology, Inc. * 2001-2003 by Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * This program can be redistributed or modified under the terms of the * GNU General Public License as published by the Free Software Foundation. * This program is distributed without any warranty or implied warranty * of merchantability or fitness for a particular purpose. * * See the GNU General Public License for more details. */ #include <linux/socket.h> #include <net/sock.h> #include <net/llc_if.h> #include <net/llc_s_ev.h> #include <net/llc_pdu.h> int llc_sap_ev_activation_req(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); return ev->type == LLC_SAP_EV_TYPE_SIMPLE && ev->prim_type == LLC_SAP_EV_ACTIVATION_REQ ? 0 : 1; } int llc_sap_ev_rx_ui(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return ev->type == LLC_SAP_EV_TYPE_PDU && LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_CMD(pdu) == LLC_1_PDU_CMD_UI ? 0 : 1; } int llc_sap_ev_unitdata_req(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); return ev->type == LLC_SAP_EV_TYPE_PRIM && ev->prim == LLC_DATAUNIT_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_sap_ev_xid_req(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); return ev->type == LLC_SAP_EV_TYPE_PRIM && ev->prim == LLC_XID_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_sap_ev_rx_xid_c(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return ev->type == LLC_SAP_EV_TYPE_PDU && LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_CMD(pdu) == LLC_1_PDU_CMD_XID ? 0 : 1; } int llc_sap_ev_rx_xid_r(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return ev->type == LLC_SAP_EV_TYPE_PDU && LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_RSP(pdu) == LLC_1_PDU_CMD_XID ? 0 : 1; } int llc_sap_ev_test_req(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); return ev->type == LLC_SAP_EV_TYPE_PRIM && ev->prim == LLC_TEST_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_sap_ev_rx_test_c(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return ev->type == LLC_SAP_EV_TYPE_PDU && LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_CMD(pdu) == LLC_1_PDU_CMD_TEST ? 0 : 1; } int llc_sap_ev_rx_test_r(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return ev->type == LLC_SAP_EV_TYPE_PDU && LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_RSP(pdu) == LLC_1_PDU_CMD_TEST ? 0 : 1; } int llc_sap_ev_deactivation_req(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); return ev->type == LLC_SAP_EV_TYPE_SIMPLE && ev->prim_type == LLC_SAP_EV_DEACTIVATION_REQ ? 0 : 1; } |
14 14 8 5 4 8 6 2 5 2 2 2 3 1 2 8 1 1 5 4 1 2 3 5 4 1 1 1 2 1 2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net> * Copyright (c) 2012-2014 Pablo Neira Ayuso <pablo@netfilter.org> * * Development of this code funded by Astaro AG (http://www.astaro.com/) */ #include <linux/audit.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/ipv6.h> #include <net/ip.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nf_log.h> #include <linux/netdevice.h> static const char *nft_log_null_prefix = ""; struct nft_log { struct nf_loginfo loginfo; char *prefix; }; static bool audit_ip4(struct audit_buffer *ab, struct sk_buff *skb) { struct iphdr _iph; const struct iphdr *ih; ih = skb_header_pointer(skb, skb_network_offset(skb), sizeof(_iph), &_iph); if (!ih) return false; audit_log_format(ab, " saddr=%pI4 daddr=%pI4 proto=%hhu", &ih->saddr, &ih->daddr, ih->protocol); return true; } static bool audit_ip6(struct audit_buffer *ab, struct sk_buff *skb) { struct ipv6hdr _ip6h; const struct ipv6hdr *ih; u8 nexthdr; __be16 frag_off; ih = skb_header_pointer(skb, skb_network_offset(skb), sizeof(_ip6h), &_ip6h); if (!ih) return false; nexthdr = ih->nexthdr; ipv6_skip_exthdr(skb, skb_network_offset(skb) + sizeof(_ip6h), &nexthdr, &frag_off); audit_log_format(ab, " saddr=%pI6c daddr=%pI6c proto=%hhu", &ih->saddr, &ih->daddr, nexthdr); return true; } static void nft_log_eval_audit(const struct nft_pktinfo *pkt) { struct sk_buff *skb = pkt->skb; struct audit_buffer *ab; int fam = -1; if (!audit_enabled) return; ab = audit_log_start(NULL, GFP_ATOMIC, AUDIT_NETFILTER_PKT); if (!ab) return; audit_log_format(ab, "mark=%#x", skb->mark); switch (nft_pf(pkt)) { case NFPROTO_BRIDGE: switch (eth_hdr(skb)->h_proto) { case htons(ETH_P_IP): fam = audit_ip4(ab, skb) ? NFPROTO_IPV4 : -1; break; case htons(ETH_P_IPV6): fam = audit_ip6(ab, skb) ? NFPROTO_IPV6 : -1; break; } break; case NFPROTO_IPV4: fam = audit_ip4(ab, skb) ? NFPROTO_IPV4 : -1; break; case NFPROTO_IPV6: fam = audit_ip6(ab, skb) ? NFPROTO_IPV6 : -1; break; } if (fam == -1) audit_log_format(ab, " saddr=? daddr=? proto=-1"); audit_log_end(ab); } static void nft_log_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_log *priv = nft_expr_priv(expr); if (priv->loginfo.type == NF_LOG_TYPE_LOG && priv->loginfo.u.log.level == NFT_LOGLEVEL_AUDIT) { nft_log_eval_audit(pkt); return; } nf_log_packet(nft_net(pkt), nft_pf(pkt), nft_hook(pkt), pkt->skb, nft_in(pkt), nft_out(pkt), &priv->loginfo, "%s", priv->prefix); } static const struct nla_policy nft_log_policy[NFTA_LOG_MAX + 1] = { [NFTA_LOG_GROUP] = { .type = NLA_U16 }, [NFTA_LOG_PREFIX] = { .type = NLA_STRING, .len = NF_LOG_PREFIXLEN - 1 }, [NFTA_LOG_SNAPLEN] = { .type = NLA_U32 }, [NFTA_LOG_QTHRESHOLD] = { .type = NLA_U16 }, [NFTA_LOG_LEVEL] = { .type = NLA_U32 }, [NFTA_LOG_FLAGS] = { .type = NLA_U32 }, }; static int nft_log_modprobe(struct net *net, enum nf_log_type t) { switch (t) { case NF_LOG_TYPE_LOG: return nft_request_module(net, "%s", "nf_log_syslog"); case NF_LOG_TYPE_ULOG: return nft_request_module(net, "%s", "nfnetlink_log"); case NF_LOG_TYPE_MAX: break; } return -ENOENT; } static int nft_log_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_log *priv = nft_expr_priv(expr); struct nf_loginfo *li = &priv->loginfo; const struct nlattr *nla; int err; li->type = NF_LOG_TYPE_LOG; if (tb[NFTA_LOG_LEVEL] != NULL && tb[NFTA_LOG_GROUP] != NULL) return -EINVAL; if (tb[NFTA_LOG_GROUP] != NULL) { li->type = NF_LOG_TYPE_ULOG; if (tb[NFTA_LOG_FLAGS] != NULL) return -EINVAL; } nla = tb[NFTA_LOG_PREFIX]; if (nla != NULL) { priv->prefix = kmalloc(nla_len(nla) + 1, GFP_KERNEL); if (priv->prefix == NULL) return -ENOMEM; nla_strscpy(priv->prefix, nla, nla_len(nla) + 1); } else { priv->prefix = (char *)nft_log_null_prefix; } switch (li->type) { case NF_LOG_TYPE_LOG: if (tb[NFTA_LOG_LEVEL] != NULL) { li->u.log.level = ntohl(nla_get_be32(tb[NFTA_LOG_LEVEL])); } else { li->u.log.level = NFT_LOGLEVEL_WARNING; } if (li->u.log.level > NFT_LOGLEVEL_AUDIT) { err = -EINVAL; goto err1; } if (tb[NFTA_LOG_FLAGS] != NULL) { li->u.log.logflags = ntohl(nla_get_be32(tb[NFTA_LOG_FLAGS])); if (li->u.log.logflags & ~NF_LOG_MASK) { err = -EINVAL; goto err1; } } break; case NF_LOG_TYPE_ULOG: li->u.ulog.group = ntohs(nla_get_be16(tb[NFTA_LOG_GROUP])); if (tb[NFTA_LOG_SNAPLEN] != NULL) { li->u.ulog.flags |= NF_LOG_F_COPY_LEN; li->u.ulog.copy_len = ntohl(nla_get_be32(tb[NFTA_LOG_SNAPLEN])); } if (tb[NFTA_LOG_QTHRESHOLD] != NULL) { li->u.ulog.qthreshold = ntohs(nla_get_be16(tb[NFTA_LOG_QTHRESHOLD])); } break; } if (li->u.log.level == NFT_LOGLEVEL_AUDIT) return 0; err = nf_logger_find_get(ctx->family, li->type); if (err < 0) { if (nft_log_modprobe(ctx->net, li->type) == -EAGAIN) err = -EAGAIN; goto err1; } return 0; err1: if (priv->prefix != nft_log_null_prefix) kfree(priv->prefix); return err; } static void nft_log_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr) { struct nft_log *priv = nft_expr_priv(expr); struct nf_loginfo *li = &priv->loginfo; if (priv->prefix != nft_log_null_prefix) kfree(priv->prefix); if (li->u.log.level == NFT_LOGLEVEL_AUDIT) return; nf_logger_put(ctx->family, li->type); } static int nft_log_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_log *priv = nft_expr_priv(expr); const struct nf_loginfo *li = &priv->loginfo; if (priv->prefix != nft_log_null_prefix) if (nla_put_string(skb, NFTA_LOG_PREFIX, priv->prefix)) goto nla_put_failure; switch (li->type) { case NF_LOG_TYPE_LOG: if (nla_put_be32(skb, NFTA_LOG_LEVEL, htonl(li->u.log.level))) goto nla_put_failure; if (li->u.log.logflags) { if (nla_put_be32(skb, NFTA_LOG_FLAGS, htonl(li->u.log.logflags))) goto nla_put_failure; } break; case NF_LOG_TYPE_ULOG: if (nla_put_be16(skb, NFTA_LOG_GROUP, htons(li->u.ulog.group))) goto nla_put_failure; if (li->u.ulog.flags & NF_LOG_F_COPY_LEN) { if (nla_put_be32(skb, NFTA_LOG_SNAPLEN, htonl(li->u.ulog.copy_len))) goto nla_put_failure; } if (li->u.ulog.qthreshold) { if (nla_put_be16(skb, NFTA_LOG_QTHRESHOLD, htons(li->u.ulog.qthreshold))) goto nla_put_failure; } break; } return 0; nla_put_failure: return -1; } static struct nft_expr_type nft_log_type; static const struct nft_expr_ops nft_log_ops = { .type = &nft_log_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_log)), .eval = nft_log_eval, .init = nft_log_init, .destroy = nft_log_destroy, .dump = nft_log_dump, .reduce = NFT_REDUCE_READONLY, }; static struct nft_expr_type nft_log_type __read_mostly = { .name = "log", .ops = &nft_log_ops, .policy = nft_log_policy, .maxattr = NFTA_LOG_MAX, .owner = THIS_MODULE, }; static int __init nft_log_module_init(void) { return nft_register_expr(&nft_log_type); } static void __exit nft_log_module_exit(void) { nft_unregister_expr(&nft_log_type); } module_init(nft_log_module_init); module_exit(nft_log_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_ALIAS_NFT_EXPR("log"); MODULE_DESCRIPTION("Netfilter nf_tables log module"); |
141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | // SPDX-License-Identifier: GPL-2.0-only /* * mm/readahead.c - address_space-level file readahead. * * Copyright (C) 2002, Linus Torvalds * * 09Apr2002 Andrew Morton * Initial version. */ /** * DOC: Readahead Overview * * Readahead is used to read content into the page cache before it is * explicitly requested by the application. Readahead only ever * attempts to read folios that are not yet in the page cache. If a * folio is present but not up-to-date, readahead will not try to read * it. In that case a simple ->read_folio() will be requested. * * Readahead is triggered when an application read request (whether a * system call or a page fault) finds that the requested folio is not in * the page cache, or that it is in the page cache and has the * readahead flag set. This flag indicates that the folio was read * as part of a previous readahead request and now that it has been * accessed, it is time for the next readahead. * * Each readahead request is partly synchronous read, and partly async * readahead. This is reflected in the struct file_ra_state which * contains ->size being the total number of pages, and ->async_size * which is the number of pages in the async section. The readahead * flag will be set on the first folio in this async section to trigger * a subsequent readahead. Once a series of sequential reads has been * established, there should be no need for a synchronous component and * all readahead request will be fully asynchronous. * * When either of the triggers causes a readahead, three numbers need * to be determined: the start of the region to read, the size of the * region, and the size of the async tail. * * The start of the region is simply the first page address at or after * the accessed address, which is not currently populated in the page * cache. This is found with a simple search in the page cache. * * The size of the async tail is determined by subtracting the size that * was explicitly requested from the determined request size, unless * this would be less than zero - then zero is used. NOTE THIS * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. * * The size of the region is normally determined from the size of the * previous readahead which loaded the preceding pages. This may be * discovered from the struct file_ra_state for simple sequential reads, * or from examining the state of the page cache when multiple * sequential reads are interleaved. Specifically: where the readahead * was triggered by the readahead flag, the size of the previous * readahead is assumed to be the number of pages from the triggering * page to the start of the new readahead. In these cases, the size of * the previous readahead is scaled, often doubled, for the new * readahead, though see get_next_ra_size() for details. * * If the size of the previous read cannot be determined, the number of * preceding pages in the page cache is used to estimate the size of * a previous read. This estimate could easily be misled by random * reads being coincidentally adjacent, so it is ignored unless it is * larger than the current request, and it is not scaled up, unless it * is at the start of file. * * In general readahead is accelerated at the start of the file, as * reads from there are often sequential. There are other minor * adjustments to the readahead size in various special cases and these * are best discovered by reading the code. * * The above calculation, based on the previous readahead size, * determines the size of the readahead, to which any requested read * size may be added. * * Readahead requests are sent to the filesystem using the ->readahead() * address space operation, for which mpage_readahead() is a canonical * implementation. ->readahead() should normally initiate reads on all * folios, but may fail to read any or all folios without causing an I/O * error. The page cache reading code will issue a ->read_folio() request * for any folio which ->readahead() did not read, and only an error * from this will be final. * * ->readahead() will generally call readahead_folio() repeatedly to get * each folio from those prepared for readahead. It may fail to read a * folio by: * * * not calling readahead_folio() sufficiently many times, effectively * ignoring some folios, as might be appropriate if the path to * storage is congested. * * * failing to actually submit a read request for a given folio, * possibly due to insufficient resources, or * * * getting an error during subsequent processing of a request. * * In the last two cases, the folio should be unlocked by the filesystem * to indicate that the read attempt has failed. In the first case the * folio will be unlocked by the VFS. * * Those folios not in the final ``async_size`` of the request should be * considered to be important and ->readahead() should not fail them due * to congestion or temporary resource unavailability, but should wait * for necessary resources (e.g. memory or indexing information) to * become available. Folios in the final ``async_size`` may be * considered less urgent and failure to read them is more acceptable. * In this case it is best to use filemap_remove_folio() to remove the * folios from the page cache as is automatically done for folios that * were not fetched with readahead_folio(). This will allow a * subsequent synchronous readahead request to try them again. If they * are left in the page cache, then they will be read individually using * ->read_folio() which may be less efficient. */ #include <linux/blkdev.h> #include <linux/kernel.h> #include <linux/dax.h> #include <linux/gfp.h> #include <linux/export.h> #include <linux/backing-dev.h> #include <linux/task_io_accounting_ops.h> #include <linux/pagemap.h> #include <linux/psi.h> #include <linux/syscalls.h> #include <linux/file.h> #include <linux/mm_inline.h> #include <linux/blk-cgroup.h> #include <linux/fadvise.h> #include <linux/sched/mm.h> #include "internal.h" /* * Initialise a struct file's readahead state. Assumes that the caller has * memset *ra to zero. */ void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) { ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; ra->prev_pos = -1; } EXPORT_SYMBOL_GPL(file_ra_state_init); static void read_pages(struct readahead_control *rac) { const struct address_space_operations *aops = rac->mapping->a_ops; struct folio *folio; struct blk_plug plug; if (!readahead_count(rac)) return; if (unlikely(rac->_workingset)) psi_memstall_enter(&rac->_pflags); blk_start_plug(&plug); if (aops->readahead) { aops->readahead(rac); /* * Clean up the remaining folios. The sizes in ->ra * may be used to size the next readahead, so make sure * they accurately reflect what happened. */ while ((folio = readahead_folio(rac)) != NULL) { unsigned long nr = folio_nr_pages(folio); folio_get(folio); rac->ra->size -= nr; if (rac->ra->async_size >= nr) { rac->ra->async_size -= nr; filemap_remove_folio(folio); } folio_unlock(folio); folio_put(folio); } } else { while ((folio = readahead_folio(rac)) != NULL) aops->read_folio(rac->file, folio); } blk_finish_plug(&plug); if (unlikely(rac->_workingset)) psi_memstall_leave(&rac->_pflags); rac->_workingset = false; BUG_ON(readahead_count(rac)); } /** * page_cache_ra_unbounded - Start unchecked readahead. * @ractl: Readahead control. * @nr_to_read: The number of pages to read. * @lookahead_size: Where to start the next readahead. * * This function is for filesystems to call when they want to start * readahead beyond a file's stated i_size. This is almost certainly * not the function you want to call. Use page_cache_async_readahead() * or page_cache_sync_readahead() instead. * * Context: File is referenced by caller. Mutexes may be held by caller. * May sleep, but will not reenter filesystem to reclaim memory. */ void page_cache_ra_unbounded(struct readahead_control *ractl, unsigned long nr_to_read, unsigned long lookahead_size) { struct address_space *mapping = ractl->mapping; unsigned long index = readahead_index(ractl); gfp_t gfp_mask = readahead_gfp_mask(mapping); unsigned long i; /* * Partway through the readahead operation, we will have added * locked pages to the page cache, but will not yet have submitted * them for I/O. Adding another page may need to allocate memory, * which can trigger memory reclaim. Telling the VM we're in * the middle of a filesystem operation will cause it to not * touch file-backed pages, preventing a deadlock. Most (all?) * filesystems already specify __GFP_NOFS in their mapping's * gfp_mask, but let's be explicit here. */ unsigned int nofs = memalloc_nofs_save(); filemap_invalidate_lock_shared(mapping); /* * Preallocate as many pages as we will need. */ for (i = 0; i < nr_to_read; i++) { struct folio *folio = xa_load(&mapping->i_pages, index + i); int ret; if (folio && !xa_is_value(folio)) { /* * Page already present? Kick off the current batch * of contiguous pages before continuing with the * next batch. This page may be the one we would * have intended to mark as Readahead, but we don't * have a stable reference to this page, and it's * not worth getting one just for that. */ read_pages(ractl); ractl->_index++; i = ractl->_index + ractl->_nr_pages - index - 1; continue; } folio = filemap_alloc_folio(gfp_mask, 0); if (!folio) break; ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); if (ret < 0) { folio_put(folio); if (ret == -ENOMEM) break; read_pages(ractl); ractl->_index++; i = ractl->_index + ractl->_nr_pages - index - 1; continue; } if (i == nr_to_read - lookahead_size) folio_set_readahead(folio); ractl->_workingset |= folio_test_workingset(folio); ractl->_nr_pages++; } /* * Now start the IO. We ignore I/O errors - if the folio is not * uptodate then the caller will launch read_folio again, and * will then handle the error. */ read_pages(ractl); filemap_invalidate_unlock_shared(mapping); memalloc_nofs_restore(nofs); } EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); /* * do_page_cache_ra() actually reads a chunk of disk. It allocates * the pages first, then submits them for I/O. This avoids the very bad * behaviour which would occur if page allocations are causing VM writeback. * We really don't want to intermingle reads and writes like that. */ static void do_page_cache_ra(struct readahead_control *ractl, unsigned long nr_to_read, unsigned long lookahead_size) { struct inode *inode = ractl->mapping->host; unsigned long index = readahead_index(ractl); loff_t isize = i_size_read(inode); pgoff_t end_index; /* The last page we want to read */ if (isize == 0) return; end_index = (isize - 1) >> PAGE_SHIFT; if (index > end_index) return; /* Don't read past the page containing the last byte of the file */ if (nr_to_read > end_index - index) nr_to_read = end_index - index + 1; page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); } /* * Chunk the readahead into 2 megabyte units, so that we don't pin too much * memory at once. */ void force_page_cache_ra(struct readahead_control *ractl, unsigned long nr_to_read) { struct address_space *mapping = ractl->mapping; struct file_ra_state *ra = ractl->ra; struct backing_dev_info *bdi = inode_to_bdi(mapping->host); unsigned long max_pages; if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) return; /* * If the request exceeds the readahead window, allow the read to * be up to the optimal hardware IO size */ max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); nr_to_read = min_t(unsigned long, nr_to_read, max_pages); while (nr_to_read) { unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; if (this_chunk > nr_to_read) this_chunk = nr_to_read; do_page_cache_ra(ractl, this_chunk, 0); nr_to_read -= this_chunk; } } /* * Set the initial window size, round to next power of 2 and square * for small size, x 4 for medium, and x 2 for large * for 128k (32 page) max ra * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial */ static unsigned long get_init_ra_size(unsigned long size, unsigned long max) { unsigned long newsize = roundup_pow_of_two(size); if (newsize <= max / 32) newsize = newsize * 4; else if (newsize <= max / 4) newsize = newsize * 2; else newsize = max; return newsize; } /* * Get the previous window size, ramp it up, and * return it as the new window size. */ static unsigned long get_next_ra_size(struct file_ra_state *ra, unsigned long max) { unsigned long cur = ra->size; if (cur < max / 16) return 4 * cur; if (cur <= max / 2) return 2 * cur; return max; } /* * On-demand readahead design. * * The fields in struct file_ra_state represent the most-recently-executed * readahead attempt: * * |<----- async_size ---------| * |------------------- size -------------------->| * |==================#===========================| * ^start ^page marked with PG_readahead * * To overlap application thinking time and disk I/O time, we do * `readahead pipelining': Do not wait until the application consumed all * readahead pages and stalled on the missing page at readahead_index; * Instead, submit an asynchronous readahead I/O as soon as there are * only async_size pages left in the readahead window. Normally async_size * will be equal to size, for maximum pipelining. * * In interleaved sequential reads, concurrent streams on the same fd can * be invalidating each other's readahead state. So we flag the new readahead * page at (start+size-async_size) with PG_readahead, and use it as readahead * indicator. The flag won't be set on already cached pages, to avoid the * readahead-for-nothing fuss, saving pointless page cache lookups. * * prev_pos tracks the last visited byte in the _previous_ read request. * It should be maintained by the caller, and will be used for detecting * small random reads. Note that the readahead algorithm checks loosely * for sequential patterns. Hence interleaved reads might be served as * sequential ones. * * There is a special-case: if the first page which the application tries to * read happens to be the first page of the file, it is assumed that a linear * read is about to happen and the window is immediately set to the initial size * based on I/O request size and the max_readahead. * * The code ramps up the readahead size aggressively at first, but slow down as * it approaches max_readhead. */ static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, pgoff_t mark, unsigned int order, gfp_t gfp) { int err; struct folio *folio = filemap_alloc_folio(gfp, order); if (!folio) return -ENOMEM; mark = round_down(mark, 1UL << order); if (index == mark) folio_set_readahead(folio); err = filemap_add_folio(ractl->mapping, folio, index, gfp); if (err) { folio_put(folio); return err; } ractl->_nr_pages += 1UL << order; ractl->_workingset |= folio_test_workingset(folio); return 0; } void page_cache_ra_order(struct readahead_control *ractl, struct file_ra_state *ra, unsigned int new_order) { struct address_space *mapping = ractl->mapping; pgoff_t start = readahead_index(ractl); pgoff_t index = start; pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; pgoff_t mark = index + ra->size - ra->async_size; unsigned int nofs; int err = 0; gfp_t gfp = readahead_gfp_mask(mapping); if (!mapping_large_folio_support(mapping) || ra->size < 4) goto fallback; limit = min(limit, index + ra->size - 1); if (new_order < MAX_PAGECACHE_ORDER) new_order += 2; new_order = min_t(unsigned int, MAX_PAGECACHE_ORDER, new_order); new_order = min_t(unsigned int, new_order, ilog2(ra->size)); /* See comment in page_cache_ra_unbounded() */ nofs = memalloc_nofs_save(); filemap_invalidate_lock_shared(mapping); while (index <= limit) { unsigned int order = new_order; /* Align with smaller pages if needed */ if (index & ((1UL << order) - 1)) order = __ffs(index); /* Don't allocate pages past EOF */ while (index + (1UL << order) - 1 > limit) order--; err = ra_alloc_folio(ractl, index, mark, order, gfp); if (err) break; index += 1UL << order; } read_pages(ractl); filemap_invalidate_unlock_shared(mapping); memalloc_nofs_restore(nofs); /* * If there were already pages in the page cache, then we may have * left some gaps. Let the regular readahead code take care of this * situation. */ if (!err) return; fallback: do_page_cache_ra(ractl, ra->size - (index - start), ra->async_size); } static unsigned long ractl_max_pages(struct readahead_control *ractl, unsigned long req_size) { struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); unsigned long max_pages = ractl->ra->ra_pages; /* * If the request exceeds the readahead window, allow the read to * be up to the optimal hardware IO size */ if (req_size > max_pages && bdi->io_pages > max_pages) max_pages = min(req_size, bdi->io_pages); return max_pages; } void page_cache_sync_ra(struct readahead_control *ractl, unsigned long req_count) { pgoff_t index = readahead_index(ractl); bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); struct file_ra_state *ra = ractl->ra; unsigned long max_pages, contig_count; pgoff_t prev_index, miss; /* * Even if readahead is disabled, issue this request as readahead * as we'll need it to satisfy the requested range. The forced * readahead will do the right thing and limit the read to just the * requested range, which we'll set to 1 page for this case. */ if (!ra->ra_pages || blk_cgroup_congested()) { if (!ractl->file) return; req_count = 1; do_forced_ra = true; } /* be dumb */ if (do_forced_ra) { force_page_cache_ra(ractl, req_count); return; } max_pages = ractl_max_pages(ractl, req_count); prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; /* * A start of file, oversized read, or sequential cache miss: * trivial case: (index - prev_index) == 1 * unaligned reads: (index - prev_index) == 0 */ if (!index || req_count > max_pages || index - prev_index <= 1UL) { ra->start = index; ra->size = get_init_ra_size(req_count, max_pages); ra->async_size = ra->size > req_count ? ra->size - req_count : ra->size >> 1; goto readit; } /* * Query the page cache and look for the traces(cached history pages) * that a sequential stream would leave behind. */ rcu_read_lock(); miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); rcu_read_unlock(); contig_count = index - miss - 1; /* * Standalone, small random read. Read as is, and do not pollute the * readahead state. */ if (contig_count <= req_count) { do_page_cache_ra(ractl, req_count, 0); return; } /* * File cached from the beginning: * it is a strong indication of long-run stream (or whole-file-read) */ if (miss == ULONG_MAX) contig_count *= 2; ra->start = index; ra->size = min(contig_count + req_count, max_pages); ra->async_size = 1; readit: ractl->_index = ra->start; page_cache_ra_order(ractl, ra, 0); } EXPORT_SYMBOL_GPL(page_cache_sync_ra); void page_cache_async_ra(struct readahead_control *ractl, struct folio *folio, unsigned long req_count) { unsigned long max_pages; struct file_ra_state *ra = ractl->ra; pgoff_t index = readahead_index(ractl); pgoff_t expected, start; unsigned int order = folio_order(folio); /* no readahead */ if (!ra->ra_pages) return; /* * Same bit is used for PG_readahead and PG_reclaim. */ if (folio_test_writeback(folio)) return; folio_clear_readahead(folio); if (blk_cgroup_congested()) return; max_pages = ractl_max_pages(ractl, req_count); /* * It's the expected callback index, assume sequential access. * Ramp up sizes, and push forward the readahead window. */ expected = round_down(ra->start + ra->size - ra->async_size, 1UL << order); if (index == expected) { ra->start += ra->size; ra->size = get_next_ra_size(ra, max_pages); ra->async_size = ra->size; goto readit; } /* * Hit a marked folio without valid readahead state. * E.g. interleaved reads. * Query the pagecache for async_size, which normally equals to * readahead size. Ramp it up and use it as the new readahead size. */ rcu_read_lock(); start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); rcu_read_unlock(); if (!start || start - index > max_pages) return; ra->start = start; ra->size = start - index; /* old async_size */ ra->size += req_count; ra->size = get_next_ra_size(ra, max_pages); ra->async_size = ra->size; readit: ractl->_index = ra->start; page_cache_ra_order(ractl, ra, order); } EXPORT_SYMBOL_GPL(page_cache_async_ra); ssize_t ksys_readahead(int fd, loff_t offset, size_t count) { ssize_t ret; struct fd f; ret = -EBADF; f = fdget(fd); if (!f.file || !(f.file->f_mode & FMODE_READ)) goto out; /* * The readahead() syscall is intended to run only on files * that can execute readahead. If readahead is not possible * on this file, then we must return -EINVAL. */ ret = -EINVAL; if (!f.file->f_mapping || !f.file->f_mapping->a_ops || (!S_ISREG(file_inode(f.file)->i_mode) && !S_ISBLK(file_inode(f.file)->i_mode))) goto out; ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); out: fdput(f); return ret; } SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) { return ksys_readahead(fd, offset, count); } #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) { return ksys_readahead(fd, compat_arg_u64_glue(offset), count); } #endif /** * readahead_expand - Expand a readahead request * @ractl: The request to be expanded * @new_start: The revised start * @new_len: The revised size of the request * * Attempt to expand a readahead request outwards from the current size to the * specified size by inserting locked pages before and after the current window * to increase the size to the new window. This may involve the insertion of * THPs, in which case the window may get expanded even beyond what was * requested. * * The algorithm will stop if it encounters a conflicting page already in the * pagecache and leave a smaller expansion than requested. * * The caller must check for this by examining the revised @ractl object for a * different expansion than was requested. */ void readahead_expand(struct readahead_control *ractl, loff_t new_start, size_t new_len) { struct address_space *mapping = ractl->mapping; struct file_ra_state *ra = ractl->ra; pgoff_t new_index, new_nr_pages; gfp_t gfp_mask = readahead_gfp_mask(mapping); new_index = new_start / PAGE_SIZE; /* Expand the leading edge downwards */ while (ractl->_index > new_index) { unsigned long index = ractl->_index - 1; struct folio *folio = xa_load(&mapping->i_pages, index); if (folio && !xa_is_value(folio)) return; /* Folio apparently present */ folio = filemap_alloc_folio(gfp_mask, 0); if (!folio) return; if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { folio_put(folio); return; } if (unlikely(folio_test_workingset(folio)) && !ractl->_workingset) { ractl->_workingset = true; psi_memstall_enter(&ractl->_pflags); } ractl->_nr_pages++; ractl->_index = folio->index; } new_len += new_start - readahead_pos(ractl); new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); /* Expand the trailing edge upwards */ while (ractl->_nr_pages < new_nr_pages) { unsigned long index = ractl->_index + ractl->_nr_pages; struct folio *folio = xa_load(&mapping->i_pages, index); if (folio && !xa_is_value(folio)) return; /* Folio apparently present */ folio = filemap_alloc_folio(gfp_mask, 0); if (!folio) return; if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { folio_put(folio); return; } if (unlikely(folio_test_workingset(folio)) && !ractl->_workingset) { ractl->_workingset = true; psi_memstall_enter(&ractl->_pflags); } ractl->_nr_pages++; if (ra) { ra->size++; ra->async_size++; } } } EXPORT_SYMBOL(readahead_expand); |
7 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | /* * net/tipc/eth_media.c: Ethernet bearer support for TIPC * * Copyright (c) 2001-2007, 2013-2014, Ericsson AB * Copyright (c) 2005-2008, 2011-2013, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "bearer.h" /* Convert Ethernet address (media address format) to string */ static int tipc_eth_addr2str(struct tipc_media_addr *addr, char *strbuf, int bufsz) { if (bufsz < 18) /* 18 = strlen("aa:bb:cc:dd:ee:ff\0") */ return 1; sprintf(strbuf, "%pM", addr->value); return 0; } /* Convert from media address format to discovery message addr format */ static int tipc_eth_addr2msg(char *msg, struct tipc_media_addr *addr) { memset(msg, 0, TIPC_MEDIA_INFO_SIZE); msg[TIPC_MEDIA_TYPE_OFFSET] = TIPC_MEDIA_TYPE_ETH; memcpy(msg + TIPC_MEDIA_ADDR_OFFSET, addr->value, ETH_ALEN); return 0; } /* Convert raw mac address format to media addr format */ static int tipc_eth_raw2addr(struct tipc_bearer *b, struct tipc_media_addr *addr, const char *msg) { memset(addr, 0, sizeof(*addr)); ether_addr_copy(addr->value, msg); addr->media_id = TIPC_MEDIA_TYPE_ETH; addr->broadcast = is_broadcast_ether_addr(addr->value); return 0; } /* Convert discovery msg addr format to Ethernet media addr format */ static int tipc_eth_msg2addr(struct tipc_bearer *b, struct tipc_media_addr *addr, char *msg) { /* Skip past preamble: */ msg += TIPC_MEDIA_ADDR_OFFSET; return tipc_eth_raw2addr(b, addr, msg); } /* Ethernet media registration info */ struct tipc_media eth_media_info = { .send_msg = tipc_l2_send_msg, .enable_media = tipc_enable_l2_media, .disable_media = tipc_disable_l2_media, .addr2str = tipc_eth_addr2str, .addr2msg = tipc_eth_addr2msg, .msg2addr = tipc_eth_msg2addr, .raw2addr = tipc_eth_raw2addr, .priority = TIPC_DEF_LINK_PRI, .tolerance = TIPC_DEF_LINK_TOL, .min_win = TIPC_DEF_LINK_WIN, .max_win = TIPC_MAX_LINK_WIN, .type_id = TIPC_MEDIA_TYPE_ETH, .hwaddr_len = ETH_ALEN, .name = "eth" }; |
43 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNH_H #define __NET_RTNH_H #include <linux/rtnetlink.h> #include <net/netlink.h> static inline int rtnh_ok(const struct rtnexthop *rtnh, int remaining) { return remaining >= (int)sizeof(*rtnh) && rtnh->rtnh_len >= sizeof(*rtnh) && rtnh->rtnh_len <= remaining; } static inline struct rtnexthop *rtnh_next(const struct rtnexthop *rtnh, int *remaining) { int totlen = NLA_ALIGN(rtnh->rtnh_len); *remaining -= totlen; return (struct rtnexthop *) ((char *) rtnh + totlen); } static inline struct nlattr *rtnh_attrs(const struct rtnexthop *rtnh) { return (struct nlattr *) ((char *) rtnh + NLA_ALIGN(sizeof(*rtnh))); } static inline int rtnh_attrlen(const struct rtnexthop *rtnh) { return rtnh->rtnh_len - NLA_ALIGN(sizeof(*rtnh)); } #endif |
10 10 10 10 10 10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | // SPDX-License-Identifier: GPL-2.0-only /* * This only handles 32bit MTRR on 32bit hosts. This is strictly wrong * because MTRRs can span up to 40 bits (36bits on most modern x86) */ #include <linux/export.h> #include <linux/init.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/cc_platform.h> #include <asm/processor-flags.h> #include <asm/cacheinfo.h> #include <asm/cpufeature.h> #include <asm/hypervisor.h> #include <asm/mshyperv.h> #include <asm/tlbflush.h> #include <asm/mtrr.h> #include <asm/msr.h> #include <asm/memtype.h> #include "mtrr.h" struct fixed_range_block { int base_msr; /* start address of an MTRR block */ int ranges; /* number of MTRRs in this block */ }; static struct fixed_range_block fixed_range_blocks[] = { { MSR_MTRRfix64K_00000, 1 }, /* one 64k MTRR */ { MSR_MTRRfix16K_80000, 2 }, /* two 16k MTRRs */ { MSR_MTRRfix4K_C0000, 8 }, /* eight 4k MTRRs */ {} }; struct cache_map { u64 start; u64 end; u64 flags; u64 type:8; u64 fixed:1; }; bool mtrr_debug; static int __init mtrr_param_setup(char *str) { int rc = 0; if (!str) return -EINVAL; if (!strcmp(str, "debug")) mtrr_debug = true; else rc = -EINVAL; return rc; } early_param("mtrr", mtrr_param_setup); /* * CACHE_MAP_MAX is the maximum number of memory ranges in cache_map, where * no 2 adjacent ranges have the same cache mode (those would be merged). * The number is based on the worst case: * - no two adjacent fixed MTRRs share the same cache mode * - one variable MTRR is spanning a huge area with mode WB * - 255 variable MTRRs with mode UC all overlap with the WB MTRR, creating 2 * additional ranges each (result like "ababababa...aba" with a = WB, b = UC), * accounting for MTRR_MAX_VAR_RANGES * 2 - 1 range entries * - a TOP_MEM2 area (even with overlapping an UC MTRR can't add 2 range entries * to the possible maximum, as it always starts at 4GB, thus it can't be in * the middle of that MTRR, unless that MTRR starts at 0, which would remove * the initial "a" from the "abababa" pattern above) * The map won't contain ranges with no matching MTRR (those fall back to the * default cache mode). */ #define CACHE_MAP_MAX (MTRR_NUM_FIXED_RANGES + MTRR_MAX_VAR_RANGES * 2) static struct cache_map init_cache_map[CACHE_MAP_MAX] __initdata; static struct cache_map *cache_map __refdata = init_cache_map; static unsigned int cache_map_size = CACHE_MAP_MAX; static unsigned int cache_map_n; static unsigned int cache_map_fixed; static unsigned long smp_changes_mask; static int mtrr_state_set; u64 mtrr_tom2; struct mtrr_state_type mtrr_state; EXPORT_SYMBOL_GPL(mtrr_state); /* Reserved bits in the high portion of the MTRRphysBaseN MSR. */ u32 phys_hi_rsvd; /* * BIOS is expected to clear MtrrFixDramModEn bit, see for example * "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD * Opteron Processors" (26094 Rev. 3.30 February 2006), section * "13.2.1.2 SYSCFG Register": "The MtrrFixDramModEn bit should be set * to 1 during BIOS initialization of the fixed MTRRs, then cleared to * 0 for operation." */ static inline void k8_check_syscfg_dram_mod_en(void) { u32 lo, hi; if (!((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0x0f))) return; if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) return; rdmsr(MSR_AMD64_SYSCFG, lo, hi); if (lo & K8_MTRRFIXRANGE_DRAM_MODIFY) { pr_err(FW_WARN "MTRR: CPU %u: SYSCFG[MtrrFixDramModEn]" " not cleared by BIOS, clearing this bit\n", smp_processor_id()); lo &= ~K8_MTRRFIXRANGE_DRAM_MODIFY; mtrr_wrmsr(MSR_AMD64_SYSCFG, lo, hi); } } /* Get the size of contiguous MTRR range */ static u64 get_mtrr_size(u64 mask) { u64 size; mask |= (u64)phys_hi_rsvd << 32; size = -mask; return size; } static u8 get_var_mtrr_state(unsigned int reg, u64 *start, u64 *size) { struct mtrr_var_range *mtrr = mtrr_state.var_ranges + reg; if (!(mtrr->mask_lo & MTRR_PHYSMASK_V)) return MTRR_TYPE_INVALID; *start = (((u64)mtrr->base_hi) << 32) + (mtrr->base_lo & PAGE_MASK); *size = get_mtrr_size((((u64)mtrr->mask_hi) << 32) + (mtrr->mask_lo & PAGE_MASK)); return mtrr->base_lo & MTRR_PHYSBASE_TYPE; } static u8 get_effective_type(u8 type1, u8 type2) { if (type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE) return MTRR_TYPE_UNCACHABLE; if ((type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH) || (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK)) return MTRR_TYPE_WRTHROUGH; if (type1 != type2) return MTRR_TYPE_UNCACHABLE; return type1; } static void rm_map_entry_at(int idx) { cache_map_n--; if (cache_map_n > idx) { memmove(cache_map + idx, cache_map + idx + 1, sizeof(*cache_map) * (cache_map_n - idx)); } } /* * Add an entry into cache_map at a specific index. Merges adjacent entries if * appropriate. Return the number of merges for correcting the scan index * (this is needed as merging will reduce the number of entries, which will * result in skipping entries in future iterations if the scan index isn't * corrected). * Note that the corrected index can never go below -1 (resulting in being 0 in * the next scan iteration), as "2" is returned only if the current index is * larger than zero. */ static int add_map_entry_at(u64 start, u64 end, u8 type, int idx) { bool merge_prev = false, merge_next = false; if (start >= end) return 0; if (idx > 0) { struct cache_map *prev = cache_map + idx - 1; if (!prev->fixed && start == prev->end && type == prev->type) merge_prev = true; } if (idx < cache_map_n) { struct cache_map *next = cache_map + idx; if (!next->fixed && end == next->start && type == next->type) merge_next = true; } if (merge_prev && merge_next) { cache_map[idx - 1].end = cache_map[idx].end; rm_map_entry_at(idx); return 2; } if (merge_prev) { cache_map[idx - 1].end = end; return 1; } if (merge_next) { cache_map[idx].start = start; return 1; } /* Sanity check: the array should NEVER be too small! */ if (cache_map_n == cache_map_size) { WARN(1, "MTRR cache mode memory map exhausted!\n"); cache_map_n = cache_map_fixed; return 0; } if (cache_map_n > idx) { memmove(cache_map + idx + 1, cache_map + idx, sizeof(*cache_map) * (cache_map_n - idx)); } cache_map[idx].start = start; cache_map[idx].end = end; cache_map[idx].type = type; cache_map[idx].fixed = 0; cache_map_n++; return 0; } /* Clear a part of an entry. Return 1 if start of entry is still valid. */ static int clr_map_range_at(u64 start, u64 end, int idx) { int ret = start != cache_map[idx].start; u64 tmp; if (start == cache_map[idx].start && end == cache_map[idx].end) { rm_map_entry_at(idx); } else if (start == cache_map[idx].start) { cache_map[idx].start = end; } else if (end == cache_map[idx].end) { cache_map[idx].end = start; } else { tmp = cache_map[idx].end; cache_map[idx].end = start; add_map_entry_at(end, tmp, cache_map[idx].type, idx + 1); } return ret; } /* * Add MTRR to the map. The current map is scanned and each part of the MTRR * either overlapping with an existing entry or with a hole in the map is * handled separately. */ static void add_map_entry(u64 start, u64 end, u8 type) { u8 new_type, old_type; u64 tmp; int i; for (i = 0; i < cache_map_n && start < end; i++) { if (start >= cache_map[i].end) continue; if (start < cache_map[i].start) { /* Region start has no overlap. */ tmp = min(end, cache_map[i].start); i -= add_map_entry_at(start, tmp, type, i); start = tmp; continue; } new_type = get_effective_type(type, cache_map[i].type); old_type = cache_map[i].type; if (cache_map[i].fixed || new_type == old_type) { /* Cut off start of new entry. */ start = cache_map[i].end; continue; } /* Handle only overlapping part of region. */ tmp = min(end, cache_map[i].end); i += clr_map_range_at(start, tmp, i); i -= add_map_entry_at(start, tmp, new_type, i); start = tmp; } /* Add rest of region after last map entry (rest might be empty). */ add_map_entry_at(start, end, type, i); } /* Add variable MTRRs to cache map. */ static void map_add_var(void) { u64 start, size; unsigned int i; u8 type; /* * Add AMD TOP_MEM2 area. Can't be added in mtrr_build_map(), as it * needs to be added again when rebuilding the map due to potentially * having moved as a result of variable MTRRs for memory below 4GB. */ if (mtrr_tom2) { add_map_entry(BIT_ULL(32), mtrr_tom2, MTRR_TYPE_WRBACK); cache_map[cache_map_n - 1].fixed = 1; } for (i = 0; i < num_var_ranges; i++) { type = get_var_mtrr_state(i, &start, &size); if (type != MTRR_TYPE_INVALID) add_map_entry(start, start + size, type); } } /* * Rebuild map by replacing variable entries. Needs to be called when MTRR * registers are being changed after boot, as such changes could include * removals of registers, which are complicated to handle without rebuild of * the map. */ void generic_rebuild_map(void) { if (mtrr_if != &generic_mtrr_ops) return; cache_map_n = cache_map_fixed; map_add_var(); } static unsigned int __init get_cache_map_size(void) { return cache_map_fixed + 2 * num_var_ranges + (mtrr_tom2 != 0); } /* Build the cache_map containing the cache modes per memory range. */ void __init mtrr_build_map(void) { u64 start, end, size; unsigned int i; u8 type; /* Add fixed MTRRs, optimize for adjacent entries with same type. */ if (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED) { /* * Start with 64k size fixed entries, preset 1st one (hence the * loop below is starting with index 1). */ start = 0; end = size = 0x10000; type = mtrr_state.fixed_ranges[0]; for (i = 1; i < MTRR_NUM_FIXED_RANGES; i++) { /* 8 64k entries, then 16 16k ones, rest 4k. */ if (i == 8 || i == 24) size >>= 2; if (mtrr_state.fixed_ranges[i] != type) { add_map_entry(start, end, type); start = end; type = mtrr_state.fixed_ranges[i]; } end += size; } add_map_entry(start, end, type); } /* Mark fixed, they take precedence. */ for (i = 0; i < cache_map_n; i++) cache_map[i].fixed = 1; cache_map_fixed = cache_map_n; map_add_var(); pr_info("MTRR map: %u entries (%u fixed + %u variable; max %u), built from %u variable MTRRs\n", cache_map_n, cache_map_fixed, cache_map_n - cache_map_fixed, get_cache_map_size(), num_var_ranges + (mtrr_tom2 != 0)); if (mtrr_debug) { for (i = 0; i < cache_map_n; i++) { pr_info("%3u: %016llx-%016llx %s\n", i, cache_map[i].start, cache_map[i].end - 1, mtrr_attrib_to_str(cache_map[i].type)); } } } /* Copy the cache_map from __initdata memory to dynamically allocated one. */ void __init mtrr_copy_map(void) { unsigned int new_size = get_cache_map_size(); if (!mtrr_state.enabled || !new_size) { cache_map = NULL; return; } mutex_lock(&mtrr_mutex); cache_map = kcalloc(new_size, sizeof(*cache_map), GFP_KERNEL); if (cache_map) { memmove(cache_map, init_cache_map, cache_map_n * sizeof(*cache_map)); cache_map_size = new_size; } else { mtrr_state.enabled = 0; pr_err("MTRRs disabled due to allocation failure for lookup map.\n"); } mutex_unlock(&mtrr_mutex); } /** * mtrr_overwrite_state - set static MTRR state * * Used to set MTRR state via different means (e.g. with data obtained from * a hypervisor). * Is allowed only for special cases when running virtualized. Must be called * from the x86_init.hyper.init_platform() hook. It can be called only once. * The MTRR state can't be changed afterwards. To ensure that, X86_FEATURE_MTRR * is cleared. * * @var: MTRR variable range array to use * @num_var: length of the @var array * @def_type: default caching type */ void mtrr_overwrite_state(struct mtrr_var_range *var, unsigned int num_var, mtrr_type def_type) { unsigned int i; /* Only allowed to be called once before mtrr_bp_init(). */ if (WARN_ON_ONCE(mtrr_state_set)) return; /* Only allowed when running virtualized. */ if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) return; /* * Only allowed for special virtualization cases: * - when running as Hyper-V, SEV-SNP guest using vTOM * - when running as Xen PV guest * - when running as SEV-SNP or TDX guest to avoid unnecessary * VMM communication/Virtualization exceptions (#VC, #VE) */ if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !hv_is_isolation_supported() && !cpu_feature_enabled(X86_FEATURE_XENPV) && !cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) return; /* Disable MTRR in order to disable MTRR modifications. */ setup_clear_cpu_cap(X86_FEATURE_MTRR); if (var) { if (num_var > MTRR_MAX_VAR_RANGES) { pr_warn("Trying to overwrite MTRR state with %u variable entries\n", num_var); num_var = MTRR_MAX_VAR_RANGES; } for (i = 0; i < num_var; i++) mtrr_state.var_ranges[i] = var[i]; num_var_ranges = num_var; } mtrr_state.def_type = def_type; mtrr_state.enabled |= MTRR_STATE_MTRR_ENABLED; mtrr_state_set = 1; } static u8 type_merge(u8 type, u8 new_type, u8 *uniform) { u8 effective_type; if (type == MTRR_TYPE_INVALID) return new_type; effective_type = get_effective_type(type, new_type); if (type != effective_type) *uniform = 0; return effective_type; } /** * mtrr_type_lookup - look up memory type in MTRR * * @start: Begin of the physical address range * @end: End of the physical address range * @uniform: output argument: * - 1: the returned MTRR type is valid for the whole region * - 0: otherwise * * Return Values: * MTRR_TYPE_(type) - The effective MTRR type for the region * MTRR_TYPE_INVALID - MTRR is disabled */ u8 mtrr_type_lookup(u64 start, u64 end, u8 *uniform) { u8 type = MTRR_TYPE_INVALID; unsigned int i; if (!mtrr_state_set) { /* Uniformity is unknown. */ *uniform = 0; return MTRR_TYPE_UNCACHABLE; } *uniform = 1; if (!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED)) return MTRR_TYPE_UNCACHABLE; for (i = 0; i < cache_map_n && start < end; i++) { /* Region after current map entry? -> continue with next one. */ if (start >= cache_map[i].end) continue; /* Start of region not covered by current map entry? */ if (start < cache_map[i].start) { /* At least some part of region has default type. */ type = type_merge(type, mtrr_state.def_type, uniform); /* End of region not covered, too? -> lookup done. */ if (end <= cache_map[i].start) return type; } /* At least part of region covered by map entry. */ type = type_merge(type, cache_map[i].type, uniform); start = cache_map[i].end; } /* End of region past last entry in map? -> use default type. */ if (start < end) type = type_merge(type, mtrr_state.def_type, uniform); return type; } /* Get the MSR pair relating to a var range */ static void get_mtrr_var_range(unsigned int index, struct mtrr_var_range *vr) { rdmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi); rdmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi); } /* Fill the MSR pair relating to a var range */ void fill_mtrr_var_range(unsigned int index, u32 base_lo, u32 base_hi, u32 mask_lo, u32 mask_hi) { struct mtrr_var_range *vr; vr = mtrr_state.var_ranges; vr[index].base_lo = base_lo; vr[index].base_hi = base_hi; vr[index].mask_lo = mask_lo; vr[index].mask_hi = mask_hi; } static void get_fixed_ranges(mtrr_type *frs) { unsigned int *p = (unsigned int *)frs; int i; k8_check_syscfg_dram_mod_en(); rdmsr(MSR_MTRRfix64K_00000, p[0], p[1]); for (i = 0; i < 2; i++) rdmsr(MSR_MTRRfix16K_80000 + i, p[2 + i * 2], p[3 + i * 2]); for (i = 0; i < 8; i++) rdmsr(MSR_MTRRfix4K_C0000 + i, p[6 + i * 2], p[7 + i * 2]); } void mtrr_save_fixed_ranges(void *info) { if (boot_cpu_has(X86_FEATURE_MTRR)) get_fixed_ranges(mtrr_state.fixed_ranges); } static unsigned __initdata last_fixed_start; static unsigned __initdata last_fixed_end; static mtrr_type __initdata last_fixed_type; static void __init print_fixed_last(void) { if (!last_fixed_end) return; pr_info(" %05X-%05X %s\n", last_fixed_start, last_fixed_end - 1, mtrr_attrib_to_str(last_fixed_type)); last_fixed_end = 0; } static void __init update_fixed_last(unsigned base, unsigned end, mtrr_type type) { last_fixed_start = base; last_fixed_end = end; last_fixed_type = type; } static void __init print_fixed(unsigned base, unsigned step, const mtrr_type *types) { unsigned i; for (i = 0; i < 8; ++i, ++types, base += step) { if (last_fixed_end == 0) { update_fixed_last(base, base + step, *types); continue; } if (last_fixed_end == base && last_fixed_type == *types) { last_fixed_end = base + step; continue; } /* new segments: gap or different type */ print_fixed_last(); update_fixed_last(base, base + step, *types); } } static void __init print_mtrr_state(void) { unsigned int i; int high_width; pr_info("MTRR default type: %s\n", mtrr_attrib_to_str(mtrr_state.def_type)); if (mtrr_state.have_fixed) { pr_info("MTRR fixed ranges %sabled:\n", ((mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) && (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) ? "en" : "dis"); print_fixed(0x00000, 0x10000, mtrr_state.fixed_ranges + 0); for (i = 0; i < 2; ++i) print_fixed(0x80000 + i * 0x20000, 0x04000, mtrr_state.fixed_ranges + (i + 1) * 8); for (i = 0; i < 8; ++i) print_fixed(0xC0000 + i * 0x08000, 0x01000, mtrr_state.fixed_ranges + (i + 3) * 8); /* tail */ print_fixed_last(); } pr_info("MTRR variable ranges %sabled:\n", mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED ? "en" : "dis"); high_width = (boot_cpu_data.x86_phys_bits - (32 - PAGE_SHIFT) + 3) / 4; for (i = 0; i < num_var_ranges; ++i) { if (mtrr_state.var_ranges[i].mask_lo & MTRR_PHYSMASK_V) pr_info(" %u base %0*X%05X000 mask %0*X%05X000 %s\n", i, high_width, mtrr_state.var_ranges[i].base_hi, mtrr_state.var_ranges[i].base_lo >> 12, high_width, mtrr_state.var_ranges[i].mask_hi, mtrr_state.var_ranges[i].mask_lo >> 12, mtrr_attrib_to_str(mtrr_state.var_ranges[i].base_lo & MTRR_PHYSBASE_TYPE)); else pr_info(" %u disabled\n", i); } if (mtrr_tom2) pr_info("TOM2: %016llx aka %lldM\n", mtrr_tom2, mtrr_tom2>>20); } /* Grab all of the MTRR state for this CPU into *state */ bool __init get_mtrr_state(void) { struct mtrr_var_range *vrs; unsigned lo, dummy; unsigned int i; vrs = mtrr_state.var_ranges; rdmsr(MSR_MTRRcap, lo, dummy); mtrr_state.have_fixed = lo & MTRR_CAP_FIX; for (i = 0; i < num_var_ranges; i++) get_mtrr_var_range(i, &vrs[i]); if (mtrr_state.have_fixed) get_fixed_ranges(mtrr_state.fixed_ranges); rdmsr(MSR_MTRRdefType, lo, dummy); mtrr_state.def_type = lo & MTRR_DEF_TYPE_TYPE; mtrr_state.enabled = (lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT; if (amd_special_default_mtrr()) { unsigned low, high; /* TOP_MEM2 */ rdmsr(MSR_K8_TOP_MEM2, low, high); mtrr_tom2 = high; mtrr_tom2 <<= 32; mtrr_tom2 |= low; mtrr_tom2 &= 0xffffff800000ULL; } if (mtrr_debug) print_mtrr_state(); mtrr_state_set = 1; return !!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED); } /* Some BIOS's are messed up and don't set all MTRRs the same! */ void __init mtrr_state_warn(void) { unsigned long mask = smp_changes_mask; if (!mask) return; if (mask & MTRR_CHANGE_MASK_FIXED) pr_warn("mtrr: your CPUs had inconsistent fixed MTRR settings\n"); if (mask & MTRR_CHANGE_MASK_VARIABLE) pr_warn("mtrr: your CPUs had inconsistent variable MTRR settings\n"); if (mask & MTRR_CHANGE_MASK_DEFTYPE) pr_warn("mtrr: your CPUs had inconsistent MTRRdefType settings\n"); pr_info("mtrr: probably your BIOS does not setup all CPUs.\n"); pr_info("mtrr: corrected configuration.\n"); } /* * Doesn't attempt to pass an error out to MTRR users * because it's quite complicated in some cases and probably not * worth it because the best error handling is to ignore it. */ void mtrr_wrmsr(unsigned msr, unsigned a, unsigned b) { if (wrmsr_safe(msr, a, b) < 0) { pr_err("MTRR: CPU %u: Writing MSR %x to %x:%x failed\n", smp_processor_id(), msr, a, b); } } /** * set_fixed_range - checks & updates a fixed-range MTRR if it * differs from the value it should have * @msr: MSR address of the MTTR which should be checked and updated * @changed: pointer which indicates whether the MTRR needed to be changed * @msrwords: pointer to the MSR values which the MSR should have */ static void set_fixed_range(int msr, bool *changed, unsigned int *msrwords) { unsigned lo, hi; rdmsr(msr, lo, hi); if (lo != msrwords[0] || hi != msrwords[1]) { mtrr_wrmsr(msr, msrwords[0], msrwords[1]); *changed = true; } } /** * generic_get_free_region - Get a free MTRR. * @base: The starting (base) address of the region. * @size: The size (in bytes) of the region. * @replace_reg: mtrr index to be replaced; set to invalid value if none. * * Returns: The index of the region on success, else negative on error. */ int generic_get_free_region(unsigned long base, unsigned long size, int replace_reg) { unsigned long lbase, lsize; mtrr_type ltype; int i, max; max = num_var_ranges; if (replace_reg >= 0 && replace_reg < max) return replace_reg; for (i = 0; i < max; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (lsize == 0) return i; } return -ENOSPC; } static void generic_get_mtrr(unsigned int reg, unsigned long *base, unsigned long *size, mtrr_type *type) { u32 mask_lo, mask_hi, base_lo, base_hi; unsigned int hi; u64 tmp, mask; /* * get_mtrr doesn't need to update mtrr_state, also it could be called * from any cpu, so try to print it out directly. */ get_cpu(); rdmsr(MTRRphysMask_MSR(reg), mask_lo, mask_hi); if (!(mask_lo & MTRR_PHYSMASK_V)) { /* Invalid (i.e. free) range */ *base = 0; *size = 0; *type = 0; goto out_put_cpu; } rdmsr(MTRRphysBase_MSR(reg), base_lo, base_hi); /* Work out the shifted address mask: */ tmp = (u64)mask_hi << 32 | (mask_lo & PAGE_MASK); mask = (u64)phys_hi_rsvd << 32 | tmp; /* Expand tmp with high bits to all 1s: */ hi = fls64(tmp); if (hi > 0) { tmp |= ~((1ULL<<(hi - 1)) - 1); if (tmp != mask) { pr_warn("mtrr: your BIOS has configured an incorrect mask, fixing it.\n"); add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); mask = tmp; } } /* * This works correctly if size is a power of two, i.e. a * contiguous range: */ *size = -mask >> PAGE_SHIFT; *base = (u64)base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT; *type = base_lo & MTRR_PHYSBASE_TYPE; out_put_cpu: put_cpu(); } /** * set_fixed_ranges - checks & updates the fixed-range MTRRs if they * differ from the saved set * @frs: pointer to fixed-range MTRR values, saved by get_fixed_ranges() */ static int set_fixed_ranges(mtrr_type *frs) { unsigned long long *saved = (unsigned long long *)frs; bool changed = false; int block = -1, range; k8_check_syscfg_dram_mod_en(); while (fixed_range_blocks[++block].ranges) { for (range = 0; range < fixed_range_blocks[block].ranges; range++) set_fixed_range(fixed_range_blocks[block].base_msr + range, &changed, (unsigned int *)saved++); } return changed; } /* * Set the MSR pair relating to a var range. * Returns true if changes are made. */ static bool set_mtrr_var_ranges(unsigned int index, struct mtrr_var_range *vr) { unsigned int lo, hi; bool changed = false; rdmsr(MTRRphysBase_MSR(index), lo, hi); if ((vr->base_lo & ~MTRR_PHYSBASE_RSVD) != (lo & ~MTRR_PHYSBASE_RSVD) || (vr->base_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) { mtrr_wrmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi); changed = true; } rdmsr(MTRRphysMask_MSR(index), lo, hi); if ((vr->mask_lo & ~MTRR_PHYSMASK_RSVD) != (lo & ~MTRR_PHYSMASK_RSVD) || (vr->mask_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) { mtrr_wrmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi); changed = true; } return changed; } static u32 deftype_lo, deftype_hi; /** * set_mtrr_state - Set the MTRR state for this CPU. * * NOTE: The CPU must already be in a safe state for MTRR changes, including * measures that only a single CPU can be active in set_mtrr_state() in * order to not be subject to races for usage of deftype_lo. This is * accomplished by taking cache_disable_lock. * RETURNS: 0 if no changes made, else a mask indicating what was changed. */ static unsigned long set_mtrr_state(void) { unsigned long change_mask = 0; unsigned int i; for (i = 0; i < num_var_ranges; i++) { if (set_mtrr_var_ranges(i, &mtrr_state.var_ranges[i])) change_mask |= MTRR_CHANGE_MASK_VARIABLE; } if (mtrr_state.have_fixed && set_fixed_ranges(mtrr_state.fixed_ranges)) change_mask |= MTRR_CHANGE_MASK_FIXED; /* * Set_mtrr_restore restores the old value of MTRRdefType, * so to set it we fiddle with the saved value: */ if ((deftype_lo & MTRR_DEF_TYPE_TYPE) != mtrr_state.def_type || ((deftype_lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT) != mtrr_state.enabled) { deftype_lo = (deftype_lo & MTRR_DEF_TYPE_DISABLE) | mtrr_state.def_type | (mtrr_state.enabled << MTRR_STATE_SHIFT); change_mask |= MTRR_CHANGE_MASK_DEFTYPE; } return change_mask; } void mtrr_disable(void) { /* Save MTRR state */ rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi); /* Disable MTRRs, and set the default type to uncached */ mtrr_wrmsr(MSR_MTRRdefType, deftype_lo & MTRR_DEF_TYPE_DISABLE, deftype_hi); } void mtrr_enable(void) { /* Intel (P6) standard MTRRs */ mtrr_wrmsr(MSR_MTRRdefType, deftype_lo, deftype_hi); } void mtrr_generic_set_state(void) { unsigned long mask, count; /* Actually set the state */ mask = set_mtrr_state(); /* Use the atomic bitops to update the global mask */ for (count = 0; count < sizeof(mask) * 8; ++count) { if (mask & 0x01) set_bit(count, &smp_changes_mask); mask >>= 1; } } /** * generic_set_mtrr - set variable MTRR register on the local CPU. * * @reg: The register to set. * @base: The base address of the region. * @size: The size of the region. If this is 0 the region is disabled. * @type: The type of the region. * * Returns nothing. */ static void generic_set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) { unsigned long flags; struct mtrr_var_range *vr; vr = &mtrr_state.var_ranges[reg]; local_irq_save(flags); cache_disable(); if (size == 0) { /* * The invalid bit is kept in the mask, so we simply * clear the relevant mask register to disable a range. */ mtrr_wrmsr(MTRRphysMask_MSR(reg), 0, 0); memset(vr, 0, sizeof(struct mtrr_var_range)); } else { vr->base_lo = base << PAGE_SHIFT | type; vr->base_hi = (base >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd; vr->mask_lo = -size << PAGE_SHIFT | MTRR_PHYSMASK_V; vr->mask_hi = (-size >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd; mtrr_wrmsr(MTRRphysBase_MSR(reg), vr->base_lo, vr->base_hi); mtrr_wrmsr(MTRRphysMask_MSR(reg), vr->mask_lo, vr->mask_hi); } cache_enable(); local_irq_restore(flags); } int generic_validate_add_page(unsigned long base, unsigned long size, unsigned int type) { unsigned long lbase, last; /* * For Intel PPro stepping <= 7 * must be 4 MiB aligned and not touch 0x70000000 -> 0x7003FFFF */ if (mtrr_if == &generic_mtrr_ops && boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 1 && boot_cpu_data.x86_stepping <= 7) { if (base & ((1 << (22 - PAGE_SHIFT)) - 1)) { pr_warn("mtrr: base(0x%lx000) is not 4 MiB aligned\n", base); return -EINVAL; } if (!(base + size < 0x70000 || base > 0x7003F) && (type == MTRR_TYPE_WRCOMB || type == MTRR_TYPE_WRBACK)) { pr_warn("mtrr: writable mtrr between 0x70000000 and 0x7003FFFF may hang the CPU.\n"); return -EINVAL; } } /* * Check upper bits of base and last are equal and lower bits are 0 * for base and 1 for last */ last = base + size - 1; for (lbase = base; !(lbase & 1) && (last & 1); lbase = lbase >> 1, last = last >> 1) ; if (lbase != last) { pr_warn("mtrr: base(0x%lx000) is not aligned on a size(0x%lx000) boundary\n", base, size); return -EINVAL; } return 0; } static int generic_have_wrcomb(void) { unsigned long config, dummy; rdmsr(MSR_MTRRcap, config, dummy); return config & MTRR_CAP_WC; } int positive_have_wrcomb(void) { return 1; } /* * Generic structure... */ const struct mtrr_ops generic_mtrr_ops = { .get = generic_get_mtrr, .get_free_region = generic_get_free_region, .set = generic_set_mtrr, .validate_add_page = generic_validate_add_page, .have_wrcomb = generic_have_wrcomb, }; |
7481 7497 1 54 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/ethtool.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <net/net_namespace.h> #include <linux/if_arp.h> #include <net/rtnetlink.h> static netdev_tx_t nlmon_xmit(struct sk_buff *skb, struct net_device *dev) { dev_lstats_add(dev, skb->len); dev_kfree_skb(skb); return NETDEV_TX_OK; } struct nlmon { struct netlink_tap nt; }; static int nlmon_open(struct net_device *dev) { struct nlmon *nlmon = netdev_priv(dev); nlmon->nt.dev = dev; nlmon->nt.module = THIS_MODULE; return netlink_add_tap(&nlmon->nt); } static int nlmon_close(struct net_device *dev) { struct nlmon *nlmon = netdev_priv(dev); return netlink_remove_tap(&nlmon->nt); } static void nlmon_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { dev_lstats_read(dev, &stats->rx_packets, &stats->rx_bytes); } static u32 always_on(struct net_device *dev) { return 1; } static const struct ethtool_ops nlmon_ethtool_ops = { .get_link = always_on, }; static const struct net_device_ops nlmon_ops = { .ndo_open = nlmon_open, .ndo_stop = nlmon_close, .ndo_start_xmit = nlmon_xmit, .ndo_get_stats64 = nlmon_get_stats64, }; static void nlmon_setup(struct net_device *dev) { dev->type = ARPHRD_NETLINK; dev->priv_flags |= IFF_NO_QUEUE; dev->lltx = true; dev->netdev_ops = &nlmon_ops; dev->ethtool_ops = &nlmon_ethtool_ops; dev->needs_free_netdev = true; dev->features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; dev->flags = IFF_NOARP; dev->pcpu_stat_type = NETDEV_PCPU_STAT_LSTATS; /* That's rather a softlimit here, which, of course, * can be altered. Not a real MTU, but what is to be * expected in most cases. */ dev->mtu = NLMSG_GOODSIZE; dev->min_mtu = sizeof(struct nlmsghdr); } static int nlmon_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) return -EINVAL; return 0; } static struct rtnl_link_ops nlmon_link_ops __read_mostly = { .kind = "nlmon", .priv_size = sizeof(struct nlmon), .setup = nlmon_setup, .validate = nlmon_validate, }; static __init int nlmon_register(void) { return rtnl_link_register(&nlmon_link_ops); } static __exit void nlmon_unregister(void) { rtnl_link_unregister(&nlmon_link_ops); } module_init(nlmon_register); module_exit(nlmon_unregister); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>"); MODULE_AUTHOR("Mathieu Geli <geli@enseirb.fr>"); MODULE_DESCRIPTION("Netlink monitoring device"); MODULE_ALIAS_RTNL_LINK("nlmon"); |
2 2 5 2 3 2 2 2 2 2 3 9 9 3 3 3 3 3 3 10 10 10 10 9 9 9 4 1 1 2 1 1 9 9 1 1 6 1 6 1 1 5 5 4 1 3 2 2 2 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 | // SPDX-License-Identifier: GPL-2.0-only /* * Berkeley Packet Filter based traffic classifier * * Might be used to classify traffic through flexible, user-defined and * possibly JIT-ed BPF filters for traffic control as an alternative to * ematches. * * (C) 2013 Daniel Borkmann <dborkman@redhat.com> */ #include <linux/module.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/filter.h> #include <linux/bpf.h> #include <linux/idr.h> #include <net/rtnetlink.h> #include <net/pkt_cls.h> #include <net/sock.h> #include <net/tc_wrapper.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>"); MODULE_DESCRIPTION("TC BPF based classifier"); #define CLS_BPF_NAME_LEN 256 #define CLS_BPF_SUPPORTED_GEN_FLAGS \ (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW) struct cls_bpf_head { struct list_head plist; struct idr handle_idr; struct rcu_head rcu; }; struct cls_bpf_prog { struct bpf_prog *filter; struct list_head link; struct tcf_result res; bool exts_integrated; u32 gen_flags; unsigned int in_hw_count; struct tcf_exts exts; u32 handle; u16 bpf_num_ops; struct sock_filter *bpf_ops; const char *bpf_name; struct tcf_proto *tp; struct rcu_work rwork; }; static const struct nla_policy bpf_policy[TCA_BPF_MAX + 1] = { [TCA_BPF_CLASSID] = { .type = NLA_U32 }, [TCA_BPF_FLAGS] = { .type = NLA_U32 }, [TCA_BPF_FLAGS_GEN] = { .type = NLA_U32 }, [TCA_BPF_FD] = { .type = NLA_U32 }, [TCA_BPF_NAME] = { .type = NLA_NUL_STRING, .len = CLS_BPF_NAME_LEN }, [TCA_BPF_OPS_LEN] = { .type = NLA_U16 }, [TCA_BPF_OPS] = { .type = NLA_BINARY, .len = sizeof(struct sock_filter) * BPF_MAXINSNS }, }; static int cls_bpf_exec_opcode(int code) { switch (code) { case TC_ACT_OK: case TC_ACT_SHOT: case TC_ACT_STOLEN: case TC_ACT_TRAP: case TC_ACT_REDIRECT: case TC_ACT_UNSPEC: return code; default: return TC_ACT_UNSPEC; } } TC_INDIRECT_SCOPE int cls_bpf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) { struct cls_bpf_head *head = rcu_dereference_bh(tp->root); bool at_ingress = skb_at_tc_ingress(skb); struct cls_bpf_prog *prog; int ret = -1; list_for_each_entry_rcu(prog, &head->plist, link) { int filter_res; qdisc_skb_cb(skb)->tc_classid = prog->res.classid; if (tc_skip_sw(prog->gen_flags)) { filter_res = prog->exts_integrated ? TC_ACT_UNSPEC : 0; } else if (at_ingress) { /* It is safe to push/pull even if skb_shared() */ __skb_push(skb, skb->mac_len); bpf_compute_data_pointers(skb); filter_res = bpf_prog_run(prog->filter, skb); __skb_pull(skb, skb->mac_len); } else { bpf_compute_data_pointers(skb); filter_res = bpf_prog_run(prog->filter, skb); } if (unlikely(!skb->tstamp && skb->tstamp_type)) skb->tstamp_type = SKB_CLOCK_REALTIME; if (prog->exts_integrated) { res->class = 0; res->classid = TC_H_MAJ(prog->res.classid) | qdisc_skb_cb(skb)->tc_classid; ret = cls_bpf_exec_opcode(filter_res); if (ret == TC_ACT_UNSPEC) continue; break; } if (filter_res == 0) continue; if (filter_res != -1) { res->class = 0; res->classid = filter_res; } else { *res = prog->res; } ret = tcf_exts_exec(skb, &prog->exts, res); if (ret < 0) continue; break; } return ret; } static bool cls_bpf_is_ebpf(const struct cls_bpf_prog *prog) { return !prog->bpf_ops; } static int cls_bpf_offload_cmd(struct tcf_proto *tp, struct cls_bpf_prog *prog, struct cls_bpf_prog *oldprog, struct netlink_ext_ack *extack) { struct tcf_block *block = tp->chain->block; struct tc_cls_bpf_offload cls_bpf = {}; struct cls_bpf_prog *obj; bool skip_sw; int err; skip_sw = prog && tc_skip_sw(prog->gen_flags); obj = prog ?: oldprog; tc_cls_common_offload_init(&cls_bpf.common, tp, obj->gen_flags, extack); cls_bpf.command = TC_CLSBPF_OFFLOAD; cls_bpf.exts = &obj->exts; cls_bpf.prog = prog ? prog->filter : NULL; cls_bpf.oldprog = oldprog ? oldprog->filter : NULL; cls_bpf.name = obj->bpf_name; cls_bpf.exts_integrated = obj->exts_integrated; if (oldprog && prog) err = tc_setup_cb_replace(block, tp, TC_SETUP_CLSBPF, &cls_bpf, skip_sw, &oldprog->gen_flags, &oldprog->in_hw_count, &prog->gen_flags, &prog->in_hw_count, true); else if (prog) err = tc_setup_cb_add(block, tp, TC_SETUP_CLSBPF, &cls_bpf, skip_sw, &prog->gen_flags, &prog->in_hw_count, true); else err = tc_setup_cb_destroy(block, tp, TC_SETUP_CLSBPF, &cls_bpf, skip_sw, &oldprog->gen_flags, &oldprog->in_hw_count, true); if (prog && err) { cls_bpf_offload_cmd(tp, oldprog, prog, extack); return err; } if (prog && skip_sw && !(prog->gen_flags & TCA_CLS_FLAGS_IN_HW)) return -EINVAL; return 0; } static u32 cls_bpf_flags(u32 flags) { return flags & CLS_BPF_SUPPORTED_GEN_FLAGS; } static int cls_bpf_offload(struct tcf_proto *tp, struct cls_bpf_prog *prog, struct cls_bpf_prog *oldprog, struct netlink_ext_ack *extack) { if (prog && oldprog && cls_bpf_flags(prog->gen_flags) != cls_bpf_flags(oldprog->gen_flags)) return -EINVAL; if (prog && tc_skip_hw(prog->gen_flags)) prog = NULL; if (oldprog && tc_skip_hw(oldprog->gen_flags)) oldprog = NULL; if (!prog && !oldprog) return 0; return cls_bpf_offload_cmd(tp, prog, oldprog, extack); } static void cls_bpf_stop_offload(struct tcf_proto *tp, struct cls_bpf_prog *prog, struct netlink_ext_ack *extack) { int err; err = cls_bpf_offload_cmd(tp, NULL, prog, extack); if (err) pr_err("Stopping hardware offload failed: %d\n", err); } static void cls_bpf_offload_update_stats(struct tcf_proto *tp, struct cls_bpf_prog *prog) { struct tcf_block *block = tp->chain->block; struct tc_cls_bpf_offload cls_bpf = {}; tc_cls_common_offload_init(&cls_bpf.common, tp, prog->gen_flags, NULL); cls_bpf.command = TC_CLSBPF_STATS; cls_bpf.exts = &prog->exts; cls_bpf.prog = prog->filter; cls_bpf.name = prog->bpf_name; cls_bpf.exts_integrated = prog->exts_integrated; tc_setup_cb_call(block, TC_SETUP_CLSBPF, &cls_bpf, false, true); } static int cls_bpf_init(struct tcf_proto *tp) { struct cls_bpf_head *head; head = kzalloc(sizeof(*head), GFP_KERNEL); if (head == NULL) return -ENOBUFS; INIT_LIST_HEAD_RCU(&head->plist); idr_init(&head->handle_idr); rcu_assign_pointer(tp->root, head); return 0; } static void cls_bpf_free_parms(struct cls_bpf_prog *prog) { if (cls_bpf_is_ebpf(prog)) bpf_prog_put(prog->filter); else bpf_prog_destroy(prog->filter); kfree(prog->bpf_name); kfree(prog->bpf_ops); } static void __cls_bpf_delete_prog(struct cls_bpf_prog *prog) { tcf_exts_destroy(&prog->exts); tcf_exts_put_net(&prog->exts); cls_bpf_free_parms(prog); kfree(prog); } static void cls_bpf_delete_prog_work(struct work_struct *work) { struct cls_bpf_prog *prog = container_of(to_rcu_work(work), struct cls_bpf_prog, rwork); rtnl_lock(); __cls_bpf_delete_prog(prog); rtnl_unlock(); } static void __cls_bpf_delete(struct tcf_proto *tp, struct cls_bpf_prog *prog, struct netlink_ext_ack *extack) { struct cls_bpf_head *head = rtnl_dereference(tp->root); idr_remove(&head->handle_idr, prog->handle); cls_bpf_stop_offload(tp, prog, extack); list_del_rcu(&prog->link); tcf_unbind_filter(tp, &prog->res); if (tcf_exts_get_net(&prog->exts)) tcf_queue_work(&prog->rwork, cls_bpf_delete_prog_work); else __cls_bpf_delete_prog(prog); } static int cls_bpf_delete(struct tcf_proto *tp, void *arg, bool *last, bool rtnl_held, struct netlink_ext_ack *extack) { struct cls_bpf_head *head = rtnl_dereference(tp->root); __cls_bpf_delete(tp, arg, extack); *last = list_empty(&head->plist); return 0; } static void cls_bpf_destroy(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack) { struct cls_bpf_head *head = rtnl_dereference(tp->root); struct cls_bpf_prog *prog, *tmp; list_for_each_entry_safe(prog, tmp, &head->plist, link) __cls_bpf_delete(tp, prog, extack); idr_destroy(&head->handle_idr); kfree_rcu(head, rcu); } static void *cls_bpf_get(struct tcf_proto *tp, u32 handle) { struct cls_bpf_head *head = rtnl_dereference(tp->root); struct cls_bpf_prog *prog; list_for_each_entry(prog, &head->plist, link) { if (prog->handle == handle) return prog; } return NULL; } static int cls_bpf_prog_from_ops(struct nlattr **tb, struct cls_bpf_prog *prog) { struct sock_filter *bpf_ops; struct sock_fprog_kern fprog_tmp; struct bpf_prog *fp; u16 bpf_size, bpf_num_ops; int ret; bpf_num_ops = nla_get_u16(tb[TCA_BPF_OPS_LEN]); if (bpf_num_ops > BPF_MAXINSNS || bpf_num_ops == 0) return -EINVAL; bpf_size = bpf_num_ops * sizeof(*bpf_ops); if (bpf_size != nla_len(tb[TCA_BPF_OPS])) return -EINVAL; bpf_ops = kmemdup(nla_data(tb[TCA_BPF_OPS]), bpf_size, GFP_KERNEL); if (bpf_ops == NULL) return -ENOMEM; fprog_tmp.len = bpf_num_ops; fprog_tmp.filter = bpf_ops; ret = bpf_prog_create(&fp, &fprog_tmp); if (ret < 0) { kfree(bpf_ops); return ret; } prog->bpf_ops = bpf_ops; prog->bpf_num_ops = bpf_num_ops; prog->bpf_name = NULL; prog->filter = fp; return 0; } static int cls_bpf_prog_from_efd(struct nlattr **tb, struct cls_bpf_prog *prog, u32 gen_flags, const struct tcf_proto *tp) { struct bpf_prog *fp; char *name = NULL; bool skip_sw; u32 bpf_fd; bpf_fd = nla_get_u32(tb[TCA_BPF_FD]); skip_sw = gen_flags & TCA_CLS_FLAGS_SKIP_SW; fp = bpf_prog_get_type_dev(bpf_fd, BPF_PROG_TYPE_SCHED_CLS, skip_sw); if (IS_ERR(fp)) return PTR_ERR(fp); if (tb[TCA_BPF_NAME]) { name = nla_memdup(tb[TCA_BPF_NAME], GFP_KERNEL); if (!name) { bpf_prog_put(fp); return -ENOMEM; } } prog->bpf_ops = NULL; prog->bpf_name = name; prog->filter = fp; if (fp->dst_needed) tcf_block_netif_keep_dst(tp->chain->block); return 0; } static int cls_bpf_change(struct net *net, struct sk_buff *in_skb, struct tcf_proto *tp, unsigned long base, u32 handle, struct nlattr **tca, void **arg, u32 flags, struct netlink_ext_ack *extack) { struct cls_bpf_head *head = rtnl_dereference(tp->root); bool is_bpf, is_ebpf, have_exts = false; struct cls_bpf_prog *oldprog = *arg; struct nlattr *tb[TCA_BPF_MAX + 1]; bool bound_to_filter = false; struct cls_bpf_prog *prog; u32 gen_flags = 0; int ret; if (tca[TCA_OPTIONS] == NULL) return -EINVAL; ret = nla_parse_nested_deprecated(tb, TCA_BPF_MAX, tca[TCA_OPTIONS], bpf_policy, NULL); if (ret < 0) return ret; prog = kzalloc(sizeof(*prog), GFP_KERNEL); if (!prog) return -ENOBUFS; ret = tcf_exts_init(&prog->exts, net, TCA_BPF_ACT, TCA_BPF_POLICE); if (ret < 0) goto errout; if (oldprog) { if (handle && oldprog->handle != handle) { ret = -EINVAL; goto errout; } } if (handle == 0) { handle = 1; ret = idr_alloc_u32(&head->handle_idr, prog, &handle, INT_MAX, GFP_KERNEL); } else if (!oldprog) { ret = idr_alloc_u32(&head->handle_idr, prog, &handle, handle, GFP_KERNEL); } if (ret) goto errout; prog->handle = handle; is_bpf = tb[TCA_BPF_OPS_LEN] && tb[TCA_BPF_OPS]; is_ebpf = tb[TCA_BPF_FD]; if ((!is_bpf && !is_ebpf) || (is_bpf && is_ebpf)) { ret = -EINVAL; goto errout_idr; } ret = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &prog->exts, flags, extack); if (ret < 0) goto errout_idr; if (tb[TCA_BPF_FLAGS]) { u32 bpf_flags = nla_get_u32(tb[TCA_BPF_FLAGS]); if (bpf_flags & ~TCA_BPF_FLAG_ACT_DIRECT) { ret = -EINVAL; goto errout_idr; } have_exts = bpf_flags & TCA_BPF_FLAG_ACT_DIRECT; } if (tb[TCA_BPF_FLAGS_GEN]) { gen_flags = nla_get_u32(tb[TCA_BPF_FLAGS_GEN]); if (gen_flags & ~CLS_BPF_SUPPORTED_GEN_FLAGS || !tc_flags_valid(gen_flags)) { ret = -EINVAL; goto errout_idr; } } prog->exts_integrated = have_exts; prog->gen_flags = gen_flags; ret = is_bpf ? cls_bpf_prog_from_ops(tb, prog) : cls_bpf_prog_from_efd(tb, prog, gen_flags, tp); if (ret < 0) goto errout_idr; if (tb[TCA_BPF_CLASSID]) { prog->res.classid = nla_get_u32(tb[TCA_BPF_CLASSID]); tcf_bind_filter(tp, &prog->res, base); bound_to_filter = true; } ret = cls_bpf_offload(tp, prog, oldprog, extack); if (ret) goto errout_parms; if (!tc_in_hw(prog->gen_flags)) prog->gen_flags |= TCA_CLS_FLAGS_NOT_IN_HW; if (oldprog) { idr_replace(&head->handle_idr, prog, handle); list_replace_rcu(&oldprog->link, &prog->link); tcf_unbind_filter(tp, &oldprog->res); tcf_exts_get_net(&oldprog->exts); tcf_queue_work(&oldprog->rwork, cls_bpf_delete_prog_work); } else { list_add_rcu(&prog->link, &head->plist); } *arg = prog; return 0; errout_parms: if (bound_to_filter) tcf_unbind_filter(tp, &prog->res); cls_bpf_free_parms(prog); errout_idr: if (!oldprog) idr_remove(&head->handle_idr, prog->handle); errout: tcf_exts_destroy(&prog->exts); kfree(prog); return ret; } static int cls_bpf_dump_bpf_info(const struct cls_bpf_prog *prog, struct sk_buff *skb) { struct nlattr *nla; if (nla_put_u16(skb, TCA_BPF_OPS_LEN, prog->bpf_num_ops)) return -EMSGSIZE; nla = nla_reserve(skb, TCA_BPF_OPS, prog->bpf_num_ops * sizeof(struct sock_filter)); if (nla == NULL) return -EMSGSIZE; memcpy(nla_data(nla), prog->bpf_ops, nla_len(nla)); return 0; } static int cls_bpf_dump_ebpf_info(const struct cls_bpf_prog *prog, struct sk_buff *skb) { struct nlattr *nla; if (prog->bpf_name && nla_put_string(skb, TCA_BPF_NAME, prog->bpf_name)) return -EMSGSIZE; if (nla_put_u32(skb, TCA_BPF_ID, prog->filter->aux->id)) return -EMSGSIZE; nla = nla_reserve(skb, TCA_BPF_TAG, sizeof(prog->filter->tag)); if (nla == NULL) return -EMSGSIZE; memcpy(nla_data(nla), prog->filter->tag, nla_len(nla)); return 0; } static int cls_bpf_dump(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *tm, bool rtnl_held) { struct cls_bpf_prog *prog = fh; struct nlattr *nest; u32 bpf_flags = 0; int ret; if (prog == NULL) return skb->len; tm->tcm_handle = prog->handle; cls_bpf_offload_update_stats(tp, prog); nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; if (prog->res.classid && nla_put_u32(skb, TCA_BPF_CLASSID, prog->res.classid)) goto nla_put_failure; if (cls_bpf_is_ebpf(prog)) ret = cls_bpf_dump_ebpf_info(prog, skb); else ret = cls_bpf_dump_bpf_info(prog, skb); if (ret) goto nla_put_failure; if (tcf_exts_dump(skb, &prog->exts) < 0) goto nla_put_failure; if (prog->exts_integrated) bpf_flags |= TCA_BPF_FLAG_ACT_DIRECT; if (bpf_flags && nla_put_u32(skb, TCA_BPF_FLAGS, bpf_flags)) goto nla_put_failure; if (prog->gen_flags && nla_put_u32(skb, TCA_BPF_FLAGS_GEN, prog->gen_flags)) goto nla_put_failure; nla_nest_end(skb, nest); if (tcf_exts_dump_stats(skb, &prog->exts) < 0) goto nla_put_failure; return skb->len; nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static void cls_bpf_bind_class(void *fh, u32 classid, unsigned long cl, void *q, unsigned long base) { struct cls_bpf_prog *prog = fh; tc_cls_bind_class(classid, cl, q, &prog->res, base); } static void cls_bpf_walk(struct tcf_proto *tp, struct tcf_walker *arg, bool rtnl_held) { struct cls_bpf_head *head = rtnl_dereference(tp->root); struct cls_bpf_prog *prog; list_for_each_entry(prog, &head->plist, link) { if (!tc_cls_stats_dump(tp, arg, prog)) break; } } static int cls_bpf_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack) { struct cls_bpf_head *head = rtnl_dereference(tp->root); struct tcf_block *block = tp->chain->block; struct tc_cls_bpf_offload cls_bpf = {}; struct cls_bpf_prog *prog; int err; list_for_each_entry(prog, &head->plist, link) { if (tc_skip_hw(prog->gen_flags)) continue; tc_cls_common_offload_init(&cls_bpf.common, tp, prog->gen_flags, extack); cls_bpf.command = TC_CLSBPF_OFFLOAD; cls_bpf.exts = &prog->exts; cls_bpf.prog = add ? prog->filter : NULL; cls_bpf.oldprog = add ? NULL : prog->filter; cls_bpf.name = prog->bpf_name; cls_bpf.exts_integrated = prog->exts_integrated; err = tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSBPF, &cls_bpf, cb_priv, &prog->gen_flags, &prog->in_hw_count); if (err) return err; } return 0; } static struct tcf_proto_ops cls_bpf_ops __read_mostly = { .kind = "bpf", .owner = THIS_MODULE, .classify = cls_bpf_classify, .init = cls_bpf_init, .destroy = cls_bpf_destroy, .get = cls_bpf_get, .change = cls_bpf_change, .delete = cls_bpf_delete, .walk = cls_bpf_walk, .reoffload = cls_bpf_reoffload, .dump = cls_bpf_dump, .bind_class = cls_bpf_bind_class, }; MODULE_ALIAS_NET_CLS("bpf"); static int __init cls_bpf_init_mod(void) { return register_tcf_proto_ops(&cls_bpf_ops); } static void __exit cls_bpf_exit_mod(void) { unregister_tcf_proto_ops(&cls_bpf_ops); } module_init(cls_bpf_init_mod); module_exit(cls_bpf_exit_mod); |
13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM smc #if !defined(_TRACE_SMC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SMC_H #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/tracepoint.h> #include <net/ipv6.h> #include "smc.h" #include "smc_core.h" TRACE_EVENT(smc_switch_to_fallback, TP_PROTO(const struct smc_sock *smc, int fallback_rsn), TP_ARGS(smc, fallback_rsn), TP_STRUCT__entry( __field(const void *, sk) __field(const void *, clcsk) __field(u64, net_cookie) __field(int, fallback_rsn) ), TP_fast_assign( const struct sock *sk = &smc->sk; const struct sock *clcsk = smc->clcsock->sk; __entry->sk = sk; __entry->clcsk = clcsk; __entry->net_cookie = sock_net(sk)->net_cookie; __entry->fallback_rsn = fallback_rsn; ), TP_printk("sk=%p clcsk=%p net=%llu fallback_rsn=%d", __entry->sk, __entry->clcsk, __entry->net_cookie, __entry->fallback_rsn) ); DECLARE_EVENT_CLASS(smc_msg_event, TP_PROTO(const struct smc_sock *smc, size_t len), TP_ARGS(smc, len), TP_STRUCT__entry( __field(const void *, smc) __field(u64, net_cookie) __field(size_t, len) __string(name, smc->conn.lnk->ibname) ), TP_fast_assign( const struct sock *sk = &smc->sk; __entry->smc = smc; __entry->net_cookie = sock_net(sk)->net_cookie; __entry->len = len; __assign_str(name); ), TP_printk("smc=%p net=%llu len=%zu dev=%s", __entry->smc, __entry->net_cookie, __entry->len, __get_str(name)) ); DEFINE_EVENT(smc_msg_event, smc_tx_sendmsg, TP_PROTO(const struct smc_sock *smc, size_t len), TP_ARGS(smc, len) ); DEFINE_EVENT(smc_msg_event, smc_rx_recvmsg, TP_PROTO(const struct smc_sock *smc, size_t len), TP_ARGS(smc, len) ); TRACE_EVENT(smcr_link_down, TP_PROTO(const struct smc_link *lnk, void *location), TP_ARGS(lnk, location), TP_STRUCT__entry( __field(const void *, lnk) __field(const void *, lgr) __field(u64, net_cookie) __field(int, state) __string(name, lnk->ibname) __field(void *, location) ), TP_fast_assign( const struct smc_link_group *lgr = lnk->lgr; __entry->lnk = lnk; __entry->lgr = lgr; __entry->net_cookie = lgr->net->net_cookie; __entry->state = lnk->state; __assign_str(name); __entry->location = location; ), TP_printk("lnk=%p lgr=%p net=%llu state=%d dev=%s location=%pS", __entry->lnk, __entry->lgr, __entry->net_cookie, __entry->state, __get_str(name), __entry->location) ); #endif /* _TRACE_SMC_H */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE smc_tracepoint #include <trace/define_trace.h> |
6 6 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | // SPDX-License-Identifier: GPL-2.0 /* * CPU <-> hardware queue mapping helpers * * Copyright (C) 2013-2014 Jens Axboe */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/group_cpus.h> #include "blk.h" #include "blk-mq.h" void blk_mq_map_queues(struct blk_mq_queue_map *qmap) { const struct cpumask *masks; unsigned int queue, cpu; masks = group_cpus_evenly(qmap->nr_queues); if (!masks) { for_each_possible_cpu(cpu) qmap->mq_map[cpu] = qmap->queue_offset; return; } for (queue = 0; queue < qmap->nr_queues; queue++) { for_each_cpu(cpu, &masks[queue]) qmap->mq_map[cpu] = qmap->queue_offset + queue; } kfree(masks); } EXPORT_SYMBOL_GPL(blk_mq_map_queues); /** * blk_mq_hw_queue_to_node - Look up the memory node for a hardware queue index * @qmap: CPU to hardware queue map. * @index: hardware queue index. * * We have no quick way of doing reverse lookups. This is only used at * queue init time, so runtime isn't important. */ int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int index) { int i; for_each_possible_cpu(i) { if (index == qmap->mq_map[i]) return cpu_to_node(i); } return NUMA_NO_NODE; } |
2 2 1 1 1 3 3 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | // SPDX-License-Identifier: GPL-2.0-only /* * OCB mode implementation * * Copyright: (c) 2014 Czech Technical University in Prague * (c) 2014 Volkswagen Group Research * Copyright (C) 2022-2023 Intel Corporation * Author: Rostislav Lisovy <rostislav.lisovy@fel.cvut.cz> * Funded by: Volkswagen Group Research */ #include <linux/ieee80211.h> #include <net/cfg80211.h> #include "nl80211.h" #include "core.h" #include "rdev-ops.h" int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { struct wireless_dev *wdev = dev->ieee80211_ptr; int err; lockdep_assert_wiphy(wdev->wiphy); if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_OCB) return -EOPNOTSUPP; if (!rdev->ops->join_ocb) return -EOPNOTSUPP; if (WARN_ON(!setup->chandef.chan)) return -EINVAL; err = rdev_join_ocb(rdev, dev, setup); if (!err) wdev->u.ocb.chandef = setup->chandef; return err; } int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { struct wireless_dev *wdev = dev->ieee80211_ptr; int err; lockdep_assert_wiphy(wdev->wiphy); if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_OCB) return -EOPNOTSUPP; if (!rdev->ops->leave_ocb) return -EOPNOTSUPP; if (!wdev->u.ocb.chandef.chan) return -ENOTCONN; err = rdev_leave_ocb(rdev, dev); if (!err) memset(&wdev->u.ocb.chandef, 0, sizeof(wdev->u.ocb.chandef)); return err; } |
5 5 5 5 5 5 5 29 2 1 2 2 2 152 149 153 13 3 10 10 1 10 5 5 5 5 5 75 71 5 439 441 440 1 1 5 5 23 9 1 1 11 13 10 10 4 6 10 5 5 1 1 1 1 1 1 1 1 4 4 4 1 4 1 9 9 5 1 3 1 2 3 1 1 1 2 2 1 5 1 1 8 1 7 1 2 2 8 3 3 3 66 65 68 68 66 66 66 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 | // SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <linux/cache.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/idr.h> #include <linux/rculist.h> #include <linux/nsproxy.h> #include <linux/fs.h> #include <linux/proc_ns.h> #include <linux/file.h> #include <linux/export.h> #include <linux/user_namespace.h> #include <linux/net_namespace.h> #include <linux/sched/task.h> #include <linux/uidgid.h> #include <linux/cookie.h> #include <linux/proc_fs.h> #include <net/sock.h> #include <net/netlink.h> #include <net/net_namespace.h> #include <net/netns/generic.h> /* * Our network namespace constructor/destructor lists */ static LIST_HEAD(pernet_list); static struct list_head *first_device = &pernet_list; LIST_HEAD(net_namespace_list); EXPORT_SYMBOL_GPL(net_namespace_list); /* Protects net_namespace_list. Nests iside rtnl_lock() */ DECLARE_RWSEM(net_rwsem); EXPORT_SYMBOL_GPL(net_rwsem); #ifdef CONFIG_KEYS static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; #endif struct net init_net; EXPORT_SYMBOL(init_net); static bool init_net_initialized; /* * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, * init_net_initialized and first_device pointer. * This is internal net namespace object. Please, don't use it * outside. */ DECLARE_RWSEM(pernet_ops_rwsem); EXPORT_SYMBOL_GPL(pernet_ops_rwsem); #define MIN_PERNET_OPS_ID \ ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; DEFINE_COOKIE(net_cookie); static struct net_generic *net_alloc_generic(void) { unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); unsigned int generic_size; struct net_generic *ng; generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); ng = kzalloc(generic_size, GFP_KERNEL); if (ng) ng->s.len = gen_ptrs; return ng; } static int net_assign_generic(struct net *net, unsigned int id, void *data) { struct net_generic *ng, *old_ng; BUG_ON(id < MIN_PERNET_OPS_ID); old_ng = rcu_dereference_protected(net->gen, lockdep_is_held(&pernet_ops_rwsem)); if (old_ng->s.len > id) { old_ng->ptr[id] = data; return 0; } ng = net_alloc_generic(); if (!ng) return -ENOMEM; /* * Some synchronisation notes: * * The net_generic explores the net->gen array inside rcu * read section. Besides once set the net->gen->ptr[x] * pointer never changes (see rules in netns/generic.h). * * That said, we simply duplicate this array and schedule * the old copy for kfree after a grace period. */ memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); ng->ptr[id] = data; rcu_assign_pointer(net->gen, ng); kfree_rcu(old_ng, s.rcu); return 0; } static int ops_init(const struct pernet_operations *ops, struct net *net) { struct net_generic *ng; int err = -ENOMEM; void *data = NULL; if (ops->id) { data = kzalloc(ops->size, GFP_KERNEL); if (!data) goto out; err = net_assign_generic(net, *ops->id, data); if (err) goto cleanup; } err = 0; if (ops->init) err = ops->init(net); if (!err) return 0; if (ops->id) { ng = rcu_dereference_protected(net->gen, lockdep_is_held(&pernet_ops_rwsem)); ng->ptr[*ops->id] = NULL; } cleanup: kfree(data); out: return err; } static void ops_pre_exit_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->pre_exit) { list_for_each_entry(net, net_exit_list, exit_list) ops->pre_exit(net); } } static void ops_exit_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->exit) { list_for_each_entry(net, net_exit_list, exit_list) { ops->exit(net); cond_resched(); } } if (ops->exit_batch) ops->exit_batch(net_exit_list); } static void ops_free_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->id) { list_for_each_entry(net, net_exit_list, exit_list) kfree(net_generic(net, *ops->id)); } } /* should be called with nsid_lock held */ static int alloc_netid(struct net *net, struct net *peer, int reqid) { int min = 0, max = 0; if (reqid >= 0) { min = reqid; max = reqid + 1; } return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); } /* This function is used by idr_for_each(). If net is equal to peer, the * function returns the id so that idr_for_each() stops. Because we cannot * returns the id 0 (idr_for_each() will not stop), we return the magic value * NET_ID_ZERO (-1) for it. */ #define NET_ID_ZERO -1 static int net_eq_idr(int id, void *net, void *peer) { if (net_eq(net, peer)) return id ? : NET_ID_ZERO; return 0; } /* Must be called from RCU-critical section or with nsid_lock held */ static int __peernet2id(const struct net *net, struct net *peer) { int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); /* Magic value for id 0. */ if (id == NET_ID_ZERO) return 0; if (id > 0) return id; return NETNSA_NSID_NOT_ASSIGNED; } static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, struct nlmsghdr *nlh, gfp_t gfp); /* This function returns the id of a peer netns. If no id is assigned, one will * be allocated and returned. */ int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) { int id; if (refcount_read(&net->ns.count) == 0) return NETNSA_NSID_NOT_ASSIGNED; spin_lock_bh(&net->nsid_lock); id = __peernet2id(net, peer); if (id >= 0) { spin_unlock_bh(&net->nsid_lock); return id; } /* When peer is obtained from RCU lists, we may race with * its cleanup. Check whether it's alive, and this guarantees * we never hash a peer back to net->netns_ids, after it has * just been idr_remove()'d from there in cleanup_net(). */ if (!maybe_get_net(peer)) { spin_unlock_bh(&net->nsid_lock); return NETNSA_NSID_NOT_ASSIGNED; } id = alloc_netid(net, peer, -1); spin_unlock_bh(&net->nsid_lock); put_net(peer); if (id < 0) return NETNSA_NSID_NOT_ASSIGNED; rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); return id; } EXPORT_SYMBOL_GPL(peernet2id_alloc); /* This function returns, if assigned, the id of a peer netns. */ int peernet2id(const struct net *net, struct net *peer) { int id; rcu_read_lock(); id = __peernet2id(net, peer); rcu_read_unlock(); return id; } EXPORT_SYMBOL(peernet2id); /* This function returns true is the peer netns has an id assigned into the * current netns. */ bool peernet_has_id(const struct net *net, struct net *peer) { return peernet2id(net, peer) >= 0; } struct net *get_net_ns_by_id(const struct net *net, int id) { struct net *peer; if (id < 0) return NULL; rcu_read_lock(); peer = idr_find(&net->netns_ids, id); if (peer) peer = maybe_get_net(peer); rcu_read_unlock(); return peer; } EXPORT_SYMBOL_GPL(get_net_ns_by_id); static __net_init void preinit_net_sysctl(struct net *net) { net->core.sysctl_somaxconn = SOMAXCONN; /* Limits per socket sk_omem_alloc usage. * TCP zerocopy regular usage needs 128 KB. */ net->core.sysctl_optmem_max = 128 * 1024; net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; } /* init code that must occur even if setup_net() is not called. */ static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) { refcount_set(&net->passive, 1); refcount_set(&net->ns.count, 1); ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); get_random_bytes(&net->hash_mix, sizeof(u32)); net->dev_base_seq = 1; net->user_ns = user_ns; idr_init(&net->netns_ids); spin_lock_init(&net->nsid_lock); mutex_init(&net->ipv4.ra_mutex); preinit_net_sysctl(net); } /* * setup_net runs the initializers for the network namespace object. */ static __net_init int setup_net(struct net *net) { /* Must be called with pernet_ops_rwsem held */ const struct pernet_operations *ops, *saved_ops; LIST_HEAD(net_exit_list); LIST_HEAD(dev_kill_list); int error = 0; preempt_disable(); net->net_cookie = gen_cookie_next(&net_cookie); preempt_enable(); list_for_each_entry(ops, &pernet_list, list) { error = ops_init(ops, net); if (error < 0) goto out_undo; } down_write(&net_rwsem); list_add_tail_rcu(&net->list, &net_namespace_list); up_write(&net_rwsem); out: return error; out_undo: /* Walk through the list backwards calling the exit functions * for the pernet modules whose init functions did not fail. */ list_add(&net->exit_list, &net_exit_list); saved_ops = ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_pre_exit_list(ops, &net_exit_list); synchronize_rcu(); ops = saved_ops; rtnl_lock(); list_for_each_entry_continue_reverse(ops, &pernet_list, list) { if (ops->exit_batch_rtnl) ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); } unregister_netdevice_many(&dev_kill_list); rtnl_unlock(); ops = saved_ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_exit_list(ops, &net_exit_list); ops = saved_ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_free_list(ops, &net_exit_list); rcu_barrier(); goto out; } #ifdef CONFIG_NET_NS static struct ucounts *inc_net_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); } static void dec_net_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); } static struct kmem_cache *net_cachep __ro_after_init; static struct workqueue_struct *netns_wq; static struct net *net_alloc(void) { struct net *net = NULL; struct net_generic *ng; ng = net_alloc_generic(); if (!ng) goto out; net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); if (!net) goto out_free; #ifdef CONFIG_KEYS net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); if (!net->key_domain) goto out_free_2; refcount_set(&net->key_domain->usage, 1); #endif rcu_assign_pointer(net->gen, ng); out: return net; #ifdef CONFIG_KEYS out_free_2: kmem_cache_free(net_cachep, net); net = NULL; #endif out_free: kfree(ng); goto out; } static void net_free(struct net *net) { if (refcount_dec_and_test(&net->passive)) { kfree(rcu_access_pointer(net->gen)); /* There should not be any trackers left there. */ ref_tracker_dir_exit(&net->notrefcnt_tracker); kmem_cache_free(net_cachep, net); } } void net_drop_ns(void *p) { struct net *net = (struct net *)p; if (net) net_free(net); } struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, struct net *old_net) { struct ucounts *ucounts; struct net *net; int rv; if (!(flags & CLONE_NEWNET)) return get_net(old_net); ucounts = inc_net_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); net = net_alloc(); if (!net) { rv = -ENOMEM; goto dec_ucounts; } preinit_net(net, user_ns); net->ucounts = ucounts; get_user_ns(user_ns); rv = down_read_killable(&pernet_ops_rwsem); if (rv < 0) goto put_userns; rv = setup_net(net); up_read(&pernet_ops_rwsem); if (rv < 0) { put_userns: #ifdef CONFIG_KEYS key_remove_domain(net->key_domain); #endif put_user_ns(user_ns); net_free(net); dec_ucounts: dec_net_namespaces(ucounts); return ERR_PTR(rv); } return net; } /** * net_ns_get_ownership - get sysfs ownership data for @net * @net: network namespace in question (can be NULL) * @uid: kernel user ID for sysfs objects * @gid: kernel group ID for sysfs objects * * Returns the uid/gid pair of root in the user namespace associated with the * given network namespace. */ void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) { if (net) { kuid_t ns_root_uid = make_kuid(net->user_ns, 0); kgid_t ns_root_gid = make_kgid(net->user_ns, 0); if (uid_valid(ns_root_uid)) *uid = ns_root_uid; if (gid_valid(ns_root_gid)) *gid = ns_root_gid; } else { *uid = GLOBAL_ROOT_UID; *gid = GLOBAL_ROOT_GID; } } EXPORT_SYMBOL_GPL(net_ns_get_ownership); static void unhash_nsid(struct net *net, struct net *last) { struct net *tmp; /* This function is only called from cleanup_net() work, * and this work is the only process, that may delete * a net from net_namespace_list. So, when the below * is executing, the list may only grow. Thus, we do not * use for_each_net_rcu() or net_rwsem. */ for_each_net(tmp) { int id; spin_lock_bh(&tmp->nsid_lock); id = __peernet2id(tmp, net); if (id >= 0) idr_remove(&tmp->netns_ids, id); spin_unlock_bh(&tmp->nsid_lock); if (id >= 0) rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, GFP_KERNEL); if (tmp == last) break; } spin_lock_bh(&net->nsid_lock); idr_destroy(&net->netns_ids); spin_unlock_bh(&net->nsid_lock); } static LLIST_HEAD(cleanup_list); static void cleanup_net(struct work_struct *work) { const struct pernet_operations *ops; struct net *net, *tmp, *last; struct llist_node *net_kill_list; LIST_HEAD(net_exit_list); LIST_HEAD(dev_kill_list); /* Atomically snapshot the list of namespaces to cleanup */ net_kill_list = llist_del_all(&cleanup_list); down_read(&pernet_ops_rwsem); /* Don't let anyone else find us. */ down_write(&net_rwsem); llist_for_each_entry(net, net_kill_list, cleanup_list) list_del_rcu(&net->list); /* Cache last net. After we unlock rtnl, no one new net * added to net_namespace_list can assign nsid pointer * to a net from net_kill_list (see peernet2id_alloc()). * So, we skip them in unhash_nsid(). * * Note, that unhash_nsid() does not delete nsid links * between net_kill_list's nets, as they've already * deleted from net_namespace_list. But, this would be * useless anyway, as netns_ids are destroyed there. */ last = list_last_entry(&net_namespace_list, struct net, list); up_write(&net_rwsem); llist_for_each_entry(net, net_kill_list, cleanup_list) { unhash_nsid(net, last); list_add_tail(&net->exit_list, &net_exit_list); } /* Run all of the network namespace pre_exit methods */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_pre_exit_list(ops, &net_exit_list); /* * Another CPU might be rcu-iterating the list, wait for it. * This needs to be before calling the exit() notifiers, so * the rcu_barrier() below isn't sufficient alone. * Also the pre_exit() and exit() methods need this barrier. */ synchronize_rcu_expedited(); rtnl_lock(); list_for_each_entry_reverse(ops, &pernet_list, list) { if (ops->exit_batch_rtnl) ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); } unregister_netdevice_many(&dev_kill_list); rtnl_unlock(); /* Run all of the network namespace exit methods */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_exit_list(ops, &net_exit_list); /* Free the net generic variables */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_free_list(ops, &net_exit_list); up_read(&pernet_ops_rwsem); /* Ensure there are no outstanding rcu callbacks using this * network namespace. */ rcu_barrier(); /* Finally it is safe to free my network namespace structure */ list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { list_del_init(&net->exit_list); dec_net_namespaces(net->ucounts); #ifdef CONFIG_KEYS key_remove_domain(net->key_domain); #endif put_user_ns(net->user_ns); net_free(net); } } /** * net_ns_barrier - wait until concurrent net_cleanup_work is done * * cleanup_net runs from work queue and will first remove namespaces * from the global list, then run net exit functions. * * Call this in module exit path to make sure that all netns * ->exit ops have been invoked before the function is removed. */ void net_ns_barrier(void) { down_write(&pernet_ops_rwsem); up_write(&pernet_ops_rwsem); } EXPORT_SYMBOL(net_ns_barrier); static DECLARE_WORK(net_cleanup_work, cleanup_net); void __put_net(struct net *net) { ref_tracker_dir_exit(&net->refcnt_tracker); /* Cleanup the network namespace in process context */ if (llist_add(&net->cleanup_list, &cleanup_list)) queue_work(netns_wq, &net_cleanup_work); } EXPORT_SYMBOL_GPL(__put_net); /** * get_net_ns - increment the refcount of the network namespace * @ns: common namespace (net) * * Returns the net's common namespace or ERR_PTR() if ref is zero. */ struct ns_common *get_net_ns(struct ns_common *ns) { struct net *net; net = maybe_get_net(container_of(ns, struct net, ns)); if (net) return &net->ns; return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(get_net_ns); struct net *get_net_ns_by_fd(int fd) { struct fd f = fdget(fd); struct net *net = ERR_PTR(-EINVAL); if (!f.file) return ERR_PTR(-EBADF); if (proc_ns_file(f.file)) { struct ns_common *ns = get_proc_ns(file_inode(f.file)); if (ns->ops == &netns_operations) net = get_net(container_of(ns, struct net, ns)); } fdput(f); return net; } EXPORT_SYMBOL_GPL(get_net_ns_by_fd); #endif struct net *get_net_ns_by_pid(pid_t pid) { struct task_struct *tsk; struct net *net; /* Lookup the network namespace */ net = ERR_PTR(-ESRCH); rcu_read_lock(); tsk = find_task_by_vpid(pid); if (tsk) { struct nsproxy *nsproxy; task_lock(tsk); nsproxy = tsk->nsproxy; if (nsproxy) net = get_net(nsproxy->net_ns); task_unlock(tsk); } rcu_read_unlock(); return net; } EXPORT_SYMBOL_GPL(get_net_ns_by_pid); static __net_init int net_ns_net_init(struct net *net) { #ifdef CONFIG_NET_NS net->ns.ops = &netns_operations; #endif return ns_alloc_inum(&net->ns); } static __net_exit void net_ns_net_exit(struct net *net) { ns_free_inum(&net->ns); } static struct pernet_operations __net_initdata net_ns_ops = { .init = net_ns_net_init, .exit = net_ns_net_exit, }; static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { [NETNSA_NONE] = { .type = NLA_UNSPEC }, [NETNSA_NSID] = { .type = NLA_S32 }, [NETNSA_PID] = { .type = NLA_U32 }, [NETNSA_FD] = { .type = NLA_U32 }, [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, }; static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tb[NETNSA_MAX + 1]; struct nlattr *nla; struct net *peer; int nsid, err; err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, rtnl_net_policy, extack); if (err < 0) return err; if (!tb[NETNSA_NSID]) { NL_SET_ERR_MSG(extack, "nsid is missing"); return -EINVAL; } nsid = nla_get_s32(tb[NETNSA_NSID]); if (tb[NETNSA_PID]) { peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); nla = tb[NETNSA_PID]; } else if (tb[NETNSA_FD]) { peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); nla = tb[NETNSA_FD]; } else { NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); return -EINVAL; } if (IS_ERR(peer)) { NL_SET_BAD_ATTR(extack, nla); NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); return PTR_ERR(peer); } spin_lock_bh(&net->nsid_lock); if (__peernet2id(net, peer) >= 0) { spin_unlock_bh(&net->nsid_lock); err = -EEXIST; NL_SET_BAD_ATTR(extack, nla); NL_SET_ERR_MSG(extack, "Peer netns already has a nsid assigned"); goto out; } err = alloc_netid(net, peer, nsid); spin_unlock_bh(&net->nsid_lock); if (err >= 0) { rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, nlh, GFP_KERNEL); err = 0; } else if (err == -ENOSPC && nsid >= 0) { err = -EEXIST; NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); NL_SET_ERR_MSG(extack, "The specified nsid is already used"); } out: put_net(peer); return err; } static int rtnl_net_get_size(void) { return NLMSG_ALIGN(sizeof(struct rtgenmsg)) + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ ; } struct net_fill_args { u32 portid; u32 seq; int flags; int cmd; int nsid; bool add_ref; int ref_nsid; }; static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) { struct nlmsghdr *nlh; struct rtgenmsg *rth; nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), args->flags); if (!nlh) return -EMSGSIZE; rth = nlmsg_data(nlh); rth->rtgen_family = AF_UNSPEC; if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) goto nla_put_failure; if (args->add_ref && nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int rtnl_net_valid_getid_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { int i, err; if (!netlink_strict_get_check(skb)) return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, rtnl_net_policy, extack); err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, rtnl_net_policy, extack); if (err) return err; for (i = 0; i <= NETNSA_MAX; i++) { if (!tb[i]) continue; switch (i) { case NETNSA_PID: case NETNSA_FD: case NETNSA_NSID: case NETNSA_TARGET_NSID: break; default: NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); return -EINVAL; } } return 0; } static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tb[NETNSA_MAX + 1]; struct net_fill_args fillargs = { .portid = NETLINK_CB(skb).portid, .seq = nlh->nlmsg_seq, .cmd = RTM_NEWNSID, }; struct net *peer, *target = net; struct nlattr *nla; struct sk_buff *msg; int err; err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); if (err < 0) return err; if (tb[NETNSA_PID]) { peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); nla = tb[NETNSA_PID]; } else if (tb[NETNSA_FD]) { peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); nla = tb[NETNSA_FD]; } else if (tb[NETNSA_NSID]) { peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); if (!peer) peer = ERR_PTR(-ENOENT); nla = tb[NETNSA_NSID]; } else { NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); return -EINVAL; } if (IS_ERR(peer)) { NL_SET_BAD_ATTR(extack, nla); NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); return PTR_ERR(peer); } if (tb[NETNSA_TARGET_NSID]) { int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); if (IS_ERR(target)) { NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); NL_SET_ERR_MSG(extack, "Target netns reference is invalid"); err = PTR_ERR(target); goto out; } fillargs.add_ref = true; fillargs.ref_nsid = peernet2id(net, peer); } msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); if (!msg) { err = -ENOMEM; goto out; } fillargs.nsid = peernet2id(target, peer); err = rtnl_net_fill(msg, &fillargs); if (err < 0) goto err_out; err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); goto out; err_out: nlmsg_free(msg); out: if (fillargs.add_ref) put_net(target); put_net(peer); return err; } struct rtnl_net_dump_cb { struct net *tgt_net; struct net *ref_net; struct sk_buff *skb; struct net_fill_args fillargs; int idx; int s_idx; }; /* Runs in RCU-critical section. */ static int rtnl_net_dumpid_one(int id, void *peer, void *data) { struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; int ret; if (net_cb->idx < net_cb->s_idx) goto cont; net_cb->fillargs.nsid = id; if (net_cb->fillargs.add_ref) net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); if (ret < 0) return ret; cont: net_cb->idx++; return 0; } static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, struct rtnl_net_dump_cb *net_cb, struct netlink_callback *cb) { struct netlink_ext_ack *extack = cb->extack; struct nlattr *tb[NETNSA_MAX + 1]; int err, i; err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, rtnl_net_policy, extack); if (err < 0) return err; for (i = 0; i <= NETNSA_MAX; i++) { if (!tb[i]) continue; if (i == NETNSA_TARGET_NSID) { struct net *net; net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); if (IS_ERR(net)) { NL_SET_BAD_ATTR(extack, tb[i]); NL_SET_ERR_MSG(extack, "Invalid target network namespace id"); return PTR_ERR(net); } net_cb->fillargs.add_ref = true; net_cb->ref_net = net_cb->tgt_net; net_cb->tgt_net = net; } else { NL_SET_BAD_ATTR(extack, tb[i]); NL_SET_ERR_MSG(extack, "Unsupported attribute in dump request"); return -EINVAL; } } return 0; } static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) { struct rtnl_net_dump_cb net_cb = { .tgt_net = sock_net(skb->sk), .skb = skb, .fillargs = { .portid = NETLINK_CB(cb->skb).portid, .seq = cb->nlh->nlmsg_seq, .flags = NLM_F_MULTI, .cmd = RTM_NEWNSID, }, .idx = 0, .s_idx = cb->args[0], }; int err = 0; if (cb->strict_check) { err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); if (err < 0) goto end; } rcu_read_lock(); idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); rcu_read_unlock(); cb->args[0] = net_cb.idx; end: if (net_cb.fillargs.add_ref) put_net(net_cb.tgt_net); return err; } static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, struct nlmsghdr *nlh, gfp_t gfp) { struct net_fill_args fillargs = { .portid = portid, .seq = nlh ? nlh->nlmsg_seq : 0, .cmd = cmd, .nsid = id, }; struct sk_buff *msg; int err = -ENOMEM; msg = nlmsg_new(rtnl_net_get_size(), gfp); if (!msg) goto out; err = rtnl_net_fill(msg, &fillargs); if (err < 0) goto err_out; rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); return; err_out: nlmsg_free(msg); out: rtnl_set_sk_err(net, RTNLGRP_NSID, err); } #ifdef CONFIG_NET_NS static void __init netns_ipv4_struct_check(void) { /* TX readonly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_early_retrans); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_tso_win_divisor); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_tso_rtt_log); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_autocorking); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_min_snd_mss); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_notsent_lowat); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_limit_output_bytes); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_min_rtt_wlen); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_tcp_wmem); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, sysctl_ip_fwd_use_pmtu); CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); /* TXRX readonly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, sysctl_tcp_moderate_rcvbuf); CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); /* RX readonly hotpath cache line */ CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, sysctl_ip_early_demux); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, sysctl_tcp_early_demux); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, sysctl_tcp_reordering); CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, sysctl_tcp_rmem); CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18); } #endif void __init net_ns_init(void) { struct net_generic *ng; #ifdef CONFIG_NET_NS netns_ipv4_struct_check(); net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), SMP_CACHE_BYTES, SLAB_PANIC|SLAB_ACCOUNT, NULL); /* Create workqueue for cleanup */ netns_wq = create_singlethread_workqueue("netns"); if (!netns_wq) panic("Could not create netns workq"); #endif ng = net_alloc_generic(); if (!ng) panic("Could not allocate generic netns"); rcu_assign_pointer(init_net.gen, ng); #ifdef CONFIG_KEYS init_net.key_domain = &init_net_key_domain; #endif preinit_net(&init_net, &init_user_ns); down_write(&pernet_ops_rwsem); if (setup_net(&init_net)) panic("Could not setup the initial network namespace"); init_net_initialized = true; up_write(&pernet_ops_rwsem); if (register_pernet_subsys(&net_ns_ops)) panic("Could not register network namespace subsystems"); rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, RTNL_FLAG_DOIT_UNLOCKED); rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED); } static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) { ops_pre_exit_list(ops, net_exit_list); synchronize_rcu(); if (ops->exit_batch_rtnl) { LIST_HEAD(dev_kill_list); rtnl_lock(); ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); unregister_netdevice_many(&dev_kill_list); rtnl_unlock(); } ops_exit_list(ops, net_exit_list); ops_free_list(ops, net_exit_list); } #ifdef CONFIG_NET_NS static int __register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { struct net *net; int error; LIST_HEAD(net_exit_list); list_add_tail(&ops->list, list); if (ops->init || ops->id) { /* We held write locked pernet_ops_rwsem, and parallel * setup_net() and cleanup_net() are not possible. */ for_each_net(net) { error = ops_init(ops, net); if (error) goto out_undo; list_add_tail(&net->exit_list, &net_exit_list); } } return 0; out_undo: /* If I have an error cleanup all namespaces I initialized */ list_del(&ops->list); free_exit_list(ops, &net_exit_list); return error; } static void __unregister_pernet_operations(struct pernet_operations *ops) { struct net *net; LIST_HEAD(net_exit_list); list_del(&ops->list); /* See comment in __register_pernet_operations() */ for_each_net(net) list_add_tail(&net->exit_list, &net_exit_list); free_exit_list(ops, &net_exit_list); } #else static int __register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { if (!init_net_initialized) { list_add_tail(&ops->list, list); return 0; } return ops_init(ops, &init_net); } static void __unregister_pernet_operations(struct pernet_operations *ops) { if (!init_net_initialized) { list_del(&ops->list); } else { LIST_HEAD(net_exit_list); list_add(&init_net.exit_list, &net_exit_list); free_exit_list(ops, &net_exit_list); } } #endif /* CONFIG_NET_NS */ static DEFINE_IDA(net_generic_ids); static int register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { int error; if (WARN_ON(!!ops->id ^ !!ops->size)) return -EINVAL; if (ops->id) { error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, GFP_KERNEL); if (error < 0) return error; *ops->id = error; /* This does not require READ_ONCE as writers already hold * pernet_ops_rwsem. But WRITE_ONCE is needed to protect * net_alloc_generic. */ WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); } error = __register_pernet_operations(list, ops); if (error) { rcu_barrier(); if (ops->id) ida_free(&net_generic_ids, *ops->id); } return error; } static void unregister_pernet_operations(struct pernet_operations *ops) { __unregister_pernet_operations(ops); rcu_barrier(); if (ops->id) ida_free(&net_generic_ids, *ops->id); } /** * register_pernet_subsys - register a network namespace subsystem * @ops: pernet operations structure for the subsystem * * Register a subsystem which has init and exit functions * that are called when network namespaces are created and * destroyed respectively. * * When registered all network namespace init functions are * called for every existing network namespace. Allowing kernel * modules to have a race free view of the set of network namespaces. * * When a new network namespace is created all of the init * methods are called in the order in which they were registered. * * When a network namespace is destroyed all of the exit methods * are called in the reverse of the order with which they were * registered. */ int register_pernet_subsys(struct pernet_operations *ops) { int error; down_write(&pernet_ops_rwsem); error = register_pernet_operations(first_device, ops); up_write(&pernet_ops_rwsem); return error; } EXPORT_SYMBOL_GPL(register_pernet_subsys); /** * unregister_pernet_subsys - unregister a network namespace subsystem * @ops: pernet operations structure to manipulate * * Remove the pernet operations structure from the list to be * used when network namespaces are created or destroyed. In * addition run the exit method for all existing network * namespaces. */ void unregister_pernet_subsys(struct pernet_operations *ops) { down_write(&pernet_ops_rwsem); unregister_pernet_operations(ops); up_write(&pernet_ops_rwsem); } EXPORT_SYMBOL_GPL(unregister_pernet_subsys); /** * register_pernet_device - register a network namespace device * @ops: pernet operations structure for the subsystem * * Register a device which has init and exit functions * that are called when network namespaces are created and * destroyed respectively. * * When registered all network namespace init functions are * called for every existing network namespace. Allowing kernel * modules to have a race free view of the set of network namespaces. * * When a new network namespace is created all of the init * methods are called in the order in which they were registered. * * When a network namespace is destroyed all of the exit methods * are called in the reverse of the order with which they were * registered. */ int register_pernet_device(struct pernet_operations *ops) { int error; down_write(&pernet_ops_rwsem); error = register_pernet_operations(&pernet_list, ops); if (!error && (first_device == &pernet_list)) first_device = &ops->list; up_write(&pernet_ops_rwsem); return error; } EXPORT_SYMBOL_GPL(register_pernet_device); /** * unregister_pernet_device - unregister a network namespace netdevice * @ops: pernet operations structure to manipulate * * Remove the pernet operations structure from the list to be * used when network namespaces are created or destroyed. In * addition run the exit method for all existing network * namespaces. */ void unregister_pernet_device(struct pernet_operations *ops) { down_write(&pernet_ops_rwsem); if (&ops->list == first_device) first_device = first_device->next; unregister_pernet_operations(ops); up_write(&pernet_ops_rwsem); } EXPORT_SYMBOL_GPL(unregister_pernet_device); #ifdef CONFIG_NET_NS static struct ns_common *netns_get(struct task_struct *task) { struct net *net = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) net = get_net(nsproxy->net_ns); task_unlock(task); return net ? &net->ns : NULL; } static inline struct net *to_net_ns(struct ns_common *ns) { return container_of(ns, struct net, ns); } static void netns_put(struct ns_common *ns) { put_net(to_net_ns(ns)); } static int netns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct net *net = to_net_ns(ns); if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) return -EPERM; put_net(nsproxy->net_ns); nsproxy->net_ns = get_net(net); return 0; } static struct user_namespace *netns_owner(struct ns_common *ns) { return to_net_ns(ns)->user_ns; } const struct proc_ns_operations netns_operations = { .name = "net", .type = CLONE_NEWNET, .get = netns_get, .put = netns_put, .install = netns_install, .owner = netns_owner, }; #endif |
3 3 1 2 1 2 3 3 3 3 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | // SPDX-License-Identifier: GPL-2.0-or-later /* * tsacct.c - System accounting over taskstats interface * * Copyright (C) Jay Lan, <jlan@sgi.com> */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/sched/cputime.h> #include <linux/tsacct_kern.h> #include <linux/acct.h> #include <linux/jiffies.h> #include <linux/mm.h> /* * fill in basic accounting fields */ void bacct_add_tsk(struct user_namespace *user_ns, struct pid_namespace *pid_ns, struct taskstats *stats, struct task_struct *tsk) { const struct cred *tcred; u64 utime, stime, utimescaled, stimescaled; u64 now_ns, delta; time64_t btime; BUILD_BUG_ON(TS_COMM_LEN < TASK_COMM_LEN); /* calculate task elapsed time in nsec */ now_ns = ktime_get_ns(); /* store whole group time first */ delta = now_ns - tsk->group_leader->start_time; /* Convert to micro seconds */ do_div(delta, NSEC_PER_USEC); stats->ac_tgetime = delta; delta = now_ns - tsk->start_time; do_div(delta, NSEC_PER_USEC); stats->ac_etime = delta; /* Convert to seconds for btime (note y2106 limit) */ btime = ktime_get_real_seconds() - div_u64(delta, USEC_PER_SEC); stats->ac_btime = clamp_t(time64_t, btime, 0, U32_MAX); stats->ac_btime64 = btime; if (tsk->flags & PF_EXITING) stats->ac_exitcode = tsk->exit_code; if (thread_group_leader(tsk) && (tsk->flags & PF_FORKNOEXEC)) stats->ac_flag |= AFORK; if (tsk->flags & PF_SUPERPRIV) stats->ac_flag |= ASU; if (tsk->flags & PF_DUMPCORE) stats->ac_flag |= ACORE; if (tsk->flags & PF_SIGNALED) stats->ac_flag |= AXSIG; stats->ac_nice = task_nice(tsk); stats->ac_sched = tsk->policy; stats->ac_pid = task_pid_nr_ns(tsk, pid_ns); stats->ac_tgid = task_tgid_nr_ns(tsk, pid_ns); rcu_read_lock(); tcred = __task_cred(tsk); stats->ac_uid = from_kuid_munged(user_ns, tcred->uid); stats->ac_gid = from_kgid_munged(user_ns, tcred->gid); stats->ac_ppid = pid_alive(tsk) ? task_tgid_nr_ns(rcu_dereference(tsk->real_parent), pid_ns) : 0; rcu_read_unlock(); task_cputime(tsk, &utime, &stime); stats->ac_utime = div_u64(utime, NSEC_PER_USEC); stats->ac_stime = div_u64(stime, NSEC_PER_USEC); task_cputime_scaled(tsk, &utimescaled, &stimescaled); stats->ac_utimescaled = div_u64(utimescaled, NSEC_PER_USEC); stats->ac_stimescaled = div_u64(stimescaled, NSEC_PER_USEC); stats->ac_minflt = tsk->min_flt; stats->ac_majflt = tsk->maj_flt; strscpy_pad(stats->ac_comm, tsk->comm); } #ifdef CONFIG_TASK_XACCT #define KB 1024 #define MB (1024*KB) #define KB_MASK (~(KB-1)) /* * fill in extended accounting fields */ void xacct_add_tsk(struct taskstats *stats, struct task_struct *p) { struct mm_struct *mm; /* convert pages-nsec/1024 to Mbyte-usec, see __acct_update_integrals */ stats->coremem = p->acct_rss_mem1 * PAGE_SIZE; do_div(stats->coremem, 1000 * KB); stats->virtmem = p->acct_vm_mem1 * PAGE_SIZE; do_div(stats->virtmem, 1000 * KB); mm = get_task_mm(p); if (mm) { /* adjust to KB unit */ stats->hiwater_rss = get_mm_hiwater_rss(mm) * PAGE_SIZE / KB; stats->hiwater_vm = get_mm_hiwater_vm(mm) * PAGE_SIZE / KB; mmput(mm); } stats->read_char = p->ioac.rchar & KB_MASK; stats->write_char = p->ioac.wchar & KB_MASK; stats->read_syscalls = p->ioac.syscr & KB_MASK; stats->write_syscalls = p->ioac.syscw & KB_MASK; #ifdef CONFIG_TASK_IO_ACCOUNTING stats->read_bytes = p->ioac.read_bytes & KB_MASK; stats->write_bytes = p->ioac.write_bytes & KB_MASK; stats->cancelled_write_bytes = p->ioac.cancelled_write_bytes & KB_MASK; #else stats->read_bytes = 0; stats->write_bytes = 0; stats->cancelled_write_bytes = 0; #endif } #undef KB #undef MB static void __acct_update_integrals(struct task_struct *tsk, u64 utime, u64 stime) { u64 time, delta; if (!likely(tsk->mm)) return; time = stime + utime; delta = time - tsk->acct_timexpd; if (delta < TICK_NSEC) return; tsk->acct_timexpd = time; /* * Divide by 1024 to avoid overflow, and to avoid division. * The final unit reported to userspace is Mbyte-usecs, * the rest of the math is done in xacct_add_tsk. */ tsk->acct_rss_mem1 += delta * get_mm_rss(tsk->mm) >> 10; tsk->acct_vm_mem1 += delta * READ_ONCE(tsk->mm->total_vm) >> 10; } /** * acct_update_integrals - update mm integral fields in task_struct * @tsk: task_struct for accounting */ void acct_update_integrals(struct task_struct *tsk) { u64 utime, stime; unsigned long flags; local_irq_save(flags); task_cputime(tsk, &utime, &stime); __acct_update_integrals(tsk, utime, stime); local_irq_restore(flags); } /** * acct_account_cputime - update mm integral after cputime update * @tsk: task_struct for accounting */ void acct_account_cputime(struct task_struct *tsk) { __acct_update_integrals(tsk, tsk->utime, tsk->stime); } /** * acct_clear_integrals - clear the mm integral fields in task_struct * @tsk: task_struct whose accounting fields are cleared */ void acct_clear_integrals(struct task_struct *tsk) { tsk->acct_timexpd = 0; tsk->acct_rss_mem1 = 0; tsk->acct_vm_mem1 = 0; } #endif |
1 1 36 36 36 36 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | // SPDX-License-Identifier: GPL-2.0 #define CREATE_TRACE_POINTS #include <trace/events/mmap_lock.h> #include <linux/mm.h> #include <linux/cgroup.h> #include <linux/memcontrol.h> #include <linux/mmap_lock.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/smp.h> #include <linux/trace_events.h> #include <linux/local_lock.h> EXPORT_TRACEPOINT_SYMBOL(mmap_lock_start_locking); EXPORT_TRACEPOINT_SYMBOL(mmap_lock_acquire_returned); EXPORT_TRACEPOINT_SYMBOL(mmap_lock_released); #ifdef CONFIG_MEMCG static atomic_t reg_refcount; /* * Size of the buffer for memcg path names. Ignoring stack trace support, * trace_events_hist.c uses MAX_FILTER_STR_VAL for this, so we also use it. */ #define MEMCG_PATH_BUF_SIZE MAX_FILTER_STR_VAL int trace_mmap_lock_reg(void) { atomic_inc(®_refcount); return 0; } void trace_mmap_lock_unreg(void) { atomic_dec(®_refcount); } #define TRACE_MMAP_LOCK_EVENT(type, mm, ...) \ do { \ char buf[MEMCG_PATH_BUF_SIZE]; \ get_mm_memcg_path(mm, buf, sizeof(buf)); \ trace_mmap_lock_##type(mm, buf, ##__VA_ARGS__); \ } while (0) #else /* !CONFIG_MEMCG */ int trace_mmap_lock_reg(void) { return 0; } void trace_mmap_lock_unreg(void) { } #define TRACE_MMAP_LOCK_EVENT(type, mm, ...) \ trace_mmap_lock_##type(mm, "", ##__VA_ARGS__) #endif /* CONFIG_MEMCG */ #ifdef CONFIG_TRACING #ifdef CONFIG_MEMCG /* * Write the given mm_struct's memcg path to a buffer. If the path cannot be * determined or the trace event is being unregistered, empty string is written. */ static void get_mm_memcg_path(struct mm_struct *mm, char *buf, size_t buflen) { struct mem_cgroup *memcg; buf[0] = '\0'; /* No need to get path if no trace event is registered. */ if (!atomic_read(®_refcount)) return; memcg = get_mem_cgroup_from_mm(mm); if (memcg == NULL) return; if (memcg->css.cgroup) cgroup_path(memcg->css.cgroup, buf, buflen); css_put(&memcg->css); } #endif /* CONFIG_MEMCG */ /* * Trace calls must be in a separate file, as otherwise there's a circular * dependency between linux/mmap_lock.h and trace/events/mmap_lock.h. */ void __mmap_lock_do_trace_start_locking(struct mm_struct *mm, bool write) { TRACE_MMAP_LOCK_EVENT(start_locking, mm, write); } EXPORT_SYMBOL(__mmap_lock_do_trace_start_locking); void __mmap_lock_do_trace_acquire_returned(struct mm_struct *mm, bool write, bool success) { TRACE_MMAP_LOCK_EVENT(acquire_returned, mm, write, success); } EXPORT_SYMBOL(__mmap_lock_do_trace_acquire_returned); void __mmap_lock_do_trace_released(struct mm_struct *mm, bool write) { TRACE_MMAP_LOCK_EVENT(released, mm, write); } EXPORT_SYMBOL(__mmap_lock_do_trace_released); #endif /* CONFIG_TRACING */ |
3 2 2 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | // SPDX-License-Identifier: GPL-2.0 /* * ESSIV skcipher and aead template for block encryption * * This template encapsulates the ESSIV IV generation algorithm used by * dm-crypt and fscrypt, which converts the initial vector for the skcipher * used for block encryption, by encrypting it using the hash of the * skcipher key as encryption key. Usually, the input IV is a 64-bit sector * number in LE representation zero-padded to the size of the IV, but this * is not assumed by this driver. * * The typical use of this template is to instantiate the skcipher * 'essiv(cbc(aes),sha256)', which is the only instantiation used by * fscrypt, and the most relevant one for dm-crypt. However, dm-crypt * also permits ESSIV to be used in combination with the authenc template, * e.g., 'essiv(authenc(hmac(sha256),cbc(aes)),sha256)', in which case * we need to instantiate an aead that accepts the same special key format * as the authenc template, and deals with the way the encrypted IV is * embedded into the AAD area of the aead request. This means the AEAD * flavor produced by this template is tightly coupled to the way dm-crypt * happens to use it. * * Copyright (c) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org> * * Heavily based on: * adiantum length-preserving encryption mode * * Copyright 2018 Google LLC */ #include <crypto/authenc.h> #include <crypto/internal/aead.h> #include <crypto/internal/cipher.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/module.h> #include "internal.h" struct essiv_instance_ctx { union { struct crypto_skcipher_spawn skcipher_spawn; struct crypto_aead_spawn aead_spawn; } u; char essiv_cipher_name[CRYPTO_MAX_ALG_NAME]; char shash_driver_name[CRYPTO_MAX_ALG_NAME]; }; struct essiv_tfm_ctx { union { struct crypto_skcipher *skcipher; struct crypto_aead *aead; } u; struct crypto_cipher *essiv_cipher; struct crypto_shash *hash; int ivoffset; }; struct essiv_aead_request_ctx { struct scatterlist sg[4]; u8 *assoc; struct aead_request aead_req; }; static int essiv_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); u8 salt[HASH_MAX_DIGESTSIZE]; int err; crypto_skcipher_clear_flags(tctx->u.skcipher, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(tctx->u.skcipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_skcipher_setkey(tctx->u.skcipher, key, keylen); if (err) return err; err = crypto_shash_tfm_digest(tctx->hash, key, keylen, salt); if (err) return err; crypto_cipher_clear_flags(tctx->essiv_cipher, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(tctx->essiv_cipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_cipher_setkey(tctx->essiv_cipher, salt, crypto_shash_digestsize(tctx->hash)); } static int essiv_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); SHASH_DESC_ON_STACK(desc, tctx->hash); struct crypto_authenc_keys keys; u8 salt[HASH_MAX_DIGESTSIZE]; int err; crypto_aead_clear_flags(tctx->u.aead, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(tctx->u.aead, crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_aead_setkey(tctx->u.aead, key, keylen); if (err) return err; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) return -EINVAL; desc->tfm = tctx->hash; err = crypto_shash_init(desc) ?: crypto_shash_update(desc, keys.enckey, keys.enckeylen) ?: crypto_shash_finup(desc, keys.authkey, keys.authkeylen, salt); if (err) return err; crypto_cipher_clear_flags(tctx->essiv_cipher, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(tctx->essiv_cipher, crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_cipher_setkey(tctx->essiv_cipher, salt, crypto_shash_digestsize(tctx->hash)); } static int essiv_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); return crypto_aead_setauthsize(tctx->u.aead, authsize); } static void essiv_skcipher_done(void *data, int err) { struct skcipher_request *req = data; skcipher_request_complete(req, err); } static int essiv_skcipher_crypt(struct skcipher_request *req, bool enc) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); struct skcipher_request *subreq = skcipher_request_ctx(req); crypto_cipher_encrypt_one(tctx->essiv_cipher, req->iv, req->iv); skcipher_request_set_tfm(subreq, tctx->u.skcipher); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); skcipher_request_set_callback(subreq, skcipher_request_flags(req), essiv_skcipher_done, req); return enc ? crypto_skcipher_encrypt(subreq) : crypto_skcipher_decrypt(subreq); } static int essiv_skcipher_encrypt(struct skcipher_request *req) { return essiv_skcipher_crypt(req, true); } static int essiv_skcipher_decrypt(struct skcipher_request *req) { return essiv_skcipher_crypt(req, false); } static void essiv_aead_done(void *data, int err) { struct aead_request *req = data; struct essiv_aead_request_ctx *rctx = aead_request_ctx(req); if (err == -EINPROGRESS) goto out; kfree(rctx->assoc); out: aead_request_complete(req, err); } static int essiv_aead_crypt(struct aead_request *req, bool enc) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); const struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); struct essiv_aead_request_ctx *rctx = aead_request_ctx(req); struct aead_request *subreq = &rctx->aead_req; struct scatterlist *src = req->src; int err; crypto_cipher_encrypt_one(tctx->essiv_cipher, req->iv, req->iv); /* * dm-crypt embeds the sector number and the IV in the AAD region, so * we have to copy the converted IV into the right scatterlist before * we pass it on. */ rctx->assoc = NULL; if (req->src == req->dst || !enc) { scatterwalk_map_and_copy(req->iv, req->dst, req->assoclen - crypto_aead_ivsize(tfm), crypto_aead_ivsize(tfm), 1); } else { u8 *iv = (u8 *)aead_request_ctx(req) + tctx->ivoffset; int ivsize = crypto_aead_ivsize(tfm); int ssize = req->assoclen - ivsize; struct scatterlist *sg; int nents; if (ssize < 0) return -EINVAL; nents = sg_nents_for_len(req->src, ssize); if (nents < 0) return -EINVAL; memcpy(iv, req->iv, ivsize); sg_init_table(rctx->sg, 4); if (unlikely(nents > 1)) { /* * This is a case that rarely occurs in practice, but * for correctness, we have to deal with it nonetheless. */ rctx->assoc = kmalloc(ssize, GFP_ATOMIC); if (!rctx->assoc) return -ENOMEM; scatterwalk_map_and_copy(rctx->assoc, req->src, 0, ssize, 0); sg_set_buf(rctx->sg, rctx->assoc, ssize); } else { sg_set_page(rctx->sg, sg_page(req->src), ssize, req->src->offset); } sg_set_buf(rctx->sg + 1, iv, ivsize); sg = scatterwalk_ffwd(rctx->sg + 2, req->src, req->assoclen); if (sg != rctx->sg + 2) sg_chain(rctx->sg, 3, sg); src = rctx->sg; } aead_request_set_tfm(subreq, tctx->u.aead); aead_request_set_ad(subreq, req->assoclen); aead_request_set_callback(subreq, aead_request_flags(req), essiv_aead_done, req); aead_request_set_crypt(subreq, src, req->dst, req->cryptlen, req->iv); err = enc ? crypto_aead_encrypt(subreq) : crypto_aead_decrypt(subreq); if (rctx->assoc && err != -EINPROGRESS && err != -EBUSY) kfree(rctx->assoc); return err; } static int essiv_aead_encrypt(struct aead_request *req) { return essiv_aead_crypt(req, true); } static int essiv_aead_decrypt(struct aead_request *req) { return essiv_aead_crypt(req, false); } static int essiv_init_tfm(struct essiv_instance_ctx *ictx, struct essiv_tfm_ctx *tctx) { struct crypto_cipher *essiv_cipher; struct crypto_shash *hash; int err; essiv_cipher = crypto_alloc_cipher(ictx->essiv_cipher_name, 0, 0); if (IS_ERR(essiv_cipher)) return PTR_ERR(essiv_cipher); hash = crypto_alloc_shash(ictx->shash_driver_name, 0, 0); if (IS_ERR(hash)) { err = PTR_ERR(hash); goto err_free_essiv_cipher; } tctx->essiv_cipher = essiv_cipher; tctx->hash = hash; return 0; err_free_essiv_cipher: crypto_free_cipher(essiv_cipher); return err; } static int essiv_skcipher_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct essiv_instance_ctx *ictx = skcipher_instance_ctx(inst); struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *skcipher; int err; skcipher = crypto_spawn_skcipher(&ictx->u.skcipher_spawn); if (IS_ERR(skcipher)) return PTR_ERR(skcipher); crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) + crypto_skcipher_reqsize(skcipher)); err = essiv_init_tfm(ictx, tctx); if (err) { crypto_free_skcipher(skcipher); return err; } tctx->u.skcipher = skcipher; return 0; } static int essiv_aead_init_tfm(struct crypto_aead *tfm) { struct aead_instance *inst = aead_alg_instance(tfm); struct essiv_instance_ctx *ictx = aead_instance_ctx(inst); struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); struct crypto_aead *aead; unsigned int subreq_size; int err; BUILD_BUG_ON(offsetofend(struct essiv_aead_request_ctx, aead_req) != sizeof(struct essiv_aead_request_ctx)); aead = crypto_spawn_aead(&ictx->u.aead_spawn); if (IS_ERR(aead)) return PTR_ERR(aead); subreq_size = sizeof_field(struct essiv_aead_request_ctx, aead_req) + crypto_aead_reqsize(aead); tctx->ivoffset = offsetof(struct essiv_aead_request_ctx, aead_req) + subreq_size; crypto_aead_set_reqsize(tfm, tctx->ivoffset + crypto_aead_ivsize(aead)); err = essiv_init_tfm(ictx, tctx); if (err) { crypto_free_aead(aead); return err; } tctx->u.aead = aead; return 0; } static void essiv_skcipher_exit_tfm(struct crypto_skcipher *tfm) { struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(tctx->u.skcipher); crypto_free_cipher(tctx->essiv_cipher); crypto_free_shash(tctx->hash); } static void essiv_aead_exit_tfm(struct crypto_aead *tfm) { struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm); crypto_free_aead(tctx->u.aead); crypto_free_cipher(tctx->essiv_cipher); crypto_free_shash(tctx->hash); } static void essiv_skcipher_free_instance(struct skcipher_instance *inst) { struct essiv_instance_ctx *ictx = skcipher_instance_ctx(inst); crypto_drop_skcipher(&ictx->u.skcipher_spawn); kfree(inst); } static void essiv_aead_free_instance(struct aead_instance *inst) { struct essiv_instance_ctx *ictx = aead_instance_ctx(inst); crypto_drop_aead(&ictx->u.aead_spawn); kfree(inst); } static bool parse_cipher_name(char *essiv_cipher_name, const char *cra_name) { const char *p, *q; int len; /* find the last opening parens */ p = strrchr(cra_name, '('); if (!p++) return false; /* find the first closing parens in the tail of the string */ q = strchr(p, ')'); if (!q) return false; len = q - p; if (len >= CRYPTO_MAX_ALG_NAME) return false; memcpy(essiv_cipher_name, p, len); essiv_cipher_name[len] = '\0'; return true; } static bool essiv_supported_algorithms(const char *essiv_cipher_name, struct shash_alg *hash_alg, int ivsize) { struct crypto_alg *alg; bool ret = false; alg = crypto_alg_mod_lookup(essiv_cipher_name, CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK); if (IS_ERR(alg)) return false; if (hash_alg->digestsize < alg->cra_cipher.cia_min_keysize || hash_alg->digestsize > alg->cra_cipher.cia_max_keysize) goto out; if (ivsize != alg->cra_blocksize) goto out; if (crypto_shash_alg_needs_key(hash_alg)) goto out; ret = true; out: crypto_mod_put(alg); return ret; } static int essiv_create(struct crypto_template *tmpl, struct rtattr **tb) { struct skcipher_alg_common *skcipher_alg = NULL; struct crypto_attr_type *algt; const char *inner_cipher_name; const char *shash_name; struct skcipher_instance *skcipher_inst = NULL; struct aead_instance *aead_inst = NULL; struct crypto_instance *inst; struct crypto_alg *base, *block_base; struct essiv_instance_ctx *ictx; struct aead_alg *aead_alg = NULL; struct crypto_alg *_hash_alg; struct shash_alg *hash_alg; int ivsize; u32 type; u32 mask; int err; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); inner_cipher_name = crypto_attr_alg_name(tb[1]); if (IS_ERR(inner_cipher_name)) return PTR_ERR(inner_cipher_name); shash_name = crypto_attr_alg_name(tb[2]); if (IS_ERR(shash_name)) return PTR_ERR(shash_name); type = algt->type & algt->mask; mask = crypto_algt_inherited_mask(algt); switch (type) { case CRYPTO_ALG_TYPE_LSKCIPHER: skcipher_inst = kzalloc(sizeof(*skcipher_inst) + sizeof(*ictx), GFP_KERNEL); if (!skcipher_inst) return -ENOMEM; inst = skcipher_crypto_instance(skcipher_inst); base = &skcipher_inst->alg.base; ictx = crypto_instance_ctx(inst); /* Symmetric cipher, e.g., "cbc(aes)" */ err = crypto_grab_skcipher(&ictx->u.skcipher_spawn, inst, inner_cipher_name, 0, mask); if (err) goto out_free_inst; skcipher_alg = crypto_spawn_skcipher_alg_common( &ictx->u.skcipher_spawn); block_base = &skcipher_alg->base; ivsize = skcipher_alg->ivsize; break; case CRYPTO_ALG_TYPE_AEAD: aead_inst = kzalloc(sizeof(*aead_inst) + sizeof(*ictx), GFP_KERNEL); if (!aead_inst) return -ENOMEM; inst = aead_crypto_instance(aead_inst); base = &aead_inst->alg.base; ictx = crypto_instance_ctx(inst); /* AEAD cipher, e.g., "authenc(hmac(sha256),cbc(aes))" */ err = crypto_grab_aead(&ictx->u.aead_spawn, inst, inner_cipher_name, 0, mask); if (err) goto out_free_inst; aead_alg = crypto_spawn_aead_alg(&ictx->u.aead_spawn); block_base = &aead_alg->base; if (!strstarts(block_base->cra_name, "authenc(")) { pr_warn("Only authenc() type AEADs are supported by ESSIV\n"); err = -EINVAL; goto out_drop_skcipher; } ivsize = aead_alg->ivsize; break; default: return -EINVAL; } if (!parse_cipher_name(ictx->essiv_cipher_name, block_base->cra_name)) { pr_warn("Failed to parse ESSIV cipher name from skcipher cra_name\n"); err = -EINVAL; goto out_drop_skcipher; } /* Synchronous hash, e.g., "sha256" */ _hash_alg = crypto_alg_mod_lookup(shash_name, CRYPTO_ALG_TYPE_SHASH, CRYPTO_ALG_TYPE_MASK | mask); if (IS_ERR(_hash_alg)) { err = PTR_ERR(_hash_alg); goto out_drop_skcipher; } hash_alg = __crypto_shash_alg(_hash_alg); /* Check the set of algorithms */ if (!essiv_supported_algorithms(ictx->essiv_cipher_name, hash_alg, ivsize)) { pr_warn("Unsupported essiv instantiation: essiv(%s,%s)\n", block_base->cra_name, hash_alg->base.cra_name); err = -EINVAL; goto out_free_hash; } /* record the driver name so we can instantiate this exact algo later */ strscpy(ictx->shash_driver_name, hash_alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME); /* Instance fields */ err = -ENAMETOOLONG; if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", block_base->cra_name, hash_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) goto out_free_hash; if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", block_base->cra_driver_name, hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto out_free_hash; /* * hash_alg wasn't gotten via crypto_grab*(), so we need to inherit its * flags manually. */ base->cra_flags |= (hash_alg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS); base->cra_blocksize = block_base->cra_blocksize; base->cra_ctxsize = sizeof(struct essiv_tfm_ctx); base->cra_alignmask = block_base->cra_alignmask; base->cra_priority = block_base->cra_priority; if (type == CRYPTO_ALG_TYPE_LSKCIPHER) { skcipher_inst->alg.setkey = essiv_skcipher_setkey; skcipher_inst->alg.encrypt = essiv_skcipher_encrypt; skcipher_inst->alg.decrypt = essiv_skcipher_decrypt; skcipher_inst->alg.init = essiv_skcipher_init_tfm; skcipher_inst->alg.exit = essiv_skcipher_exit_tfm; skcipher_inst->alg.min_keysize = skcipher_alg->min_keysize; skcipher_inst->alg.max_keysize = skcipher_alg->max_keysize; skcipher_inst->alg.ivsize = ivsize; skcipher_inst->alg.chunksize = skcipher_alg->chunksize; skcipher_inst->free = essiv_skcipher_free_instance; err = skcipher_register_instance(tmpl, skcipher_inst); } else { aead_inst->alg.setkey = essiv_aead_setkey; aead_inst->alg.setauthsize = essiv_aead_setauthsize; aead_inst->alg.encrypt = essiv_aead_encrypt; aead_inst->alg.decrypt = essiv_aead_decrypt; aead_inst->alg.init = essiv_aead_init_tfm; aead_inst->alg.exit = essiv_aead_exit_tfm; aead_inst->alg.ivsize = ivsize; aead_inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(aead_alg); aead_inst->alg.chunksize = crypto_aead_alg_chunksize(aead_alg); aead_inst->free = essiv_aead_free_instance; err = aead_register_instance(tmpl, aead_inst); } if (err) goto out_free_hash; crypto_mod_put(_hash_alg); return 0; out_free_hash: crypto_mod_put(_hash_alg); out_drop_skcipher: if (type == CRYPTO_ALG_TYPE_LSKCIPHER) crypto_drop_skcipher(&ictx->u.skcipher_spawn); else crypto_drop_aead(&ictx->u.aead_spawn); out_free_inst: kfree(skcipher_inst); kfree(aead_inst); return err; } /* essiv(cipher_name, shash_name) */ static struct crypto_template essiv_tmpl = { .name = "essiv", .create = essiv_create, .module = THIS_MODULE, }; static int __init essiv_module_init(void) { return crypto_register_template(&essiv_tmpl); } static void __exit essiv_module_exit(void) { crypto_unregister_template(&essiv_tmpl); } subsys_initcall(essiv_module_init); module_exit(essiv_module_exit); MODULE_DESCRIPTION("ESSIV skcipher/aead wrapper for block encryption"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("essiv"); MODULE_IMPORT_NS(CRYPTO_INTERNAL); |
6 9 46 24 28 40 9 6 22 7 120 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _NET_ETHTOOL_NETLINK_H #define _NET_ETHTOOL_NETLINK_H #include <linux/ethtool_netlink.h> #include <linux/netdevice.h> #include <net/genetlink.h> #include <net/sock.h> struct ethnl_req_info; int ethnl_parse_header_dev_get(struct ethnl_req_info *req_info, const struct nlattr *nest, struct net *net, struct netlink_ext_ack *extack, bool require_dev); int ethnl_fill_reply_header(struct sk_buff *skb, struct net_device *dev, u16 attrtype); struct sk_buff *ethnl_reply_init(size_t payload, struct net_device *dev, u8 cmd, u16 hdr_attrtype, struct genl_info *info, void **ehdrp); void *ethnl_dump_put(struct sk_buff *skb, struct netlink_callback *cb, u8 cmd); void *ethnl_bcastmsg_put(struct sk_buff *skb, u8 cmd); void *ethnl_unicast_put(struct sk_buff *skb, u32 portid, u32 seq, u8 cmd); int ethnl_multicast(struct sk_buff *skb, struct net_device *dev); /** * ethnl_strz_size() - calculate attribute length for fixed size string * @s: ETH_GSTRING_LEN sized string (may not be null terminated) * * Return: total length of an attribute with null terminated string from @s */ static inline int ethnl_strz_size(const char *s) { return nla_total_size(strnlen(s, ETH_GSTRING_LEN) + 1); } /** * ethnl_put_strz() - put string attribute with fixed size string * @skb: skb with the message * @attrtype: attribute type * @s: ETH_GSTRING_LEN sized string (may not be null terminated) * * Puts an attribute with null terminated string from @s into the message. * * Return: 0 on success, negative error code on failure */ static inline int ethnl_put_strz(struct sk_buff *skb, u16 attrtype, const char *s) { unsigned int len = strnlen(s, ETH_GSTRING_LEN); struct nlattr *attr; attr = nla_reserve(skb, attrtype, len + 1); if (!attr) return -EMSGSIZE; memcpy(nla_data(attr), s, len); ((char *)nla_data(attr))[len] = '\0'; return 0; } /** * ethnl_update_u32() - update u32 value from NLA_U32 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Copy the u32 value from NLA_U32 netlink attribute @attr into variable * pointed to by @dst; do nothing if @attr is null. Bool pointed to by @mod * is set to true if this function changed the value of *dst, otherwise it * is left as is. */ static inline void ethnl_update_u32(u32 *dst, const struct nlattr *attr, bool *mod) { u32 val; if (!attr) return; val = nla_get_u32(attr); if (*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_u8() - update u8 value from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Copy the u8 value from NLA_U8 netlink attribute @attr into variable * pointed to by @dst; do nothing if @attr is null. Bool pointed to by @mod * is set to true if this function changed the value of *dst, otherwise it * is left as is. */ static inline void ethnl_update_u8(u8 *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = nla_get_u8(attr); if (*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_bool32() - update u32 used as bool from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the u8 value from NLA_U8 netlink attribute @attr to set u32 variable * pointed to by @dst to 0 (if zero) or 1 (if not); do nothing if @attr is * null. Bool pointed to by @mod is set to true if this function changed the * logical value of *dst, otherwise it is left as is. */ static inline void ethnl_update_bool32(u32 *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = !!nla_get_u8(attr); if (!!*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_bool() - updateb bool used as bool from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the bool value from NLA_U8 netlink attribute @attr to set bool variable * pointed to by @dst to 0 (if zero) or 1 (if not); do nothing if @attr is * null. Bool pointed to by @mod is set to true if this function changed the * logical value of *dst, otherwise it is left as is. */ static inline void ethnl_update_bool(bool *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = !!nla_get_u8(attr); if (!!*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_binary() - update binary data from NLA_BINARY attribute * @dst: value to update * @len: destination buffer length * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the u8 value from NLA_U8 netlink attribute @attr to rewrite data block * of length @len at @dst by attribute payload; do nothing if @attr is null. * Bool pointed to by @mod is set to true if this function changed the logical * value of *dst, otherwise it is left as is. */ static inline void ethnl_update_binary(void *dst, unsigned int len, const struct nlattr *attr, bool *mod) { if (!attr) return; if (nla_len(attr) < len) len = nla_len(attr); if (!memcmp(dst, nla_data(attr), len)) return; memcpy(dst, nla_data(attr), len); *mod = true; } /** * ethnl_update_bitfield32() - update u32 value from NLA_BITFIELD32 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Update bits in u32 value which are set in attribute's mask to values from * attribute's value. Do nothing if @attr is null or the value wouldn't change; * otherwise, set bool pointed to by @mod to true. */ static inline void ethnl_update_bitfield32(u32 *dst, const struct nlattr *attr, bool *mod) { struct nla_bitfield32 change; u32 newval; if (!attr) return; change = nla_get_bitfield32(attr); newval = (*dst & ~change.selector) | (change.value & change.selector); if (*dst == newval) return; *dst = newval; *mod = true; } /** * ethnl_reply_header_size() - total size of reply header * * This is an upper estimate so that we do not need to hold RTNL lock longer * than necessary (to prevent rename between size estimate and composing the * message). Accounts only for device ifindex and name as those are the only * attributes ethnl_fill_reply_header() puts into the reply header. */ static inline unsigned int ethnl_reply_header_size(void) { return nla_total_size(nla_total_size(sizeof(u32)) + nla_total_size(IFNAMSIZ)); } /* GET request handling */ /* Unified processing of GET requests uses two data structures: request info * and reply data. Request info holds information parsed from client request * and its stays constant through all request processing. Reply data holds data * retrieved from ethtool_ops callbacks or other internal sources which is used * to compose the reply. When processing a dump request, request info is filled * only once (when the request message is parsed) but reply data is filled for * each reply message. * * Both structures consist of part common for all request types (struct * ethnl_req_info and struct ethnl_reply_data defined below) and optional * parts specific for each request type. Common part always starts at offset 0. */ /** * struct ethnl_req_info - base type of request information for GET requests * @dev: network device the request is for (may be null) * @dev_tracker: refcount tracker for @dev reference * @flags: request flags common for all request types * @phy_index: phy_device index connected to @dev this request is for. Can be * 0 if the request doesn't target a phy, or if the @dev's attached * phy is targeted. * * This is a common base for request specific structures holding data from * parsed userspace request. These always embed struct ethnl_req_info at * zero offset. */ struct ethnl_req_info { struct net_device *dev; netdevice_tracker dev_tracker; u32 flags; u32 phy_index; }; static inline void ethnl_parse_header_dev_put(struct ethnl_req_info *req_info) { netdev_put(req_info->dev, &req_info->dev_tracker); } /** * ethnl_req_get_phydev() - Gets the phy_device targeted by this request, * if any. Must be called under rntl_lock(). * @req_info: The ethnl request to get the phy from. * @header: The netlink header, used for error reporting. * @extack: The netlink extended ACK, for error reporting. * * The caller must hold RTNL, until it's done interacting with the returned * phy_device. * * Return: A phy_device pointer corresponding either to the passed phy_index * if one is provided. If not, the phy_device attached to the * net_device targeted by this request is returned. If there's no * targeted net_device, or no phy_device is attached, NULL is * returned. If the provided phy_index is invalid, an error pointer * is returned. */ struct phy_device *ethnl_req_get_phydev(const struct ethnl_req_info *req_info, const struct nlattr *header, struct netlink_ext_ack *extack); /** * struct ethnl_reply_data - base type of reply data for GET requests * @dev: device for current reply message; in single shot requests it is * equal to ðnl_req_info.dev; in dumps it's different for each * reply message * * This is a common base for request specific structures holding data for * kernel reply message. These always embed struct ethnl_reply_data at zero * offset. */ struct ethnl_reply_data { struct net_device *dev; }; int ethnl_ops_begin(struct net_device *dev); void ethnl_ops_complete(struct net_device *dev); enum ethnl_sock_type { ETHTOOL_SOCK_TYPE_MODULE_FW_FLASH, }; struct ethnl_sock_priv { struct net_device *dev; u32 portid; enum ethnl_sock_type type; }; int ethnl_sock_priv_set(struct sk_buff *skb, struct net_device *dev, u32 portid, enum ethnl_sock_type type); /** * struct ethnl_request_ops - unified handling of GET and SET requests * @request_cmd: command id for request (GET) * @reply_cmd: command id for reply (GET_REPLY) * @hdr_attr: attribute type for request header * @req_info_size: size of request info * @reply_data_size: size of reply data * @allow_nodev_do: allow non-dump request with no device identification * @set_ntf_cmd: notification to generate on changes (SET) * @parse_request: * Parse request except common header (struct ethnl_req_info). Common * header is already filled on entry, the rest up to @repdata_offset * is zero initialized. This callback should only modify type specific * request info by parsed attributes from request message. * @prepare_data: * Retrieve and prepare data needed to compose a reply message. Calls to * ethtool_ops handlers are limited to this callback. Common reply data * (struct ethnl_reply_data) is filled on entry, type specific part after * it is zero initialized. This callback should only modify the type * specific part of reply data. Device identification from struct * ethnl_reply_data is to be used as for dump requests, it iterates * through network devices while dev member of struct ethnl_req_info * points to the device from client request. * @reply_size: * Estimate reply message size. Returned value must be sufficient for * message payload without common reply header. The callback may returned * estimate higher than actual message size if exact calculation would * not be worth the saved memory space. * @fill_reply: * Fill reply message payload (except for common header) from reply data. * The callback must not generate more payload than previously called * ->reply_size() estimated. * @cleanup_data: * Optional cleanup called when reply data is no longer needed. Can be * used e.g. to free any additional data structures outside the main * structure which were allocated by ->prepare_data(). When processing * dump requests, ->cleanup() is called for each message. * @set_validate: * Check if set operation is supported for a given device, and perform * extra input checks. Expected return values: * - 0 if the operation is a noop for the device (rare) * - 1 if operation should proceed to calling @set * - negative errno on errors * Called without any locks, just a reference on the netdev. * @set: * Execute the set operation. The implementation should return * - 0 if no configuration has changed * - 1 if configuration changed and notification should be generated * - negative errno on errors * * Description of variable parts of GET request handling when using the * unified infrastructure. When used, a pointer to an instance of this * structure is to be added to ðnl_default_requests array and generic * handlers ethnl_default_doit(), ethnl_default_dumpit(), * ethnl_default_start() and ethnl_default_done() used in @ethtool_genl_ops; * ethnl_default_notify() can be used in @ethnl_notify_handlers to send * notifications of the corresponding type. */ struct ethnl_request_ops { u8 request_cmd; u8 reply_cmd; u16 hdr_attr; unsigned int req_info_size; unsigned int reply_data_size; bool allow_nodev_do; u8 set_ntf_cmd; int (*parse_request)(struct ethnl_req_info *req_info, struct nlattr **tb, struct netlink_ext_ack *extack); int (*prepare_data)(const struct ethnl_req_info *req_info, struct ethnl_reply_data *reply_data, const struct genl_info *info); int (*reply_size)(const struct ethnl_req_info *req_info, const struct ethnl_reply_data *reply_data); int (*fill_reply)(struct sk_buff *skb, const struct ethnl_req_info *req_info, const struct ethnl_reply_data *reply_data); void (*cleanup_data)(struct ethnl_reply_data *reply_data); int (*set_validate)(struct ethnl_req_info *req_info, struct genl_info *info); int (*set)(struct ethnl_req_info *req_info, struct genl_info *info); }; /* request handlers */ extern const struct ethnl_request_ops ethnl_strset_request_ops; extern const struct ethnl_request_ops ethnl_linkinfo_request_ops; extern const struct ethnl_request_ops ethnl_linkmodes_request_ops; extern const struct ethnl_request_ops ethnl_linkstate_request_ops; extern const struct ethnl_request_ops ethnl_debug_request_ops; extern const struct ethnl_request_ops ethnl_wol_request_ops; extern const struct ethnl_request_ops ethnl_features_request_ops; extern const struct ethnl_request_ops ethnl_privflags_request_ops; extern const struct ethnl_request_ops ethnl_rings_request_ops; extern const struct ethnl_request_ops ethnl_channels_request_ops; extern const struct ethnl_request_ops ethnl_coalesce_request_ops; extern const struct ethnl_request_ops ethnl_pause_request_ops; extern const struct ethnl_request_ops ethnl_eee_request_ops; extern const struct ethnl_request_ops ethnl_tsinfo_request_ops; extern const struct ethnl_request_ops ethnl_fec_request_ops; extern const struct ethnl_request_ops ethnl_module_eeprom_request_ops; extern const struct ethnl_request_ops ethnl_stats_request_ops; extern const struct ethnl_request_ops ethnl_phc_vclocks_request_ops; extern const struct ethnl_request_ops ethnl_module_request_ops; extern const struct ethnl_request_ops ethnl_pse_request_ops; extern const struct ethnl_request_ops ethnl_rss_request_ops; extern const struct ethnl_request_ops ethnl_plca_cfg_request_ops; extern const struct ethnl_request_ops ethnl_plca_status_request_ops; extern const struct ethnl_request_ops ethnl_mm_request_ops; extern const struct ethnl_request_ops ethnl_phy_request_ops; extern const struct nla_policy ethnl_header_policy[ETHTOOL_A_HEADER_FLAGS + 1]; extern const struct nla_policy ethnl_header_policy_stats[ETHTOOL_A_HEADER_FLAGS + 1]; extern const struct nla_policy ethnl_header_policy_phy[ETHTOOL_A_HEADER_PHY_INDEX + 1]; extern const struct nla_policy ethnl_header_policy_phy_stats[ETHTOOL_A_HEADER_PHY_INDEX + 1]; extern const struct nla_policy ethnl_strset_get_policy[ETHTOOL_A_STRSET_COUNTS_ONLY + 1]; extern const struct nla_policy ethnl_linkinfo_get_policy[ETHTOOL_A_LINKINFO_HEADER + 1]; extern const struct nla_policy ethnl_linkinfo_set_policy[ETHTOOL_A_LINKINFO_TP_MDIX_CTRL + 1]; extern const struct nla_policy ethnl_linkmodes_get_policy[ETHTOOL_A_LINKMODES_HEADER + 1]; extern const struct nla_policy ethnl_linkmodes_set_policy[ETHTOOL_A_LINKMODES_LANES + 1]; extern const struct nla_policy ethnl_linkstate_get_policy[ETHTOOL_A_LINKSTATE_HEADER + 1]; extern const struct nla_policy ethnl_debug_get_policy[ETHTOOL_A_DEBUG_HEADER + 1]; extern const struct nla_policy ethnl_debug_set_policy[ETHTOOL_A_DEBUG_MSGMASK + 1]; extern const struct nla_policy ethnl_wol_get_policy[ETHTOOL_A_WOL_HEADER + 1]; extern const struct nla_policy ethnl_wol_set_policy[ETHTOOL_A_WOL_SOPASS + 1]; extern const struct nla_policy ethnl_features_get_policy[ETHTOOL_A_FEATURES_HEADER + 1]; extern const struct nla_policy ethnl_features_set_policy[ETHTOOL_A_FEATURES_WANTED + 1]; extern const struct nla_policy ethnl_privflags_get_policy[ETHTOOL_A_PRIVFLAGS_HEADER + 1]; extern const struct nla_policy ethnl_privflags_set_policy[ETHTOOL_A_PRIVFLAGS_FLAGS + 1]; extern const struct nla_policy ethnl_rings_get_policy[ETHTOOL_A_RINGS_HEADER + 1]; extern const struct nla_policy ethnl_rings_set_policy[ETHTOOL_A_RINGS_TX_PUSH_BUF_LEN_MAX + 1]; extern const struct nla_policy ethnl_channels_get_policy[ETHTOOL_A_CHANNELS_HEADER + 1]; extern const struct nla_policy ethnl_channels_set_policy[ETHTOOL_A_CHANNELS_COMBINED_COUNT + 1]; extern const struct nla_policy ethnl_coalesce_get_policy[ETHTOOL_A_COALESCE_HEADER + 1]; extern const struct nla_policy ethnl_coalesce_set_policy[ETHTOOL_A_COALESCE_MAX + 1]; extern const struct nla_policy ethnl_pause_get_policy[ETHTOOL_A_PAUSE_STATS_SRC + 1]; extern const struct nla_policy ethnl_pause_set_policy[ETHTOOL_A_PAUSE_TX + 1]; extern const struct nla_policy ethnl_eee_get_policy[ETHTOOL_A_EEE_HEADER + 1]; extern const struct nla_policy ethnl_eee_set_policy[ETHTOOL_A_EEE_TX_LPI_TIMER + 1]; extern const struct nla_policy ethnl_tsinfo_get_policy[ETHTOOL_A_TSINFO_HEADER + 1]; extern const struct nla_policy ethnl_cable_test_act_policy[ETHTOOL_A_CABLE_TEST_HEADER + 1]; extern const struct nla_policy ethnl_cable_test_tdr_act_policy[ETHTOOL_A_CABLE_TEST_TDR_CFG + 1]; extern const struct nla_policy ethnl_tunnel_info_get_policy[ETHTOOL_A_TUNNEL_INFO_HEADER + 1]; extern const struct nla_policy ethnl_fec_get_policy[ETHTOOL_A_FEC_HEADER + 1]; extern const struct nla_policy ethnl_fec_set_policy[ETHTOOL_A_FEC_AUTO + 1]; extern const struct nla_policy ethnl_module_eeprom_get_policy[ETHTOOL_A_MODULE_EEPROM_I2C_ADDRESS + 1]; extern const struct nla_policy ethnl_stats_get_policy[ETHTOOL_A_STATS_SRC + 1]; extern const struct nla_policy ethnl_phc_vclocks_get_policy[ETHTOOL_A_PHC_VCLOCKS_HEADER + 1]; extern const struct nla_policy ethnl_module_get_policy[ETHTOOL_A_MODULE_HEADER + 1]; extern const struct nla_policy ethnl_module_set_policy[ETHTOOL_A_MODULE_POWER_MODE_POLICY + 1]; extern const struct nla_policy ethnl_pse_get_policy[ETHTOOL_A_PSE_HEADER + 1]; extern const struct nla_policy ethnl_pse_set_policy[ETHTOOL_A_PSE_MAX + 1]; extern const struct nla_policy ethnl_rss_get_policy[ETHTOOL_A_RSS_START_CONTEXT + 1]; extern const struct nla_policy ethnl_plca_get_cfg_policy[ETHTOOL_A_PLCA_HEADER + 1]; extern const struct nla_policy ethnl_plca_set_cfg_policy[ETHTOOL_A_PLCA_MAX + 1]; extern const struct nla_policy ethnl_plca_get_status_policy[ETHTOOL_A_PLCA_HEADER + 1]; extern const struct nla_policy ethnl_mm_get_policy[ETHTOOL_A_MM_HEADER + 1]; extern const struct nla_policy ethnl_mm_set_policy[ETHTOOL_A_MM_MAX + 1]; extern const struct nla_policy ethnl_module_fw_flash_act_policy[ETHTOOL_A_MODULE_FW_FLASH_PASSWORD + 1]; extern const struct nla_policy ethnl_phy_get_policy[ETHTOOL_A_PHY_HEADER + 1]; int ethnl_set_features(struct sk_buff *skb, struct genl_info *info); int ethnl_act_cable_test(struct sk_buff *skb, struct genl_info *info); int ethnl_act_cable_test_tdr(struct sk_buff *skb, struct genl_info *info); int ethnl_tunnel_info_doit(struct sk_buff *skb, struct genl_info *info); int ethnl_tunnel_info_start(struct netlink_callback *cb); int ethnl_tunnel_info_dumpit(struct sk_buff *skb, struct netlink_callback *cb); int ethnl_act_module_fw_flash(struct sk_buff *skb, struct genl_info *info); int ethnl_rss_dump_start(struct netlink_callback *cb); int ethnl_rss_dumpit(struct sk_buff *skb, struct netlink_callback *cb); int ethnl_phy_start(struct netlink_callback *cb); int ethnl_phy_doit(struct sk_buff *skb, struct genl_info *info); int ethnl_phy_dumpit(struct sk_buff *skb, struct netlink_callback *cb); int ethnl_phy_done(struct netlink_callback *cb); extern const char stats_std_names[__ETHTOOL_STATS_CNT][ETH_GSTRING_LEN]; extern const char stats_eth_phy_names[__ETHTOOL_A_STATS_ETH_PHY_CNT][ETH_GSTRING_LEN]; extern const char stats_eth_mac_names[__ETHTOOL_A_STATS_ETH_MAC_CNT][ETH_GSTRING_LEN]; extern const char stats_eth_ctrl_names[__ETHTOOL_A_STATS_ETH_CTRL_CNT][ETH_GSTRING_LEN]; extern const char stats_rmon_names[__ETHTOOL_A_STATS_RMON_CNT][ETH_GSTRING_LEN]; #endif /* _NET_ETHTOOL_NETLINK_H */ |
7 12 9 9 8 7 9 9 9 2 7 9 7 10 6 7 9 3 6 3 3 7 7 7 3 7 6 2 3 3 3 4 7 7 7 9 9 4 4 4 4 9 9 9 2 2 9 9 7 2 7 9 6 6 6 6 9 9 9 9 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 | /* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005 Voltaire, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/if_vlan.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/netdevice.h> #include <net/addrconf.h> #include <rdma/ib_cache.h> #include "core_priv.h" struct ib_pkey_cache { int table_len; u16 table[] __counted_by(table_len); }; struct ib_update_work { struct work_struct work; struct ib_event event; bool enforce_security; }; union ib_gid zgid; EXPORT_SYMBOL(zgid); enum gid_attr_find_mask { GID_ATTR_FIND_MASK_GID = 1UL << 0, GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, }; enum gid_table_entry_state { GID_TABLE_ENTRY_INVALID = 1, GID_TABLE_ENTRY_VALID = 2, /* * Indicates that entry is pending to be removed, there may * be active users of this GID entry. * When last user of the GID entry releases reference to it, * GID entry is detached from the table. */ GID_TABLE_ENTRY_PENDING_DEL = 3, }; struct roce_gid_ndev_storage { struct rcu_head rcu_head; struct net_device *ndev; }; struct ib_gid_table_entry { struct kref kref; struct work_struct del_work; struct ib_gid_attr attr; void *context; /* Store the ndev pointer to release reference later on in * call_rcu context because by that time gid_table_entry * and attr might be already freed. So keep a copy of it. * ndev_storage is freed by rcu callback. */ struct roce_gid_ndev_storage *ndev_storage; enum gid_table_entry_state state; }; struct ib_gid_table { int sz; /* In RoCE, adding a GID to the table requires: * (a) Find if this GID is already exists. * (b) Find a free space. * (c) Write the new GID * * Delete requires different set of operations: * (a) Find the GID * (b) Delete it. * **/ /* Any writer to data_vec must hold this lock and the write side of * rwlock. Readers must hold only rwlock. All writers must be in a * sleepable context. */ struct mutex lock; /* rwlock protects data_vec[ix]->state and entry pointer. */ rwlock_t rwlock; struct ib_gid_table_entry **data_vec; /* bit field, each bit indicates the index of default GID */ u32 default_gid_indices; }; static void dispatch_gid_change_event(struct ib_device *ib_dev, u32 port) { struct ib_event event; event.device = ib_dev; event.element.port_num = port; event.event = IB_EVENT_GID_CHANGE; ib_dispatch_event_clients(&event); } static const char * const gid_type_str[] = { /* IB/RoCE v1 value is set for IB_GID_TYPE_IB and IB_GID_TYPE_ROCE for * user space compatibility reasons. */ [IB_GID_TYPE_IB] = "IB/RoCE v1", [IB_GID_TYPE_ROCE] = "IB/RoCE v1", [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", }; const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) { if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) return gid_type_str[gid_type]; return "Invalid GID type"; } EXPORT_SYMBOL(ib_cache_gid_type_str); /** rdma_is_zero_gid - Check if given GID is zero or not. * @gid: GID to check * Returns true if given GID is zero, returns false otherwise. */ bool rdma_is_zero_gid(const union ib_gid *gid) { return !memcmp(gid, &zgid, sizeof(*gid)); } EXPORT_SYMBOL(rdma_is_zero_gid); /** is_gid_index_default - Check if a given index belongs to * reserved default GIDs or not. * @table: GID table pointer * @index: Index to check in GID table * Returns true if index is one of the reserved default GID index otherwise * returns false. */ static bool is_gid_index_default(const struct ib_gid_table *table, unsigned int index) { return index < 32 && (BIT(index) & table->default_gid_indices); } int ib_cache_gid_parse_type_str(const char *buf) { unsigned int i; size_t len; int err = -EINVAL; len = strlen(buf); if (len == 0) return -EINVAL; if (buf[len - 1] == '\n') len--; for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && len == strlen(gid_type_str[i])) { err = i; break; } return err; } EXPORT_SYMBOL(ib_cache_gid_parse_type_str); static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u32 port) { return device->port_data[port].cache.gid; } static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) { return !entry; } static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) { return entry && entry->state == GID_TABLE_ENTRY_VALID; } static void schedule_free_gid(struct kref *kref) { struct ib_gid_table_entry *entry = container_of(kref, struct ib_gid_table_entry, kref); queue_work(ib_wq, &entry->del_work); } static void put_gid_ndev(struct rcu_head *head) { struct roce_gid_ndev_storage *storage = container_of(head, struct roce_gid_ndev_storage, rcu_head); WARN_ON(!storage->ndev); /* At this point its safe to release netdev reference, * as all callers working on gid_attr->ndev are done * using this netdev. */ dev_put(storage->ndev); kfree(storage); } static void free_gid_entry_locked(struct ib_gid_table_entry *entry) { struct ib_device *device = entry->attr.device; u32 port_num = entry->attr.port_num; struct ib_gid_table *table = rdma_gid_table(device, port_num); dev_dbg(&device->dev, "%s port=%u index=%u gid %pI6\n", __func__, port_num, entry->attr.index, entry->attr.gid.raw); write_lock_irq(&table->rwlock); /* * The only way to avoid overwriting NULL in table is * by comparing if it is same entry in table or not! * If new entry in table is added by the time we free here, * don't overwrite the table entry. */ if (entry == table->data_vec[entry->attr.index]) table->data_vec[entry->attr.index] = NULL; /* Now this index is ready to be allocated */ write_unlock_irq(&table->rwlock); if (entry->ndev_storage) call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); kfree(entry); } static void free_gid_entry(struct kref *kref) { struct ib_gid_table_entry *entry = container_of(kref, struct ib_gid_table_entry, kref); free_gid_entry_locked(entry); } /** * free_gid_work - Release reference to the GID entry * @work: Work structure to refer to GID entry which needs to be * deleted. * * free_gid_work() frees the entry from the HCA's hardware table * if provider supports it. It releases reference to netdevice. */ static void free_gid_work(struct work_struct *work) { struct ib_gid_table_entry *entry = container_of(work, struct ib_gid_table_entry, del_work); struct ib_device *device = entry->attr.device; u32 port_num = entry->attr.port_num; struct ib_gid_table *table = rdma_gid_table(device, port_num); mutex_lock(&table->lock); free_gid_entry_locked(entry); mutex_unlock(&table->lock); } static struct ib_gid_table_entry * alloc_gid_entry(const struct ib_gid_attr *attr) { struct ib_gid_table_entry *entry; struct net_device *ndev; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return NULL; ndev = rcu_dereference_protected(attr->ndev, 1); if (ndev) { entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), GFP_KERNEL); if (!entry->ndev_storage) { kfree(entry); return NULL; } dev_hold(ndev); entry->ndev_storage->ndev = ndev; } kref_init(&entry->kref); memcpy(&entry->attr, attr, sizeof(*attr)); INIT_WORK(&entry->del_work, free_gid_work); entry->state = GID_TABLE_ENTRY_INVALID; return entry; } static void store_gid_entry(struct ib_gid_table *table, struct ib_gid_table_entry *entry) { entry->state = GID_TABLE_ENTRY_VALID; dev_dbg(&entry->attr.device->dev, "%s port=%u index=%u gid %pI6\n", __func__, entry->attr.port_num, entry->attr.index, entry->attr.gid.raw); lockdep_assert_held(&table->lock); write_lock_irq(&table->rwlock); table->data_vec[entry->attr.index] = entry; write_unlock_irq(&table->rwlock); } static void get_gid_entry(struct ib_gid_table_entry *entry) { kref_get(&entry->kref); } static void put_gid_entry(struct ib_gid_table_entry *entry) { kref_put(&entry->kref, schedule_free_gid); } static void put_gid_entry_locked(struct ib_gid_table_entry *entry) { kref_put(&entry->kref, free_gid_entry); } static int add_roce_gid(struct ib_gid_table_entry *entry) { const struct ib_gid_attr *attr = &entry->attr; int ret; if (!attr->ndev) { dev_err(&attr->device->dev, "%s NULL netdev port=%u index=%u\n", __func__, attr->port_num, attr->index); return -EINVAL; } if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { ret = attr->device->ops.add_gid(attr, &entry->context); if (ret) { dev_err(&attr->device->dev, "%s GID add failed port=%u index=%u\n", __func__, attr->port_num, attr->index); return ret; } } return 0; } /** * del_gid - Delete GID table entry * * @ib_dev: IB device whose GID entry to be deleted * @port: Port number of the IB device * @table: GID table of the IB device for a port * @ix: GID entry index to delete * */ static void del_gid(struct ib_device *ib_dev, u32 port, struct ib_gid_table *table, int ix) { struct roce_gid_ndev_storage *ndev_storage; struct ib_gid_table_entry *entry; lockdep_assert_held(&table->lock); dev_dbg(&ib_dev->dev, "%s port=%u index=%d gid %pI6\n", __func__, port, ix, table->data_vec[ix]->attr.gid.raw); write_lock_irq(&table->rwlock); entry = table->data_vec[ix]; entry->state = GID_TABLE_ENTRY_PENDING_DEL; /* * For non RoCE protocol, GID entry slot is ready to use. */ if (!rdma_protocol_roce(ib_dev, port)) table->data_vec[ix] = NULL; write_unlock_irq(&table->rwlock); if (rdma_cap_roce_gid_table(ib_dev, port)) ib_dev->ops.del_gid(&entry->attr, &entry->context); ndev_storage = entry->ndev_storage; if (ndev_storage) { entry->ndev_storage = NULL; rcu_assign_pointer(entry->attr.ndev, NULL); call_rcu(&ndev_storage->rcu_head, put_gid_ndev); } put_gid_entry_locked(entry); } /** * add_modify_gid - Add or modify GID table entry * * @table: GID table in which GID to be added or modified * @attr: Attributes of the GID * * Returns 0 on success or appropriate error code. It accepts zero * GID addition for non RoCE ports for HCA's who report them as valid * GID. However such zero GIDs are not added to the cache. */ static int add_modify_gid(struct ib_gid_table *table, const struct ib_gid_attr *attr) { struct ib_gid_table_entry *entry; int ret = 0; /* * Invalidate any old entry in the table to make it safe to write to * this index. */ if (is_gid_entry_valid(table->data_vec[attr->index])) del_gid(attr->device, attr->port_num, table, attr->index); /* * Some HCA's report multiple GID entries with only one valid GID, and * leave other unused entries as the zero GID. Convert zero GIDs to * empty table entries instead of storing them. */ if (rdma_is_zero_gid(&attr->gid)) return 0; entry = alloc_gid_entry(attr); if (!entry) return -ENOMEM; if (rdma_protocol_roce(attr->device, attr->port_num)) { ret = add_roce_gid(entry); if (ret) goto done; } store_gid_entry(table, entry); return 0; done: put_gid_entry(entry); return ret; } /* rwlock should be read locked, or lock should be held */ static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, const struct ib_gid_attr *val, bool default_gid, unsigned long mask, int *pempty) { int i = 0; int found = -1; int empty = pempty ? -1 : 0; while (i < table->sz && (found < 0 || empty < 0)) { struct ib_gid_table_entry *data = table->data_vec[i]; struct ib_gid_attr *attr; int curr_index = i; i++; /* find_gid() is used during GID addition where it is expected * to return a free entry slot which is not duplicate. * Free entry slot is requested and returned if pempty is set, * so lookup free slot only if requested. */ if (pempty && empty < 0) { if (is_gid_entry_free(data) && default_gid == is_gid_index_default(table, curr_index)) { /* * Found an invalid (free) entry; allocate it. * If default GID is requested, then our * found slot must be one of the DEFAULT * reserved slots or we fail. * This ensures that only DEFAULT reserved * slots are used for default property GIDs. */ empty = curr_index; } } /* * Additionally find_gid() is used to find valid entry during * lookup operation; so ignore the entries which are marked as * pending for removal and the entries which are marked as * invalid. */ if (!is_gid_entry_valid(data)) continue; if (found >= 0) continue; attr = &data->attr; if (mask & GID_ATTR_FIND_MASK_GID_TYPE && attr->gid_type != val->gid_type) continue; if (mask & GID_ATTR_FIND_MASK_GID && memcmp(gid, &data->attr.gid, sizeof(*gid))) continue; if (mask & GID_ATTR_FIND_MASK_NETDEV && attr->ndev != val->ndev) continue; if (mask & GID_ATTR_FIND_MASK_DEFAULT && is_gid_index_default(table, curr_index) != default_gid) continue; found = curr_index; } if (pempty) *pempty = empty; return found; } static void make_default_gid(struct net_device *dev, union ib_gid *gid) { gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); addrconf_ifid_eui48(&gid->raw[8], dev); } static int __ib_cache_gid_add(struct ib_device *ib_dev, u32 port, union ib_gid *gid, struct ib_gid_attr *attr, unsigned long mask, bool default_gid) { struct ib_gid_table *table; int ret = 0; int empty; int ix; /* Do not allow adding zero GID in support of * IB spec version 1.3 section 4.1.1 point (6) and * section 12.7.10 and section 12.7.20 */ if (rdma_is_zero_gid(gid)) return -EINVAL; table = rdma_gid_table(ib_dev, port); mutex_lock(&table->lock); ix = find_gid(table, gid, attr, default_gid, mask, &empty); if (ix >= 0) goto out_unlock; if (empty < 0) { ret = -ENOSPC; goto out_unlock; } attr->device = ib_dev; attr->index = empty; attr->port_num = port; attr->gid = *gid; ret = add_modify_gid(table, attr); if (!ret) dispatch_gid_change_event(ib_dev, port); out_unlock: mutex_unlock(&table->lock); if (ret) pr_warn("%s: unable to add gid %pI6 error=%d\n", __func__, gid->raw, ret); return ret; } int ib_cache_gid_add(struct ib_device *ib_dev, u32 port, union ib_gid *gid, struct ib_gid_attr *attr) { unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE | GID_ATTR_FIND_MASK_NETDEV; return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); } static int _ib_cache_gid_del(struct ib_device *ib_dev, u32 port, union ib_gid *gid, struct ib_gid_attr *attr, unsigned long mask, bool default_gid) { struct ib_gid_table *table; int ret = 0; int ix; table = rdma_gid_table(ib_dev, port); mutex_lock(&table->lock); ix = find_gid(table, gid, attr, default_gid, mask, NULL); if (ix < 0) { ret = -EINVAL; goto out_unlock; } del_gid(ib_dev, port, table, ix); dispatch_gid_change_event(ib_dev, port); out_unlock: mutex_unlock(&table->lock); if (ret) pr_debug("%s: can't delete gid %pI6 error=%d\n", __func__, gid->raw, ret); return ret; } int ib_cache_gid_del(struct ib_device *ib_dev, u32 port, union ib_gid *gid, struct ib_gid_attr *attr) { unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE | GID_ATTR_FIND_MASK_DEFAULT | GID_ATTR_FIND_MASK_NETDEV; return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); } int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u32 port, struct net_device *ndev) { struct ib_gid_table *table; int ix; bool deleted = false; table = rdma_gid_table(ib_dev, port); mutex_lock(&table->lock); for (ix = 0; ix < table->sz; ix++) { if (is_gid_entry_valid(table->data_vec[ix]) && table->data_vec[ix]->attr.ndev == ndev) { del_gid(ib_dev, port, table, ix); deleted = true; } } mutex_unlock(&table->lock); if (deleted) dispatch_gid_change_event(ib_dev, port); return 0; } /** * rdma_find_gid_by_port - Returns the GID entry attributes when it finds * a valid GID entry for given search parameters. It searches for the specified * GID value in the local software cache. * @ib_dev: The device to query. * @gid: The GID value to search for. * @gid_type: The GID type to search for. * @port: The port number of the device where the GID value should be searched. * @ndev: In RoCE, the net device of the device. NULL means ignore. * * Returns sgid attributes if the GID is found with valid reference or * returns ERR_PTR for the error. * The caller must invoke rdma_put_gid_attr() to release the reference. */ const struct ib_gid_attr * rdma_find_gid_by_port(struct ib_device *ib_dev, const union ib_gid *gid, enum ib_gid_type gid_type, u32 port, struct net_device *ndev) { int local_index; struct ib_gid_table *table; unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE; struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; const struct ib_gid_attr *attr; unsigned long flags; if (!rdma_is_port_valid(ib_dev, port)) return ERR_PTR(-ENOENT); table = rdma_gid_table(ib_dev, port); if (ndev) mask |= GID_ATTR_FIND_MASK_NETDEV; read_lock_irqsave(&table->rwlock, flags); local_index = find_gid(table, gid, &val, false, mask, NULL); if (local_index >= 0) { get_gid_entry(table->data_vec[local_index]); attr = &table->data_vec[local_index]->attr; read_unlock_irqrestore(&table->rwlock, flags); return attr; } read_unlock_irqrestore(&table->rwlock, flags); return ERR_PTR(-ENOENT); } EXPORT_SYMBOL(rdma_find_gid_by_port); /** * rdma_find_gid_by_filter - Returns the GID table attribute where a * specified GID value occurs * @ib_dev: The device to query. * @gid: The GID value to search for. * @port: The port number of the device where the GID value could be * searched. * @filter: The filter function is executed on any matching GID in the table. * If the filter function returns true, the corresponding index is returned, * otherwise, we continue searching the GID table. It's guaranteed that * while filter is executed, ndev field is valid and the structure won't * change. filter is executed in an atomic context. filter must not be NULL. * @context: Private data to pass into the call-back. * * rdma_find_gid_by_filter() searches for the specified GID value * of which the filter function returns true in the port's GID table. * */ const struct ib_gid_attr *rdma_find_gid_by_filter( struct ib_device *ib_dev, const union ib_gid *gid, u32 port, bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, void *), void *context) { const struct ib_gid_attr *res = ERR_PTR(-ENOENT); struct ib_gid_table *table; unsigned long flags; unsigned int i; if (!rdma_is_port_valid(ib_dev, port)) return ERR_PTR(-EINVAL); table = rdma_gid_table(ib_dev, port); read_lock_irqsave(&table->rwlock, flags); for (i = 0; i < table->sz; i++) { struct ib_gid_table_entry *entry = table->data_vec[i]; if (!is_gid_entry_valid(entry)) continue; if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) continue; if (filter(gid, &entry->attr, context)) { get_gid_entry(entry); res = &entry->attr; break; } } read_unlock_irqrestore(&table->rwlock, flags); return res; } static struct ib_gid_table *alloc_gid_table(int sz) { struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return NULL; table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); if (!table->data_vec) goto err_free_table; mutex_init(&table->lock); table->sz = sz; rwlock_init(&table->rwlock); return table; err_free_table: kfree(table); return NULL; } static void release_gid_table(struct ib_device *device, struct ib_gid_table *table) { int i; if (!table) return; for (i = 0; i < table->sz; i++) { if (is_gid_entry_free(table->data_vec[i])) continue; WARN_ONCE(true, "GID entry ref leak for dev %s index %d ref=%u\n", dev_name(&device->dev), i, kref_read(&table->data_vec[i]->kref)); } mutex_destroy(&table->lock); kfree(table->data_vec); kfree(table); } static void cleanup_gid_table_port(struct ib_device *ib_dev, u32 port, struct ib_gid_table *table) { int i; if (!table) return; mutex_lock(&table->lock); for (i = 0; i < table->sz; ++i) { if (is_gid_entry_valid(table->data_vec[i])) del_gid(ib_dev, port, table, i); } mutex_unlock(&table->lock); } void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u32 port, struct net_device *ndev, unsigned long gid_type_mask, enum ib_cache_gid_default_mode mode) { union ib_gid gid = { }; struct ib_gid_attr gid_attr; unsigned int gid_type; unsigned long mask; mask = GID_ATTR_FIND_MASK_GID_TYPE | GID_ATTR_FIND_MASK_DEFAULT | GID_ATTR_FIND_MASK_NETDEV; memset(&gid_attr, 0, sizeof(gid_attr)); gid_attr.ndev = ndev; for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { if (1UL << gid_type & ~gid_type_mask) continue; gid_attr.gid_type = gid_type; if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { make_default_gid(ndev, &gid); __ib_cache_gid_add(ib_dev, port, &gid, &gid_attr, mask, true); } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { _ib_cache_gid_del(ib_dev, port, &gid, &gid_attr, mask, true); } } } static void gid_table_reserve_default(struct ib_device *ib_dev, u32 port, struct ib_gid_table *table) { unsigned int i; unsigned long roce_gid_type_mask; unsigned int num_default_gids; roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); num_default_gids = hweight_long(roce_gid_type_mask); /* Reserve starting indices for default GIDs */ for (i = 0; i < num_default_gids && i < table->sz; i++) table->default_gid_indices |= BIT(i); } static void gid_table_release_one(struct ib_device *ib_dev) { u32 p; rdma_for_each_port (ib_dev, p) { release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); ib_dev->port_data[p].cache.gid = NULL; } } static int _gid_table_setup_one(struct ib_device *ib_dev) { struct ib_gid_table *table; u32 rdma_port; rdma_for_each_port (ib_dev, rdma_port) { table = alloc_gid_table( ib_dev->port_data[rdma_port].immutable.gid_tbl_len); if (!table) goto rollback_table_setup; gid_table_reserve_default(ib_dev, rdma_port, table); ib_dev->port_data[rdma_port].cache.gid = table; } return 0; rollback_table_setup: gid_table_release_one(ib_dev); return -ENOMEM; } static void gid_table_cleanup_one(struct ib_device *ib_dev) { u32 p; rdma_for_each_port (ib_dev, p) cleanup_gid_table_port(ib_dev, p, ib_dev->port_data[p].cache.gid); } static int gid_table_setup_one(struct ib_device *ib_dev) { int err; err = _gid_table_setup_one(ib_dev); if (err) return err; rdma_roce_rescan_device(ib_dev); return err; } /** * rdma_query_gid - Read the GID content from the GID software cache * @device: Device to query the GID * @port_num: Port number of the device * @index: Index of the GID table entry to read * @gid: Pointer to GID where to store the entry's GID * * rdma_query_gid() only reads the GID entry content for requested device, * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't * hold any reference to the GID table entry in the HCA or software cache. * * Returns 0 on success or appropriate error code. * */ int rdma_query_gid(struct ib_device *device, u32 port_num, int index, union ib_gid *gid) { struct ib_gid_table *table; unsigned long flags; int res; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; table = rdma_gid_table(device, port_num); read_lock_irqsave(&table->rwlock, flags); if (index < 0 || index >= table->sz) { res = -EINVAL; goto done; } if (!is_gid_entry_valid(table->data_vec[index])) { res = -ENOENT; goto done; } memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); res = 0; done: read_unlock_irqrestore(&table->rwlock, flags); return res; } EXPORT_SYMBOL(rdma_query_gid); /** * rdma_read_gid_hw_context - Read the HW GID context from GID attribute * @attr: Potinter to the GID attribute * * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding * to the SGID attr. Callers are required to already be holding the reference * to an existing GID entry. * * Returns the HW GID context * */ void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr) { return container_of(attr, struct ib_gid_table_entry, attr)->context; } EXPORT_SYMBOL(rdma_read_gid_hw_context); /** * rdma_find_gid - Returns SGID attributes if the matching GID is found. * @device: The device to query. * @gid: The GID value to search for. * @gid_type: The GID type to search for. * @ndev: In RoCE, the net device of the device. NULL means ignore. * * rdma_find_gid() searches for the specified GID value in the software cache. * * Returns GID attributes if a valid GID is found or returns ERR_PTR for the * error. The caller must invoke rdma_put_gid_attr() to release the reference. * */ const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, const union ib_gid *gid, enum ib_gid_type gid_type, struct net_device *ndev) { unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE; struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; u32 p; if (ndev) mask |= GID_ATTR_FIND_MASK_NETDEV; rdma_for_each_port(device, p) { struct ib_gid_table *table; unsigned long flags; int index; table = device->port_data[p].cache.gid; read_lock_irqsave(&table->rwlock, flags); index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); if (index >= 0) { const struct ib_gid_attr *attr; get_gid_entry(table->data_vec[index]); attr = &table->data_vec[index]->attr; read_unlock_irqrestore(&table->rwlock, flags); return attr; } read_unlock_irqrestore(&table->rwlock, flags); } return ERR_PTR(-ENOENT); } EXPORT_SYMBOL(rdma_find_gid); int ib_get_cached_pkey(struct ib_device *device, u32 port_num, int index, u16 *pkey) { struct ib_pkey_cache *cache; unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache_lock, flags); cache = device->port_data[port_num].cache.pkey; if (!cache || index < 0 || index >= cache->table_len) ret = -EINVAL; else *pkey = cache->table[index]; read_unlock_irqrestore(&device->cache_lock, flags); return ret; } EXPORT_SYMBOL(ib_get_cached_pkey); void ib_get_cached_subnet_prefix(struct ib_device *device, u32 port_num, u64 *sn_pfx) { unsigned long flags; read_lock_irqsave(&device->cache_lock, flags); *sn_pfx = device->port_data[port_num].cache.subnet_prefix; read_unlock_irqrestore(&device->cache_lock, flags); } EXPORT_SYMBOL(ib_get_cached_subnet_prefix); int ib_find_cached_pkey(struct ib_device *device, u32 port_num, u16 pkey, u16 *index) { struct ib_pkey_cache *cache; unsigned long flags; int i; int ret = -ENOENT; int partial_ix = -1; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache_lock, flags); cache = device->port_data[port_num].cache.pkey; if (!cache) { ret = -EINVAL; goto err; } *index = -1; for (i = 0; i < cache->table_len; ++i) if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { if (cache->table[i] & 0x8000) { *index = i; ret = 0; break; } else { partial_ix = i; } } if (ret && partial_ix >= 0) { *index = partial_ix; ret = 0; } err: read_unlock_irqrestore(&device->cache_lock, flags); return ret; } EXPORT_SYMBOL(ib_find_cached_pkey); int ib_find_exact_cached_pkey(struct ib_device *device, u32 port_num, u16 pkey, u16 *index) { struct ib_pkey_cache *cache; unsigned long flags; int i; int ret = -ENOENT; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache_lock, flags); cache = device->port_data[port_num].cache.pkey; if (!cache) { ret = -EINVAL; goto err; } *index = -1; for (i = 0; i < cache->table_len; ++i) if (cache->table[i] == pkey) { *index = i; ret = 0; break; } err: read_unlock_irqrestore(&device->cache_lock, flags); return ret; } EXPORT_SYMBOL(ib_find_exact_cached_pkey); int ib_get_cached_lmc(struct ib_device *device, u32 port_num, u8 *lmc) { unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache_lock, flags); *lmc = device->port_data[port_num].cache.lmc; read_unlock_irqrestore(&device->cache_lock, flags); return ret; } EXPORT_SYMBOL(ib_get_cached_lmc); int ib_get_cached_port_state(struct ib_device *device, u32 port_num, enum ib_port_state *port_state) { unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache_lock, flags); *port_state = device->port_data[port_num].cache.port_state; read_unlock_irqrestore(&device->cache_lock, flags); return ret; } EXPORT_SYMBOL(ib_get_cached_port_state); /** * rdma_get_gid_attr - Returns GID attributes for a port of a device * at a requested gid_index, if a valid GID entry exists. * @device: The device to query. * @port_num: The port number on the device where the GID value * is to be queried. * @index: Index of the GID table entry whose attributes are to * be queried. * * rdma_get_gid_attr() acquires reference count of gid attributes from the * cached GID table. Caller must invoke rdma_put_gid_attr() to release * reference to gid attribute regardless of link layer. * * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error * code. */ const struct ib_gid_attr * rdma_get_gid_attr(struct ib_device *device, u32 port_num, int index) { const struct ib_gid_attr *attr = ERR_PTR(-ENODATA); struct ib_gid_table *table; unsigned long flags; if (!rdma_is_port_valid(device, port_num)) return ERR_PTR(-EINVAL); table = rdma_gid_table(device, port_num); if (index < 0 || index >= table->sz) return ERR_PTR(-EINVAL); read_lock_irqsave(&table->rwlock, flags); if (!is_gid_entry_valid(table->data_vec[index])) goto done; get_gid_entry(table->data_vec[index]); attr = &table->data_vec[index]->attr; done: read_unlock_irqrestore(&table->rwlock, flags); return attr; } EXPORT_SYMBOL(rdma_get_gid_attr); /** * rdma_query_gid_table - Reads GID table entries of all the ports of a device up to max_entries. * @device: The device to query. * @entries: Entries where GID entries are returned. * @max_entries: Maximum number of entries that can be returned. * Entries array must be allocated to hold max_entries number of entries. * * Returns number of entries on success or appropriate error code. */ ssize_t rdma_query_gid_table(struct ib_device *device, struct ib_uverbs_gid_entry *entries, size_t max_entries) { const struct ib_gid_attr *gid_attr; ssize_t num_entries = 0, ret; struct ib_gid_table *table; u32 port_num, i; struct net_device *ndev; unsigned long flags; rdma_for_each_port(device, port_num) { table = rdma_gid_table(device, port_num); read_lock_irqsave(&table->rwlock, flags); for (i = 0; i < table->sz; i++) { if (!is_gid_entry_valid(table->data_vec[i])) continue; if (num_entries >= max_entries) { ret = -EINVAL; goto err; } gid_attr = &table->data_vec[i]->attr; memcpy(&entries->gid, &gid_attr->gid, sizeof(gid_attr->gid)); entries->gid_index = gid_attr->index; entries->port_num = gid_attr->port_num; entries->gid_type = gid_attr->gid_type; ndev = rcu_dereference_protected( gid_attr->ndev, lockdep_is_held(&table->rwlock)); if (ndev) entries->netdev_ifindex = ndev->ifindex; num_entries++; entries++; } read_unlock_irqrestore(&table->rwlock, flags); } return num_entries; err: read_unlock_irqrestore(&table->rwlock, flags); return ret; } EXPORT_SYMBOL(rdma_query_gid_table); /** * rdma_put_gid_attr - Release reference to the GID attribute * @attr: Pointer to the GID attribute whose reference * needs to be released. * * rdma_put_gid_attr() must be used to release reference whose * reference is acquired using rdma_get_gid_attr() or any APIs * which returns a pointer to the ib_gid_attr regardless of link layer * of IB or RoCE. * */ void rdma_put_gid_attr(const struct ib_gid_attr *attr) { struct ib_gid_table_entry *entry = container_of(attr, struct ib_gid_table_entry, attr); put_gid_entry(entry); } EXPORT_SYMBOL(rdma_put_gid_attr); /** * rdma_hold_gid_attr - Get reference to existing GID attribute * * @attr: Pointer to the GID attribute whose reference * needs to be taken. * * Increase the reference count to a GID attribute to keep it from being * freed. Callers are required to already be holding a reference to attribute. * */ void rdma_hold_gid_attr(const struct ib_gid_attr *attr) { struct ib_gid_table_entry *entry = container_of(attr, struct ib_gid_table_entry, attr); get_gid_entry(entry); } EXPORT_SYMBOL(rdma_hold_gid_attr); /** * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice * which must be in UP state. * * @attr:Pointer to the GID attribute * * Returns pointer to netdevice if the netdevice was attached to GID and * netdevice is in UP state. Caller must hold RCU lock as this API * reads the netdev flags which can change while netdevice migrates to * different net namespace. Returns ERR_PTR with error code otherwise. * */ struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) { struct ib_gid_table_entry *entry = container_of(attr, struct ib_gid_table_entry, attr); struct ib_device *device = entry->attr.device; struct net_device *ndev = ERR_PTR(-EINVAL); u32 port_num = entry->attr.port_num; struct ib_gid_table *table; unsigned long flags; bool valid; table = rdma_gid_table(device, port_num); read_lock_irqsave(&table->rwlock, flags); valid = is_gid_entry_valid(table->data_vec[attr->index]); if (valid) { ndev = rcu_dereference(attr->ndev); if (!ndev) ndev = ERR_PTR(-ENODEV); } read_unlock_irqrestore(&table->rwlock, flags); return ndev; } EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); static int get_lower_dev_vlan(struct net_device *lower_dev, struct netdev_nested_priv *priv) { u16 *vlan_id = (u16 *)priv->data; if (is_vlan_dev(lower_dev)) *vlan_id = vlan_dev_vlan_id(lower_dev); /* We are interested only in first level vlan device, so * always return 1 to stop iterating over next level devices. */ return 1; } /** * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address * of a GID entry. * * @attr: GID attribute pointer whose L2 fields to be read * @vlan_id: Pointer to vlan id to fill up if the GID entry has * vlan id. It is optional. * @smac: Pointer to smac to fill up for a GID entry. It is optional. * * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id * (if gid entry has vlan) and source MAC, or returns error. */ int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, u16 *vlan_id, u8 *smac) { struct netdev_nested_priv priv = { .data = (void *)vlan_id, }; struct net_device *ndev; rcu_read_lock(); ndev = rcu_dereference(attr->ndev); if (!ndev) { rcu_read_unlock(); return -ENODEV; } if (smac) ether_addr_copy(smac, ndev->dev_addr); if (vlan_id) { *vlan_id = 0xffff; if (is_vlan_dev(ndev)) { *vlan_id = vlan_dev_vlan_id(ndev); } else { /* If the netdev is upper device and if it's lower * device is vlan device, consider vlan id of * the lower vlan device for this gid entry. */ netdev_walk_all_lower_dev_rcu(attr->ndev, get_lower_dev_vlan, &priv); } } rcu_read_unlock(); return 0; } EXPORT_SYMBOL(rdma_read_gid_l2_fields); static int config_non_roce_gid_cache(struct ib_device *device, u32 port, struct ib_port_attr *tprops) { struct ib_gid_attr gid_attr = {}; struct ib_gid_table *table; int ret = 0; int i; gid_attr.device = device; gid_attr.port_num = port; table = rdma_gid_table(device, port); mutex_lock(&table->lock); for (i = 0; i < tprops->gid_tbl_len; ++i) { if (!device->ops.query_gid) continue; ret = device->ops.query_gid(device, port, i, &gid_attr.gid); if (ret) { dev_warn(&device->dev, "query_gid failed (%d) for index %d\n", ret, i); goto err; } if (rdma_protocol_iwarp(device, port)) { struct net_device *ndev; ndev = ib_device_get_netdev(device, port); if (!ndev) continue; RCU_INIT_POINTER(gid_attr.ndev, ndev); dev_put(ndev); } gid_attr.index = i; tprops->subnet_prefix = be64_to_cpu(gid_attr.gid.global.subnet_prefix); add_modify_gid(table, &gid_attr); } err: mutex_unlock(&table->lock); return ret; } static int ib_cache_update(struct ib_device *device, u32 port, bool update_gids, bool update_pkeys, bool enforce_security) { struct ib_port_attr *tprops = NULL; struct ib_pkey_cache *pkey_cache = NULL; struct ib_pkey_cache *old_pkey_cache = NULL; int i; int ret; if (!rdma_is_port_valid(device, port)) return -EINVAL; tprops = kmalloc(sizeof *tprops, GFP_KERNEL); if (!tprops) return -ENOMEM; ret = ib_query_port(device, port, tprops); if (ret) { dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); goto err; } if (!rdma_protocol_roce(device, port) && update_gids) { ret = config_non_roce_gid_cache(device, port, tprops); if (ret) goto err; } update_pkeys &= !!tprops->pkey_tbl_len; if (update_pkeys) { pkey_cache = kmalloc(struct_size(pkey_cache, table, tprops->pkey_tbl_len), GFP_KERNEL); if (!pkey_cache) { ret = -ENOMEM; goto err; } pkey_cache->table_len = tprops->pkey_tbl_len; for (i = 0; i < pkey_cache->table_len; ++i) { ret = ib_query_pkey(device, port, i, pkey_cache->table + i); if (ret) { dev_warn(&device->dev, "ib_query_pkey failed (%d) for index %d\n", ret, i); goto err; } } } write_lock_irq(&device->cache_lock); if (update_pkeys) { old_pkey_cache = device->port_data[port].cache.pkey; device->port_data[port].cache.pkey = pkey_cache; } device->port_data[port].cache.lmc = tprops->lmc; device->port_data[port].cache.port_state = tprops->state; device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; write_unlock_irq(&device->cache_lock); if (enforce_security) ib_security_cache_change(device, port, tprops->subnet_prefix); kfree(old_pkey_cache); kfree(tprops); return 0; err: kfree(pkey_cache); kfree(tprops); return ret; } static void ib_cache_event_task(struct work_struct *_work) { struct ib_update_work *work = container_of(_work, struct ib_update_work, work); int ret; /* Before distributing the cache update event, first sync * the cache. */ ret = ib_cache_update(work->event.device, work->event.element.port_num, work->event.event == IB_EVENT_GID_CHANGE, work->event.event == IB_EVENT_PKEY_CHANGE, work->enforce_security); /* GID event is notified already for individual GID entries by * dispatch_gid_change_event(). Hence, notifiy for rest of the * events. */ if (!ret && work->event.event != IB_EVENT_GID_CHANGE) ib_dispatch_event_clients(&work->event); kfree(work); } static void ib_generic_event_task(struct work_struct *_work) { struct ib_update_work *work = container_of(_work, struct ib_update_work, work); ib_dispatch_event_clients(&work->event); kfree(work); } static bool is_cache_update_event(const struct ib_event *event) { return (event->event == IB_EVENT_PORT_ERR || event->event == IB_EVENT_PORT_ACTIVE || event->event == IB_EVENT_LID_CHANGE || event->event == IB_EVENT_PKEY_CHANGE || event->event == IB_EVENT_CLIENT_REREGISTER || event->event == IB_EVENT_GID_CHANGE); } /** * ib_dispatch_event - Dispatch an asynchronous event * @event:Event to dispatch * * Low-level drivers must call ib_dispatch_event() to dispatch the * event to all registered event handlers when an asynchronous event * occurs. */ void ib_dispatch_event(const struct ib_event *event) { struct ib_update_work *work; work = kzalloc(sizeof(*work), GFP_ATOMIC); if (!work) return; if (is_cache_update_event(event)) INIT_WORK(&work->work, ib_cache_event_task); else INIT_WORK(&work->work, ib_generic_event_task); work->event = *event; if (event->event == IB_EVENT_PKEY_CHANGE || event->event == IB_EVENT_GID_CHANGE) work->enforce_security = true; queue_work(ib_wq, &work->work); } EXPORT_SYMBOL(ib_dispatch_event); int ib_cache_setup_one(struct ib_device *device) { u32 p; int err; err = gid_table_setup_one(device); if (err) return err; rdma_for_each_port (device, p) { err = ib_cache_update(device, p, true, true, true); if (err) return err; } return 0; } void ib_cache_release_one(struct ib_device *device) { u32 p; /* * The release function frees all the cache elements. * This function should be called as part of freeing * all the device's resources when the cache could no * longer be accessed. */ rdma_for_each_port (device, p) kfree(device->port_data[p].cache.pkey); gid_table_release_one(device); } void ib_cache_cleanup_one(struct ib_device *device) { /* The cleanup function waits for all in-progress workqueue * elements and cleans up the GID cache. This function should be * called after the device was removed from the devices list and * all clients were removed, so the cache exists but is * non-functional and shouldn't be updated anymore. */ flush_workqueue(ib_wq); gid_table_cleanup_one(device); /* * Flush the wq second time for any pending GID delete work. */ flush_workqueue(ib_wq); } |
1 1 11 11 11 51 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2018 - 2021, 2023 - 2024 Intel Corporation */ #include <net/cfg80211.h> #include "core.h" #include "nl80211.h" #include "rdev-ops.h" static int pmsr_parse_ftm(struct cfg80211_registered_device *rdev, struct nlattr *ftmreq, struct cfg80211_pmsr_request_peer *out, struct genl_info *info) { const struct cfg80211_pmsr_capabilities *capa = rdev->wiphy.pmsr_capa; struct nlattr *tb[NL80211_PMSR_FTM_REQ_ATTR_MAX + 1]; u32 preamble = NL80211_PREAMBLE_DMG; /* only optional in DMG */ /* validate existing data */ if (!(rdev->wiphy.pmsr_capa->ftm.bandwidths & BIT(out->chandef.width))) { NL_SET_ERR_MSG(info->extack, "FTM: unsupported bandwidth"); return -EINVAL; } /* no validation needed - was already done via nested policy */ nla_parse_nested_deprecated(tb, NL80211_PMSR_FTM_REQ_ATTR_MAX, ftmreq, NULL, NULL); if (tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE]) preamble = nla_get_u32(tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE]); /* set up values - struct is 0-initialized */ out->ftm.requested = true; switch (out->chandef.chan->band) { case NL80211_BAND_60GHZ: /* optional */ break; default: if (!tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE]) { NL_SET_ERR_MSG(info->extack, "FTM: must specify preamble"); return -EINVAL; } } if (!(capa->ftm.preambles & BIT(preamble))) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE], "FTM: invalid preamble"); return -EINVAL; } out->ftm.preamble = preamble; out->ftm.burst_period = 0; if (tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD]) out->ftm.burst_period = nla_get_u16(tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD]); out->ftm.asap = !!tb[NL80211_PMSR_FTM_REQ_ATTR_ASAP]; if (out->ftm.asap && !capa->ftm.asap) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_ASAP], "FTM: ASAP mode not supported"); return -EINVAL; } if (!out->ftm.asap && !capa->ftm.non_asap) { NL_SET_ERR_MSG(info->extack, "FTM: non-ASAP mode not supported"); return -EINVAL; } out->ftm.num_bursts_exp = 0; if (tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP]) out->ftm.num_bursts_exp = nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP]); if (capa->ftm.max_bursts_exponent >= 0 && out->ftm.num_bursts_exp > capa->ftm.max_bursts_exponent) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP], "FTM: max NUM_BURSTS_EXP must be set lower than the device limit"); return -EINVAL; } out->ftm.burst_duration = 15; if (tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION]) out->ftm.burst_duration = nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION]); out->ftm.ftms_per_burst = 0; if (tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST]) out->ftm.ftms_per_burst = nla_get_u32(tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST]); if (capa->ftm.max_ftms_per_burst && (out->ftm.ftms_per_burst > capa->ftm.max_ftms_per_burst || out->ftm.ftms_per_burst == 0)) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST], "FTM: FTMs per burst must be set lower than the device limit but non-zero"); return -EINVAL; } out->ftm.ftmr_retries = 3; if (tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_FTMR_RETRIES]) out->ftm.ftmr_retries = nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_NUM_FTMR_RETRIES]); out->ftm.request_lci = !!tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_LCI]; if (out->ftm.request_lci && !capa->ftm.request_lci) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_LCI], "FTM: LCI request not supported"); } out->ftm.request_civicloc = !!tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_CIVICLOC]; if (out->ftm.request_civicloc && !capa->ftm.request_civicloc) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_REQUEST_CIVICLOC], "FTM: civic location request not supported"); } out->ftm.trigger_based = !!tb[NL80211_PMSR_FTM_REQ_ATTR_TRIGGER_BASED]; if (out->ftm.trigger_based && !capa->ftm.trigger_based) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_TRIGGER_BASED], "FTM: trigger based ranging is not supported"); return -EINVAL; } out->ftm.non_trigger_based = !!tb[NL80211_PMSR_FTM_REQ_ATTR_NON_TRIGGER_BASED]; if (out->ftm.non_trigger_based && !capa->ftm.non_trigger_based) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_NON_TRIGGER_BASED], "FTM: trigger based ranging is not supported"); return -EINVAL; } if (out->ftm.trigger_based && out->ftm.non_trigger_based) { NL_SET_ERR_MSG(info->extack, "FTM: can't set both trigger based and non trigger based"); return -EINVAL; } if (out->ftm.ftms_per_burst > 31 && !out->ftm.non_trigger_based && !out->ftm.trigger_based) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST], "FTM: FTMs per burst must be set lower than 31"); return -ERANGE; } if ((out->ftm.trigger_based || out->ftm.non_trigger_based) && out->ftm.preamble != NL80211_PREAMBLE_HE) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE], "FTM: non EDCA based ranging must use HE preamble"); return -EINVAL; } out->ftm.lmr_feedback = !!tb[NL80211_PMSR_FTM_REQ_ATTR_LMR_FEEDBACK]; if (!out->ftm.trigger_based && !out->ftm.non_trigger_based && out->ftm.lmr_feedback) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_LMR_FEEDBACK], "FTM: LMR feedback set for EDCA based ranging"); return -EINVAL; } if (tb[NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR]) { if (!out->ftm.non_trigger_based && !out->ftm.trigger_based) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR], "FTM: BSS color set for EDCA based ranging"); return -EINVAL; } out->ftm.bss_color = nla_get_u8(tb[NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR]); } return 0; } static int pmsr_parse_peer(struct cfg80211_registered_device *rdev, struct nlattr *peer, struct cfg80211_pmsr_request_peer *out, struct genl_info *info) { struct nlattr *tb[NL80211_PMSR_PEER_ATTR_MAX + 1]; struct nlattr *req[NL80211_PMSR_REQ_ATTR_MAX + 1]; struct nlattr *treq; int err, rem; /* no validation needed - was already done via nested policy */ nla_parse_nested_deprecated(tb, NL80211_PMSR_PEER_ATTR_MAX, peer, NULL, NULL); if (!tb[NL80211_PMSR_PEER_ATTR_ADDR] || !tb[NL80211_PMSR_PEER_ATTR_CHAN] || !tb[NL80211_PMSR_PEER_ATTR_REQ]) { NL_SET_ERR_MSG_ATTR(info->extack, peer, "insufficient peer data"); return -EINVAL; } memcpy(out->addr, nla_data(tb[NL80211_PMSR_PEER_ATTR_ADDR]), ETH_ALEN); /* reuse info->attrs */ memset(info->attrs, 0, sizeof(*info->attrs) * (NL80211_ATTR_MAX + 1)); err = nla_parse_nested_deprecated(info->attrs, NL80211_ATTR_MAX, tb[NL80211_PMSR_PEER_ATTR_CHAN], NULL, info->extack); if (err) return err; err = nl80211_parse_chandef(rdev, info, &out->chandef); if (err) return err; /* no validation needed - was already done via nested policy */ nla_parse_nested_deprecated(req, NL80211_PMSR_REQ_ATTR_MAX, tb[NL80211_PMSR_PEER_ATTR_REQ], NULL, NULL); if (!req[NL80211_PMSR_REQ_ATTR_DATA]) { NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_PEER_ATTR_REQ], "missing request type/data"); return -EINVAL; } if (req[NL80211_PMSR_REQ_ATTR_GET_AP_TSF]) out->report_ap_tsf = true; if (out->report_ap_tsf && !rdev->wiphy.pmsr_capa->report_ap_tsf) { NL_SET_ERR_MSG_ATTR(info->extack, req[NL80211_PMSR_REQ_ATTR_GET_AP_TSF], "reporting AP TSF is not supported"); return -EINVAL; } nla_for_each_nested(treq, req[NL80211_PMSR_REQ_ATTR_DATA], rem) { switch (nla_type(treq)) { case NL80211_PMSR_TYPE_FTM: err = pmsr_parse_ftm(rdev, treq, out, info); break; default: NL_SET_ERR_MSG_ATTR(info->extack, treq, "unsupported measurement type"); err = -EINVAL; } } if (err) return err; return 0; } int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info) { struct nlattr *reqattr = info->attrs[NL80211_ATTR_PEER_MEASUREMENTS]; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; struct cfg80211_pmsr_request *req; struct nlattr *peers, *peer; int count, rem, err, idx; if (!rdev->wiphy.pmsr_capa) return -EOPNOTSUPP; if (!reqattr) return -EINVAL; peers = nla_find(nla_data(reqattr), nla_len(reqattr), NL80211_PMSR_ATTR_PEERS); if (!peers) return -EINVAL; count = 0; nla_for_each_nested(peer, peers, rem) { count++; if (count > rdev->wiphy.pmsr_capa->max_peers) { NL_SET_ERR_MSG_ATTR(info->extack, peer, "Too many peers used"); return -EINVAL; } } req = kzalloc(struct_size(req, peers, count), GFP_KERNEL); if (!req) return -ENOMEM; req->n_peers = count; if (info->attrs[NL80211_ATTR_TIMEOUT]) req->timeout = nla_get_u32(info->attrs[NL80211_ATTR_TIMEOUT]); if (info->attrs[NL80211_ATTR_MAC]) { if (!rdev->wiphy.pmsr_capa->randomize_mac_addr) { NL_SET_ERR_MSG_ATTR(info->extack, info->attrs[NL80211_ATTR_MAC], "device cannot randomize MAC address"); err = -EINVAL; goto out_err; } err = nl80211_parse_random_mac(info->attrs, req->mac_addr, req->mac_addr_mask); if (err) goto out_err; } else { memcpy(req->mac_addr, wdev_address(wdev), ETH_ALEN); eth_broadcast_addr(req->mac_addr_mask); } idx = 0; nla_for_each_nested(peer, peers, rem) { /* NB: this reuses info->attrs, but we no longer need it */ err = pmsr_parse_peer(rdev, peer, &req->peers[idx], info); if (err) goto out_err; idx++; } req->cookie = cfg80211_assign_cookie(rdev); req->nl_portid = info->snd_portid; err = rdev_start_pmsr(rdev, wdev, req); if (err) goto out_err; list_add_tail(&req->list, &wdev->pmsr_list); nl_set_extack_cookie_u64(info->extack, req->cookie); return 0; out_err: kfree(req); return err; } void cfg80211_pmsr_complete(struct wireless_dev *wdev, struct cfg80211_pmsr_request *req, gfp_t gfp) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_pmsr_request *tmp, *prev, *to_free = NULL; struct sk_buff *msg; void *hdr; trace_cfg80211_pmsr_complete(wdev->wiphy, wdev, req->cookie); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) goto free_request; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_PEER_MEASUREMENT_COMPLETE); if (!hdr) goto free_msg; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto free_msg; if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, req->cookie, NL80211_ATTR_PAD)) goto free_msg; genlmsg_end(msg, hdr); genlmsg_unicast(wiphy_net(wdev->wiphy), msg, req->nl_portid); goto free_request; free_msg: nlmsg_free(msg); free_request: spin_lock_bh(&wdev->pmsr_lock); /* * cfg80211_pmsr_process_abort() may have already moved this request * to the free list, and will free it later. In this case, don't free * it here. */ list_for_each_entry_safe(tmp, prev, &wdev->pmsr_list, list) { if (tmp == req) { list_del(&req->list); to_free = req; break; } } spin_unlock_bh(&wdev->pmsr_lock); kfree(to_free); } EXPORT_SYMBOL_GPL(cfg80211_pmsr_complete); static int nl80211_pmsr_send_ftm_res(struct sk_buff *msg, struct cfg80211_pmsr_result *res) { if (res->status == NL80211_PMSR_STATUS_FAILURE) { if (nla_put_u32(msg, NL80211_PMSR_FTM_RESP_ATTR_FAIL_REASON, res->ftm.failure_reason)) goto error; if (res->ftm.failure_reason == NL80211_PMSR_FTM_FAILURE_PEER_BUSY && res->ftm.busy_retry_time && nla_put_u32(msg, NL80211_PMSR_FTM_RESP_ATTR_BUSY_RETRY_TIME, res->ftm.busy_retry_time)) goto error; return 0; } #define PUT(tp, attr, val) \ do { \ if (nla_put_##tp(msg, \ NL80211_PMSR_FTM_RESP_ATTR_##attr, \ res->ftm.val)) \ goto error; \ } while (0) #define PUTOPT(tp, attr, val) \ do { \ if (res->ftm.val##_valid) \ PUT(tp, attr, val); \ } while (0) #define PUT_U64(attr, val) \ do { \ if (nla_put_u64_64bit(msg, \ NL80211_PMSR_FTM_RESP_ATTR_##attr,\ res->ftm.val, \ NL80211_PMSR_FTM_RESP_ATTR_PAD)) \ goto error; \ } while (0) #define PUTOPT_U64(attr, val) \ do { \ if (res->ftm.val##_valid) \ PUT_U64(attr, val); \ } while (0) if (res->ftm.burst_index >= 0) PUT(u32, BURST_INDEX, burst_index); PUTOPT(u32, NUM_FTMR_ATTEMPTS, num_ftmr_attempts); PUTOPT(u32, NUM_FTMR_SUCCESSES, num_ftmr_successes); PUT(u8, NUM_BURSTS_EXP, num_bursts_exp); PUT(u8, BURST_DURATION, burst_duration); PUT(u8, FTMS_PER_BURST, ftms_per_burst); PUTOPT(s32, RSSI_AVG, rssi_avg); PUTOPT(s32, RSSI_SPREAD, rssi_spread); if (res->ftm.tx_rate_valid && !nl80211_put_sta_rate(msg, &res->ftm.tx_rate, NL80211_PMSR_FTM_RESP_ATTR_TX_RATE)) goto error; if (res->ftm.rx_rate_valid && !nl80211_put_sta_rate(msg, &res->ftm.rx_rate, NL80211_PMSR_FTM_RESP_ATTR_RX_RATE)) goto error; PUTOPT_U64(RTT_AVG, rtt_avg); PUTOPT_U64(RTT_VARIANCE, rtt_variance); PUTOPT_U64(RTT_SPREAD, rtt_spread); PUTOPT_U64(DIST_AVG, dist_avg); PUTOPT_U64(DIST_VARIANCE, dist_variance); PUTOPT_U64(DIST_SPREAD, dist_spread); if (res->ftm.lci && res->ftm.lci_len && nla_put(msg, NL80211_PMSR_FTM_RESP_ATTR_LCI, res->ftm.lci_len, res->ftm.lci)) goto error; if (res->ftm.civicloc && res->ftm.civicloc_len && nla_put(msg, NL80211_PMSR_FTM_RESP_ATTR_CIVICLOC, res->ftm.civicloc_len, res->ftm.civicloc)) goto error; #undef PUT #undef PUTOPT #undef PUT_U64 #undef PUTOPT_U64 return 0; error: return -ENOSPC; } static int nl80211_pmsr_send_result(struct sk_buff *msg, struct cfg80211_pmsr_result *res) { struct nlattr *pmsr, *peers, *peer, *resp, *data, *typedata; pmsr = nla_nest_start_noflag(msg, NL80211_ATTR_PEER_MEASUREMENTS); if (!pmsr) goto error; peers = nla_nest_start_noflag(msg, NL80211_PMSR_ATTR_PEERS); if (!peers) goto error; peer = nla_nest_start_noflag(msg, 1); if (!peer) goto error; if (nla_put(msg, NL80211_PMSR_PEER_ATTR_ADDR, ETH_ALEN, res->addr)) goto error; resp = nla_nest_start_noflag(msg, NL80211_PMSR_PEER_ATTR_RESP); if (!resp) goto error; if (nla_put_u32(msg, NL80211_PMSR_RESP_ATTR_STATUS, res->status) || nla_put_u64_64bit(msg, NL80211_PMSR_RESP_ATTR_HOST_TIME, res->host_time, NL80211_PMSR_RESP_ATTR_PAD)) goto error; if (res->ap_tsf_valid && nla_put_u64_64bit(msg, NL80211_PMSR_RESP_ATTR_AP_TSF, res->ap_tsf, NL80211_PMSR_RESP_ATTR_PAD)) goto error; if (res->final && nla_put_flag(msg, NL80211_PMSR_RESP_ATTR_FINAL)) goto error; data = nla_nest_start_noflag(msg, NL80211_PMSR_RESP_ATTR_DATA); if (!data) goto error; typedata = nla_nest_start_noflag(msg, res->type); if (!typedata) goto error; switch (res->type) { case NL80211_PMSR_TYPE_FTM: if (nl80211_pmsr_send_ftm_res(msg, res)) goto error; break; default: WARN_ON(1); } nla_nest_end(msg, typedata); nla_nest_end(msg, data); nla_nest_end(msg, resp); nla_nest_end(msg, peer); nla_nest_end(msg, peers); nla_nest_end(msg, pmsr); return 0; error: return -ENOSPC; } void cfg80211_pmsr_report(struct wireless_dev *wdev, struct cfg80211_pmsr_request *req, struct cfg80211_pmsr_result *result, gfp_t gfp) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; int err; trace_cfg80211_pmsr_report(wdev->wiphy, wdev, req->cookie, result->addr); /* * Currently, only variable items are LCI and civic location, * both of which are reasonably short so we don't need to * worry about them here for the allocation. */ msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_PEER_MEASUREMENT_RESULT); if (!hdr) goto free; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto free; if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, req->cookie, NL80211_ATTR_PAD)) goto free; err = nl80211_pmsr_send_result(msg, result); if (err) { pr_err_ratelimited("peer measurement result: message didn't fit!"); goto free; } genlmsg_end(msg, hdr); genlmsg_unicast(wiphy_net(wdev->wiphy), msg, req->nl_portid); return; free: nlmsg_free(msg); } EXPORT_SYMBOL_GPL(cfg80211_pmsr_report); static void cfg80211_pmsr_process_abort(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_pmsr_request *req, *tmp; LIST_HEAD(free_list); lockdep_assert_wiphy(wdev->wiphy); spin_lock_bh(&wdev->pmsr_lock); list_for_each_entry_safe(req, tmp, &wdev->pmsr_list, list) { if (req->nl_portid) continue; list_move_tail(&req->list, &free_list); } spin_unlock_bh(&wdev->pmsr_lock); list_for_each_entry_safe(req, tmp, &free_list, list) { rdev_abort_pmsr(rdev, wdev, req); kfree(req); } } void cfg80211_pmsr_free_wk(struct work_struct *work) { struct wireless_dev *wdev = container_of(work, struct wireless_dev, pmsr_free_wk); wiphy_lock(wdev->wiphy); cfg80211_pmsr_process_abort(wdev); wiphy_unlock(wdev->wiphy); } void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev) { struct cfg80211_pmsr_request *req; bool found = false; spin_lock_bh(&wdev->pmsr_lock); list_for_each_entry(req, &wdev->pmsr_list, list) { found = true; req->nl_portid = 0; } spin_unlock_bh(&wdev->pmsr_lock); if (found) cfg80211_pmsr_process_abort(wdev); WARN_ON(!list_empty(&wdev->pmsr_list)); } void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid) { struct cfg80211_pmsr_request *req; spin_lock_bh(&wdev->pmsr_lock); list_for_each_entry(req, &wdev->pmsr_list, list) { if (req->nl_portid == portid) { req->nl_portid = 0; schedule_work(&wdev->pmsr_free_wk); } } spin_unlock_bh(&wdev->pmsr_lock); } |
574 575 525 530 46 551 22 530 523 544 621 12 57 5 348 4 201 432 114 552 46 3 12 46 46 45 57 2 10 46 11319 110 112 54 5 42 517 518 226 28 165 541 542 157 18 130 10302 10291 10024 10 300 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/network.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/slab.h> /* Structure for holding inet domain socket's address. */ struct tomoyo_inet_addr_info { __be16 port; /* In network byte order. */ const __be32 *address; /* In network byte order. */ bool is_ipv6; }; /* Structure for holding unix domain socket's address. */ struct tomoyo_unix_addr_info { u8 *addr; /* This may not be '\0' terminated string. */ unsigned int addr_len; }; /* Structure for holding socket address. */ struct tomoyo_addr_info { u8 protocol; u8 operation; struct tomoyo_inet_addr_info inet; struct tomoyo_unix_addr_info unix0; }; /* String table for socket's protocols. */ const char * const tomoyo_proto_keyword[TOMOYO_SOCK_MAX] = { [SOCK_STREAM] = "stream", [SOCK_DGRAM] = "dgram", [SOCK_RAW] = "raw", [SOCK_SEQPACKET] = "seqpacket", [0] = " ", /* Dummy for avoiding NULL pointer dereference. */ [4] = " ", /* Dummy for avoiding NULL pointer dereference. */ }; /** * tomoyo_parse_ipaddr_union - Parse an IP address. * * @param: Pointer to "struct tomoyo_acl_param". * @ptr: Pointer to "struct tomoyo_ipaddr_union". * * Returns true on success, false otherwise. */ bool tomoyo_parse_ipaddr_union(struct tomoyo_acl_param *param, struct tomoyo_ipaddr_union *ptr) { u8 * const min = ptr->ip[0].in6_u.u6_addr8; u8 * const max = ptr->ip[1].in6_u.u6_addr8; char *address = tomoyo_read_token(param); const char *end; if (!strchr(address, ':') && in4_pton(address, -1, min, '-', &end) > 0) { ptr->is_ipv6 = false; if (!*end) ptr->ip[1].s6_addr32[0] = ptr->ip[0].s6_addr32[0]; else if (*end++ != '-' || in4_pton(end, -1, max, '\0', &end) <= 0 || *end) return false; return true; } if (in6_pton(address, -1, min, '-', &end) > 0) { ptr->is_ipv6 = true; if (!*end) memmove(max, min, sizeof(u16) * 8); else if (*end++ != '-' || in6_pton(end, -1, max, '\0', &end) <= 0 || *end) return false; return true; } return false; } /** * tomoyo_print_ipv4 - Print an IPv4 address. * * @buffer: Buffer to write to. * @buffer_len: Size of @buffer. * @min_ip: Pointer to __be32. * @max_ip: Pointer to __be32. * * Returns nothing. */ static void tomoyo_print_ipv4(char *buffer, const unsigned int buffer_len, const __be32 *min_ip, const __be32 *max_ip) { snprintf(buffer, buffer_len, "%pI4%c%pI4", min_ip, *min_ip == *max_ip ? '\0' : '-', max_ip); } /** * tomoyo_print_ipv6 - Print an IPv6 address. * * @buffer: Buffer to write to. * @buffer_len: Size of @buffer. * @min_ip: Pointer to "struct in6_addr". * @max_ip: Pointer to "struct in6_addr". * * Returns nothing. */ static void tomoyo_print_ipv6(char *buffer, const unsigned int buffer_len, const struct in6_addr *min_ip, const struct in6_addr *max_ip) { snprintf(buffer, buffer_len, "%pI6c%c%pI6c", min_ip, !memcmp(min_ip, max_ip, 16) ? '\0' : '-', max_ip); } /** * tomoyo_print_ip - Print an IP address. * * @buf: Buffer to write to. * @size: Size of @buf. * @ptr: Pointer to "struct ipaddr_union". * * Returns nothing. */ void tomoyo_print_ip(char *buf, const unsigned int size, const struct tomoyo_ipaddr_union *ptr) { if (ptr->is_ipv6) tomoyo_print_ipv6(buf, size, &ptr->ip[0], &ptr->ip[1]); else tomoyo_print_ipv4(buf, size, &ptr->ip[0].s6_addr32[0], &ptr->ip[1].s6_addr32[0]); } /* * Mapping table from "enum tomoyo_network_acl_index" to * "enum tomoyo_mac_index" for inet domain socket. */ static const u8 tomoyo_inet2mac [TOMOYO_SOCK_MAX][TOMOYO_MAX_NETWORK_OPERATION] = { [SOCK_STREAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_STREAM_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_INET_STREAM_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_INET_STREAM_CONNECT, }, [SOCK_DGRAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_DGRAM_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_INET_DGRAM_SEND, }, [SOCK_RAW] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_RAW_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_INET_RAW_SEND, }, }; /* * Mapping table from "enum tomoyo_network_acl_index" to * "enum tomoyo_mac_index" for unix domain socket. */ static const u8 tomoyo_unix2mac [TOMOYO_SOCK_MAX][TOMOYO_MAX_NETWORK_OPERATION] = { [SOCK_STREAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_STREAM_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_UNIX_STREAM_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_UNIX_STREAM_CONNECT, }, [SOCK_DGRAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_DGRAM_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_UNIX_DGRAM_SEND, }, [SOCK_SEQPACKET] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_CONNECT, }, }; /** * tomoyo_same_inet_acl - Check for duplicated "struct tomoyo_inet_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_inet_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_inet_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_inet_acl *p2 = container_of(b, typeof(*p2), head); return p1->protocol == p2->protocol && tomoyo_same_ipaddr_union(&p1->address, &p2->address) && tomoyo_same_number_union(&p1->port, &p2->port); } /** * tomoyo_same_unix_acl - Check for duplicated "struct tomoyo_unix_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_unix_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_unix_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_unix_acl *p2 = container_of(b, typeof(*p2), head); return p1->protocol == p2->protocol && tomoyo_same_name_union(&p1->name, &p2->name); } /** * tomoyo_merge_inet_acl - Merge duplicated "struct tomoyo_inet_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_inet_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_inet_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_inet_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_merge_unix_acl - Merge duplicated "struct tomoyo_unix_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_unix_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_unix_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_unix_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_write_inet_network - Write "struct tomoyo_inet_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ int tomoyo_write_inet_network(struct tomoyo_acl_param *param) { struct tomoyo_inet_acl e = { .head.type = TOMOYO_TYPE_INET_ACL }; int error = -EINVAL; u8 type; const char *protocol = tomoyo_read_token(param); const char *operation = tomoyo_read_token(param); for (e.protocol = 0; e.protocol < TOMOYO_SOCK_MAX; e.protocol++) if (!strcmp(protocol, tomoyo_proto_keyword[e.protocol])) break; for (type = 0; type < TOMOYO_MAX_NETWORK_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_socket_keyword[type])) e.perm |= 1 << type; if (e.protocol == TOMOYO_SOCK_MAX || !e.perm) return -EINVAL; if (param->data[0] == '@') { param->data++; e.address.group = tomoyo_get_group(param, TOMOYO_ADDRESS_GROUP); if (!e.address.group) return -ENOMEM; } else { if (!tomoyo_parse_ipaddr_union(param, &e.address)) goto out; } if (!tomoyo_parse_number_union(param, &e.port) || e.port.values[1] > 65535) goto out; error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_inet_acl, tomoyo_merge_inet_acl); out: tomoyo_put_group(e.address.group); tomoyo_put_number_union(&e.port); return error; } /** * tomoyo_write_unix_network - Write "struct tomoyo_unix_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. */ int tomoyo_write_unix_network(struct tomoyo_acl_param *param) { struct tomoyo_unix_acl e = { .head.type = TOMOYO_TYPE_UNIX_ACL }; int error; u8 type; const char *protocol = tomoyo_read_token(param); const char *operation = tomoyo_read_token(param); for (e.protocol = 0; e.protocol < TOMOYO_SOCK_MAX; e.protocol++) if (!strcmp(protocol, tomoyo_proto_keyword[e.protocol])) break; for (type = 0; type < TOMOYO_MAX_NETWORK_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_socket_keyword[type])) e.perm |= 1 << type; if (e.protocol == TOMOYO_SOCK_MAX || !e.perm) return -EINVAL; if (!tomoyo_parse_name_union(param, &e.name)) return -EINVAL; error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_unix_acl, tomoyo_merge_unix_acl); tomoyo_put_name_union(&e.name); return error; } /** * tomoyo_audit_net_log - Audit network log. * * @r: Pointer to "struct tomoyo_request_info". * @family: Name of socket family ("inet" or "unix"). * @protocol: Name of protocol in @family. * @operation: Name of socket operation. * @address: Name of address. * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_net_log(struct tomoyo_request_info *r, const char *family, const u8 protocol, const u8 operation, const char *address) { return tomoyo_supervisor(r, "network %s %s %s %s\n", family, tomoyo_proto_keyword[protocol], tomoyo_socket_keyword[operation], address); } /** * tomoyo_audit_inet_log - Audit INET network log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_inet_log(struct tomoyo_request_info *r) { char buf[128]; int len; const __be32 *address = r->param.inet_network.address; if (r->param.inet_network.is_ipv6) tomoyo_print_ipv6(buf, sizeof(buf), (const struct in6_addr *) address, (const struct in6_addr *) address); else tomoyo_print_ipv4(buf, sizeof(buf), address, address); len = strlen(buf); snprintf(buf + len, sizeof(buf) - len, " %u", r->param.inet_network.port); return tomoyo_audit_net_log(r, "inet", r->param.inet_network.protocol, r->param.inet_network.operation, buf); } /** * tomoyo_audit_unix_log - Audit UNIX network log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_unix_log(struct tomoyo_request_info *r) { return tomoyo_audit_net_log(r, "unix", r->param.unix_network.protocol, r->param.unix_network.operation, r->param.unix_network.address->name); } /** * tomoyo_check_inet_acl - Check permission for inet domain socket operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_inet_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_inet_acl *acl = container_of(ptr, typeof(*acl), head); const u8 size = r->param.inet_network.is_ipv6 ? 16 : 4; if (!(acl->perm & (1 << r->param.inet_network.operation)) || !tomoyo_compare_number_union(r->param.inet_network.port, &acl->port)) return false; if (acl->address.group) return tomoyo_address_matches_group (r->param.inet_network.is_ipv6, r->param.inet_network.address, acl->address.group); return acl->address.is_ipv6 == r->param.inet_network.is_ipv6 && memcmp(&acl->address.ip[0], r->param.inet_network.address, size) <= 0 && memcmp(r->param.inet_network.address, &acl->address.ip[1], size) <= 0; } /** * tomoyo_check_unix_acl - Check permission for unix domain socket operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_unix_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_unix_acl *acl = container_of(ptr, typeof(*acl), head); return (acl->perm & (1 << r->param.unix_network.operation)) && tomoyo_compare_name_union(r->param.unix_network.address, &acl->name); } /** * tomoyo_inet_entry - Check permission for INET network operation. * * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_inet_entry(const struct tomoyo_addr_info *address) { const int idx = tomoyo_read_lock(); struct tomoyo_request_info r; int error = 0; const u8 type = tomoyo_inet2mac[address->protocol][address->operation]; if (type && tomoyo_init_request_info(&r, NULL, type) != TOMOYO_CONFIG_DISABLED) { r.param_type = TOMOYO_TYPE_INET_ACL; r.param.inet_network.protocol = address->protocol; r.param.inet_network.operation = address->operation; r.param.inet_network.is_ipv6 = address->inet.is_ipv6; r.param.inet_network.address = address->inet.address; r.param.inet_network.port = ntohs(address->inet.port); do { tomoyo_check_acl(&r, tomoyo_check_inet_acl); error = tomoyo_audit_inet_log(&r); } while (error == TOMOYO_RETRY_REQUEST); } tomoyo_read_unlock(idx); return error; } /** * tomoyo_check_inet_address - Check permission for inet domain socket's operation. * * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * @port: Port number. * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_check_inet_address(const struct sockaddr *addr, const unsigned int addr_len, const u16 port, struct tomoyo_addr_info *address) { struct tomoyo_inet_addr_info *i = &address->inet; if (addr_len < offsetofend(struct sockaddr, sa_family)) return 0; switch (addr->sa_family) { case AF_INET6: if (addr_len < SIN6_LEN_RFC2133) goto skip; i->is_ipv6 = true; i->address = (__be32 *) ((struct sockaddr_in6 *) addr)->sin6_addr.s6_addr; i->port = ((struct sockaddr_in6 *) addr)->sin6_port; break; case AF_INET: if (addr_len < sizeof(struct sockaddr_in)) goto skip; i->is_ipv6 = false; i->address = (__be32 *) &((struct sockaddr_in *) addr)->sin_addr; i->port = ((struct sockaddr_in *) addr)->sin_port; break; default: goto skip; } if (address->protocol == SOCK_RAW) i->port = htons(port); return tomoyo_inet_entry(address); skip: return 0; } /** * tomoyo_unix_entry - Check permission for UNIX network operation. * * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_unix_entry(const struct tomoyo_addr_info *address) { const int idx = tomoyo_read_lock(); struct tomoyo_request_info r; int error = 0; const u8 type = tomoyo_unix2mac[address->protocol][address->operation]; if (type && tomoyo_init_request_info(&r, NULL, type) != TOMOYO_CONFIG_DISABLED) { char *buf = address->unix0.addr; int len = address->unix0.addr_len - sizeof(sa_family_t); if (len <= 0) { buf = "anonymous"; len = 9; } else if (buf[0]) { len = strnlen(buf, len); } buf = tomoyo_encode2(buf, len); if (buf) { struct tomoyo_path_info addr; addr.name = buf; tomoyo_fill_path_info(&addr); r.param_type = TOMOYO_TYPE_UNIX_ACL; r.param.unix_network.protocol = address->protocol; r.param.unix_network.operation = address->operation; r.param.unix_network.address = &addr; do { tomoyo_check_acl(&r, tomoyo_check_unix_acl); error = tomoyo_audit_unix_log(&r); } while (error == TOMOYO_RETRY_REQUEST); kfree(buf); } else error = -ENOMEM; } tomoyo_read_unlock(idx); return error; } /** * tomoyo_check_unix_address - Check permission for unix domain socket's operation. * * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_check_unix_address(struct sockaddr *addr, const unsigned int addr_len, struct tomoyo_addr_info *address) { struct tomoyo_unix_addr_info *u = &address->unix0; if (addr_len < offsetofend(struct sockaddr, sa_family)) return 0; if (addr->sa_family != AF_UNIX) return 0; u->addr = ((struct sockaddr_un *) addr)->sun_path; u->addr_len = addr_len; return tomoyo_unix_entry(address); } /** * tomoyo_kernel_service - Check whether I'm kernel service or not. * * Returns true if I'm kernel service, false otherwise. */ static bool tomoyo_kernel_service(void) { /* Nothing to do if I am a kernel service. */ return current->flags & PF_KTHREAD; } /** * tomoyo_sock_family - Get socket's family. * * @sk: Pointer to "struct sock". * * Returns one of PF_INET, PF_INET6, PF_UNIX or 0. */ static u8 tomoyo_sock_family(struct sock *sk) { u8 family; if (tomoyo_kernel_service()) return 0; family = sk->sk_family; switch (family) { case PF_INET: case PF_INET6: case PF_UNIX: return family; default: return 0; } } /** * tomoyo_socket_listen_permission - Check permission for listening a socket. * * @sock: Pointer to "struct socket". * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_listen_permission(struct socket *sock) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; struct sockaddr_storage addr; int addr_len; if (!family || (type != SOCK_STREAM && type != SOCK_SEQPACKET)) return 0; { const int error = sock->ops->getname(sock, (struct sockaddr *) &addr, 0); if (error < 0) return error; addr_len = error; } address.protocol = type; address.operation = TOMOYO_NETWORK_LISTEN; if (family == PF_UNIX) return tomoyo_check_unix_address((struct sockaddr *) &addr, addr_len, &address); return tomoyo_check_inet_address((struct sockaddr *) &addr, addr_len, 0, &address); } /** * tomoyo_socket_connect_permission - Check permission for setting the remote address of a socket. * * @sock: Pointer to "struct socket". * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_connect_permission(struct socket *sock, struct sockaddr *addr, int addr_len) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!family) return 0; address.protocol = type; switch (type) { case SOCK_DGRAM: case SOCK_RAW: address.operation = TOMOYO_NETWORK_SEND; break; case SOCK_STREAM: case SOCK_SEQPACKET: address.operation = TOMOYO_NETWORK_CONNECT; break; default: return 0; } if (family == PF_UNIX) return tomoyo_check_unix_address(addr, addr_len, &address); return tomoyo_check_inet_address(addr, addr_len, sock->sk->sk_protocol, &address); } /** * tomoyo_socket_bind_permission - Check permission for setting the local address of a socket. * * @sock: Pointer to "struct socket". * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_bind_permission(struct socket *sock, struct sockaddr *addr, int addr_len) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!family) return 0; switch (type) { case SOCK_STREAM: case SOCK_DGRAM: case SOCK_RAW: case SOCK_SEQPACKET: address.protocol = type; address.operation = TOMOYO_NETWORK_BIND; break; default: return 0; } if (family == PF_UNIX) return tomoyo_check_unix_address(addr, addr_len, &address); return tomoyo_check_inet_address(addr, addr_len, sock->sk->sk_protocol, &address); } /** * tomoyo_socket_sendmsg_permission - Check permission for sending a datagram. * * @sock: Pointer to "struct socket". * @msg: Pointer to "struct msghdr". * @size: Unused. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_sendmsg_permission(struct socket *sock, struct msghdr *msg, int size) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!msg->msg_name || !family || (type != SOCK_DGRAM && type != SOCK_RAW)) return 0; address.protocol = type; address.operation = TOMOYO_NETWORK_SEND; if (family == PF_UNIX) return tomoyo_check_unix_address((struct sockaddr *) msg->msg_name, msg->msg_namelen, &address); return tomoyo_check_inet_address((struct sockaddr *) msg->msg_name, msg->msg_namelen, sock->sk->sk_protocol, &address); } |
37 1 1 5 3 2 2 29 36 22 25 1 6 19 10 7 7 11 451 453 452 454 456 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | // SPDX-License-Identifier: GPL-2.0-or-later /* * common UDP/RAW code * Linux INET implementation * * Authors: * Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> */ #include <linux/types.h> #include <linux/module.h> #include <linux/in.h> #include <net/ip.h> #include <net/sock.h> #include <net/route.h> #include <net/tcp_states.h> #include <net/sock_reuseport.h> int __ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct inet_sock *inet = inet_sk(sk); struct sockaddr_in *usin = (struct sockaddr_in *) uaddr; struct flowi4 *fl4; struct rtable *rt; __be32 saddr; int oif; int err; if (addr_len < sizeof(*usin)) return -EINVAL; if (usin->sin_family != AF_INET) return -EAFNOSUPPORT; sk_dst_reset(sk); oif = sk->sk_bound_dev_if; saddr = inet->inet_saddr; if (ipv4_is_multicast(usin->sin_addr.s_addr)) { if (!oif || netif_index_is_l3_master(sock_net(sk), oif)) oif = READ_ONCE(inet->mc_index); if (!saddr) saddr = READ_ONCE(inet->mc_addr); } else if (!oif) { oif = READ_ONCE(inet->uc_index); } fl4 = &inet->cork.fl.u.ip4; rt = ip_route_connect(fl4, usin->sin_addr.s_addr, saddr, oif, sk->sk_protocol, inet->inet_sport, usin->sin_port, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); if (err == -ENETUNREACH) IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); goto out; } if ((rt->rt_flags & RTCF_BROADCAST) && !sock_flag(sk, SOCK_BROADCAST)) { ip_rt_put(rt); err = -EACCES; goto out; } if (!inet->inet_saddr) inet->inet_saddr = fl4->saddr; /* Update source address */ if (!inet->inet_rcv_saddr) { inet->inet_rcv_saddr = fl4->saddr; if (sk->sk_prot->rehash) sk->sk_prot->rehash(sk); } inet->inet_daddr = fl4->daddr; inet->inet_dport = usin->sin_port; reuseport_has_conns_set(sk); sk->sk_state = TCP_ESTABLISHED; sk_set_txhash(sk); atomic_set(&inet->inet_id, get_random_u16()); sk_dst_set(sk, &rt->dst); err = 0; out: return err; } EXPORT_SYMBOL(__ip4_datagram_connect); int ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { int res; lock_sock(sk); res = __ip4_datagram_connect(sk, uaddr, addr_len); release_sock(sk); return res; } EXPORT_SYMBOL(ip4_datagram_connect); /* Because UDP xmit path can manipulate sk_dst_cache without holding * socket lock, we need to use sk_dst_set() here, * even if we own the socket lock. */ void ip4_datagram_release_cb(struct sock *sk) { const struct inet_sock *inet = inet_sk(sk); const struct ip_options_rcu *inet_opt; __be32 daddr = inet->inet_daddr; struct dst_entry *dst; struct flowi4 fl4; struct rtable *rt; rcu_read_lock(); dst = __sk_dst_get(sk); if (!dst || !dst->obsolete || dst->ops->check(dst, 0)) { rcu_read_unlock(); return; } inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; rt = ip_route_output_ports(sock_net(sk), &fl4, sk, daddr, inet->inet_saddr, inet->inet_dport, inet->inet_sport, sk->sk_protocol, ip_sock_rt_tos(sk), sk->sk_bound_dev_if); dst = !IS_ERR(rt) ? &rt->dst : NULL; sk_dst_set(sk, dst); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ip4_datagram_release_cb); |
1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | // SPDX-License-Identifier: GPL-2.0 #include <net/macsec.h> #include "netdevsim.h" static int nsim_macsec_find_secy(struct netdevsim *ns, sci_t sci) { int i; for (i = 0; i < NSIM_MACSEC_MAX_SECY_COUNT; i++) { if (ns->macsec.nsim_secy[i].sci == sci) return i; } return -1; } static int nsim_macsec_find_rxsc(struct nsim_secy *ns_secy, sci_t sci) { int i; for (i = 0; i < NSIM_MACSEC_MAX_RXSC_COUNT; i++) { if (ns_secy->nsim_rxsc[i].sci == sci) return i; } return -1; } static int nsim_macsec_add_secy(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); int idx; if (ns->macsec.nsim_secy_count == NSIM_MACSEC_MAX_SECY_COUNT) return -ENOSPC; for (idx = 0; idx < NSIM_MACSEC_MAX_SECY_COUNT; idx++) { if (!ns->macsec.nsim_secy[idx].used) break; } if (idx == NSIM_MACSEC_MAX_SECY_COUNT) { netdev_err(ctx->netdev, "%s: nsim_secy_count not full but all SecYs used\n", __func__); return -ENOSPC; } netdev_dbg(ctx->netdev, "%s: adding new secy with sci %08llx at index %d\n", __func__, sci_to_cpu(ctx->secy->sci), idx); ns->macsec.nsim_secy[idx].used = true; ns->macsec.nsim_secy[idx].nsim_rxsc_count = 0; ns->macsec.nsim_secy[idx].sci = ctx->secy->sci; ns->macsec.nsim_secy_count++; return 0; } static int nsim_macsec_upd_secy(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: updating secy with sci %08llx at index %d\n", __func__, sci_to_cpu(ctx->secy->sci), idx); return 0; } static int nsim_macsec_del_secy(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: removing SecY with SCI %08llx at index %d\n", __func__, sci_to_cpu(ctx->secy->sci), idx); ns->macsec.nsim_secy[idx].used = false; memset(&ns->macsec.nsim_secy[idx], 0, sizeof(ns->macsec.nsim_secy[idx])); ns->macsec.nsim_secy_count--; return 0; } static int nsim_macsec_add_rxsc(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); struct nsim_secy *secy; int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } secy = &ns->macsec.nsim_secy[idx]; if (secy->nsim_rxsc_count == NSIM_MACSEC_MAX_RXSC_COUNT) return -ENOSPC; for (idx = 0; idx < NSIM_MACSEC_MAX_RXSC_COUNT; idx++) { if (!secy->nsim_rxsc[idx].used) break; } if (idx == NSIM_MACSEC_MAX_RXSC_COUNT) netdev_err(ctx->netdev, "%s: nsim_rxsc_count not full but all RXSCs used\n", __func__); netdev_dbg(ctx->netdev, "%s: adding new rxsc with sci %08llx at index %d\n", __func__, sci_to_cpu(ctx->rx_sc->sci), idx); secy->nsim_rxsc[idx].used = true; secy->nsim_rxsc[idx].sci = ctx->rx_sc->sci; secy->nsim_rxsc_count++; return 0; } static int nsim_macsec_upd_rxsc(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); struct nsim_secy *secy; int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } secy = &ns->macsec.nsim_secy[idx]; idx = nsim_macsec_find_rxsc(secy, ctx->rx_sc->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in RXSC table\n", __func__, sci_to_cpu(ctx->rx_sc->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: updating RXSC with sci %08llx at index %d\n", __func__, sci_to_cpu(ctx->rx_sc->sci), idx); return 0; } static int nsim_macsec_del_rxsc(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); struct nsim_secy *secy; int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } secy = &ns->macsec.nsim_secy[idx]; idx = nsim_macsec_find_rxsc(secy, ctx->rx_sc->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in RXSC table\n", __func__, sci_to_cpu(ctx->rx_sc->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: removing RXSC with sci %08llx at index %d\n", __func__, sci_to_cpu(ctx->rx_sc->sci), idx); secy->nsim_rxsc[idx].used = false; memset(&secy->nsim_rxsc[idx], 0, sizeof(secy->nsim_rxsc[idx])); secy->nsim_rxsc_count--; return 0; } static int nsim_macsec_add_rxsa(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); struct nsim_secy *secy; int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } secy = &ns->macsec.nsim_secy[idx]; idx = nsim_macsec_find_rxsc(secy, ctx->sa.rx_sa->sc->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in RXSC table\n", __func__, sci_to_cpu(ctx->sa.rx_sa->sc->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: RXSC with sci %08llx, AN %u\n", __func__, sci_to_cpu(ctx->sa.rx_sa->sc->sci), ctx->sa.assoc_num); return 0; } static int nsim_macsec_upd_rxsa(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); struct nsim_secy *secy; int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } secy = &ns->macsec.nsim_secy[idx]; idx = nsim_macsec_find_rxsc(secy, ctx->sa.rx_sa->sc->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in RXSC table\n", __func__, sci_to_cpu(ctx->sa.rx_sa->sc->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: RXSC with sci %08llx, AN %u\n", __func__, sci_to_cpu(ctx->sa.rx_sa->sc->sci), ctx->sa.assoc_num); return 0; } static int nsim_macsec_del_rxsa(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); struct nsim_secy *secy; int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } secy = &ns->macsec.nsim_secy[idx]; idx = nsim_macsec_find_rxsc(secy, ctx->sa.rx_sa->sc->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in RXSC table\n", __func__, sci_to_cpu(ctx->sa.rx_sa->sc->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: RXSC with sci %08llx, AN %u\n", __func__, sci_to_cpu(ctx->sa.rx_sa->sc->sci), ctx->sa.assoc_num); return 0; } static int nsim_macsec_add_txsa(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: SECY with sci %08llx, AN %u\n", __func__, sci_to_cpu(ctx->secy->sci), ctx->sa.assoc_num); return 0; } static int nsim_macsec_upd_txsa(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: SECY with sci %08llx, AN %u\n", __func__, sci_to_cpu(ctx->secy->sci), ctx->sa.assoc_num); return 0; } static int nsim_macsec_del_txsa(struct macsec_context *ctx) { struct netdevsim *ns = netdev_priv(ctx->netdev); int idx; idx = nsim_macsec_find_secy(ns, ctx->secy->sci); if (idx < 0) { netdev_err(ctx->netdev, "%s: sci %08llx not found in secy table\n", __func__, sci_to_cpu(ctx->secy->sci)); return -ENOENT; } netdev_dbg(ctx->netdev, "%s: SECY with sci %08llx, AN %u\n", __func__, sci_to_cpu(ctx->secy->sci), ctx->sa.assoc_num); return 0; } static const struct macsec_ops nsim_macsec_ops = { .mdo_add_secy = nsim_macsec_add_secy, .mdo_upd_secy = nsim_macsec_upd_secy, .mdo_del_secy = nsim_macsec_del_secy, .mdo_add_rxsc = nsim_macsec_add_rxsc, .mdo_upd_rxsc = nsim_macsec_upd_rxsc, .mdo_del_rxsc = nsim_macsec_del_rxsc, .mdo_add_rxsa = nsim_macsec_add_rxsa, .mdo_upd_rxsa = nsim_macsec_upd_rxsa, .mdo_del_rxsa = nsim_macsec_del_rxsa, .mdo_add_txsa = nsim_macsec_add_txsa, .mdo_upd_txsa = nsim_macsec_upd_txsa, .mdo_del_txsa = nsim_macsec_del_txsa, }; void nsim_macsec_init(struct netdevsim *ns) { ns->netdev->macsec_ops = &nsim_macsec_ops; ns->netdev->features |= NETIF_F_HW_MACSEC; memset(&ns->macsec, 0, sizeof(ns->macsec)); } void nsim_macsec_teardown(struct netdevsim *ns) { } |
668 29 29 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Wireless configuration interface internals. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2018-2024 Intel Corporation */ #ifndef __NET_WIRELESS_CORE_H #define __NET_WIRELESS_CORE_H #include <linux/list.h> #include <linux/netdevice.h> #include <linux/rbtree.h> #include <linux/debugfs.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include "reg.h" #define WIPHY_IDX_INVALID -1 struct cfg80211_registered_device { const struct cfg80211_ops *ops; struct list_head list; /* rfkill support */ struct rfkill_ops rfkill_ops; struct work_struct rfkill_block; /* ISO / IEC 3166 alpha2 for which this device is receiving * country IEs on, this can help disregard country IEs from APs * on the same alpha2 quickly. The alpha2 may differ from * cfg80211_regdomain's alpha2 when an intersection has occurred. * If the AP is reconfigured this can also be used to tell us if * the country on the country IE changed. */ char country_ie_alpha2[2]; /* * the driver requests the regulatory core to set this regulatory * domain as the wiphy's. Only used for %REGULATORY_WIPHY_SELF_MANAGED * devices using the regulatory_set_wiphy_regd() API */ const struct ieee80211_regdomain *requested_regd; /* If a Country IE has been received this tells us the environment * which its telling us its in. This defaults to ENVIRON_ANY */ enum environment_cap env; /* wiphy index, internal only */ int wiphy_idx; /* protected by RTNL */ int devlist_generation, wdev_id; int opencount; wait_queue_head_t dev_wait; struct list_head beacon_registrations; spinlock_t beacon_registrations_lock; /* protected by RTNL only */ int num_running_ifaces; int num_running_monitor_ifaces; u64 cookie_counter; /* BSSes/scanning */ spinlock_t bss_lock; struct list_head bss_list; struct rb_root bss_tree; u32 bss_generation; u32 bss_entries; struct cfg80211_scan_request *scan_req; /* protected by RTNL */ struct cfg80211_scan_request *int_scan_req; struct sk_buff *scan_msg; struct list_head sched_scan_req_list; time64_t suspend_at; struct wiphy_work scan_done_wk; struct genl_info *cur_cmd_info; struct work_struct conn_work; struct work_struct event_work; struct delayed_work dfs_update_channels_wk; struct wireless_dev *background_radar_wdev; struct cfg80211_chan_def background_radar_chandef; struct delayed_work background_cac_done_wk; struct work_struct background_cac_abort_wk; /* netlink port which started critical protocol (0 means not started) */ u32 crit_proto_nlportid; struct cfg80211_coalesce *coalesce; struct work_struct destroy_work; struct wiphy_work sched_scan_stop_wk; struct work_struct sched_scan_res_wk; struct cfg80211_chan_def radar_chandef; struct work_struct propagate_radar_detect_wk; struct cfg80211_chan_def cac_done_chandef; struct work_struct propagate_cac_done_wk; struct work_struct mgmt_registrations_update_wk; /* lock for all wdev lists */ spinlock_t mgmt_registrations_lock; struct work_struct wiphy_work; struct list_head wiphy_work_list; /* protects the list above */ spinlock_t wiphy_work_lock; bool suspended; /* must be last because of the way we do wiphy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wiphy wiphy __aligned(NETDEV_ALIGN); }; static inline struct cfg80211_registered_device *wiphy_to_rdev(struct wiphy *wiphy) { BUG_ON(!wiphy); return container_of(wiphy, struct cfg80211_registered_device, wiphy); } static inline void cfg80211_rdev_free_wowlan(struct cfg80211_registered_device *rdev) { #ifdef CONFIG_PM int i; if (!rdev->wiphy.wowlan_config) return; for (i = 0; i < rdev->wiphy.wowlan_config->n_patterns; i++) kfree(rdev->wiphy.wowlan_config->patterns[i].mask); kfree(rdev->wiphy.wowlan_config->patterns); if (rdev->wiphy.wowlan_config->tcp && rdev->wiphy.wowlan_config->tcp->sock) sock_release(rdev->wiphy.wowlan_config->tcp->sock); kfree(rdev->wiphy.wowlan_config->tcp); kfree(rdev->wiphy.wowlan_config->nd_config); kfree(rdev->wiphy.wowlan_config); #endif } static inline u64 cfg80211_assign_cookie(struct cfg80211_registered_device *rdev) { u64 r = ++rdev->cookie_counter; if (WARN_ON(r == 0)) r = ++rdev->cookie_counter; return r; } extern struct workqueue_struct *cfg80211_wq; extern struct list_head cfg80211_rdev_list; extern int cfg80211_rdev_list_generation; /* This is constructed like this so it can be used in if/else */ static inline int for_each_rdev_check_rtnl(void) { ASSERT_RTNL(); return 0; } #define for_each_rdev(rdev) \ if (for_each_rdev_check_rtnl()) {} else \ list_for_each_entry(rdev, &cfg80211_rdev_list, list) enum bss_source_type { BSS_SOURCE_DIRECT = 0, BSS_SOURCE_MBSSID, BSS_SOURCE_STA_PROFILE, }; struct cfg80211_internal_bss { struct list_head list; struct list_head hidden_list; struct rb_node rbn; u64 ts_boottime; unsigned long ts; unsigned long refcount; atomic_t hold; /* time at the start of the reception of the first octet of the * timestamp field of the last beacon/probe received for this BSS. * The time is the TSF of the BSS specified by %parent_bssid. */ u64 parent_tsf; /* the BSS according to which %parent_tsf is set. This is set to * the BSS that the interface that requested the scan was connected to * when the beacon/probe was received. */ u8 parent_bssid[ETH_ALEN] __aligned(2); enum bss_source_type bss_source; /* must be last because of priv member */ struct cfg80211_bss pub; }; static inline struct cfg80211_internal_bss *bss_from_pub(struct cfg80211_bss *pub) { return container_of(pub, struct cfg80211_internal_bss, pub); } static inline void cfg80211_hold_bss(struct cfg80211_internal_bss *bss) { atomic_inc(&bss->hold); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); atomic_inc(&bss->hold); } } static inline void cfg80211_unhold_bss(struct cfg80211_internal_bss *bss) { int r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); } } struct cfg80211_registered_device *cfg80211_rdev_by_wiphy_idx(int wiphy_idx); int get_wiphy_idx(struct wiphy *wiphy); struct wiphy *wiphy_idx_to_wiphy(int wiphy_idx); int cfg80211_switch_netns(struct cfg80211_registered_device *rdev, struct net *net); void cfg80211_init_wdev(struct wireless_dev *wdev); void cfg80211_register_wdev(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); static inline bool cfg80211_has_monitors_only(struct cfg80211_registered_device *rdev) { lockdep_assert_held(&rdev->wiphy.mtx); return rdev->num_running_ifaces == rdev->num_running_monitor_ifaces && rdev->num_running_ifaces > 0; } enum cfg80211_event_type { EVENT_CONNECT_RESULT, EVENT_ROAMED, EVENT_DISCONNECTED, EVENT_IBSS_JOINED, EVENT_STOPPED, EVENT_PORT_AUTHORIZED, }; struct cfg80211_event { struct list_head list; enum cfg80211_event_type type; union { struct cfg80211_connect_resp_params cr; struct cfg80211_roam_info rm; struct { const u8 *ie; size_t ie_len; u16 reason; bool locally_generated; } dc; struct { u8 bssid[ETH_ALEN]; struct ieee80211_channel *channel; } ij; struct { u8 peer_addr[ETH_ALEN]; const u8 *td_bitmap; u8 td_bitmap_len; } pa; }; }; struct cfg80211_cached_keys { struct key_params params[4]; u8 data[4][WLAN_KEY_LEN_WEP104]; int def; }; struct cfg80211_beacon_registration { struct list_head list; u32 nlportid; }; struct cfg80211_cqm_config { struct rcu_head rcu_head; u32 rssi_hyst; s32 last_rssi_event_value; enum nl80211_cqm_rssi_threshold_event last_rssi_event_type; bool use_range_api; int n_rssi_thresholds; s32 rssi_thresholds[] __counted_by(n_rssi_thresholds); }; void cfg80211_cqm_rssi_notify_work(struct wiphy *wiphy, struct wiphy_work *work); void cfg80211_destroy_ifaces(struct cfg80211_registered_device *rdev); /* free object */ void cfg80211_dev_free(struct cfg80211_registered_device *rdev); int cfg80211_dev_rename(struct cfg80211_registered_device *rdev, char *newname); void ieee80211_set_bitrate_flags(struct wiphy *wiphy); void cfg80211_bss_expire(struct cfg80211_registered_device *rdev); void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, unsigned int link, struct ieee80211_channel *channel); /* IBSS */ int __cfg80211_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params, struct cfg80211_cached_keys *connkeys); void cfg80211_clear_ibss(struct net_device *dev, bool nowext); int cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); void __cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, struct ieee80211_channel *channel); int cfg80211_ibss_wext_join(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); /* mesh */ extern const struct mesh_config default_mesh_config; extern const struct mesh_setup default_mesh_setup; int __cfg80211_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_setup *setup, const struct mesh_config *conf); int cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_set_mesh_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); /* OCB */ int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); /* AP */ int cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, int link, bool notify); /* MLME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req); int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req, struct netlink_ext_ack *extack); int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *ap_addr, const u8 *ie, int ie_len, u16 reason, bool local_state_change); void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_pid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack); void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk); void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlpid); void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev); int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask); void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask); /* SME events */ int cfg80211_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *connect, struct cfg80211_cached_keys *connkeys, const u8 *prev_bssid); void __cfg80211_connect_result(struct net_device *dev, struct cfg80211_connect_resp_params *params, bool wextev); void __cfg80211_disconnected(struct net_device *dev, const u8 *ie, size_t ie_len, u16 reason, bool from_ap); int cfg80211_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason, bool wextev); void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_roam_info *info); void __cfg80211_port_authorized(struct wireless_dev *wdev, const u8 *peer_addr, const u8 *td_bitmap, u8 td_bitmap_len); int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_autodisconnect_wk(struct work_struct *work); /* SME implementation */ void cfg80211_conn_work(struct work_struct *work); void cfg80211_sme_scan_done(struct net_device *dev); bool cfg80211_sme_rx_assoc_resp(struct wireless_dev *wdev, u16 status); void cfg80211_sme_rx_auth(struct wireless_dev *wdev, const u8 *buf, size_t len); void cfg80211_sme_disassoc(struct wireless_dev *wdev); void cfg80211_sme_deauth(struct wireless_dev *wdev); void cfg80211_sme_auth_timeout(struct wireless_dev *wdev); void cfg80211_sme_assoc_timeout(struct wireless_dev *wdev); void cfg80211_sme_abandon_assoc(struct wireless_dev *wdev); /* internal helpers */ bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher); bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise); int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr); void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk); void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req); int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi); void cfg80211_sched_scan_results_wk(struct work_struct *work); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated); int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated); void cfg80211_upload_connect_keys(struct wireless_dev *wdev); int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params); void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev); void cfg80211_process_wiphy_works(struct cfg80211_registered_device *rdev, struct wiphy_work *end); void cfg80211_process_wdev_events(struct wireless_dev *wdev); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz); int cfg80211_scan(struct cfg80211_registered_device *rdev); extern struct work_struct cfg80211_disconnect_work; #define NL80211_BSS_USE_FOR_ALL (NL80211_BSS_USE_FOR_NORMAL | \ NL80211_BSS_USE_FOR_MLD_LINK) void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state); void cfg80211_dfs_channels_update_work(struct work_struct *work); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev); int cfg80211_start_background_radar_detection(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); void cfg80211_stop_background_radar_detection(struct wireless_dev *wdev); void cfg80211_background_cac_done_wk(struct work_struct *work); void cfg80211_background_cac_abort_wk(struct work_struct *work); bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan); bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev); bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan, bool primary_only); bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, struct ieee80211_channel *chan, bool primary_only); bool _cfg80211_chandef_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, u32 prohibited_flags, u32 permitting_flags); static inline unsigned int elapsed_jiffies_msecs(unsigned long start) { unsigned long end = jiffies; if (end >= start) return jiffies_to_msecs(end - start); return jiffies_to_msecs(end + (ULONG_MAX - start) + 1); } int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask); int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int); void cfg80211_update_iface_num(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, int num); void cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts); enum ieee80211_ap_reg_power cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len); #ifdef CONFIG_CFG80211_DEVELOPER_WARNINGS #define CFG80211_DEV_WARN_ON(cond) WARN_ON(cond) #else /* * Trick to enable using it as a condition, * and also not give a warning when it's * not used that way. */ #define CFG80211_DEV_WARN_ON(cond) ({bool __r = (cond); __r; }) #endif void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid); void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev); void cfg80211_pmsr_free_wk(struct work_struct *work); void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id); void cfg80211_remove_links(struct wireless_dev *wdev); int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_wdev_release_link_bsses(struct wireless_dev *wdev, u16 link_mask); /** * struct cfg80211_colocated_ap - colocated AP information * * @list: linked list to all colocated APs * @bssid: BSSID of the reported AP * @ssid: SSID of the reported AP * @ssid_len: length of the ssid * @center_freq: frequency the reported AP is on * @unsolicited_probe: the reported AP is part of an ESS, where all the APs * that operate in the same channel as the reported AP and that might be * detected by a STA receiving this frame, are transmitting unsolicited * Probe Response frames every 20 TUs * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP * @same_ssid: the reported AP has the same SSID as the reporting AP * @multi_bss: the reported AP is part of a multiple BSSID set * @transmitted_bssid: the reported AP is the transmitting BSSID * @colocated_ess: all the APs that share the same ESS as the reported AP are * colocated and can be discovered via legacy bands. * @short_ssid_valid: short_ssid is valid and can be used * @short_ssid: the short SSID for this SSID * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP */ struct cfg80211_colocated_ap { struct list_head list; u8 bssid[ETH_ALEN]; u8 ssid[IEEE80211_MAX_SSID_LEN]; size_t ssid_len; u32 short_ssid; u32 center_freq; u8 unsolicited_probe:1, oct_recommended:1, same_ssid:1, multi_bss:1, transmitted_bssid:1, colocated_ess:1, short_ssid_valid:1; s8 psd_20; }; #if IS_ENABLED(CONFIG_CFG80211_KUNIT_TEST) #define EXPORT_SYMBOL_IF_CFG80211_KUNIT(sym) EXPORT_SYMBOL_IF_KUNIT(sym) #define VISIBLE_IF_CFG80211_KUNIT void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list); int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, struct list_head *list); size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, const u8 *subie, size_t subie_len, u8 *new_ie, size_t new_ie_len); #else #define EXPORT_SYMBOL_IF_CFG80211_KUNIT(sym) #define VISIBLE_IF_CFG80211_KUNIT static #endif /* IS_ENABLED(CONFIG_CFG80211_KUNIT_TEST) */ #endif /* __NET_WIRELESS_CORE_H */ |
10 8 8 8 2 2 2 2 2 2 2 14 14 13 14 14 14 5 2 6 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | // SPDX-License-Identifier: GPL-2.0 #include <linux/memcontrol.h> #include <linux/rwsem.h> #include <linux/shrinker.h> #include <linux/rculist.h> #include <trace/events/vmscan.h> #include "internal.h" LIST_HEAD(shrinker_list); DEFINE_MUTEX(shrinker_mutex); #ifdef CONFIG_MEMCG static int shrinker_nr_max; static inline int shrinker_unit_size(int nr_items) { return (DIV_ROUND_UP(nr_items, SHRINKER_UNIT_BITS) * sizeof(struct shrinker_info_unit *)); } static inline void shrinker_unit_free(struct shrinker_info *info, int start) { struct shrinker_info_unit **unit; int nr, i; if (!info) return; unit = info->unit; nr = DIV_ROUND_UP(info->map_nr_max, SHRINKER_UNIT_BITS); for (i = start; i < nr; i++) { if (!unit[i]) break; kfree(unit[i]); unit[i] = NULL; } } static inline int shrinker_unit_alloc(struct shrinker_info *new, struct shrinker_info *old, int nid) { struct shrinker_info_unit *unit; int nr = DIV_ROUND_UP(new->map_nr_max, SHRINKER_UNIT_BITS); int start = old ? DIV_ROUND_UP(old->map_nr_max, SHRINKER_UNIT_BITS) : 0; int i; for (i = start; i < nr; i++) { unit = kzalloc_node(sizeof(*unit), GFP_KERNEL, nid); if (!unit) { shrinker_unit_free(new, start); return -ENOMEM; } new->unit[i] = unit; } return 0; } void free_shrinker_info(struct mem_cgroup *memcg) { struct mem_cgroup_per_node *pn; struct shrinker_info *info; int nid; for_each_node(nid) { pn = memcg->nodeinfo[nid]; info = rcu_dereference_protected(pn->shrinker_info, true); shrinker_unit_free(info, 0); kvfree(info); rcu_assign_pointer(pn->shrinker_info, NULL); } } int alloc_shrinker_info(struct mem_cgroup *memcg) { struct shrinker_info *info; int nid, ret = 0; int array_size = 0; mutex_lock(&shrinker_mutex); array_size = shrinker_unit_size(shrinker_nr_max); for_each_node(nid) { info = kvzalloc_node(sizeof(*info) + array_size, GFP_KERNEL, nid); if (!info) goto err; info->map_nr_max = shrinker_nr_max; if (shrinker_unit_alloc(info, NULL, nid)) goto err; rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); } mutex_unlock(&shrinker_mutex); return ret; err: mutex_unlock(&shrinker_mutex); free_shrinker_info(memcg); return -ENOMEM; } static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, int nid) { return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, lockdep_is_held(&shrinker_mutex)); } static int expand_one_shrinker_info(struct mem_cgroup *memcg, int new_size, int old_size, int new_nr_max) { struct shrinker_info *new, *old; struct mem_cgroup_per_node *pn; int nid; for_each_node(nid) { pn = memcg->nodeinfo[nid]; old = shrinker_info_protected(memcg, nid); /* Not yet online memcg */ if (!old) return 0; /* Already expanded this shrinker_info */ if (new_nr_max <= old->map_nr_max) continue; new = kvzalloc_node(sizeof(*new) + new_size, GFP_KERNEL, nid); if (!new) return -ENOMEM; new->map_nr_max = new_nr_max; memcpy(new->unit, old->unit, old_size); if (shrinker_unit_alloc(new, old, nid)) { kvfree(new); return -ENOMEM; } rcu_assign_pointer(pn->shrinker_info, new); kvfree_rcu(old, rcu); } return 0; } static int expand_shrinker_info(int new_id) { int ret = 0; int new_nr_max = round_up(new_id + 1, SHRINKER_UNIT_BITS); int new_size, old_size = 0; struct mem_cgroup *memcg; if (!root_mem_cgroup) goto out; lockdep_assert_held(&shrinker_mutex); new_size = shrinker_unit_size(new_nr_max); old_size = shrinker_unit_size(shrinker_nr_max); memcg = mem_cgroup_iter(NULL, NULL, NULL); do { ret = expand_one_shrinker_info(memcg, new_size, old_size, new_nr_max); if (ret) { mem_cgroup_iter_break(NULL, memcg); goto out; } } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); out: if (!ret) shrinker_nr_max = new_nr_max; return ret; } static inline int shrinker_id_to_index(int shrinker_id) { return shrinker_id / SHRINKER_UNIT_BITS; } static inline int shrinker_id_to_offset(int shrinker_id) { return shrinker_id % SHRINKER_UNIT_BITS; } static inline int calc_shrinker_id(int index, int offset) { return index * SHRINKER_UNIT_BITS + offset; } void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { struct shrinker_info *info; struct shrinker_info_unit *unit; rcu_read_lock(); info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); unit = info->unit[shrinker_id_to_index(shrinker_id)]; if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { /* Pairs with smp mb in shrink_slab() */ smp_mb__before_atomic(); set_bit(shrinker_id_to_offset(shrinker_id), unit->map); } rcu_read_unlock(); } } static DEFINE_IDR(shrinker_idr); static int shrinker_memcg_alloc(struct shrinker *shrinker) { int id, ret = -ENOMEM; if (mem_cgroup_disabled()) return -ENOSYS; mutex_lock(&shrinker_mutex); id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); if (id < 0) goto unlock; if (id >= shrinker_nr_max) { if (expand_shrinker_info(id)) { idr_remove(&shrinker_idr, id); goto unlock; } } shrinker->id = id; ret = 0; unlock: mutex_unlock(&shrinker_mutex); return ret; } static void shrinker_memcg_remove(struct shrinker *shrinker) { int id = shrinker->id; BUG_ON(id < 0); lockdep_assert_held(&shrinker_mutex); idr_remove(&shrinker_idr, id); } static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { struct shrinker_info *info; struct shrinker_info_unit *unit; long nr_deferred; rcu_read_lock(); info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); unit = info->unit[shrinker_id_to_index(shrinker->id)]; nr_deferred = atomic_long_xchg(&unit->nr_deferred[shrinker_id_to_offset(shrinker->id)], 0); rcu_read_unlock(); return nr_deferred; } static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { struct shrinker_info *info; struct shrinker_info_unit *unit; long nr_deferred; rcu_read_lock(); info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); unit = info->unit[shrinker_id_to_index(shrinker->id)]; nr_deferred = atomic_long_add_return(nr, &unit->nr_deferred[shrinker_id_to_offset(shrinker->id)]); rcu_read_unlock(); return nr_deferred; } void reparent_shrinker_deferred(struct mem_cgroup *memcg) { int nid, index, offset; long nr; struct mem_cgroup *parent; struct shrinker_info *child_info, *parent_info; struct shrinker_info_unit *child_unit, *parent_unit; parent = parent_mem_cgroup(memcg); if (!parent) parent = root_mem_cgroup; /* Prevent from concurrent shrinker_info expand */ mutex_lock(&shrinker_mutex); for_each_node(nid) { child_info = shrinker_info_protected(memcg, nid); parent_info = shrinker_info_protected(parent, nid); for (index = 0; index < shrinker_id_to_index(child_info->map_nr_max); index++) { child_unit = child_info->unit[index]; parent_unit = parent_info->unit[index]; for (offset = 0; offset < SHRINKER_UNIT_BITS; offset++) { nr = atomic_long_read(&child_unit->nr_deferred[offset]); atomic_long_add(nr, &parent_unit->nr_deferred[offset]); } } } mutex_unlock(&shrinker_mutex); } #else static int shrinker_memcg_alloc(struct shrinker *shrinker) { return -ENOSYS; } static void shrinker_memcg_remove(struct shrinker *shrinker) { } static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { return 0; } static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, struct mem_cgroup *memcg) { return 0; } #endif /* CONFIG_MEMCG */ static long xchg_nr_deferred(struct shrinker *shrinker, struct shrink_control *sc) { int nid = sc->nid; if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) nid = 0; if (sc->memcg && (shrinker->flags & SHRINKER_MEMCG_AWARE)) return xchg_nr_deferred_memcg(nid, shrinker, sc->memcg); return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); } static long add_nr_deferred(long nr, struct shrinker *shrinker, struct shrink_control *sc) { int nid = sc->nid; if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) nid = 0; if (sc->memcg && (shrinker->flags & SHRINKER_MEMCG_AWARE)) return add_nr_deferred_memcg(nr, nid, shrinker, sc->memcg); return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); } #define SHRINK_BATCH 128 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, struct shrinker *shrinker, int priority) { unsigned long freed = 0; unsigned long long delta; long total_scan; long freeable; long nr; long new_nr; long batch_size = shrinker->batch ? shrinker->batch : SHRINK_BATCH; long scanned = 0, next_deferred; freeable = shrinker->count_objects(shrinker, shrinkctl); if (freeable == 0 || freeable == SHRINK_EMPTY) return freeable; /* * copy the current shrinker scan count into a local variable * and zero it so that other concurrent shrinker invocations * don't also do this scanning work. */ nr = xchg_nr_deferred(shrinker, shrinkctl); if (shrinker->seeks) { delta = freeable >> priority; delta *= 4; do_div(delta, shrinker->seeks); } else { /* * These objects don't require any IO to create. Trim * them aggressively under memory pressure to keep * them from causing refetches in the IO caches. */ delta = freeable / 2; } total_scan = nr >> priority; total_scan += delta; total_scan = min(total_scan, (2 * freeable)); trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, freeable, delta, total_scan, priority); /* * Normally, we should not scan less than batch_size objects in one * pass to avoid too frequent shrinker calls, but if the slab has less * than batch_size objects in total and we are really tight on memory, * we will try to reclaim all available objects, otherwise we can end * up failing allocations although there are plenty of reclaimable * objects spread over several slabs with usage less than the * batch_size. * * We detect the "tight on memory" situations by looking at the total * number of objects we want to scan (total_scan). If it is greater * than the total number of objects on slab (freeable), we must be * scanning at high prio and therefore should try to reclaim as much as * possible. */ while (total_scan >= batch_size || total_scan >= freeable) { unsigned long ret; unsigned long nr_to_scan = min(batch_size, total_scan); shrinkctl->nr_to_scan = nr_to_scan; shrinkctl->nr_scanned = nr_to_scan; ret = shrinker->scan_objects(shrinker, shrinkctl); if (ret == SHRINK_STOP) break; freed += ret; count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); total_scan -= shrinkctl->nr_scanned; scanned += shrinkctl->nr_scanned; cond_resched(); } /* * The deferred work is increased by any new work (delta) that wasn't * done, decreased by old deferred work that was done now. * * And it is capped to two times of the freeable items. */ next_deferred = max_t(long, (nr + delta - scanned), 0); next_deferred = min(next_deferred, (2 * freeable)); /* * move the unused scan count back into the shrinker in a * manner that handles concurrent updates. */ new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); return freed; } #ifdef CONFIG_MEMCG static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority) { struct shrinker_info *info; unsigned long ret, freed = 0; int offset, index = 0; if (!mem_cgroup_online(memcg)) return 0; /* * lockless algorithm of memcg shrink. * * The shrinker_info may be freed asynchronously via RCU in the * expand_one_shrinker_info(), so the rcu_read_lock() needs to be used * to ensure the existence of the shrinker_info. * * The shrinker_info_unit is never freed unless its corresponding memcg * is destroyed. Here we already hold the refcount of memcg, so the * memcg will not be destroyed, and of course shrinker_info_unit will * not be freed. * * So in the memcg shrink: * step 1: use rcu_read_lock() to guarantee existence of the * shrinker_info. * step 2: after getting shrinker_info_unit we can safely release the * RCU lock. * step 3: traverse the bitmap and calculate shrinker_id * step 4: use rcu_read_lock() to guarantee existence of the shrinker. * step 5: use shrinker_id to find the shrinker, then use * shrinker_try_get() to guarantee existence of the shrinker, * then we can release the RCU lock to do do_shrink_slab() that * may sleep. * step 6: do shrinker_put() paired with step 5 to put the refcount, * if the refcount reaches 0, then wake up the waiter in * shrinker_free() by calling complete(). * Note: here is different from the global shrink, we don't * need to acquire the RCU lock to guarantee existence of * the shrinker, because we don't need to use this * shrinker to traverse the next shrinker in the bitmap. * step 7: we have already exited the read-side of rcu critical section * before calling do_shrink_slab(), the shrinker_info may be * released in expand_one_shrinker_info(), so go back to step 1 * to reacquire the shrinker_info. */ again: rcu_read_lock(); info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); if (unlikely(!info)) goto unlock; if (index < shrinker_id_to_index(info->map_nr_max)) { struct shrinker_info_unit *unit; unit = info->unit[index]; rcu_read_unlock(); for_each_set_bit(offset, unit->map, SHRINKER_UNIT_BITS) { struct shrink_control sc = { .gfp_mask = gfp_mask, .nid = nid, .memcg = memcg, }; struct shrinker *shrinker; int shrinker_id = calc_shrinker_id(index, offset); rcu_read_lock(); shrinker = idr_find(&shrinker_idr, shrinker_id); if (unlikely(!shrinker || !shrinker_try_get(shrinker))) { clear_bit(offset, unit->map); rcu_read_unlock(); continue; } rcu_read_unlock(); /* Call non-slab shrinkers even though kmem is disabled */ if (!memcg_kmem_online() && !(shrinker->flags & SHRINKER_NONSLAB)) continue; ret = do_shrink_slab(&sc, shrinker, priority); if (ret == SHRINK_EMPTY) { clear_bit(offset, unit->map); /* * After the shrinker reported that it had no objects to * free, but before we cleared the corresponding bit in * the memcg shrinker map, a new object might have been * added. To make sure, we have the bit set in this * case, we invoke the shrinker one more time and reset * the bit if it reports that it is not empty anymore. * The memory barrier here pairs with the barrier in * set_shrinker_bit(): * * list_lru_add() shrink_slab_memcg() * list_add_tail() clear_bit() * <MB> <MB> * set_bit() do_shrink_slab() */ smp_mb__after_atomic(); ret = do_shrink_slab(&sc, shrinker, priority); if (ret == SHRINK_EMPTY) ret = 0; else set_shrinker_bit(memcg, nid, shrinker_id); } freed += ret; shrinker_put(shrinker); } index++; goto again; } unlock: rcu_read_unlock(); return freed; } #else /* !CONFIG_MEMCG */ static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority) { return 0; } #endif /* CONFIG_MEMCG */ /** * shrink_slab - shrink slab caches * @gfp_mask: allocation context * @nid: node whose slab caches to target * @memcg: memory cgroup whose slab caches to target * @priority: the reclaim priority * * Call the shrink functions to age shrinkable caches. * * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, * unaware shrinkers will receive a node id of 0 instead. * * @memcg specifies the memory cgroup to target. Unaware shrinkers * are called only if it is the root cgroup. * * @priority is sc->priority, we take the number of objects and >> by priority * in order to get the scan target. * * Returns the number of reclaimed slab objects. */ unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority) { unsigned long ret, freed = 0; struct shrinker *shrinker; /* * The root memcg might be allocated even though memcg is disabled * via "cgroup_disable=memory" boot parameter. This could make * mem_cgroup_is_root() return false, then just run memcg slab * shrink, but skip global shrink. This may result in premature * oom. */ if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) return shrink_slab_memcg(gfp_mask, nid, memcg, priority); /* * lockless algorithm of global shrink. * * In the unregistration setp, the shrinker will be freed asynchronously * via RCU after its refcount reaches 0. So both rcu_read_lock() and * shrinker_try_get() can be used to ensure the existence of the shrinker. * * So in the global shrink: * step 1: use rcu_read_lock() to guarantee existence of the shrinker * and the validity of the shrinker_list walk. * step 2: use shrinker_try_get() to try get the refcount, if successful, * then the existence of the shrinker can also be guaranteed, * so we can release the RCU lock to do do_shrink_slab() that * may sleep. * step 3: *MUST* to reacquire the RCU lock before calling shrinker_put(), * which ensures that neither this shrinker nor the next shrinker * will be freed in the next traversal operation. * step 4: do shrinker_put() paired with step 2 to put the refcount, * if the refcount reaches 0, then wake up the waiter in * shrinker_free() by calling complete(). */ rcu_read_lock(); list_for_each_entry_rcu(shrinker, &shrinker_list, list) { struct shrink_control sc = { .gfp_mask = gfp_mask, .nid = nid, .memcg = memcg, }; if (!shrinker_try_get(shrinker)) continue; rcu_read_unlock(); ret = do_shrink_slab(&sc, shrinker, priority); if (ret == SHRINK_EMPTY) ret = 0; freed += ret; rcu_read_lock(); shrinker_put(shrinker); } rcu_read_unlock(); cond_resched(); return freed; } struct shrinker *shrinker_alloc(unsigned int flags, const char *fmt, ...) { struct shrinker *shrinker; unsigned int size; va_list ap; int err; shrinker = kzalloc(sizeof(struct shrinker), GFP_KERNEL); if (!shrinker) return NULL; va_start(ap, fmt); err = shrinker_debugfs_name_alloc(shrinker, fmt, ap); va_end(ap); if (err) goto err_name; shrinker->flags = flags | SHRINKER_ALLOCATED; shrinker->seeks = DEFAULT_SEEKS; if (flags & SHRINKER_MEMCG_AWARE) { err = shrinker_memcg_alloc(shrinker); if (err == -ENOSYS) { /* Memcg is not supported, fallback to non-memcg-aware shrinker. */ shrinker->flags &= ~SHRINKER_MEMCG_AWARE; goto non_memcg; } if (err) goto err_flags; return shrinker; } non_memcg: /* * The nr_deferred is available on per memcg level for memcg aware * shrinkers, so only allocate nr_deferred in the following cases: * - non-memcg-aware shrinkers * - !CONFIG_MEMCG * - memcg is disabled by kernel command line */ size = sizeof(*shrinker->nr_deferred); if (flags & SHRINKER_NUMA_AWARE) size *= nr_node_ids; shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); if (!shrinker->nr_deferred) goto err_flags; return shrinker; err_flags: shrinker_debugfs_name_free(shrinker); err_name: kfree(shrinker); return NULL; } EXPORT_SYMBOL_GPL(shrinker_alloc); void shrinker_register(struct shrinker *shrinker) { if (unlikely(!(shrinker->flags & SHRINKER_ALLOCATED))) { pr_warn("Must use shrinker_alloc() to dynamically allocate the shrinker"); return; } mutex_lock(&shrinker_mutex); list_add_tail_rcu(&shrinker->list, &shrinker_list); shrinker->flags |= SHRINKER_REGISTERED; shrinker_debugfs_add(shrinker); mutex_unlock(&shrinker_mutex); init_completion(&shrinker->done); /* * Now the shrinker is fully set up, take the first reference to it to * indicate that lookup operations are now allowed to use it via * shrinker_try_get(). */ refcount_set(&shrinker->refcount, 1); } EXPORT_SYMBOL_GPL(shrinker_register); static void shrinker_free_rcu_cb(struct rcu_head *head) { struct shrinker *shrinker = container_of(head, struct shrinker, rcu); kfree(shrinker->nr_deferred); kfree(shrinker); } void shrinker_free(struct shrinker *shrinker) { struct dentry *debugfs_entry = NULL; int debugfs_id; if (!shrinker) return; if (shrinker->flags & SHRINKER_REGISTERED) { /* drop the initial refcount */ shrinker_put(shrinker); /* * Wait for all lookups of the shrinker to complete, after that, * no shrinker is running or will run again, then we can safely * free it asynchronously via RCU and safely free the structure * where the shrinker is located, such as super_block etc. */ wait_for_completion(&shrinker->done); } mutex_lock(&shrinker_mutex); if (shrinker->flags & SHRINKER_REGISTERED) { /* * Now we can safely remove it from the shrinker_list and then * free it. */ list_del_rcu(&shrinker->list); debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id); shrinker->flags &= ~SHRINKER_REGISTERED; } shrinker_debugfs_name_free(shrinker); if (shrinker->flags & SHRINKER_MEMCG_AWARE) shrinker_memcg_remove(shrinker); mutex_unlock(&shrinker_mutex); if (debugfs_entry) shrinker_debugfs_remove(debugfs_entry, debugfs_id); call_rcu(&shrinker->rcu, shrinker_free_rcu_cb); } EXPORT_SYMBOL_GPL(shrinker_free); |
8437 8450 8 1 1 6 1 2 2 2 1 1 3 3 4 1 1 2 2 2 3 440 271 13 880 875 390 76 284 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | // SPDX-License-Identifier: GPL-2.0-or-later /* * xfrm_device.c - IPsec device offloading code. * * Copyright (c) 2015 secunet Security Networks AG * * Author: * Steffen Klassert <steffen.klassert@secunet.com> */ #include <linux/errno.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <net/dst.h> #include <net/gso.h> #include <net/xfrm.h> #include <linux/notifier.h> #ifdef CONFIG_XFRM_OFFLOAD static void __xfrm_transport_prep(struct xfrm_state *x, struct sk_buff *skb, unsigned int hsize) { struct xfrm_offload *xo = xfrm_offload(skb); skb_reset_mac_len(skb); if (xo->flags & XFRM_GSO_SEGMENT) skb->transport_header -= x->props.header_len; pskb_pull(skb, skb_transport_offset(skb) + x->props.header_len); } static void __xfrm_mode_tunnel_prep(struct xfrm_state *x, struct sk_buff *skb, unsigned int hsize) { struct xfrm_offload *xo = xfrm_offload(skb); if (xo->flags & XFRM_GSO_SEGMENT) skb->transport_header = skb->network_header + hsize; skb_reset_mac_len(skb); pskb_pull(skb, skb->mac_len + x->props.header_len); } static void __xfrm_mode_beet_prep(struct xfrm_state *x, struct sk_buff *skb, unsigned int hsize) { struct xfrm_offload *xo = xfrm_offload(skb); int phlen = 0; if (xo->flags & XFRM_GSO_SEGMENT) skb->transport_header = skb->network_header + hsize; skb_reset_mac_len(skb); if (x->sel.family != AF_INET6) { phlen = IPV4_BEET_PHMAXLEN; if (x->outer_mode.family == AF_INET6) phlen += sizeof(struct ipv6hdr) - sizeof(struct iphdr); } pskb_pull(skb, skb->mac_len + hsize + (x->props.header_len - phlen)); } /* Adjust pointers into the packet when IPsec is done at layer2 */ static void xfrm_outer_mode_prep(struct xfrm_state *x, struct sk_buff *skb) { switch (x->outer_mode.encap) { case XFRM_MODE_TUNNEL: if (x->outer_mode.family == AF_INET) return __xfrm_mode_tunnel_prep(x, skb, sizeof(struct iphdr)); if (x->outer_mode.family == AF_INET6) return __xfrm_mode_tunnel_prep(x, skb, sizeof(struct ipv6hdr)); break; case XFRM_MODE_TRANSPORT: if (x->outer_mode.family == AF_INET) return __xfrm_transport_prep(x, skb, sizeof(struct iphdr)); if (x->outer_mode.family == AF_INET6) return __xfrm_transport_prep(x, skb, sizeof(struct ipv6hdr)); break; case XFRM_MODE_BEET: if (x->outer_mode.family == AF_INET) return __xfrm_mode_beet_prep(x, skb, sizeof(struct iphdr)); if (x->outer_mode.family == AF_INET6) return __xfrm_mode_beet_prep(x, skb, sizeof(struct ipv6hdr)); break; case XFRM_MODE_ROUTEOPTIMIZATION: case XFRM_MODE_IN_TRIGGER: break; } } static inline bool xmit_xfrm_check_overflow(struct sk_buff *skb) { struct xfrm_offload *xo = xfrm_offload(skb); __u32 seq = xo->seq.low; seq += skb_shinfo(skb)->gso_segs; if (unlikely(seq < xo->seq.low)) return true; return false; } struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again) { int err; unsigned long flags; struct xfrm_state *x; struct softnet_data *sd; struct sk_buff *skb2, *nskb, *pskb = NULL; netdev_features_t esp_features = features; struct xfrm_offload *xo = xfrm_offload(skb); struct net_device *dev = skb->dev; struct sec_path *sp; if (!xo || (xo->flags & XFRM_XMIT)) return skb; if (!(features & NETIF_F_HW_ESP)) esp_features = features & ~(NETIF_F_SG | NETIF_F_CSUM_MASK); sp = skb_sec_path(skb); x = sp->xvec[sp->len - 1]; if (xo->flags & XFRM_GRO || x->xso.dir == XFRM_DEV_OFFLOAD_IN) return skb; /* The packet was sent to HW IPsec packet offload engine, * but to wrong device. Drop the packet, so it won't skip * XFRM stack. */ if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET && x->xso.dev != dev) { kfree_skb(skb); dev_core_stats_tx_dropped_inc(dev); return NULL; } /* This skb was already validated on the upper/virtual dev */ if ((x->xso.dev != dev) && (x->xso.real_dev == dev)) return skb; local_irq_save(flags); sd = this_cpu_ptr(&softnet_data); err = !skb_queue_empty(&sd->xfrm_backlog); local_irq_restore(flags); if (err) { *again = true; return skb; } if (skb_is_gso(skb) && (unlikely(x->xso.dev != dev) || unlikely(xmit_xfrm_check_overflow(skb)))) { struct sk_buff *segs; /* Packet got rerouted, fixup features and segment it. */ esp_features = esp_features & ~(NETIF_F_HW_ESP | NETIF_F_GSO_ESP); segs = skb_gso_segment(skb, esp_features); if (IS_ERR(segs)) { kfree_skb(skb); dev_core_stats_tx_dropped_inc(dev); return NULL; } else { consume_skb(skb); skb = segs; } } if (!skb->next) { esp_features |= skb->dev->gso_partial_features; xfrm_outer_mode_prep(x, skb); xo->flags |= XFRM_DEV_RESUME; err = x->type_offload->xmit(x, skb, esp_features); if (err) { if (err == -EINPROGRESS) return NULL; XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR); kfree_skb(skb); return NULL; } skb_push(skb, skb->data - skb_mac_header(skb)); return skb; } skb_list_walk_safe(skb, skb2, nskb) { esp_features |= skb->dev->gso_partial_features; skb_mark_not_on_list(skb2); xo = xfrm_offload(skb2); xo->flags |= XFRM_DEV_RESUME; xfrm_outer_mode_prep(x, skb2); err = x->type_offload->xmit(x, skb2, esp_features); if (!err) { skb2->next = nskb; } else if (err != -EINPROGRESS) { XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR); skb2->next = nskb; kfree_skb_list(skb2); return NULL; } else { if (skb == skb2) skb = nskb; else pskb->next = nskb; continue; } skb_push(skb2, skb2->data - skb_mac_header(skb2)); pskb = skb2; } return skb; } EXPORT_SYMBOL_GPL(validate_xmit_xfrm); int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo, struct netlink_ext_ack *extack) { int err; struct dst_entry *dst; struct net_device *dev; struct xfrm_dev_offload *xso = &x->xso; xfrm_address_t *saddr; xfrm_address_t *daddr; bool is_packet_offload; if (!x->type_offload) { NL_SET_ERR_MSG(extack, "Type doesn't support offload"); return -EINVAL; } if (xuo->flags & ~(XFRM_OFFLOAD_IPV6 | XFRM_OFFLOAD_INBOUND | XFRM_OFFLOAD_PACKET)) { NL_SET_ERR_MSG(extack, "Unrecognized flags in offload request"); return -EINVAL; } if ((xuo->flags & XFRM_OFFLOAD_INBOUND && x->dir == XFRM_SA_DIR_OUT) || (!(xuo->flags & XFRM_OFFLOAD_INBOUND) && x->dir == XFRM_SA_DIR_IN)) { NL_SET_ERR_MSG(extack, "Mismatched SA and offload direction"); return -EINVAL; } is_packet_offload = xuo->flags & XFRM_OFFLOAD_PACKET; /* We don't yet support TFC padding. */ if (x->tfcpad) { NL_SET_ERR_MSG(extack, "TFC padding can't be offloaded"); return -EINVAL; } dev = dev_get_by_index(net, xuo->ifindex); if (!dev) { if (!(xuo->flags & XFRM_OFFLOAD_INBOUND)) { saddr = &x->props.saddr; daddr = &x->id.daddr; } else { saddr = &x->id.daddr; daddr = &x->props.saddr; } dst = __xfrm_dst_lookup(net, 0, 0, saddr, daddr, x->props.family, xfrm_smark_get(0, x)); if (IS_ERR(dst)) return (is_packet_offload) ? -EINVAL : 0; dev = dst->dev; dev_hold(dev); dst_release(dst); } if (!dev->xfrmdev_ops || !dev->xfrmdev_ops->xdo_dev_state_add) { xso->dev = NULL; dev_put(dev); return (is_packet_offload) ? -EINVAL : 0; } if (!is_packet_offload && x->props.flags & XFRM_STATE_ESN && !dev->xfrmdev_ops->xdo_dev_state_advance_esn) { NL_SET_ERR_MSG(extack, "Device doesn't support offload with ESN"); xso->dev = NULL; dev_put(dev); return -EINVAL; } xso->dev = dev; netdev_tracker_alloc(dev, &xso->dev_tracker, GFP_ATOMIC); xso->real_dev = dev; if (xuo->flags & XFRM_OFFLOAD_INBOUND) xso->dir = XFRM_DEV_OFFLOAD_IN; else xso->dir = XFRM_DEV_OFFLOAD_OUT; if (is_packet_offload) xso->type = XFRM_DEV_OFFLOAD_PACKET; else xso->type = XFRM_DEV_OFFLOAD_CRYPTO; err = dev->xfrmdev_ops->xdo_dev_state_add(x, extack); if (err) { xso->dev = NULL; xso->dir = 0; xso->real_dev = NULL; netdev_put(dev, &xso->dev_tracker); xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; /* User explicitly requested packet offload mode and configured * policy in addition to the XFRM state. So be civil to users, * and return an error instead of taking fallback path. */ if ((err != -EOPNOTSUPP && !is_packet_offload) || is_packet_offload) { NL_SET_ERR_MSG_WEAK(extack, "Device failed to offload this state"); return err; } } return 0; } EXPORT_SYMBOL_GPL(xfrm_dev_state_add); int xfrm_dev_policy_add(struct net *net, struct xfrm_policy *xp, struct xfrm_user_offload *xuo, u8 dir, struct netlink_ext_ack *extack) { struct xfrm_dev_offload *xdo = &xp->xdo; struct net_device *dev; int err; if (!xuo->flags || xuo->flags & ~XFRM_OFFLOAD_PACKET) { /* We support only packet offload mode and it means * that user must set XFRM_OFFLOAD_PACKET bit. */ NL_SET_ERR_MSG(extack, "Unrecognized flags in offload request"); return -EINVAL; } dev = dev_get_by_index(net, xuo->ifindex); if (!dev) return -EINVAL; if (!dev->xfrmdev_ops || !dev->xfrmdev_ops->xdo_dev_policy_add) { xdo->dev = NULL; dev_put(dev); NL_SET_ERR_MSG(extack, "Policy offload is not supported"); return -EINVAL; } xdo->dev = dev; netdev_tracker_alloc(dev, &xdo->dev_tracker, GFP_ATOMIC); xdo->real_dev = dev; xdo->type = XFRM_DEV_OFFLOAD_PACKET; switch (dir) { case XFRM_POLICY_IN: xdo->dir = XFRM_DEV_OFFLOAD_IN; break; case XFRM_POLICY_OUT: xdo->dir = XFRM_DEV_OFFLOAD_OUT; break; case XFRM_POLICY_FWD: xdo->dir = XFRM_DEV_OFFLOAD_FWD; break; default: xdo->dev = NULL; netdev_put(dev, &xdo->dev_tracker); NL_SET_ERR_MSG(extack, "Unrecognized offload direction"); return -EINVAL; } err = dev->xfrmdev_ops->xdo_dev_policy_add(xp, extack); if (err) { xdo->dev = NULL; xdo->real_dev = NULL; xdo->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; xdo->dir = 0; netdev_put(dev, &xdo->dev_tracker); NL_SET_ERR_MSG_WEAK(extack, "Device failed to offload this policy"); return err; } return 0; } EXPORT_SYMBOL_GPL(xfrm_dev_policy_add); bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { int mtu; struct dst_entry *dst = skb_dst(skb); struct xfrm_dst *xdst = (struct xfrm_dst *)dst; struct net_device *dev = x->xso.dev; if (!x->type_offload || (x->xso.type == XFRM_DEV_OFFLOAD_UNSPECIFIED && x->encap)) return false; if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET || ((!dev || (dev == xfrm_dst_path(dst)->dev)) && !xdst->child->xfrm)) { mtu = xfrm_state_mtu(x, xdst->child_mtu_cached); if (skb->len <= mtu) goto ok; if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu)) goto ok; } return false; ok: if (dev && dev->xfrmdev_ops && dev->xfrmdev_ops->xdo_dev_offload_ok) return x->xso.dev->xfrmdev_ops->xdo_dev_offload_ok(skb, x); return true; } EXPORT_SYMBOL_GPL(xfrm_dev_offload_ok); void xfrm_dev_resume(struct sk_buff *skb) { struct net_device *dev = skb->dev; int ret = NETDEV_TX_BUSY; struct netdev_queue *txq; struct softnet_data *sd; unsigned long flags; rcu_read_lock(); txq = netdev_core_pick_tx(dev, skb, NULL); HARD_TX_LOCK(dev, txq, smp_processor_id()); if (!netif_xmit_frozen_or_stopped(txq)) skb = dev_hard_start_xmit(skb, dev, txq, &ret); HARD_TX_UNLOCK(dev, txq); if (!dev_xmit_complete(ret)) { local_irq_save(flags); sd = this_cpu_ptr(&softnet_data); skb_queue_tail(&sd->xfrm_backlog, skb); raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_restore(flags); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(xfrm_dev_resume); void xfrm_dev_backlog(struct softnet_data *sd) { struct sk_buff_head *xfrm_backlog = &sd->xfrm_backlog; struct sk_buff_head list; struct sk_buff *skb; if (skb_queue_empty(xfrm_backlog)) return; __skb_queue_head_init(&list); spin_lock(&xfrm_backlog->lock); skb_queue_splice_init(xfrm_backlog, &list); spin_unlock(&xfrm_backlog->lock); while (!skb_queue_empty(&list)) { skb = __skb_dequeue(&list); xfrm_dev_resume(skb); } } #endif static int xfrm_api_check(struct net_device *dev) { #ifdef CONFIG_XFRM_OFFLOAD if ((dev->features & NETIF_F_HW_ESP_TX_CSUM) && !(dev->features & NETIF_F_HW_ESP)) return NOTIFY_BAD; if ((dev->features & NETIF_F_HW_ESP) && (!(dev->xfrmdev_ops && dev->xfrmdev_ops->xdo_dev_state_add && dev->xfrmdev_ops->xdo_dev_state_delete))) return NOTIFY_BAD; #else if (dev->features & (NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM)) return NOTIFY_BAD; #endif return NOTIFY_DONE; } static int xfrm_dev_down(struct net_device *dev) { if (dev->features & NETIF_F_HW_ESP) { xfrm_dev_state_flush(dev_net(dev), dev, true); xfrm_dev_policy_flush(dev_net(dev), dev, true); } return NOTIFY_DONE; } static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); switch (event) { case NETDEV_REGISTER: return xfrm_api_check(dev); case NETDEV_FEAT_CHANGE: return xfrm_api_check(dev); case NETDEV_DOWN: case NETDEV_UNREGISTER: return xfrm_dev_down(dev); } return NOTIFY_DONE; } static struct notifier_block xfrm_dev_notifier = { .notifier_call = xfrm_dev_event, }; void __init xfrm_dev_init(void) { register_netdevice_notifier(&xfrm_dev_notifier); } |
2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_VXLAN_H #define __NET_VXLAN_H 1 #include <linux/if_vlan.h> #include <linux/rhashtable-types.h> #include <net/udp_tunnel.h> #include <net/dst_metadata.h> #include <net/rtnetlink.h> #include <net/switchdev.h> #include <net/nexthop.h> #define IANA_VXLAN_UDP_PORT 4789 #define IANA_VXLAN_GPE_UDP_PORT 4790 /* VXLAN protocol (RFC 7348) header: * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |R|R|R|R|I|R|R|R| Reserved | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | VXLAN Network Identifier (VNI) | Reserved | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * I = VXLAN Network Identifier (VNI) present. */ struct vxlanhdr { __be32 vx_flags; __be32 vx_vni; }; /* VXLAN header flags. */ #define VXLAN_HF_VNI cpu_to_be32(BIT(27)) #define VXLAN_N_VID (1u << 24) #define VXLAN_VID_MASK (VXLAN_N_VID - 1) #define VXLAN_VNI_MASK cpu_to_be32(VXLAN_VID_MASK << 8) #define VXLAN_HLEN (sizeof(struct udphdr) + sizeof(struct vxlanhdr)) #define VNI_HASH_BITS 10 #define VNI_HASH_SIZE (1<<VNI_HASH_BITS) #define FDB_HASH_BITS 8 #define FDB_HASH_SIZE (1<<FDB_HASH_BITS) /* Remote checksum offload for VXLAN (VXLAN_F_REMCSUM_[RT]X): * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |R|R|R|R|I|R|R|R|R|R|C| Reserved | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | VXLAN Network Identifier (VNI) |O| Csum start | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * C = Remote checksum offload bit. When set indicates that the * remote checksum offload data is present. * * O = Offset bit. Indicates the checksum offset relative to * checksum start. * * Csum start = Checksum start divided by two. * * http://tools.ietf.org/html/draft-herbert-vxlan-rco */ /* VXLAN-RCO header flags. */ #define VXLAN_HF_RCO cpu_to_be32(BIT(21)) /* Remote checksum offload header option */ #define VXLAN_RCO_MASK cpu_to_be32(0x7f) /* Last byte of vni field */ #define VXLAN_RCO_UDP cpu_to_be32(0x80) /* Indicate UDP RCO (TCP when not set *) */ #define VXLAN_RCO_SHIFT 1 /* Left shift of start */ #define VXLAN_RCO_SHIFT_MASK ((1 << VXLAN_RCO_SHIFT) - 1) #define VXLAN_MAX_REMCSUM_START (0x7f << VXLAN_RCO_SHIFT) /* * VXLAN Group Based Policy Extension (VXLAN_F_GBP): * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |G|R|R|R|I|R|R|R|R|D|R|R|A|R|R|R| Group Policy ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | VXLAN Network Identifier (VNI) | Reserved | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * G = Group Policy ID present. * * D = Don't Learn bit. When set, this bit indicates that the egress * VTEP MUST NOT learn the source address of the encapsulated frame. * * A = Indicates that the group policy has already been applied to * this packet. Policies MUST NOT be applied by devices when the * A bit is set. * * https://tools.ietf.org/html/draft-smith-vxlan-group-policy */ struct vxlanhdr_gbp { u8 vx_flags; #ifdef __LITTLE_ENDIAN_BITFIELD u8 reserved_flags1:3, policy_applied:1, reserved_flags2:2, dont_learn:1, reserved_flags3:1; #elif defined(__BIG_ENDIAN_BITFIELD) u8 reserved_flags1:1, dont_learn:1, reserved_flags2:2, policy_applied:1, reserved_flags3:3; #else #error "Please fix <asm/byteorder.h>" #endif __be16 policy_id; __be32 vx_vni; }; /* VXLAN-GBP header flags. */ #define VXLAN_HF_GBP cpu_to_be32(BIT(31)) #define VXLAN_GBP_USED_BITS (VXLAN_HF_GBP | cpu_to_be32(0xFFFFFF)) /* skb->mark mapping * * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |R|R|R|R|R|R|R|R|R|D|R|R|A|R|R|R| Group Policy ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ #define VXLAN_GBP_DONT_LEARN (BIT(6) << 16) #define VXLAN_GBP_POLICY_APPLIED (BIT(3) << 16) #define VXLAN_GBP_ID_MASK (0xFFFF) #define VXLAN_GBP_MASK (VXLAN_GBP_DONT_LEARN | VXLAN_GBP_POLICY_APPLIED | \ VXLAN_GBP_ID_MASK) /* * VXLAN Generic Protocol Extension (VXLAN_F_GPE): * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |R|R|Ver|I|P|R|O| Reserved |Next Protocol | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | VXLAN Network Identifier (VNI) | Reserved | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Ver = Version. Indicates VXLAN GPE protocol version. * * P = Next Protocol Bit. The P bit is set to indicate that the * Next Protocol field is present. * * O = OAM Flag Bit. The O bit is set to indicate that the packet * is an OAM packet. * * Next Protocol = This 8 bit field indicates the protocol header * immediately following the VXLAN GPE header. * * https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-01 */ struct vxlanhdr_gpe { #if defined(__LITTLE_ENDIAN_BITFIELD) u8 oam_flag:1, reserved_flags1:1, np_applied:1, instance_applied:1, version:2, reserved_flags2:2; #elif defined(__BIG_ENDIAN_BITFIELD) u8 reserved_flags2:2, version:2, instance_applied:1, np_applied:1, reserved_flags1:1, oam_flag:1; #endif u8 reserved_flags3; u8 reserved_flags4; u8 next_protocol; __be32 vx_vni; }; /* VXLAN-GPE header flags. */ #define VXLAN_HF_VER cpu_to_be32(BIT(29) | BIT(28)) #define VXLAN_HF_NP cpu_to_be32(BIT(26)) #define VXLAN_HF_OAM cpu_to_be32(BIT(24)) #define VXLAN_GPE_USED_BITS (VXLAN_HF_VER | VXLAN_HF_NP | VXLAN_HF_OAM | \ cpu_to_be32(0xff)) struct vxlan_metadata { u32 gbp; }; /* per UDP socket information */ struct vxlan_sock { struct hlist_node hlist; struct socket *sock; struct hlist_head vni_list[VNI_HASH_SIZE]; refcount_t refcnt; u32 flags; }; union vxlan_addr { struct sockaddr_in sin; struct sockaddr_in6 sin6; struct sockaddr sa; }; struct vxlan_rdst { union vxlan_addr remote_ip; __be16 remote_port; u8 offloaded:1; __be32 remote_vni; u32 remote_ifindex; struct net_device *remote_dev; struct list_head list; struct rcu_head rcu; struct dst_cache dst_cache; }; struct vxlan_config { union vxlan_addr remote_ip; union vxlan_addr saddr; __be32 vni; int remote_ifindex; int mtu; __be16 dst_port; u16 port_min; u16 port_max; u8 tos; u8 ttl; __be32 label; enum ifla_vxlan_label_policy label_policy; u32 flags; unsigned long age_interval; unsigned int addrmax; bool no_share; enum ifla_vxlan_df df; }; enum { VXLAN_VNI_STATS_RX, VXLAN_VNI_STATS_RX_DROPS, VXLAN_VNI_STATS_RX_ERRORS, VXLAN_VNI_STATS_TX, VXLAN_VNI_STATS_TX_DROPS, VXLAN_VNI_STATS_TX_ERRORS, }; struct vxlan_vni_stats { u64 rx_packets; u64 rx_bytes; u64 rx_drops; u64 rx_errors; u64 tx_packets; u64 tx_bytes; u64 tx_drops; u64 tx_errors; }; struct vxlan_vni_stats_pcpu { struct vxlan_vni_stats stats; struct u64_stats_sync syncp; }; struct vxlan_dev_node { struct hlist_node hlist; struct vxlan_dev *vxlan; }; struct vxlan_vni_node { struct rhash_head vnode; struct vxlan_dev_node hlist4; /* vni hash table for IPv4 socket */ #if IS_ENABLED(CONFIG_IPV6) struct vxlan_dev_node hlist6; /* vni hash table for IPv6 socket */ #endif struct list_head vlist; __be32 vni; union vxlan_addr remote_ip; /* default remote ip for this vni */ struct vxlan_vni_stats_pcpu __percpu *stats; struct rcu_head rcu; }; struct vxlan_vni_group { struct rhashtable vni_hash; struct list_head vni_list; u32 num_vnis; }; /* Pseudo network device */ struct vxlan_dev { struct vxlan_dev_node hlist4; /* vni hash table for IPv4 socket */ #if IS_ENABLED(CONFIG_IPV6) struct vxlan_dev_node hlist6; /* vni hash table for IPv6 socket */ #endif struct list_head next; /* vxlan's per namespace list */ struct vxlan_sock __rcu *vn4_sock; /* listening socket for IPv4 */ #if IS_ENABLED(CONFIG_IPV6) struct vxlan_sock __rcu *vn6_sock; /* listening socket for IPv6 */ #endif struct net_device *dev; struct net *net; /* netns for packet i/o */ struct vxlan_rdst default_dst; /* default destination */ struct timer_list age_timer; spinlock_t hash_lock[FDB_HASH_SIZE]; unsigned int addrcnt; struct gro_cells gro_cells; struct vxlan_config cfg; struct vxlan_vni_group __rcu *vnigrp; struct hlist_head fdb_head[FDB_HASH_SIZE]; struct rhashtable mdb_tbl; struct hlist_head mdb_list; unsigned int mdb_seq; }; #define VXLAN_F_LEARN 0x01 #define VXLAN_F_PROXY 0x02 #define VXLAN_F_RSC 0x04 #define VXLAN_F_L2MISS 0x08 #define VXLAN_F_L3MISS 0x10 #define VXLAN_F_IPV6 0x20 #define VXLAN_F_UDP_ZERO_CSUM_TX 0x40 #define VXLAN_F_UDP_ZERO_CSUM6_TX 0x80 #define VXLAN_F_UDP_ZERO_CSUM6_RX 0x100 #define VXLAN_F_REMCSUM_TX 0x200 #define VXLAN_F_REMCSUM_RX 0x400 #define VXLAN_F_GBP 0x800 #define VXLAN_F_REMCSUM_NOPARTIAL 0x1000 #define VXLAN_F_COLLECT_METADATA 0x2000 #define VXLAN_F_GPE 0x4000 #define VXLAN_F_IPV6_LINKLOCAL 0x8000 #define VXLAN_F_TTL_INHERIT 0x10000 #define VXLAN_F_VNIFILTER 0x20000 #define VXLAN_F_MDB 0x40000 #define VXLAN_F_LOCALBYPASS 0x80000 /* Flags that are used in the receive path. These flags must match in * order for a socket to be shareable */ #define VXLAN_F_RCV_FLAGS (VXLAN_F_GBP | \ VXLAN_F_GPE | \ VXLAN_F_UDP_ZERO_CSUM6_RX | \ VXLAN_F_REMCSUM_RX | \ VXLAN_F_REMCSUM_NOPARTIAL | \ VXLAN_F_COLLECT_METADATA | \ VXLAN_F_VNIFILTER) /* Flags that can be set together with VXLAN_F_GPE. */ #define VXLAN_F_ALLOWED_GPE (VXLAN_F_GPE | \ VXLAN_F_IPV6 | \ VXLAN_F_IPV6_LINKLOCAL | \ VXLAN_F_UDP_ZERO_CSUM_TX | \ VXLAN_F_UDP_ZERO_CSUM6_TX | \ VXLAN_F_UDP_ZERO_CSUM6_RX | \ VXLAN_F_COLLECT_METADATA | \ VXLAN_F_VNIFILTER | \ VXLAN_F_LOCALBYPASS) struct net_device *vxlan_dev_create(struct net *net, const char *name, u8 name_assign_type, struct vxlan_config *conf); static inline netdev_features_t vxlan_features_check(struct sk_buff *skb, netdev_features_t features) { u8 l4_hdr = 0; if (!skb->encapsulation) return features; switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): l4_hdr = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): l4_hdr = ipv6_hdr(skb)->nexthdr; break; default: return features; } if ((l4_hdr == IPPROTO_UDP) && (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB) || (skb_inner_mac_header(skb) - skb_transport_header(skb) != sizeof(struct udphdr) + sizeof(struct vxlanhdr)) || (skb->ip_summed != CHECKSUM_NONE && !can_checksum_protocol(features, inner_eth_hdr(skb)->h_proto)))) return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); return features; } static inline int vxlan_headroom(u32 flags) { /* VXLAN: IP4/6 header + UDP + VXLAN + Ethernet header */ /* VXLAN-GPE: IP4/6 header + UDP + VXLAN */ return (flags & VXLAN_F_IPV6 ? sizeof(struct ipv6hdr) : sizeof(struct iphdr)) + sizeof(struct udphdr) + sizeof(struct vxlanhdr) + (flags & VXLAN_F_GPE ? 0 : ETH_HLEN); } static inline struct vxlanhdr *vxlan_hdr(struct sk_buff *skb) { return (struct vxlanhdr *)(udp_hdr(skb) + 1); } static inline __be32 vxlan_vni(__be32 vni_field) { #if defined(__BIG_ENDIAN) return (__force __be32)((__force u32)vni_field >> 8); #else return (__force __be32)((__force u32)(vni_field & VXLAN_VNI_MASK) << 8); #endif } static inline __be32 vxlan_vni_field(__be32 vni) { #if defined(__BIG_ENDIAN) return (__force __be32)((__force u32)vni << 8); #else return (__force __be32)((__force u32)vni >> 8); #endif } static inline size_t vxlan_rco_start(__be32 vni_field) { return be32_to_cpu(vni_field & VXLAN_RCO_MASK) << VXLAN_RCO_SHIFT; } static inline size_t vxlan_rco_offset(__be32 vni_field) { return (vni_field & VXLAN_RCO_UDP) ? offsetof(struct udphdr, check) : offsetof(struct tcphdr, check); } static inline __be32 vxlan_compute_rco(unsigned int start, unsigned int offset) { __be32 vni_field = cpu_to_be32(start >> VXLAN_RCO_SHIFT); if (offset == offsetof(struct udphdr, check)) vni_field |= VXLAN_RCO_UDP; return vni_field; } static inline unsigned short vxlan_get_sk_family(struct vxlan_sock *vs) { return vs->sock->sk->sk_family; } #if IS_ENABLED(CONFIG_IPV6) static inline bool vxlan_addr_any(const union vxlan_addr *ipa) { if (ipa->sa.sa_family == AF_INET6) return ipv6_addr_any(&ipa->sin6.sin6_addr); else return ipa->sin.sin_addr.s_addr == htonl(INADDR_ANY); } static inline bool vxlan_addr_multicast(const union vxlan_addr *ipa) { if (ipa->sa.sa_family == AF_INET6) return ipv6_addr_is_multicast(&ipa->sin6.sin6_addr); else return ipv4_is_multicast(ipa->sin.sin_addr.s_addr); } #else /* !IS_ENABLED(CONFIG_IPV6) */ static inline bool vxlan_addr_any(const union vxlan_addr *ipa) { return ipa->sin.sin_addr.s_addr == htonl(INADDR_ANY); } static inline bool vxlan_addr_multicast(const union vxlan_addr *ipa) { return ipv4_is_multicast(ipa->sin.sin_addr.s_addr); } #endif /* IS_ENABLED(CONFIG_IPV6) */ static inline bool netif_is_vxlan(const struct net_device *dev) { return dev->rtnl_link_ops && !strcmp(dev->rtnl_link_ops->kind, "vxlan"); } struct switchdev_notifier_vxlan_fdb_info { struct switchdev_notifier_info info; /* must be first */ union vxlan_addr remote_ip; __be16 remote_port; __be32 remote_vni; u32 remote_ifindex; u8 eth_addr[ETH_ALEN]; __be32 vni; bool offloaded; bool added_by_user; }; #if IS_ENABLED(CONFIG_VXLAN) int vxlan_fdb_find_uc(struct net_device *dev, const u8 *mac, __be32 vni, struct switchdev_notifier_vxlan_fdb_info *fdb_info); int vxlan_fdb_replay(const struct net_device *dev, __be32 vni, struct notifier_block *nb, struct netlink_ext_ack *extack); void vxlan_fdb_clear_offload(const struct net_device *dev, __be32 vni); #else static inline int vxlan_fdb_find_uc(struct net_device *dev, const u8 *mac, __be32 vni, struct switchdev_notifier_vxlan_fdb_info *fdb_info) { return -ENOENT; } static inline int vxlan_fdb_replay(const struct net_device *dev, __be32 vni, struct notifier_block *nb, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline void vxlan_fdb_clear_offload(const struct net_device *dev, __be32 vni) { } #endif static inline void vxlan_flag_attr_error(int attrtype, struct netlink_ext_ack *extack) { #define VXLAN_FLAG(flg) \ case IFLA_VXLAN_##flg: \ NL_SET_ERR_MSG_MOD(extack, \ "cannot change " #flg " flag"); \ break switch (attrtype) { VXLAN_FLAG(TTL_INHERIT); VXLAN_FLAG(LEARNING); VXLAN_FLAG(PROXY); VXLAN_FLAG(RSC); VXLAN_FLAG(L2MISS); VXLAN_FLAG(L3MISS); VXLAN_FLAG(COLLECT_METADATA); VXLAN_FLAG(UDP_ZERO_CSUM6_TX); VXLAN_FLAG(UDP_ZERO_CSUM6_RX); VXLAN_FLAG(REMCSUM_TX); VXLAN_FLAG(REMCSUM_RX); VXLAN_FLAG(GBP); VXLAN_FLAG(GPE); VXLAN_FLAG(REMCSUM_NOPARTIAL); default: NL_SET_ERR_MSG_MOD(extack, \ "cannot change flag"); break; } #undef VXLAN_FLAG } static inline bool vxlan_fdb_nh_path_select(struct nexthop *nh, u32 hash, struct vxlan_rdst *rdst) { struct fib_nh_common *nhc; nhc = nexthop_path_fdb_result(nh, hash >> 1); if (unlikely(!nhc)) return false; switch (nhc->nhc_gw_family) { case AF_INET: rdst->remote_ip.sin.sin_addr.s_addr = nhc->nhc_gw.ipv4; rdst->remote_ip.sa.sa_family = AF_INET; break; case AF_INET6: rdst->remote_ip.sin6.sin6_addr = nhc->nhc_gw.ipv6; rdst->remote_ip.sa.sa_family = AF_INET6; break; } return true; } static inline void vxlan_build_gbp_hdr(struct vxlanhdr *vxh, const struct vxlan_metadata *md) { struct vxlanhdr_gbp *gbp; if (!md->gbp) return; gbp = (struct vxlanhdr_gbp *)vxh; vxh->vx_flags |= VXLAN_HF_GBP; if (md->gbp & VXLAN_GBP_DONT_LEARN) gbp->dont_learn = 1; if (md->gbp & VXLAN_GBP_POLICY_APPLIED) gbp->policy_applied = 1; gbp->policy_id = htons(md->gbp & VXLAN_GBP_ID_MASK); } #endif |
398 1 599 3 3 519 75 485 173 158 15 2 14 15 291 289 154 206 203 36 35 713 706 605 4 172 170 508 157 710 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/l3mdev/l3mdev.c - L3 master device implementation * Copyright (c) 2015 Cumulus Networks * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> */ #include <linux/netdevice.h> #include <net/fib_rules.h> #include <net/l3mdev.h> static DEFINE_SPINLOCK(l3mdev_lock); struct l3mdev_handler { lookup_by_table_id_t dev_lookup; }; static struct l3mdev_handler l3mdev_handlers[L3MDEV_TYPE_MAX + 1]; static int l3mdev_check_type(enum l3mdev_type l3type) { if (l3type <= L3MDEV_TYPE_UNSPEC || l3type > L3MDEV_TYPE_MAX) return -EINVAL; return 0; } int l3mdev_table_lookup_register(enum l3mdev_type l3type, lookup_by_table_id_t fn) { struct l3mdev_handler *hdlr; int res; res = l3mdev_check_type(l3type); if (res) return res; hdlr = &l3mdev_handlers[l3type]; spin_lock(&l3mdev_lock); if (hdlr->dev_lookup) { res = -EBUSY; goto unlock; } hdlr->dev_lookup = fn; res = 0; unlock: spin_unlock(&l3mdev_lock); return res; } EXPORT_SYMBOL_GPL(l3mdev_table_lookup_register); void l3mdev_table_lookup_unregister(enum l3mdev_type l3type, lookup_by_table_id_t fn) { struct l3mdev_handler *hdlr; if (l3mdev_check_type(l3type)) return; hdlr = &l3mdev_handlers[l3type]; spin_lock(&l3mdev_lock); if (hdlr->dev_lookup == fn) hdlr->dev_lookup = NULL; spin_unlock(&l3mdev_lock); } EXPORT_SYMBOL_GPL(l3mdev_table_lookup_unregister); int l3mdev_ifindex_lookup_by_table_id(enum l3mdev_type l3type, struct net *net, u32 table_id) { lookup_by_table_id_t lookup; struct l3mdev_handler *hdlr; int ifindex = -EINVAL; int res; res = l3mdev_check_type(l3type); if (res) return res; hdlr = &l3mdev_handlers[l3type]; spin_lock(&l3mdev_lock); lookup = hdlr->dev_lookup; if (!lookup) goto unlock; ifindex = lookup(net, table_id); unlock: spin_unlock(&l3mdev_lock); return ifindex; } EXPORT_SYMBOL_GPL(l3mdev_ifindex_lookup_by_table_id); /** * l3mdev_master_ifindex_rcu - get index of L3 master device * @dev: targeted interface */ int l3mdev_master_ifindex_rcu(const struct net_device *dev) { int ifindex = 0; if (!dev) return 0; if (netif_is_l3_master(dev)) { ifindex = dev->ifindex; } else if (netif_is_l3_slave(dev)) { struct net_device *master; struct net_device *_dev = (struct net_device *)dev; /* netdev_master_upper_dev_get_rcu calls * list_first_or_null_rcu to walk the upper dev list. * list_first_or_null_rcu does not handle a const arg. We aren't * making changes, just want the master device from that list so * typecast to remove the const */ master = netdev_master_upper_dev_get_rcu(_dev); if (master) ifindex = master->ifindex; } return ifindex; } EXPORT_SYMBOL_GPL(l3mdev_master_ifindex_rcu); /** * l3mdev_master_upper_ifindex_by_index_rcu - get index of upper l3 master * device * @net: network namespace for device index lookup * @ifindex: targeted interface */ int l3mdev_master_upper_ifindex_by_index_rcu(struct net *net, int ifindex) { struct net_device *dev; dev = dev_get_by_index_rcu(net, ifindex); while (dev && !netif_is_l3_master(dev)) dev = netdev_master_upper_dev_get_rcu(dev); return dev ? dev->ifindex : 0; } EXPORT_SYMBOL_GPL(l3mdev_master_upper_ifindex_by_index_rcu); /** * l3mdev_fib_table_rcu - get FIB table id associated with an L3 * master interface * @dev: targeted interface */ u32 l3mdev_fib_table_rcu(const struct net_device *dev) { u32 tb_id = 0; if (!dev) return 0; if (netif_is_l3_master(dev)) { if (dev->l3mdev_ops->l3mdev_fib_table) tb_id = dev->l3mdev_ops->l3mdev_fib_table(dev); } else if (netif_is_l3_slave(dev)) { /* Users of netdev_master_upper_dev_get_rcu need non-const, * but current inet_*type functions take a const */ struct net_device *_dev = (struct net_device *) dev; const struct net_device *master; master = netdev_master_upper_dev_get_rcu(_dev); if (master && master->l3mdev_ops->l3mdev_fib_table) tb_id = master->l3mdev_ops->l3mdev_fib_table(master); } return tb_id; } EXPORT_SYMBOL_GPL(l3mdev_fib_table_rcu); u32 l3mdev_fib_table_by_index(struct net *net, int ifindex) { struct net_device *dev; u32 tb_id = 0; if (!ifindex) return 0; rcu_read_lock(); dev = dev_get_by_index_rcu(net, ifindex); if (dev) tb_id = l3mdev_fib_table_rcu(dev); rcu_read_unlock(); return tb_id; } EXPORT_SYMBOL_GPL(l3mdev_fib_table_by_index); /** * l3mdev_link_scope_lookup - IPv6 route lookup based on flow for link * local and multicast addresses * @net: network namespace for device index lookup * @fl6: IPv6 flow struct for lookup * This function does not hold refcnt on the returned dst. * Caller must hold rcu_read_lock(). */ struct dst_entry *l3mdev_link_scope_lookup(struct net *net, struct flowi6 *fl6) { struct dst_entry *dst = NULL; struct net_device *dev; WARN_ON_ONCE(!rcu_read_lock_held()); if (fl6->flowi6_oif) { dev = dev_get_by_index_rcu(net, fl6->flowi6_oif); if (dev && netif_is_l3_slave(dev)) dev = netdev_master_upper_dev_get_rcu(dev); if (dev && netif_is_l3_master(dev) && dev->l3mdev_ops->l3mdev_link_scope_lookup) dst = dev->l3mdev_ops->l3mdev_link_scope_lookup(dev, fl6); } return dst; } EXPORT_SYMBOL_GPL(l3mdev_link_scope_lookup); /** * l3mdev_fib_rule_match - Determine if flowi references an * L3 master device * @net: network namespace for device index lookup * @fl: flow struct * @arg: store the table the rule matched with here */ int l3mdev_fib_rule_match(struct net *net, struct flowi *fl, struct fib_lookup_arg *arg) { struct net_device *dev; int rc = 0; /* update flow ensures flowi_l3mdev is set when relevant */ if (!fl->flowi_l3mdev) return 0; rcu_read_lock(); dev = dev_get_by_index_rcu(net, fl->flowi_l3mdev); if (dev && netif_is_l3_master(dev) && dev->l3mdev_ops->l3mdev_fib_table) { arg->table = dev->l3mdev_ops->l3mdev_fib_table(dev); rc = 1; } rcu_read_unlock(); return rc; } void l3mdev_update_flow(struct net *net, struct flowi *fl) { struct net_device *dev; rcu_read_lock(); if (fl->flowi_oif) { dev = dev_get_by_index_rcu(net, fl->flowi_oif); if (dev) { if (!fl->flowi_l3mdev) fl->flowi_l3mdev = l3mdev_master_ifindex_rcu(dev); /* oif set to L3mdev directs lookup to its table; * reset to avoid oif match in fib_lookup */ if (netif_is_l3_master(dev)) fl->flowi_oif = 0; goto out; } } if (fl->flowi_iif > LOOPBACK_IFINDEX && !fl->flowi_l3mdev) { dev = dev_get_by_index_rcu(net, fl->flowi_iif); if (dev) fl->flowi_l3mdev = l3mdev_master_ifindex_rcu(dev); } out: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(l3mdev_update_flow); |
50 50 139 137 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 | // SPDX-License-Identifier: GPL-2.0-or-later /* * KVM paravirt_ops implementation * * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright IBM Corporation, 2007 * Authors: Anthony Liguori <aliguori@us.ibm.com> */ #define pr_fmt(fmt) "kvm-guest: " fmt #include <linux/context_tracking.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/kvm_para.h> #include <linux/cpu.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/hardirq.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/hash.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/kprobes.h> #include <linux/nmi.h> #include <linux/swait.h> #include <linux/syscore_ops.h> #include <linux/cc_platform.h> #include <linux/efi.h> #include <asm/timer.h> #include <asm/cpu.h> #include <asm/traps.h> #include <asm/desc.h> #include <asm/tlbflush.h> #include <asm/apic.h> #include <asm/apicdef.h> #include <asm/hypervisor.h> #include <asm/tlb.h> #include <asm/cpuidle_haltpoll.h> #include <asm/ptrace.h> #include <asm/reboot.h> #include <asm/svm.h> #include <asm/e820/api.h> DEFINE_STATIC_KEY_FALSE_RO(kvm_async_pf_enabled); static int kvmapf = 1; static int __init parse_no_kvmapf(char *arg) { kvmapf = 0; return 0; } early_param("no-kvmapf", parse_no_kvmapf); static int steal_acc = 1; static int __init parse_no_stealacc(char *arg) { steal_acc = 0; return 0; } early_param("no-steal-acc", parse_no_stealacc); static DEFINE_PER_CPU_READ_MOSTLY(bool, async_pf_enabled); static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible; static int has_steal_clock = 0; static int has_guest_poll = 0; /* * No need for any "IO delay" on KVM */ static void kvm_io_delay(void) { } #define KVM_TASK_SLEEP_HASHBITS 8 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) struct kvm_task_sleep_node { struct hlist_node link; struct swait_queue_head wq; u32 token; int cpu; }; static struct kvm_task_sleep_head { raw_spinlock_t lock; struct hlist_head list; } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, u32 token) { struct hlist_node *p; hlist_for_each(p, &b->list) { struct kvm_task_sleep_node *n = hlist_entry(p, typeof(*n), link); if (n->token == token) return n; } return NULL; } static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n) { u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; struct kvm_task_sleep_node *e; raw_spin_lock(&b->lock); e = _find_apf_task(b, token); if (e) { /* dummy entry exist -> wake up was delivered ahead of PF */ hlist_del(&e->link); raw_spin_unlock(&b->lock); kfree(e); return false; } n->token = token; n->cpu = smp_processor_id(); init_swait_queue_head(&n->wq); hlist_add_head(&n->link, &b->list); raw_spin_unlock(&b->lock); return true; } /* * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled * @token: Token to identify the sleep node entry * * Invoked from the async pagefault handling code or from the VM exit page * fault handler. In both cases RCU is watching. */ void kvm_async_pf_task_wait_schedule(u32 token) { struct kvm_task_sleep_node n; DECLARE_SWAITQUEUE(wait); lockdep_assert_irqs_disabled(); if (!kvm_async_pf_queue_task(token, &n)) return; for (;;) { prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); if (hlist_unhashed(&n.link)) break; local_irq_enable(); schedule(); local_irq_disable(); } finish_swait(&n.wq, &wait); } EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule); static void apf_task_wake_one(struct kvm_task_sleep_node *n) { hlist_del_init(&n->link); if (swq_has_sleeper(&n->wq)) swake_up_one(&n->wq); } static void apf_task_wake_all(void) { int i; for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; struct kvm_task_sleep_node *n; struct hlist_node *p, *next; raw_spin_lock(&b->lock); hlist_for_each_safe(p, next, &b->list) { n = hlist_entry(p, typeof(*n), link); if (n->cpu == smp_processor_id()) apf_task_wake_one(n); } raw_spin_unlock(&b->lock); } } void kvm_async_pf_task_wake(u32 token) { u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; struct kvm_task_sleep_node *n, *dummy = NULL; if (token == ~0) { apf_task_wake_all(); return; } again: raw_spin_lock(&b->lock); n = _find_apf_task(b, token); if (!n) { /* * Async #PF not yet handled, add a dummy entry for the token. * Allocating the token must be down outside of the raw lock * as the allocator is preemptible on PREEMPT_RT kernels. */ if (!dummy) { raw_spin_unlock(&b->lock); dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC); /* * Continue looping on allocation failure, eventually * the async #PF will be handled and allocating a new * node will be unnecessary. */ if (!dummy) cpu_relax(); /* * Recheck for async #PF completion before enqueueing * the dummy token to avoid duplicate list entries. */ goto again; } dummy->token = token; dummy->cpu = smp_processor_id(); init_swait_queue_head(&dummy->wq); hlist_add_head(&dummy->link, &b->list); dummy = NULL; } else { apf_task_wake_one(n); } raw_spin_unlock(&b->lock); /* A dummy token might be allocated and ultimately not used. */ kfree(dummy); } EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); noinstr u32 kvm_read_and_reset_apf_flags(void) { u32 flags = 0; if (__this_cpu_read(async_pf_enabled)) { flags = __this_cpu_read(apf_reason.flags); __this_cpu_write(apf_reason.flags, 0); } return flags; } EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags); noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token) { u32 flags = kvm_read_and_reset_apf_flags(); irqentry_state_t state; if (!flags) return false; state = irqentry_enter(regs); instrumentation_begin(); /* * If the host managed to inject an async #PF into an interrupt * disabled region, then die hard as this is not going to end well * and the host side is seriously broken. */ if (unlikely(!(regs->flags & X86_EFLAGS_IF))) panic("Host injected async #PF in interrupt disabled region\n"); if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { if (unlikely(!(user_mode(regs)))) panic("Host injected async #PF in kernel mode\n"); /* Page is swapped out by the host. */ kvm_async_pf_task_wait_schedule(token); } else { WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags); } instrumentation_end(); irqentry_exit(regs, state); return true; } DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt) { struct pt_regs *old_regs = set_irq_regs(regs); u32 token; apic_eoi(); inc_irq_stat(irq_hv_callback_count); if (__this_cpu_read(async_pf_enabled)) { token = __this_cpu_read(apf_reason.token); kvm_async_pf_task_wake(token); __this_cpu_write(apf_reason.token, 0); wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1); } set_irq_regs(old_regs); } static void __init paravirt_ops_setup(void) { pv_info.name = "KVM"; if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) pv_ops.cpu.io_delay = kvm_io_delay; #ifdef CONFIG_X86_IO_APIC no_timer_check = 1; #endif } static void kvm_register_steal_time(void) { int cpu = smp_processor_id(); struct kvm_steal_time *st = &per_cpu(steal_time, cpu); if (!has_steal_clock) return; wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); pr_debug("stealtime: cpu %d, msr %llx\n", cpu, (unsigned long long) slow_virt_to_phys(st)); } static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; static notrace __maybe_unused void kvm_guest_apic_eoi_write(void) { /** * This relies on __test_and_clear_bit to modify the memory * in a way that is atomic with respect to the local CPU. * The hypervisor only accesses this memory from the local CPU so * there's no need for lock or memory barriers. * An optimization barrier is implied in apic write. */ if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) return; apic_native_eoi(); } static void kvm_guest_cpu_init(void) { if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { u64 pa; WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled)); pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR); wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); __this_cpu_write(async_pf_enabled, true); pr_debug("setup async PF for cpu %d\n", smp_processor_id()); } if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { unsigned long pa; /* Size alignment is implied but just to make it explicit. */ BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); __this_cpu_write(kvm_apic_eoi, 0); pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) | KVM_MSR_ENABLED; wrmsrl(MSR_KVM_PV_EOI_EN, pa); } if (has_steal_clock) kvm_register_steal_time(); } static void kvm_pv_disable_apf(void) { if (!__this_cpu_read(async_pf_enabled)) return; wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); __this_cpu_write(async_pf_enabled, false); pr_debug("disable async PF for cpu %d\n", smp_processor_id()); } static void kvm_disable_steal_time(void) { if (!has_steal_clock) return; wrmsr(MSR_KVM_STEAL_TIME, 0, 0); } static u64 kvm_steal_clock(int cpu) { u64 steal; struct kvm_steal_time *src; int version; src = &per_cpu(steal_time, cpu); do { version = src->version; virt_rmb(); steal = src->steal; virt_rmb(); } while ((version & 1) || (version != src->version)); return steal; } static inline void __set_percpu_decrypted(void *ptr, unsigned long size) { early_set_memory_decrypted((unsigned long) ptr, size); } /* * Iterate through all possible CPUs and map the memory region pointed * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. * * Note: we iterate through all possible CPUs to ensure that CPUs * hotplugged will have their per-cpu variable already mapped as * decrypted. */ static void __init sev_map_percpu_data(void) { int cpu; if (cc_vendor != CC_VENDOR_AMD || !cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) return; for_each_possible_cpu(cpu) { __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); } } static void kvm_guest_cpu_offline(bool shutdown) { kvm_disable_steal_time(); if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) wrmsrl(MSR_KVM_PV_EOI_EN, 0); if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) wrmsrl(MSR_KVM_MIGRATION_CONTROL, 0); kvm_pv_disable_apf(); if (!shutdown) apf_task_wake_all(); kvmclock_disable(); } static int kvm_cpu_online(unsigned int cpu) { unsigned long flags; local_irq_save(flags); kvm_guest_cpu_init(); local_irq_restore(flags); return 0; } #ifdef CONFIG_SMP static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask); static bool pv_tlb_flush_supported(void) { return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && !kvm_para_has_hint(KVM_HINTS_REALTIME) && kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) && !boot_cpu_has(X86_FEATURE_MWAIT) && (num_possible_cpus() != 1)); } static bool pv_ipi_supported(void) { return (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI) && (num_possible_cpus() != 1)); } static bool pv_sched_yield_supported(void) { return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) && !kvm_para_has_hint(KVM_HINTS_REALTIME) && kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) && !boot_cpu_has(X86_FEATURE_MWAIT) && (num_possible_cpus() != 1)); } #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) static void __send_ipi_mask(const struct cpumask *mask, int vector) { unsigned long flags; int cpu, min = 0, max = 0; #ifdef CONFIG_X86_64 __uint128_t ipi_bitmap = 0; #else u64 ipi_bitmap = 0; #endif u32 apic_id, icr; long ret; if (cpumask_empty(mask)) return; local_irq_save(flags); switch (vector) { default: icr = APIC_DM_FIXED | vector; break; case NMI_VECTOR: icr = APIC_DM_NMI; break; } for_each_cpu(cpu, mask) { apic_id = per_cpu(x86_cpu_to_apicid, cpu); if (!ipi_bitmap) { min = max = apic_id; } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { ipi_bitmap <<= min - apic_id; min = apic_id; } else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) { max = apic_id < max ? max : apic_id; } else { ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", ret); min = max = apic_id; ipi_bitmap = 0; } __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); } if (ipi_bitmap) { ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", ret); } local_irq_restore(flags); } static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) { __send_ipi_mask(mask, vector); } static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); const struct cpumask *local_mask; cpumask_copy(new_mask, mask); cpumask_clear_cpu(this_cpu, new_mask); local_mask = new_mask; __send_ipi_mask(local_mask, vector); } static int __init setup_efi_kvm_sev_migration(void) { efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled"; efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID; efi_status_t status; unsigned long size; bool enabled; if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) || !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) return 0; if (!efi_enabled(EFI_BOOT)) return 0; if (!efi_enabled(EFI_RUNTIME_SERVICES)) { pr_info("%s : EFI runtime services are not enabled\n", __func__); return 0; } size = sizeof(enabled); /* Get variable contents into buffer */ status = efi.get_variable(efi_sev_live_migration_enabled, &efi_variable_guid, NULL, &size, &enabled); if (status == EFI_NOT_FOUND) { pr_info("%s : EFI live migration variable not found\n", __func__); return 0; } if (status != EFI_SUCCESS) { pr_info("%s : EFI variable retrieval failed\n", __func__); return 0; } if (enabled == 0) { pr_info("%s: live migration disabled in EFI\n", __func__); return 0; } pr_info("%s : live migration enabled in EFI\n", __func__); wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY); return 1; } late_initcall(setup_efi_kvm_sev_migration); /* * Set the IPI entry points */ static __init void kvm_setup_pv_ipi(void) { apic_update_callback(send_IPI_mask, kvm_send_ipi_mask); apic_update_callback(send_IPI_mask_allbutself, kvm_send_ipi_mask_allbutself); pr_info("setup PV IPIs\n"); } static void kvm_smp_send_call_func_ipi(const struct cpumask *mask) { int cpu; native_send_call_func_ipi(mask); /* Make sure other vCPUs get a chance to run if they need to. */ for_each_cpu(cpu, mask) { if (!idle_cpu(cpu) && vcpu_is_preempted(cpu)) { kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu)); break; } } } static void kvm_flush_tlb_multi(const struct cpumask *cpumask, const struct flush_tlb_info *info) { u8 state; int cpu; struct kvm_steal_time *src; struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); cpumask_copy(flushmask, cpumask); /* * We have to call flush only on online vCPUs. And * queue flush_on_enter for pre-empted vCPUs */ for_each_cpu(cpu, flushmask) { /* * The local vCPU is never preempted, so we do not explicitly * skip check for local vCPU - it will never be cleared from * flushmask. */ src = &per_cpu(steal_time, cpu); state = READ_ONCE(src->preempted); if ((state & KVM_VCPU_PREEMPTED)) { if (try_cmpxchg(&src->preempted, &state, state | KVM_VCPU_FLUSH_TLB)) __cpumask_clear_cpu(cpu, flushmask); } } native_flush_tlb_multi(flushmask, info); } static __init int kvm_alloc_cpumask(void) { int cpu; if (!kvm_para_available() || nopv) return 0; if (pv_tlb_flush_supported() || pv_ipi_supported()) for_each_possible_cpu(cpu) { zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu), GFP_KERNEL, cpu_to_node(cpu)); } return 0; } arch_initcall(kvm_alloc_cpumask); static void __init kvm_smp_prepare_boot_cpu(void) { /* * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() * shares the guest physical address with the hypervisor. */ sev_map_percpu_data(); kvm_guest_cpu_init(); native_smp_prepare_boot_cpu(); kvm_spinlock_init(); } static int kvm_cpu_down_prepare(unsigned int cpu) { unsigned long flags; local_irq_save(flags); kvm_guest_cpu_offline(false); local_irq_restore(flags); return 0; } #endif static int kvm_suspend(void) { u64 val = 0; kvm_guest_cpu_offline(false); #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) rdmsrl(MSR_KVM_POLL_CONTROL, val); has_guest_poll = !(val & 1); #endif return 0; } static void kvm_resume(void) { kvm_cpu_online(raw_smp_processor_id()); #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll) wrmsrl(MSR_KVM_POLL_CONTROL, 0); #endif } static struct syscore_ops kvm_syscore_ops = { .suspend = kvm_suspend, .resume = kvm_resume, }; static void kvm_pv_guest_cpu_reboot(void *unused) { kvm_guest_cpu_offline(true); } static int kvm_pv_reboot_notify(struct notifier_block *nb, unsigned long code, void *unused) { if (code == SYS_RESTART) on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); return NOTIFY_DONE; } static struct notifier_block kvm_pv_reboot_nb = { .notifier_call = kvm_pv_reboot_notify, }; /* * After a PV feature is registered, the host will keep writing to the * registered memory location. If the guest happens to shutdown, this memory * won't be valid. In cases like kexec, in which you install a new kernel, this * means a random memory location will be kept being written. */ #ifdef CONFIG_CRASH_DUMP static void kvm_crash_shutdown(struct pt_regs *regs) { kvm_guest_cpu_offline(true); native_machine_crash_shutdown(regs); } #endif #if defined(CONFIG_X86_32) || !defined(CONFIG_SMP) bool __kvm_vcpu_is_preempted(long cpu); __visible bool __kvm_vcpu_is_preempted(long cpu) { struct kvm_steal_time *src = &per_cpu(steal_time, cpu); return !!(src->preempted & KVM_VCPU_PREEMPTED); } PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); #else #include <asm/asm-offsets.h> extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); /* * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and * restoring to/from the stack. */ #define PV_VCPU_PREEMPTED_ASM \ "movq __per_cpu_offset(,%rdi,8), %rax\n\t" \ "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax)\n\t" \ "setne %al\n\t" DEFINE_ASM_FUNC(__raw_callee_save___kvm_vcpu_is_preempted, PV_VCPU_PREEMPTED_ASM, .text); #endif static void __init kvm_guest_init(void) { int i; paravirt_ops_setup(); register_reboot_notifier(&kvm_pv_reboot_nb); for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) raw_spin_lock_init(&async_pf_sleepers[i].lock); if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { has_steal_clock = 1; static_call_update(pv_steal_clock, kvm_steal_clock); pv_ops.lock.vcpu_is_preempted = PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); } if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) apic_update_callback(eoi, kvm_guest_apic_eoi_write); if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { static_branch_enable(&kvm_async_pf_enabled); sysvec_install(HYPERVISOR_CALLBACK_VECTOR, sysvec_kvm_asyncpf_interrupt); } #ifdef CONFIG_SMP if (pv_tlb_flush_supported()) { pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi; pv_ops.mmu.tlb_remove_table = tlb_remove_table; pr_info("KVM setup pv remote TLB flush\n"); } smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; if (pv_sched_yield_supported()) { smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi; pr_info("setup PV sched yield\n"); } if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", kvm_cpu_online, kvm_cpu_down_prepare) < 0) pr_err("failed to install cpu hotplug callbacks\n"); #else sev_map_percpu_data(); kvm_guest_cpu_init(); #endif #ifdef CONFIG_CRASH_DUMP machine_ops.crash_shutdown = kvm_crash_shutdown; #endif register_syscore_ops(&kvm_syscore_ops); /* * Hard lockup detection is enabled by default. Disable it, as guests * can get false positives too easily, for example if the host is * overcommitted. */ hardlockup_detector_disable(); } static noinline uint32_t __kvm_cpuid_base(void) { if (boot_cpu_data.cpuid_level < 0) return 0; /* So we don't blow up on old processors */ if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) return hypervisor_cpuid_base(KVM_SIGNATURE, 0); return 0; } static inline uint32_t kvm_cpuid_base(void) { static int kvm_cpuid_base = -1; if (kvm_cpuid_base == -1) kvm_cpuid_base = __kvm_cpuid_base(); return kvm_cpuid_base; } bool kvm_para_available(void) { return kvm_cpuid_base() != 0; } EXPORT_SYMBOL_GPL(kvm_para_available); unsigned int kvm_arch_para_features(void) { return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); } unsigned int kvm_arch_para_hints(void) { return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); } EXPORT_SYMBOL_GPL(kvm_arch_para_hints); static uint32_t __init kvm_detect(void) { return kvm_cpuid_base(); } static void __init kvm_apic_init(void) { #ifdef CONFIG_SMP if (pv_ipi_supported()) kvm_setup_pv_ipi(); #endif } static bool __init kvm_msi_ext_dest_id(void) { return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID); } static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc) { kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages, KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K); } static void __init kvm_init_platform(void) { if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) && kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) { unsigned long nr_pages; int i; pv_ops.mmu.notify_page_enc_status_changed = kvm_sev_hc_page_enc_status; /* * Reset the host's shared pages list related to kernel * specific page encryption status settings before we load a * new kernel by kexec. Reset the page encryption status * during early boot instead of just before kexec to avoid SMP * races during kvm_pv_guest_cpu_reboot(). * NOTE: We cannot reset the complete shared pages list * here as we need to retain the UEFI/OVMF firmware * specific settings. */ for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; if (entry->type != E820_TYPE_RAM) continue; nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE); kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr, nr_pages, KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K); } /* * Ensure that _bss_decrypted section is marked as decrypted in the * shared pages list. */ early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted, __end_bss_decrypted - __start_bss_decrypted, 0); /* * If not booted using EFI, enable Live migration support. */ if (!efi_enabled(EFI_BOOT)) wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY); } kvmclock_init(); x86_platform.apic_post_init = kvm_apic_init; } #if defined(CONFIG_AMD_MEM_ENCRYPT) static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs) { /* RAX and CPL are already in the GHCB */ ghcb_set_rbx(ghcb, regs->bx); ghcb_set_rcx(ghcb, regs->cx); ghcb_set_rdx(ghcb, regs->dx); ghcb_set_rsi(ghcb, regs->si); } static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs) { /* No checking of the return state needed */ return true; } #endif const __initconst struct hypervisor_x86 x86_hyper_kvm = { .name = "KVM", .detect = kvm_detect, .type = X86_HYPER_KVM, .init.guest_late_init = kvm_guest_init, .init.x2apic_available = kvm_para_available, .init.msi_ext_dest_id = kvm_msi_ext_dest_id, .init.init_platform = kvm_init_platform, #if defined(CONFIG_AMD_MEM_ENCRYPT) .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare, .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish, #endif }; static __init int activate_jump_labels(void) { if (has_steal_clock) { static_key_slow_inc(¶virt_steal_enabled); if (steal_acc) static_key_slow_inc(¶virt_steal_rq_enabled); } return 0; } arch_initcall(activate_jump_labels); #ifdef CONFIG_PARAVIRT_SPINLOCKS /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ static void kvm_kick_cpu(int cpu) { unsigned long flags = 0; u32 apicid; apicid = per_cpu(x86_cpu_to_apicid, cpu); kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); } #include <asm/qspinlock.h> static void kvm_wait(u8 *ptr, u8 val) { if (in_nmi()) return; /* * halt until it's our turn and kicked. Note that we do safe halt * for irq enabled case to avoid hang when lock info is overwritten * in irq spinlock slowpath and no spurious interrupt occur to save us. */ if (irqs_disabled()) { if (READ_ONCE(*ptr) == val) halt(); } else { local_irq_disable(); /* safe_halt() will enable IRQ */ if (READ_ONCE(*ptr) == val) safe_halt(); else local_irq_enable(); } } /* * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. */ void __init kvm_spinlock_init(void) { /* * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is * preferred over native qspinlock when vCPU is preempted. */ if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) { pr_info("PV spinlocks disabled, no host support\n"); return; } /* * Disable PV spinlocks and use native qspinlock when dedicated pCPUs * are available. */ if (kvm_para_has_hint(KVM_HINTS_REALTIME)) { pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n"); goto out; } if (num_possible_cpus() == 1) { pr_info("PV spinlocks disabled, single CPU\n"); goto out; } if (nopvspin) { pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n"); goto out; } pr_info("PV spinlocks enabled\n"); __pv_init_lock_hash(); pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; pv_ops.lock.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock); pv_ops.lock.wait = kvm_wait; pv_ops.lock.kick = kvm_kick_cpu; /* * When PV spinlock is enabled which is preferred over * virt_spin_lock(), virt_spin_lock_key's value is meaningless. * Just disable it anyway. */ out: static_branch_disable(&virt_spin_lock_key); } #endif /* CONFIG_PARAVIRT_SPINLOCKS */ #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL static void kvm_disable_host_haltpoll(void *i) { wrmsrl(MSR_KVM_POLL_CONTROL, 0); } static void kvm_enable_host_haltpoll(void *i) { wrmsrl(MSR_KVM_POLL_CONTROL, 1); } void arch_haltpoll_enable(unsigned int cpu) { if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) { pr_err_once("host does not support poll control\n"); pr_err_once("host upgrade recommended\n"); return; } /* Enable guest halt poll disables host halt poll */ smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1); } EXPORT_SYMBOL_GPL(arch_haltpoll_enable); void arch_haltpoll_disable(unsigned int cpu) { if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) return; /* Disable guest halt poll enables host halt poll */ smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1); } EXPORT_SYMBOL_GPL(arch_haltpoll_disable); #endif |
4 3 4 4 1 4 1 4 4 1 1 3 2 2 1 1 1 3 1 1 3 3 3 2 2 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | // SPDX-License-Identifier: GPL-2.0-only #include "netlink.h" #include "common.h" #include "bitset.h" struct fec_req_info { struct ethnl_req_info base; }; struct fec_reply_data { struct ethnl_reply_data base; __ETHTOOL_DECLARE_LINK_MODE_MASK(fec_link_modes); u32 active_fec; u8 fec_auto; struct fec_stat_grp { u64 stats[1 + ETHTOOL_MAX_LANES]; u8 cnt; } corr, uncorr, corr_bits; }; #define FEC_REPDATA(__reply_base) \ container_of(__reply_base, struct fec_reply_data, base) #define ETHTOOL_FEC_MASK ((ETHTOOL_FEC_LLRS << 1) - 1) const struct nla_policy ethnl_fec_get_policy[ETHTOOL_A_FEC_HEADER + 1] = { [ETHTOOL_A_FEC_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy_stats), }; static void ethtool_fec_to_link_modes(u32 fec, unsigned long *link_modes, u8 *fec_auto) { if (fec_auto) *fec_auto = !!(fec & ETHTOOL_FEC_AUTO); if (fec & ETHTOOL_FEC_OFF) __set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, link_modes); if (fec & ETHTOOL_FEC_RS) __set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, link_modes); if (fec & ETHTOOL_FEC_BASER) __set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, link_modes); if (fec & ETHTOOL_FEC_LLRS) __set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, link_modes); } static int ethtool_link_modes_to_fecparam(struct ethtool_fecparam *fec, unsigned long *link_modes, u8 fec_auto) { memset(fec, 0, sizeof(*fec)); if (fec_auto) fec->fec |= ETHTOOL_FEC_AUTO; if (__test_and_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, link_modes)) fec->fec |= ETHTOOL_FEC_OFF; if (__test_and_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, link_modes)) fec->fec |= ETHTOOL_FEC_RS; if (__test_and_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, link_modes)) fec->fec |= ETHTOOL_FEC_BASER; if (__test_and_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, link_modes)) fec->fec |= ETHTOOL_FEC_LLRS; if (!bitmap_empty(link_modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) return -EINVAL; return 0; } static void fec_stats_recalc(struct fec_stat_grp *grp, struct ethtool_fec_stat *stats) { int i; if (stats->lanes[0] == ETHTOOL_STAT_NOT_SET) { grp->stats[0] = stats->total; grp->cnt = stats->total != ETHTOOL_STAT_NOT_SET; return; } grp->cnt = 1; grp->stats[0] = 0; for (i = 0; i < ETHTOOL_MAX_LANES; i++) { if (stats->lanes[i] == ETHTOOL_STAT_NOT_SET) break; grp->stats[0] += stats->lanes[i]; grp->stats[grp->cnt++] = stats->lanes[i]; } } static int fec_prepare_data(const struct ethnl_req_info *req_base, struct ethnl_reply_data *reply_base, const struct genl_info *info) { __ETHTOOL_DECLARE_LINK_MODE_MASK(active_fec_modes) = {}; struct fec_reply_data *data = FEC_REPDATA(reply_base); struct net_device *dev = reply_base->dev; struct ethtool_fecparam fec = {}; int ret; if (!dev->ethtool_ops->get_fecparam) return -EOPNOTSUPP; ret = ethnl_ops_begin(dev); if (ret < 0) return ret; ret = dev->ethtool_ops->get_fecparam(dev, &fec); if (ret) goto out_complete; if (req_base->flags & ETHTOOL_FLAG_STATS && dev->ethtool_ops->get_fec_stats) { struct ethtool_fec_stats stats; ethtool_stats_init((u64 *)&stats, sizeof(stats) / 8); dev->ethtool_ops->get_fec_stats(dev, &stats); fec_stats_recalc(&data->corr, &stats.corrected_blocks); fec_stats_recalc(&data->uncorr, &stats.uncorrectable_blocks); fec_stats_recalc(&data->corr_bits, &stats.corrected_bits); } WARN_ON_ONCE(fec.reserved); ethtool_fec_to_link_modes(fec.fec, data->fec_link_modes, &data->fec_auto); ethtool_fec_to_link_modes(fec.active_fec, active_fec_modes, NULL); data->active_fec = find_first_bit(active_fec_modes, __ETHTOOL_LINK_MODE_MASK_NBITS); /* Don't report attr if no FEC mode set. Note that * ethtool_fecparam_to_link_modes() ignores NONE and AUTO. */ if (data->active_fec == __ETHTOOL_LINK_MODE_MASK_NBITS) data->active_fec = 0; out_complete: ethnl_ops_complete(dev); return ret; } static int fec_reply_size(const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct fec_reply_data *data = FEC_REPDATA(reply_base); int len = 0; int ret; ret = ethnl_bitset_size(data->fec_link_modes, NULL, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; len += ret; len += nla_total_size(sizeof(u8)) + /* _FEC_AUTO */ nla_total_size(sizeof(u32)); /* _FEC_ACTIVE */ if (req_base->flags & ETHTOOL_FLAG_STATS) len += 3 * nla_total_size_64bit(sizeof(u64) * (1 + ETHTOOL_MAX_LANES)); return len; } static int fec_put_stats(struct sk_buff *skb, const struct fec_reply_data *data) { struct nlattr *nest; nest = nla_nest_start(skb, ETHTOOL_A_FEC_STATS); if (!nest) return -EMSGSIZE; if (nla_put_64bit(skb, ETHTOOL_A_FEC_STAT_CORRECTED, sizeof(u64) * data->corr.cnt, data->corr.stats, ETHTOOL_A_FEC_STAT_PAD) || nla_put_64bit(skb, ETHTOOL_A_FEC_STAT_UNCORR, sizeof(u64) * data->uncorr.cnt, data->uncorr.stats, ETHTOOL_A_FEC_STAT_PAD) || nla_put_64bit(skb, ETHTOOL_A_FEC_STAT_CORR_BITS, sizeof(u64) * data->corr_bits.cnt, data->corr_bits.stats, ETHTOOL_A_FEC_STAT_PAD)) goto err_cancel; nla_nest_end(skb, nest); return 0; err_cancel: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int fec_fill_reply(struct sk_buff *skb, const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct fec_reply_data *data = FEC_REPDATA(reply_base); int ret; ret = ethnl_put_bitset(skb, ETHTOOL_A_FEC_MODES, data->fec_link_modes, NULL, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; if (nla_put_u8(skb, ETHTOOL_A_FEC_AUTO, data->fec_auto) || (data->active_fec && nla_put_u32(skb, ETHTOOL_A_FEC_ACTIVE, data->active_fec))) return -EMSGSIZE; if (req_base->flags & ETHTOOL_FLAG_STATS && fec_put_stats(skb, data)) return -EMSGSIZE; return 0; } /* FEC_SET */ const struct nla_policy ethnl_fec_set_policy[ETHTOOL_A_FEC_AUTO + 1] = { [ETHTOOL_A_FEC_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), [ETHTOOL_A_FEC_MODES] = { .type = NLA_NESTED }, [ETHTOOL_A_FEC_AUTO] = NLA_POLICY_MAX(NLA_U8, 1), }; static int ethnl_set_fec_validate(struct ethnl_req_info *req_info, struct genl_info *info) { const struct ethtool_ops *ops = req_info->dev->ethtool_ops; return ops->get_fecparam && ops->set_fecparam ? 1 : -EOPNOTSUPP; } static int ethnl_set_fec(struct ethnl_req_info *req_info, struct genl_info *info) { __ETHTOOL_DECLARE_LINK_MODE_MASK(fec_link_modes) = {}; struct net_device *dev = req_info->dev; struct nlattr **tb = info->attrs; struct ethtool_fecparam fec = {}; bool mod = false; u8 fec_auto; int ret; ret = dev->ethtool_ops->get_fecparam(dev, &fec); if (ret < 0) return ret; ethtool_fec_to_link_modes(fec.fec, fec_link_modes, &fec_auto); ret = ethnl_update_bitset(fec_link_modes, __ETHTOOL_LINK_MODE_MASK_NBITS, tb[ETHTOOL_A_FEC_MODES], link_mode_names, info->extack, &mod); if (ret < 0) return ret; ethnl_update_u8(&fec_auto, tb[ETHTOOL_A_FEC_AUTO], &mod); if (!mod) return 0; ret = ethtool_link_modes_to_fecparam(&fec, fec_link_modes, fec_auto); if (ret) { NL_SET_ERR_MSG_ATTR(info->extack, tb[ETHTOOL_A_FEC_MODES], "invalid FEC modes requested"); return ret; } if (!fec.fec) { NL_SET_ERR_MSG_ATTR(info->extack, tb[ETHTOOL_A_FEC_MODES], "no FEC modes set"); return -EINVAL; } ret = dev->ethtool_ops->set_fecparam(dev, &fec); return ret < 0 ? ret : 1; } const struct ethnl_request_ops ethnl_fec_request_ops = { .request_cmd = ETHTOOL_MSG_FEC_GET, .reply_cmd = ETHTOOL_MSG_FEC_GET_REPLY, .hdr_attr = ETHTOOL_A_FEC_HEADER, .req_info_size = sizeof(struct fec_req_info), .reply_data_size = sizeof(struct fec_reply_data), .prepare_data = fec_prepare_data, .reply_size = fec_reply_size, .fill_reply = fec_fill_reply, .set_validate = ethnl_set_fec_validate, .set = ethnl_set_fec, .set_ntf_cmd = ETHTOOL_MSG_FEC_NTF, }; |
9 9 9 18 2 2 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Mellanox Technologies. All rights reserved. * Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com> */ #include "devl_internal.h" struct devlink_sb { struct list_head list; unsigned int index; u32 size; u16 ingress_pools_count; u16 egress_pools_count; u16 ingress_tc_count; u16 egress_tc_count; }; static u16 devlink_sb_pool_count(struct devlink_sb *devlink_sb) { return devlink_sb->ingress_pools_count + devlink_sb->egress_pools_count; } static struct devlink_sb *devlink_sb_get_by_index(struct devlink *devlink, unsigned int sb_index) { struct devlink_sb *devlink_sb; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { if (devlink_sb->index == sb_index) return devlink_sb; } return NULL; } static bool devlink_sb_index_exists(struct devlink *devlink, unsigned int sb_index) { return devlink_sb_get_by_index(devlink, sb_index); } static struct devlink_sb *devlink_sb_get_from_attrs(struct devlink *devlink, struct nlattr **attrs) { if (attrs[DEVLINK_ATTR_SB_INDEX]) { u32 sb_index = nla_get_u32(attrs[DEVLINK_ATTR_SB_INDEX]); struct devlink_sb *devlink_sb; devlink_sb = devlink_sb_get_by_index(devlink, sb_index); if (!devlink_sb) return ERR_PTR(-ENODEV); return devlink_sb; } return ERR_PTR(-EINVAL); } static struct devlink_sb *devlink_sb_get_from_info(struct devlink *devlink, struct genl_info *info) { return devlink_sb_get_from_attrs(devlink, info->attrs); } static int devlink_sb_pool_index_get_from_attrs(struct devlink_sb *devlink_sb, struct nlattr **attrs, u16 *p_pool_index) { u16 val; if (!attrs[DEVLINK_ATTR_SB_POOL_INDEX]) return -EINVAL; val = nla_get_u16(attrs[DEVLINK_ATTR_SB_POOL_INDEX]); if (val >= devlink_sb_pool_count(devlink_sb)) return -EINVAL; *p_pool_index = val; return 0; } static int devlink_sb_pool_index_get_from_info(struct devlink_sb *devlink_sb, struct genl_info *info, u16 *p_pool_index) { return devlink_sb_pool_index_get_from_attrs(devlink_sb, info->attrs, p_pool_index); } static int devlink_sb_pool_type_get_from_attrs(struct nlattr **attrs, enum devlink_sb_pool_type *p_pool_type) { u8 val; if (!attrs[DEVLINK_ATTR_SB_POOL_TYPE]) return -EINVAL; val = nla_get_u8(attrs[DEVLINK_ATTR_SB_POOL_TYPE]); if (val != DEVLINK_SB_POOL_TYPE_INGRESS && val != DEVLINK_SB_POOL_TYPE_EGRESS) return -EINVAL; *p_pool_type = val; return 0; } static int devlink_sb_pool_type_get_from_info(struct genl_info *info, enum devlink_sb_pool_type *p_pool_type) { return devlink_sb_pool_type_get_from_attrs(info->attrs, p_pool_type); } static int devlink_sb_th_type_get_from_attrs(struct nlattr **attrs, enum devlink_sb_threshold_type *p_th_type) { u8 val; if (!attrs[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE]) return -EINVAL; val = nla_get_u8(attrs[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE]); if (val != DEVLINK_SB_THRESHOLD_TYPE_STATIC && val != DEVLINK_SB_THRESHOLD_TYPE_DYNAMIC) return -EINVAL; *p_th_type = val; return 0; } static int devlink_sb_th_type_get_from_info(struct genl_info *info, enum devlink_sb_threshold_type *p_th_type) { return devlink_sb_th_type_get_from_attrs(info->attrs, p_th_type); } static int devlink_sb_tc_index_get_from_attrs(struct devlink_sb *devlink_sb, struct nlattr **attrs, enum devlink_sb_pool_type pool_type, u16 *p_tc_index) { u16 val; if (!attrs[DEVLINK_ATTR_SB_TC_INDEX]) return -EINVAL; val = nla_get_u16(attrs[DEVLINK_ATTR_SB_TC_INDEX]); if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS && val >= devlink_sb->ingress_tc_count) return -EINVAL; if (pool_type == DEVLINK_SB_POOL_TYPE_EGRESS && val >= devlink_sb->egress_tc_count) return -EINVAL; *p_tc_index = val; return 0; } static int devlink_sb_tc_index_get_from_info(struct devlink_sb *devlink_sb, struct genl_info *info, enum devlink_sb_pool_type pool_type, u16 *p_tc_index) { return devlink_sb_tc_index_get_from_attrs(devlink_sb, info->attrs, pool_type, p_tc_index); } static int devlink_nl_sb_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_sb *devlink_sb, enum devlink_command cmd, u32 portid, u32 seq, int flags) { void *hdr; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_SIZE, devlink_sb->size)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_INGRESS_POOL_COUNT, devlink_sb->ingress_pools_count)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_EGRESS_POOL_COUNT, devlink_sb->egress_pools_count)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_INGRESS_TC_COUNT, devlink_sb->ingress_tc_count)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_EGRESS_TC_COUNT, devlink_sb->egress_tc_count)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int devlink_nl_sb_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_sb *devlink_sb; struct sk_buff *msg; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_fill(msg, devlink, devlink_sb, DEVLINK_CMD_SB_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_sb_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int idx = 0; int err = 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { if (idx < state->idx) { idx++; continue; } err = devlink_nl_sb_fill(msg, devlink, devlink_sb, DEVLINK_CMD_SB_NEW, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) { state->idx = idx; break; } idx++; } return err; } int devlink_nl_sb_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_get_dump_one); } static int devlink_nl_sb_pool_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_sb *devlink_sb, u16 pool_index, enum devlink_command cmd, u32 portid, u32 seq, int flags) { struct devlink_sb_pool_info pool_info; void *hdr; int err; err = devlink->ops->sb_pool_get(devlink, devlink_sb->index, pool_index, &pool_info); if (err) return err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_TYPE, pool_info.pool_type)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_POOL_SIZE, pool_info.size)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE, pool_info.threshold_type)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_POOL_CELL_SIZE, pool_info.cell_size)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int devlink_nl_sb_pool_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_sb *devlink_sb; struct sk_buff *msg; u16 pool_index; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (!devlink->ops->sb_pool_get) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_pool_fill(msg, devlink, devlink_sb, pool_index, DEVLINK_CMD_SB_POOL_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int __sb_pool_get_dumpit(struct sk_buff *msg, int start, int *p_idx, struct devlink *devlink, struct devlink_sb *devlink_sb, u32 portid, u32 seq, int flags) { u16 pool_count = devlink_sb_pool_count(devlink_sb); u16 pool_index; int err; for (pool_index = 0; pool_index < pool_count; pool_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_pool_fill(msg, devlink, devlink_sb, pool_index, DEVLINK_CMD_SB_POOL_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } return 0; } static int devlink_nl_sb_pool_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int err = 0; int idx = 0; if (!devlink->ops->sb_pool_get) return 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { err = __sb_pool_get_dumpit(msg, state->idx, &idx, devlink, devlink_sb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err == -EOPNOTSUPP) { err = 0; } else if (err) { state->idx = idx; break; } } return err; } int devlink_nl_sb_pool_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_pool_get_dump_one); } static int devlink_sb_pool_set(struct devlink *devlink, unsigned int sb_index, u16 pool_index, u32 size, enum devlink_sb_threshold_type threshold_type, struct netlink_ext_ack *extack) { const struct devlink_ops *ops = devlink->ops; if (ops->sb_pool_set) return ops->sb_pool_set(devlink, sb_index, pool_index, size, threshold_type, extack); return -EOPNOTSUPP; } int devlink_nl_sb_pool_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; enum devlink_sb_threshold_type threshold_type; struct devlink_sb *devlink_sb; u16 pool_index; u32 size; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; err = devlink_sb_th_type_get_from_info(info, &threshold_type); if (err) return err; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SB_POOL_SIZE)) return -EINVAL; size = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_POOL_SIZE]); return devlink_sb_pool_set(devlink, devlink_sb->index, pool_index, size, threshold_type, info->extack); } static int devlink_nl_sb_port_pool_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_port *devlink_port, struct devlink_sb *devlink_sb, u16 pool_index, enum devlink_command cmd, u32 portid, u32 seq, int flags) { const struct devlink_ops *ops = devlink->ops; u32 threshold; void *hdr; int err; err = ops->sb_port_pool_get(devlink_port, devlink_sb->index, pool_index, &threshold); if (err) return err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_THRESHOLD, threshold)) goto nla_put_failure; if (ops->sb_occ_port_pool_get) { u32 cur; u32 max; err = ops->sb_occ_port_pool_get(devlink_port, devlink_sb->index, pool_index, &cur, &max); if (err && err != -EOPNOTSUPP) goto sb_occ_get_failure; if (!err) { if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_CUR, cur)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_MAX, max)) goto nla_put_failure; } } genlmsg_end(msg, hdr); return 0; nla_put_failure: err = -EMSGSIZE; sb_occ_get_failure: genlmsg_cancel(msg, hdr); return err; } int devlink_nl_sb_port_pool_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = devlink_port->devlink; struct devlink_sb *devlink_sb; struct sk_buff *msg; u16 pool_index; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (!devlink->ops->sb_port_pool_get) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_port_pool_fill(msg, devlink, devlink_port, devlink_sb, pool_index, DEVLINK_CMD_SB_PORT_POOL_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int __sb_port_pool_get_dumpit(struct sk_buff *msg, int start, int *p_idx, struct devlink *devlink, struct devlink_sb *devlink_sb, u32 portid, u32 seq, int flags) { struct devlink_port *devlink_port; u16 pool_count = devlink_sb_pool_count(devlink_sb); unsigned long port_index; u16 pool_index; int err; xa_for_each(&devlink->ports, port_index, devlink_port) { for (pool_index = 0; pool_index < pool_count; pool_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_port_pool_fill(msg, devlink, devlink_port, devlink_sb, pool_index, DEVLINK_CMD_SB_PORT_POOL_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } } return 0; } static int devlink_nl_sb_port_pool_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int idx = 0; int err = 0; if (!devlink->ops->sb_port_pool_get) return 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { err = __sb_port_pool_get_dumpit(msg, state->idx, &idx, devlink, devlink_sb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err == -EOPNOTSUPP) { err = 0; } else if (err) { state->idx = idx; break; } } return err; } int devlink_nl_sb_port_pool_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_port_pool_get_dump_one); } static int devlink_sb_port_pool_set(struct devlink_port *devlink_port, unsigned int sb_index, u16 pool_index, u32 threshold, struct netlink_ext_ack *extack) { const struct devlink_ops *ops = devlink_port->devlink->ops; if (ops->sb_port_pool_set) return ops->sb_port_pool_set(devlink_port, sb_index, pool_index, threshold, extack); return -EOPNOTSUPP; } int devlink_nl_sb_port_pool_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = info->user_ptr[0]; struct devlink_sb *devlink_sb; u16 pool_index; u32 threshold; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SB_THRESHOLD)) return -EINVAL; threshold = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_THRESHOLD]); return devlink_sb_port_pool_set(devlink_port, devlink_sb->index, pool_index, threshold, info->extack); } static int devlink_nl_sb_tc_pool_bind_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_port *devlink_port, struct devlink_sb *devlink_sb, u16 tc_index, enum devlink_sb_pool_type pool_type, enum devlink_command cmd, u32 portid, u32 seq, int flags) { const struct devlink_ops *ops = devlink->ops; u16 pool_index; u32 threshold; void *hdr; int err; err = ops->sb_tc_pool_bind_get(devlink_port, devlink_sb->index, tc_index, pool_type, &pool_index, &threshold); if (err) return err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_TC_INDEX, tc_index)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_TYPE, pool_type)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_THRESHOLD, threshold)) goto nla_put_failure; if (ops->sb_occ_tc_port_bind_get) { u32 cur; u32 max; err = ops->sb_occ_tc_port_bind_get(devlink_port, devlink_sb->index, tc_index, pool_type, &cur, &max); if (err && err != -EOPNOTSUPP) return err; if (!err) { if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_CUR, cur)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_MAX, max)) goto nla_put_failure; } } genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int devlink_nl_sb_tc_pool_bind_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = devlink_port->devlink; struct devlink_sb *devlink_sb; struct sk_buff *msg; enum devlink_sb_pool_type pool_type; u16 tc_index; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_type_get_from_info(info, &pool_type); if (err) return err; err = devlink_sb_tc_index_get_from_info(devlink_sb, info, pool_type, &tc_index); if (err) return err; if (!devlink->ops->sb_tc_pool_bind_get) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port, devlink_sb, tc_index, pool_type, DEVLINK_CMD_SB_TC_POOL_BIND_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int __sb_tc_pool_bind_get_dumpit(struct sk_buff *msg, int start, int *p_idx, struct devlink *devlink, struct devlink_sb *devlink_sb, u32 portid, u32 seq, int flags) { struct devlink_port *devlink_port; unsigned long port_index; u16 tc_index; int err; xa_for_each(&devlink->ports, port_index, devlink_port) { for (tc_index = 0; tc_index < devlink_sb->ingress_tc_count; tc_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port, devlink_sb, tc_index, DEVLINK_SB_POOL_TYPE_INGRESS, DEVLINK_CMD_SB_TC_POOL_BIND_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } for (tc_index = 0; tc_index < devlink_sb->egress_tc_count; tc_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port, devlink_sb, tc_index, DEVLINK_SB_POOL_TYPE_EGRESS, DEVLINK_CMD_SB_TC_POOL_BIND_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } } return 0; } static int devlink_nl_sb_tc_pool_bind_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int idx = 0; int err = 0; if (!devlink->ops->sb_tc_pool_bind_get) return 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { err = __sb_tc_pool_bind_get_dumpit(msg, state->idx, &idx, devlink, devlink_sb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err == -EOPNOTSUPP) { err = 0; } else if (err) { state->idx = idx; break; } } return err; } int devlink_nl_sb_tc_pool_bind_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_tc_pool_bind_get_dump_one); } static int devlink_sb_tc_pool_bind_set(struct devlink_port *devlink_port, unsigned int sb_index, u16 tc_index, enum devlink_sb_pool_type pool_type, u16 pool_index, u32 threshold, struct netlink_ext_ack *extack) { const struct devlink_ops *ops = devlink_port->devlink->ops; if (ops->sb_tc_pool_bind_set) return ops->sb_tc_pool_bind_set(devlink_port, sb_index, tc_index, pool_type, pool_index, threshold, extack); return -EOPNOTSUPP; } int devlink_nl_sb_tc_pool_bind_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = info->user_ptr[0]; enum devlink_sb_pool_type pool_type; struct devlink_sb *devlink_sb; u16 tc_index; u16 pool_index; u32 threshold; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_type_get_from_info(info, &pool_type); if (err) return err; err = devlink_sb_tc_index_get_from_info(devlink_sb, info, pool_type, &tc_index); if (err) return err; err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SB_THRESHOLD)) return -EINVAL; threshold = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_THRESHOLD]); return devlink_sb_tc_pool_bind_set(devlink_port, devlink_sb->index, tc_index, pool_type, pool_index, threshold, info->extack); } int devlink_nl_sb_occ_snapshot_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const struct devlink_ops *ops = devlink->ops; struct devlink_sb *devlink_sb; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); if (ops->sb_occ_snapshot) return ops->sb_occ_snapshot(devlink, devlink_sb->index); return -EOPNOTSUPP; } int devlink_nl_sb_occ_max_clear_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const struct devlink_ops *ops = devlink->ops; struct devlink_sb *devlink_sb; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); if (ops->sb_occ_max_clear) return ops->sb_occ_max_clear(devlink, devlink_sb->index); return -EOPNOTSUPP; } int devl_sb_register(struct devlink *devlink, unsigned int sb_index, u32 size, u16 ingress_pools_count, u16 egress_pools_count, u16 ingress_tc_count, u16 egress_tc_count) { struct devlink_sb *devlink_sb; lockdep_assert_held(&devlink->lock); if (devlink_sb_index_exists(devlink, sb_index)) return -EEXIST; devlink_sb = kzalloc(sizeof(*devlink_sb), GFP_KERNEL); if (!devlink_sb) return -ENOMEM; devlink_sb->index = sb_index; devlink_sb->size = size; devlink_sb->ingress_pools_count = ingress_pools_count; devlink_sb->egress_pools_count = egress_pools_count; devlink_sb->ingress_tc_count = ingress_tc_count; devlink_sb->egress_tc_count = egress_tc_count; list_add_tail(&devlink_sb->list, &devlink->sb_list); return 0; } EXPORT_SYMBOL_GPL(devl_sb_register); int devlink_sb_register(struct devlink *devlink, unsigned int sb_index, u32 size, u16 ingress_pools_count, u16 egress_pools_count, u16 ingress_tc_count, u16 egress_tc_count) { int err; devl_lock(devlink); err = devl_sb_register(devlink, sb_index, size, ingress_pools_count, egress_pools_count, ingress_tc_count, egress_tc_count); devl_unlock(devlink); return err; } EXPORT_SYMBOL_GPL(devlink_sb_register); void devl_sb_unregister(struct devlink *devlink, unsigned int sb_index) { struct devlink_sb *devlink_sb; lockdep_assert_held(&devlink->lock); devlink_sb = devlink_sb_get_by_index(devlink, sb_index); WARN_ON(!devlink_sb); list_del(&devlink_sb->list); kfree(devlink_sb); } EXPORT_SYMBOL_GPL(devl_sb_unregister); void devlink_sb_unregister(struct devlink *devlink, unsigned int sb_index) { devl_lock(devlink); devl_sb_unregister(devlink, sb_index); devl_unlock(devlink); } EXPORT_SYMBOL_GPL(devlink_sb_unregister); |
3 71 70 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_ACT_API_H #define __NET_ACT_API_H /* * Public action API for classifiers/qdiscs */ #include <linux/refcount.h> #include <net/flow_offload.h> #include <net/sch_generic.h> #include <net/pkt_sched.h> #include <net/net_namespace.h> #include <net/netns/generic.h> struct tcf_idrinfo { struct mutex lock; struct idr action_idr; struct net *net; }; struct tc_action_ops; struct tc_action { const struct tc_action_ops *ops; __u32 type; /* for backward compat(TCA_OLD_COMPAT) */ struct tcf_idrinfo *idrinfo; u32 tcfa_index; refcount_t tcfa_refcnt; atomic_t tcfa_bindcnt; int tcfa_action; struct tcf_t tcfa_tm; struct gnet_stats_basic_sync tcfa_bstats; struct gnet_stats_basic_sync tcfa_bstats_hw; struct gnet_stats_queue tcfa_qstats; struct net_rate_estimator __rcu *tcfa_rate_est; spinlock_t tcfa_lock; struct gnet_stats_basic_sync __percpu *cpu_bstats; struct gnet_stats_basic_sync __percpu *cpu_bstats_hw; struct gnet_stats_queue __percpu *cpu_qstats; struct tc_cookie __rcu *user_cookie; struct tcf_chain __rcu *goto_chain; u32 tcfa_flags; u8 hw_stats; u8 used_hw_stats; bool used_hw_stats_valid; u32 in_hw_count; }; #define tcf_index common.tcfa_index #define tcf_refcnt common.tcfa_refcnt #define tcf_bindcnt common.tcfa_bindcnt #define tcf_action common.tcfa_action #define tcf_tm common.tcfa_tm #define tcf_bstats common.tcfa_bstats #define tcf_qstats common.tcfa_qstats #define tcf_rate_est common.tcfa_rate_est #define tcf_lock common.tcfa_lock #define TCA_ACT_HW_STATS_ANY (TCA_ACT_HW_STATS_IMMEDIATE | \ TCA_ACT_HW_STATS_DELAYED) /* Reserve 16 bits for user-space. See TCA_ACT_FLAGS_NO_PERCPU_STATS. */ #define TCA_ACT_FLAGS_USER_BITS 16 #define TCA_ACT_FLAGS_USER_MASK 0xffff #define TCA_ACT_FLAGS_POLICE (1U << TCA_ACT_FLAGS_USER_BITS) #define TCA_ACT_FLAGS_BIND (1U << (TCA_ACT_FLAGS_USER_BITS + 1)) #define TCA_ACT_FLAGS_REPLACE (1U << (TCA_ACT_FLAGS_USER_BITS + 2)) #define TCA_ACT_FLAGS_NO_RTNL (1U << (TCA_ACT_FLAGS_USER_BITS + 3)) #define TCA_ACT_FLAGS_AT_INGRESS (1U << (TCA_ACT_FLAGS_USER_BITS + 4)) /* Update lastuse only if needed, to avoid dirtying a cache line. * We use a temp variable to avoid fetching jiffies twice. */ static inline void tcf_lastuse_update(struct tcf_t *tm) { unsigned long now = jiffies; if (tm->lastuse != now) tm->lastuse = now; if (unlikely(!tm->firstuse)) tm->firstuse = now; } static inline void tcf_tm_dump(struct tcf_t *dtm, const struct tcf_t *stm) { dtm->install = jiffies_to_clock_t(jiffies - stm->install); dtm->lastuse = jiffies_to_clock_t(jiffies - stm->lastuse); dtm->firstuse = stm->firstuse ? jiffies_to_clock_t(jiffies - stm->firstuse) : 0; dtm->expires = jiffies_to_clock_t(stm->expires); } static inline enum flow_action_hw_stats tc_act_hw_stats(u8 hw_stats) { if (WARN_ON_ONCE(hw_stats > TCA_ACT_HW_STATS_ANY)) return FLOW_ACTION_HW_STATS_DONT_CARE; else if (!hw_stats) return FLOW_ACTION_HW_STATS_DISABLED; return hw_stats; } typedef void (*tc_action_priv_destructor)(void *priv); struct tc_action_ops { struct list_head head; char kind[IFNAMSIZ]; enum tca_id id; /* identifier should match kind */ unsigned int net_id; size_t size; struct module *owner; int (*act)(struct sk_buff *, const struct tc_action *, struct tcf_result *); /* called under RCU BH lock*/ int (*dump)(struct sk_buff *, struct tc_action *, int, int); void (*cleanup)(struct tc_action *); int (*lookup)(struct net *net, struct tc_action **a, u32 index); int (*init)(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **act, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack); int (*walk)(struct net *, struct sk_buff *, struct netlink_callback *, int, const struct tc_action_ops *, struct netlink_ext_ack *); void (*stats_update)(struct tc_action *, u64, u64, u64, u64, bool); size_t (*get_fill_size)(const struct tc_action *act); struct net_device *(*get_dev)(const struct tc_action *a, tc_action_priv_destructor *destructor); struct psample_group * (*get_psample_group)(const struct tc_action *a, tc_action_priv_destructor *destructor); int (*offload_act_setup)(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack); }; #ifdef CONFIG_NET_CLS_ACT #define ACT_P_BOUND 0 #define ACT_P_CREATED 1 #define ACT_P_DELETED 1 struct tc_action_net { struct tcf_idrinfo *idrinfo; const struct tc_action_ops *ops; }; static inline int tc_action_net_init(struct net *net, struct tc_action_net *tn, const struct tc_action_ops *ops) { int err = 0; tn->idrinfo = kmalloc(sizeof(*tn->idrinfo), GFP_KERNEL); if (!tn->idrinfo) return -ENOMEM; tn->ops = ops; tn->idrinfo->net = net; mutex_init(&tn->idrinfo->lock); idr_init(&tn->idrinfo->action_idr); return err; } void tcf_idrinfo_destroy(const struct tc_action_ops *ops, struct tcf_idrinfo *idrinfo); static inline void tc_action_net_exit(struct list_head *net_list, unsigned int id) { struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) { struct tc_action_net *tn = net_generic(net, id); tcf_idrinfo_destroy(tn->ops, tn->idrinfo); kfree(tn->idrinfo); } rtnl_unlock(); } int tcf_generic_walker(struct tc_action_net *tn, struct sk_buff *skb, struct netlink_callback *cb, int type, const struct tc_action_ops *ops, struct netlink_ext_ack *extack); int tcf_idr_search(struct tc_action_net *tn, struct tc_action **a, u32 index); int tcf_idr_create(struct tc_action_net *tn, u32 index, struct nlattr *est, struct tc_action **a, const struct tc_action_ops *ops, int bind, bool cpustats, u32 flags); int tcf_idr_create_from_flags(struct tc_action_net *tn, u32 index, struct nlattr *est, struct tc_action **a, const struct tc_action_ops *ops, int bind, u32 flags); void tcf_idr_insert_many(struct tc_action *actions[], int init_res[]); void tcf_idr_cleanup(struct tc_action_net *tn, u32 index); int tcf_idr_check_alloc(struct tc_action_net *tn, u32 *index, struct tc_action **a, int bind); int tcf_idr_release(struct tc_action *a, bool bind); int tcf_register_action(struct tc_action_ops *a, struct pernet_operations *ops); int tcf_unregister_action(struct tc_action_ops *a, struct pernet_operations *ops); #define NET_ACT_ALIAS_PREFIX "net-act-" #define MODULE_ALIAS_NET_ACT(kind) MODULE_ALIAS(NET_ACT_ALIAS_PREFIX kind) int tcf_action_destroy(struct tc_action *actions[], int bind); int tcf_action_exec(struct sk_buff *skb, struct tc_action **actions, int nr_actions, struct tcf_result *res); int tcf_action_init(struct net *net, struct tcf_proto *tp, struct nlattr *nla, struct nlattr *est, struct tc_action *actions[], int init_res[], size_t *attr_size, u32 flags, u32 fl_flags, struct netlink_ext_ack *extack); struct tc_action_ops *tc_action_load_ops(struct nlattr *nla, u32 flags, struct netlink_ext_ack *extack); struct tc_action *tcf_action_init_1(struct net *net, struct tcf_proto *tp, struct nlattr *nla, struct nlattr *est, struct tc_action_ops *a_o, int *init_res, u32 flags, struct netlink_ext_ack *extack); int tcf_action_dump(struct sk_buff *skb, struct tc_action *actions[], int bind, int ref, bool terse); int tcf_action_dump_old(struct sk_buff *skb, struct tc_action *a, int, int); int tcf_action_dump_1(struct sk_buff *skb, struct tc_action *a, int, int); static inline void tcf_action_update_bstats(struct tc_action *a, struct sk_buff *skb) { if (likely(a->cpu_bstats)) { bstats_update(this_cpu_ptr(a->cpu_bstats), skb); return; } spin_lock(&a->tcfa_lock); bstats_update(&a->tcfa_bstats, skb); spin_unlock(&a->tcfa_lock); } static inline void tcf_action_inc_drop_qstats(struct tc_action *a) { if (likely(a->cpu_qstats)) { qstats_drop_inc(this_cpu_ptr(a->cpu_qstats)); return; } spin_lock(&a->tcfa_lock); qstats_drop_inc(&a->tcfa_qstats); spin_unlock(&a->tcfa_lock); } static inline void tcf_action_inc_overlimit_qstats(struct tc_action *a) { if (likely(a->cpu_qstats)) { qstats_overlimit_inc(this_cpu_ptr(a->cpu_qstats)); return; } spin_lock(&a->tcfa_lock); qstats_overlimit_inc(&a->tcfa_qstats); spin_unlock(&a->tcfa_lock); } void tcf_action_update_stats(struct tc_action *a, u64 bytes, u64 packets, u64 drops, bool hw); int tcf_action_copy_stats(struct sk_buff *, struct tc_action *, int); int tcf_action_update_hw_stats(struct tc_action *action); int tcf_action_reoffload_cb(flow_indr_block_bind_cb_t *cb, void *cb_priv, bool add); int tcf_action_check_ctrlact(int action, struct tcf_proto *tp, struct tcf_chain **handle, struct netlink_ext_ack *newchain); struct tcf_chain *tcf_action_set_ctrlact(struct tc_action *a, int action, struct tcf_chain *newchain); #ifdef CONFIG_INET DECLARE_STATIC_KEY_FALSE(tcf_frag_xmit_count); #endif int tcf_dev_queue_xmit(struct sk_buff *skb, int (*xmit)(struct sk_buff *skb)); #else /* !CONFIG_NET_CLS_ACT */ static inline int tcf_action_reoffload_cb(flow_indr_block_bind_cb_t *cb, void *cb_priv, bool add) { return 0; } #endif /* CONFIG_NET_CLS_ACT */ static inline void tcf_action_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { #ifdef CONFIG_NET_CLS_ACT if (!a->ops->stats_update) return; a->ops->stats_update(a, bytes, packets, drops, lastuse, hw); #endif } #endif |
62 6 3725 51 17 84 194 119 15 201 5 60 11 36 6 3 8 15 60 62 4 16 3 1 2 2 4 30 12 18 8 5 17 30 113 23 94 108 112 2 2 62 103 101 36 36 36 1 1 12 36 36 79 48 31 43 43 43 42 5 5 5 5 4 4 3 4 4 32 31 32 32 7 7 16 15 5 7 7 6 6 38 39 5 7 9 220 209 12 12 1 11 6 21 15 12 3 15 1 1 2 1 1 2 1 1 15 1 1 6 1 7 11 6 6 7 2 3 19 10 12 17 17 36 36 8 2070 2071 28 2066 3 22 5 17 3 16 2 14 62 218 218 1 7 1 209 216 1 206 1 1 1 67 140 165 1 168 167 61 29 80 1 81 26 21 34 2 386 29 25 378 342 6 6 7 8 5 3 1 9 17 59 1 1 6 1 51 1 6 46 51 1 2 26 21 54 178 1 6 1 172 1 13 159 172 2 102 76 172 48 1 8 1 4 40 4 3 36 17 19 45 57 1 5 1 14 1 37 5 47 45 20 31 55 8 1 6 1 1 3 4 4 39 1 37 1 37 3 32 10 19 1 17 1 17 1 1 15 6 14 14 1 2 1 9 5 9 2 29 1 1 4 2 18 1 1 4 16 18 16 1 7 2 8 22 8 1 2 2 1 2 3 1994 1 1989 2 686 692 688 685 687 8 1294 1295 1 10 1283 7 8 8 556 8 560 561 1 2 2 29 686 688 38 26 63 13 14 7 64 9 88 695 56 630 65 122 1911 31 34 1 36 2010 2005 1 4 2009 1528 63 1 133 1 125 31 78 35 15 64 1755 1300 2019 1 1 2013 2012 1 265 1755 1575 8 1 2002 3 2 5 4 1 1995 10 2 2 1992 3 1 1284 2 686 1 16 10 2 8 12 3 9 42 42 29 42 26 29 42 42 33 9 31 5 5 28 42 43 43 66 4 62 37 7 12 14 30 9 3 1 1 1 6 1 2 3 3 1 2 27 27 1 25 1 1 2 21 31 1 29 1 21 5 154 108 2 3 3 1 9 3 1 2 15 2 3 104 22 1 3 1 1 1 1 5 31 40 70 1 1 14 5 49 52 3 1 30 4 1 11 44 63 1 1 5 14 11 7 7 25 4 1 11 5 8 65 62 1 1 63 472 1 469 469 470 1 1 467 5 2 2 1 4 2 2 1 5 1 2 2 6 2 1 1 2 5 3 2 2 6 6 1 1 2 6 6 32 30 30 36 1 31 1 1 33 29 29 23 6 6 1 7 21 23 1 1 1 3 22 1 1 2 19 2 1 2 15 7 22 20 18 1 2 1 15 1 1 2 1 15 7 3 1 4 4 1 1 3 9 14 1 10 10 1 4 69 1 4 38 7 9 1 14 67 264 1 1 264 1 265 3 1 3 6 6 1 2 1 3 11 1 1 10 10 1 9 2 1 1 83 1 2 59 1 26 8 41 9 27 44 67 69 1 3 66 1 8 13 15 1 22 1 2 1 1 61 22 1 1 20 4 18 1 8 1 4 1 12 3 10 14 18 12 1 11 1 1 8 9 2 4 3 2 1 2 5 1 3 2 1 1 1 4 1 1 2 7 1 1 5 2 2 11 1 1 10 1 7 1 4 1 2 1 5 1 1 3 3754 3742 3736 1 215 59 181 50 57 8 2008 10 10 70 60 64 471 2 1 1 5 6 67 31 264 4 12 29 28 9 44 9 67 22 5 1 4 7 12 12 5 3746 2 1 1 1 1 4 4 1 1 2 50 1 1 4 1 46 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include <linux/bpf.h> #include <linux/bpf-cgroup.h> #include <linux/bpf_trace.h> #include <linux/bpf_lirc.h> #include <linux/bpf_verifier.h> #include <linux/bsearch.h> #include <linux/btf.h> #include <linux/syscalls.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/vmalloc.h> #include <linux/mmzone.h> #include <linux/anon_inodes.h> #include <linux/fdtable.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/license.h> #include <linux/filter.h> #include <linux/kernel.h> #include <linux/idr.h> #include <linux/cred.h> #include <linux/timekeeping.h> #include <linux/ctype.h> #include <linux/nospec.h> #include <linux/audit.h> #include <uapi/linux/btf.h> #include <linux/pgtable.h> #include <linux/bpf_lsm.h> #include <linux/poll.h> #include <linux/sort.h> #include <linux/bpf-netns.h> #include <linux/rcupdate_trace.h> #include <linux/memcontrol.h> #include <linux/trace_events.h> #include <net/netfilter/nf_bpf_link.h> #include <net/netkit.h> #include <net/tcx.h> #define IS_FD_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY || \ (map)->map_type == BPF_MAP_TYPE_CGROUP_ARRAY || \ (map)->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS) #define IS_FD_PROG_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PROG_ARRAY) #define IS_FD_HASH(map) ((map)->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) #define IS_FD_MAP(map) (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map) || \ IS_FD_HASH(map)) #define BPF_OBJ_FLAG_MASK (BPF_F_RDONLY | BPF_F_WRONLY) DEFINE_PER_CPU(int, bpf_prog_active); static DEFINE_IDR(prog_idr); static DEFINE_SPINLOCK(prog_idr_lock); static DEFINE_IDR(map_idr); static DEFINE_SPINLOCK(map_idr_lock); static DEFINE_IDR(link_idr); static DEFINE_SPINLOCK(link_idr_lock); int sysctl_unprivileged_bpf_disabled __read_mostly = IS_BUILTIN(CONFIG_BPF_UNPRIV_DEFAULT_OFF) ? 2 : 0; static const struct bpf_map_ops * const bpf_map_types[] = { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) #define BPF_MAP_TYPE(_id, _ops) \ [_id] = &_ops, #define BPF_LINK_TYPE(_id, _name) #include <linux/bpf_types.h> #undef BPF_PROG_TYPE #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE }; /* * If we're handed a bigger struct than we know of, ensure all the unknown bits * are 0 - i.e. new user-space does not rely on any kernel feature extensions * we don't know about yet. * * There is a ToCToU between this function call and the following * copy_from_user() call. However, this is not a concern since this function is * meant to be a future-proofing of bits. */ int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, size_t actual_size) { int res; if (unlikely(actual_size > PAGE_SIZE)) /* silly large */ return -E2BIG; if (actual_size <= expected_size) return 0; if (uaddr.is_kernel) res = memchr_inv(uaddr.kernel + expected_size, 0, actual_size - expected_size) == NULL; else res = check_zeroed_user(uaddr.user + expected_size, actual_size - expected_size); if (res < 0) return res; return res ? 0 : -E2BIG; } const struct bpf_map_ops bpf_map_offload_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = bpf_map_offload_map_alloc, .map_free = bpf_map_offload_map_free, .map_check_btf = map_check_no_btf, .map_mem_usage = bpf_map_offload_map_mem_usage, }; static void bpf_map_write_active_inc(struct bpf_map *map) { atomic64_inc(&map->writecnt); } static void bpf_map_write_active_dec(struct bpf_map *map) { atomic64_dec(&map->writecnt); } bool bpf_map_write_active(const struct bpf_map *map) { return atomic64_read(&map->writecnt) != 0; } static u32 bpf_map_value_size(const struct bpf_map *map) { if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY || map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) return round_up(map->value_size, 8) * num_possible_cpus(); else if (IS_FD_MAP(map)) return sizeof(u32); else return map->value_size; } static void maybe_wait_bpf_programs(struct bpf_map *map) { /* Wait for any running non-sleepable BPF programs to complete so that * userspace, when we return to it, knows that all non-sleepable * programs that could be running use the new map value. For sleepable * BPF programs, synchronize_rcu_tasks_trace() should be used to wait * for the completions of these programs, but considering the waiting * time can be very long and userspace may think it will hang forever, * so don't handle sleepable BPF programs now. */ if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS || map->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS) synchronize_rcu(); } static int bpf_map_update_value(struct bpf_map *map, struct file *map_file, void *key, void *value, __u64 flags) { int err; /* Need to create a kthread, thus must support schedule */ if (bpf_map_is_offloaded(map)) { return bpf_map_offload_update_elem(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_CPUMAP || map->map_type == BPF_MAP_TYPE_ARENA || map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { return map->ops->map_update_elem(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH || map->map_type == BPF_MAP_TYPE_SOCKMAP) { return sock_map_update_elem_sys(map, key, value, flags); } else if (IS_FD_PROG_ARRAY(map)) { return bpf_fd_array_map_update_elem(map, map_file, key, value, flags); } bpf_disable_instrumentation(); if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { err = bpf_percpu_hash_update(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { err = bpf_percpu_array_update(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) { err = bpf_percpu_cgroup_storage_update(map, key, value, flags); } else if (IS_FD_ARRAY(map)) { err = bpf_fd_array_map_update_elem(map, map_file, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { err = bpf_fd_htab_map_update_elem(map, map_file, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) { /* rcu_read_lock() is not needed */ err = bpf_fd_reuseport_array_update_elem(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_QUEUE || map->map_type == BPF_MAP_TYPE_STACK || map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) { err = map->ops->map_push_elem(map, value, flags); } else { rcu_read_lock(); err = map->ops->map_update_elem(map, key, value, flags); rcu_read_unlock(); } bpf_enable_instrumentation(); return err; } static int bpf_map_copy_value(struct bpf_map *map, void *key, void *value, __u64 flags) { void *ptr; int err; if (bpf_map_is_offloaded(map)) return bpf_map_offload_lookup_elem(map, key, value); bpf_disable_instrumentation(); if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { err = bpf_percpu_hash_copy(map, key, value); } else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { err = bpf_percpu_array_copy(map, key, value); } else if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) { err = bpf_percpu_cgroup_storage_copy(map, key, value); } else if (map->map_type == BPF_MAP_TYPE_STACK_TRACE) { err = bpf_stackmap_copy(map, key, value); } else if (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map)) { err = bpf_fd_array_map_lookup_elem(map, key, value); } else if (IS_FD_HASH(map)) { err = bpf_fd_htab_map_lookup_elem(map, key, value); } else if (map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) { err = bpf_fd_reuseport_array_lookup_elem(map, key, value); } else if (map->map_type == BPF_MAP_TYPE_QUEUE || map->map_type == BPF_MAP_TYPE_STACK || map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) { err = map->ops->map_peek_elem(map, value); } else if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { /* struct_ops map requires directly updating "value" */ err = bpf_struct_ops_map_sys_lookup_elem(map, key, value); } else { rcu_read_lock(); if (map->ops->map_lookup_elem_sys_only) ptr = map->ops->map_lookup_elem_sys_only(map, key); else ptr = map->ops->map_lookup_elem(map, key); if (IS_ERR(ptr)) { err = PTR_ERR(ptr); } else if (!ptr) { err = -ENOENT; } else { err = 0; if (flags & BPF_F_LOCK) /* lock 'ptr' and copy everything but lock */ copy_map_value_locked(map, value, ptr, true); else copy_map_value(map, value, ptr); /* mask lock and timer, since value wasn't zero inited */ check_and_init_map_value(map, value); } rcu_read_unlock(); } bpf_enable_instrumentation(); return err; } /* Please, do not use this function outside from the map creation path * (e.g. in map update path) without taking care of setting the active * memory cgroup (see at bpf_map_kmalloc_node() for example). */ static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable) { /* We really just want to fail instead of triggering OOM killer * under memory pressure, therefore we set __GFP_NORETRY to kmalloc, * which is used for lower order allocation requests. * * It has been observed that higher order allocation requests done by * vmalloc with __GFP_NORETRY being set might fail due to not trying * to reclaim memory from the page cache, thus we set * __GFP_RETRY_MAYFAIL to avoid such situations. */ gfp_t gfp = bpf_memcg_flags(__GFP_NOWARN | __GFP_ZERO); unsigned int flags = 0; unsigned long align = 1; void *area; if (size >= SIZE_MAX) return NULL; /* kmalloc()'ed memory can't be mmap()'ed */ if (mmapable) { BUG_ON(!PAGE_ALIGNED(size)); align = SHMLBA; flags = VM_USERMAP; } else if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) { area = kmalloc_node(size, gfp | GFP_USER | __GFP_NORETRY, numa_node); if (area != NULL) return area; } return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, gfp | GFP_KERNEL | __GFP_RETRY_MAYFAIL, PAGE_KERNEL, flags, numa_node, __builtin_return_address(0)); } void *bpf_map_area_alloc(u64 size, int numa_node) { return __bpf_map_area_alloc(size, numa_node, false); } void *bpf_map_area_mmapable_alloc(u64 size, int numa_node) { return __bpf_map_area_alloc(size, numa_node, true); } void bpf_map_area_free(void *area) { kvfree(area); } static u32 bpf_map_flags_retain_permanent(u32 flags) { /* Some map creation flags are not tied to the map object but * rather to the map fd instead, so they have no meaning upon * map object inspection since multiple file descriptors with * different (access) properties can exist here. Thus, given * this has zero meaning for the map itself, lets clear these * from here. */ return flags & ~(BPF_F_RDONLY | BPF_F_WRONLY); } void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr) { map->map_type = attr->map_type; map->key_size = attr->key_size; map->value_size = attr->value_size; map->max_entries = attr->max_entries; map->map_flags = bpf_map_flags_retain_permanent(attr->map_flags); map->numa_node = bpf_map_attr_numa_node(attr); map->map_extra = attr->map_extra; } static int bpf_map_alloc_id(struct bpf_map *map) { int id; idr_preload(GFP_KERNEL); spin_lock_bh(&map_idr_lock); id = idr_alloc_cyclic(&map_idr, map, 1, INT_MAX, GFP_ATOMIC); if (id > 0) map->id = id; spin_unlock_bh(&map_idr_lock); idr_preload_end(); if (WARN_ON_ONCE(!id)) return -ENOSPC; return id > 0 ? 0 : id; } void bpf_map_free_id(struct bpf_map *map) { unsigned long flags; /* Offloaded maps are removed from the IDR store when their device * disappears - even if someone holds an fd to them they are unusable, * the memory is gone, all ops will fail; they are simply waiting for * refcnt to drop to be freed. */ if (!map->id) return; spin_lock_irqsave(&map_idr_lock, flags); idr_remove(&map_idr, map->id); map->id = 0; spin_unlock_irqrestore(&map_idr_lock, flags); } #ifdef CONFIG_MEMCG static void bpf_map_save_memcg(struct bpf_map *map) { /* Currently if a map is created by a process belonging to the root * memory cgroup, get_obj_cgroup_from_current() will return NULL. * So we have to check map->objcg for being NULL each time it's * being used. */ if (memcg_bpf_enabled()) map->objcg = get_obj_cgroup_from_current(); } static void bpf_map_release_memcg(struct bpf_map *map) { if (map->objcg) obj_cgroup_put(map->objcg); } static struct mem_cgroup *bpf_map_get_memcg(const struct bpf_map *map) { if (map->objcg) return get_mem_cgroup_from_objcg(map->objcg); return root_mem_cgroup; } void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, int node) { struct mem_cgroup *memcg, *old_memcg; void *ptr; memcg = bpf_map_get_memcg(map); old_memcg = set_active_memcg(memcg); ptr = kmalloc_node(size, flags | __GFP_ACCOUNT, node); set_active_memcg(old_memcg); mem_cgroup_put(memcg); return ptr; } void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) { struct mem_cgroup *memcg, *old_memcg; void *ptr; memcg = bpf_map_get_memcg(map); old_memcg = set_active_memcg(memcg); ptr = kzalloc(size, flags | __GFP_ACCOUNT); set_active_memcg(old_memcg); mem_cgroup_put(memcg); return ptr; } void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) { struct mem_cgroup *memcg, *old_memcg; void *ptr; memcg = bpf_map_get_memcg(map); old_memcg = set_active_memcg(memcg); ptr = kvcalloc(n, size, flags | __GFP_ACCOUNT); set_active_memcg(old_memcg); mem_cgroup_put(memcg); return ptr; } void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, gfp_t flags) { struct mem_cgroup *memcg, *old_memcg; void __percpu *ptr; memcg = bpf_map_get_memcg(map); old_memcg = set_active_memcg(memcg); ptr = __alloc_percpu_gfp(size, align, flags | __GFP_ACCOUNT); set_active_memcg(old_memcg); mem_cgroup_put(memcg); return ptr; } #else static void bpf_map_save_memcg(struct bpf_map *map) { } static void bpf_map_release_memcg(struct bpf_map *map) { } #endif int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, unsigned long nr_pages, struct page **pages) { unsigned long i, j; struct page *pg; int ret = 0; #ifdef CONFIG_MEMCG struct mem_cgroup *memcg, *old_memcg; memcg = bpf_map_get_memcg(map); old_memcg = set_active_memcg(memcg); #endif for (i = 0; i < nr_pages; i++) { pg = alloc_pages_node(nid, gfp | __GFP_ACCOUNT, 0); if (pg) { pages[i] = pg; continue; } for (j = 0; j < i; j++) __free_page(pages[j]); ret = -ENOMEM; break; } #ifdef CONFIG_MEMCG set_active_memcg(old_memcg); mem_cgroup_put(memcg); #endif return ret; } static int btf_field_cmp(const void *a, const void *b) { const struct btf_field *f1 = a, *f2 = b; if (f1->offset < f2->offset) return -1; else if (f1->offset > f2->offset) return 1; return 0; } struct btf_field *btf_record_find(const struct btf_record *rec, u32 offset, u32 field_mask) { struct btf_field *field; if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & field_mask)) return NULL; field = bsearch(&offset, rec->fields, rec->cnt, sizeof(rec->fields[0]), btf_field_cmp); if (!field || !(field->type & field_mask)) return NULL; return field; } void btf_record_free(struct btf_record *rec) { int i; if (IS_ERR_OR_NULL(rec)) return; for (i = 0; i < rec->cnt; i++) { switch (rec->fields[i].type) { case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: if (rec->fields[i].kptr.module) module_put(rec->fields[i].kptr.module); btf_put(rec->fields[i].kptr.btf); break; case BPF_LIST_HEAD: case BPF_LIST_NODE: case BPF_RB_ROOT: case BPF_RB_NODE: case BPF_SPIN_LOCK: case BPF_TIMER: case BPF_REFCOUNT: case BPF_WORKQUEUE: /* Nothing to release */ break; default: WARN_ON_ONCE(1); continue; } } kfree(rec); } void bpf_map_free_record(struct bpf_map *map) { btf_record_free(map->record); map->record = NULL; } struct btf_record *btf_record_dup(const struct btf_record *rec) { const struct btf_field *fields; struct btf_record *new_rec; int ret, size, i; if (IS_ERR_OR_NULL(rec)) return NULL; size = offsetof(struct btf_record, fields[rec->cnt]); new_rec = kmemdup(rec, size, GFP_KERNEL | __GFP_NOWARN); if (!new_rec) return ERR_PTR(-ENOMEM); /* Do a deep copy of the btf_record */ fields = rec->fields; new_rec->cnt = 0; for (i = 0; i < rec->cnt; i++) { switch (fields[i].type) { case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: btf_get(fields[i].kptr.btf); if (fields[i].kptr.module && !try_module_get(fields[i].kptr.module)) { ret = -ENXIO; goto free; } break; case BPF_LIST_HEAD: case BPF_LIST_NODE: case BPF_RB_ROOT: case BPF_RB_NODE: case BPF_SPIN_LOCK: case BPF_TIMER: case BPF_REFCOUNT: case BPF_WORKQUEUE: /* Nothing to acquire */ break; default: ret = -EFAULT; WARN_ON_ONCE(1); goto free; } new_rec->cnt++; } return new_rec; free: btf_record_free(new_rec); return ERR_PTR(ret); } bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b) { bool a_has_fields = !IS_ERR_OR_NULL(rec_a), b_has_fields = !IS_ERR_OR_NULL(rec_b); int size; if (!a_has_fields && !b_has_fields) return true; if (a_has_fields != b_has_fields) return false; if (rec_a->cnt != rec_b->cnt) return false; size = offsetof(struct btf_record, fields[rec_a->cnt]); /* btf_parse_fields uses kzalloc to allocate a btf_record, so unused * members are zeroed out. So memcmp is safe to do without worrying * about padding/unused fields. * * While spin_lock, timer, and kptr have no relation to map BTF, * list_head metadata is specific to map BTF, the btf and value_rec * members in particular. btf is the map BTF, while value_rec points to * btf_record in that map BTF. * * So while by default, we don't rely on the map BTF (which the records * were parsed from) matching for both records, which is not backwards * compatible, in case list_head is part of it, we implicitly rely on * that by way of depending on memcmp succeeding for it. */ return !memcmp(rec_a, rec_b, size); } void bpf_obj_free_timer(const struct btf_record *rec, void *obj) { if (WARN_ON_ONCE(!btf_record_has_field(rec, BPF_TIMER))) return; bpf_timer_cancel_and_free(obj + rec->timer_off); } void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj) { if (WARN_ON_ONCE(!btf_record_has_field(rec, BPF_WORKQUEUE))) return; bpf_wq_cancel_and_free(obj + rec->wq_off); } void bpf_obj_free_fields(const struct btf_record *rec, void *obj) { const struct btf_field *fields; int i; if (IS_ERR_OR_NULL(rec)) return; fields = rec->fields; for (i = 0; i < rec->cnt; i++) { struct btf_struct_meta *pointee_struct_meta; const struct btf_field *field = &fields[i]; void *field_ptr = obj + field->offset; void *xchgd_field; switch (fields[i].type) { case BPF_SPIN_LOCK: break; case BPF_TIMER: bpf_timer_cancel_and_free(field_ptr); break; case BPF_WORKQUEUE: bpf_wq_cancel_and_free(field_ptr); break; case BPF_KPTR_UNREF: WRITE_ONCE(*(u64 *)field_ptr, 0); break; case BPF_KPTR_REF: case BPF_KPTR_PERCPU: xchgd_field = (void *)xchg((unsigned long *)field_ptr, 0); if (!xchgd_field) break; if (!btf_is_kernel(field->kptr.btf)) { pointee_struct_meta = btf_find_struct_meta(field->kptr.btf, field->kptr.btf_id); migrate_disable(); __bpf_obj_drop_impl(xchgd_field, pointee_struct_meta ? pointee_struct_meta->record : NULL, fields[i].type == BPF_KPTR_PERCPU); migrate_enable(); } else { field->kptr.dtor(xchgd_field); } break; case BPF_LIST_HEAD: if (WARN_ON_ONCE(rec->spin_lock_off < 0)) continue; bpf_list_head_free(field, field_ptr, obj + rec->spin_lock_off); break; case BPF_RB_ROOT: if (WARN_ON_ONCE(rec->spin_lock_off < 0)) continue; bpf_rb_root_free(field, field_ptr, obj + rec->spin_lock_off); break; case BPF_LIST_NODE: case BPF_RB_NODE: case BPF_REFCOUNT: break; default: WARN_ON_ONCE(1); continue; } } } /* called from workqueue */ static void bpf_map_free_deferred(struct work_struct *work) { struct bpf_map *map = container_of(work, struct bpf_map, work); struct btf_record *rec = map->record; struct btf *btf = map->btf; security_bpf_map_free(map); bpf_map_release_memcg(map); /* implementation dependent freeing */ map->ops->map_free(map); /* Delay freeing of btf_record for maps, as map_free * callback usually needs access to them. It is better to do it here * than require each callback to do the free itself manually. * * Note that the btf_record stashed in map->inner_map_meta->record was * already freed using the map_free callback for map in map case which * eventually calls bpf_map_free_meta, since inner_map_meta is only a * template bpf_map struct used during verification. */ btf_record_free(rec); /* Delay freeing of btf for maps, as map_free callback may need * struct_meta info which will be freed with btf_put(). */ btf_put(btf); } static void bpf_map_put_uref(struct bpf_map *map) { if (atomic64_dec_and_test(&map->usercnt)) { if (map->ops->map_release_uref) map->ops->map_release_uref(map); } } static void bpf_map_free_in_work(struct bpf_map *map) { INIT_WORK(&map->work, bpf_map_free_deferred); /* Avoid spawning kworkers, since they all might contend * for the same mutex like slab_mutex. */ queue_work(system_unbound_wq, &map->work); } static void bpf_map_free_rcu_gp(struct rcu_head *rcu) { bpf_map_free_in_work(container_of(rcu, struct bpf_map, rcu)); } static void bpf_map_free_mult_rcu_gp(struct rcu_head *rcu) { if (rcu_trace_implies_rcu_gp()) bpf_map_free_rcu_gp(rcu); else call_rcu(rcu, bpf_map_free_rcu_gp); } /* decrement map refcnt and schedule it for freeing via workqueue * (underlying map implementation ops->map_free() might sleep) */ void bpf_map_put(struct bpf_map *map) { if (atomic64_dec_and_test(&map->refcnt)) { /* bpf_map_free_id() must be called first */ bpf_map_free_id(map); WARN_ON_ONCE(atomic64_read(&map->sleepable_refcnt)); if (READ_ONCE(map->free_after_mult_rcu_gp)) call_rcu_tasks_trace(&map->rcu, bpf_map_free_mult_rcu_gp); else if (READ_ONCE(map->free_after_rcu_gp)) call_rcu(&map->rcu, bpf_map_free_rcu_gp); else bpf_map_free_in_work(map); } } EXPORT_SYMBOL_GPL(bpf_map_put); void bpf_map_put_with_uref(struct bpf_map *map) { bpf_map_put_uref(map); bpf_map_put(map); } static int bpf_map_release(struct inode *inode, struct file *filp) { struct bpf_map *map = filp->private_data; if (map->ops->map_release) map->ops->map_release(map, filp); bpf_map_put_with_uref(map); return 0; } static fmode_t map_get_sys_perms(struct bpf_map *map, struct fd f) { fmode_t mode = f.file->f_mode; /* Our file permissions may have been overridden by global * map permissions facing syscall side. */ if (READ_ONCE(map->frozen)) mode &= ~FMODE_CAN_WRITE; return mode; } #ifdef CONFIG_PROC_FS /* Show the memory usage of a bpf map */ static u64 bpf_map_memory_usage(const struct bpf_map *map) { return map->ops->map_mem_usage(map); } static void bpf_map_show_fdinfo(struct seq_file *m, struct file *filp) { struct bpf_map *map = filp->private_data; u32 type = 0, jited = 0; if (map_type_contains_progs(map)) { spin_lock(&map->owner.lock); type = map->owner.type; jited = map->owner.jited; spin_unlock(&map->owner.lock); } seq_printf(m, "map_type:\t%u\n" "key_size:\t%u\n" "value_size:\t%u\n" "max_entries:\t%u\n" "map_flags:\t%#x\n" "map_extra:\t%#llx\n" "memlock:\t%llu\n" "map_id:\t%u\n" "frozen:\t%u\n", map->map_type, map->key_size, map->value_size, map->max_entries, map->map_flags, (unsigned long long)map->map_extra, bpf_map_memory_usage(map), map->id, READ_ONCE(map->frozen)); if (type) { seq_printf(m, "owner_prog_type:\t%u\n", type); seq_printf(m, "owner_jited:\t%u\n", jited); } } #endif static ssize_t bpf_dummy_read(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) { /* We need this handler such that alloc_file() enables * f_mode with FMODE_CAN_READ. */ return -EINVAL; } static ssize_t bpf_dummy_write(struct file *filp, const char __user *buf, size_t siz, loff_t *ppos) { /* We need this handler such that alloc_file() enables * f_mode with FMODE_CAN_WRITE. */ return -EINVAL; } /* called for any extra memory-mapped regions (except initial) */ static void bpf_map_mmap_open(struct vm_area_struct *vma) { struct bpf_map *map = vma->vm_file->private_data; if (vma->vm_flags & VM_MAYWRITE) bpf_map_write_active_inc(map); } /* called for all unmapped memory region (including initial) */ static void bpf_map_mmap_close(struct vm_area_struct *vma) { struct bpf_map *map = vma->vm_file->private_data; if (vma->vm_flags & VM_MAYWRITE) bpf_map_write_active_dec(map); } static const struct vm_operations_struct bpf_map_default_vmops = { .open = bpf_map_mmap_open, .close = bpf_map_mmap_close, }; static int bpf_map_mmap(struct file *filp, struct vm_area_struct *vma) { struct bpf_map *map = filp->private_data; int err; if (!map->ops->map_mmap || !IS_ERR_OR_NULL(map->record)) return -ENOTSUPP; if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; mutex_lock(&map->freeze_mutex); if (vma->vm_flags & VM_WRITE) { if (map->frozen) { err = -EPERM; goto out; } /* map is meant to be read-only, so do not allow mapping as * writable, because it's possible to leak a writable page * reference and allows user-space to still modify it after * freezing, while verifier will assume contents do not change */ if (map->map_flags & BPF_F_RDONLY_PROG) { err = -EACCES; goto out; } } /* set default open/close callbacks */ vma->vm_ops = &bpf_map_default_vmops; vma->vm_private_data = map; vm_flags_clear(vma, VM_MAYEXEC); if (!(vma->vm_flags & VM_WRITE)) /* disallow re-mapping with PROT_WRITE */ vm_flags_clear(vma, VM_MAYWRITE); err = map->ops->map_mmap(map, vma); if (err) goto out; if (vma->vm_flags & VM_MAYWRITE) bpf_map_write_active_inc(map); out: mutex_unlock(&map->freeze_mutex); return err; } static __poll_t bpf_map_poll(struct file *filp, struct poll_table_struct *pts) { struct bpf_map *map = filp->private_data; if (map->ops->map_poll) return map->ops->map_poll(map, filp, pts); return EPOLLERR; } static unsigned long bpf_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct bpf_map *map = filp->private_data; if (map->ops->map_get_unmapped_area) return map->ops->map_get_unmapped_area(filp, addr, len, pgoff, flags); #ifdef CONFIG_MMU return mm_get_unmapped_area(current->mm, filp, addr, len, pgoff, flags); #else return addr; #endif } const struct file_operations bpf_map_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_map_show_fdinfo, #endif .release = bpf_map_release, .read = bpf_dummy_read, .write = bpf_dummy_write, .mmap = bpf_map_mmap, .poll = bpf_map_poll, .get_unmapped_area = bpf_get_unmapped_area, }; int bpf_map_new_fd(struct bpf_map *map, int flags) { int ret; ret = security_bpf_map(map, OPEN_FMODE(flags)); if (ret < 0) return ret; return anon_inode_getfd("bpf-map", &bpf_map_fops, map, flags | O_CLOEXEC); } int bpf_get_file_flag(int flags) { if ((flags & BPF_F_RDONLY) && (flags & BPF_F_WRONLY)) return -EINVAL; if (flags & BPF_F_RDONLY) return O_RDONLY; if (flags & BPF_F_WRONLY) return O_WRONLY; return O_RDWR; } /* helper macro to check that unused fields 'union bpf_attr' are zero */ #define CHECK_ATTR(CMD) \ memchr_inv((void *) &attr->CMD##_LAST_FIELD + \ sizeof(attr->CMD##_LAST_FIELD), 0, \ sizeof(*attr) - \ offsetof(union bpf_attr, CMD##_LAST_FIELD) - \ sizeof(attr->CMD##_LAST_FIELD)) != NULL /* dst and src must have at least "size" number of bytes. * Return strlen on success and < 0 on error. */ int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size) { const char *end = src + size; const char *orig_src = src; memset(dst, 0, size); /* Copy all isalnum(), '_' and '.' chars. */ while (src < end && *src) { if (!isalnum(*src) && *src != '_' && *src != '.') return -EINVAL; *dst++ = *src++; } /* No '\0' found in "size" number of bytes */ if (src == end) return -EINVAL; return src - orig_src; } int map_check_no_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type) { return -ENOTSUPP; } static int map_check_btf(struct bpf_map *map, struct bpf_token *token, const struct btf *btf, u32 btf_key_id, u32 btf_value_id) { const struct btf_type *key_type, *value_type; u32 key_size, value_size; int ret = 0; /* Some maps allow key to be unspecified. */ if (btf_key_id) { key_type = btf_type_id_size(btf, &btf_key_id, &key_size); if (!key_type || key_size != map->key_size) return -EINVAL; } else { key_type = btf_type_by_id(btf, 0); if (!map->ops->map_check_btf) return -EINVAL; } value_type = btf_type_id_size(btf, &btf_value_id, &value_size); if (!value_type || value_size != map->value_size) return -EINVAL; map->record = btf_parse_fields(btf, value_type, BPF_SPIN_LOCK | BPF_TIMER | BPF_KPTR | BPF_LIST_HEAD | BPF_RB_ROOT | BPF_REFCOUNT | BPF_WORKQUEUE, map->value_size); if (!IS_ERR_OR_NULL(map->record)) { int i; if (!bpf_token_capable(token, CAP_BPF)) { ret = -EPERM; goto free_map_tab; } if (map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) { ret = -EACCES; goto free_map_tab; } for (i = 0; i < sizeof(map->record->field_mask) * 8; i++) { switch (map->record->field_mask & (1 << i)) { case 0: continue; case BPF_SPIN_LOCK: if (map->map_type != BPF_MAP_TYPE_HASH && map->map_type != BPF_MAP_TYPE_ARRAY && map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && map->map_type != BPF_MAP_TYPE_SK_STORAGE && map->map_type != BPF_MAP_TYPE_INODE_STORAGE && map->map_type != BPF_MAP_TYPE_TASK_STORAGE && map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) { ret = -EOPNOTSUPP; goto free_map_tab; } break; case BPF_TIMER: case BPF_WORKQUEUE: if (map->map_type != BPF_MAP_TYPE_HASH && map->map_type != BPF_MAP_TYPE_LRU_HASH && map->map_type != BPF_MAP_TYPE_ARRAY) { ret = -EOPNOTSUPP; goto free_map_tab; } break; case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: case BPF_REFCOUNT: if (map->map_type != BPF_MAP_TYPE_HASH && map->map_type != BPF_MAP_TYPE_PERCPU_HASH && map->map_type != BPF_MAP_TYPE_LRU_HASH && map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH && map->map_type != BPF_MAP_TYPE_ARRAY && map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && map->map_type != BPF_MAP_TYPE_SK_STORAGE && map->map_type != BPF_MAP_TYPE_INODE_STORAGE && map->map_type != BPF_MAP_TYPE_TASK_STORAGE && map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) { ret = -EOPNOTSUPP; goto free_map_tab; } break; case BPF_LIST_HEAD: case BPF_RB_ROOT: if (map->map_type != BPF_MAP_TYPE_HASH && map->map_type != BPF_MAP_TYPE_LRU_HASH && map->map_type != BPF_MAP_TYPE_ARRAY) { ret = -EOPNOTSUPP; goto free_map_tab; } break; default: /* Fail if map_type checks are missing for a field type */ ret = -EOPNOTSUPP; goto free_map_tab; } } } ret = btf_check_and_fixup_fields(btf, map->record); if (ret < 0) goto free_map_tab; if (map->ops->map_check_btf) { ret = map->ops->map_check_btf(map, btf, key_type, value_type); if (ret < 0) goto free_map_tab; } return ret; free_map_tab: bpf_map_free_record(map); return ret; } static bool bpf_net_capable(void) { return capable(CAP_NET_ADMIN) || capable(CAP_SYS_ADMIN); } #define BPF_MAP_CREATE_LAST_FIELD map_token_fd /* called via syscall */ static int map_create(union bpf_attr *attr) { const struct bpf_map_ops *ops; struct bpf_token *token = NULL; int numa_node = bpf_map_attr_numa_node(attr); u32 map_type = attr->map_type; struct bpf_map *map; bool token_flag; int f_flags; int err; err = CHECK_ATTR(BPF_MAP_CREATE); if (err) return -EINVAL; /* check BPF_F_TOKEN_FD flag, remember if it's set, and then clear it * to avoid per-map type checks tripping on unknown flag */ token_flag = attr->map_flags & BPF_F_TOKEN_FD; attr->map_flags &= ~BPF_F_TOKEN_FD; if (attr->btf_vmlinux_value_type_id) { if (attr->map_type != BPF_MAP_TYPE_STRUCT_OPS || attr->btf_key_type_id || attr->btf_value_type_id) return -EINVAL; } else if (attr->btf_key_type_id && !attr->btf_value_type_id) { return -EINVAL; } if (attr->map_type != BPF_MAP_TYPE_BLOOM_FILTER && attr->map_type != BPF_MAP_TYPE_ARENA && attr->map_extra != 0) return -EINVAL; f_flags = bpf_get_file_flag(attr->map_flags); if (f_flags < 0) return f_flags; if (numa_node != NUMA_NO_NODE && ((unsigned int)numa_node >= nr_node_ids || !node_online(numa_node))) return -EINVAL; /* find map type and init map: hashtable vs rbtree vs bloom vs ... */ map_type = attr->map_type; if (map_type >= ARRAY_SIZE(bpf_map_types)) return -EINVAL; map_type = array_index_nospec(map_type, ARRAY_SIZE(bpf_map_types)); ops = bpf_map_types[map_type]; if (!ops) return -EINVAL; if (ops->map_alloc_check) { err = ops->map_alloc_check(attr); if (err) return err; } if (attr->map_ifindex) ops = &bpf_map_offload_ops; if (!ops->map_mem_usage) return -EINVAL; if (token_flag) { token = bpf_token_get_from_fd(attr->map_token_fd); if (IS_ERR(token)) return PTR_ERR(token); /* if current token doesn't grant map creation permissions, * then we can't use this token, so ignore it and rely on * system-wide capabilities checks */ if (!bpf_token_allow_cmd(token, BPF_MAP_CREATE) || !bpf_token_allow_map_type(token, attr->map_type)) { bpf_token_put(token); token = NULL; } } err = -EPERM; /* Intent here is for unprivileged_bpf_disabled to block BPF map * creation for unprivileged users; other actions depend * on fd availability and access to bpffs, so are dependent on * object creation success. Even with unprivileged BPF disabled, * capability checks are still carried out. */ if (sysctl_unprivileged_bpf_disabled && !bpf_token_capable(token, CAP_BPF)) goto put_token; /* check privileged map type permissions */ switch (map_type) { case BPF_MAP_TYPE_ARRAY: case BPF_MAP_TYPE_PERCPU_ARRAY: case BPF_MAP_TYPE_PROG_ARRAY: case BPF_MAP_TYPE_PERF_EVENT_ARRAY: case BPF_MAP_TYPE_CGROUP_ARRAY: case BPF_MAP_TYPE_ARRAY_OF_MAPS: case BPF_MAP_TYPE_HASH: case BPF_MAP_TYPE_PERCPU_HASH: case BPF_MAP_TYPE_HASH_OF_MAPS: case BPF_MAP_TYPE_RINGBUF: case BPF_MAP_TYPE_USER_RINGBUF: case BPF_MAP_TYPE_CGROUP_STORAGE: case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: /* unprivileged */ break; case BPF_MAP_TYPE_SK_STORAGE: case BPF_MAP_TYPE_INODE_STORAGE: case BPF_MAP_TYPE_TASK_STORAGE: case BPF_MAP_TYPE_CGRP_STORAGE: case BPF_MAP_TYPE_BLOOM_FILTER: case BPF_MAP_TYPE_LPM_TRIE: case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: case BPF_MAP_TYPE_STACK_TRACE: case BPF_MAP_TYPE_QUEUE: case BPF_MAP_TYPE_STACK: case BPF_MAP_TYPE_LRU_HASH: case BPF_MAP_TYPE_LRU_PERCPU_HASH: case BPF_MAP_TYPE_STRUCT_OPS: case BPF_MAP_TYPE_CPUMAP: case BPF_MAP_TYPE_ARENA: if (!bpf_token_capable(token, CAP_BPF)) goto put_token; break; case BPF_MAP_TYPE_SOCKMAP: case BPF_MAP_TYPE_SOCKHASH: case BPF_MAP_TYPE_DEVMAP: case BPF_MAP_TYPE_DEVMAP_HASH: case BPF_MAP_TYPE_XSKMAP: if (!bpf_token_capable(token, CAP_NET_ADMIN)) goto put_token; break; default: WARN(1, "unsupported map type %d", map_type); goto put_token; } map = ops->map_alloc(attr); if (IS_ERR(map)) { err = PTR_ERR(map); goto put_token; } map->ops = ops; map->map_type = map_type; err = bpf_obj_name_cpy(map->name, attr->map_name, sizeof(attr->map_name)); if (err < 0) goto free_map; atomic64_set(&map->refcnt, 1); atomic64_set(&map->usercnt, 1); mutex_init(&map->freeze_mutex); spin_lock_init(&map->owner.lock); if (attr->btf_key_type_id || attr->btf_value_type_id || /* Even the map's value is a kernel's struct, * the bpf_prog.o must have BTF to begin with * to figure out the corresponding kernel's * counter part. Thus, attr->btf_fd has * to be valid also. */ attr->btf_vmlinux_value_type_id) { struct btf *btf; btf = btf_get_by_fd(attr->btf_fd); if (IS_ERR(btf)) { err = PTR_ERR(btf); goto free_map; } if (btf_is_kernel(btf)) { btf_put(btf); err = -EACCES; goto free_map; } map->btf = btf; if (attr->btf_value_type_id) { err = map_check_btf(map, token, btf, attr->btf_key_type_id, attr->btf_value_type_id); if (err) goto free_map; } map->btf_key_type_id = attr->btf_key_type_id; map->btf_value_type_id = attr->btf_value_type_id; map->btf_vmlinux_value_type_id = attr->btf_vmlinux_value_type_id; } err = security_bpf_map_create(map, attr, token); if (err) goto free_map_sec; err = bpf_map_alloc_id(map); if (err) goto free_map_sec; bpf_map_save_memcg(map); bpf_token_put(token); err = bpf_map_new_fd(map, f_flags); if (err < 0) { /* failed to allocate fd. * bpf_map_put_with_uref() is needed because the above * bpf_map_alloc_id() has published the map * to the userspace and the userspace may * have refcnt-ed it through BPF_MAP_GET_FD_BY_ID. */ bpf_map_put_with_uref(map); return err; } return err; free_map_sec: security_bpf_map_free(map); free_map: btf_put(map->btf); map->ops->map_free(map); put_token: bpf_token_put(token); return err; } /* if error is returned, fd is released. * On success caller should complete fd access with matching fdput() */ struct bpf_map *__bpf_map_get(struct fd f) { if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &bpf_map_fops) { fdput(f); return ERR_PTR(-EINVAL); } return f.file->private_data; } void bpf_map_inc(struct bpf_map *map) { atomic64_inc(&map->refcnt); } EXPORT_SYMBOL_GPL(bpf_map_inc); void bpf_map_inc_with_uref(struct bpf_map *map) { atomic64_inc(&map->refcnt); atomic64_inc(&map->usercnt); } EXPORT_SYMBOL_GPL(bpf_map_inc_with_uref); struct bpf_map *bpf_map_get(u32 ufd) { struct fd f = fdget(ufd); struct bpf_map *map; map = __bpf_map_get(f); if (IS_ERR(map)) return map; bpf_map_inc(map); fdput(f); return map; } EXPORT_SYMBOL(bpf_map_get); struct bpf_map *bpf_map_get_with_uref(u32 ufd) { struct fd f = fdget(ufd); struct bpf_map *map; map = __bpf_map_get(f); if (IS_ERR(map)) return map; bpf_map_inc_with_uref(map); fdput(f); return map; } /* map_idr_lock should have been held or the map should have been * protected by rcu read lock. */ struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref) { int refold; refold = atomic64_fetch_add_unless(&map->refcnt, 1, 0); if (!refold) return ERR_PTR(-ENOENT); if (uref) atomic64_inc(&map->usercnt); return map; } struct bpf_map *bpf_map_inc_not_zero(struct bpf_map *map) { spin_lock_bh(&map_idr_lock); map = __bpf_map_inc_not_zero(map, false); spin_unlock_bh(&map_idr_lock); return map; } EXPORT_SYMBOL_GPL(bpf_map_inc_not_zero); int __weak bpf_stackmap_copy(struct bpf_map *map, void *key, void *value) { return -ENOTSUPP; } static void *__bpf_copy_key(void __user *ukey, u64 key_size) { if (key_size) return vmemdup_user(ukey, key_size); if (ukey) return ERR_PTR(-EINVAL); return NULL; } static void *___bpf_copy_key(bpfptr_t ukey, u64 key_size) { if (key_size) return kvmemdup_bpfptr(ukey, key_size); if (!bpfptr_is_null(ukey)) return ERR_PTR(-EINVAL); return NULL; } /* last field in 'union bpf_attr' used by this command */ #define BPF_MAP_LOOKUP_ELEM_LAST_FIELD flags static int map_lookup_elem(union bpf_attr *attr) { void __user *ukey = u64_to_user_ptr(attr->key); void __user *uvalue = u64_to_user_ptr(attr->value); int ufd = attr->map_fd; struct bpf_map *map; void *key, *value; u32 value_size; struct fd f; int err; if (CHECK_ATTR(BPF_MAP_LOOKUP_ELEM)) return -EINVAL; if (attr->flags & ~BPF_F_LOCK) return -EINVAL; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ)) { err = -EPERM; goto err_put; } if ((attr->flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { err = -EINVAL; goto err_put; } key = __bpf_copy_key(ukey, map->key_size); if (IS_ERR(key)) { err = PTR_ERR(key); goto err_put; } value_size = bpf_map_value_size(map); err = -ENOMEM; value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); if (!value) goto free_key; if (map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) { if (copy_from_user(value, uvalue, value_size)) err = -EFAULT; else err = bpf_map_copy_value(map, key, value, attr->flags); goto free_value; } err = bpf_map_copy_value(map, key, value, attr->flags); if (err) goto free_value; err = -EFAULT; if (copy_to_user(uvalue, value, value_size) != 0) goto free_value; err = 0; free_value: kvfree(value); free_key: kvfree(key); err_put: fdput(f); return err; } #define BPF_MAP_UPDATE_ELEM_LAST_FIELD flags static int map_update_elem(union bpf_attr *attr, bpfptr_t uattr) { bpfptr_t ukey = make_bpfptr(attr->key, uattr.is_kernel); bpfptr_t uvalue = make_bpfptr(attr->value, uattr.is_kernel); int ufd = attr->map_fd; struct bpf_map *map; void *key, *value; u32 value_size; struct fd f; int err; if (CHECK_ATTR(BPF_MAP_UPDATE_ELEM)) return -EINVAL; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); bpf_map_write_active_inc(map); if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { err = -EPERM; goto err_put; } if ((attr->flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { err = -EINVAL; goto err_put; } key = ___bpf_copy_key(ukey, map->key_size); if (IS_ERR(key)) { err = PTR_ERR(key); goto err_put; } value_size = bpf_map_value_size(map); value = kvmemdup_bpfptr(uvalue, value_size); if (IS_ERR(value)) { err = PTR_ERR(value); goto free_key; } err = bpf_map_update_value(map, f.file, key, value, attr->flags); if (!err) maybe_wait_bpf_programs(map); kvfree(value); free_key: kvfree(key); err_put: bpf_map_write_active_dec(map); fdput(f); return err; } #define BPF_MAP_DELETE_ELEM_LAST_FIELD key static int map_delete_elem(union bpf_attr *attr, bpfptr_t uattr) { bpfptr_t ukey = make_bpfptr(attr->key, uattr.is_kernel); int ufd = attr->map_fd; struct bpf_map *map; struct fd f; void *key; int err; if (CHECK_ATTR(BPF_MAP_DELETE_ELEM)) return -EINVAL; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); bpf_map_write_active_inc(map); if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { err = -EPERM; goto err_put; } key = ___bpf_copy_key(ukey, map->key_size); if (IS_ERR(key)) { err = PTR_ERR(key); goto err_put; } if (bpf_map_is_offloaded(map)) { err = bpf_map_offload_delete_elem(map, key); goto out; } else if (IS_FD_PROG_ARRAY(map) || map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { /* These maps require sleepable context */ err = map->ops->map_delete_elem(map, key); goto out; } bpf_disable_instrumentation(); rcu_read_lock(); err = map->ops->map_delete_elem(map, key); rcu_read_unlock(); bpf_enable_instrumentation(); if (!err) maybe_wait_bpf_programs(map); out: kvfree(key); err_put: bpf_map_write_active_dec(map); fdput(f); return err; } /* last field in 'union bpf_attr' used by this command */ #define BPF_MAP_GET_NEXT_KEY_LAST_FIELD next_key static int map_get_next_key(union bpf_attr *attr) { void __user *ukey = u64_to_user_ptr(attr->key); void __user *unext_key = u64_to_user_ptr(attr->next_key); int ufd = attr->map_fd; struct bpf_map *map; void *key, *next_key; struct fd f; int err; if (CHECK_ATTR(BPF_MAP_GET_NEXT_KEY)) return -EINVAL; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ)) { err = -EPERM; goto err_put; } if (ukey) { key = __bpf_copy_key(ukey, map->key_size); if (IS_ERR(key)) { err = PTR_ERR(key); goto err_put; } } else { key = NULL; } err = -ENOMEM; next_key = kvmalloc(map->key_size, GFP_USER); if (!next_key) goto free_key; if (bpf_map_is_offloaded(map)) { err = bpf_map_offload_get_next_key(map, key, next_key); goto out; } rcu_read_lock(); err = map->ops->map_get_next_key(map, key, next_key); rcu_read_unlock(); out: if (err) goto free_next_key; err = -EFAULT; if (copy_to_user(unext_key, next_key, map->key_size) != 0) goto free_next_key; err = 0; free_next_key: kvfree(next_key); free_key: kvfree(key); err_put: fdput(f); return err; } int generic_map_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { void __user *keys = u64_to_user_ptr(attr->batch.keys); u32 cp, max_count; int err = 0; void *key; if (attr->batch.elem_flags & ~BPF_F_LOCK) return -EINVAL; if ((attr->batch.elem_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { return -EINVAL; } max_count = attr->batch.count; if (!max_count) return 0; if (put_user(0, &uattr->batch.count)) return -EFAULT; key = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN); if (!key) return -ENOMEM; for (cp = 0; cp < max_count; cp++) { err = -EFAULT; if (copy_from_user(key, keys + cp * map->key_size, map->key_size)) break; if (bpf_map_is_offloaded(map)) { err = bpf_map_offload_delete_elem(map, key); break; } bpf_disable_instrumentation(); rcu_read_lock(); err = map->ops->map_delete_elem(map, key); rcu_read_unlock(); bpf_enable_instrumentation(); if (err) break; cond_resched(); } if (copy_to_user(&uattr->batch.count, &cp, sizeof(cp))) err = -EFAULT; kvfree(key); return err; } int generic_map_update_batch(struct bpf_map *map, struct file *map_file, const union bpf_attr *attr, union bpf_attr __user *uattr) { void __user *values = u64_to_user_ptr(attr->batch.values); void __user *keys = u64_to_user_ptr(attr->batch.keys); u32 value_size, cp, max_count; void *key, *value; int err = 0; if (attr->batch.elem_flags & ~BPF_F_LOCK) return -EINVAL; if ((attr->batch.elem_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { return -EINVAL; } value_size = bpf_map_value_size(map); max_count = attr->batch.count; if (!max_count) return 0; if (put_user(0, &uattr->batch.count)) return -EFAULT; key = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN); if (!key) return -ENOMEM; value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); if (!value) { kvfree(key); return -ENOMEM; } for (cp = 0; cp < max_count; cp++) { err = -EFAULT; if (copy_from_user(key, keys + cp * map->key_size, map->key_size) || copy_from_user(value, values + cp * value_size, value_size)) break; err = bpf_map_update_value(map, map_file, key, value, attr->batch.elem_flags); if (err) break; cond_resched(); } if (copy_to_user(&uattr->batch.count, &cp, sizeof(cp))) err = -EFAULT; kvfree(value); kvfree(key); return err; } #define MAP_LOOKUP_RETRIES 3 int generic_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { void __user *uobatch = u64_to_user_ptr(attr->batch.out_batch); void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); void __user *values = u64_to_user_ptr(attr->batch.values); void __user *keys = u64_to_user_ptr(attr->batch.keys); void *buf, *buf_prevkey, *prev_key, *key, *value; int err, retry = MAP_LOOKUP_RETRIES; u32 value_size, cp, max_count; if (attr->batch.elem_flags & ~BPF_F_LOCK) return -EINVAL; if ((attr->batch.elem_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) return -EINVAL; value_size = bpf_map_value_size(map); max_count = attr->batch.count; if (!max_count) return 0; if (put_user(0, &uattr->batch.count)) return -EFAULT; buf_prevkey = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN); if (!buf_prevkey) return -ENOMEM; buf = kvmalloc(map->key_size + value_size, GFP_USER | __GFP_NOWARN); if (!buf) { kvfree(buf_prevkey); return -ENOMEM; } err = -EFAULT; prev_key = NULL; if (ubatch && copy_from_user(buf_prevkey, ubatch, map->key_size)) goto free_buf; key = buf; value = key + map->key_size; if (ubatch) prev_key = buf_prevkey; for (cp = 0; cp < max_count;) { rcu_read_lock(); err = map->ops->map_get_next_key(map, prev_key, key); rcu_read_unlock(); if (err) break; err = bpf_map_copy_value(map, key, value, attr->batch.elem_flags); if (err == -ENOENT) { if (retry) { retry--; continue; } err = -EINTR; break; } if (err) goto free_buf; if (copy_to_user(keys + cp * map->key_size, key, map->key_size)) { err = -EFAULT; goto free_buf; } if (copy_to_user(values + cp * value_size, value, value_size)) { err = -EFAULT; goto free_buf; } if (!prev_key) prev_key = buf_prevkey; swap(prev_key, key); retry = MAP_LOOKUP_RETRIES; cp++; cond_resched(); } if (err == -EFAULT) goto free_buf; if ((copy_to_user(&uattr->batch.count, &cp, sizeof(cp)) || (cp && copy_to_user(uobatch, prev_key, map->key_size)))) err = -EFAULT; free_buf: kvfree(buf_prevkey); kvfree(buf); return err; } #define BPF_MAP_LOOKUP_AND_DELETE_ELEM_LAST_FIELD flags static int map_lookup_and_delete_elem(union bpf_attr *attr) { void __user *ukey = u64_to_user_ptr(attr->key); void __user *uvalue = u64_to_user_ptr(attr->value); int ufd = attr->map_fd; struct bpf_map *map; void *key, *value; u32 value_size; struct fd f; int err; if (CHECK_ATTR(BPF_MAP_LOOKUP_AND_DELETE_ELEM)) return -EINVAL; if (attr->flags & ~BPF_F_LOCK) return -EINVAL; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); bpf_map_write_active_inc(map); if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ) || !(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { err = -EPERM; goto err_put; } if (attr->flags && (map->map_type == BPF_MAP_TYPE_QUEUE || map->map_type == BPF_MAP_TYPE_STACK)) { err = -EINVAL; goto err_put; } if ((attr->flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { err = -EINVAL; goto err_put; } key = __bpf_copy_key(ukey, map->key_size); if (IS_ERR(key)) { err = PTR_ERR(key); goto err_put; } value_size = bpf_map_value_size(map); err = -ENOMEM; value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); if (!value) goto free_key; err = -ENOTSUPP; if (map->map_type == BPF_MAP_TYPE_QUEUE || map->map_type == BPF_MAP_TYPE_STACK) { err = map->ops->map_pop_elem(map, value); } else if (map->map_type == BPF_MAP_TYPE_HASH || map->map_type == BPF_MAP_TYPE_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_LRU_HASH || map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { if (!bpf_map_is_offloaded(map)) { bpf_disable_instrumentation(); rcu_read_lock(); err = map->ops->map_lookup_and_delete_elem(map, key, value, attr->flags); rcu_read_unlock(); bpf_enable_instrumentation(); } } if (err) goto free_value; if (copy_to_user(uvalue, value, value_size) != 0) { err = -EFAULT; goto free_value; } err = 0; free_value: kvfree(value); free_key: kvfree(key); err_put: bpf_map_write_active_dec(map); fdput(f); return err; } #define BPF_MAP_FREEZE_LAST_FIELD map_fd static int map_freeze(const union bpf_attr *attr) { int err = 0, ufd = attr->map_fd; struct bpf_map *map; struct fd f; if (CHECK_ATTR(BPF_MAP_FREEZE)) return -EINVAL; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS || !IS_ERR_OR_NULL(map->record)) { fdput(f); return -ENOTSUPP; } if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { fdput(f); return -EPERM; } mutex_lock(&map->freeze_mutex); if (bpf_map_write_active(map)) { err = -EBUSY; goto err_put; } if (READ_ONCE(map->frozen)) { err = -EBUSY; goto err_put; } WRITE_ONCE(map->frozen, true); err_put: mutex_unlock(&map->freeze_mutex); fdput(f); return err; } static const struct bpf_prog_ops * const bpf_prog_types[] = { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ [_id] = & _name ## _prog_ops, #define BPF_MAP_TYPE(_id, _ops) #define BPF_LINK_TYPE(_id, _name) #include <linux/bpf_types.h> #undef BPF_PROG_TYPE #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE }; static int find_prog_type(enum bpf_prog_type type, struct bpf_prog *prog) { const struct bpf_prog_ops *ops; if (type >= ARRAY_SIZE(bpf_prog_types)) return -EINVAL; type = array_index_nospec(type, ARRAY_SIZE(bpf_prog_types)); ops = bpf_prog_types[type]; if (!ops) return -EINVAL; if (!bpf_prog_is_offloaded(prog->aux)) prog->aux->ops = ops; else prog->aux->ops = &bpf_offload_prog_ops; prog->type = type; return 0; } enum bpf_audit { BPF_AUDIT_LOAD, BPF_AUDIT_UNLOAD, BPF_AUDIT_MAX, }; static const char * const bpf_audit_str[BPF_AUDIT_MAX] = { [BPF_AUDIT_LOAD] = "LOAD", [BPF_AUDIT_UNLOAD] = "UNLOAD", }; static void bpf_audit_prog(const struct bpf_prog *prog, unsigned int op) { struct audit_context *ctx = NULL; struct audit_buffer *ab; if (WARN_ON_ONCE(op >= BPF_AUDIT_MAX)) return; if (audit_enabled == AUDIT_OFF) return; if (!in_irq() && !irqs_disabled()) ctx = audit_context(); ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_BPF); if (unlikely(!ab)) return; audit_log_format(ab, "prog-id=%u op=%s", prog->aux->id, bpf_audit_str[op]); audit_log_end(ab); } static int bpf_prog_alloc_id(struct bpf_prog *prog) { int id; idr_preload(GFP_KERNEL); spin_lock_bh(&prog_idr_lock); id = idr_alloc_cyclic(&prog_idr, prog, 1, INT_MAX, GFP_ATOMIC); if (id > 0) prog->aux->id = id; spin_unlock_bh(&prog_idr_lock); idr_preload_end(); /* id is in [1, INT_MAX) */ if (WARN_ON_ONCE(!id)) return -ENOSPC; return id > 0 ? 0 : id; } void bpf_prog_free_id(struct bpf_prog *prog) { unsigned long flags; /* cBPF to eBPF migrations are currently not in the idr store. * Offloaded programs are removed from the store when their device * disappears - even if someone grabs an fd to them they are unusable, * simply waiting for refcnt to drop to be freed. */ if (!prog->aux->id) return; spin_lock_irqsave(&prog_idr_lock, flags); idr_remove(&prog_idr, prog->aux->id); prog->aux->id = 0; spin_unlock_irqrestore(&prog_idr_lock, flags); } static void __bpf_prog_put_rcu(struct rcu_head *rcu) { struct bpf_prog_aux *aux = container_of(rcu, struct bpf_prog_aux, rcu); kvfree(aux->func_info); kfree(aux->func_info_aux); free_uid(aux->user); security_bpf_prog_free(aux->prog); bpf_prog_free(aux->prog); } static void __bpf_prog_put_noref(struct bpf_prog *prog, bool deferred) { bpf_prog_kallsyms_del_all(prog); btf_put(prog->aux->btf); module_put(prog->aux->mod); kvfree(prog->aux->jited_linfo); kvfree(prog->aux->linfo); kfree(prog->aux->kfunc_tab); if (prog->aux->attach_btf) btf_put(prog->aux->attach_btf); if (deferred) { if (prog->sleepable) call_rcu_tasks_trace(&prog->aux->rcu, __bpf_prog_put_rcu); else call_rcu(&prog->aux->rcu, __bpf_prog_put_rcu); } else { __bpf_prog_put_rcu(&prog->aux->rcu); } } static void bpf_prog_put_deferred(struct work_struct *work) { struct bpf_prog_aux *aux; struct bpf_prog *prog; aux = container_of(work, struct bpf_prog_aux, work); prog = aux->prog; perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_UNLOAD, 0); bpf_audit_prog(prog, BPF_AUDIT_UNLOAD); bpf_prog_free_id(prog); __bpf_prog_put_noref(prog, true); } static void __bpf_prog_put(struct bpf_prog *prog) { struct bpf_prog_aux *aux = prog->aux; if (atomic64_dec_and_test(&aux->refcnt)) { if (in_irq() || irqs_disabled()) { INIT_WORK(&aux->work, bpf_prog_put_deferred); schedule_work(&aux->work); } else { bpf_prog_put_deferred(&aux->work); } } } void bpf_prog_put(struct bpf_prog *prog) { __bpf_prog_put(prog); } EXPORT_SYMBOL_GPL(bpf_prog_put); static int bpf_prog_release(struct inode *inode, struct file *filp) { struct bpf_prog *prog = filp->private_data; bpf_prog_put(prog); return 0; } struct bpf_prog_kstats { u64 nsecs; u64 cnt; u64 misses; }; void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog) { struct bpf_prog_stats *stats; unsigned int flags; stats = this_cpu_ptr(prog->stats); flags = u64_stats_update_begin_irqsave(&stats->syncp); u64_stats_inc(&stats->misses); u64_stats_update_end_irqrestore(&stats->syncp, flags); } static void bpf_prog_get_stats(const struct bpf_prog *prog, struct bpf_prog_kstats *stats) { u64 nsecs = 0, cnt = 0, misses = 0; int cpu; for_each_possible_cpu(cpu) { const struct bpf_prog_stats *st; unsigned int start; u64 tnsecs, tcnt, tmisses; st = per_cpu_ptr(prog->stats, cpu); do { start = u64_stats_fetch_begin(&st->syncp); tnsecs = u64_stats_read(&st->nsecs); tcnt = u64_stats_read(&st->cnt); tmisses = u64_stats_read(&st->misses); } while (u64_stats_fetch_retry(&st->syncp, start)); nsecs += tnsecs; cnt += tcnt; misses += tmisses; } stats->nsecs = nsecs; stats->cnt = cnt; stats->misses = misses; } #ifdef CONFIG_PROC_FS static void bpf_prog_show_fdinfo(struct seq_file *m, struct file *filp) { const struct bpf_prog *prog = filp->private_data; char prog_tag[sizeof(prog->tag) * 2 + 1] = { }; struct bpf_prog_kstats stats; bpf_prog_get_stats(prog, &stats); bin2hex(prog_tag, prog->tag, sizeof(prog->tag)); seq_printf(m, "prog_type:\t%u\n" "prog_jited:\t%u\n" "prog_tag:\t%s\n" "memlock:\t%llu\n" "prog_id:\t%u\n" "run_time_ns:\t%llu\n" "run_cnt:\t%llu\n" "recursion_misses:\t%llu\n" "verified_insns:\t%u\n", prog->type, prog->jited, prog_tag, prog->pages * 1ULL << PAGE_SHIFT, prog->aux->id, stats.nsecs, stats.cnt, stats.misses, prog->aux->verified_insns); } #endif const struct file_operations bpf_prog_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_prog_show_fdinfo, #endif .release = bpf_prog_release, .read = bpf_dummy_read, .write = bpf_dummy_write, }; int bpf_prog_new_fd(struct bpf_prog *prog) { int ret; ret = security_bpf_prog(prog); if (ret < 0) return ret; return anon_inode_getfd("bpf-prog", &bpf_prog_fops, prog, O_RDWR | O_CLOEXEC); } static struct bpf_prog *____bpf_prog_get(struct fd f) { if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &bpf_prog_fops) { fdput(f); return ERR_PTR(-EINVAL); } return f.file->private_data; } void bpf_prog_add(struct bpf_prog *prog, int i) { atomic64_add(i, &prog->aux->refcnt); } EXPORT_SYMBOL_GPL(bpf_prog_add); void bpf_prog_sub(struct bpf_prog *prog, int i) { /* Only to be used for undoing previous bpf_prog_add() in some * error path. We still know that another entity in our call * path holds a reference to the program, thus atomic_sub() can * be safely used in such cases! */ WARN_ON(atomic64_sub_return(i, &prog->aux->refcnt) == 0); } EXPORT_SYMBOL_GPL(bpf_prog_sub); void bpf_prog_inc(struct bpf_prog *prog) { atomic64_inc(&prog->aux->refcnt); } EXPORT_SYMBOL_GPL(bpf_prog_inc); /* prog_idr_lock should have been held */ struct bpf_prog *bpf_prog_inc_not_zero(struct bpf_prog *prog) { int refold; refold = atomic64_fetch_add_unless(&prog->aux->refcnt, 1, 0); if (!refold) return ERR_PTR(-ENOENT); return prog; } EXPORT_SYMBOL_GPL(bpf_prog_inc_not_zero); bool bpf_prog_get_ok(struct bpf_prog *prog, enum bpf_prog_type *attach_type, bool attach_drv) { /* not an attachment, just a refcount inc, always allow */ if (!attach_type) return true; if (prog->type != *attach_type) return false; if (bpf_prog_is_offloaded(prog->aux) && !attach_drv) return false; return true; } static struct bpf_prog *__bpf_prog_get(u32 ufd, enum bpf_prog_type *attach_type, bool attach_drv) { struct fd f = fdget(ufd); struct bpf_prog *prog; prog = ____bpf_prog_get(f); if (IS_ERR(prog)) return prog; if (!bpf_prog_get_ok(prog, attach_type, attach_drv)) { prog = ERR_PTR(-EINVAL); goto out; } bpf_prog_inc(prog); out: fdput(f); return prog; } struct bpf_prog *bpf_prog_get(u32 ufd) { return __bpf_prog_get(ufd, NULL, false); } struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, bool attach_drv) { return __bpf_prog_get(ufd, &type, attach_drv); } EXPORT_SYMBOL_GPL(bpf_prog_get_type_dev); /* Initially all BPF programs could be loaded w/o specifying * expected_attach_type. Later for some of them specifying expected_attach_type * at load time became required so that program could be validated properly. * Programs of types that are allowed to be loaded both w/ and w/o (for * backward compatibility) expected_attach_type, should have the default attach * type assigned to expected_attach_type for the latter case, so that it can be * validated later at attach time. * * bpf_prog_load_fixup_attach_type() sets expected_attach_type in @attr if * prog type requires it but has some attach types that have to be backward * compatible. */ static void bpf_prog_load_fixup_attach_type(union bpf_attr *attr) { switch (attr->prog_type) { case BPF_PROG_TYPE_CGROUP_SOCK: /* Unfortunately BPF_ATTACH_TYPE_UNSPEC enumeration doesn't * exist so checking for non-zero is the way to go here. */ if (!attr->expected_attach_type) attr->expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; break; case BPF_PROG_TYPE_SK_REUSEPORT: if (!attr->expected_attach_type) attr->expected_attach_type = BPF_SK_REUSEPORT_SELECT; break; } } static int bpf_prog_load_check_attach(enum bpf_prog_type prog_type, enum bpf_attach_type expected_attach_type, struct btf *attach_btf, u32 btf_id, struct bpf_prog *dst_prog) { if (btf_id) { if (btf_id > BTF_MAX_TYPE) return -EINVAL; if (!attach_btf && !dst_prog) return -EINVAL; switch (prog_type) { case BPF_PROG_TYPE_TRACING: case BPF_PROG_TYPE_LSM: case BPF_PROG_TYPE_STRUCT_OPS: case BPF_PROG_TYPE_EXT: break; default: return -EINVAL; } } if (attach_btf && (!btf_id || dst_prog)) return -EINVAL; if (dst_prog && prog_type != BPF_PROG_TYPE_TRACING && prog_type != BPF_PROG_TYPE_EXT) return -EINVAL; switch (prog_type) { case BPF_PROG_TYPE_CGROUP_SOCK: switch (expected_attach_type) { case BPF_CGROUP_INET_SOCK_CREATE: case BPF_CGROUP_INET_SOCK_RELEASE: case BPF_CGROUP_INET4_POST_BIND: case BPF_CGROUP_INET6_POST_BIND: return 0; default: return -EINVAL; } case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: switch (expected_attach_type) { case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_UNIX_CONNECT: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_UNIX_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UNIX_GETSOCKNAME: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UNIX_SENDMSG: case BPF_CGROUP_UDP4_RECVMSG: case BPF_CGROUP_UDP6_RECVMSG: case BPF_CGROUP_UNIX_RECVMSG: return 0; default: return -EINVAL; } case BPF_PROG_TYPE_CGROUP_SKB: switch (expected_attach_type) { case BPF_CGROUP_INET_INGRESS: case BPF_CGROUP_INET_EGRESS: return 0; default: return -EINVAL; } case BPF_PROG_TYPE_CGROUP_SOCKOPT: switch (expected_attach_type) { case BPF_CGROUP_SETSOCKOPT: case BPF_CGROUP_GETSOCKOPT: return 0; default: return -EINVAL; } case BPF_PROG_TYPE_SK_LOOKUP: if (expected_attach_type == BPF_SK_LOOKUP) return 0; return -EINVAL; case BPF_PROG_TYPE_SK_REUSEPORT: switch (expected_attach_type) { case BPF_SK_REUSEPORT_SELECT: case BPF_SK_REUSEPORT_SELECT_OR_MIGRATE: return 0; default: return -EINVAL; } case BPF_PROG_TYPE_NETFILTER: if (expected_attach_type == BPF_NETFILTER) return 0; return -EINVAL; case BPF_PROG_TYPE_SYSCALL: case BPF_PROG_TYPE_EXT: if (expected_attach_type) return -EINVAL; fallthrough; default: return 0; } } static bool is_net_admin_prog_type(enum bpf_prog_type prog_type) { switch (prog_type) { case BPF_PROG_TYPE_SCHED_CLS: case BPF_PROG_TYPE_SCHED_ACT: case BPF_PROG_TYPE_XDP: case BPF_PROG_TYPE_LWT_IN: case BPF_PROG_TYPE_LWT_OUT: case BPF_PROG_TYPE_LWT_XMIT: case BPF_PROG_TYPE_LWT_SEG6LOCAL: case BPF_PROG_TYPE_SK_SKB: case BPF_PROG_TYPE_SK_MSG: case BPF_PROG_TYPE_FLOW_DISSECTOR: case BPF_PROG_TYPE_CGROUP_DEVICE: case BPF_PROG_TYPE_CGROUP_SOCK: case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: case BPF_PROG_TYPE_CGROUP_SOCKOPT: case BPF_PROG_TYPE_CGROUP_SYSCTL: case BPF_PROG_TYPE_SOCK_OPS: case BPF_PROG_TYPE_EXT: /* extends any prog */ case BPF_PROG_TYPE_NETFILTER: return true; case BPF_PROG_TYPE_CGROUP_SKB: /* always unpriv */ case BPF_PROG_TYPE_SK_REUSEPORT: /* equivalent to SOCKET_FILTER. need CAP_BPF only */ default: return false; } } static bool is_perfmon_prog_type(enum bpf_prog_type prog_type) { switch (prog_type) { case BPF_PROG_TYPE_KPROBE: case BPF_PROG_TYPE_TRACEPOINT: case BPF_PROG_TYPE_PERF_EVENT: case BPF_PROG_TYPE_RAW_TRACEPOINT: case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: case BPF_PROG_TYPE_TRACING: case BPF_PROG_TYPE_LSM: case BPF_PROG_TYPE_STRUCT_OPS: /* has access to struct sock */ case BPF_PROG_TYPE_EXT: /* extends any prog */ return true; default: return false; } } /* last field in 'union bpf_attr' used by this command */ #define BPF_PROG_LOAD_LAST_FIELD prog_token_fd static int bpf_prog_load(union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) { enum bpf_prog_type type = attr->prog_type; struct bpf_prog *prog, *dst_prog = NULL; struct btf *attach_btf = NULL; struct bpf_token *token = NULL; bool bpf_cap; int err; char license[128]; if (CHECK_ATTR(BPF_PROG_LOAD)) return -EINVAL; if (attr->prog_flags & ~(BPF_F_STRICT_ALIGNMENT | BPF_F_ANY_ALIGNMENT | BPF_F_TEST_STATE_FREQ | BPF_F_SLEEPABLE | BPF_F_TEST_RND_HI32 | BPF_F_XDP_HAS_FRAGS | BPF_F_XDP_DEV_BOUND_ONLY | BPF_F_TEST_REG_INVARIANTS | BPF_F_TOKEN_FD)) return -EINVAL; bpf_prog_load_fixup_attach_type(attr); if (attr->prog_flags & BPF_F_TOKEN_FD) { token = bpf_token_get_from_fd(attr->prog_token_fd); if (IS_ERR(token)) return PTR_ERR(token); /* if current token doesn't grant prog loading permissions, * then we can't use this token, so ignore it and rely on * system-wide capabilities checks */ if (!bpf_token_allow_cmd(token, BPF_PROG_LOAD) || !bpf_token_allow_prog_type(token, attr->prog_type, attr->expected_attach_type)) { bpf_token_put(token); token = NULL; } } bpf_cap = bpf_token_capable(token, CAP_BPF); err = -EPERM; if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && (attr->prog_flags & BPF_F_ANY_ALIGNMENT) && !bpf_cap) goto put_token; /* Intent here is for unprivileged_bpf_disabled to block BPF program * creation for unprivileged users; other actions depend * on fd availability and access to bpffs, so are dependent on * object creation success. Even with unprivileged BPF disabled, * capability checks are still carried out for these * and other operations. */ if (sysctl_unprivileged_bpf_disabled && !bpf_cap) goto put_token; if (attr->insn_cnt == 0 || attr->insn_cnt > (bpf_cap ? BPF_COMPLEXITY_LIMIT_INSNS : BPF_MAXINSNS)) { err = -E2BIG; goto put_token; } if (type != BPF_PROG_TYPE_SOCKET_FILTER && type != BPF_PROG_TYPE_CGROUP_SKB && !bpf_cap) goto put_token; if (is_net_admin_prog_type(type) && !bpf_token_capable(token, CAP_NET_ADMIN)) goto put_token; if (is_perfmon_prog_type(type) && !bpf_token_capable(token, CAP_PERFMON)) goto put_token; /* attach_prog_fd/attach_btf_obj_fd can specify fd of either bpf_prog * or btf, we need to check which one it is */ if (attr->attach_prog_fd) { dst_prog = bpf_prog_get(attr->attach_prog_fd); if (IS_ERR(dst_prog)) { dst_prog = NULL; attach_btf = btf_get_by_fd(attr->attach_btf_obj_fd); if (IS_ERR(attach_btf)) { err = -EINVAL; goto put_token; } if (!btf_is_kernel(attach_btf)) { /* attaching through specifying bpf_prog's BTF * objects directly might be supported eventually */ btf_put(attach_btf); err = -ENOTSUPP; goto put_token; } } } else if (attr->attach_btf_id) { /* fall back to vmlinux BTF, if BTF type ID is specified */ attach_btf = bpf_get_btf_vmlinux(); if (IS_ERR(attach_btf)) { err = PTR_ERR(attach_btf); goto put_token; } if (!attach_btf) { err = -EINVAL; goto put_token; } btf_get(attach_btf); } if (bpf_prog_load_check_attach(type, attr->expected_attach_type, attach_btf, attr->attach_btf_id, dst_prog)) { if (dst_prog) bpf_prog_put(dst_prog); if (attach_btf) btf_put(attach_btf); err = -EINVAL; goto put_token; } /* plain bpf_prog allocation */ prog = bpf_prog_alloc(bpf_prog_size(attr->insn_cnt), GFP_USER); if (!prog) { if (dst_prog) bpf_prog_put(dst_prog); if (attach_btf) btf_put(attach_btf); err = -EINVAL; goto put_token; } prog->expected_attach_type = attr->expected_attach_type; prog->sleepable = !!(attr->prog_flags & BPF_F_SLEEPABLE); prog->aux->attach_btf = attach_btf; prog->aux->attach_btf_id = attr->attach_btf_id; prog->aux->dst_prog = dst_prog; prog->aux->dev_bound = !!attr->prog_ifindex; prog->aux->xdp_has_frags = attr->prog_flags & BPF_F_XDP_HAS_FRAGS; /* move token into prog->aux, reuse taken refcnt */ prog->aux->token = token; token = NULL; prog->aux->user = get_current_user(); prog->len = attr->insn_cnt; err = -EFAULT; if (copy_from_bpfptr(prog->insns, make_bpfptr(attr->insns, uattr.is_kernel), bpf_prog_insn_size(prog)) != 0) goto free_prog; /* copy eBPF program license from user space */ if (strncpy_from_bpfptr(license, make_bpfptr(attr->license, uattr.is_kernel), sizeof(license) - 1) < 0) goto free_prog; license[sizeof(license) - 1] = 0; /* eBPF programs must be GPL compatible to use GPL-ed functions */ prog->gpl_compatible = license_is_gpl_compatible(license) ? 1 : 0; prog->orig_prog = NULL; prog->jited = 0; atomic64_set(&prog->aux->refcnt, 1); if (bpf_prog_is_dev_bound(prog->aux)) { err = bpf_prog_dev_bound_init(prog, attr); if (err) goto free_prog; } if (type == BPF_PROG_TYPE_EXT && dst_prog && bpf_prog_is_dev_bound(dst_prog->aux)) { err = bpf_prog_dev_bound_inherit(prog, dst_prog); if (err) goto free_prog; } /* * Bookkeeping for managing the program attachment chain. * * It might be tempting to set attach_tracing_prog flag at the attachment * time, but this will not prevent from loading bunch of tracing prog * first, then attach them one to another. * * The flag attach_tracing_prog is set for the whole program lifecycle, and * doesn't have to be cleared in bpf_tracing_link_release, since tracing * programs cannot change attachment target. */ if (type == BPF_PROG_TYPE_TRACING && dst_prog && dst_prog->type == BPF_PROG_TYPE_TRACING) { prog->aux->attach_tracing_prog = true; } /* find program type: socket_filter vs tracing_filter */ err = find_prog_type(type, prog); if (err < 0) goto free_prog; prog->aux->load_time = ktime_get_boottime_ns(); err = bpf_obj_name_cpy(prog->aux->name, attr->prog_name, sizeof(attr->prog_name)); if (err < 0) goto free_prog; err = security_bpf_prog_load(prog, attr, token); if (err) goto free_prog_sec; /* run eBPF verifier */ err = bpf_check(&prog, attr, uattr, uattr_size); if (err < 0) goto free_used_maps; prog = bpf_prog_select_runtime(prog, &err); if (err < 0) goto free_used_maps; err = bpf_prog_alloc_id(prog); if (err) goto free_used_maps; /* Upon success of bpf_prog_alloc_id(), the BPF prog is * effectively publicly exposed. However, retrieving via * bpf_prog_get_fd_by_id() will take another reference, * therefore it cannot be gone underneath us. * * Only for the time /after/ successful bpf_prog_new_fd() * and before returning to userspace, we might just hold * one reference and any parallel close on that fd could * rip everything out. Hence, below notifications must * happen before bpf_prog_new_fd(). * * Also, any failure handling from this point onwards must * be using bpf_prog_put() given the program is exposed. */ bpf_prog_kallsyms_add(prog); perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_LOAD, 0); bpf_audit_prog(prog, BPF_AUDIT_LOAD); err = bpf_prog_new_fd(prog); if (err < 0) bpf_prog_put(prog); return err; free_used_maps: /* In case we have subprogs, we need to wait for a grace * period before we can tear down JIT memory since symbols * are already exposed under kallsyms. */ __bpf_prog_put_noref(prog, prog->aux->real_func_cnt); return err; free_prog_sec: security_bpf_prog_free(prog); free_prog: free_uid(prog->aux->user); if (prog->aux->attach_btf) btf_put(prog->aux->attach_btf); bpf_prog_free(prog); put_token: bpf_token_put(token); return err; } #define BPF_OBJ_LAST_FIELD path_fd static int bpf_obj_pin(const union bpf_attr *attr) { int path_fd; if (CHECK_ATTR(BPF_OBJ) || attr->file_flags & ~BPF_F_PATH_FD) return -EINVAL; /* path_fd has to be accompanied by BPF_F_PATH_FD flag */ if (!(attr->file_flags & BPF_F_PATH_FD) && attr->path_fd) return -EINVAL; path_fd = attr->file_flags & BPF_F_PATH_FD ? attr->path_fd : AT_FDCWD; return bpf_obj_pin_user(attr->bpf_fd, path_fd, u64_to_user_ptr(attr->pathname)); } static int bpf_obj_get(const union bpf_attr *attr) { int path_fd; if (CHECK_ATTR(BPF_OBJ) || attr->bpf_fd != 0 || attr->file_flags & ~(BPF_OBJ_FLAG_MASK | BPF_F_PATH_FD)) return -EINVAL; /* path_fd has to be accompanied by BPF_F_PATH_FD flag */ if (!(attr->file_flags & BPF_F_PATH_FD) && attr->path_fd) return -EINVAL; path_fd = attr->file_flags & BPF_F_PATH_FD ? attr->path_fd : AT_FDCWD; return bpf_obj_get_user(path_fd, u64_to_user_ptr(attr->pathname), attr->file_flags); } void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog) { WARN_ON(ops->dealloc && ops->dealloc_deferred); atomic64_set(&link->refcnt, 1); link->type = type; link->id = 0; link->ops = ops; link->prog = prog; } static void bpf_link_free_id(int id) { if (!id) return; spin_lock_bh(&link_idr_lock); idr_remove(&link_idr, id); spin_unlock_bh(&link_idr_lock); } /* Clean up bpf_link and corresponding anon_inode file and FD. After * anon_inode is created, bpf_link can't be just kfree()'d due to deferred * anon_inode's release() call. This helper marks bpf_link as * defunct, releases anon_inode file and puts reserved FD. bpf_prog's refcnt * is not decremented, it's the responsibility of a calling code that failed * to complete bpf_link initialization. * This helper eventually calls link's dealloc callback, but does not call * link's release callback. */ void bpf_link_cleanup(struct bpf_link_primer *primer) { primer->link->prog = NULL; bpf_link_free_id(primer->id); fput(primer->file); put_unused_fd(primer->fd); } void bpf_link_inc(struct bpf_link *link) { atomic64_inc(&link->refcnt); } static void bpf_link_defer_dealloc_rcu_gp(struct rcu_head *rcu) { struct bpf_link *link = container_of(rcu, struct bpf_link, rcu); /* free bpf_link and its containing memory */ link->ops->dealloc_deferred(link); } static void bpf_link_defer_dealloc_mult_rcu_gp(struct rcu_head *rcu) { if (rcu_trace_implies_rcu_gp()) bpf_link_defer_dealloc_rcu_gp(rcu); else call_rcu(rcu, bpf_link_defer_dealloc_rcu_gp); } /* bpf_link_free is guaranteed to be called from process context */ static void bpf_link_free(struct bpf_link *link) { const struct bpf_link_ops *ops = link->ops; bool sleepable = false; bpf_link_free_id(link->id); if (link->prog) { sleepable = link->prog->sleepable; /* detach BPF program, clean up used resources */ ops->release(link); bpf_prog_put(link->prog); } if (ops->dealloc_deferred) { /* schedule BPF link deallocation; if underlying BPF program * is sleepable, we need to first wait for RCU tasks trace * sync, then go through "classic" RCU grace period */ if (sleepable) call_rcu_tasks_trace(&link->rcu, bpf_link_defer_dealloc_mult_rcu_gp); else call_rcu(&link->rcu, bpf_link_defer_dealloc_rcu_gp); } else if (ops->dealloc) ops->dealloc(link); } static void bpf_link_put_deferred(struct work_struct *work) { struct bpf_link *link = container_of(work, struct bpf_link, work); bpf_link_free(link); } /* bpf_link_put might be called from atomic context. It needs to be called * from sleepable context in order to acquire sleeping locks during the process. */ void bpf_link_put(struct bpf_link *link) { if (!atomic64_dec_and_test(&link->refcnt)) return; INIT_WORK(&link->work, bpf_link_put_deferred); schedule_work(&link->work); } EXPORT_SYMBOL(bpf_link_put); static void bpf_link_put_direct(struct bpf_link *link) { if (!atomic64_dec_and_test(&link->refcnt)) return; bpf_link_free(link); } static int bpf_link_release(struct inode *inode, struct file *filp) { struct bpf_link *link = filp->private_data; bpf_link_put_direct(link); return 0; } #ifdef CONFIG_PROC_FS #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) #define BPF_MAP_TYPE(_id, _ops) #define BPF_LINK_TYPE(_id, _name) [_id] = #_name, static const char *bpf_link_type_strs[] = { [BPF_LINK_TYPE_UNSPEC] = "<invalid>", #include <linux/bpf_types.h> }; #undef BPF_PROG_TYPE #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE static void bpf_link_show_fdinfo(struct seq_file *m, struct file *filp) { const struct bpf_link *link = filp->private_data; const struct bpf_prog *prog = link->prog; char prog_tag[sizeof(prog->tag) * 2 + 1] = { }; seq_printf(m, "link_type:\t%s\n" "link_id:\t%u\n", bpf_link_type_strs[link->type], link->id); if (prog) { bin2hex(prog_tag, prog->tag, sizeof(prog->tag)); seq_printf(m, "prog_tag:\t%s\n" "prog_id:\t%u\n", prog_tag, prog->aux->id); } if (link->ops->show_fdinfo) link->ops->show_fdinfo(link, m); } #endif static __poll_t bpf_link_poll(struct file *file, struct poll_table_struct *pts) { struct bpf_link *link = file->private_data; return link->ops->poll(file, pts); } static const struct file_operations bpf_link_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_link_show_fdinfo, #endif .release = bpf_link_release, .read = bpf_dummy_read, .write = bpf_dummy_write, }; static const struct file_operations bpf_link_fops_poll = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_link_show_fdinfo, #endif .release = bpf_link_release, .read = bpf_dummy_read, .write = bpf_dummy_write, .poll = bpf_link_poll, }; static int bpf_link_alloc_id(struct bpf_link *link) { int id; idr_preload(GFP_KERNEL); spin_lock_bh(&link_idr_lock); id = idr_alloc_cyclic(&link_idr, link, 1, INT_MAX, GFP_ATOMIC); spin_unlock_bh(&link_idr_lock); idr_preload_end(); return id; } /* Prepare bpf_link to be exposed to user-space by allocating anon_inode file, * reserving unused FD and allocating ID from link_idr. This is to be paired * with bpf_link_settle() to install FD and ID and expose bpf_link to * user-space, if bpf_link is successfully attached. If not, bpf_link and * pre-allocated resources are to be freed with bpf_cleanup() call. All the * transient state is passed around in struct bpf_link_primer. * This is preferred way to create and initialize bpf_link, especially when * there are complicated and expensive operations in between creating bpf_link * itself and attaching it to BPF hook. By using bpf_link_prime() and * bpf_link_settle() kernel code using bpf_link doesn't have to perform * expensive (and potentially failing) roll back operations in a rare case * that file, FD, or ID can't be allocated. */ int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer) { struct file *file; int fd, id; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) return fd; id = bpf_link_alloc_id(link); if (id < 0) { put_unused_fd(fd); return id; } file = anon_inode_getfile("bpf_link", link->ops->poll ? &bpf_link_fops_poll : &bpf_link_fops, link, O_CLOEXEC); if (IS_ERR(file)) { bpf_link_free_id(id); put_unused_fd(fd); return PTR_ERR(file); } primer->link = link; primer->file = file; primer->fd = fd; primer->id = id; return 0; } int bpf_link_settle(struct bpf_link_primer *primer) { /* make bpf_link fetchable by ID */ spin_lock_bh(&link_idr_lock); primer->link->id = primer->id; spin_unlock_bh(&link_idr_lock); /* make bpf_link fetchable by FD */ fd_install(primer->fd, primer->file); /* pass through installed FD */ return primer->fd; } int bpf_link_new_fd(struct bpf_link *link) { return anon_inode_getfd("bpf-link", link->ops->poll ? &bpf_link_fops_poll : &bpf_link_fops, link, O_CLOEXEC); } struct bpf_link *bpf_link_get_from_fd(u32 ufd) { struct fd f = fdget(ufd); struct bpf_link *link; if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &bpf_link_fops && f.file->f_op != &bpf_link_fops_poll) { fdput(f); return ERR_PTR(-EINVAL); } link = f.file->private_data; bpf_link_inc(link); fdput(f); return link; } EXPORT_SYMBOL(bpf_link_get_from_fd); static void bpf_tracing_link_release(struct bpf_link *link) { struct bpf_tracing_link *tr_link = container_of(link, struct bpf_tracing_link, link.link); WARN_ON_ONCE(bpf_trampoline_unlink_prog(&tr_link->link, tr_link->trampoline)); bpf_trampoline_put(tr_link->trampoline); /* tgt_prog is NULL if target is a kernel function */ if (tr_link->tgt_prog) bpf_prog_put(tr_link->tgt_prog); } static void bpf_tracing_link_dealloc(struct bpf_link *link) { struct bpf_tracing_link *tr_link = container_of(link, struct bpf_tracing_link, link.link); kfree(tr_link); } static void bpf_tracing_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq) { struct bpf_tracing_link *tr_link = container_of(link, struct bpf_tracing_link, link.link); u32 target_btf_id, target_obj_id; bpf_trampoline_unpack_key(tr_link->trampoline->key, &target_obj_id, &target_btf_id); seq_printf(seq, "attach_type:\t%d\n" "target_obj_id:\t%u\n" "target_btf_id:\t%u\n", tr_link->attach_type, target_obj_id, target_btf_id); } static int bpf_tracing_link_fill_link_info(const struct bpf_link *link, struct bpf_link_info *info) { struct bpf_tracing_link *tr_link = container_of(link, struct bpf_tracing_link, link.link); info->tracing.attach_type = tr_link->attach_type; bpf_trampoline_unpack_key(tr_link->trampoline->key, &info->tracing.target_obj_id, &info->tracing.target_btf_id); return 0; } static const struct bpf_link_ops bpf_tracing_link_lops = { .release = bpf_tracing_link_release, .dealloc = bpf_tracing_link_dealloc, .show_fdinfo = bpf_tracing_link_show_fdinfo, .fill_link_info = bpf_tracing_link_fill_link_info, }; static int bpf_tracing_prog_attach(struct bpf_prog *prog, int tgt_prog_fd, u32 btf_id, u64 bpf_cookie) { struct bpf_link_primer link_primer; struct bpf_prog *tgt_prog = NULL; struct bpf_trampoline *tr = NULL; struct bpf_tracing_link *link; u64 key = 0; int err; switch (prog->type) { case BPF_PROG_TYPE_TRACING: if (prog->expected_attach_type != BPF_TRACE_FENTRY && prog->expected_attach_type != BPF_TRACE_FEXIT && prog->expected_attach_type != BPF_MODIFY_RETURN) { err = -EINVAL; goto out_put_prog; } break; case BPF_PROG_TYPE_EXT: if (prog->expected_attach_type != 0) { err = -EINVAL; goto out_put_prog; } break; case BPF_PROG_TYPE_LSM: if (prog->expected_attach_type != BPF_LSM_MAC) { err = -EINVAL; goto out_put_prog; } break; default: err = -EINVAL; goto out_put_prog; } if (!!tgt_prog_fd != !!btf_id) { err = -EINVAL; goto out_put_prog; } if (tgt_prog_fd) { /* * For now we only allow new targets for BPF_PROG_TYPE_EXT. If this * part would be changed to implement the same for * BPF_PROG_TYPE_TRACING, do not forget to update the way how * attach_tracing_prog flag is set. */ if (prog->type != BPF_PROG_TYPE_EXT) { err = -EINVAL; goto out_put_prog; } tgt_prog = bpf_prog_get(tgt_prog_fd); if (IS_ERR(tgt_prog)) { err = PTR_ERR(tgt_prog); tgt_prog = NULL; goto out_put_prog; } key = bpf_trampoline_compute_key(tgt_prog, NULL, btf_id); } link = kzalloc(sizeof(*link), GFP_USER); if (!link) { err = -ENOMEM; goto out_put_prog; } bpf_link_init(&link->link.link, BPF_LINK_TYPE_TRACING, &bpf_tracing_link_lops, prog); link->attach_type = prog->expected_attach_type; link->link.cookie = bpf_cookie; mutex_lock(&prog->aux->dst_mutex); /* There are a few possible cases here: * * - if prog->aux->dst_trampoline is set, the program was just loaded * and not yet attached to anything, so we can use the values stored * in prog->aux * * - if prog->aux->dst_trampoline is NULL, the program has already been * attached to a target and its initial target was cleared (below) * * - if tgt_prog != NULL, the caller specified tgt_prog_fd + * target_btf_id using the link_create API. * * - if tgt_prog == NULL when this function was called using the old * raw_tracepoint_open API, and we need a target from prog->aux * * - if prog->aux->dst_trampoline and tgt_prog is NULL, the program * was detached and is going for re-attachment. * * - if prog->aux->dst_trampoline is NULL and tgt_prog and prog->aux->attach_btf * are NULL, then program was already attached and user did not provide * tgt_prog_fd so we have no way to find out or create trampoline */ if (!prog->aux->dst_trampoline && !tgt_prog) { /* * Allow re-attach for TRACING and LSM programs. If it's * currently linked, bpf_trampoline_link_prog will fail. * EXT programs need to specify tgt_prog_fd, so they * re-attach in separate code path. */ if (prog->type != BPF_PROG_TYPE_TRACING && prog->type != BPF_PROG_TYPE_LSM) { err = -EINVAL; goto out_unlock; } /* We can allow re-attach only if we have valid attach_btf. */ if (!prog->aux->attach_btf) { err = -EINVAL; goto out_unlock; } btf_id = prog->aux->attach_btf_id; key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, btf_id); } if (!prog->aux->dst_trampoline || (key && key != prog->aux->dst_trampoline->key)) { /* If there is no saved target, or the specified target is * different from the destination specified at load time, we * need a new trampoline and a check for compatibility */ struct bpf_attach_target_info tgt_info = {}; err = bpf_check_attach_target(NULL, prog, tgt_prog, btf_id, &tgt_info); if (err) goto out_unlock; if (tgt_info.tgt_mod) { module_put(prog->aux->mod); prog->aux->mod = tgt_info.tgt_mod; } tr = bpf_trampoline_get(key, &tgt_info); if (!tr) { err = -ENOMEM; goto out_unlock; } } else { /* The caller didn't specify a target, or the target was the * same as the destination supplied during program load. This * means we can reuse the trampoline and reference from program * load time, and there is no need to allocate a new one. This * can only happen once for any program, as the saved values in * prog->aux are cleared below. */ tr = prog->aux->dst_trampoline; tgt_prog = prog->aux->dst_prog; } err = bpf_link_prime(&link->link.link, &link_primer); if (err) goto out_unlock; err = bpf_trampoline_link_prog(&link->link, tr); if (err) { bpf_link_cleanup(&link_primer); link = NULL; goto out_unlock; } link->tgt_prog = tgt_prog; link->trampoline = tr; /* Always clear the trampoline and target prog from prog->aux to make * sure the original attach destination is not kept alive after a * program is (re-)attached to another target. */ if (prog->aux->dst_prog && (tgt_prog_fd || tr != prog->aux->dst_trampoline)) /* got extra prog ref from syscall, or attaching to different prog */ bpf_prog_put(prog->aux->dst_prog); if (prog->aux->dst_trampoline && tr != prog->aux->dst_trampoline) /* we allocated a new trampoline, so free the old one */ bpf_trampoline_put(prog->aux->dst_trampoline); prog->aux->dst_prog = NULL; prog->aux->dst_trampoline = NULL; mutex_unlock(&prog->aux->dst_mutex); return bpf_link_settle(&link_primer); out_unlock: if (tr && tr != prog->aux->dst_trampoline) bpf_trampoline_put(tr); mutex_unlock(&prog->aux->dst_mutex); kfree(link); out_put_prog: if (tgt_prog_fd && tgt_prog) bpf_prog_put(tgt_prog); return err; } static void bpf_raw_tp_link_release(struct bpf_link *link) { struct bpf_raw_tp_link *raw_tp = container_of(link, struct bpf_raw_tp_link, link); bpf_probe_unregister(raw_tp->btp, raw_tp); bpf_put_raw_tracepoint(raw_tp->btp); } static void bpf_raw_tp_link_dealloc(struct bpf_link *link) { struct bpf_raw_tp_link *raw_tp = container_of(link, struct bpf_raw_tp_link, link); kfree(raw_tp); } static void bpf_raw_tp_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq) { struct bpf_raw_tp_link *raw_tp_link = container_of(link, struct bpf_raw_tp_link, link); seq_printf(seq, "tp_name:\t%s\n", raw_tp_link->btp->tp->name); } static int bpf_copy_to_user(char __user *ubuf, const char *buf, u32 ulen, u32 len) { if (ulen >= len + 1) { if (copy_to_user(ubuf, buf, len + 1)) return -EFAULT; } else { char zero = '\0'; if (copy_to_user(ubuf, buf, ulen - 1)) return -EFAULT; if (put_user(zero, ubuf + ulen - 1)) return -EFAULT; return -ENOSPC; } return 0; } static int bpf_raw_tp_link_fill_link_info(const struct bpf_link *link, struct bpf_link_info *info) { struct bpf_raw_tp_link *raw_tp_link = container_of(link, struct bpf_raw_tp_link, link); char __user *ubuf = u64_to_user_ptr(info->raw_tracepoint.tp_name); const char *tp_name = raw_tp_link->btp->tp->name; u32 ulen = info->raw_tracepoint.tp_name_len; size_t tp_len = strlen(tp_name); if (!ulen ^ !ubuf) return -EINVAL; info->raw_tracepoint.tp_name_len = tp_len + 1; if (!ubuf) return 0; return bpf_copy_to_user(ubuf, tp_name, ulen, tp_len); } static const struct bpf_link_ops bpf_raw_tp_link_lops = { .release = bpf_raw_tp_link_release, .dealloc_deferred = bpf_raw_tp_link_dealloc, .show_fdinfo = bpf_raw_tp_link_show_fdinfo, .fill_link_info = bpf_raw_tp_link_fill_link_info, }; #ifdef CONFIG_PERF_EVENTS struct bpf_perf_link { struct bpf_link link; struct file *perf_file; }; static void bpf_perf_link_release(struct bpf_link *link) { struct bpf_perf_link *perf_link = container_of(link, struct bpf_perf_link, link); struct perf_event *event = perf_link->perf_file->private_data; perf_event_free_bpf_prog(event); fput(perf_link->perf_file); } static void bpf_perf_link_dealloc(struct bpf_link *link) { struct bpf_perf_link *perf_link = container_of(link, struct bpf_perf_link, link); kfree(perf_link); } static int bpf_perf_link_fill_common(const struct perf_event *event, char __user *uname, u32 ulen, u64 *probe_offset, u64 *probe_addr, u32 *fd_type, unsigned long *missed) { const char *buf; u32 prog_id; size_t len; int err; if (!ulen ^ !uname) return -EINVAL; err = bpf_get_perf_event_info(event, &prog_id, fd_type, &buf, probe_offset, probe_addr, missed); if (err) return err; if (!uname) return 0; if (buf) { len = strlen(buf); err = bpf_copy_to_user(uname, buf, ulen, len); if (err) return err; } else { char zero = '\0'; if (put_user(zero, uname)) return -EFAULT; } return 0; } #ifdef CONFIG_KPROBE_EVENTS static int bpf_perf_link_fill_kprobe(const struct perf_event *event, struct bpf_link_info *info) { unsigned long missed; char __user *uname; u64 addr, offset; u32 ulen, type; int err; uname = u64_to_user_ptr(info->perf_event.kprobe.func_name); ulen = info->perf_event.kprobe.name_len; err = bpf_perf_link_fill_common(event, uname, ulen, &offset, &addr, &type, &missed); if (err) return err; if (type == BPF_FD_TYPE_KRETPROBE) info->perf_event.type = BPF_PERF_EVENT_KRETPROBE; else info->perf_event.type = BPF_PERF_EVENT_KPROBE; info->perf_event.kprobe.offset = offset; info->perf_event.kprobe.missed = missed; if (!kallsyms_show_value(current_cred())) addr = 0; info->perf_event.kprobe.addr = addr; info->perf_event.kprobe.cookie = event->bpf_cookie; return 0; } #endif #ifdef CONFIG_UPROBE_EVENTS static int bpf_perf_link_fill_uprobe(const struct perf_event *event, struct bpf_link_info *info) { char __user *uname; u64 addr, offset; u32 ulen, type; int err; uname = u64_to_user_ptr(info->perf_event.uprobe.file_name); ulen = info->perf_event.uprobe.name_len; err = bpf_perf_link_fill_common(event, uname, ulen, &offset, &addr, &type, NULL); if (err) return err; if (type == BPF_FD_TYPE_URETPROBE) info->perf_event.type = BPF_PERF_EVENT_URETPROBE; else info->perf_event.type = BPF_PERF_EVENT_UPROBE; info->perf_event.uprobe.offset = offset; info->perf_event.uprobe.cookie = event->bpf_cookie; return 0; } #endif static int bpf_perf_link_fill_probe(const struct perf_event *event, struct bpf_link_info *info) { #ifdef CONFIG_KPROBE_EVENTS if (event->tp_event->flags & TRACE_EVENT_FL_KPROBE) return bpf_perf_link_fill_kprobe(event, info); #endif #ifdef CONFIG_UPROBE_EVENTS if (event->tp_event->flags & TRACE_EVENT_FL_UPROBE) return bpf_perf_link_fill_uprobe(event, info); #endif return -EOPNOTSUPP; } static int bpf_perf_link_fill_tracepoint(const struct perf_event *event, struct bpf_link_info *info) { char __user *uname; u32 ulen; uname = u64_to_user_ptr(info->perf_event.tracepoint.tp_name); ulen = info->perf_event.tracepoint.name_len; info->perf_event.type = BPF_PERF_EVENT_TRACEPOINT; info->perf_event.tracepoint.cookie = event->bpf_cookie; return bpf_perf_link_fill_common(event, uname, ulen, NULL, NULL, NULL, NULL); } static int bpf_perf_link_fill_perf_event(const struct perf_event *event, struct bpf_link_info *info) { info->perf_event.event.type = event->attr.type; info->perf_event.event.config = event->attr.config; info->perf_event.event.cookie = event->bpf_cookie; info->perf_event.type = BPF_PERF_EVENT_EVENT; return 0; } static int bpf_perf_link_fill_link_info(const struct bpf_link *link, struct bpf_link_info *info) { struct bpf_perf_link *perf_link; const struct perf_event *event; perf_link = container_of(link, struct bpf_perf_link, link); event = perf_get_event(perf_link->perf_file); if (IS_ERR(event)) return PTR_ERR(event); switch (event->prog->type) { case BPF_PROG_TYPE_PERF_EVENT: return bpf_perf_link_fill_perf_event(event, info); case BPF_PROG_TYPE_TRACEPOINT: return bpf_perf_link_fill_tracepoint(event, info); case BPF_PROG_TYPE_KPROBE: return bpf_perf_link_fill_probe(event, info); default: return -EOPNOTSUPP; } } static const struct bpf_link_ops bpf_perf_link_lops = { .release = bpf_perf_link_release, .dealloc = bpf_perf_link_dealloc, .fill_link_info = bpf_perf_link_fill_link_info, }; static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { struct bpf_link_primer link_primer; struct bpf_perf_link *link; struct perf_event *event; struct file *perf_file; int err; if (attr->link_create.flags) return -EINVAL; perf_file = perf_event_get(attr->link_create.target_fd); if (IS_ERR(perf_file)) return PTR_ERR(perf_file); link = kzalloc(sizeof(*link), GFP_USER); if (!link) { err = -ENOMEM; goto out_put_file; } bpf_link_init(&link->link, BPF_LINK_TYPE_PERF_EVENT, &bpf_perf_link_lops, prog); link->perf_file = perf_file; err = bpf_link_prime(&link->link, &link_primer); if (err) { kfree(link); goto out_put_file; } event = perf_file->private_data; err = perf_event_set_bpf_prog(event, prog, attr->link_create.perf_event.bpf_cookie); if (err) { bpf_link_cleanup(&link_primer); goto out_put_file; } /* perf_event_set_bpf_prog() doesn't take its own refcnt on prog */ bpf_prog_inc(prog); return bpf_link_settle(&link_primer); out_put_file: fput(perf_file); return err; } #else static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EOPNOTSUPP; } #endif /* CONFIG_PERF_EVENTS */ static int bpf_raw_tp_link_attach(struct bpf_prog *prog, const char __user *user_tp_name, u64 cookie) { struct bpf_link_primer link_primer; struct bpf_raw_tp_link *link; struct bpf_raw_event_map *btp; const char *tp_name; char buf[128]; int err; switch (prog->type) { case BPF_PROG_TYPE_TRACING: case BPF_PROG_TYPE_EXT: case BPF_PROG_TYPE_LSM: if (user_tp_name) /* The attach point for this category of programs * should be specified via btf_id during program load. */ return -EINVAL; if (prog->type == BPF_PROG_TYPE_TRACING && prog->expected_attach_type == BPF_TRACE_RAW_TP) { tp_name = prog->aux->attach_func_name; break; } return bpf_tracing_prog_attach(prog, 0, 0, 0); case BPF_PROG_TYPE_RAW_TRACEPOINT: case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: if (strncpy_from_user(buf, user_tp_name, sizeof(buf) - 1) < 0) return -EFAULT; buf[sizeof(buf) - 1] = 0; tp_name = buf; break; default: return -EINVAL; } btp = bpf_get_raw_tracepoint(tp_name); if (!btp) return -ENOENT; link = kzalloc(sizeof(*link), GFP_USER); if (!link) { err = -ENOMEM; goto out_put_btp; } bpf_link_init(&link->link, BPF_LINK_TYPE_RAW_TRACEPOINT, &bpf_raw_tp_link_lops, prog); link->btp = btp; link->cookie = cookie; err = bpf_link_prime(&link->link, &link_primer); if (err) { kfree(link); goto out_put_btp; } err = bpf_probe_register(link->btp, link); if (err) { bpf_link_cleanup(&link_primer); goto out_put_btp; } return bpf_link_settle(&link_primer); out_put_btp: bpf_put_raw_tracepoint(btp); return err; } #define BPF_RAW_TRACEPOINT_OPEN_LAST_FIELD raw_tracepoint.cookie static int bpf_raw_tracepoint_open(const union bpf_attr *attr) { struct bpf_prog *prog; void __user *tp_name; __u64 cookie; int fd; if (CHECK_ATTR(BPF_RAW_TRACEPOINT_OPEN)) return -EINVAL; prog = bpf_prog_get(attr->raw_tracepoint.prog_fd); if (IS_ERR(prog)) return PTR_ERR(prog); tp_name = u64_to_user_ptr(attr->raw_tracepoint.name); cookie = attr->raw_tracepoint.cookie; fd = bpf_raw_tp_link_attach(prog, tp_name, cookie); if (fd < 0) bpf_prog_put(prog); return fd; } static enum bpf_prog_type attach_type_to_prog_type(enum bpf_attach_type attach_type) { switch (attach_type) { case BPF_CGROUP_INET_INGRESS: case BPF_CGROUP_INET_EGRESS: return BPF_PROG_TYPE_CGROUP_SKB; case BPF_CGROUP_INET_SOCK_CREATE: case BPF_CGROUP_INET_SOCK_RELEASE: case BPF_CGROUP_INET4_POST_BIND: case BPF_CGROUP_INET6_POST_BIND: return BPF_PROG_TYPE_CGROUP_SOCK; case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_UNIX_CONNECT: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_UNIX_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UNIX_GETSOCKNAME: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UNIX_SENDMSG: case BPF_CGROUP_UDP4_RECVMSG: case BPF_CGROUP_UDP6_RECVMSG: case BPF_CGROUP_UNIX_RECVMSG: return BPF_PROG_TYPE_CGROUP_SOCK_ADDR; case BPF_CGROUP_SOCK_OPS: return BPF_PROG_TYPE_SOCK_OPS; case BPF_CGROUP_DEVICE: return BPF_PROG_TYPE_CGROUP_DEVICE; case BPF_SK_MSG_VERDICT: return BPF_PROG_TYPE_SK_MSG; case BPF_SK_SKB_STREAM_PARSER: case BPF_SK_SKB_STREAM_VERDICT: case BPF_SK_SKB_VERDICT: return BPF_PROG_TYPE_SK_SKB; case BPF_LIRC_MODE2: return BPF_PROG_TYPE_LIRC_MODE2; case BPF_FLOW_DISSECTOR: return BPF_PROG_TYPE_FLOW_DISSECTOR; case BPF_CGROUP_SYSCTL: return BPF_PROG_TYPE_CGROUP_SYSCTL; case BPF_CGROUP_GETSOCKOPT: case BPF_CGROUP_SETSOCKOPT: return BPF_PROG_TYPE_CGROUP_SOCKOPT; case BPF_TRACE_ITER: case BPF_TRACE_RAW_TP: case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: case BPF_MODIFY_RETURN: return BPF_PROG_TYPE_TRACING; case BPF_LSM_MAC: return BPF_PROG_TYPE_LSM; case BPF_SK_LOOKUP: return BPF_PROG_TYPE_SK_LOOKUP; case BPF_XDP: return BPF_PROG_TYPE_XDP; case BPF_LSM_CGROUP: return BPF_PROG_TYPE_LSM; case BPF_TCX_INGRESS: case BPF_TCX_EGRESS: case BPF_NETKIT_PRIMARY: case BPF_NETKIT_PEER: return BPF_PROG_TYPE_SCHED_CLS; default: return BPF_PROG_TYPE_UNSPEC; } } static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog, enum bpf_attach_type attach_type) { enum bpf_prog_type ptype; switch (prog->type) { case BPF_PROG_TYPE_CGROUP_SOCK: case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: case BPF_PROG_TYPE_CGROUP_SOCKOPT: case BPF_PROG_TYPE_SK_LOOKUP: return attach_type == prog->expected_attach_type ? 0 : -EINVAL; case BPF_PROG_TYPE_CGROUP_SKB: if (!bpf_token_capable(prog->aux->token, CAP_NET_ADMIN)) /* cg-skb progs can be loaded by unpriv user. * check permissions at attach time. */ return -EPERM; ptype = attach_type_to_prog_type(attach_type); if (prog->type != ptype) return -EINVAL; return prog->enforce_expected_attach_type && prog->expected_attach_type != attach_type ? -EINVAL : 0; case BPF_PROG_TYPE_EXT: return 0; case BPF_PROG_TYPE_NETFILTER: if (attach_type != BPF_NETFILTER) return -EINVAL; return 0; case BPF_PROG_TYPE_PERF_EVENT: case BPF_PROG_TYPE_TRACEPOINT: if (attach_type != BPF_PERF_EVENT) return -EINVAL; return 0; case BPF_PROG_TYPE_KPROBE: if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI && attach_type != BPF_TRACE_KPROBE_MULTI) return -EINVAL; if (prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION && attach_type != BPF_TRACE_KPROBE_SESSION) return -EINVAL; if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI && attach_type != BPF_TRACE_UPROBE_MULTI) return -EINVAL; if (attach_type != BPF_PERF_EVENT && attach_type != BPF_TRACE_KPROBE_MULTI && attach_type != BPF_TRACE_KPROBE_SESSION && attach_type != BPF_TRACE_UPROBE_MULTI) return -EINVAL; return 0; case BPF_PROG_TYPE_SCHED_CLS: if (attach_type != BPF_TCX_INGRESS && attach_type != BPF_TCX_EGRESS && attach_type != BPF_NETKIT_PRIMARY && attach_type != BPF_NETKIT_PEER) return -EINVAL; return 0; default: ptype = attach_type_to_prog_type(attach_type); if (ptype == BPF_PROG_TYPE_UNSPEC || ptype != prog->type) return -EINVAL; return 0; } } #define BPF_PROG_ATTACH_LAST_FIELD expected_revision #define BPF_F_ATTACH_MASK_BASE \ (BPF_F_ALLOW_OVERRIDE | \ BPF_F_ALLOW_MULTI | \ BPF_F_REPLACE) #define BPF_F_ATTACH_MASK_MPROG \ (BPF_F_REPLACE | \ BPF_F_BEFORE | \ BPF_F_AFTER | \ BPF_F_ID | \ BPF_F_LINK) static int bpf_prog_attach(const union bpf_attr *attr) { enum bpf_prog_type ptype; struct bpf_prog *prog; int ret; if (CHECK_ATTR(BPF_PROG_ATTACH)) return -EINVAL; ptype = attach_type_to_prog_type(attr->attach_type); if (ptype == BPF_PROG_TYPE_UNSPEC) return -EINVAL; if (bpf_mprog_supported(ptype)) { if (attr->attach_flags & ~BPF_F_ATTACH_MASK_MPROG) return -EINVAL; } else { if (attr->attach_flags & ~BPF_F_ATTACH_MASK_BASE) return -EINVAL; if (attr->relative_fd || attr->expected_revision) return -EINVAL; } prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); if (IS_ERR(prog)) return PTR_ERR(prog); if (bpf_prog_attach_check_attach_type(prog, attr->attach_type)) { bpf_prog_put(prog); return -EINVAL; } switch (ptype) { case BPF_PROG_TYPE_SK_SKB: case BPF_PROG_TYPE_SK_MSG: ret = sock_map_get_from_fd(attr, prog); break; case BPF_PROG_TYPE_LIRC_MODE2: ret = lirc_prog_attach(attr, prog); break; case BPF_PROG_TYPE_FLOW_DISSECTOR: ret = netns_bpf_prog_attach(attr, prog); break; case BPF_PROG_TYPE_CGROUP_DEVICE: case BPF_PROG_TYPE_CGROUP_SKB: case BPF_PROG_TYPE_CGROUP_SOCK: case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: case BPF_PROG_TYPE_CGROUP_SOCKOPT: case BPF_PROG_TYPE_CGROUP_SYSCTL: case BPF_PROG_TYPE_SOCK_OPS: case BPF_PROG_TYPE_LSM: if (ptype == BPF_PROG_TYPE_LSM && prog->expected_attach_type != BPF_LSM_CGROUP) ret = -EINVAL; else ret = cgroup_bpf_prog_attach(attr, ptype, prog); break; case BPF_PROG_TYPE_SCHED_CLS: if (attr->attach_type == BPF_TCX_INGRESS || attr->attach_type == BPF_TCX_EGRESS) ret = tcx_prog_attach(attr, prog); else ret = netkit_prog_attach(attr, prog); break; default: ret = -EINVAL; } if (ret) bpf_prog_put(prog); return ret; } #define BPF_PROG_DETACH_LAST_FIELD expected_revision static int bpf_prog_detach(const union bpf_attr *attr) { struct bpf_prog *prog = NULL; enum bpf_prog_type ptype; int ret; if (CHECK_ATTR(BPF_PROG_DETACH)) return -EINVAL; ptype = attach_type_to_prog_type(attr->attach_type); if (bpf_mprog_supported(ptype)) { if (ptype == BPF_PROG_TYPE_UNSPEC) return -EINVAL; if (attr->attach_flags & ~BPF_F_ATTACH_MASK_MPROG) return -EINVAL; if (attr->attach_bpf_fd) { prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); if (IS_ERR(prog)) return PTR_ERR(prog); } } else if (attr->attach_flags || attr->relative_fd || attr->expected_revision) { return -EINVAL; } switch (ptype) { case BPF_PROG_TYPE_SK_MSG: case BPF_PROG_TYPE_SK_SKB: ret = sock_map_prog_detach(attr, ptype); break; case BPF_PROG_TYPE_LIRC_MODE2: ret = lirc_prog_detach(attr); break; case BPF_PROG_TYPE_FLOW_DISSECTOR: ret = netns_bpf_prog_detach(attr, ptype); break; case BPF_PROG_TYPE_CGROUP_DEVICE: case BPF_PROG_TYPE_CGROUP_SKB: case BPF_PROG_TYPE_CGROUP_SOCK: case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: case BPF_PROG_TYPE_CGROUP_SOCKOPT: case BPF_PROG_TYPE_CGROUP_SYSCTL: case BPF_PROG_TYPE_SOCK_OPS: case BPF_PROG_TYPE_LSM: ret = cgroup_bpf_prog_detach(attr, ptype); break; case BPF_PROG_TYPE_SCHED_CLS: if (attr->attach_type == BPF_TCX_INGRESS || attr->attach_type == BPF_TCX_EGRESS) ret = tcx_prog_detach(attr, prog); else ret = netkit_prog_detach(attr, prog); break; default: ret = -EINVAL; } if (prog) bpf_prog_put(prog); return ret; } #define BPF_PROG_QUERY_LAST_FIELD query.revision static int bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { if (!bpf_net_capable()) return -EPERM; if (CHECK_ATTR(BPF_PROG_QUERY)) return -EINVAL; if (attr->query.query_flags & ~BPF_F_QUERY_EFFECTIVE) return -EINVAL; switch (attr->query.attach_type) { case BPF_CGROUP_INET_INGRESS: case BPF_CGROUP_INET_EGRESS: case BPF_CGROUP_INET_SOCK_CREATE: case BPF_CGROUP_INET_SOCK_RELEASE: case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET4_POST_BIND: case BPF_CGROUP_INET6_POST_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_UNIX_CONNECT: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_UNIX_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UNIX_GETSOCKNAME: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UNIX_SENDMSG: case BPF_CGROUP_UDP4_RECVMSG: case BPF_CGROUP_UDP6_RECVMSG: case BPF_CGROUP_UNIX_RECVMSG: case BPF_CGROUP_SOCK_OPS: case BPF_CGROUP_DEVICE: case BPF_CGROUP_SYSCTL: case BPF_CGROUP_GETSOCKOPT: case BPF_CGROUP_SETSOCKOPT: case BPF_LSM_CGROUP: return cgroup_bpf_prog_query(attr, uattr); case BPF_LIRC_MODE2: return lirc_prog_query(attr, uattr); case BPF_FLOW_DISSECTOR: case BPF_SK_LOOKUP: return netns_bpf_prog_query(attr, uattr); case BPF_SK_SKB_STREAM_PARSER: case BPF_SK_SKB_STREAM_VERDICT: case BPF_SK_MSG_VERDICT: case BPF_SK_SKB_VERDICT: return sock_map_bpf_prog_query(attr, uattr); case BPF_TCX_INGRESS: case BPF_TCX_EGRESS: return tcx_prog_query(attr, uattr); case BPF_NETKIT_PRIMARY: case BPF_NETKIT_PEER: return netkit_prog_query(attr, uattr); default: return -EINVAL; } } #define BPF_PROG_TEST_RUN_LAST_FIELD test.batch_size static int bpf_prog_test_run(const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_prog *prog; int ret = -ENOTSUPP; if (CHECK_ATTR(BPF_PROG_TEST_RUN)) return -EINVAL; if ((attr->test.ctx_size_in && !attr->test.ctx_in) || (!attr->test.ctx_size_in && attr->test.ctx_in)) return -EINVAL; if ((attr->test.ctx_size_out && !attr->test.ctx_out) || (!attr->test.ctx_size_out && attr->test.ctx_out)) return -EINVAL; prog = bpf_prog_get(attr->test.prog_fd); if (IS_ERR(prog)) return PTR_ERR(prog); if (prog->aux->ops->test_run) ret = prog->aux->ops->test_run(prog, attr, uattr); bpf_prog_put(prog); return ret; } #define BPF_OBJ_GET_NEXT_ID_LAST_FIELD next_id static int bpf_obj_get_next_id(const union bpf_attr *attr, union bpf_attr __user *uattr, struct idr *idr, spinlock_t *lock) { u32 next_id = attr->start_id; int err = 0; if (CHECK_ATTR(BPF_OBJ_GET_NEXT_ID) || next_id >= INT_MAX) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; next_id++; spin_lock_bh(lock); if (!idr_get_next(idr, &next_id)) err = -ENOENT; spin_unlock_bh(lock); if (!err) err = put_user(next_id, &uattr->next_id); return err; } struct bpf_map *bpf_map_get_curr_or_next(u32 *id) { struct bpf_map *map; spin_lock_bh(&map_idr_lock); again: map = idr_get_next(&map_idr, id); if (map) { map = __bpf_map_inc_not_zero(map, false); if (IS_ERR(map)) { (*id)++; goto again; } } spin_unlock_bh(&map_idr_lock); return map; } struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id) { struct bpf_prog *prog; spin_lock_bh(&prog_idr_lock); again: prog = idr_get_next(&prog_idr, id); if (prog) { prog = bpf_prog_inc_not_zero(prog); if (IS_ERR(prog)) { (*id)++; goto again; } } spin_unlock_bh(&prog_idr_lock); return prog; } #define BPF_PROG_GET_FD_BY_ID_LAST_FIELD prog_id struct bpf_prog *bpf_prog_by_id(u32 id) { struct bpf_prog *prog; if (!id) return ERR_PTR(-ENOENT); spin_lock_bh(&prog_idr_lock); prog = idr_find(&prog_idr, id); if (prog) prog = bpf_prog_inc_not_zero(prog); else prog = ERR_PTR(-ENOENT); spin_unlock_bh(&prog_idr_lock); return prog; } static int bpf_prog_get_fd_by_id(const union bpf_attr *attr) { struct bpf_prog *prog; u32 id = attr->prog_id; int fd; if (CHECK_ATTR(BPF_PROG_GET_FD_BY_ID)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; prog = bpf_prog_by_id(id); if (IS_ERR(prog)) return PTR_ERR(prog); fd = bpf_prog_new_fd(prog); if (fd < 0) bpf_prog_put(prog); return fd; } #define BPF_MAP_GET_FD_BY_ID_LAST_FIELD open_flags static int bpf_map_get_fd_by_id(const union bpf_attr *attr) { struct bpf_map *map; u32 id = attr->map_id; int f_flags; int fd; if (CHECK_ATTR(BPF_MAP_GET_FD_BY_ID) || attr->open_flags & ~BPF_OBJ_FLAG_MASK) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; f_flags = bpf_get_file_flag(attr->open_flags); if (f_flags < 0) return f_flags; spin_lock_bh(&map_idr_lock); map = idr_find(&map_idr, id); if (map) map = __bpf_map_inc_not_zero(map, true); else map = ERR_PTR(-ENOENT); spin_unlock_bh(&map_idr_lock); if (IS_ERR(map)) return PTR_ERR(map); fd = bpf_map_new_fd(map, f_flags); if (fd < 0) bpf_map_put_with_uref(map); return fd; } static const struct bpf_map *bpf_map_from_imm(const struct bpf_prog *prog, unsigned long addr, u32 *off, u32 *type) { const struct bpf_map *map; int i; mutex_lock(&prog->aux->used_maps_mutex); for (i = 0, *off = 0; i < prog->aux->used_map_cnt; i++) { map = prog->aux->used_maps[i]; if (map == (void *)addr) { *type = BPF_PSEUDO_MAP_FD; goto out; } if (!map->ops->map_direct_value_meta) continue; if (!map->ops->map_direct_value_meta(map, addr, off)) { *type = BPF_PSEUDO_MAP_VALUE; goto out; } } map = NULL; out: mutex_unlock(&prog->aux->used_maps_mutex); return map; } static struct bpf_insn *bpf_insn_prepare_dump(const struct bpf_prog *prog, const struct cred *f_cred) { const struct bpf_map *map; struct bpf_insn *insns; u32 off, type; u64 imm; u8 code; int i; insns = kmemdup(prog->insnsi, bpf_prog_insn_size(prog), GFP_USER); if (!insns) return insns; for (i = 0; i < prog->len; i++) { code = insns[i].code; if (code == (BPF_JMP | BPF_TAIL_CALL)) { insns[i].code = BPF_JMP | BPF_CALL; insns[i].imm = BPF_FUNC_tail_call; /* fall-through */ } if (code == (BPF_JMP | BPF_CALL) || code == (BPF_JMP | BPF_CALL_ARGS)) { if (code == (BPF_JMP | BPF_CALL_ARGS)) insns[i].code = BPF_JMP | BPF_CALL; if (!bpf_dump_raw_ok(f_cred)) insns[i].imm = 0; continue; } if (BPF_CLASS(code) == BPF_LDX && BPF_MODE(code) == BPF_PROBE_MEM) { insns[i].code = BPF_LDX | BPF_SIZE(code) | BPF_MEM; continue; } if ((BPF_CLASS(code) == BPF_LDX || BPF_CLASS(code) == BPF_STX || BPF_CLASS(code) == BPF_ST) && BPF_MODE(code) == BPF_PROBE_MEM32) { insns[i].code = BPF_CLASS(code) | BPF_SIZE(code) | BPF_MEM; continue; } if (code != (BPF_LD | BPF_IMM | BPF_DW)) continue; imm = ((u64)insns[i + 1].imm << 32) | (u32)insns[i].imm; map = bpf_map_from_imm(prog, imm, &off, &type); if (map) { insns[i].src_reg = type; insns[i].imm = map->id; insns[i + 1].imm = off; continue; } } return insns; } static int set_info_rec_size(struct bpf_prog_info *info) { /* * Ensure info.*_rec_size is the same as kernel expected size * * or * * Only allow zero *_rec_size if both _rec_size and _cnt are * zero. In this case, the kernel will set the expected * _rec_size back to the info. */ if ((info->nr_func_info || info->func_info_rec_size) && info->func_info_rec_size != sizeof(struct bpf_func_info)) return -EINVAL; if ((info->nr_line_info || info->line_info_rec_size) && info->line_info_rec_size != sizeof(struct bpf_line_info)) return -EINVAL; if ((info->nr_jited_line_info || info->jited_line_info_rec_size) && info->jited_line_info_rec_size != sizeof(__u64)) return -EINVAL; info->func_info_rec_size = sizeof(struct bpf_func_info); info->line_info_rec_size = sizeof(struct bpf_line_info); info->jited_line_info_rec_size = sizeof(__u64); return 0; } static int bpf_prog_get_info_by_fd(struct file *file, struct bpf_prog *prog, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_prog_info __user *uinfo = u64_to_user_ptr(attr->info.info); struct btf *attach_btf = bpf_prog_get_target_btf(prog); struct bpf_prog_info info; u32 info_len = attr->info.info_len; struct bpf_prog_kstats stats; char __user *uinsns; u32 ulen; int err; err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len); if (err) return err; info_len = min_t(u32, sizeof(info), info_len); memset(&info, 0, sizeof(info)); if (copy_from_user(&info, uinfo, info_len)) return -EFAULT; info.type = prog->type; info.id = prog->aux->id; info.load_time = prog->aux->load_time; info.created_by_uid = from_kuid_munged(current_user_ns(), prog->aux->user->uid); info.gpl_compatible = prog->gpl_compatible; memcpy(info.tag, prog->tag, sizeof(prog->tag)); memcpy(info.name, prog->aux->name, sizeof(prog->aux->name)); mutex_lock(&prog->aux->used_maps_mutex); ulen = info.nr_map_ids; info.nr_map_ids = prog->aux->used_map_cnt; ulen = min_t(u32, info.nr_map_ids, ulen); if (ulen) { u32 __user *user_map_ids = u64_to_user_ptr(info.map_ids); u32 i; for (i = 0; i < ulen; i++) if (put_user(prog->aux->used_maps[i]->id, &user_map_ids[i])) { mutex_unlock(&prog->aux->used_maps_mutex); return -EFAULT; } } mutex_unlock(&prog->aux->used_maps_mutex); err = set_info_rec_size(&info); if (err) return err; bpf_prog_get_stats(prog, &stats); info.run_time_ns = stats.nsecs; info.run_cnt = stats.cnt; info.recursion_misses = stats.misses; info.verified_insns = prog->aux->verified_insns; if (!bpf_capable()) { info.jited_prog_len = 0; info.xlated_prog_len = 0; info.nr_jited_ksyms = 0; info.nr_jited_func_lens = 0; info.nr_func_info = 0; info.nr_line_info = 0; info.nr_jited_line_info = 0; goto done; } ulen = info.xlated_prog_len; info.xlated_prog_len = bpf_prog_insn_size(prog); if (info.xlated_prog_len && ulen) { struct bpf_insn *insns_sanitized; bool fault; if (prog->blinded && !bpf_dump_raw_ok(file->f_cred)) { info.xlated_prog_insns = 0; goto done; } insns_sanitized = bpf_insn_prepare_dump(prog, file->f_cred); if (!insns_sanitized) return -ENOMEM; uinsns = u64_to_user_ptr(info.xlated_prog_insns); ulen = min_t(u32, info.xlated_prog_len, ulen); fault = copy_to_user(uinsns, insns_sanitized, ulen); kfree(insns_sanitized); if (fault) return -EFAULT; } if (bpf_prog_is_offloaded(prog->aux)) { err = bpf_prog_offload_info_fill(&info, prog); if (err) return err; goto done; } /* NOTE: the following code is supposed to be skipped for offload. * bpf_prog_offload_info_fill() is the place to fill similar fields * for offload. */ ulen = info.jited_prog_len; if (prog->aux->func_cnt) { u32 i; info.jited_prog_len = 0; for (i = 0; i < prog->aux->func_cnt; i++) info.jited_prog_len += prog->aux->func[i]->jited_len; } else { info.jited_prog_len = prog->jited_len; } if (info.jited_prog_len && ulen) { if (bpf_dump_raw_ok(file->f_cred)) { uinsns = u64_to_user_ptr(info.jited_prog_insns); ulen = min_t(u32, info.jited_prog_len, ulen); /* for multi-function programs, copy the JITed * instructions for all the functions */ if (prog->aux->func_cnt) { u32 len, free, i; u8 *img; free = ulen; for (i = 0; i < prog->aux->func_cnt; i++) { len = prog->aux->func[i]->jited_len; len = min_t(u32, len, free); img = (u8 *) prog->aux->func[i]->bpf_func; if (copy_to_user(uinsns, img, len)) return -EFAULT; uinsns += len; free -= len; if (!free) break; } } else { if (copy_to_user(uinsns, prog->bpf_func, ulen)) return -EFAULT; } } else { info.jited_prog_insns = 0; } } ulen = info.nr_jited_ksyms; info.nr_jited_ksyms = prog->aux->func_cnt ? : 1; if (ulen) { if (bpf_dump_raw_ok(file->f_cred)) { unsigned long ksym_addr; u64 __user *user_ksyms; u32 i; /* copy the address of the kernel symbol * corresponding to each function */ ulen = min_t(u32, info.nr_jited_ksyms, ulen); user_ksyms = u64_to_user_ptr(info.jited_ksyms); if (prog->aux->func_cnt) { for (i = 0; i < ulen; i++) { ksym_addr = (unsigned long) prog->aux->func[i]->bpf_func; if (put_user((u64) ksym_addr, &user_ksyms[i])) return -EFAULT; } } else { ksym_addr = (unsigned long) prog->bpf_func; if (put_user((u64) ksym_addr, &user_ksyms[0])) return -EFAULT; } } else { info.jited_ksyms = 0; } } ulen = info.nr_jited_func_lens; info.nr_jited_func_lens = prog->aux->func_cnt ? : 1; if (ulen) { if (bpf_dump_raw_ok(file->f_cred)) { u32 __user *user_lens; u32 func_len, i; /* copy the JITed image lengths for each function */ ulen = min_t(u32, info.nr_jited_func_lens, ulen); user_lens = u64_to_user_ptr(info.jited_func_lens); if (prog->aux->func_cnt) { for (i = 0; i < ulen; i++) { func_len = prog->aux->func[i]->jited_len; if (put_user(func_len, &user_lens[i])) return -EFAULT; } } else { func_len = prog->jited_len; if (put_user(func_len, &user_lens[0])) return -EFAULT; } } else { info.jited_func_lens = 0; } } if (prog->aux->btf) info.btf_id = btf_obj_id(prog->aux->btf); info.attach_btf_id = prog->aux->attach_btf_id; if (attach_btf) info.attach_btf_obj_id = btf_obj_id(attach_btf); ulen = info.nr_func_info; info.nr_func_info = prog->aux->func_info_cnt; if (info.nr_func_info && ulen) { char __user *user_finfo; user_finfo = u64_to_user_ptr(info.func_info); ulen = min_t(u32, info.nr_func_info, ulen); if (copy_to_user(user_finfo, prog->aux->func_info, info.func_info_rec_size * ulen)) return -EFAULT; } ulen = info.nr_line_info; info.nr_line_info = prog->aux->nr_linfo; if (info.nr_line_info && ulen) { __u8 __user *user_linfo; user_linfo = u64_to_user_ptr(info.line_info); ulen = min_t(u32, info.nr_line_info, ulen); if (copy_to_user(user_linfo, prog->aux->linfo, info.line_info_rec_size * ulen)) return -EFAULT; } ulen = info.nr_jited_line_info; if (prog->aux->jited_linfo) info.nr_jited_line_info = prog->aux->nr_linfo; else info.nr_jited_line_info = 0; if (info.nr_jited_line_info && ulen) { if (bpf_dump_raw_ok(file->f_cred)) { unsigned long line_addr; __u64 __user *user_linfo; u32 i; user_linfo = u64_to_user_ptr(info.jited_line_info); ulen = min_t(u32, info.nr_jited_line_info, ulen); for (i = 0; i < ulen; i++) { line_addr = (unsigned long)prog->aux->jited_linfo[i]; if (put_user((__u64)line_addr, &user_linfo[i])) return -EFAULT; } } else { info.jited_line_info = 0; } } ulen = info.nr_prog_tags; info.nr_prog_tags = prog->aux->func_cnt ? : 1; if (ulen) { __u8 __user (*user_prog_tags)[BPF_TAG_SIZE]; u32 i; user_prog_tags = u64_to_user_ptr(info.prog_tags); ulen = min_t(u32, info.nr_prog_tags, ulen); if (prog->aux->func_cnt) { for (i = 0; i < ulen; i++) { if (copy_to_user(user_prog_tags[i], prog->aux->func[i]->tag, BPF_TAG_SIZE)) return -EFAULT; } } else { if (copy_to_user(user_prog_tags[0], prog->tag, BPF_TAG_SIZE)) return -EFAULT; } } done: if (copy_to_user(uinfo, &info, info_len) || put_user(info_len, &uattr->info.info_len)) return -EFAULT; return 0; } static int bpf_map_get_info_by_fd(struct file *file, struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_map_info __user *uinfo = u64_to_user_ptr(attr->info.info); struct bpf_map_info info; u32 info_len = attr->info.info_len; int err; err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len); if (err) return err; info_len = min_t(u32, sizeof(info), info_len); memset(&info, 0, sizeof(info)); info.type = map->map_type; info.id = map->id; info.key_size = map->key_size; info.value_size = map->value_size; info.max_entries = map->max_entries; info.map_flags = map->map_flags; info.map_extra = map->map_extra; memcpy(info.name, map->name, sizeof(map->name)); if (map->btf) { info.btf_id = btf_obj_id(map->btf); info.btf_key_type_id = map->btf_key_type_id; info.btf_value_type_id = map->btf_value_type_id; } info.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) bpf_map_struct_ops_info_fill(&info, map); if (bpf_map_is_offloaded(map)) { err = bpf_map_offload_info_fill(&info, map); if (err) return err; } if (copy_to_user(uinfo, &info, info_len) || put_user(info_len, &uattr->info.info_len)) return -EFAULT; return 0; } static int bpf_btf_get_info_by_fd(struct file *file, struct btf *btf, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_btf_info __user *uinfo = u64_to_user_ptr(attr->info.info); u32 info_len = attr->info.info_len; int err; err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(*uinfo), info_len); if (err) return err; return btf_get_info_by_fd(btf, attr, uattr); } static int bpf_link_get_info_by_fd(struct file *file, struct bpf_link *link, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_link_info __user *uinfo = u64_to_user_ptr(attr->info.info); struct bpf_link_info info; u32 info_len = attr->info.info_len; int err; err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len); if (err) return err; info_len = min_t(u32, sizeof(info), info_len); memset(&info, 0, sizeof(info)); if (copy_from_user(&info, uinfo, info_len)) return -EFAULT; info.type = link->type; info.id = link->id; if (link->prog) info.prog_id = link->prog->aux->id; if (link->ops->fill_link_info) { err = link->ops->fill_link_info(link, &info); if (err) return err; } if (copy_to_user(uinfo, &info, info_len) || put_user(info_len, &uattr->info.info_len)) return -EFAULT; return 0; } #define BPF_OBJ_GET_INFO_BY_FD_LAST_FIELD info.info static int bpf_obj_get_info_by_fd(const union bpf_attr *attr, union bpf_attr __user *uattr) { int ufd = attr->info.bpf_fd; struct fd f; int err; if (CHECK_ATTR(BPF_OBJ_GET_INFO_BY_FD)) return -EINVAL; f = fdget(ufd); if (!f.file) return -EBADFD; if (f.file->f_op == &bpf_prog_fops) err = bpf_prog_get_info_by_fd(f.file, f.file->private_data, attr, uattr); else if (f.file->f_op == &bpf_map_fops) err = bpf_map_get_info_by_fd(f.file, f.file->private_data, attr, uattr); else if (f.file->f_op == &btf_fops) err = bpf_btf_get_info_by_fd(f.file, f.file->private_data, attr, uattr); else if (f.file->f_op == &bpf_link_fops || f.file->f_op == &bpf_link_fops_poll) err = bpf_link_get_info_by_fd(f.file, f.file->private_data, attr, uattr); else err = -EINVAL; fdput(f); return err; } #define BPF_BTF_LOAD_LAST_FIELD btf_token_fd static int bpf_btf_load(const union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) { struct bpf_token *token = NULL; if (CHECK_ATTR(BPF_BTF_LOAD)) return -EINVAL; if (attr->btf_flags & ~BPF_F_TOKEN_FD) return -EINVAL; if (attr->btf_flags & BPF_F_TOKEN_FD) { token = bpf_token_get_from_fd(attr->btf_token_fd); if (IS_ERR(token)) return PTR_ERR(token); if (!bpf_token_allow_cmd(token, BPF_BTF_LOAD)) { bpf_token_put(token); token = NULL; } } if (!bpf_token_capable(token, CAP_BPF)) { bpf_token_put(token); return -EPERM; } bpf_token_put(token); return btf_new_fd(attr, uattr, uattr_size); } #define BPF_BTF_GET_FD_BY_ID_LAST_FIELD btf_id static int bpf_btf_get_fd_by_id(const union bpf_attr *attr) { if (CHECK_ATTR(BPF_BTF_GET_FD_BY_ID)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; return btf_get_fd_by_id(attr->btf_id); } static int bpf_task_fd_query_copy(const union bpf_attr *attr, union bpf_attr __user *uattr, u32 prog_id, u32 fd_type, const char *buf, u64 probe_offset, u64 probe_addr) { char __user *ubuf = u64_to_user_ptr(attr->task_fd_query.buf); u32 len = buf ? strlen(buf) : 0, input_len; int err = 0; if (put_user(len, &uattr->task_fd_query.buf_len)) return -EFAULT; input_len = attr->task_fd_query.buf_len; if (input_len && ubuf) { if (!len) { /* nothing to copy, just make ubuf NULL terminated */ char zero = '\0'; if (put_user(zero, ubuf)) return -EFAULT; } else if (input_len >= len + 1) { /* ubuf can hold the string with NULL terminator */ if (copy_to_user(ubuf, buf, len + 1)) return -EFAULT; } else { /* ubuf cannot hold the string with NULL terminator, * do a partial copy with NULL terminator. */ char zero = '\0'; err = -ENOSPC; if (copy_to_user(ubuf, buf, input_len - 1)) return -EFAULT; if (put_user(zero, ubuf + input_len - 1)) return -EFAULT; } } if (put_user(prog_id, &uattr->task_fd_query.prog_id) || put_user(fd_type, &uattr->task_fd_query.fd_type) || put_user(probe_offset, &uattr->task_fd_query.probe_offset) || put_user(probe_addr, &uattr->task_fd_query.probe_addr)) return -EFAULT; return err; } #define BPF_TASK_FD_QUERY_LAST_FIELD task_fd_query.probe_addr static int bpf_task_fd_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { pid_t pid = attr->task_fd_query.pid; u32 fd = attr->task_fd_query.fd; const struct perf_event *event; struct task_struct *task; struct file *file; int err; if (CHECK_ATTR(BPF_TASK_FD_QUERY)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (attr->task_fd_query.flags != 0) return -EINVAL; rcu_read_lock(); task = get_pid_task(find_vpid(pid), PIDTYPE_PID); rcu_read_unlock(); if (!task) return -ENOENT; err = 0; file = fget_task(task, fd); put_task_struct(task); if (!file) return -EBADF; if (file->f_op == &bpf_link_fops || file->f_op == &bpf_link_fops_poll) { struct bpf_link *link = file->private_data; if (link->ops == &bpf_raw_tp_link_lops) { struct bpf_raw_tp_link *raw_tp = container_of(link, struct bpf_raw_tp_link, link); struct bpf_raw_event_map *btp = raw_tp->btp; err = bpf_task_fd_query_copy(attr, uattr, raw_tp->link.prog->aux->id, BPF_FD_TYPE_RAW_TRACEPOINT, btp->tp->name, 0, 0); goto put_file; } goto out_not_supp; } event = perf_get_event(file); if (!IS_ERR(event)) { u64 probe_offset, probe_addr; u32 prog_id, fd_type; const char *buf; err = bpf_get_perf_event_info(event, &prog_id, &fd_type, &buf, &probe_offset, &probe_addr, NULL); if (!err) err = bpf_task_fd_query_copy(attr, uattr, prog_id, fd_type, buf, probe_offset, probe_addr); goto put_file; } out_not_supp: err = -ENOTSUPP; put_file: fput(file); return err; } #define BPF_MAP_BATCH_LAST_FIELD batch.flags #define BPF_DO_BATCH(fn, ...) \ do { \ if (!fn) { \ err = -ENOTSUPP; \ goto err_put; \ } \ err = fn(__VA_ARGS__); \ } while (0) static int bpf_map_do_batch(const union bpf_attr *attr, union bpf_attr __user *uattr, int cmd) { bool has_read = cmd == BPF_MAP_LOOKUP_BATCH || cmd == BPF_MAP_LOOKUP_AND_DELETE_BATCH; bool has_write = cmd != BPF_MAP_LOOKUP_BATCH; struct bpf_map *map; int err, ufd; struct fd f; if (CHECK_ATTR(BPF_MAP_BATCH)) return -EINVAL; ufd = attr->batch.map_fd; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); if (has_write) bpf_map_write_active_inc(map); if (has_read && !(map_get_sys_perms(map, f) & FMODE_CAN_READ)) { err = -EPERM; goto err_put; } if (has_write && !(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { err = -EPERM; goto err_put; } if (cmd == BPF_MAP_LOOKUP_BATCH) BPF_DO_BATCH(map->ops->map_lookup_batch, map, attr, uattr); else if (cmd == BPF_MAP_LOOKUP_AND_DELETE_BATCH) BPF_DO_BATCH(map->ops->map_lookup_and_delete_batch, map, attr, uattr); else if (cmd == BPF_MAP_UPDATE_BATCH) BPF_DO_BATCH(map->ops->map_update_batch, map, f.file, attr, uattr); else BPF_DO_BATCH(map->ops->map_delete_batch, map, attr, uattr); err_put: if (has_write) { maybe_wait_bpf_programs(map); bpf_map_write_active_dec(map); } fdput(f); return err; } #define BPF_LINK_CREATE_LAST_FIELD link_create.uprobe_multi.pid static int link_create(union bpf_attr *attr, bpfptr_t uattr) { struct bpf_prog *prog; int ret; if (CHECK_ATTR(BPF_LINK_CREATE)) return -EINVAL; if (attr->link_create.attach_type == BPF_STRUCT_OPS) return bpf_struct_ops_link_create(attr); prog = bpf_prog_get(attr->link_create.prog_fd); if (IS_ERR(prog)) return PTR_ERR(prog); ret = bpf_prog_attach_check_attach_type(prog, attr->link_create.attach_type); if (ret) goto out; switch (prog->type) { case BPF_PROG_TYPE_CGROUP_SKB: case BPF_PROG_TYPE_CGROUP_SOCK: case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: case BPF_PROG_TYPE_SOCK_OPS: case BPF_PROG_TYPE_CGROUP_DEVICE: case BPF_PROG_TYPE_CGROUP_SYSCTL: case BPF_PROG_TYPE_CGROUP_SOCKOPT: ret = cgroup_bpf_link_attach(attr, prog); break; case BPF_PROG_TYPE_EXT: ret = bpf_tracing_prog_attach(prog, attr->link_create.target_fd, attr->link_create.target_btf_id, attr->link_create.tracing.cookie); break; case BPF_PROG_TYPE_LSM: case BPF_PROG_TYPE_TRACING: if (attr->link_create.attach_type != prog->expected_attach_type) { ret = -EINVAL; goto out; } if (prog->expected_attach_type == BPF_TRACE_RAW_TP) ret = bpf_raw_tp_link_attach(prog, NULL, attr->link_create.tracing.cookie); else if (prog->expected_attach_type == BPF_TRACE_ITER) ret = bpf_iter_link_attach(attr, uattr, prog); else if (prog->expected_attach_type == BPF_LSM_CGROUP) ret = cgroup_bpf_link_attach(attr, prog); else ret = bpf_tracing_prog_attach(prog, attr->link_create.target_fd, attr->link_create.target_btf_id, attr->link_create.tracing.cookie); break; case BPF_PROG_TYPE_FLOW_DISSECTOR: case BPF_PROG_TYPE_SK_LOOKUP: ret = netns_bpf_link_create(attr, prog); break; case BPF_PROG_TYPE_SK_MSG: case BPF_PROG_TYPE_SK_SKB: ret = sock_map_link_create(attr, prog); break; #ifdef CONFIG_NET case BPF_PROG_TYPE_XDP: ret = bpf_xdp_link_attach(attr, prog); break; case BPF_PROG_TYPE_SCHED_CLS: if (attr->link_create.attach_type == BPF_TCX_INGRESS || attr->link_create.attach_type == BPF_TCX_EGRESS) ret = tcx_link_attach(attr, prog); else ret = netkit_link_attach(attr, prog); break; case BPF_PROG_TYPE_NETFILTER: ret = bpf_nf_link_attach(attr, prog); break; #endif case BPF_PROG_TYPE_PERF_EVENT: case BPF_PROG_TYPE_TRACEPOINT: ret = bpf_perf_link_attach(attr, prog); break; case BPF_PROG_TYPE_KPROBE: if (attr->link_create.attach_type == BPF_PERF_EVENT) ret = bpf_perf_link_attach(attr, prog); else if (attr->link_create.attach_type == BPF_TRACE_KPROBE_MULTI || attr->link_create.attach_type == BPF_TRACE_KPROBE_SESSION) ret = bpf_kprobe_multi_link_attach(attr, prog); else if (attr->link_create.attach_type == BPF_TRACE_UPROBE_MULTI) ret = bpf_uprobe_multi_link_attach(attr, prog); break; default: ret = -EINVAL; } out: if (ret < 0) bpf_prog_put(prog); return ret; } static int link_update_map(struct bpf_link *link, union bpf_attr *attr) { struct bpf_map *new_map, *old_map = NULL; int ret; new_map = bpf_map_get(attr->link_update.new_map_fd); if (IS_ERR(new_map)) return PTR_ERR(new_map); if (attr->link_update.flags & BPF_F_REPLACE) { old_map = bpf_map_get(attr->link_update.old_map_fd); if (IS_ERR(old_map)) { ret = PTR_ERR(old_map); goto out_put; } } else if (attr->link_update.old_map_fd) { ret = -EINVAL; goto out_put; } ret = link->ops->update_map(link, new_map, old_map); if (old_map) bpf_map_put(old_map); out_put: bpf_map_put(new_map); return ret; } #define BPF_LINK_UPDATE_LAST_FIELD link_update.old_prog_fd static int link_update(union bpf_attr *attr) { struct bpf_prog *old_prog = NULL, *new_prog; struct bpf_link *link; u32 flags; int ret; if (CHECK_ATTR(BPF_LINK_UPDATE)) return -EINVAL; flags = attr->link_update.flags; if (flags & ~BPF_F_REPLACE) return -EINVAL; link = bpf_link_get_from_fd(attr->link_update.link_fd); if (IS_ERR(link)) return PTR_ERR(link); if (link->ops->update_map) { ret = link_update_map(link, attr); goto out_put_link; } new_prog = bpf_prog_get(attr->link_update.new_prog_fd); if (IS_ERR(new_prog)) { ret = PTR_ERR(new_prog); goto out_put_link; } if (flags & BPF_F_REPLACE) { old_prog = bpf_prog_get(attr->link_update.old_prog_fd); if (IS_ERR(old_prog)) { ret = PTR_ERR(old_prog); old_prog = NULL; goto out_put_progs; } } else if (attr->link_update.old_prog_fd) { ret = -EINVAL; goto out_put_progs; } if (link->ops->update_prog) ret = link->ops->update_prog(link, new_prog, old_prog); else ret = -EINVAL; out_put_progs: if (old_prog) bpf_prog_put(old_prog); if (ret) bpf_prog_put(new_prog); out_put_link: bpf_link_put_direct(link); return ret; } #define BPF_LINK_DETACH_LAST_FIELD link_detach.link_fd static int link_detach(union bpf_attr *attr) { struct bpf_link *link; int ret; if (CHECK_ATTR(BPF_LINK_DETACH)) return -EINVAL; link = bpf_link_get_from_fd(attr->link_detach.link_fd); if (IS_ERR(link)) return PTR_ERR(link); if (link->ops->detach) ret = link->ops->detach(link); else ret = -EOPNOTSUPP; bpf_link_put_direct(link); return ret; } struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) { return atomic64_fetch_add_unless(&link->refcnt, 1, 0) ? link : ERR_PTR(-ENOENT); } EXPORT_SYMBOL(bpf_link_inc_not_zero); struct bpf_link *bpf_link_by_id(u32 id) { struct bpf_link *link; if (!id) return ERR_PTR(-ENOENT); spin_lock_bh(&link_idr_lock); /* before link is "settled", ID is 0, pretend it doesn't exist yet */ link = idr_find(&link_idr, id); if (link) { if (link->id) link = bpf_link_inc_not_zero(link); else link = ERR_PTR(-EAGAIN); } else { link = ERR_PTR(-ENOENT); } spin_unlock_bh(&link_idr_lock); return link; } struct bpf_link *bpf_link_get_curr_or_next(u32 *id) { struct bpf_link *link; spin_lock_bh(&link_idr_lock); again: link = idr_get_next(&link_idr, id); if (link) { link = bpf_link_inc_not_zero(link); if (IS_ERR(link)) { (*id)++; goto again; } } spin_unlock_bh(&link_idr_lock); return link; } #define BPF_LINK_GET_FD_BY_ID_LAST_FIELD link_id static int bpf_link_get_fd_by_id(const union bpf_attr *attr) { struct bpf_link *link; u32 id = attr->link_id; int fd; if (CHECK_ATTR(BPF_LINK_GET_FD_BY_ID)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; link = bpf_link_by_id(id); if (IS_ERR(link)) return PTR_ERR(link); fd = bpf_link_new_fd(link); if (fd < 0) bpf_link_put_direct(link); return fd; } DEFINE_MUTEX(bpf_stats_enabled_mutex); static int bpf_stats_release(struct inode *inode, struct file *file) { mutex_lock(&bpf_stats_enabled_mutex); static_key_slow_dec(&bpf_stats_enabled_key.key); mutex_unlock(&bpf_stats_enabled_mutex); return 0; } static const struct file_operations bpf_stats_fops = { .release = bpf_stats_release, }; static int bpf_enable_runtime_stats(void) { int fd; mutex_lock(&bpf_stats_enabled_mutex); /* Set a very high limit to avoid overflow */ if (static_key_count(&bpf_stats_enabled_key.key) > INT_MAX / 2) { mutex_unlock(&bpf_stats_enabled_mutex); return -EBUSY; } fd = anon_inode_getfd("bpf-stats", &bpf_stats_fops, NULL, O_CLOEXEC); if (fd >= 0) static_key_slow_inc(&bpf_stats_enabled_key.key); mutex_unlock(&bpf_stats_enabled_mutex); return fd; } #define BPF_ENABLE_STATS_LAST_FIELD enable_stats.type static int bpf_enable_stats(union bpf_attr *attr) { if (CHECK_ATTR(BPF_ENABLE_STATS)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; switch (attr->enable_stats.type) { case BPF_STATS_RUN_TIME: return bpf_enable_runtime_stats(); default: break; } return -EINVAL; } #define BPF_ITER_CREATE_LAST_FIELD iter_create.flags static int bpf_iter_create(union bpf_attr *attr) { struct bpf_link *link; int err; if (CHECK_ATTR(BPF_ITER_CREATE)) return -EINVAL; if (attr->iter_create.flags) return -EINVAL; link = bpf_link_get_from_fd(attr->iter_create.link_fd); if (IS_ERR(link)) return PTR_ERR(link); err = bpf_iter_new_fd(link); bpf_link_put_direct(link); return err; } #define BPF_PROG_BIND_MAP_LAST_FIELD prog_bind_map.flags static int bpf_prog_bind_map(union bpf_attr *attr) { struct bpf_prog *prog; struct bpf_map *map; struct bpf_map **used_maps_old, **used_maps_new; int i, ret = 0; if (CHECK_ATTR(BPF_PROG_BIND_MAP)) return -EINVAL; if (attr->prog_bind_map.flags) return -EINVAL; prog = bpf_prog_get(attr->prog_bind_map.prog_fd); if (IS_ERR(prog)) return PTR_ERR(prog); map = bpf_map_get(attr->prog_bind_map.map_fd); if (IS_ERR(map)) { ret = PTR_ERR(map); goto out_prog_put; } mutex_lock(&prog->aux->used_maps_mutex); used_maps_old = prog->aux->used_maps; for (i = 0; i < prog->aux->used_map_cnt; i++) if (used_maps_old[i] == map) { bpf_map_put(map); goto out_unlock; } used_maps_new = kmalloc_array(prog->aux->used_map_cnt + 1, sizeof(used_maps_new[0]), GFP_KERNEL); if (!used_maps_new) { ret = -ENOMEM; goto out_unlock; } /* The bpf program will not access the bpf map, but for the sake of * simplicity, increase sleepable_refcnt for sleepable program as well. */ if (prog->sleepable) atomic64_inc(&map->sleepable_refcnt); memcpy(used_maps_new, used_maps_old, sizeof(used_maps_old[0]) * prog->aux->used_map_cnt); used_maps_new[prog->aux->used_map_cnt] = map; prog->aux->used_map_cnt++; prog->aux->used_maps = used_maps_new; kfree(used_maps_old); out_unlock: mutex_unlock(&prog->aux->used_maps_mutex); if (ret) bpf_map_put(map); out_prog_put: bpf_prog_put(prog); return ret; } #define BPF_TOKEN_CREATE_LAST_FIELD token_create.bpffs_fd static int token_create(union bpf_attr *attr) { if (CHECK_ATTR(BPF_TOKEN_CREATE)) return -EINVAL; /* no flags are supported yet */ if (attr->token_create.flags) return -EINVAL; return bpf_token_create(attr); } static int __sys_bpf(int cmd, bpfptr_t uattr, unsigned int size) { union bpf_attr attr; int err; err = bpf_check_uarg_tail_zero(uattr, sizeof(attr), size); if (err) return err; size = min_t(u32, size, sizeof(attr)); /* copy attributes from user space, may be less than sizeof(bpf_attr) */ memset(&attr, 0, sizeof(attr)); if (copy_from_bpfptr(&attr, uattr, size) != 0) return -EFAULT; err = security_bpf(cmd, &attr, size); if (err < 0) return err; switch (cmd) { case BPF_MAP_CREATE: err = map_create(&attr); break; case BPF_MAP_LOOKUP_ELEM: err = map_lookup_elem(&attr); break; case BPF_MAP_UPDATE_ELEM: err = map_update_elem(&attr, uattr); break; case BPF_MAP_DELETE_ELEM: err = map_delete_elem(&attr, uattr); break; case BPF_MAP_GET_NEXT_KEY: err = map_get_next_key(&attr); break; case BPF_MAP_FREEZE: err = map_freeze(&attr); break; case BPF_PROG_LOAD: err = bpf_prog_load(&attr, uattr, size); break; case BPF_OBJ_PIN: err = bpf_obj_pin(&attr); break; case BPF_OBJ_GET: err = bpf_obj_get(&attr); break; case BPF_PROG_ATTACH: err = bpf_prog_attach(&attr); break; case BPF_PROG_DETACH: err = bpf_prog_detach(&attr); break; case BPF_PROG_QUERY: err = bpf_prog_query(&attr, uattr.user); break; case BPF_PROG_TEST_RUN: err = bpf_prog_test_run(&attr, uattr.user); break; case BPF_PROG_GET_NEXT_ID: err = bpf_obj_get_next_id(&attr, uattr.user, &prog_idr, &prog_idr_lock); break; case BPF_MAP_GET_NEXT_ID: err = bpf_obj_get_next_id(&attr, uattr.user, &map_idr, &map_idr_lock); break; case BPF_BTF_GET_NEXT_ID: err = bpf_obj_get_next_id(&attr, uattr.user, &btf_idr, &btf_idr_lock); break; case BPF_PROG_GET_FD_BY_ID: err = bpf_prog_get_fd_by_id(&attr); break; case BPF_MAP_GET_FD_BY_ID: err = bpf_map_get_fd_by_id(&attr); break; case BPF_OBJ_GET_INFO_BY_FD: err = bpf_obj_get_info_by_fd(&attr, uattr.user); break; case BPF_RAW_TRACEPOINT_OPEN: err = bpf_raw_tracepoint_open(&attr); break; case BPF_BTF_LOAD: err = bpf_btf_load(&attr, uattr, size); break; case BPF_BTF_GET_FD_BY_ID: err = bpf_btf_get_fd_by_id(&attr); break; case BPF_TASK_FD_QUERY: err = bpf_task_fd_query(&attr, uattr.user); break; case BPF_MAP_LOOKUP_AND_DELETE_ELEM: err = map_lookup_and_delete_elem(&attr); break; case BPF_MAP_LOOKUP_BATCH: err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_LOOKUP_BATCH); break; case BPF_MAP_LOOKUP_AND_DELETE_BATCH: err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_LOOKUP_AND_DELETE_BATCH); break; case BPF_MAP_UPDATE_BATCH: err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_UPDATE_BATCH); break; case BPF_MAP_DELETE_BATCH: err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_DELETE_BATCH); break; case BPF_LINK_CREATE: err = link_create(&attr, uattr); break; case BPF_LINK_UPDATE: err = link_update(&attr); break; case BPF_LINK_GET_FD_BY_ID: err = bpf_link_get_fd_by_id(&attr); break; case BPF_LINK_GET_NEXT_ID: err = bpf_obj_get_next_id(&attr, uattr.user, &link_idr, &link_idr_lock); break; case BPF_ENABLE_STATS: err = bpf_enable_stats(&attr); break; case BPF_ITER_CREATE: err = bpf_iter_create(&attr); break; case BPF_LINK_DETACH: err = link_detach(&attr); break; case BPF_PROG_BIND_MAP: err = bpf_prog_bind_map(&attr); break; case BPF_TOKEN_CREATE: err = token_create(&attr); break; default: err = -EINVAL; break; } return err; } SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, size) { return __sys_bpf(cmd, USER_BPFPTR(uattr), size); } static bool syscall_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= U16_MAX) return false; if (off % size != 0) return false; return true; } BPF_CALL_3(bpf_sys_bpf, int, cmd, union bpf_attr *, attr, u32, attr_size) { switch (cmd) { case BPF_MAP_CREATE: case BPF_MAP_DELETE_ELEM: case BPF_MAP_UPDATE_ELEM: case BPF_MAP_FREEZE: case BPF_MAP_GET_FD_BY_ID: case BPF_PROG_LOAD: case BPF_BTF_LOAD: case BPF_LINK_CREATE: case BPF_RAW_TRACEPOINT_OPEN: break; default: return -EINVAL; } return __sys_bpf(cmd, KERNEL_BPFPTR(attr), attr_size); } /* To shut up -Wmissing-prototypes. * This function is used by the kernel light skeleton * to load bpf programs when modules are loaded or during kernel boot. * See tools/lib/bpf/skel_internal.h */ int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size); int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size) { struct bpf_prog * __maybe_unused prog; struct bpf_tramp_run_ctx __maybe_unused run_ctx; switch (cmd) { #ifdef CONFIG_BPF_JIT /* __bpf_prog_enter_sleepable used by trampoline and JIT */ case BPF_PROG_TEST_RUN: if (attr->test.data_in || attr->test.data_out || attr->test.ctx_out || attr->test.duration || attr->test.repeat || attr->test.flags) return -EINVAL; prog = bpf_prog_get_type(attr->test.prog_fd, BPF_PROG_TYPE_SYSCALL); if (IS_ERR(prog)) return PTR_ERR(prog); if (attr->test.ctx_size_in < prog->aux->max_ctx_offset || attr->test.ctx_size_in > U16_MAX) { bpf_prog_put(prog); return -EINVAL; } run_ctx.bpf_cookie = 0; if (!__bpf_prog_enter_sleepable_recur(prog, &run_ctx)) { /* recursion detected */ __bpf_prog_exit_sleepable_recur(prog, 0, &run_ctx); bpf_prog_put(prog); return -EBUSY; } attr->test.retval = bpf_prog_run(prog, (void *) (long) attr->test.ctx_in); __bpf_prog_exit_sleepable_recur(prog, 0 /* bpf_prog_run does runtime stats */, &run_ctx); bpf_prog_put(prog); return 0; #endif default: return ____bpf_sys_bpf(cmd, attr, size); } } EXPORT_SYMBOL(kern_sys_bpf); static const struct bpf_func_proto bpf_sys_bpf_proto = { .func = bpf_sys_bpf, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, }; const struct bpf_func_proto * __weak tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { return bpf_base_func_proto(func_id, prog); } BPF_CALL_1(bpf_sys_close, u32, fd) { /* When bpf program calls this helper there should not be * an fdget() without matching completed fdput(). * This helper is allowed in the following callchain only: * sys_bpf->prog_test_run->bpf_prog->bpf_sys_close */ return close_fd(fd); } static const struct bpf_func_proto bpf_sys_close_proto = { .func = bpf_sys_close, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_kallsyms_lookup_name, const char *, name, int, name_sz, int, flags, u64 *, res) { if (flags) return -EINVAL; if (name_sz <= 1 || name[name_sz - 1]) return -EINVAL; if (!bpf_dump_raw_ok(current_cred())) return -EPERM; *res = kallsyms_lookup_name(name); return *res ? 0 : -ENOENT; } static const struct bpf_func_proto bpf_kallsyms_lookup_name_proto = { .func = bpf_kallsyms_lookup_name, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; static const struct bpf_func_proto * syscall_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_sys_bpf: return !bpf_token_capable(prog->aux->token, CAP_PERFMON) ? NULL : &bpf_sys_bpf_proto; case BPF_FUNC_btf_find_by_name_kind: return &bpf_btf_find_by_name_kind_proto; case BPF_FUNC_sys_close: return &bpf_sys_close_proto; case BPF_FUNC_kallsyms_lookup_name: return &bpf_kallsyms_lookup_name_proto; default: return tracing_prog_func_proto(func_id, prog); } } const struct bpf_verifier_ops bpf_syscall_verifier_ops = { .get_func_proto = syscall_prog_func_proto, .is_valid_access = syscall_prog_is_valid_access, }; const struct bpf_prog_ops bpf_syscall_prog_ops = { .test_run = bpf_prog_test_run_syscall, }; #ifdef CONFIG_SYSCTL static int bpf_stats_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct static_key *key = (struct static_key *)table->data; static int saved_val; int val, ret; struct ctl_table tmp = { .data = &val, .maxlen = sizeof(val), .mode = table->mode, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }; if (write && !capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&bpf_stats_enabled_mutex); val = saved_val; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && !ret && val != saved_val) { if (val) static_key_slow_inc(key); else static_key_slow_dec(key); saved_val = val; } mutex_unlock(&bpf_stats_enabled_mutex); return ret; } void __weak unpriv_ebpf_notify(int new_state) { } static int bpf_unpriv_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret, unpriv_enable = *(int *)table->data; bool locked_state = unpriv_enable == 1; struct ctl_table tmp = *table; if (write && !capable(CAP_SYS_ADMIN)) return -EPERM; tmp.data = &unpriv_enable; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && !ret) { if (locked_state && unpriv_enable != 1) return -EPERM; *(int *)table->data = unpriv_enable; } if (write) unpriv_ebpf_notify(unpriv_enable); return ret; } static struct ctl_table bpf_syscall_table[] = { { .procname = "unprivileged_bpf_disabled", .data = &sysctl_unprivileged_bpf_disabled, .maxlen = sizeof(sysctl_unprivileged_bpf_disabled), .mode = 0644, .proc_handler = bpf_unpriv_handler, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "bpf_stats_enabled", .data = &bpf_stats_enabled_key.key, .mode = 0644, .proc_handler = bpf_stats_handler, }, }; static int __init bpf_syscall_sysctl_init(void) { register_sysctl_init("kernel", bpf_syscall_table); return 0; } late_initcall(bpf_syscall_sysctl_init); #endif /* CONFIG_SYSCTL */ |
6 1 2 2 5 5 5 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Martin Hundebøll, Jeppe Ledet-Pedersen */ #include "network-coding.h" #include "main.h" #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/byteorder/generic.h> #include <linux/compiler.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/if_packet.h> #include <linux/init.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/printk.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/workqueue.h> #include <uapi/linux/batadv_packet.h> #include "hash.h" #include "log.h" #include "originator.h" #include "routing.h" #include "send.h" #include "tvlv.h" static struct lock_class_key batadv_nc_coding_hash_lock_class_key; static struct lock_class_key batadv_nc_decoding_hash_lock_class_key; static void batadv_nc_worker(struct work_struct *work); static int batadv_nc_recv_coded_packet(struct sk_buff *skb, struct batadv_hard_iface *recv_if); /** * batadv_nc_init() - one-time initialization for network coding * * Return: 0 on success or negative error number in case of failure */ int __init batadv_nc_init(void) { /* Register our packet type */ return batadv_recv_handler_register(BATADV_CODED, batadv_nc_recv_coded_packet); } /** * batadv_nc_start_timer() - initialise the nc periodic worker * @bat_priv: the bat priv with all the soft interface information */ static void batadv_nc_start_timer(struct batadv_priv *bat_priv) { queue_delayed_work(batadv_event_workqueue, &bat_priv->nc.work, msecs_to_jiffies(10)); } /** * batadv_nc_tvlv_container_update() - update the network coding tvlv container * after network coding setting change * @bat_priv: the bat priv with all the soft interface information */ static void batadv_nc_tvlv_container_update(struct batadv_priv *bat_priv) { char nc_mode; nc_mode = atomic_read(&bat_priv->network_coding); switch (nc_mode) { case 0: batadv_tvlv_container_unregister(bat_priv, BATADV_TVLV_NC, 1); break; case 1: batadv_tvlv_container_register(bat_priv, BATADV_TVLV_NC, 1, NULL, 0); break; } } /** * batadv_nc_status_update() - update the network coding tvlv container after * network coding setting change * @net_dev: the soft interface net device */ void batadv_nc_status_update(struct net_device *net_dev) { struct batadv_priv *bat_priv = netdev_priv(net_dev); batadv_nc_tvlv_container_update(bat_priv); } /** * batadv_nc_tvlv_ogm_handler_v1() - process incoming nc tvlv container * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node of the ogm * @flags: flags indicating the tvlv state (see batadv_tvlv_handler_flags) * @tvlv_value: tvlv buffer containing the gateway data * @tvlv_value_len: tvlv buffer length */ static void batadv_nc_tvlv_ogm_handler_v1(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 flags, void *tvlv_value, u16 tvlv_value_len) { if (flags & BATADV_TVLV_HANDLER_OGM_CIFNOTFND) clear_bit(BATADV_ORIG_CAPA_HAS_NC, &orig->capabilities); else set_bit(BATADV_ORIG_CAPA_HAS_NC, &orig->capabilities); } /** * batadv_nc_mesh_init() - initialise coding hash table and start housekeeping * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or negative error number in case of failure */ int batadv_nc_mesh_init(struct batadv_priv *bat_priv) { bat_priv->nc.timestamp_fwd_flush = jiffies; bat_priv->nc.timestamp_sniffed_purge = jiffies; if (bat_priv->nc.coding_hash || bat_priv->nc.decoding_hash) return 0; bat_priv->nc.coding_hash = batadv_hash_new(128); if (!bat_priv->nc.coding_hash) goto err; batadv_hash_set_lock_class(bat_priv->nc.coding_hash, &batadv_nc_coding_hash_lock_class_key); bat_priv->nc.decoding_hash = batadv_hash_new(128); if (!bat_priv->nc.decoding_hash) { batadv_hash_destroy(bat_priv->nc.coding_hash); goto err; } batadv_hash_set_lock_class(bat_priv->nc.decoding_hash, &batadv_nc_decoding_hash_lock_class_key); INIT_DELAYED_WORK(&bat_priv->nc.work, batadv_nc_worker); batadv_nc_start_timer(bat_priv); batadv_tvlv_handler_register(bat_priv, batadv_nc_tvlv_ogm_handler_v1, NULL, NULL, BATADV_TVLV_NC, 1, BATADV_TVLV_HANDLER_OGM_CIFNOTFND); batadv_nc_tvlv_container_update(bat_priv); return 0; err: return -ENOMEM; } /** * batadv_nc_init_bat_priv() - initialise the nc specific bat_priv variables * @bat_priv: the bat priv with all the soft interface information */ void batadv_nc_init_bat_priv(struct batadv_priv *bat_priv) { atomic_set(&bat_priv->network_coding, 0); bat_priv->nc.min_tq = 200; bat_priv->nc.max_fwd_delay = 10; bat_priv->nc.max_buffer_time = 200; } /** * batadv_nc_init_orig() - initialise the nc fields of an orig_node * @orig_node: the orig_node which is going to be initialised */ void batadv_nc_init_orig(struct batadv_orig_node *orig_node) { INIT_LIST_HEAD(&orig_node->in_coding_list); INIT_LIST_HEAD(&orig_node->out_coding_list); spin_lock_init(&orig_node->in_coding_list_lock); spin_lock_init(&orig_node->out_coding_list_lock); } /** * batadv_nc_node_release() - release nc_node from lists and queue for free * after rcu grace period * @ref: kref pointer of the nc_node */ static void batadv_nc_node_release(struct kref *ref) { struct batadv_nc_node *nc_node; nc_node = container_of(ref, struct batadv_nc_node, refcount); batadv_orig_node_put(nc_node->orig_node); kfree_rcu(nc_node, rcu); } /** * batadv_nc_node_put() - decrement the nc_node refcounter and possibly * release it * @nc_node: nc_node to be free'd */ static void batadv_nc_node_put(struct batadv_nc_node *nc_node) { if (!nc_node) return; kref_put(&nc_node->refcount, batadv_nc_node_release); } /** * batadv_nc_path_release() - release nc_path from lists and queue for free * after rcu grace period * @ref: kref pointer of the nc_path */ static void batadv_nc_path_release(struct kref *ref) { struct batadv_nc_path *nc_path; nc_path = container_of(ref, struct batadv_nc_path, refcount); kfree_rcu(nc_path, rcu); } /** * batadv_nc_path_put() - decrement the nc_path refcounter and possibly * release it * @nc_path: nc_path to be free'd */ static void batadv_nc_path_put(struct batadv_nc_path *nc_path) { if (!nc_path) return; kref_put(&nc_path->refcount, batadv_nc_path_release); } /** * batadv_nc_packet_free() - frees nc packet * @nc_packet: the nc packet to free * @dropped: whether the packet is freed because is dropped */ static void batadv_nc_packet_free(struct batadv_nc_packet *nc_packet, bool dropped) { if (dropped) kfree_skb(nc_packet->skb); else consume_skb(nc_packet->skb); batadv_nc_path_put(nc_packet->nc_path); kfree(nc_packet); } /** * batadv_nc_to_purge_nc_node() - checks whether an nc node has to be purged * @bat_priv: the bat priv with all the soft interface information * @nc_node: the nc node to check * * Return: true if the entry has to be purged now, false otherwise */ static bool batadv_nc_to_purge_nc_node(struct batadv_priv *bat_priv, struct batadv_nc_node *nc_node) { if (atomic_read(&bat_priv->mesh_state) != BATADV_MESH_ACTIVE) return true; return batadv_has_timed_out(nc_node->last_seen, BATADV_NC_NODE_TIMEOUT); } /** * batadv_nc_to_purge_nc_path_coding() - checks whether an nc path has timed out * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path to check * * Return: true if the entry has to be purged now, false otherwise */ static bool batadv_nc_to_purge_nc_path_coding(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path) { if (atomic_read(&bat_priv->mesh_state) != BATADV_MESH_ACTIVE) return true; /* purge the path when no packets has been added for 10 times the * max_fwd_delay time */ return batadv_has_timed_out(nc_path->last_valid, bat_priv->nc.max_fwd_delay * 10); } /** * batadv_nc_to_purge_nc_path_decoding() - checks whether an nc path has timed * out * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path to check * * Return: true if the entry has to be purged now, false otherwise */ static bool batadv_nc_to_purge_nc_path_decoding(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path) { if (atomic_read(&bat_priv->mesh_state) != BATADV_MESH_ACTIVE) return true; /* purge the path when no packets has been added for 10 times the * max_buffer time */ return batadv_has_timed_out(nc_path->last_valid, bat_priv->nc.max_buffer_time * 10); } /** * batadv_nc_purge_orig_nc_nodes() - go through list of nc nodes and purge stale * entries * @bat_priv: the bat priv with all the soft interface information * @list: list of nc nodes * @lock: nc node list lock * @to_purge: function in charge to decide whether an entry has to be purged or * not. This function takes the nc node as argument and has to return * a boolean value: true if the entry has to be deleted, false * otherwise */ static void batadv_nc_purge_orig_nc_nodes(struct batadv_priv *bat_priv, struct list_head *list, spinlock_t *lock, bool (*to_purge)(struct batadv_priv *, struct batadv_nc_node *)) { struct batadv_nc_node *nc_node, *nc_node_tmp; /* For each nc_node in list */ spin_lock_bh(lock); list_for_each_entry_safe(nc_node, nc_node_tmp, list, list) { /* if an helper function has been passed as parameter, * ask it if the entry has to be purged or not */ if (to_purge && !to_purge(bat_priv, nc_node)) continue; batadv_dbg(BATADV_DBG_NC, bat_priv, "Removing nc_node %pM -> %pM\n", nc_node->addr, nc_node->orig_node->orig); list_del_rcu(&nc_node->list); batadv_nc_node_put(nc_node); } spin_unlock_bh(lock); } /** * batadv_nc_purge_orig() - purges all nc node data attached of the given * originator * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig_node with the nc node entries to be purged * @to_purge: function in charge to decide whether an entry has to be purged or * not. This function takes the nc node as argument and has to return * a boolean value: true is the entry has to be deleted, false * otherwise */ void batadv_nc_purge_orig(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, bool (*to_purge)(struct batadv_priv *, struct batadv_nc_node *)) { /* Check ingoing nc_node's of this orig_node */ batadv_nc_purge_orig_nc_nodes(bat_priv, &orig_node->in_coding_list, &orig_node->in_coding_list_lock, to_purge); /* Check outgoing nc_node's of this orig_node */ batadv_nc_purge_orig_nc_nodes(bat_priv, &orig_node->out_coding_list, &orig_node->out_coding_list_lock, to_purge); } /** * batadv_nc_purge_orig_hash() - traverse entire originator hash to check if * they have timed out nc nodes * @bat_priv: the bat priv with all the soft interface information */ static void batadv_nc_purge_orig_hash(struct batadv_priv *bat_priv) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; struct batadv_orig_node *orig_node; u32 i; if (!hash) return; /* For each orig_node */ for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) batadv_nc_purge_orig(bat_priv, orig_node, batadv_nc_to_purge_nc_node); rcu_read_unlock(); } } /** * batadv_nc_purge_paths() - traverse all nc paths part of the hash and remove * unused ones * @bat_priv: the bat priv with all the soft interface information * @hash: hash table containing the nc paths to check * @to_purge: function in charge to decide whether an entry has to be purged or * not. This function takes the nc node as argument and has to return * a boolean value: true is the entry has to be deleted, false * otherwise */ static void batadv_nc_purge_paths(struct batadv_priv *bat_priv, struct batadv_hashtable *hash, bool (*to_purge)(struct batadv_priv *, struct batadv_nc_path *)) { struct hlist_head *head; struct hlist_node *node_tmp; struct batadv_nc_path *nc_path; spinlock_t *lock; /* Protects lists in hash */ u32 i; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; lock = &hash->list_locks[i]; /* For each nc_path in this bin */ spin_lock_bh(lock); hlist_for_each_entry_safe(nc_path, node_tmp, head, hash_entry) { /* if an helper function has been passed as parameter, * ask it if the entry has to be purged or not */ if (to_purge && !to_purge(bat_priv, nc_path)) continue; /* purging an non-empty nc_path should never happen, but * is observed under high CPU load. Delay the purging * until next iteration to allow the packet_list to be * emptied first. */ if (!unlikely(list_empty(&nc_path->packet_list))) { net_ratelimited_function(printk, KERN_WARNING "Skipping free of non-empty nc_path (%pM -> %pM)!\n", nc_path->prev_hop, nc_path->next_hop); continue; } /* nc_path is unused, so remove it */ batadv_dbg(BATADV_DBG_NC, bat_priv, "Remove nc_path %pM -> %pM\n", nc_path->prev_hop, nc_path->next_hop); hlist_del_rcu(&nc_path->hash_entry); batadv_nc_path_put(nc_path); } spin_unlock_bh(lock); } } /** * batadv_nc_hash_key_gen() - computes the nc_path hash key * @key: buffer to hold the final hash key * @src: source ethernet mac address going into the hash key * @dst: destination ethernet mac address going into the hash key */ static void batadv_nc_hash_key_gen(struct batadv_nc_path *key, const char *src, const char *dst) { memcpy(key->prev_hop, src, sizeof(key->prev_hop)); memcpy(key->next_hop, dst, sizeof(key->next_hop)); } /** * batadv_nc_hash_choose() - compute the hash value for an nc path * @data: data to hash * @size: size of the hash table * * Return: the selected index in the hash table for the given data. */ static u32 batadv_nc_hash_choose(const void *data, u32 size) { const struct batadv_nc_path *nc_path = data; u32 hash = 0; hash = jhash(&nc_path->prev_hop, sizeof(nc_path->prev_hop), hash); hash = jhash(&nc_path->next_hop, sizeof(nc_path->next_hop), hash); return hash % size; } /** * batadv_nc_hash_compare() - comparing function used in the network coding hash * tables * @node: node in the local table * @data2: second object to compare the node to * * Return: true if the two entry are the same, false otherwise */ static bool batadv_nc_hash_compare(const struct hlist_node *node, const void *data2) { const struct batadv_nc_path *nc_path1, *nc_path2; nc_path1 = container_of(node, struct batadv_nc_path, hash_entry); nc_path2 = data2; /* Return 1 if the two keys are identical */ if (!batadv_compare_eth(nc_path1->prev_hop, nc_path2->prev_hop)) return false; if (!batadv_compare_eth(nc_path1->next_hop, nc_path2->next_hop)) return false; return true; } /** * batadv_nc_hash_find() - search for an existing nc path and return it * @hash: hash table containing the nc path * @data: search key * * Return: the nc_path if found, NULL otherwise. */ static struct batadv_nc_path * batadv_nc_hash_find(struct batadv_hashtable *hash, void *data) { struct hlist_head *head; struct batadv_nc_path *nc_path, *nc_path_tmp = NULL; int index; if (!hash) return NULL; index = batadv_nc_hash_choose(data, hash->size); head = &hash->table[index]; rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, head, hash_entry) { if (!batadv_nc_hash_compare(&nc_path->hash_entry, data)) continue; if (!kref_get_unless_zero(&nc_path->refcount)) continue; nc_path_tmp = nc_path; break; } rcu_read_unlock(); return nc_path_tmp; } /** * batadv_nc_send_packet() - send non-coded packet and free nc_packet struct * @nc_packet: the nc packet to send */ static void batadv_nc_send_packet(struct batadv_nc_packet *nc_packet) { batadv_send_unicast_skb(nc_packet->skb, nc_packet->neigh_node); nc_packet->skb = NULL; batadv_nc_packet_free(nc_packet, false); } /** * batadv_nc_sniffed_purge() - Checks timestamp of given sniffed nc_packet. * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path the packet belongs to * @nc_packet: the nc packet to be checked * * Checks whether the given sniffed (overheard) nc_packet has hit its buffering * timeout. If so, the packet is no longer kept and the entry deleted from the * queue. Has to be called with the appropriate locks. * * Return: false as soon as the entry in the fifo queue has not been timed out * yet and true otherwise. */ static bool batadv_nc_sniffed_purge(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path, struct batadv_nc_packet *nc_packet) { unsigned long timeout = bat_priv->nc.max_buffer_time; bool res = false; lockdep_assert_held(&nc_path->packet_list_lock); /* Packets are added to tail, so the remaining packets did not time * out and we can stop processing the current queue */ if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_ACTIVE && !batadv_has_timed_out(nc_packet->timestamp, timeout)) goto out; /* purge nc packet */ list_del(&nc_packet->list); batadv_nc_packet_free(nc_packet, true); res = true; out: return res; } /** * batadv_nc_fwd_flush() - Checks the timestamp of the given nc packet. * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path the packet belongs to * @nc_packet: the nc packet to be checked * * Checks whether the given nc packet has hit its forward timeout. If so, the * packet is no longer delayed, immediately sent and the entry deleted from the * queue. Has to be called with the appropriate locks. * * Return: false as soon as the entry in the fifo queue has not been timed out * yet and true otherwise. */ static bool batadv_nc_fwd_flush(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path, struct batadv_nc_packet *nc_packet) { unsigned long timeout = bat_priv->nc.max_fwd_delay; lockdep_assert_held(&nc_path->packet_list_lock); /* Packets are added to tail, so the remaining packets did not time * out and we can stop processing the current queue */ if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_ACTIVE && !batadv_has_timed_out(nc_packet->timestamp, timeout)) return false; /* Send packet */ batadv_inc_counter(bat_priv, BATADV_CNT_FORWARD); batadv_add_counter(bat_priv, BATADV_CNT_FORWARD_BYTES, nc_packet->skb->len + ETH_HLEN); list_del(&nc_packet->list); batadv_nc_send_packet(nc_packet); return true; } /** * batadv_nc_process_nc_paths() - traverse given nc packet pool and free timed * out nc packets * @bat_priv: the bat priv with all the soft interface information * @hash: to be processed hash table * @process_fn: Function called to process given nc packet. Should return true * to encourage this function to proceed with the next packet. * Otherwise the rest of the current queue is skipped. */ static void batadv_nc_process_nc_paths(struct batadv_priv *bat_priv, struct batadv_hashtable *hash, bool (*process_fn)(struct batadv_priv *, struct batadv_nc_path *, struct batadv_nc_packet *)) { struct hlist_head *head; struct batadv_nc_packet *nc_packet, *nc_packet_tmp; struct batadv_nc_path *nc_path; bool ret; int i; if (!hash) return; /* Loop hash table bins */ for (i = 0; i < hash->size; i++) { head = &hash->table[i]; /* Loop coding paths */ rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, head, hash_entry) { /* Loop packets */ spin_lock_bh(&nc_path->packet_list_lock); list_for_each_entry_safe(nc_packet, nc_packet_tmp, &nc_path->packet_list, list) { ret = process_fn(bat_priv, nc_path, nc_packet); if (!ret) break; } spin_unlock_bh(&nc_path->packet_list_lock); } rcu_read_unlock(); } } /** * batadv_nc_worker() - periodic task for housekeeping related to network * coding * @work: kernel work struct */ static void batadv_nc_worker(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_priv_nc *priv_nc; struct batadv_priv *bat_priv; unsigned long timeout; delayed_work = to_delayed_work(work); priv_nc = container_of(delayed_work, struct batadv_priv_nc, work); bat_priv = container_of(priv_nc, struct batadv_priv, nc); batadv_nc_purge_orig_hash(bat_priv); batadv_nc_purge_paths(bat_priv, bat_priv->nc.coding_hash, batadv_nc_to_purge_nc_path_coding); batadv_nc_purge_paths(bat_priv, bat_priv->nc.decoding_hash, batadv_nc_to_purge_nc_path_decoding); timeout = bat_priv->nc.max_fwd_delay; if (batadv_has_timed_out(bat_priv->nc.timestamp_fwd_flush, timeout)) { batadv_nc_process_nc_paths(bat_priv, bat_priv->nc.coding_hash, batadv_nc_fwd_flush); bat_priv->nc.timestamp_fwd_flush = jiffies; } if (batadv_has_timed_out(bat_priv->nc.timestamp_sniffed_purge, bat_priv->nc.max_buffer_time)) { batadv_nc_process_nc_paths(bat_priv, bat_priv->nc.decoding_hash, batadv_nc_sniffed_purge); bat_priv->nc.timestamp_sniffed_purge = jiffies; } /* Schedule a new check */ batadv_nc_start_timer(bat_priv); } /** * batadv_can_nc_with_orig() - checks whether the given orig node is suitable * for coding or not * @bat_priv: the bat priv with all the soft interface information * @orig_node: neighboring orig node which may be used as nc candidate * @ogm_packet: incoming ogm packet also used for the checks * * Return: true if: * 1) The OGM must have the most recent sequence number. * 2) The TTL must be decremented by one and only one. * 3) The OGM must be received from the first hop from orig_node. * 4) The TQ value of the OGM must be above bat_priv->nc.min_tq. */ static bool batadv_can_nc_with_orig(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_ogm_packet *ogm_packet) { struct batadv_orig_ifinfo *orig_ifinfo; u32 last_real_seqno; u8 last_ttl; orig_ifinfo = batadv_orig_ifinfo_get(orig_node, BATADV_IF_DEFAULT); if (!orig_ifinfo) return false; last_ttl = orig_ifinfo->last_ttl; last_real_seqno = orig_ifinfo->last_real_seqno; batadv_orig_ifinfo_put(orig_ifinfo); if (last_real_seqno != ntohl(ogm_packet->seqno)) return false; if (last_ttl != ogm_packet->ttl + 1) return false; if (!batadv_compare_eth(ogm_packet->orig, ogm_packet->prev_sender)) return false; if (ogm_packet->tq < bat_priv->nc.min_tq) return false; return true; } /** * batadv_nc_find_nc_node() - search for an existing nc node and return it * @orig_node: orig node originating the ogm packet * @orig_neigh_node: neighboring orig node from which we received the ogm packet * (can be equal to orig_node) * @in_coding: traverse incoming or outgoing network coding list * * Return: the nc_node if found, NULL otherwise. */ static struct batadv_nc_node * batadv_nc_find_nc_node(struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, bool in_coding) { struct batadv_nc_node *nc_node, *nc_node_out = NULL; struct list_head *list; if (in_coding) list = &orig_neigh_node->in_coding_list; else list = &orig_neigh_node->out_coding_list; /* Traverse list of nc_nodes to orig_node */ rcu_read_lock(); list_for_each_entry_rcu(nc_node, list, list) { if (!batadv_compare_eth(nc_node->addr, orig_node->orig)) continue; if (!kref_get_unless_zero(&nc_node->refcount)) continue; /* Found a match */ nc_node_out = nc_node; break; } rcu_read_unlock(); return nc_node_out; } /** * batadv_nc_get_nc_node() - retrieves an nc node or creates the entry if it was * not found * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node originating the ogm packet * @orig_neigh_node: neighboring orig node from which we received the ogm packet * (can be equal to orig_node) * @in_coding: traverse incoming or outgoing network coding list * * Return: the nc_node if found or created, NULL in case of an error. */ static struct batadv_nc_node * batadv_nc_get_nc_node(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, bool in_coding) { struct batadv_nc_node *nc_node; spinlock_t *lock; /* Used to lock list selected by "int in_coding" */ struct list_head *list; /* Select ingoing or outgoing coding node */ if (in_coding) { lock = &orig_neigh_node->in_coding_list_lock; list = &orig_neigh_node->in_coding_list; } else { lock = &orig_neigh_node->out_coding_list_lock; list = &orig_neigh_node->out_coding_list; } spin_lock_bh(lock); /* Check if nc_node is already added */ nc_node = batadv_nc_find_nc_node(orig_node, orig_neigh_node, in_coding); /* Node found */ if (nc_node) goto unlock; nc_node = kzalloc(sizeof(*nc_node), GFP_ATOMIC); if (!nc_node) goto unlock; /* Initialize nc_node */ INIT_LIST_HEAD(&nc_node->list); kref_init(&nc_node->refcount); ether_addr_copy(nc_node->addr, orig_node->orig); kref_get(&orig_neigh_node->refcount); nc_node->orig_node = orig_neigh_node; batadv_dbg(BATADV_DBG_NC, bat_priv, "Adding nc_node %pM -> %pM\n", nc_node->addr, nc_node->orig_node->orig); /* Add nc_node to orig_node */ kref_get(&nc_node->refcount); list_add_tail_rcu(&nc_node->list, list); unlock: spin_unlock_bh(lock); return nc_node; } /** * batadv_nc_update_nc_node() - updates stored incoming and outgoing nc node * structs (best called on incoming OGMs) * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node originating the ogm packet * @orig_neigh_node: neighboring orig node from which we received the ogm packet * (can be equal to orig_node) * @ogm_packet: incoming ogm packet * @is_single_hop_neigh: orig_node is a single hop neighbor */ void batadv_nc_update_nc_node(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, struct batadv_ogm_packet *ogm_packet, int is_single_hop_neigh) { struct batadv_nc_node *in_nc_node = NULL; struct batadv_nc_node *out_nc_node = NULL; /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto out; /* check if orig node is network coding enabled */ if (!test_bit(BATADV_ORIG_CAPA_HAS_NC, &orig_node->capabilities)) goto out; /* accept ogms from 'good' neighbors and single hop neighbors */ if (!batadv_can_nc_with_orig(bat_priv, orig_node, ogm_packet) && !is_single_hop_neigh) goto out; /* Add orig_node as in_nc_node on hop */ in_nc_node = batadv_nc_get_nc_node(bat_priv, orig_node, orig_neigh_node, true); if (!in_nc_node) goto out; in_nc_node->last_seen = jiffies; /* Add hop as out_nc_node on orig_node */ out_nc_node = batadv_nc_get_nc_node(bat_priv, orig_neigh_node, orig_node, false); if (!out_nc_node) goto out; out_nc_node->last_seen = jiffies; out: batadv_nc_node_put(in_nc_node); batadv_nc_node_put(out_nc_node); } /** * batadv_nc_get_path() - get existing nc_path or allocate a new one * @bat_priv: the bat priv with all the soft interface information * @hash: hash table containing the nc path * @src: ethernet source address - first half of the nc path search key * @dst: ethernet destination address - second half of the nc path search key * * Return: pointer to nc_path if the path was found or created, returns NULL * on error. */ static struct batadv_nc_path *batadv_nc_get_path(struct batadv_priv *bat_priv, struct batadv_hashtable *hash, u8 *src, u8 *dst) { int hash_added; struct batadv_nc_path *nc_path, nc_path_key; batadv_nc_hash_key_gen(&nc_path_key, src, dst); /* Search for existing nc_path */ nc_path = batadv_nc_hash_find(hash, (void *)&nc_path_key); if (nc_path) { /* Set timestamp to delay removal of nc_path */ nc_path->last_valid = jiffies; return nc_path; } /* No existing nc_path was found; create a new */ nc_path = kzalloc(sizeof(*nc_path), GFP_ATOMIC); if (!nc_path) return NULL; /* Initialize nc_path */ INIT_LIST_HEAD(&nc_path->packet_list); spin_lock_init(&nc_path->packet_list_lock); kref_init(&nc_path->refcount); nc_path->last_valid = jiffies; ether_addr_copy(nc_path->next_hop, dst); ether_addr_copy(nc_path->prev_hop, src); batadv_dbg(BATADV_DBG_NC, bat_priv, "Adding nc_path %pM -> %pM\n", nc_path->prev_hop, nc_path->next_hop); /* Add nc_path to hash table */ kref_get(&nc_path->refcount); hash_added = batadv_hash_add(hash, batadv_nc_hash_compare, batadv_nc_hash_choose, &nc_path_key, &nc_path->hash_entry); if (hash_added < 0) { kfree(nc_path); return NULL; } return nc_path; } /** * batadv_nc_random_weight_tq() - scale the receivers TQ-value to avoid unfair * selection of a receiver with slightly lower TQ than the other * @tq: to be weighted tq value * * Return: scaled tq value */ static u8 batadv_nc_random_weight_tq(u8 tq) { /* randomize the estimated packet loss (max TQ - estimated TQ) */ u8 rand_tq = get_random_u32_below(BATADV_TQ_MAX_VALUE + 1 - tq); /* convert to (randomized) estimated tq again */ return BATADV_TQ_MAX_VALUE - rand_tq; } /** * batadv_nc_memxor() - XOR destination with source * @dst: byte array to XOR into * @src: byte array to XOR from * @len: length of destination array */ static void batadv_nc_memxor(char *dst, const char *src, unsigned int len) { unsigned int i; for (i = 0; i < len; ++i) dst[i] ^= src[i]; } /** * batadv_nc_code_packets() - code a received unicast_packet with an nc packet * into a coded_packet and send it * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to forward * @ethhdr: pointer to the ethernet header inside the skb * @nc_packet: structure containing the packet to the skb can be coded with * @neigh_node: next hop to forward packet to * * Return: true if both packets are consumed, false otherwise. */ static bool batadv_nc_code_packets(struct batadv_priv *bat_priv, struct sk_buff *skb, struct ethhdr *ethhdr, struct batadv_nc_packet *nc_packet, struct batadv_neigh_node *neigh_node) { u8 tq_weighted_neigh, tq_weighted_coding, tq_tmp; struct sk_buff *skb_dest, *skb_src; struct batadv_unicast_packet *packet1; struct batadv_unicast_packet *packet2; struct batadv_coded_packet *coded_packet; struct batadv_neigh_node *neigh_tmp, *router_neigh, *first_dest; struct batadv_neigh_node *router_coding = NULL, *second_dest; struct batadv_neigh_ifinfo *router_neigh_ifinfo = NULL; struct batadv_neigh_ifinfo *router_coding_ifinfo = NULL; u8 *first_source, *second_source; __be32 packet_id1, packet_id2; size_t count; bool res = false; int coding_len; int unicast_size = sizeof(*packet1); int coded_size = sizeof(*coded_packet); int header_add = coded_size - unicast_size; /* TODO: do we need to consider the outgoing interface for * coded packets? */ router_neigh = batadv_orig_router_get(neigh_node->orig_node, BATADV_IF_DEFAULT); if (!router_neigh) goto out; router_neigh_ifinfo = batadv_neigh_ifinfo_get(router_neigh, BATADV_IF_DEFAULT); if (!router_neigh_ifinfo) goto out; neigh_tmp = nc_packet->neigh_node; router_coding = batadv_orig_router_get(neigh_tmp->orig_node, BATADV_IF_DEFAULT); if (!router_coding) goto out; router_coding_ifinfo = batadv_neigh_ifinfo_get(router_coding, BATADV_IF_DEFAULT); if (!router_coding_ifinfo) goto out; tq_tmp = router_neigh_ifinfo->bat_iv.tq_avg; tq_weighted_neigh = batadv_nc_random_weight_tq(tq_tmp); tq_tmp = router_coding_ifinfo->bat_iv.tq_avg; tq_weighted_coding = batadv_nc_random_weight_tq(tq_tmp); /* Select one destination for the MAC-header dst-field based on * weighted TQ-values. */ if (tq_weighted_neigh >= tq_weighted_coding) { /* Destination from nc_packet is selected for MAC-header */ first_dest = nc_packet->neigh_node; first_source = nc_packet->nc_path->prev_hop; second_dest = neigh_node; second_source = ethhdr->h_source; packet1 = (struct batadv_unicast_packet *)nc_packet->skb->data; packet2 = (struct batadv_unicast_packet *)skb->data; packet_id1 = nc_packet->packet_id; packet_id2 = batadv_skb_crc32(skb, skb->data + sizeof(*packet2)); } else { /* Destination for skb is selected for MAC-header */ first_dest = neigh_node; first_source = ethhdr->h_source; second_dest = nc_packet->neigh_node; second_source = nc_packet->nc_path->prev_hop; packet1 = (struct batadv_unicast_packet *)skb->data; packet2 = (struct batadv_unicast_packet *)nc_packet->skb->data; packet_id1 = batadv_skb_crc32(skb, skb->data + sizeof(*packet1)); packet_id2 = nc_packet->packet_id; } /* Instead of zero padding the smallest data buffer, we * code into the largest. */ if (skb->len <= nc_packet->skb->len) { skb_dest = nc_packet->skb; skb_src = skb; } else { skb_dest = skb; skb_src = nc_packet->skb; } /* coding_len is used when decoding the packet shorter packet */ coding_len = skb_src->len - unicast_size; if (skb_linearize(skb_dest) < 0 || skb_linearize(skb_src) < 0) goto out; skb_push(skb_dest, header_add); coded_packet = (struct batadv_coded_packet *)skb_dest->data; skb_reset_mac_header(skb_dest); coded_packet->packet_type = BATADV_CODED; coded_packet->version = BATADV_COMPAT_VERSION; coded_packet->ttl = packet1->ttl; /* Info about first unicast packet */ ether_addr_copy(coded_packet->first_source, first_source); ether_addr_copy(coded_packet->first_orig_dest, packet1->dest); coded_packet->first_crc = packet_id1; coded_packet->first_ttvn = packet1->ttvn; /* Info about second unicast packet */ ether_addr_copy(coded_packet->second_dest, second_dest->addr); ether_addr_copy(coded_packet->second_source, second_source); ether_addr_copy(coded_packet->second_orig_dest, packet2->dest); coded_packet->second_crc = packet_id2; coded_packet->second_ttl = packet2->ttl; coded_packet->second_ttvn = packet2->ttvn; coded_packet->coded_len = htons(coding_len); /* This is where the magic happens: Code skb_src into skb_dest */ batadv_nc_memxor(skb_dest->data + coded_size, skb_src->data + unicast_size, coding_len); /* Update counters accordingly */ if (BATADV_SKB_CB(skb_src)->decoded && BATADV_SKB_CB(skb_dest)->decoded) { /* Both packets are recoded */ count = skb_src->len + ETH_HLEN; count += skb_dest->len + ETH_HLEN; batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE, 2); batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE_BYTES, count); } else if (!BATADV_SKB_CB(skb_src)->decoded && !BATADV_SKB_CB(skb_dest)->decoded) { /* Both packets are newly coded */ count = skb_src->len + ETH_HLEN; count += skb_dest->len + ETH_HLEN; batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE, 2); batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE_BYTES, count); } else if (BATADV_SKB_CB(skb_src)->decoded && !BATADV_SKB_CB(skb_dest)->decoded) { /* skb_src recoded and skb_dest is newly coded */ batadv_inc_counter(bat_priv, BATADV_CNT_NC_RECODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE_BYTES, skb_src->len + ETH_HLEN); batadv_inc_counter(bat_priv, BATADV_CNT_NC_CODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE_BYTES, skb_dest->len + ETH_HLEN); } else if (!BATADV_SKB_CB(skb_src)->decoded && BATADV_SKB_CB(skb_dest)->decoded) { /* skb_src is newly coded and skb_dest is recoded */ batadv_inc_counter(bat_priv, BATADV_CNT_NC_CODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE_BYTES, skb_src->len + ETH_HLEN); batadv_inc_counter(bat_priv, BATADV_CNT_NC_RECODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE_BYTES, skb_dest->len + ETH_HLEN); } /* skb_src is now coded into skb_dest, so free it */ consume_skb(skb_src); /* avoid duplicate free of skb from nc_packet */ nc_packet->skb = NULL; batadv_nc_packet_free(nc_packet, false); /* Send the coded packet and return true */ batadv_send_unicast_skb(skb_dest, first_dest); res = true; out: batadv_neigh_node_put(router_neigh); batadv_neigh_node_put(router_coding); batadv_neigh_ifinfo_put(router_neigh_ifinfo); batadv_neigh_ifinfo_put(router_coding_ifinfo); return res; } /** * batadv_nc_skb_coding_possible() - true if a decoded skb is available at dst. * @skb: data skb to forward * @dst: destination mac address of the other skb to code with * @src: source mac address of skb * * Whenever we network code a packet we have to check whether we received it in * a network coded form. If so, we may not be able to use it for coding because * some neighbors may also have received (overheard) the packet in the network * coded form without being able to decode it. It is hard to know which of the * neighboring nodes was able to decode the packet, therefore we can only * re-code the packet if the source of the previous encoded packet is involved. * Since the source encoded the packet we can be certain it has all necessary * decode information. * * Return: true if coding of a decoded packet is allowed. */ static bool batadv_nc_skb_coding_possible(struct sk_buff *skb, u8 *dst, u8 *src) { if (BATADV_SKB_CB(skb)->decoded && !batadv_compare_eth(dst, src)) return false; return true; } /** * batadv_nc_path_search() - Find the coding path matching in_nc_node and * out_nc_node to retrieve a buffered packet that can be used for coding. * @bat_priv: the bat priv with all the soft interface information * @in_nc_node: pointer to skb next hop's neighbor nc node * @out_nc_node: pointer to skb source's neighbor nc node * @skb: data skb to forward * @eth_dst: next hop mac address of skb * * Return: true if coding of a decoded skb is allowed. */ static struct batadv_nc_packet * batadv_nc_path_search(struct batadv_priv *bat_priv, struct batadv_nc_node *in_nc_node, struct batadv_nc_node *out_nc_node, struct sk_buff *skb, u8 *eth_dst) { struct batadv_nc_path *nc_path, nc_path_key; struct batadv_nc_packet *nc_packet_out = NULL; struct batadv_nc_packet *nc_packet, *nc_packet_tmp; struct batadv_hashtable *hash = bat_priv->nc.coding_hash; int idx; if (!hash) return NULL; /* Create almost path key */ batadv_nc_hash_key_gen(&nc_path_key, in_nc_node->addr, out_nc_node->addr); idx = batadv_nc_hash_choose(&nc_path_key, hash->size); /* Check for coding opportunities in this nc_path */ rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, &hash->table[idx], hash_entry) { if (!batadv_compare_eth(nc_path->prev_hop, in_nc_node->addr)) continue; if (!batadv_compare_eth(nc_path->next_hop, out_nc_node->addr)) continue; spin_lock_bh(&nc_path->packet_list_lock); if (list_empty(&nc_path->packet_list)) { spin_unlock_bh(&nc_path->packet_list_lock); continue; } list_for_each_entry_safe(nc_packet, nc_packet_tmp, &nc_path->packet_list, list) { if (!batadv_nc_skb_coding_possible(nc_packet->skb, eth_dst, in_nc_node->addr)) continue; /* Coding opportunity is found! */ list_del(&nc_packet->list); nc_packet_out = nc_packet; break; } spin_unlock_bh(&nc_path->packet_list_lock); break; } rcu_read_unlock(); return nc_packet_out; } /** * batadv_nc_skb_src_search() - Loops through the list of neighboring nodes of * the skb's sender (may be equal to the originator). * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to forward * @eth_dst: next hop mac address of skb * @eth_src: source mac address of skb * @in_nc_node: pointer to skb next hop's neighbor nc node * * Return: an nc packet if a suitable coding packet was found, NULL otherwise. */ static struct batadv_nc_packet * batadv_nc_skb_src_search(struct batadv_priv *bat_priv, struct sk_buff *skb, u8 *eth_dst, u8 *eth_src, struct batadv_nc_node *in_nc_node) { struct batadv_orig_node *orig_node; struct batadv_nc_node *out_nc_node; struct batadv_nc_packet *nc_packet = NULL; orig_node = batadv_orig_hash_find(bat_priv, eth_src); if (!orig_node) return NULL; rcu_read_lock(); list_for_each_entry_rcu(out_nc_node, &orig_node->out_coding_list, list) { /* Check if the skb is decoded and if recoding is possible */ if (!batadv_nc_skb_coding_possible(skb, out_nc_node->addr, eth_src)) continue; /* Search for an opportunity in this nc_path */ nc_packet = batadv_nc_path_search(bat_priv, in_nc_node, out_nc_node, skb, eth_dst); if (nc_packet) break; } rcu_read_unlock(); batadv_orig_node_put(orig_node); return nc_packet; } /** * batadv_nc_skb_store_before_coding() - set the ethernet src and dst of the * unicast skb before it is stored for use in later decoding * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to store * @eth_dst_new: new destination mac address of skb */ static void batadv_nc_skb_store_before_coding(struct batadv_priv *bat_priv, struct sk_buff *skb, u8 *eth_dst_new) { struct ethhdr *ethhdr; /* Copy skb header to change the mac header */ skb = pskb_copy_for_clone(skb, GFP_ATOMIC); if (!skb) return; /* Set the mac header as if we actually sent the packet uncoded */ ethhdr = eth_hdr(skb); ether_addr_copy(ethhdr->h_source, ethhdr->h_dest); ether_addr_copy(ethhdr->h_dest, eth_dst_new); /* Set data pointer to MAC header to mimic packets from our tx path */ skb_push(skb, ETH_HLEN); /* Add the packet to the decoding packet pool */ batadv_nc_skb_store_for_decoding(bat_priv, skb); /* batadv_nc_skb_store_for_decoding() clones the skb, so we must free * our ref */ consume_skb(skb); } /** * batadv_nc_skb_dst_search() - Loops through list of neighboring nodes to dst. * @skb: data skb to forward * @neigh_node: next hop to forward packet to * @ethhdr: pointer to the ethernet header inside the skb * * Loops through the list of neighboring nodes the next hop has a good * connection to (receives OGMs with a sufficient quality). We need to find a * neighbor of our next hop that potentially sent a packet which our next hop * also received (overheard) and has stored for later decoding. * * Return: true if the skb was consumed (encoded packet sent) or false otherwise */ static bool batadv_nc_skb_dst_search(struct sk_buff *skb, struct batadv_neigh_node *neigh_node, struct ethhdr *ethhdr) { struct net_device *netdev = neigh_node->if_incoming->soft_iface; struct batadv_priv *bat_priv = netdev_priv(netdev); struct batadv_orig_node *orig_node = neigh_node->orig_node; struct batadv_nc_node *nc_node; struct batadv_nc_packet *nc_packet = NULL; rcu_read_lock(); list_for_each_entry_rcu(nc_node, &orig_node->in_coding_list, list) { /* Search for coding opportunity with this in_nc_node */ nc_packet = batadv_nc_skb_src_search(bat_priv, skb, neigh_node->addr, ethhdr->h_source, nc_node); /* Opportunity was found, so stop searching */ if (nc_packet) break; } rcu_read_unlock(); if (!nc_packet) return false; /* Save packets for later decoding */ batadv_nc_skb_store_before_coding(bat_priv, skb, neigh_node->addr); batadv_nc_skb_store_before_coding(bat_priv, nc_packet->skb, nc_packet->neigh_node->addr); /* Code and send packets */ if (batadv_nc_code_packets(bat_priv, skb, ethhdr, nc_packet, neigh_node)) return true; /* out of mem ? Coding failed - we have to free the buffered packet * to avoid memleaks. The skb passed as argument will be dealt with * by the calling function. */ batadv_nc_send_packet(nc_packet); return false; } /** * batadv_nc_skb_add_to_path() - buffer skb for later encoding / decoding * @skb: skb to add to path * @nc_path: path to add skb to * @neigh_node: next hop to forward packet to * @packet_id: checksum to identify packet * * Return: true if the packet was buffered or false in case of an error. */ static bool batadv_nc_skb_add_to_path(struct sk_buff *skb, struct batadv_nc_path *nc_path, struct batadv_neigh_node *neigh_node, __be32 packet_id) { struct batadv_nc_packet *nc_packet; nc_packet = kzalloc(sizeof(*nc_packet), GFP_ATOMIC); if (!nc_packet) return false; /* Initialize nc_packet */ nc_packet->timestamp = jiffies; nc_packet->packet_id = packet_id; nc_packet->skb = skb; nc_packet->neigh_node = neigh_node; nc_packet->nc_path = nc_path; /* Add coding packet to list */ spin_lock_bh(&nc_path->packet_list_lock); list_add_tail(&nc_packet->list, &nc_path->packet_list); spin_unlock_bh(&nc_path->packet_list_lock); return true; } /** * batadv_nc_skb_forward() - try to code a packet or add it to the coding packet * buffer * @skb: data skb to forward * @neigh_node: next hop to forward packet to * * Return: true if the skb was consumed (encoded packet sent) or false otherwise */ bool batadv_nc_skb_forward(struct sk_buff *skb, struct batadv_neigh_node *neigh_node) { const struct net_device *netdev = neigh_node->if_incoming->soft_iface; struct batadv_priv *bat_priv = netdev_priv(netdev); struct batadv_unicast_packet *packet; struct batadv_nc_path *nc_path; struct ethhdr *ethhdr = eth_hdr(skb); __be32 packet_id; u8 *payload; /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto out; /* We only handle unicast packets */ payload = skb_network_header(skb); packet = (struct batadv_unicast_packet *)payload; if (packet->packet_type != BATADV_UNICAST) goto out; /* Try to find a coding opportunity and send the skb if one is found */ if (batadv_nc_skb_dst_search(skb, neigh_node, ethhdr)) return true; /* Find or create a nc_path for this src-dst pair */ nc_path = batadv_nc_get_path(bat_priv, bat_priv->nc.coding_hash, ethhdr->h_source, neigh_node->addr); if (!nc_path) goto out; /* Add skb to nc_path */ packet_id = batadv_skb_crc32(skb, payload + sizeof(*packet)); if (!batadv_nc_skb_add_to_path(skb, nc_path, neigh_node, packet_id)) goto free_nc_path; /* Packet is consumed */ return true; free_nc_path: batadv_nc_path_put(nc_path); out: /* Packet is not consumed */ return false; } /** * batadv_nc_skb_store_for_decoding() - save a clone of the skb which can be * used when decoding coded packets * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to store */ void batadv_nc_skb_store_for_decoding(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct batadv_unicast_packet *packet; struct batadv_nc_path *nc_path; struct ethhdr *ethhdr = eth_hdr(skb); __be32 packet_id; u8 *payload; /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto out; /* Check for supported packet type */ payload = skb_network_header(skb); packet = (struct batadv_unicast_packet *)payload; if (packet->packet_type != BATADV_UNICAST) goto out; /* Find existing nc_path or create a new */ nc_path = batadv_nc_get_path(bat_priv, bat_priv->nc.decoding_hash, ethhdr->h_source, ethhdr->h_dest); if (!nc_path) goto out; /* Clone skb and adjust skb->data to point at batman header */ skb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!skb)) goto free_nc_path; if (unlikely(!pskb_may_pull(skb, ETH_HLEN))) goto free_skb; if (unlikely(!skb_pull_rcsum(skb, ETH_HLEN))) goto free_skb; /* Add skb to nc_path */ packet_id = batadv_skb_crc32(skb, payload + sizeof(*packet)); if (!batadv_nc_skb_add_to_path(skb, nc_path, NULL, packet_id)) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_NC_BUFFER); return; free_skb: kfree_skb(skb); free_nc_path: batadv_nc_path_put(nc_path); out: return; } /** * batadv_nc_skb_store_sniffed_unicast() - check if a received unicast packet * should be saved in the decoding buffer and, if so, store it there * @bat_priv: the bat priv with all the soft interface information * @skb: unicast skb to store */ void batadv_nc_skb_store_sniffed_unicast(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct ethhdr *ethhdr = eth_hdr(skb); if (batadv_is_my_mac(bat_priv, ethhdr->h_dest)) return; /* Set data pointer to MAC header to mimic packets from our tx path */ skb_push(skb, ETH_HLEN); batadv_nc_skb_store_for_decoding(bat_priv, skb); } /** * batadv_nc_skb_decode_packet() - decode given skb using the decode data stored * in nc_packet * @bat_priv: the bat priv with all the soft interface information * @skb: unicast skb to decode * @nc_packet: decode data needed to decode the skb * * Return: pointer to decoded unicast packet if the packet was decoded or NULL * in case of an error. */ static struct batadv_unicast_packet * batadv_nc_skb_decode_packet(struct batadv_priv *bat_priv, struct sk_buff *skb, struct batadv_nc_packet *nc_packet) { const int h_size = sizeof(struct batadv_unicast_packet); const int h_diff = sizeof(struct batadv_coded_packet) - h_size; struct batadv_unicast_packet *unicast_packet; struct batadv_coded_packet coded_packet_tmp; struct ethhdr *ethhdr, ethhdr_tmp; u8 *orig_dest, ttl, ttvn; unsigned int coding_len; int err; /* Save headers temporarily */ memcpy(&coded_packet_tmp, skb->data, sizeof(coded_packet_tmp)); memcpy(ðhdr_tmp, skb_mac_header(skb), sizeof(ethhdr_tmp)); if (skb_cow(skb, 0) < 0) return NULL; if (unlikely(!skb_pull_rcsum(skb, h_diff))) return NULL; /* Data points to batman header, so set mac header 14 bytes before * and network to data */ skb_set_mac_header(skb, -ETH_HLEN); skb_reset_network_header(skb); /* Reconstruct original mac header */ ethhdr = eth_hdr(skb); *ethhdr = ethhdr_tmp; /* Select the correct unicast header information based on the location * of our mac address in the coded_packet header */ if (batadv_is_my_mac(bat_priv, coded_packet_tmp.second_dest)) { /* If we are the second destination the packet was overheard, * so the Ethernet address must be copied to h_dest and * pkt_type changed from PACKET_OTHERHOST to PACKET_HOST */ ether_addr_copy(ethhdr->h_dest, coded_packet_tmp.second_dest); skb->pkt_type = PACKET_HOST; orig_dest = coded_packet_tmp.second_orig_dest; ttl = coded_packet_tmp.second_ttl; ttvn = coded_packet_tmp.second_ttvn; } else { orig_dest = coded_packet_tmp.first_orig_dest; ttl = coded_packet_tmp.ttl; ttvn = coded_packet_tmp.first_ttvn; } coding_len = ntohs(coded_packet_tmp.coded_len); if (coding_len > skb->len) return NULL; /* Here the magic is reversed: * extract the missing packet from the received coded packet */ batadv_nc_memxor(skb->data + h_size, nc_packet->skb->data + h_size, coding_len); /* Resize decoded skb if decoded with larger packet */ if (nc_packet->skb->len > coding_len + h_size) { err = pskb_trim_rcsum(skb, coding_len + h_size); if (err) return NULL; } /* Create decoded unicast packet */ unicast_packet = (struct batadv_unicast_packet *)skb->data; unicast_packet->packet_type = BATADV_UNICAST; unicast_packet->version = BATADV_COMPAT_VERSION; unicast_packet->ttl = ttl; ether_addr_copy(unicast_packet->dest, orig_dest); unicast_packet->ttvn = ttvn; batadv_nc_packet_free(nc_packet, false); return unicast_packet; } /** * batadv_nc_find_decoding_packet() - search through buffered decoding data to * find the data needed to decode the coded packet * @bat_priv: the bat priv with all the soft interface information * @ethhdr: pointer to the ethernet header inside the coded packet * @coded: coded packet we try to find decode data for * * Return: pointer to nc packet if the needed data was found or NULL otherwise. */ static struct batadv_nc_packet * batadv_nc_find_decoding_packet(struct batadv_priv *bat_priv, struct ethhdr *ethhdr, struct batadv_coded_packet *coded) { struct batadv_hashtable *hash = bat_priv->nc.decoding_hash; struct batadv_nc_packet *tmp_nc_packet, *nc_packet = NULL; struct batadv_nc_path *nc_path, nc_path_key; u8 *dest, *source; __be32 packet_id; int index; if (!hash) return NULL; /* Select the correct packet id based on the location of our mac-addr */ dest = ethhdr->h_source; if (!batadv_is_my_mac(bat_priv, coded->second_dest)) { source = coded->second_source; packet_id = coded->second_crc; } else { source = coded->first_source; packet_id = coded->first_crc; } batadv_nc_hash_key_gen(&nc_path_key, source, dest); index = batadv_nc_hash_choose(&nc_path_key, hash->size); /* Search for matching coding path */ rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, &hash->table[index], hash_entry) { /* Find matching nc_packet */ spin_lock_bh(&nc_path->packet_list_lock); list_for_each_entry(tmp_nc_packet, &nc_path->packet_list, list) { if (packet_id == tmp_nc_packet->packet_id) { list_del(&tmp_nc_packet->list); nc_packet = tmp_nc_packet; break; } } spin_unlock_bh(&nc_path->packet_list_lock); if (nc_packet) break; } rcu_read_unlock(); if (!nc_packet) batadv_dbg(BATADV_DBG_NC, bat_priv, "No decoding packet found for %u\n", packet_id); return nc_packet; } /** * batadv_nc_recv_coded_packet() - try to decode coded packet and enqueue the * resulting unicast packet * @skb: incoming coded packet * @recv_if: pointer to interface this packet was received on * * Return: NET_RX_SUCCESS if the packet has been consumed or NET_RX_DROP * otherwise. */ static int batadv_nc_recv_coded_packet(struct sk_buff *skb, struct batadv_hard_iface *recv_if) { struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface); struct batadv_unicast_packet *unicast_packet; struct batadv_coded_packet *coded_packet; struct batadv_nc_packet *nc_packet; struct ethhdr *ethhdr; int hdr_size = sizeof(*coded_packet); /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto free_skb; /* Make sure we can access (and remove) header */ if (unlikely(!pskb_may_pull(skb, hdr_size))) goto free_skb; coded_packet = (struct batadv_coded_packet *)skb->data; ethhdr = eth_hdr(skb); /* Verify frame is destined for us */ if (!batadv_is_my_mac(bat_priv, ethhdr->h_dest) && !batadv_is_my_mac(bat_priv, coded_packet->second_dest)) goto free_skb; /* Update stat counter */ if (batadv_is_my_mac(bat_priv, coded_packet->second_dest)) batadv_inc_counter(bat_priv, BATADV_CNT_NC_SNIFFED); nc_packet = batadv_nc_find_decoding_packet(bat_priv, ethhdr, coded_packet); if (!nc_packet) { batadv_inc_counter(bat_priv, BATADV_CNT_NC_DECODE_FAILED); goto free_skb; } /* Make skb's linear, because decoding accesses the entire buffer */ if (skb_linearize(skb) < 0) goto free_nc_packet; if (skb_linearize(nc_packet->skb) < 0) goto free_nc_packet; /* Decode the packet */ unicast_packet = batadv_nc_skb_decode_packet(bat_priv, skb, nc_packet); if (!unicast_packet) { batadv_inc_counter(bat_priv, BATADV_CNT_NC_DECODE_FAILED); goto free_nc_packet; } /* Mark packet as decoded to do correct recoding when forwarding */ BATADV_SKB_CB(skb)->decoded = true; batadv_inc_counter(bat_priv, BATADV_CNT_NC_DECODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_DECODE_BYTES, skb->len + ETH_HLEN); return batadv_recv_unicast_packet(skb, recv_if); free_nc_packet: batadv_nc_packet_free(nc_packet, true); free_skb: kfree_skb(skb); return NET_RX_DROP; } /** * batadv_nc_mesh_free() - clean up network coding memory * @bat_priv: the bat priv with all the soft interface information */ void batadv_nc_mesh_free(struct batadv_priv *bat_priv) { batadv_tvlv_container_unregister(bat_priv, BATADV_TVLV_NC, 1); batadv_tvlv_handler_unregister(bat_priv, BATADV_TVLV_NC, 1); cancel_delayed_work_sync(&bat_priv->nc.work); batadv_nc_purge_paths(bat_priv, bat_priv->nc.coding_hash, NULL); batadv_hash_destroy(bat_priv->nc.coding_hash); batadv_nc_purge_paths(bat_priv, bat_priv->nc.decoding_hash, NULL); batadv_hash_destroy(bat_priv->nc.decoding_hash); } |
9 17 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _RDS_RDS_H #define _RDS_RDS_H #include <net/sock.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <rdma/rdma_cm.h> #include <linux/mutex.h> #include <linux/rds.h> #include <linux/rhashtable.h> #include <linux/refcount.h> #include <linux/in6.h> #include "info.h" /* * RDS Network protocol version */ #define RDS_PROTOCOL_3_0 0x0300 #define RDS_PROTOCOL_3_1 0x0301 #define RDS_PROTOCOL_4_0 0x0400 #define RDS_PROTOCOL_4_1 0x0401 #define RDS_PROTOCOL_VERSION RDS_PROTOCOL_3_1 #define RDS_PROTOCOL_MAJOR(v) ((v) >> 8) #define RDS_PROTOCOL_MINOR(v) ((v) & 255) #define RDS_PROTOCOL(maj, min) (((maj) << 8) | min) #define RDS_PROTOCOL_COMPAT_VERSION RDS_PROTOCOL_3_1 /* The following ports, 16385, 18634, 18635, are registered with IANA as * the ports to be used for RDS over TCP and UDP. Currently, only RDS over * TCP and RDS over IB/RDMA are implemented. 18634 is the historical value * used for the RDMA_CM listener port. RDS/TCP uses port 16385. After * IPv6 work, RDMA_CM also uses 16385 as the listener port. 18634 is kept * to ensure compatibility with older RDS modules. Those ports are defined * in each transport's header file. */ #define RDS_PORT 18634 #ifdef ATOMIC64_INIT #define KERNEL_HAS_ATOMIC64 #endif #ifdef RDS_DEBUG #define rdsdebug(fmt, args...) pr_debug("%s(): " fmt, __func__ , ##args) #else /* sigh, pr_debug() causes unused variable warnings */ static inline __printf(1, 2) void rdsdebug(char *fmt, ...) { } #endif #define RDS_FRAG_SHIFT 12 #define RDS_FRAG_SIZE ((unsigned int)(1 << RDS_FRAG_SHIFT)) /* Used to limit both RDMA and non-RDMA RDS message to 1MB */ #define RDS_MAX_MSG_SIZE ((unsigned int)(1 << 20)) #define RDS_CONG_MAP_BYTES (65536 / 8) #define RDS_CONG_MAP_PAGES (PAGE_ALIGN(RDS_CONG_MAP_BYTES) / PAGE_SIZE) #define RDS_CONG_MAP_PAGE_BITS (PAGE_SIZE * 8) struct rds_cong_map { struct rb_node m_rb_node; struct in6_addr m_addr; wait_queue_head_t m_waitq; struct list_head m_conn_list; unsigned long m_page_addrs[RDS_CONG_MAP_PAGES]; }; /* * This is how we will track the connection state: * A connection is always in one of the following * states. Updates to the state are atomic and imply * a memory barrier. */ enum { RDS_CONN_DOWN = 0, RDS_CONN_CONNECTING, RDS_CONN_DISCONNECTING, RDS_CONN_UP, RDS_CONN_RESETTING, RDS_CONN_ERROR, }; /* Bits for c_flags */ #define RDS_LL_SEND_FULL 0 #define RDS_RECONNECT_PENDING 1 #define RDS_IN_XMIT 2 #define RDS_RECV_REFILL 3 #define RDS_DESTROY_PENDING 4 /* Max number of multipaths per RDS connection. Must be a power of 2 */ #define RDS_MPATH_WORKERS 8 #define RDS_MPATH_HASH(rs, n) (jhash_1word((rs)->rs_bound_port, \ (rs)->rs_hash_initval) & ((n) - 1)) #define IS_CANONICAL(laddr, faddr) (htonl(laddr) < htonl(faddr)) /* Per mpath connection state */ struct rds_conn_path { struct rds_connection *cp_conn; struct rds_message *cp_xmit_rm; unsigned long cp_xmit_sg; unsigned int cp_xmit_hdr_off; unsigned int cp_xmit_data_off; unsigned int cp_xmit_atomic_sent; unsigned int cp_xmit_rdma_sent; unsigned int cp_xmit_data_sent; spinlock_t cp_lock; /* protect msg queues */ u64 cp_next_tx_seq; struct list_head cp_send_queue; struct list_head cp_retrans; u64 cp_next_rx_seq; void *cp_transport_data; atomic_t cp_state; unsigned long cp_send_gen; unsigned long cp_flags; unsigned long cp_reconnect_jiffies; struct delayed_work cp_send_w; struct delayed_work cp_recv_w; struct delayed_work cp_conn_w; struct work_struct cp_down_w; struct mutex cp_cm_lock; /* protect cp_state & cm */ wait_queue_head_t cp_waitq; unsigned int cp_unacked_packets; unsigned int cp_unacked_bytes; unsigned int cp_index; }; /* One rds_connection per RDS address pair */ struct rds_connection { struct hlist_node c_hash_node; struct in6_addr c_laddr; struct in6_addr c_faddr; int c_dev_if; /* ifindex used for this conn */ int c_bound_if; /* ifindex of c_laddr */ unsigned int c_loopback:1, c_isv6:1, c_ping_triggered:1, c_pad_to_32:29; int c_npaths; struct rds_connection *c_passive; struct rds_transport *c_trans; struct rds_cong_map *c_lcong; struct rds_cong_map *c_fcong; /* Protocol version */ unsigned int c_proposed_version; unsigned int c_version; possible_net_t c_net; /* TOS */ u8 c_tos; struct list_head c_map_item; unsigned long c_map_queued; struct rds_conn_path *c_path; wait_queue_head_t c_hs_waitq; /* handshake waitq */ u32 c_my_gen_num; u32 c_peer_gen_num; }; static inline struct net *rds_conn_net(struct rds_connection *conn) { return read_pnet(&conn->c_net); } static inline void rds_conn_net_set(struct rds_connection *conn, struct net *net) { write_pnet(&conn->c_net, net); } #define RDS_FLAG_CONG_BITMAP 0x01 #define RDS_FLAG_ACK_REQUIRED 0x02 #define RDS_FLAG_RETRANSMITTED 0x04 #define RDS_MAX_ADV_CREDIT 255 /* RDS_FLAG_PROBE_PORT is the reserved sport used for sending a ping * probe to exchange control information before establishing a connection. * Currently the control information that is exchanged is the number of * supported paths. If the peer is a legacy (older kernel revision) peer, * it would return a pong message without additional control information * that would then alert the sender that the peer was an older rev. */ #define RDS_FLAG_PROBE_PORT 1 #define RDS_HS_PROBE(sport, dport) \ ((sport == RDS_FLAG_PROBE_PORT && dport == 0) || \ (sport == 0 && dport == RDS_FLAG_PROBE_PORT)) /* * Maximum space available for extension headers. */ #define RDS_HEADER_EXT_SPACE 16 struct rds_header { __be64 h_sequence; __be64 h_ack; __be32 h_len; __be16 h_sport; __be16 h_dport; u8 h_flags; u8 h_credit; u8 h_padding[4]; __sum16 h_csum; u8 h_exthdr[RDS_HEADER_EXT_SPACE]; }; /* * Reserved - indicates end of extensions */ #define RDS_EXTHDR_NONE 0 /* * This extension header is included in the very * first message that is sent on a new connection, * and identifies the protocol level. This will help * rolling updates if a future change requires breaking * the protocol. * NB: This is no longer true for IB, where we do a version * negotiation during the connection setup phase (protocol * version information is included in the RDMA CM private data). */ #define RDS_EXTHDR_VERSION 1 struct rds_ext_header_version { __be32 h_version; }; /* * This extension header is included in the RDS message * chasing an RDMA operation. */ #define RDS_EXTHDR_RDMA 2 struct rds_ext_header_rdma { __be32 h_rdma_rkey; }; /* * This extension header tells the peer about the * destination <R_Key,offset> of the requested RDMA * operation. */ #define RDS_EXTHDR_RDMA_DEST 3 struct rds_ext_header_rdma_dest { __be32 h_rdma_rkey; __be32 h_rdma_offset; }; /* Extension header announcing number of paths. * Implicit length = 2 bytes. */ #define RDS_EXTHDR_NPATHS 5 #define RDS_EXTHDR_GEN_NUM 6 #define __RDS_EXTHDR_MAX 16 /* for now */ #define RDS_RX_MAX_TRACES (RDS_MSG_RX_DGRAM_TRACE_MAX + 1) #define RDS_MSG_RX_HDR 0 #define RDS_MSG_RX_START 1 #define RDS_MSG_RX_END 2 #define RDS_MSG_RX_CMSG 3 /* The following values are whitelisted for usercopy */ struct rds_inc_usercopy { rds_rdma_cookie_t rdma_cookie; ktime_t rx_tstamp; }; struct rds_incoming { refcount_t i_refcount; struct list_head i_item; struct rds_connection *i_conn; struct rds_conn_path *i_conn_path; struct rds_header i_hdr; unsigned long i_rx_jiffies; struct in6_addr i_saddr; struct rds_inc_usercopy i_usercopy; u64 i_rx_lat_trace[RDS_RX_MAX_TRACES]; }; struct rds_mr { struct rb_node r_rb_node; struct kref r_kref; u32 r_key; /* A copy of the creation flags */ unsigned int r_use_once:1; unsigned int r_invalidate:1; unsigned int r_write:1; struct rds_sock *r_sock; /* back pointer to the socket that owns us */ struct rds_transport *r_trans; void *r_trans_private; }; static inline rds_rdma_cookie_t rds_rdma_make_cookie(u32 r_key, u32 offset) { return r_key | (((u64) offset) << 32); } static inline u32 rds_rdma_cookie_key(rds_rdma_cookie_t cookie) { return cookie; } static inline u32 rds_rdma_cookie_offset(rds_rdma_cookie_t cookie) { return cookie >> 32; } /* atomic operation types */ #define RDS_ATOMIC_TYPE_CSWP 0 #define RDS_ATOMIC_TYPE_FADD 1 /* * m_sock_item and m_conn_item are on lists that are serialized under * conn->c_lock. m_sock_item has additional meaning in that once it is empty * the message will not be put back on the retransmit list after being sent. * messages that are canceled while being sent rely on this. * * m_inc is used by loopback so that it can pass an incoming message straight * back up into the rx path. It embeds a wire header which is also used by * the send path, which is kind of awkward. * * m_sock_item indicates the message's presence on a socket's send or receive * queue. m_rs will point to that socket. * * m_daddr is used by cancellation to prune messages to a given destination. * * The RDS_MSG_ON_SOCK and RDS_MSG_ON_CONN flags are used to avoid lock * nesting. As paths iterate over messages on a sock, or conn, they must * also lock the conn, or sock, to remove the message from those lists too. * Testing the flag to determine if the message is still on the lists lets * us avoid testing the list_head directly. That means each path can use * the message's list_head to keep it on a local list while juggling locks * without confusing the other path. * * m_ack_seq is an optional field set by transports who need a different * sequence number range to invalidate. They can use this in a callback * that they pass to rds_send_drop_acked() to see if each message has been * acked. The HAS_ACK_SEQ flag can be used to detect messages which haven't * had ack_seq set yet. */ #define RDS_MSG_ON_SOCK 1 #define RDS_MSG_ON_CONN 2 #define RDS_MSG_HAS_ACK_SEQ 3 #define RDS_MSG_ACK_REQUIRED 4 #define RDS_MSG_RETRANSMITTED 5 #define RDS_MSG_MAPPED 6 #define RDS_MSG_PAGEVEC 7 #define RDS_MSG_FLUSH 8 struct rds_znotifier { struct mmpin z_mmp; u32 z_cookie; }; struct rds_msg_zcopy_info { struct list_head rs_zcookie_next; union { struct rds_znotifier znotif; struct rds_zcopy_cookies zcookies; }; }; struct rds_msg_zcopy_queue { struct list_head zcookie_head; spinlock_t lock; /* protects zcookie_head queue */ }; static inline void rds_message_zcopy_queue_init(struct rds_msg_zcopy_queue *q) { spin_lock_init(&q->lock); INIT_LIST_HEAD(&q->zcookie_head); } struct rds_iov_vector { struct rds_iovec *iov; int len; }; struct rds_iov_vector_arr { struct rds_iov_vector *vec; int len; int indx; int incr; }; struct rds_message { refcount_t m_refcount; struct list_head m_sock_item; struct list_head m_conn_item; struct rds_incoming m_inc; u64 m_ack_seq; struct in6_addr m_daddr; unsigned long m_flags; /* Never access m_rs without holding m_rs_lock. * Lock nesting is * rm->m_rs_lock * -> rs->rs_lock */ spinlock_t m_rs_lock; wait_queue_head_t m_flush_wait; struct rds_sock *m_rs; /* cookie to send to remote, in rds header */ rds_rdma_cookie_t m_rdma_cookie; unsigned int m_used_sgs; unsigned int m_total_sgs; void *m_final_op; struct { struct rm_atomic_op { int op_type; union { struct { uint64_t compare; uint64_t swap; uint64_t compare_mask; uint64_t swap_mask; } op_m_cswp; struct { uint64_t add; uint64_t nocarry_mask; } op_m_fadd; }; u32 op_rkey; u64 op_remote_addr; unsigned int op_notify:1; unsigned int op_recverr:1; unsigned int op_mapped:1; unsigned int op_silent:1; unsigned int op_active:1; struct scatterlist *op_sg; struct rds_notifier *op_notifier; struct rds_mr *op_rdma_mr; } atomic; struct rm_rdma_op { u32 op_rkey; u64 op_remote_addr; unsigned int op_write:1; unsigned int op_fence:1; unsigned int op_notify:1; unsigned int op_recverr:1; unsigned int op_mapped:1; unsigned int op_silent:1; unsigned int op_active:1; unsigned int op_bytes; unsigned int op_nents; unsigned int op_count; struct scatterlist *op_sg; struct rds_notifier *op_notifier; struct rds_mr *op_rdma_mr; u64 op_odp_addr; struct rds_mr *op_odp_mr; } rdma; struct rm_data_op { unsigned int op_active:1; unsigned int op_nents; unsigned int op_count; unsigned int op_dmasg; unsigned int op_dmaoff; struct rds_znotifier *op_mmp_znotifier; struct scatterlist *op_sg; } data; }; struct rds_conn_path *m_conn_path; }; /* * The RDS notifier is used (optionally) to tell the application about * completed RDMA operations. Rather than keeping the whole rds message * around on the queue, we allocate a small notifier that is put on the * socket's notifier_list. Notifications are delivered to the application * through control messages. */ struct rds_notifier { struct list_head n_list; uint64_t n_user_token; int n_status; }; /* Available as part of RDS core, so doesn't need to participate * in get_preferred transport etc */ #define RDS_TRANS_LOOP 3 /** * struct rds_transport - transport specific behavioural hooks * * @xmit: .xmit is called by rds_send_xmit() to tell the transport to send * part of a message. The caller serializes on the send_sem so this * doesn't need to be reentrant for a given conn. The header must be * sent before the data payload. .xmit must be prepared to send a * message with no data payload. .xmit should return the number of * bytes that were sent down the connection, including header bytes. * Returning 0 tells the caller that it doesn't need to perform any * additional work now. This is usually the case when the transport has * filled the sending queue for its connection and will handle * triggering the rds thread to continue the send when space becomes * available. Returning -EAGAIN tells the caller to retry the send * immediately. Returning -ENOMEM tells the caller to retry the send at * some point in the future. * * @conn_shutdown: conn_shutdown stops traffic on the given connection. Once * it returns the connection can not call rds_recv_incoming(). * This will only be called once after conn_connect returns * non-zero success and will The caller serializes this with * the send and connecting paths (xmit_* and conn_*). The * transport is responsible for other serialization, including * rds_recv_incoming(). This is called in process context but * should try hard not to block. */ struct rds_transport { char t_name[TRANSNAMSIZ]; struct list_head t_item; struct module *t_owner; unsigned int t_prefer_loopback:1, t_mp_capable:1; unsigned int t_type; int (*laddr_check)(struct net *net, const struct in6_addr *addr, __u32 scope_id); int (*conn_alloc)(struct rds_connection *conn, gfp_t gfp); void (*conn_free)(void *data); int (*conn_path_connect)(struct rds_conn_path *cp); void (*conn_path_shutdown)(struct rds_conn_path *conn); void (*xmit_path_prepare)(struct rds_conn_path *cp); void (*xmit_path_complete)(struct rds_conn_path *cp); int (*xmit)(struct rds_connection *conn, struct rds_message *rm, unsigned int hdr_off, unsigned int sg, unsigned int off); int (*xmit_rdma)(struct rds_connection *conn, struct rm_rdma_op *op); int (*xmit_atomic)(struct rds_connection *conn, struct rm_atomic_op *op); int (*recv_path)(struct rds_conn_path *cp); int (*inc_copy_to_user)(struct rds_incoming *inc, struct iov_iter *to); void (*inc_free)(struct rds_incoming *inc); int (*cm_handle_connect)(struct rdma_cm_id *cm_id, struct rdma_cm_event *event, bool isv6); int (*cm_initiate_connect)(struct rdma_cm_id *cm_id, bool isv6); void (*cm_connect_complete)(struct rds_connection *conn, struct rdma_cm_event *event); unsigned int (*stats_info_copy)(struct rds_info_iterator *iter, unsigned int avail); void (*exit)(void); void *(*get_mr)(struct scatterlist *sg, unsigned long nr_sg, struct rds_sock *rs, u32 *key_ret, struct rds_connection *conn, u64 start, u64 length, int need_odp); void (*sync_mr)(void *trans_private, int direction); void (*free_mr)(void *trans_private, int invalidate); void (*flush_mrs)(void); bool (*t_unloading)(struct rds_connection *conn); u8 (*get_tos_map)(u8 tos); }; /* Bind hash table key length. It is the sum of the size of a struct * in6_addr, a scope_id and a port. */ #define RDS_BOUND_KEY_LEN \ (sizeof(struct in6_addr) + sizeof(__u32) + sizeof(__be16)) struct rds_sock { struct sock rs_sk; u64 rs_user_addr; u64 rs_user_bytes; /* * bound_addr used for both incoming and outgoing, no INADDR_ANY * support. */ struct rhash_head rs_bound_node; u8 rs_bound_key[RDS_BOUND_KEY_LEN]; struct sockaddr_in6 rs_bound_sin6; #define rs_bound_addr rs_bound_sin6.sin6_addr #define rs_bound_addr_v4 rs_bound_sin6.sin6_addr.s6_addr32[3] #define rs_bound_port rs_bound_sin6.sin6_port #define rs_bound_scope_id rs_bound_sin6.sin6_scope_id struct in6_addr rs_conn_addr; #define rs_conn_addr_v4 rs_conn_addr.s6_addr32[3] __be16 rs_conn_port; struct rds_transport *rs_transport; /* * rds_sendmsg caches the conn it used the last time around. * This helps avoid costly lookups. */ struct rds_connection *rs_conn; /* flag indicating we were congested or not */ int rs_congested; /* seen congestion (ENOBUFS) when sending? */ int rs_seen_congestion; /* rs_lock protects all these adjacent members before the newline */ spinlock_t rs_lock; struct list_head rs_send_queue; u32 rs_snd_bytes; int rs_rcv_bytes; struct list_head rs_notify_queue; /* currently used for failed RDMAs */ /* Congestion wake_up. If rs_cong_monitor is set, we use cong_mask * to decide whether the application should be woken up. * If not set, we use rs_cong_track to find out whether a cong map * update arrived. */ uint64_t rs_cong_mask; uint64_t rs_cong_notify; struct list_head rs_cong_list; unsigned long rs_cong_track; /* * rs_recv_lock protects the receive queue, and is * used to serialize with rds_release. */ rwlock_t rs_recv_lock; struct list_head rs_recv_queue; /* just for stats reporting */ struct list_head rs_item; /* these have their own lock */ spinlock_t rs_rdma_lock; struct rb_root rs_rdma_keys; /* Socket options - in case there will be more */ unsigned char rs_recverr, rs_cong_monitor; u32 rs_hash_initval; /* Socket receive path trace points*/ u8 rs_rx_traces; u8 rs_rx_trace[RDS_MSG_RX_DGRAM_TRACE_MAX]; struct rds_msg_zcopy_queue rs_zcookie_queue; u8 rs_tos; }; static inline struct rds_sock *rds_sk_to_rs(const struct sock *sk) { return container_of(sk, struct rds_sock, rs_sk); } static inline struct sock *rds_rs_to_sk(struct rds_sock *rs) { return &rs->rs_sk; } /* * The stack assigns sk_sndbuf and sk_rcvbuf to twice the specified value * to account for overhead. We don't account for overhead, we just apply * the number of payload bytes to the specified value. */ static inline int rds_sk_sndbuf(struct rds_sock *rs) { return rds_rs_to_sk(rs)->sk_sndbuf / 2; } static inline int rds_sk_rcvbuf(struct rds_sock *rs) { return rds_rs_to_sk(rs)->sk_rcvbuf / 2; } struct rds_statistics { uint64_t s_conn_reset; uint64_t s_recv_drop_bad_checksum; uint64_t s_recv_drop_old_seq; uint64_t s_recv_drop_no_sock; uint64_t s_recv_drop_dead_sock; uint64_t s_recv_deliver_raced; uint64_t s_recv_delivered; uint64_t s_recv_queued; uint64_t s_recv_immediate_retry; uint64_t s_recv_delayed_retry; uint64_t s_recv_ack_required; uint64_t s_recv_rdma_bytes; uint64_t s_recv_ping; uint64_t s_send_queue_empty; uint64_t s_send_queue_full; uint64_t s_send_lock_contention; uint64_t s_send_lock_queue_raced; uint64_t s_send_immediate_retry; uint64_t s_send_delayed_retry; uint64_t s_send_drop_acked; uint64_t s_send_ack_required; uint64_t s_send_queued; uint64_t s_send_rdma; uint64_t s_send_rdma_bytes; uint64_t s_send_pong; uint64_t s_page_remainder_hit; uint64_t s_page_remainder_miss; uint64_t s_copy_to_user; uint64_t s_copy_from_user; uint64_t s_cong_update_queued; uint64_t s_cong_update_received; uint64_t s_cong_send_error; uint64_t s_cong_send_blocked; uint64_t s_recv_bytes_added_to_socket; uint64_t s_recv_bytes_removed_from_socket; uint64_t s_send_stuck_rm; }; /* af_rds.c */ void rds_sock_addref(struct rds_sock *rs); void rds_sock_put(struct rds_sock *rs); void rds_wake_sk_sleep(struct rds_sock *rs); static inline void __rds_wake_sk_sleep(struct sock *sk) { wait_queue_head_t *waitq = sk_sleep(sk); if (!sock_flag(sk, SOCK_DEAD) && waitq) wake_up(waitq); } extern wait_queue_head_t rds_poll_waitq; /* bind.c */ int rds_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); void rds_remove_bound(struct rds_sock *rs); struct rds_sock *rds_find_bound(const struct in6_addr *addr, __be16 port, __u32 scope_id); int rds_bind_lock_init(void); void rds_bind_lock_destroy(void); /* cong.c */ int rds_cong_get_maps(struct rds_connection *conn); void rds_cong_add_conn(struct rds_connection *conn); void rds_cong_remove_conn(struct rds_connection *conn); void rds_cong_set_bit(struct rds_cong_map *map, __be16 port); void rds_cong_clear_bit(struct rds_cong_map *map, __be16 port); int rds_cong_wait(struct rds_cong_map *map, __be16 port, int nonblock, struct rds_sock *rs); void rds_cong_queue_updates(struct rds_cong_map *map); void rds_cong_map_updated(struct rds_cong_map *map, uint64_t); int rds_cong_updated_since(unsigned long *recent); void rds_cong_add_socket(struct rds_sock *); void rds_cong_remove_socket(struct rds_sock *); void rds_cong_exit(void); struct rds_message *rds_cong_update_alloc(struct rds_connection *conn); /* connection.c */ extern u32 rds_gen_num; int rds_conn_init(void); void rds_conn_exit(void); struct rds_connection *rds_conn_create(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, gfp_t gfp, int dev_if); struct rds_connection *rds_conn_create_outgoing(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, gfp_t gfp, int dev_if); void rds_conn_shutdown(struct rds_conn_path *cpath); void rds_conn_destroy(struct rds_connection *conn); void rds_conn_drop(struct rds_connection *conn); void rds_conn_path_drop(struct rds_conn_path *cpath, bool destroy); void rds_conn_connect_if_down(struct rds_connection *conn); void rds_conn_path_connect_if_down(struct rds_conn_path *cp); void rds_check_all_paths(struct rds_connection *conn); void rds_for_each_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int (*visitor)(struct rds_connection *, void *), u64 *buffer, size_t item_len); __printf(2, 3) void __rds_conn_path_error(struct rds_conn_path *cp, const char *, ...); #define rds_conn_path_error(cp, fmt...) \ __rds_conn_path_error(cp, KERN_WARNING "RDS: " fmt) static inline int rds_conn_path_transition(struct rds_conn_path *cp, int old, int new) { return atomic_cmpxchg(&cp->cp_state, old, new) == old; } static inline int rds_conn_transition(struct rds_connection *conn, int old, int new) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_transition(&conn->c_path[0], old, new); } static inline int rds_conn_path_state(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state); } static inline int rds_conn_state(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_state(&conn->c_path[0]); } static inline int rds_conn_path_up(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state) == RDS_CONN_UP; } static inline int rds_conn_path_down(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state) == RDS_CONN_DOWN; } static inline int rds_conn_up(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_up(&conn->c_path[0]); } static inline int rds_conn_path_connecting(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING; } static inline int rds_conn_connecting(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_connecting(&conn->c_path[0]); } /* message.c */ struct rds_message *rds_message_alloc(unsigned int nents, gfp_t gfp); struct scatterlist *rds_message_alloc_sgs(struct rds_message *rm, int nents); int rds_message_copy_from_user(struct rds_message *rm, struct iov_iter *from, bool zcopy); struct rds_message *rds_message_map_pages(unsigned long *page_addrs, unsigned int total_len); void rds_message_populate_header(struct rds_header *hdr, __be16 sport, __be16 dport, u64 seq); int rds_message_add_extension(struct rds_header *hdr, unsigned int type, const void *data, unsigned int len); int rds_message_next_extension(struct rds_header *hdr, unsigned int *pos, void *buf, unsigned int *buflen); int rds_message_add_rdma_dest_extension(struct rds_header *hdr, u32 r_key, u32 offset); int rds_message_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to); void rds_message_addref(struct rds_message *rm); void rds_message_put(struct rds_message *rm); void rds_message_wait(struct rds_message *rm); void rds_message_unmapped(struct rds_message *rm); void rds_notify_msg_zcopy_purge(struct rds_msg_zcopy_queue *info); static inline void rds_message_make_checksum(struct rds_header *hdr) { hdr->h_csum = 0; hdr->h_csum = ip_fast_csum((void *) hdr, sizeof(*hdr) >> 2); } static inline int rds_message_verify_checksum(const struct rds_header *hdr) { return !hdr->h_csum || ip_fast_csum((void *) hdr, sizeof(*hdr) >> 2) == 0; } /* page.c */ int rds_page_remainder_alloc(struct scatterlist *scat, unsigned long bytes, gfp_t gfp); void rds_page_exit(void); /* recv.c */ void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, struct in6_addr *saddr); void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *conn, struct in6_addr *saddr); void rds_inc_put(struct rds_incoming *inc); void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr, struct in6_addr *daddr, struct rds_incoming *inc, gfp_t gfp); int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int msg_flags); void rds_clear_recv_queue(struct rds_sock *rs); int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msg); void rds_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, __be32 saddr, __be32 daddr, int flip); void rds6_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, struct in6_addr *saddr, struct in6_addr *daddr, int flip); /* send.c */ int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len); void rds_send_path_reset(struct rds_conn_path *conn); int rds_send_xmit(struct rds_conn_path *cp); struct sockaddr_in; void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest); typedef int (*is_acked_func)(struct rds_message *rm, uint64_t ack); void rds_send_drop_acked(struct rds_connection *conn, u64 ack, is_acked_func is_acked); void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, is_acked_func is_acked); void rds_send_ping(struct rds_connection *conn, int cp_index); int rds_send_pong(struct rds_conn_path *cp, __be16 dport); /* rdma.c */ void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force); int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen); int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen); int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen); void rds_rdma_drop_keys(struct rds_sock *rs); int rds_rdma_extra_size(struct rds_rdma_args *args, struct rds_iov_vector *iov); int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg, struct rds_iov_vector *vec); int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); void rds_rdma_free_op(struct rm_rdma_op *ro); void rds_atomic_free_op(struct rm_atomic_op *ao); void rds_rdma_send_complete(struct rds_message *rm, int wc_status); void rds_atomic_send_complete(struct rds_message *rm, int wc_status); int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); void __rds_put_mr_final(struct kref *kref); static inline bool rds_destroy_pending(struct rds_connection *conn) { return !check_net(rds_conn_net(conn)) || (conn->c_trans->t_unloading && conn->c_trans->t_unloading(conn)); } enum { ODP_NOT_NEEDED, ODP_ZEROBASED, ODP_VIRTUAL }; /* stats.c */ DECLARE_PER_CPU_SHARED_ALIGNED(struct rds_statistics, rds_stats); #define rds_stats_inc_which(which, member) do { \ per_cpu(which, get_cpu()).member++; \ put_cpu(); \ } while (0) #define rds_stats_inc(member) rds_stats_inc_which(rds_stats, member) #define rds_stats_add_which(which, member, count) do { \ per_cpu(which, get_cpu()).member += count; \ put_cpu(); \ } while (0) #define rds_stats_add(member, count) rds_stats_add_which(rds_stats, member, count) int rds_stats_init(void); void rds_stats_exit(void); void rds_stats_info_copy(struct rds_info_iterator *iter, uint64_t *values, const char *const *names, size_t nr); /* sysctl.c */ int rds_sysctl_init(void); void rds_sysctl_exit(void); extern unsigned long rds_sysctl_sndbuf_min; extern unsigned long rds_sysctl_sndbuf_default; extern unsigned long rds_sysctl_sndbuf_max; extern unsigned long rds_sysctl_reconnect_min_jiffies; extern unsigned long rds_sysctl_reconnect_max_jiffies; extern unsigned int rds_sysctl_max_unacked_packets; extern unsigned int rds_sysctl_max_unacked_bytes; extern unsigned int rds_sysctl_ping_enable; extern unsigned long rds_sysctl_trace_flags; extern unsigned int rds_sysctl_trace_level; /* threads.c */ int rds_threads_init(void); void rds_threads_exit(void); extern struct workqueue_struct *rds_wq; void rds_queue_reconnect(struct rds_conn_path *cp); void rds_connect_worker(struct work_struct *); void rds_shutdown_worker(struct work_struct *); void rds_send_worker(struct work_struct *); void rds_recv_worker(struct work_struct *); void rds_connect_path_complete(struct rds_conn_path *conn, int curr); void rds_connect_complete(struct rds_connection *conn); int rds_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2); /* transport.c */ void rds_trans_register(struct rds_transport *trans); void rds_trans_unregister(struct rds_transport *trans); struct rds_transport *rds_trans_get_preferred(struct net *net, const struct in6_addr *addr, __u32 scope_id); void rds_trans_put(struct rds_transport *trans); unsigned int rds_trans_stats_info_copy(struct rds_info_iterator *iter, unsigned int avail); struct rds_transport *rds_trans_get(int t_type); #endif |
87 175 168 170 67 67 118 120 119 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | // SPDX-License-Identifier: GPL-2.0-only /* * mm/interval_tree.c - interval tree for mapping->i_mmap * * Copyright (C) 2012, Michel Lespinasse <walken@google.com> */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/rmap.h> #include <linux/interval_tree_generic.h> static inline unsigned long vma_start_pgoff(struct vm_area_struct *v) { return v->vm_pgoff; } static inline unsigned long vma_last_pgoff(struct vm_area_struct *v) { return v->vm_pgoff + vma_pages(v) - 1; } INTERVAL_TREE_DEFINE(struct vm_area_struct, shared.rb, unsigned long, shared.rb_subtree_last, vma_start_pgoff, vma_last_pgoff, /* empty */, vma_interval_tree) /* Insert node immediately after prev in the interval tree */ void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root_cached *root) { struct rb_node **link; struct vm_area_struct *parent; unsigned long last = vma_last_pgoff(node); VM_BUG_ON_VMA(vma_start_pgoff(node) != vma_start_pgoff(prev), node); if (!prev->shared.rb.rb_right) { parent = prev; link = &prev->shared.rb.rb_right; } else { parent = rb_entry(prev->shared.rb.rb_right, struct vm_area_struct, shared.rb); if (parent->shared.rb_subtree_last < last) parent->shared.rb_subtree_last = last; while (parent->shared.rb.rb_left) { parent = rb_entry(parent->shared.rb.rb_left, struct vm_area_struct, shared.rb); if (parent->shared.rb_subtree_last < last) parent->shared.rb_subtree_last = last; } link = &parent->shared.rb.rb_left; } node->shared.rb_subtree_last = last; rb_link_node(&node->shared.rb, &parent->shared.rb, link); rb_insert_augmented(&node->shared.rb, &root->rb_root, &vma_interval_tree_augment); } static inline unsigned long avc_start_pgoff(struct anon_vma_chain *avc) { return vma_start_pgoff(avc->vma); } static inline unsigned long avc_last_pgoff(struct anon_vma_chain *avc) { return vma_last_pgoff(avc->vma); } INTERVAL_TREE_DEFINE(struct anon_vma_chain, rb, unsigned long, rb_subtree_last, avc_start_pgoff, avc_last_pgoff, static inline, __anon_vma_interval_tree) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root) { #ifdef CONFIG_DEBUG_VM_RB node->cached_vma_start = avc_start_pgoff(node); node->cached_vma_last = avc_last_pgoff(node); #endif __anon_vma_interval_tree_insert(node, root); } void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root) { __anon_vma_interval_tree_remove(node, root); } struct anon_vma_chain * anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long first, unsigned long last) { return __anon_vma_interval_tree_iter_first(root, first, last); } struct anon_vma_chain * anon_vma_interval_tree_iter_next(struct anon_vma_chain *node, unsigned long first, unsigned long last) { return __anon_vma_interval_tree_iter_next(node, first, last); } #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node) { WARN_ON_ONCE(node->cached_vma_start != avc_start_pgoff(node)); WARN_ON_ONCE(node->cached_vma_last != avc_last_pgoff(node)); } #endif |
1 1 1 2 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | /* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/percpu.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/export.h> #include "rds.h" DEFINE_PER_CPU_SHARED_ALIGNED(struct rds_statistics, rds_stats); EXPORT_PER_CPU_SYMBOL_GPL(rds_stats); /* :.,$s/unsigned long\>.*\<s_\(.*\);/"\1",/g */ static const char *const rds_stat_names[] = { "conn_reset", "recv_drop_bad_checksum", "recv_drop_old_seq", "recv_drop_no_sock", "recv_drop_dead_sock", "recv_deliver_raced", "recv_delivered", "recv_queued", "recv_immediate_retry", "recv_delayed_retry", "recv_ack_required", "recv_rdma_bytes", "recv_ping", "send_queue_empty", "send_queue_full", "send_lock_contention", "send_lock_queue_raced", "send_immediate_retry", "send_delayed_retry", "send_drop_acked", "send_ack_required", "send_queued", "send_rdma", "send_rdma_bytes", "send_pong", "page_remainder_hit", "page_remainder_miss", "copy_to_user", "copy_from_user", "cong_update_queued", "cong_update_received", "cong_send_error", "cong_send_blocked", "recv_bytes_added_to_sock", "recv_bytes_freed_fromsock", "send_stuck_rm", }; void rds_stats_info_copy(struct rds_info_iterator *iter, uint64_t *values, const char *const *names, size_t nr) { struct rds_info_counter ctr; size_t i; for (i = 0; i < nr; i++) { BUG_ON(strlen(names[i]) >= sizeof(ctr.name)); strncpy(ctr.name, names[i], sizeof(ctr.name) - 1); ctr.name[sizeof(ctr.name) - 1] = '\0'; ctr.value = values[i]; rds_info_copy(iter, &ctr, sizeof(ctr)); } } EXPORT_SYMBOL_GPL(rds_stats_info_copy); /* * This gives global counters across all the transports. The strings * are copied in so that the tool doesn't need knowledge of the specific * stats that we're exporting. Some are pretty implementation dependent * and may change over time. That doesn't stop them from being useful. * * This is the only function in the chain that knows about the byte granular * length in userspace. It converts it to number of stat entries that the * rest of the functions operate in. */ static void rds_stats_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_statistics stats = {0, }; uint64_t *src; uint64_t *sum; size_t i; int cpu; unsigned int avail; avail = len / sizeof(struct rds_info_counter); if (avail < ARRAY_SIZE(rds_stat_names)) { avail = 0; goto trans; } for_each_online_cpu(cpu) { src = (uint64_t *)&(per_cpu(rds_stats, cpu)); sum = (uint64_t *)&stats; for (i = 0; i < sizeof(stats) / sizeof(uint64_t); i++) *(sum++) += *(src++); } rds_stats_info_copy(iter, (uint64_t *)&stats, rds_stat_names, ARRAY_SIZE(rds_stat_names)); avail -= ARRAY_SIZE(rds_stat_names); trans: lens->each = sizeof(struct rds_info_counter); lens->nr = rds_trans_stats_info_copy(iter, avail) + ARRAY_SIZE(rds_stat_names); } void rds_stats_exit(void) { rds_info_deregister_func(RDS_INFO_COUNTERS, rds_stats_info); } int rds_stats_init(void) { rds_info_register_func(RDS_INFO_COUNTERS, rds_stats_info); return 0; } |
26 26 25 6 26 6 9 12 14 14 14 14 14 12 5 13 14 27 14 13 13 13 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | // SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/percpu-refcount.h> /* * Initially, a percpu refcount is just a set of percpu counters. Initially, we * don't try to detect the ref hitting 0 - which means that get/put can just * increment or decrement the local counter. Note that the counter on a * particular cpu can (and will) wrap - this is fine, when we go to shutdown the * percpu counters will all sum to the correct value * * (More precisely: because modular arithmetic is commutative the sum of all the * percpu_count vars will be equal to what it would have been if all the gets * and puts were done to a single integer, even if some of the percpu integers * overflow or underflow). * * The real trick to implementing percpu refcounts is shutdown. We can't detect * the ref hitting 0 on every put - this would require global synchronization * and defeat the whole purpose of using percpu refs. * * What we do is require the user to keep track of the initial refcount; we know * the ref can't hit 0 before the user drops the initial ref, so as long as we * convert to non percpu mode before the initial ref is dropped everything * works. * * Converting to non percpu mode is done with some RCUish stuff in * percpu_ref_kill. Additionally, we need a bias value so that the * atomic_long_t can't hit 0 before we've added up all the percpu refs. */ #define PERCPU_COUNT_BIAS (1LU << (BITS_PER_LONG - 1)) static DEFINE_SPINLOCK(percpu_ref_switch_lock); static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq); static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref) { return (unsigned long __percpu *) (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD); } /** * percpu_ref_init - initialize a percpu refcount * @ref: percpu_ref to initialize * @release: function which will be called when refcount hits 0 * @flags: PERCPU_REF_INIT_* flags * @gfp: allocation mask to use * * Initializes @ref. @ref starts out in percpu mode with a refcount of 1 unless * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD. These flags * change the start state to atomic with the latter setting the initial refcount * to 0. See the definitions of PERCPU_REF_INIT_* flags for flag behaviors. * * Note that @release must not sleep - it may potentially be called from RCU * callback context by percpu_ref_kill(). */ int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release, unsigned int flags, gfp_t gfp) { size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS, __alignof__(unsigned long)); unsigned long start_count = 0; struct percpu_ref_data *data; ref->percpu_count_ptr = (unsigned long) __alloc_percpu_gfp(sizeof(unsigned long), align, gfp); if (!ref->percpu_count_ptr) return -ENOMEM; data = kzalloc(sizeof(*ref->data), gfp); if (!data) { free_percpu((void __percpu *)ref->percpu_count_ptr); ref->percpu_count_ptr = 0; return -ENOMEM; } data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC; data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT; if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) { ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC; data->allow_reinit = true; } else { start_count += PERCPU_COUNT_BIAS; } if (flags & PERCPU_REF_INIT_DEAD) ref->percpu_count_ptr |= __PERCPU_REF_DEAD; else start_count++; atomic_long_set(&data->count, start_count); data->release = release; data->confirm_switch = NULL; data->ref = ref; ref->data = data; return 0; } EXPORT_SYMBOL_GPL(percpu_ref_init); static void __percpu_ref_exit(struct percpu_ref *ref) { unsigned long __percpu *percpu_count = percpu_count_ptr(ref); if (percpu_count) { /* non-NULL confirm_switch indicates switching in progress */ WARN_ON_ONCE(ref->data && ref->data->confirm_switch); free_percpu(percpu_count); ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD; } } /** * percpu_ref_exit - undo percpu_ref_init() * @ref: percpu_ref to exit * * This function exits @ref. The caller is responsible for ensuring that * @ref is no longer in active use. The usual places to invoke this * function from are the @ref->release() callback or in init failure path * where percpu_ref_init() succeeded but other parts of the initialization * of the embedding object failed. */ void percpu_ref_exit(struct percpu_ref *ref) { struct percpu_ref_data *data = ref->data; unsigned long flags; __percpu_ref_exit(ref); if (!data) return; spin_lock_irqsave(&percpu_ref_switch_lock, flags); ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) << __PERCPU_REF_FLAG_BITS; ref->data = NULL; spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); kfree(data); } EXPORT_SYMBOL_GPL(percpu_ref_exit); static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu) { struct percpu_ref_data *data = container_of(rcu, struct percpu_ref_data, rcu); struct percpu_ref *ref = data->ref; data->confirm_switch(ref); data->confirm_switch = NULL; wake_up_all(&percpu_ref_switch_waitq); if (!data->allow_reinit) __percpu_ref_exit(ref); /* drop ref from percpu_ref_switch_to_atomic() */ percpu_ref_put(ref); } static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu) { struct percpu_ref_data *data = container_of(rcu, struct percpu_ref_data, rcu); struct percpu_ref *ref = data->ref; unsigned long __percpu *percpu_count = percpu_count_ptr(ref); static atomic_t underflows; unsigned long count = 0; int cpu; for_each_possible_cpu(cpu) count += *per_cpu_ptr(percpu_count, cpu); pr_debug("global %lu percpu %lu\n", atomic_long_read(&data->count), count); /* * It's crucial that we sum the percpu counters _before_ adding the sum * to &ref->count; since gets could be happening on one cpu while puts * happen on another, adding a single cpu's count could cause * @ref->count to hit 0 before we've got a consistent value - but the * sum of all the counts will be consistent and correct. * * Subtracting the bias value then has to happen _after_ adding count to * &ref->count; we need the bias value to prevent &ref->count from * reaching 0 before we add the percpu counts. But doing it at the same * time is equivalent and saves us atomic operations: */ atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count); if (WARN_ONCE(atomic_long_read(&data->count) <= 0, "percpu ref (%ps) <= 0 (%ld) after switching to atomic", data->release, atomic_long_read(&data->count)) && atomic_inc_return(&underflows) < 4) { pr_err("%s(): percpu_ref underflow", __func__); mem_dump_obj(data); } /* @ref is viewed as dead on all CPUs, send out switch confirmation */ percpu_ref_call_confirm_rcu(rcu); } static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref) { } static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch) { if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) { if (confirm_switch) confirm_switch(ref); return; } /* switching from percpu to atomic */ ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC; /* * Non-NULL ->confirm_switch is used to indicate that switching is * in progress. Use noop one if unspecified. */ ref->data->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch; percpu_ref_get(ref); /* put after confirmation */ call_rcu_hurry(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu); } static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref) { unsigned long __percpu *percpu_count = percpu_count_ptr(ref); int cpu; BUG_ON(!percpu_count); if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC)) return; if (WARN_ON_ONCE(!ref->data->allow_reinit)) return; atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count); /* * Restore per-cpu operation. smp_store_release() is paired * with READ_ONCE() in __ref_is_percpu() and guarantees that the * zeroing is visible to all percpu accesses which can see the * following __PERCPU_REF_ATOMIC clearing. */ for_each_possible_cpu(cpu) *per_cpu_ptr(percpu_count, cpu) = 0; smp_store_release(&ref->percpu_count_ptr, ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC); } static void __percpu_ref_switch_mode(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch) { struct percpu_ref_data *data = ref->data; lockdep_assert_held(&percpu_ref_switch_lock); /* * If the previous ATOMIC switching hasn't finished yet, wait for * its completion. If the caller ensures that ATOMIC switching * isn't in progress, this function can be called from any context. */ wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch, percpu_ref_switch_lock); if (data->force_atomic || percpu_ref_is_dying(ref)) __percpu_ref_switch_to_atomic(ref, confirm_switch); else __percpu_ref_switch_to_percpu(ref); } /** * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode * @ref: percpu_ref to switch to atomic mode * @confirm_switch: optional confirmation callback * * There's no reason to use this function for the usual reference counting. * Use percpu_ref_kill[_and_confirm](). * * Schedule switching of @ref to atomic mode. All its percpu counts will * be collected to the main atomic counter. On completion, when all CPUs * are guaraneed to be in atomic mode, @confirm_switch, which may not * block, is invoked. This function may be invoked concurrently with all * the get/put operations and can safely be mixed with kill and reinit * operations. Note that @ref will stay in atomic mode across kill/reinit * cycles until percpu_ref_switch_to_percpu() is called. * * This function may block if @ref is in the process of switching to atomic * mode. If the caller ensures that @ref is not in the process of * switching to atomic mode, this function can be called from any context. */ void percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch) { unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); ref->data->force_atomic = true; __percpu_ref_switch_mode(ref, confirm_switch); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic); /** * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode * @ref: percpu_ref to switch to atomic mode * * Schedule switching the ref to atomic mode, and wait for the * switch to complete. Caller must ensure that no other thread * will switch back to percpu mode. */ void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref) { percpu_ref_switch_to_atomic(ref, NULL); wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch); } EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync); /** * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode * @ref: percpu_ref to switch to percpu mode * * There's no reason to use this function for the usual reference counting. * To re-use an expired ref, use percpu_ref_reinit(). * * Switch @ref to percpu mode. This function may be invoked concurrently * with all the get/put operations and can safely be mixed with kill and * reinit operations. This function reverses the sticky atomic state set * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic(). If @ref is * dying or dead, the actual switching takes place on the following * percpu_ref_reinit(). * * This function may block if @ref is in the process of switching to atomic * mode. If the caller ensures that @ref is not in the process of * switching to atomic mode, this function can be called from any context. */ void percpu_ref_switch_to_percpu(struct percpu_ref *ref) { unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); ref->data->force_atomic = false; __percpu_ref_switch_mode(ref, NULL); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu); /** * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation * @ref: percpu_ref to kill * @confirm_kill: optional confirmation callback * * Equivalent to percpu_ref_kill() but also schedules kill confirmation if * @confirm_kill is not NULL. @confirm_kill, which may not block, will be * called after @ref is seen as dead from all CPUs at which point all * further invocations of percpu_ref_tryget_live() will fail. See * percpu_ref_tryget_live() for details. * * This function normally doesn't block and can be called from any context * but it may block if @confirm_kill is specified and @ref is in the * process of switching to atomic mode by percpu_ref_switch_to_atomic(). * * There are no implied RCU grace periods between kill and release. */ void percpu_ref_kill_and_confirm(struct percpu_ref *ref, percpu_ref_func_t *confirm_kill) { unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); WARN_ONCE(percpu_ref_is_dying(ref), "%s called more than once on %ps!", __func__, ref->data->release); ref->percpu_count_ptr |= __PERCPU_REF_DEAD; __percpu_ref_switch_mode(ref, confirm_kill); percpu_ref_put(ref); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm); /** * percpu_ref_is_zero - test whether a percpu refcount reached zero * @ref: percpu_ref to test * * Returns %true if @ref reached zero. * * This function is safe to call as long as @ref is between init and exit. */ bool percpu_ref_is_zero(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; unsigned long count, flags; if (__ref_is_percpu(ref, &percpu_count)) return false; /* protect us from being destroyed */ spin_lock_irqsave(&percpu_ref_switch_lock, flags); if (ref->data) count = atomic_long_read(&ref->data->count); else count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS; spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); return count == 0; } EXPORT_SYMBOL_GPL(percpu_ref_is_zero); /** * percpu_ref_reinit - re-initialize a percpu refcount * @ref: perpcu_ref to re-initialize * * Re-initialize @ref so that it's in the same state as when it finished * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD. @ref must have been * initialized successfully and reached 0 but not exited. * * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while * this function is in progress. */ void percpu_ref_reinit(struct percpu_ref *ref) { WARN_ON_ONCE(!percpu_ref_is_zero(ref)); percpu_ref_resurrect(ref); } EXPORT_SYMBOL_GPL(percpu_ref_reinit); /** * percpu_ref_resurrect - modify a percpu refcount from dead to live * @ref: perpcu_ref to resurrect * * Modify @ref so that it's in the same state as before percpu_ref_kill() was * called. @ref must be dead but must not yet have exited. * * If @ref->release() frees @ref then the caller is responsible for * guaranteeing that @ref->release() does not get called while this * function is in progress. * * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while * this function is in progress. */ void percpu_ref_resurrect(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); WARN_ON_ONCE(!percpu_ref_is_dying(ref)); WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count)); ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD; percpu_ref_get(ref); __percpu_ref_switch_mode(ref, NULL); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_resurrect); |
2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | // SPDX-License-Identifier: GPL-2.0-or-later /* * LAPB release 002 * * This code REQUIRES 2.1.15 or higher/ NET3.038 * * History * LAPB 001 Jonathan Naylor Started Coding */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/inet.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/uaccess.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <net/lapb.h> /* * This routine purges all the queues of frames. */ void lapb_clear_queues(struct lapb_cb *lapb) { skb_queue_purge(&lapb->write_queue); skb_queue_purge(&lapb->ack_queue); } /* * This routine purges the input queue of those frames that have been * acknowledged. This replaces the boxes labelled "V(a) <- N(r)" on the * SDL diagram. */ void lapb_frames_acked(struct lapb_cb *lapb, unsigned short nr) { struct sk_buff *skb; int modulus; modulus = (lapb->mode & LAPB_EXTENDED) ? LAPB_EMODULUS : LAPB_SMODULUS; /* * Remove all the ack-ed frames from the ack queue. */ if (lapb->va != nr) while (skb_peek(&lapb->ack_queue) && lapb->va != nr) { skb = skb_dequeue(&lapb->ack_queue); kfree_skb(skb); lapb->va = (lapb->va + 1) % modulus; } } void lapb_requeue_frames(struct lapb_cb *lapb) { struct sk_buff *skb, *skb_prev = NULL; /* * Requeue all the un-ack-ed frames on the output queue to be picked * up by lapb_kick called from the timer. This arrangement handles the * possibility of an empty output queue. */ while ((skb = skb_dequeue(&lapb->ack_queue)) != NULL) { if (!skb_prev) skb_queue_head(&lapb->write_queue, skb); else skb_append(skb_prev, skb, &lapb->write_queue); skb_prev = skb; } } /* * Validate that the value of nr is between va and vs. Return true or * false for testing. */ int lapb_validate_nr(struct lapb_cb *lapb, unsigned short nr) { unsigned short vc = lapb->va; int modulus; modulus = (lapb->mode & LAPB_EXTENDED) ? LAPB_EMODULUS : LAPB_SMODULUS; while (vc != lapb->vs) { if (nr == vc) return 1; vc = (vc + 1) % modulus; } return nr == lapb->vs; } /* * This routine is the centralised routine for parsing the control * information for the different frame formats. */ int lapb_decode(struct lapb_cb *lapb, struct sk_buff *skb, struct lapb_frame *frame) { frame->type = LAPB_ILLEGAL; lapb_dbg(2, "(%p) S%d RX %3ph\n", lapb->dev, lapb->state, skb->data); /* We always need to look at 2 bytes, sometimes we need * to look at 3 and those cases are handled below. */ if (!pskb_may_pull(skb, 2)) return -1; if (lapb->mode & LAPB_MLP) { if (lapb->mode & LAPB_DCE) { if (skb->data[0] == LAPB_ADDR_D) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_C) frame->cr = LAPB_RESPONSE; } else { if (skb->data[0] == LAPB_ADDR_C) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_D) frame->cr = LAPB_RESPONSE; } } else { if (lapb->mode & LAPB_DCE) { if (skb->data[0] == LAPB_ADDR_B) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_A) frame->cr = LAPB_RESPONSE; } else { if (skb->data[0] == LAPB_ADDR_A) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_B) frame->cr = LAPB_RESPONSE; } } skb_pull(skb, 1); if (lapb->mode & LAPB_EXTENDED) { if (!(skb->data[0] & LAPB_S)) { if (!pskb_may_pull(skb, 2)) return -1; /* * I frame - carries NR/NS/PF */ frame->type = LAPB_I; frame->ns = (skb->data[0] >> 1) & 0x7F; frame->nr = (skb->data[1] >> 1) & 0x7F; frame->pf = skb->data[1] & LAPB_EPF; frame->control[0] = skb->data[0]; frame->control[1] = skb->data[1]; skb_pull(skb, 2); } else if ((skb->data[0] & LAPB_U) == 1) { if (!pskb_may_pull(skb, 2)) return -1; /* * S frame - take out PF/NR */ frame->type = skb->data[0] & 0x0F; frame->nr = (skb->data[1] >> 1) & 0x7F; frame->pf = skb->data[1] & LAPB_EPF; frame->control[0] = skb->data[0]; frame->control[1] = skb->data[1]; skb_pull(skb, 2); } else if ((skb->data[0] & LAPB_U) == 3) { /* * U frame - take out PF */ frame->type = skb->data[0] & ~LAPB_SPF; frame->pf = skb->data[0] & LAPB_SPF; frame->control[0] = skb->data[0]; frame->control[1] = 0x00; skb_pull(skb, 1); } } else { if (!(skb->data[0] & LAPB_S)) { /* * I frame - carries NR/NS/PF */ frame->type = LAPB_I; frame->ns = (skb->data[0] >> 1) & 0x07; frame->nr = (skb->data[0] >> 5) & 0x07; frame->pf = skb->data[0] & LAPB_SPF; } else if ((skb->data[0] & LAPB_U) == 1) { /* * S frame - take out PF/NR */ frame->type = skb->data[0] & 0x0F; frame->nr = (skb->data[0] >> 5) & 0x07; frame->pf = skb->data[0] & LAPB_SPF; } else if ((skb->data[0] & LAPB_U) == 3) { /* * U frame - take out PF */ frame->type = skb->data[0] & ~LAPB_SPF; frame->pf = skb->data[0] & LAPB_SPF; } frame->control[0] = skb->data[0]; skb_pull(skb, 1); } return 0; } /* * This routine is called when the HDLC layer internally generates a * command or response for the remote machine ( eg. RR, UA etc. ). * Only supervisory or unnumbered frames are processed, FRMRs are handled * by lapb_transmit_frmr below. */ void lapb_send_control(struct lapb_cb *lapb, int frametype, int poll_bit, int type) { struct sk_buff *skb; unsigned char *dptr; if ((skb = alloc_skb(LAPB_HEADER_LEN + 3, GFP_ATOMIC)) == NULL) return; skb_reserve(skb, LAPB_HEADER_LEN + 1); if (lapb->mode & LAPB_EXTENDED) { if ((frametype & LAPB_U) == LAPB_U) { dptr = skb_put(skb, 1); *dptr = frametype; *dptr |= poll_bit ? LAPB_SPF : 0; } else { dptr = skb_put(skb, 2); dptr[0] = frametype; dptr[1] = (lapb->vr << 1); dptr[1] |= poll_bit ? LAPB_EPF : 0; } } else { dptr = skb_put(skb, 1); *dptr = frametype; *dptr |= poll_bit ? LAPB_SPF : 0; if ((frametype & LAPB_U) == LAPB_S) /* S frames carry NR */ *dptr |= (lapb->vr << 5); } lapb_transmit_buffer(lapb, skb, type); } /* * This routine generates FRMRs based on information previously stored in * the LAPB control block. */ void lapb_transmit_frmr(struct lapb_cb *lapb) { struct sk_buff *skb; unsigned char *dptr; if ((skb = alloc_skb(LAPB_HEADER_LEN + 7, GFP_ATOMIC)) == NULL) return; skb_reserve(skb, LAPB_HEADER_LEN + 1); if (lapb->mode & LAPB_EXTENDED) { dptr = skb_put(skb, 6); *dptr++ = LAPB_FRMR; *dptr++ = lapb->frmr_data.control[0]; *dptr++ = lapb->frmr_data.control[1]; *dptr++ = (lapb->vs << 1) & 0xFE; *dptr = (lapb->vr << 1) & 0xFE; if (lapb->frmr_data.cr == LAPB_RESPONSE) *dptr |= 0x01; dptr++; *dptr++ = lapb->frmr_type; lapb_dbg(1, "(%p) S%d TX FRMR %5ph\n", lapb->dev, lapb->state, &skb->data[1]); } else { dptr = skb_put(skb, 4); *dptr++ = LAPB_FRMR; *dptr++ = lapb->frmr_data.control[0]; *dptr = (lapb->vs << 1) & 0x0E; *dptr |= (lapb->vr << 5) & 0xE0; if (lapb->frmr_data.cr == LAPB_RESPONSE) *dptr |= 0x10; dptr++; *dptr++ = lapb->frmr_type; lapb_dbg(1, "(%p) S%d TX FRMR %3ph\n", lapb->dev, lapb->state, &skb->data[1]); } lapb_transmit_buffer(lapb, skb, LAPB_RESPONSE); } |
10 13 13 2 2 1 1 3 3 1 1 1 13 13 1 12 4 12 5 1 1 1 1 1 4 4 1 1 1 1 4 1 1 1 1 2 3 1 1 1 1 1 4 9 2 1 1 7 1 1 1 1 1 1 1 3 1 1 1 1 1 17 15 2 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | // SPDX-License-Identifier: GPL-2.0-only /* * * Author Karsten Keil <kkeil@novell.com> * * Copyright 2008 by Karsten Keil <kkeil@novell.com> */ #include <linux/mISDNif.h> #include <linux/slab.h> #include <linux/export.h> #include "core.h" static u_int *debug; static struct proto mISDN_proto = { .name = "misdn", .owner = THIS_MODULE, .obj_size = sizeof(struct mISDN_sock) }; #define _pms(sk) ((struct mISDN_sock *)sk) static struct mISDN_sock_list data_sockets = { .lock = __RW_LOCK_UNLOCKED(data_sockets.lock) }; static struct mISDN_sock_list base_sockets = { .lock = __RW_LOCK_UNLOCKED(base_sockets.lock) }; #define L2_HEADER_LEN 4 static inline struct sk_buff * _l2_alloc_skb(unsigned int len, gfp_t gfp_mask) { struct sk_buff *skb; skb = alloc_skb(len + L2_HEADER_LEN, gfp_mask); if (likely(skb)) skb_reserve(skb, L2_HEADER_LEN); return skb; } static void mISDN_sock_link(struct mISDN_sock_list *l, struct sock *sk) { write_lock_bh(&l->lock); sk_add_node(sk, &l->head); write_unlock_bh(&l->lock); } static void mISDN_sock_unlink(struct mISDN_sock_list *l, struct sock *sk) { write_lock_bh(&l->lock); sk_del_node_init(sk); write_unlock_bh(&l->lock); } static int mISDN_send(struct mISDNchannel *ch, struct sk_buff *skb) { struct mISDN_sock *msk; int err; msk = container_of(ch, struct mISDN_sock, ch); if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s len %d %p\n", __func__, skb->len, skb); if (msk->sk.sk_state == MISDN_CLOSED) return -EUNATCH; __net_timestamp(skb); err = sock_queue_rcv_skb(&msk->sk, skb); if (err) printk(KERN_WARNING "%s: error %d\n", __func__, err); return err; } static int mISDN_ctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct mISDN_sock *msk; msk = container_of(ch, struct mISDN_sock, ch); if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s(%p, %x, %p)\n", __func__, ch, cmd, arg); switch (cmd) { case CLOSE_CHANNEL: msk->sk.sk_state = MISDN_CLOSED; break; } return 0; } static inline void mISDN_sock_cmsg(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { struct __kernel_old_timeval tv; if (_pms(sk)->cmask & MISDN_TIME_STAMP) { skb_get_timestamp(skb, &tv); put_cmsg(msg, SOL_MISDN, MISDN_TIME_STAMP, sizeof(tv), &tv); } } static int mISDN_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sk_buff *skb; struct sock *sk = sock->sk; int copied, err; if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s: len %d, flags %x ch.nr %d, proto %x\n", __func__, (int)len, flags, _pms(sk)->ch.nr, sk->sk_protocol); if (flags & (MSG_OOB)) return -EOPNOTSUPP; if (sk->sk_state == MISDN_CLOSED) return 0; skb = skb_recv_datagram(sk, flags, &err); if (!skb) return err; if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_mISDN *, maddr, msg->msg_name); maddr->family = AF_ISDN; maddr->dev = _pms(sk)->dev->id; if ((sk->sk_protocol == ISDN_P_LAPD_TE) || (sk->sk_protocol == ISDN_P_LAPD_NT)) { maddr->channel = (mISDN_HEAD_ID(skb) >> 16) & 0xff; maddr->tei = (mISDN_HEAD_ID(skb) >> 8) & 0xff; maddr->sapi = mISDN_HEAD_ID(skb) & 0xff; } else { maddr->channel = _pms(sk)->ch.nr; maddr->sapi = _pms(sk)->ch.addr & 0xFF; maddr->tei = (_pms(sk)->ch.addr >> 8) & 0xFF; } msg->msg_namelen = sizeof(*maddr); } copied = skb->len + MISDN_HEADER_LEN; if (len < copied) { if (flags & MSG_PEEK) refcount_dec(&skb->users); else skb_queue_head(&sk->sk_receive_queue, skb); return -ENOSPC; } memcpy(skb_push(skb, MISDN_HEADER_LEN), mISDN_HEAD_P(skb), MISDN_HEADER_LEN); err = skb_copy_datagram_msg(skb, 0, msg, copied); mISDN_sock_cmsg(sk, msg, skb); skb_free_datagram(sk, skb); return err ? : copied; } static int mISDN_sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct sk_buff *skb; int err = -ENOMEM; if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s: len %d flags %x ch %d proto %x\n", __func__, (int)len, msg->msg_flags, _pms(sk)->ch.nr, sk->sk_protocol); if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE)) return -EINVAL; if (len < MISDN_HEADER_LEN) return -EINVAL; if (sk->sk_state != MISDN_BOUND) return -EBADFD; lock_sock(sk); skb = _l2_alloc_skb(len, GFP_KERNEL); if (!skb) goto done; if (memcpy_from_msg(skb_put(skb, len), msg, len)) { err = -EFAULT; goto done; } memcpy(mISDN_HEAD_P(skb), skb->data, MISDN_HEADER_LEN); skb_pull(skb, MISDN_HEADER_LEN); if (msg->msg_namelen >= sizeof(struct sockaddr_mISDN)) { /* if we have a address, we use it */ DECLARE_SOCKADDR(struct sockaddr_mISDN *, maddr, msg->msg_name); mISDN_HEAD_ID(skb) = maddr->channel; } else { /* use default for L2 messages */ if ((sk->sk_protocol == ISDN_P_LAPD_TE) || (sk->sk_protocol == ISDN_P_LAPD_NT)) mISDN_HEAD_ID(skb) = _pms(sk)->ch.nr; } if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s: ID:%x\n", __func__, mISDN_HEAD_ID(skb)); err = -ENODEV; if (!_pms(sk)->ch.peer) goto done; err = _pms(sk)->ch.recv(_pms(sk)->ch.peer, skb); if (err) goto done; else { skb = NULL; err = len; } done: kfree_skb(skb); release_sock(sk); return err; } static int data_sock_release(struct socket *sock) { struct sock *sk = sock->sk; if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s(%p) sk=%p\n", __func__, sock, sk); if (!sk) return 0; switch (sk->sk_protocol) { case ISDN_P_TE_S0: case ISDN_P_NT_S0: case ISDN_P_TE_E1: case ISDN_P_NT_E1: if (sk->sk_state == MISDN_BOUND) delete_channel(&_pms(sk)->ch); else mISDN_sock_unlink(&data_sockets, sk); break; case ISDN_P_LAPD_TE: case ISDN_P_LAPD_NT: case ISDN_P_B_RAW: case ISDN_P_B_HDLC: case ISDN_P_B_X75SLP: case ISDN_P_B_L2DTMF: case ISDN_P_B_L2DSP: case ISDN_P_B_L2DSPHDLC: delete_channel(&_pms(sk)->ch); mISDN_sock_unlink(&data_sockets, sk); break; } lock_sock(sk); sock_orphan(sk); skb_queue_purge(&sk->sk_receive_queue); release_sock(sk); sock_put(sk); return 0; } static int data_sock_ioctl_bound(struct sock *sk, unsigned int cmd, void __user *p) { struct mISDN_ctrl_req cq; int err = -EINVAL, val[2]; struct mISDNchannel *bchan, *next; lock_sock(sk); if (!_pms(sk)->dev) { err = -ENODEV; goto done; } switch (cmd) { case IMCTRLREQ: if (copy_from_user(&cq, p, sizeof(cq))) { err = -EFAULT; break; } if ((sk->sk_protocol & ~ISDN_P_B_MASK) == ISDN_P_B_START) { list_for_each_entry_safe(bchan, next, &_pms(sk)->dev->bchannels, list) { if (bchan->nr == cq.channel) { err = bchan->ctrl(bchan, CONTROL_CHANNEL, &cq); break; } } } else err = _pms(sk)->dev->D.ctrl(&_pms(sk)->dev->D, CONTROL_CHANNEL, &cq); if (err) break; if (copy_to_user(p, &cq, sizeof(cq))) err = -EFAULT; break; case IMCLEAR_L2: if (sk->sk_protocol != ISDN_P_LAPD_NT) { err = -EINVAL; break; } val[0] = cmd; if (get_user(val[1], (int __user *)p)) { err = -EFAULT; break; } err = _pms(sk)->dev->teimgr->ctrl(_pms(sk)->dev->teimgr, CONTROL_CHANNEL, val); break; case IMHOLD_L1: if (sk->sk_protocol != ISDN_P_LAPD_NT && sk->sk_protocol != ISDN_P_LAPD_TE) { err = -EINVAL; break; } val[0] = cmd; if (get_user(val[1], (int __user *)p)) { err = -EFAULT; break; } err = _pms(sk)->dev->teimgr->ctrl(_pms(sk)->dev->teimgr, CONTROL_CHANNEL, val); break; default: err = -EINVAL; break; } done: release_sock(sk); return err; } static int data_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { int err = 0, id; struct sock *sk = sock->sk; struct mISDNdevice *dev; struct mISDNversion ver; switch (cmd) { case IMGETVERSION: ver.major = MISDN_MAJOR_VERSION; ver.minor = MISDN_MINOR_VERSION; ver.release = MISDN_RELEASE; if (copy_to_user((void __user *)arg, &ver, sizeof(ver))) err = -EFAULT; break; case IMGETCOUNT: id = get_mdevice_count(); if (put_user(id, (int __user *)arg)) err = -EFAULT; break; case IMGETDEVINFO: if (get_user(id, (int __user *)arg)) { err = -EFAULT; break; } dev = get_mdevice(id); if (dev) { struct mISDN_devinfo di; memset(&di, 0, sizeof(di)); di.id = dev->id; di.Dprotocols = dev->Dprotocols; di.Bprotocols = dev->Bprotocols | get_all_Bprotocols(); di.protocol = dev->D.protocol; memcpy(di.channelmap, dev->channelmap, sizeof(di.channelmap)); di.nrbchan = dev->nrbchan; strscpy(di.name, dev_name(&dev->dev), sizeof(di.name)); if (copy_to_user((void __user *)arg, &di, sizeof(di))) err = -EFAULT; } else err = -ENODEV; break; default: if (sk->sk_state == MISDN_BOUND) err = data_sock_ioctl_bound(sk, cmd, (void __user *)arg); else err = -ENOTCONN; } return err; } static int data_sock_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; int err = 0, opt = 0; if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s(%p, %d, %x, optval, %d)\n", __func__, sock, level, optname, optlen); lock_sock(sk); switch (optname) { case MISDN_TIME_STAMP: err = copy_safe_from_sockptr(&opt, sizeof(opt), optval, optlen); if (err) break; if (opt) _pms(sk)->cmask |= MISDN_TIME_STAMP; else _pms(sk)->cmask &= ~MISDN_TIME_STAMP; break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } static int data_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; int len, opt; if (get_user(len, optlen)) return -EFAULT; if (len != sizeof(char)) return -EINVAL; switch (optname) { case MISDN_TIME_STAMP: if (_pms(sk)->cmask & MISDN_TIME_STAMP) opt = 1; else opt = 0; if (put_user(opt, optval)) return -EFAULT; break; default: return -ENOPROTOOPT; } return 0; } static int data_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sockaddr_mISDN *maddr = (struct sockaddr_mISDN *) addr; struct sock *sk = sock->sk; struct sock *csk; int err = 0; if (*debug & DEBUG_SOCKET) printk(KERN_DEBUG "%s(%p) sk=%p\n", __func__, sock, sk); if (addr_len != sizeof(struct sockaddr_mISDN)) return -EINVAL; if (!maddr || maddr->family != AF_ISDN) return -EINVAL; lock_sock(sk); if (_pms(sk)->dev) { err = -EALREADY; goto done; } _pms(sk)->dev = get_mdevice(maddr->dev); if (!_pms(sk)->dev) { err = -ENODEV; goto done; } if (sk->sk_protocol < ISDN_P_B_START) { read_lock_bh(&data_sockets.lock); sk_for_each(csk, &data_sockets.head) { if (sk == csk) continue; if (_pms(csk)->dev != _pms(sk)->dev) continue; if (csk->sk_protocol >= ISDN_P_B_START) continue; if (IS_ISDN_P_TE(csk->sk_protocol) == IS_ISDN_P_TE(sk->sk_protocol)) continue; read_unlock_bh(&data_sockets.lock); err = -EBUSY; goto done; } read_unlock_bh(&data_sockets.lock); } _pms(sk)->ch.send = mISDN_send; _pms(sk)->ch.ctrl = mISDN_ctrl; switch (sk->sk_protocol) { case ISDN_P_TE_S0: case ISDN_P_NT_S0: case ISDN_P_TE_E1: case ISDN_P_NT_E1: mISDN_sock_unlink(&data_sockets, sk); err = connect_layer1(_pms(sk)->dev, &_pms(sk)->ch, sk->sk_protocol, maddr); if (err) mISDN_sock_link(&data_sockets, sk); break; case ISDN_P_LAPD_TE: case ISDN_P_LAPD_NT: err = create_l2entity(_pms(sk)->dev, &_pms(sk)->ch, sk->sk_protocol, maddr); break; case ISDN_P_B_RAW: case ISDN_P_B_HDLC: case ISDN_P_B_X75SLP: case ISDN_P_B_L2DTMF: case ISDN_P_B_L2DSP: case ISDN_P_B_L2DSPHDLC: err = connect_Bstack(_pms(sk)->dev, &_pms(sk)->ch, sk->sk_protocol, maddr); break; default: err = -EPROTONOSUPPORT; } if (err) goto done; sk->sk_state = MISDN_BOUND; _pms(sk)->ch.protocol = sk->sk_protocol; done: release_sock(sk); return err; } static int data_sock_getname(struct socket *sock, struct sockaddr *addr, int peer) { struct sockaddr_mISDN *maddr = (struct sockaddr_mISDN *) addr; struct sock *sk = sock->sk; if (!_pms(sk)->dev) return -EBADFD; lock_sock(sk); maddr->family = AF_ISDN; maddr->dev = _pms(sk)->dev->id; maddr->channel = _pms(sk)->ch.nr; maddr->sapi = _pms(sk)->ch.addr & 0xff; maddr->tei = (_pms(sk)->ch.addr >> 8) & 0xff; release_sock(sk); return sizeof(*maddr); } static const struct proto_ops data_sock_ops = { .family = PF_ISDN, .owner = THIS_MODULE, .release = data_sock_release, .ioctl = data_sock_ioctl, .bind = data_sock_bind, .getname = data_sock_getname, .sendmsg = mISDN_sock_sendmsg, .recvmsg = mISDN_sock_recvmsg, .poll = datagram_poll, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = data_sock_setsockopt, .getsockopt = data_sock_getsockopt, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .mmap = sock_no_mmap }; static int data_sock_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; sk = sk_alloc(net, PF_ISDN, GFP_KERNEL, &mISDN_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sock->ops = &data_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = protocol; sk->sk_state = MISDN_OPEN; mISDN_sock_link(&data_sockets, sk); return 0; } static int base_sock_release(struct socket *sock) { struct sock *sk = sock->sk; printk(KERN_DEBUG "%s(%p) sk=%p\n", __func__, sock, sk); if (!sk) return 0; mISDN_sock_unlink(&base_sockets, sk); sock_orphan(sk); sock_put(sk); return 0; } static int base_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { int err = 0, id; struct mISDNdevice *dev; struct mISDNversion ver; switch (cmd) { case IMGETVERSION: ver.major = MISDN_MAJOR_VERSION; ver.minor = MISDN_MINOR_VERSION; ver.release = MISDN_RELEASE; if (copy_to_user((void __user *)arg, &ver, sizeof(ver))) err = -EFAULT; break; case IMGETCOUNT: id = get_mdevice_count(); if (put_user(id, (int __user *)arg)) err = -EFAULT; break; case IMGETDEVINFO: if (get_user(id, (int __user *)arg)) { err = -EFAULT; break; } dev = get_mdevice(id); if (dev) { struct mISDN_devinfo di; memset(&di, 0, sizeof(di)); di.id = dev->id; di.Dprotocols = dev->Dprotocols; di.Bprotocols = dev->Bprotocols | get_all_Bprotocols(); di.protocol = dev->D.protocol; memcpy(di.channelmap, dev->channelmap, sizeof(di.channelmap)); di.nrbchan = dev->nrbchan; strscpy(di.name, dev_name(&dev->dev), sizeof(di.name)); if (copy_to_user((void __user *)arg, &di, sizeof(di))) err = -EFAULT; } else err = -ENODEV; break; case IMSETDEVNAME: { struct mISDN_devrename dn; if (copy_from_user(&dn, (void __user *)arg, sizeof(dn))) { err = -EFAULT; break; } dn.name[sizeof(dn.name) - 1] = '\0'; dev = get_mdevice(dn.id); if (dev) err = device_rename(&dev->dev, dn.name); else err = -ENODEV; } break; default: err = -EINVAL; } return err; } static int base_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sockaddr_mISDN *maddr = (struct sockaddr_mISDN *) addr; struct sock *sk = sock->sk; int err = 0; if (addr_len < sizeof(struct sockaddr_mISDN)) return -EINVAL; if (!maddr || maddr->family != AF_ISDN) return -EINVAL; lock_sock(sk); if (_pms(sk)->dev) { err = -EALREADY; goto done; } _pms(sk)->dev = get_mdevice(maddr->dev); if (!_pms(sk)->dev) { err = -ENODEV; goto done; } sk->sk_state = MISDN_BOUND; done: release_sock(sk); return err; } static const struct proto_ops base_sock_ops = { .family = PF_ISDN, .owner = THIS_MODULE, .release = base_sock_release, .ioctl = base_sock_ioctl, .bind = base_sock_bind, .getname = sock_no_getname, .sendmsg = sock_no_sendmsg, .recvmsg = sock_no_recvmsg, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .mmap = sock_no_mmap }; static int base_sock_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; if (!capable(CAP_NET_RAW)) return -EPERM; sk = sk_alloc(net, PF_ISDN, GFP_KERNEL, &mISDN_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sock->ops = &base_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = protocol; sk->sk_state = MISDN_OPEN; mISDN_sock_link(&base_sockets, sk); return 0; } static int mISDN_sock_create(struct net *net, struct socket *sock, int proto, int kern) { int err = -EPROTONOSUPPORT; switch (proto) { case ISDN_P_BASE: err = base_sock_create(net, sock, proto, kern); break; case ISDN_P_TE_S0: case ISDN_P_NT_S0: case ISDN_P_TE_E1: case ISDN_P_NT_E1: case ISDN_P_LAPD_TE: case ISDN_P_LAPD_NT: case ISDN_P_B_RAW: case ISDN_P_B_HDLC: case ISDN_P_B_X75SLP: case ISDN_P_B_L2DTMF: case ISDN_P_B_L2DSP: case ISDN_P_B_L2DSPHDLC: err = data_sock_create(net, sock, proto, kern); break; default: return err; } return err; } static const struct net_proto_family mISDN_sock_family_ops = { .owner = THIS_MODULE, .family = PF_ISDN, .create = mISDN_sock_create, }; int misdn_sock_init(u_int *deb) { int err; debug = deb; err = sock_register(&mISDN_sock_family_ops); if (err) printk(KERN_ERR "%s: error(%d)\n", __func__, err); return err; } void misdn_sock_cleanup(void) { sock_unregister(PF_ISDN); } |
2 11 11 11 6 5 9 9 9 7 7 2 2 2 2 2 2 19 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | // SPDX-License-Identifier: GPL-2.0-only /* Helper handling for netfilter. */ /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org> * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org> * (C) 2006-2012 Patrick McHardy <kaber@trash.net> */ #include <linux/types.h> #include <linux/netfilter.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/vmalloc.h> #include <linux/stddef.h> #include <linux/random.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/rculist.h> #include <linux/rtnetlink.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_ecache.h> #include <net/netfilter/nf_conntrack_extend.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_seqadj.h> #include <net/netfilter/nf_log.h> #include <net/ip.h> static DEFINE_MUTEX(nf_ct_helper_mutex); struct hlist_head *nf_ct_helper_hash __read_mostly; EXPORT_SYMBOL_GPL(nf_ct_helper_hash); unsigned int nf_ct_helper_hsize __read_mostly; EXPORT_SYMBOL_GPL(nf_ct_helper_hsize); static unsigned int nf_ct_helper_count __read_mostly; static DEFINE_MUTEX(nf_ct_nat_helpers_mutex); static struct list_head nf_ct_nat_helpers __read_mostly; /* Stupid hash, but collision free for the default registrations of the * helpers currently in the kernel. */ static unsigned int helper_hash(const struct nf_conntrack_tuple *tuple) { return (((tuple->src.l3num << 8) | tuple->dst.protonum) ^ (__force __u16)tuple->src.u.all) % nf_ct_helper_hsize; } struct nf_conntrack_helper * __nf_conntrack_helper_find(const char *name, u16 l3num, u8 protonum) { struct nf_conntrack_helper *h; unsigned int i; for (i = 0; i < nf_ct_helper_hsize; i++) { hlist_for_each_entry_rcu(h, &nf_ct_helper_hash[i], hnode) { if (strcmp(h->name, name)) continue; if (h->tuple.src.l3num != NFPROTO_UNSPEC && h->tuple.src.l3num != l3num) continue; if (h->tuple.dst.protonum == protonum) return h; } } return NULL; } EXPORT_SYMBOL_GPL(__nf_conntrack_helper_find); struct nf_conntrack_helper * nf_conntrack_helper_try_module_get(const char *name, u16 l3num, u8 protonum) { struct nf_conntrack_helper *h; rcu_read_lock(); h = __nf_conntrack_helper_find(name, l3num, protonum); #ifdef CONFIG_MODULES if (h == NULL) { rcu_read_unlock(); if (request_module("nfct-helper-%s", name) == 0) { rcu_read_lock(); h = __nf_conntrack_helper_find(name, l3num, protonum); } else { return h; } } #endif if (h != NULL && !try_module_get(h->me)) h = NULL; if (h != NULL && !refcount_inc_not_zero(&h->refcnt)) { module_put(h->me); h = NULL; } rcu_read_unlock(); return h; } EXPORT_SYMBOL_GPL(nf_conntrack_helper_try_module_get); void nf_conntrack_helper_put(struct nf_conntrack_helper *helper) { refcount_dec(&helper->refcnt); module_put(helper->me); } EXPORT_SYMBOL_GPL(nf_conntrack_helper_put); static struct nf_conntrack_nat_helper * nf_conntrack_nat_helper_find(const char *mod_name) { struct nf_conntrack_nat_helper *cur; bool found = false; list_for_each_entry_rcu(cur, &nf_ct_nat_helpers, list) { if (!strcmp(cur->mod_name, mod_name)) { found = true; break; } } return found ? cur : NULL; } int nf_nat_helper_try_module_get(const char *name, u16 l3num, u8 protonum) { struct nf_conntrack_helper *h; struct nf_conntrack_nat_helper *nat; char mod_name[NF_CT_HELPER_NAME_LEN]; int ret = 0; rcu_read_lock(); h = __nf_conntrack_helper_find(name, l3num, protonum); if (!h) { rcu_read_unlock(); return -ENOENT; } nat = nf_conntrack_nat_helper_find(h->nat_mod_name); if (!nat) { snprintf(mod_name, sizeof(mod_name), "%s", h->nat_mod_name); rcu_read_unlock(); request_module("%s", mod_name); rcu_read_lock(); nat = nf_conntrack_nat_helper_find(mod_name); if (!nat) { rcu_read_unlock(); return -ENOENT; } } if (!try_module_get(nat->module)) ret = -ENOENT; rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(nf_nat_helper_try_module_get); void nf_nat_helper_put(struct nf_conntrack_helper *helper) { struct nf_conntrack_nat_helper *nat; nat = nf_conntrack_nat_helper_find(helper->nat_mod_name); if (WARN_ON_ONCE(!nat)) return; module_put(nat->module); } EXPORT_SYMBOL_GPL(nf_nat_helper_put); struct nf_conn_help * nf_ct_helper_ext_add(struct nf_conn *ct, gfp_t gfp) { struct nf_conn_help *help; help = nf_ct_ext_add(ct, NF_CT_EXT_HELPER, gfp); if (help) INIT_HLIST_HEAD(&help->expectations); else pr_debug("failed to add helper extension area"); return help; } EXPORT_SYMBOL_GPL(nf_ct_helper_ext_add); int __nf_ct_try_assign_helper(struct nf_conn *ct, struct nf_conn *tmpl, gfp_t flags) { struct nf_conntrack_helper *helper = NULL; struct nf_conn_help *help; /* We already got a helper explicitly attached (e.g. nft_ct) */ if (test_bit(IPS_HELPER_BIT, &ct->status)) return 0; if (WARN_ON_ONCE(!tmpl)) return 0; help = nfct_help(tmpl); if (help != NULL) { helper = rcu_dereference(help->helper); set_bit(IPS_HELPER_BIT, &ct->status); } help = nfct_help(ct); if (helper == NULL) { if (help) RCU_INIT_POINTER(help->helper, NULL); return 0; } if (help == NULL) { help = nf_ct_helper_ext_add(ct, flags); if (help == NULL) return -ENOMEM; } else { /* We only allow helper re-assignment of the same sort since * we cannot reallocate the helper extension area. */ struct nf_conntrack_helper *tmp = rcu_dereference(help->helper); if (tmp && tmp->help != helper->help) { RCU_INIT_POINTER(help->helper, NULL); return 0; } } rcu_assign_pointer(help->helper, helper); return 0; } EXPORT_SYMBOL_GPL(__nf_ct_try_assign_helper); /* appropriate ct lock protecting must be taken by caller */ static int unhelp(struct nf_conn *ct, void *me) { struct nf_conn_help *help = nfct_help(ct); if (help && rcu_dereference_raw(help->helper) == me) { nf_conntrack_event(IPCT_HELPER, ct); RCU_INIT_POINTER(help->helper, NULL); } /* We are not intended to delete this conntrack. */ return 0; } void nf_ct_helper_destroy(struct nf_conn *ct) { struct nf_conn_help *help = nfct_help(ct); struct nf_conntrack_helper *helper; if (help) { rcu_read_lock(); helper = rcu_dereference(help->helper); if (helper && helper->destroy) helper->destroy(ct); rcu_read_unlock(); } } static LIST_HEAD(nf_ct_helper_expectfn_list); void nf_ct_helper_expectfn_register(struct nf_ct_helper_expectfn *n) { spin_lock_bh(&nf_conntrack_expect_lock); list_add_rcu(&n->head, &nf_ct_helper_expectfn_list); spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_register); void nf_ct_helper_expectfn_unregister(struct nf_ct_helper_expectfn *n) { spin_lock_bh(&nf_conntrack_expect_lock); list_del_rcu(&n->head); spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_unregister); /* Caller should hold the rcu lock */ struct nf_ct_helper_expectfn * nf_ct_helper_expectfn_find_by_name(const char *name) { struct nf_ct_helper_expectfn *cur; bool found = false; list_for_each_entry_rcu(cur, &nf_ct_helper_expectfn_list, head) { if (!strcmp(cur->name, name)) { found = true; break; } } return found ? cur : NULL; } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_find_by_name); /* Caller should hold the rcu lock */ struct nf_ct_helper_expectfn * nf_ct_helper_expectfn_find_by_symbol(const void *symbol) { struct nf_ct_helper_expectfn *cur; bool found = false; list_for_each_entry_rcu(cur, &nf_ct_helper_expectfn_list, head) { if (cur->expectfn == symbol) { found = true; break; } } return found ? cur : NULL; } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_find_by_symbol); __printf(3, 4) void nf_ct_helper_log(struct sk_buff *skb, const struct nf_conn *ct, const char *fmt, ...) { const struct nf_conn_help *help; const struct nf_conntrack_helper *helper; struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; /* Called from the helper function, this call never fails */ help = nfct_help(ct); /* rcu_read_lock()ed by nf_hook_thresh */ helper = rcu_dereference(help->helper); nf_log_packet(nf_ct_net(ct), nf_ct_l3num(ct), 0, skb, NULL, NULL, NULL, "nf_ct_%s: dropping packet: %pV ", helper->name, &vaf); va_end(args); } EXPORT_SYMBOL_GPL(nf_ct_helper_log); int nf_conntrack_helper_register(struct nf_conntrack_helper *me) { struct nf_conntrack_tuple_mask mask = { .src.u.all = htons(0xFFFF) }; unsigned int h = helper_hash(&me->tuple); struct nf_conntrack_helper *cur; int ret = 0, i; BUG_ON(me->expect_policy == NULL); BUG_ON(me->expect_class_max >= NF_CT_MAX_EXPECT_CLASSES); BUG_ON(strlen(me->name) > NF_CT_HELPER_NAME_LEN - 1); if (!nf_ct_helper_hash) return -ENOENT; if (me->expect_policy->max_expected > NF_CT_EXPECT_MAX_CNT) return -EINVAL; mutex_lock(&nf_ct_helper_mutex); for (i = 0; i < nf_ct_helper_hsize; i++) { hlist_for_each_entry(cur, &nf_ct_helper_hash[i], hnode) { if (!strcmp(cur->name, me->name) && (cur->tuple.src.l3num == NFPROTO_UNSPEC || cur->tuple.src.l3num == me->tuple.src.l3num) && cur->tuple.dst.protonum == me->tuple.dst.protonum) { ret = -EEXIST; goto out; } } } /* avoid unpredictable behaviour for auto_assign_helper */ if (!(me->flags & NF_CT_HELPER_F_USERSPACE)) { hlist_for_each_entry(cur, &nf_ct_helper_hash[h], hnode) { if (nf_ct_tuple_src_mask_cmp(&cur->tuple, &me->tuple, &mask)) { ret = -EEXIST; goto out; } } } refcount_set(&me->refcnt, 1); hlist_add_head_rcu(&me->hnode, &nf_ct_helper_hash[h]); nf_ct_helper_count++; out: mutex_unlock(&nf_ct_helper_mutex); return ret; } EXPORT_SYMBOL_GPL(nf_conntrack_helper_register); static bool expect_iter_me(struct nf_conntrack_expect *exp, void *data) { struct nf_conn_help *help = nfct_help(exp->master); const struct nf_conntrack_helper *me = data; const struct nf_conntrack_helper *this; if (exp->helper == me) return true; this = rcu_dereference_protected(help->helper, lockdep_is_held(&nf_conntrack_expect_lock)); return this == me; } void nf_conntrack_helper_unregister(struct nf_conntrack_helper *me) { mutex_lock(&nf_ct_helper_mutex); hlist_del_rcu(&me->hnode); nf_ct_helper_count--; mutex_unlock(&nf_ct_helper_mutex); /* Make sure every nothing is still using the helper unless its a * connection in the hash. */ synchronize_rcu(); nf_ct_expect_iterate_destroy(expect_iter_me, NULL); nf_ct_iterate_destroy(unhelp, me); } EXPORT_SYMBOL_GPL(nf_conntrack_helper_unregister); void nf_ct_helper_init(struct nf_conntrack_helper *helper, u16 l3num, u16 protonum, const char *name, u16 default_port, u16 spec_port, u32 id, const struct nf_conntrack_expect_policy *exp_pol, u32 expect_class_max, int (*help)(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo), int (*from_nlattr)(struct nlattr *attr, struct nf_conn *ct), struct module *module) { helper->tuple.src.l3num = l3num; helper->tuple.dst.protonum = protonum; helper->tuple.src.u.all = htons(spec_port); helper->expect_policy = exp_pol; helper->expect_class_max = expect_class_max; helper->help = help; helper->from_nlattr = from_nlattr; helper->me = module; snprintf(helper->nat_mod_name, sizeof(helper->nat_mod_name), NF_NAT_HELPER_PREFIX "%s", name); if (spec_port == default_port) snprintf(helper->name, sizeof(helper->name), "%s", name); else snprintf(helper->name, sizeof(helper->name), "%s-%u", name, id); } EXPORT_SYMBOL_GPL(nf_ct_helper_init); int nf_conntrack_helpers_register(struct nf_conntrack_helper *helper, unsigned int n) { unsigned int i; int err = 0; for (i = 0; i < n; i++) { err = nf_conntrack_helper_register(&helper[i]); if (err < 0) goto err; } return err; err: if (i > 0) nf_conntrack_helpers_unregister(helper, i); return err; } EXPORT_SYMBOL_GPL(nf_conntrack_helpers_register); void nf_conntrack_helpers_unregister(struct nf_conntrack_helper *helper, unsigned int n) { while (n-- > 0) nf_conntrack_helper_unregister(&helper[n]); } EXPORT_SYMBOL_GPL(nf_conntrack_helpers_unregister); void nf_nat_helper_register(struct nf_conntrack_nat_helper *nat) { mutex_lock(&nf_ct_nat_helpers_mutex); list_add_rcu(&nat->list, &nf_ct_nat_helpers); mutex_unlock(&nf_ct_nat_helpers_mutex); } EXPORT_SYMBOL_GPL(nf_nat_helper_register); void nf_nat_helper_unregister(struct nf_conntrack_nat_helper *nat) { mutex_lock(&nf_ct_nat_helpers_mutex); list_del_rcu(&nat->list); mutex_unlock(&nf_ct_nat_helpers_mutex); } EXPORT_SYMBOL_GPL(nf_nat_helper_unregister); int nf_conntrack_helper_init(void) { nf_ct_helper_hsize = 1; /* gets rounded up to use one page */ nf_ct_helper_hash = nf_ct_alloc_hashtable(&nf_ct_helper_hsize, 0); if (!nf_ct_helper_hash) return -ENOMEM; INIT_LIST_HEAD(&nf_ct_nat_helpers); return 0; } void nf_conntrack_helper_fini(void) { kvfree(nf_ct_helper_hash); nf_ct_helper_hash = NULL; } |
23 23 19 4 4 20 6 15 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | // SPDX-License-Identifier: GPL-2.0-only /* * AppArmor security module * * This file contains AppArmor security identifier (secid) manipulation fns * * Copyright 2009-2017 Canonical Ltd. * * AppArmor allocates a unique secid for every label used. If a label * is replaced it receives the secid of the label it is replacing. */ #include <linux/errno.h> #include <linux/err.h> #include <linux/gfp.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/xarray.h> #include "include/cred.h" #include "include/lib.h" #include "include/secid.h" #include "include/label.h" #include "include/policy_ns.h" /* * secids - do not pin labels with a refcount. They rely on the label * properly updating/freeing them */ #define AA_FIRST_SECID 2 static DEFINE_XARRAY_FLAGS(aa_secids, XA_FLAGS_LOCK_IRQ | XA_FLAGS_TRACK_FREE); int apparmor_display_secid_mode; /* * TODO: allow policy to reserve a secid range? * TODO: add secid pinning * TODO: use secid_update in label replace */ /** * aa_secid_update - update a secid mapping to a new label * @secid: secid to update * @label: label the secid will now map to */ void aa_secid_update(u32 secid, struct aa_label *label) { unsigned long flags; xa_lock_irqsave(&aa_secids, flags); __xa_store(&aa_secids, secid, label, 0); xa_unlock_irqrestore(&aa_secids, flags); } /* * see label for inverse aa_label_to_secid */ struct aa_label *aa_secid_to_label(u32 secid) { return xa_load(&aa_secids, secid); } int apparmor_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { /* TODO: cache secctx and ref count so we don't have to recreate */ struct aa_label *label = aa_secid_to_label(secid); int flags = FLAG_VIEW_SUBNS | FLAG_HIDDEN_UNCONFINED | FLAG_ABS_ROOT; int len; AA_BUG(!seclen); if (!label) return -EINVAL; if (apparmor_display_secid_mode) flags |= FLAG_SHOW_MODE; if (secdata) len = aa_label_asxprint(secdata, root_ns, label, flags, GFP_ATOMIC); else len = aa_label_snxprint(NULL, 0, root_ns, label, flags); if (len < 0) return -ENOMEM; *seclen = len; return 0; } int apparmor_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { struct aa_label *label; label = aa_label_strn_parse(&root_ns->unconfined->label, secdata, seclen, GFP_KERNEL, false, false); if (IS_ERR(label)) return PTR_ERR(label); *secid = label->secid; return 0; } void apparmor_release_secctx(char *secdata, u32 seclen) { kfree(secdata); } /** * aa_alloc_secid - allocate a new secid for a profile * @label: the label to allocate a secid for * @gfp: memory allocation flags * * Returns: 0 with @label->secid initialized * <0 returns error with @label->secid set to AA_SECID_INVALID */ int aa_alloc_secid(struct aa_label *label, gfp_t gfp) { unsigned long flags; int ret; xa_lock_irqsave(&aa_secids, flags); ret = __xa_alloc(&aa_secids, &label->secid, label, XA_LIMIT(AA_FIRST_SECID, INT_MAX), gfp); xa_unlock_irqrestore(&aa_secids, flags); if (ret < 0) { label->secid = AA_SECID_INVALID; return ret; } return 0; } /** * aa_free_secid - free a secid * @secid: secid to free */ void aa_free_secid(u32 secid) { unsigned long flags; xa_lock_irqsave(&aa_secids, flags); __xa_erase(&aa_secids, secid); xa_unlock_irqrestore(&aa_secids, flags); } |
16 1 13 13 11 11 1 13 13 13 10 2 3 3 2 1 3 10 9 1 4 1 1 1 1 1 1 1 1 1 9 1 23 1 2 21 19 1 11 16 1 17 9 2 6 4 1 2 1 10 3 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 | /* net/tipc/udp_media.c: IP bearer support for TIPC * * Copyright (c) 2015, Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <linux/socket.h> #include <linux/ip.h> #include <linux/udp.h> #include <linux/inet.h> #include <linux/inetdevice.h> #include <linux/igmp.h> #include <linux/kernel.h> #include <linux/workqueue.h> #include <linux/list.h> #include <net/sock.h> #include <net/ip.h> #include <net/udp_tunnel.h> #include <net/ipv6_stubs.h> #include <linux/tipc_netlink.h> #include "core.h" #include "addr.h" #include "net.h" #include "bearer.h" #include "netlink.h" #include "msg.h" #include "udp_media.h" /* IANA assigned UDP port */ #define UDP_PORT_DEFAULT 6118 #define UDP_MIN_HEADROOM 48 /** * struct udp_media_addr - IP/UDP addressing information * * This is the bearer level originating address used in neighbor discovery * messages, and all fields should be in network byte order * * @proto: Ethernet protocol in use * @port: port being used * @ipv4: IPv4 address of neighbor * @ipv6: IPv6 address of neighbor */ struct udp_media_addr { __be16 proto; __be16 port; union { struct in_addr ipv4; struct in6_addr ipv6; }; }; /* struct udp_replicast - container for UDP remote addresses */ struct udp_replicast { struct udp_media_addr addr; struct dst_cache dst_cache; struct rcu_head rcu; struct list_head list; }; /** * struct udp_bearer - ip/udp bearer data structure * @bearer: associated generic tipc bearer * @ubsock: bearer associated socket * @ifindex: local address scope * @work: used to schedule deferred work on a bearer * @rcast: associated udp_replicast container */ struct udp_bearer { struct tipc_bearer __rcu *bearer; struct socket *ubsock; u32 ifindex; struct work_struct work; struct udp_replicast rcast; }; static int tipc_udp_is_mcast_addr(struct udp_media_addr *addr) { if (ntohs(addr->proto) == ETH_P_IP) return ipv4_is_multicast(addr->ipv4.s_addr); #if IS_ENABLED(CONFIG_IPV6) else return ipv6_addr_is_multicast(&addr->ipv6); #endif return 0; } /* udp_media_addr_set - convert a ip/udp address to a TIPC media address */ static void tipc_udp_media_addr_set(struct tipc_media_addr *addr, struct udp_media_addr *ua) { memset(addr, 0, sizeof(struct tipc_media_addr)); addr->media_id = TIPC_MEDIA_TYPE_UDP; memcpy(addr->value, ua, sizeof(struct udp_media_addr)); if (tipc_udp_is_mcast_addr(ua)) addr->broadcast = TIPC_BROADCAST_SUPPORT; } /* tipc_udp_addr2str - convert ip/udp address to string */ static int tipc_udp_addr2str(struct tipc_media_addr *a, char *buf, int size) { struct udp_media_addr *ua = (struct udp_media_addr *)&a->value; if (ntohs(ua->proto) == ETH_P_IP) snprintf(buf, size, "%pI4:%u", &ua->ipv4, ntohs(ua->port)); else if (ntohs(ua->proto) == ETH_P_IPV6) snprintf(buf, size, "%pI6:%u", &ua->ipv6, ntohs(ua->port)); else { pr_err("Invalid UDP media address\n"); return 1; } return 0; } /* tipc_udp_msg2addr - extract an ip/udp address from a TIPC ndisc message */ static int tipc_udp_msg2addr(struct tipc_bearer *b, struct tipc_media_addr *a, char *msg) { struct udp_media_addr *ua; ua = (struct udp_media_addr *) (msg + TIPC_MEDIA_ADDR_OFFSET); if (msg[TIPC_MEDIA_TYPE_OFFSET] != TIPC_MEDIA_TYPE_UDP) return -EINVAL; tipc_udp_media_addr_set(a, ua); return 0; } /* tipc_udp_addr2msg - write an ip/udp address to a TIPC ndisc message */ static int tipc_udp_addr2msg(char *msg, struct tipc_media_addr *a) { memset(msg, 0, TIPC_MEDIA_INFO_SIZE); msg[TIPC_MEDIA_TYPE_OFFSET] = TIPC_MEDIA_TYPE_UDP; memcpy(msg + TIPC_MEDIA_ADDR_OFFSET, a->value, sizeof(struct udp_media_addr)); return 0; } /* tipc_send_msg - enqueue a send request */ static int tipc_udp_xmit(struct net *net, struct sk_buff *skb, struct udp_bearer *ub, struct udp_media_addr *src, struct udp_media_addr *dst, struct dst_cache *cache) { struct dst_entry *ndst; int ttl, err = 0; local_bh_disable(); ndst = dst_cache_get(cache); if (dst->proto == htons(ETH_P_IP)) { struct rtable *rt = dst_rtable(ndst); if (!rt) { struct flowi4 fl = { .daddr = dst->ipv4.s_addr, .saddr = src->ipv4.s_addr, .flowi4_mark = skb->mark, .flowi4_proto = IPPROTO_UDP }; rt = ip_route_output_key(net, &fl); if (IS_ERR(rt)) { err = PTR_ERR(rt); goto tx_error; } dst_cache_set_ip4(cache, &rt->dst, fl.saddr); } ttl = ip4_dst_hoplimit(&rt->dst); udp_tunnel_xmit_skb(rt, ub->ubsock->sk, skb, src->ipv4.s_addr, dst->ipv4.s_addr, 0, ttl, 0, src->port, dst->port, false, true); #if IS_ENABLED(CONFIG_IPV6) } else { if (!ndst) { struct flowi6 fl6 = { .flowi6_oif = ub->ifindex, .daddr = dst->ipv6, .saddr = src->ipv6, .flowi6_proto = IPPROTO_UDP }; ndst = ipv6_stub->ipv6_dst_lookup_flow(net, ub->ubsock->sk, &fl6, NULL); if (IS_ERR(ndst)) { err = PTR_ERR(ndst); goto tx_error; } dst_cache_set_ip6(cache, ndst, &fl6.saddr); } ttl = ip6_dst_hoplimit(ndst); err = udp_tunnel6_xmit_skb(ndst, ub->ubsock->sk, skb, NULL, &src->ipv6, &dst->ipv6, 0, ttl, 0, src->port, dst->port, false); #endif } local_bh_enable(); return err; tx_error: local_bh_enable(); kfree_skb(skb); return err; } static int tipc_udp_send_msg(struct net *net, struct sk_buff *skb, struct tipc_bearer *b, struct tipc_media_addr *addr) { struct udp_media_addr *src = (struct udp_media_addr *)&b->addr.value; struct udp_media_addr *dst = (struct udp_media_addr *)&addr->value; struct udp_replicast *rcast; struct udp_bearer *ub; int err = 0; if (skb_headroom(skb) < UDP_MIN_HEADROOM) { err = pskb_expand_head(skb, UDP_MIN_HEADROOM, 0, GFP_ATOMIC); if (err) goto out; } skb_set_inner_protocol(skb, htons(ETH_P_TIPC)); ub = rcu_dereference(b->media_ptr); if (!ub) { err = -ENODEV; goto out; } if (addr->broadcast != TIPC_REPLICAST_SUPPORT) return tipc_udp_xmit(net, skb, ub, src, dst, &ub->rcast.dst_cache); /* Replicast, send an skb to each configured IP address */ list_for_each_entry_rcu(rcast, &ub->rcast.list, list) { struct sk_buff *_skb; _skb = pskb_copy(skb, GFP_ATOMIC); if (!_skb) { err = -ENOMEM; goto out; } err = tipc_udp_xmit(net, _skb, ub, src, &rcast->addr, &rcast->dst_cache); if (err) goto out; } err = 0; out: kfree_skb(skb); return err; } static bool tipc_udp_is_known_peer(struct tipc_bearer *b, struct udp_media_addr *addr) { struct udp_replicast *rcast, *tmp; struct udp_bearer *ub; ub = rcu_dereference_rtnl(b->media_ptr); if (!ub) { pr_err_ratelimited("UDP bearer instance not found\n"); return false; } list_for_each_entry_safe(rcast, tmp, &ub->rcast.list, list) { if (!memcmp(&rcast->addr, addr, sizeof(struct udp_media_addr))) return true; } return false; } static int tipc_udp_rcast_add(struct tipc_bearer *b, struct udp_media_addr *addr) { struct udp_replicast *rcast; struct udp_bearer *ub; ub = rcu_dereference_rtnl(b->media_ptr); if (!ub) return -ENODEV; rcast = kmalloc(sizeof(*rcast), GFP_ATOMIC); if (!rcast) return -ENOMEM; if (dst_cache_init(&rcast->dst_cache, GFP_ATOMIC)) { kfree(rcast); return -ENOMEM; } memcpy(&rcast->addr, addr, sizeof(struct udp_media_addr)); if (ntohs(addr->proto) == ETH_P_IP) pr_info("New replicast peer: %pI4\n", &rcast->addr.ipv4); #if IS_ENABLED(CONFIG_IPV6) else if (ntohs(addr->proto) == ETH_P_IPV6) pr_info("New replicast peer: %pI6\n", &rcast->addr.ipv6); #endif b->bcast_addr.broadcast = TIPC_REPLICAST_SUPPORT; list_add_rcu(&rcast->list, &ub->rcast.list); return 0; } static int tipc_udp_rcast_disc(struct tipc_bearer *b, struct sk_buff *skb) { struct udp_media_addr src = {0}; struct udp_media_addr *dst; dst = (struct udp_media_addr *)&b->bcast_addr.value; if (tipc_udp_is_mcast_addr(dst)) return 0; src.port = udp_hdr(skb)->source; if (ip_hdr(skb)->version == 4) { struct iphdr *iphdr = ip_hdr(skb); src.proto = htons(ETH_P_IP); src.ipv4.s_addr = iphdr->saddr; if (ipv4_is_multicast(iphdr->daddr)) return 0; #if IS_ENABLED(CONFIG_IPV6) } else if (ip_hdr(skb)->version == 6) { struct ipv6hdr *iphdr = ipv6_hdr(skb); src.proto = htons(ETH_P_IPV6); src.ipv6 = iphdr->saddr; if (ipv6_addr_is_multicast(&iphdr->daddr)) return 0; #endif } else { return 0; } if (likely(tipc_udp_is_known_peer(b, &src))) return 0; return tipc_udp_rcast_add(b, &src); } /* tipc_udp_recv - read data from bearer socket */ static int tipc_udp_recv(struct sock *sk, struct sk_buff *skb) { struct udp_bearer *ub; struct tipc_bearer *b; struct tipc_msg *hdr; int err; ub = rcu_dereference_sk_user_data(sk); if (!ub) { pr_err_ratelimited("Failed to get UDP bearer reference"); goto out; } skb_pull(skb, sizeof(struct udphdr)); hdr = buf_msg(skb); b = rcu_dereference(ub->bearer); if (!b) goto out; if (b && test_bit(0, &b->up)) { TIPC_SKB_CB(skb)->flags = 0; tipc_rcv(sock_net(sk), skb, b); return 0; } if (unlikely(msg_user(hdr) == LINK_CONFIG)) { err = tipc_udp_rcast_disc(b, skb); if (err) goto out; } out: kfree_skb(skb); return 0; } static int enable_mcast(struct udp_bearer *ub, struct udp_media_addr *remote) { int err = 0; struct ip_mreqn mreqn; struct sock *sk = ub->ubsock->sk; if (ntohs(remote->proto) == ETH_P_IP) { mreqn.imr_multiaddr = remote->ipv4; mreqn.imr_ifindex = ub->ifindex; err = ip_mc_join_group(sk, &mreqn); #if IS_ENABLED(CONFIG_IPV6) } else { lock_sock(sk); err = ipv6_stub->ipv6_sock_mc_join(sk, ub->ifindex, &remote->ipv6); release_sock(sk); #endif } return err; } static int __tipc_nl_add_udp_addr(struct sk_buff *skb, struct udp_media_addr *addr, int nla_t) { if (ntohs(addr->proto) == ETH_P_IP) { struct sockaddr_in ip4; memset(&ip4, 0, sizeof(ip4)); ip4.sin_family = AF_INET; ip4.sin_port = addr->port; ip4.sin_addr.s_addr = addr->ipv4.s_addr; if (nla_put(skb, nla_t, sizeof(ip4), &ip4)) return -EMSGSIZE; #if IS_ENABLED(CONFIG_IPV6) } else if (ntohs(addr->proto) == ETH_P_IPV6) { struct sockaddr_in6 ip6; memset(&ip6, 0, sizeof(ip6)); ip6.sin6_family = AF_INET6; ip6.sin6_port = addr->port; memcpy(&ip6.sin6_addr, &addr->ipv6, sizeof(struct in6_addr)); if (nla_put(skb, nla_t, sizeof(ip6), &ip6)) return -EMSGSIZE; #endif } return 0; } int tipc_udp_nl_dump_remoteip(struct sk_buff *skb, struct netlink_callback *cb) { u32 bid = cb->args[0]; u32 skip_cnt = cb->args[1]; u32 portid = NETLINK_CB(cb->skb).portid; struct udp_replicast *rcast, *tmp; struct tipc_bearer *b; struct udp_bearer *ub; void *hdr; int err; int i; if (!bid && !skip_cnt) { struct nlattr **attrs = genl_dumpit_info(cb)->info.attrs; struct net *net = sock_net(skb->sk); struct nlattr *battrs[TIPC_NLA_BEARER_MAX + 1]; char *bname; if (!attrs[TIPC_NLA_BEARER]) return -EINVAL; err = nla_parse_nested_deprecated(battrs, TIPC_NLA_BEARER_MAX, attrs[TIPC_NLA_BEARER], tipc_nl_bearer_policy, NULL); if (err) return err; if (!battrs[TIPC_NLA_BEARER_NAME]) return -EINVAL; bname = nla_data(battrs[TIPC_NLA_BEARER_NAME]); rtnl_lock(); b = tipc_bearer_find(net, bname); if (!b) { rtnl_unlock(); return -EINVAL; } bid = b->identity; } else { struct net *net = sock_net(skb->sk); struct tipc_net *tn = net_generic(net, tipc_net_id); rtnl_lock(); b = rtnl_dereference(tn->bearer_list[bid]); if (!b) { rtnl_unlock(); return -EINVAL; } } ub = rtnl_dereference(b->media_ptr); if (!ub) { rtnl_unlock(); return -EINVAL; } i = 0; list_for_each_entry_safe(rcast, tmp, &ub->rcast.list, list) { if (i < skip_cnt) goto count; hdr = genlmsg_put(skb, portid, cb->nlh->nlmsg_seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_BEARER_GET); if (!hdr) goto done; err = __tipc_nl_add_udp_addr(skb, &rcast->addr, TIPC_NLA_UDP_REMOTE); if (err) { genlmsg_cancel(skb, hdr); goto done; } genlmsg_end(skb, hdr); count: i++; } done: rtnl_unlock(); cb->args[0] = bid; cb->args[1] = i; return skb->len; } int tipc_udp_nl_add_bearer_data(struct tipc_nl_msg *msg, struct tipc_bearer *b) { struct udp_media_addr *src = (struct udp_media_addr *)&b->addr.value; struct udp_media_addr *dst; struct udp_bearer *ub; struct nlattr *nest; ub = rtnl_dereference(b->media_ptr); if (!ub) return -ENODEV; nest = nla_nest_start_noflag(msg->skb, TIPC_NLA_BEARER_UDP_OPTS); if (!nest) goto msg_full; if (__tipc_nl_add_udp_addr(msg->skb, src, TIPC_NLA_UDP_LOCAL)) goto msg_full; dst = (struct udp_media_addr *)&b->bcast_addr.value; if (__tipc_nl_add_udp_addr(msg->skb, dst, TIPC_NLA_UDP_REMOTE)) goto msg_full; if (!list_empty(&ub->rcast.list)) { if (nla_put_flag(msg->skb, TIPC_NLA_UDP_MULTI_REMOTEIP)) goto msg_full; } nla_nest_end(msg->skb, nest); return 0; msg_full: nla_nest_cancel(msg->skb, nest); return -EMSGSIZE; } /** * tipc_parse_udp_addr - build udp media address from netlink data * @nla: netlink attribute containing sockaddr storage aligned address * @addr: tipc media address to fill with address, port and protocol type * @scope_id: IPv6 scope id pointer, not NULL indicates it's required */ static int tipc_parse_udp_addr(struct nlattr *nla, struct udp_media_addr *addr, u32 *scope_id) { struct sockaddr_storage sa; nla_memcpy(&sa, nla, sizeof(sa)); if (sa.ss_family == AF_INET) { struct sockaddr_in *ip4 = (struct sockaddr_in *)&sa; addr->proto = htons(ETH_P_IP); addr->port = ip4->sin_port; addr->ipv4.s_addr = ip4->sin_addr.s_addr; return 0; #if IS_ENABLED(CONFIG_IPV6) } else if (sa.ss_family == AF_INET6) { struct sockaddr_in6 *ip6 = (struct sockaddr_in6 *)&sa; addr->proto = htons(ETH_P_IPV6); addr->port = ip6->sin6_port; memcpy(&addr->ipv6, &ip6->sin6_addr, sizeof(struct in6_addr)); /* Scope ID is only interesting for local addresses */ if (scope_id) { int atype; atype = ipv6_addr_type(&ip6->sin6_addr); if (__ipv6_addr_needs_scope_id(atype) && !ip6->sin6_scope_id) { return -EINVAL; } *scope_id = ip6->sin6_scope_id ? : 0; } return 0; #endif } return -EADDRNOTAVAIL; } int tipc_udp_nl_bearer_add(struct tipc_bearer *b, struct nlattr *attr) { int err; struct udp_media_addr addr = {0}; struct nlattr *opts[TIPC_NLA_UDP_MAX + 1]; struct udp_media_addr *dst; if (nla_parse_nested_deprecated(opts, TIPC_NLA_UDP_MAX, attr, tipc_nl_udp_policy, NULL)) return -EINVAL; if (!opts[TIPC_NLA_UDP_REMOTE]) return -EINVAL; err = tipc_parse_udp_addr(opts[TIPC_NLA_UDP_REMOTE], &addr, NULL); if (err) return err; dst = (struct udp_media_addr *)&b->bcast_addr.value; if (tipc_udp_is_mcast_addr(dst)) { pr_err("Can't add remote ip to TIPC UDP multicast bearer\n"); return -EINVAL; } if (tipc_udp_is_known_peer(b, &addr)) return 0; return tipc_udp_rcast_add(b, &addr); } /** * tipc_udp_enable - callback to create a new udp bearer instance * @net: network namespace * @b: pointer to generic tipc_bearer * @attrs: netlink bearer configuration * * validate the bearer parameters and initialize the udp bearer * rtnl_lock should be held */ static int tipc_udp_enable(struct net *net, struct tipc_bearer *b, struct nlattr *attrs[]) { int err = -EINVAL; struct udp_bearer *ub; struct udp_media_addr remote = {0}; struct udp_media_addr local = {0}; struct udp_port_cfg udp_conf = {0}; struct udp_tunnel_sock_cfg tuncfg = {NULL}; struct nlattr *opts[TIPC_NLA_UDP_MAX + 1]; u8 node_id[NODE_ID_LEN] = {0,}; struct net_device *dev; int rmcast = 0; ub = kzalloc(sizeof(*ub), GFP_ATOMIC); if (!ub) return -ENOMEM; INIT_LIST_HEAD(&ub->rcast.list); if (!attrs[TIPC_NLA_BEARER_UDP_OPTS]) goto err; if (nla_parse_nested_deprecated(opts, TIPC_NLA_UDP_MAX, attrs[TIPC_NLA_BEARER_UDP_OPTS], tipc_nl_udp_policy, NULL)) goto err; if (!opts[TIPC_NLA_UDP_LOCAL] || !opts[TIPC_NLA_UDP_REMOTE]) { pr_err("Invalid UDP bearer configuration"); err = -EINVAL; goto err; } err = tipc_parse_udp_addr(opts[TIPC_NLA_UDP_LOCAL], &local, &ub->ifindex); if (err) goto err; err = tipc_parse_udp_addr(opts[TIPC_NLA_UDP_REMOTE], &remote, NULL); if (err) goto err; if (remote.proto != local.proto) { err = -EINVAL; goto err; } /* Checking remote ip address */ rmcast = tipc_udp_is_mcast_addr(&remote); /* Autoconfigure own node identity if needed */ if (!tipc_own_id(net)) { memcpy(node_id, local.ipv6.in6_u.u6_addr8, 16); tipc_net_init(net, node_id, 0); } if (!tipc_own_id(net)) { pr_warn("Failed to set node id, please configure manually\n"); err = -EINVAL; goto err; } b->bcast_addr.media_id = TIPC_MEDIA_TYPE_UDP; b->bcast_addr.broadcast = TIPC_BROADCAST_SUPPORT; rcu_assign_pointer(b->media_ptr, ub); rcu_assign_pointer(ub->bearer, b); tipc_udp_media_addr_set(&b->addr, &local); if (local.proto == htons(ETH_P_IP)) { dev = __ip_dev_find(net, local.ipv4.s_addr, false); if (!dev) { err = -ENODEV; goto err; } udp_conf.family = AF_INET; /* Switch to use ANY to receive packets from group */ if (rmcast) udp_conf.local_ip.s_addr = htonl(INADDR_ANY); else udp_conf.local_ip.s_addr = local.ipv4.s_addr; udp_conf.use_udp_checksums = false; ub->ifindex = dev->ifindex; b->encap_hlen = sizeof(struct iphdr) + sizeof(struct udphdr); b->mtu = b->media->mtu; #if IS_ENABLED(CONFIG_IPV6) } else if (local.proto == htons(ETH_P_IPV6)) { dev = ub->ifindex ? __dev_get_by_index(net, ub->ifindex) : NULL; dev = ipv6_dev_find(net, &local.ipv6, dev); if (!dev) { err = -ENODEV; goto err; } udp_conf.family = AF_INET6; udp_conf.use_udp6_tx_checksums = true; udp_conf.use_udp6_rx_checksums = true; if (rmcast) udp_conf.local_ip6 = in6addr_any; else udp_conf.local_ip6 = local.ipv6; ub->ifindex = dev->ifindex; b->encap_hlen = sizeof(struct ipv6hdr) + sizeof(struct udphdr); b->mtu = 1280; #endif } else { err = -EAFNOSUPPORT; goto err; } udp_conf.local_udp_port = local.port; err = udp_sock_create(net, &udp_conf, &ub->ubsock); if (err) goto err; tuncfg.sk_user_data = ub; tuncfg.encap_type = 1; tuncfg.encap_rcv = tipc_udp_recv; tuncfg.encap_destroy = NULL; setup_udp_tunnel_sock(net, ub->ubsock, &tuncfg); err = dst_cache_init(&ub->rcast.dst_cache, GFP_ATOMIC); if (err) goto free; /* * The bcast media address port is used for all peers and the ip * is used if it's a multicast address. */ memcpy(&b->bcast_addr.value, &remote, sizeof(remote)); if (rmcast) err = enable_mcast(ub, &remote); else err = tipc_udp_rcast_add(b, &remote); if (err) goto free; return 0; free: dst_cache_destroy(&ub->rcast.dst_cache); udp_tunnel_sock_release(ub->ubsock); err: kfree(ub); return err; } /* cleanup_bearer - break the socket/bearer association */ static void cleanup_bearer(struct work_struct *work) { struct udp_bearer *ub = container_of(work, struct udp_bearer, work); struct udp_replicast *rcast, *tmp; list_for_each_entry_safe(rcast, tmp, &ub->rcast.list, list) { dst_cache_destroy(&rcast->dst_cache); list_del_rcu(&rcast->list); kfree_rcu(rcast, rcu); } atomic_dec(&tipc_net(sock_net(ub->ubsock->sk))->wq_count); dst_cache_destroy(&ub->rcast.dst_cache); udp_tunnel_sock_release(ub->ubsock); synchronize_net(); kfree(ub); } /* tipc_udp_disable - detach bearer from socket */ static void tipc_udp_disable(struct tipc_bearer *b) { struct udp_bearer *ub; ub = rtnl_dereference(b->media_ptr); if (!ub) { pr_err("UDP bearer instance not found\n"); return; } sock_set_flag(ub->ubsock->sk, SOCK_DEAD); RCU_INIT_POINTER(ub->bearer, NULL); /* sock_release need to be done outside of rtnl lock */ atomic_inc(&tipc_net(sock_net(ub->ubsock->sk))->wq_count); INIT_WORK(&ub->work, cleanup_bearer); schedule_work(&ub->work); } struct tipc_media udp_media_info = { .send_msg = tipc_udp_send_msg, .enable_media = tipc_udp_enable, .disable_media = tipc_udp_disable, .addr2str = tipc_udp_addr2str, .addr2msg = tipc_udp_addr2msg, .msg2addr = tipc_udp_msg2addr, .priority = TIPC_DEF_LINK_PRI, .tolerance = TIPC_DEF_LINK_TOL, .min_win = TIPC_DEF_LINK_WIN, .max_win = TIPC_DEF_LINK_WIN, .mtu = TIPC_DEF_LINK_UDP_MTU, .type_id = TIPC_MEDIA_TYPE_UDP, .hwaddr_len = 0, .name = "udp" }; |
4 159 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | /* SPDX-License-Identifier: GPL-2.0 */ /* * connection tracking helpers. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack_helper.h */ #ifndef _NF_CONNTRACK_HELPER_H #define _NF_CONNTRACK_HELPER_H #include <linux/refcount.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_extend.h> #include <net/netfilter/nf_conntrack_expect.h> #define NF_NAT_HELPER_PREFIX "ip_nat_" #define NF_NAT_HELPER_NAME(name) NF_NAT_HELPER_PREFIX name #define MODULE_ALIAS_NF_NAT_HELPER(name) \ MODULE_ALIAS(NF_NAT_HELPER_NAME(name)) struct module; enum nf_ct_helper_flags { NF_CT_HELPER_F_USERSPACE = (1 << 0), NF_CT_HELPER_F_CONFIGURED = (1 << 1), }; #define NF_CT_HELPER_NAME_LEN 16 struct nf_conntrack_helper { struct hlist_node hnode; /* Internal use. */ char name[NF_CT_HELPER_NAME_LEN]; /* name of the module */ refcount_t refcnt; struct module *me; /* pointer to self */ const struct nf_conntrack_expect_policy *expect_policy; /* Tuple of things we will help (compared against server response) */ struct nf_conntrack_tuple tuple; /* Function to call when data passes; return verdict, or -1 to invalidate. */ int (*help)(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info conntrackinfo); void (*destroy)(struct nf_conn *ct); int (*from_nlattr)(struct nlattr *attr, struct nf_conn *ct); int (*to_nlattr)(struct sk_buff *skb, const struct nf_conn *ct); unsigned int expect_class_max; unsigned int flags; /* For user-space helpers: */ unsigned int queue_num; /* length of userspace private data stored in nf_conn_help->data */ u16 data_len; /* name of NAT helper module */ char nat_mod_name[NF_CT_HELPER_NAME_LEN]; }; /* Must be kept in sync with the classes defined by helpers */ #define NF_CT_MAX_EXPECT_CLASSES 4 /* nf_conn feature for connections that have a helper */ struct nf_conn_help { /* Helper. if any */ struct nf_conntrack_helper __rcu *helper; struct hlist_head expectations; /* Current number of expected connections */ u8 expecting[NF_CT_MAX_EXPECT_CLASSES]; /* private helper information. */ char data[32] __aligned(8); }; #define NF_CT_HELPER_BUILD_BUG_ON(structsize) \ BUILD_BUG_ON((structsize) > sizeof_field(struct nf_conn_help, data)) struct nf_conntrack_helper *__nf_conntrack_helper_find(const char *name, u16 l3num, u8 protonum); struct nf_conntrack_helper *nf_conntrack_helper_try_module_get(const char *name, u16 l3num, u8 protonum); void nf_conntrack_helper_put(struct nf_conntrack_helper *helper); void nf_ct_helper_init(struct nf_conntrack_helper *helper, u16 l3num, u16 protonum, const char *name, u16 default_port, u16 spec_port, u32 id, const struct nf_conntrack_expect_policy *exp_pol, u32 expect_class_max, int (*help)(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo), int (*from_nlattr)(struct nlattr *attr, struct nf_conn *ct), struct module *module); int nf_conntrack_helper_register(struct nf_conntrack_helper *); void nf_conntrack_helper_unregister(struct nf_conntrack_helper *); int nf_conntrack_helpers_register(struct nf_conntrack_helper *, unsigned int); void nf_conntrack_helpers_unregister(struct nf_conntrack_helper *, unsigned int); struct nf_conn_help *nf_ct_helper_ext_add(struct nf_conn *ct, gfp_t gfp); int __nf_ct_try_assign_helper(struct nf_conn *ct, struct nf_conn *tmpl, gfp_t flags); int nf_ct_helper(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, u16 proto); int nf_ct_add_helper(struct nf_conn *ct, const char *name, u8 family, u8 proto, bool nat, struct nf_conntrack_helper **hp); void nf_ct_helper_destroy(struct nf_conn *ct); static inline struct nf_conn_help *nfct_help(const struct nf_conn *ct) { return nf_ct_ext_find(ct, NF_CT_EXT_HELPER); } static inline void *nfct_help_data(const struct nf_conn *ct) { struct nf_conn_help *help; help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); return (void *)help->data; } int nf_conntrack_helper_init(void); void nf_conntrack_helper_fini(void); int nf_conntrack_broadcast_help(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, unsigned int timeout); struct nf_ct_helper_expectfn { struct list_head head; const char *name; void (*expectfn)(struct nf_conn *ct, struct nf_conntrack_expect *exp); }; __printf(3,4) void nf_ct_helper_log(struct sk_buff *skb, const struct nf_conn *ct, const char *fmt, ...); void nf_ct_helper_expectfn_register(struct nf_ct_helper_expectfn *n); void nf_ct_helper_expectfn_unregister(struct nf_ct_helper_expectfn *n); struct nf_ct_helper_expectfn * nf_ct_helper_expectfn_find_by_name(const char *name); struct nf_ct_helper_expectfn * nf_ct_helper_expectfn_find_by_symbol(const void *symbol); extern struct hlist_head *nf_ct_helper_hash; extern unsigned int nf_ct_helper_hsize; struct nf_conntrack_nat_helper { struct list_head list; char mod_name[NF_CT_HELPER_NAME_LEN]; /* module name */ struct module *module; /* pointer to self */ }; #define NF_CT_NAT_HELPER_INIT(name) \ { \ .mod_name = NF_NAT_HELPER_NAME(name), \ .module = THIS_MODULE \ } void nf_nat_helper_register(struct nf_conntrack_nat_helper *nat); void nf_nat_helper_unregister(struct nf_conntrack_nat_helper *nat); int nf_nat_helper_try_module_get(const char *name, u16 l3num, u8 protonum); void nf_nat_helper_put(struct nf_conntrack_helper *helper); #endif /*_NF_CONNTRACK_HELPER_H*/ |
341 168 178 12 878 879 145 145 94 84 26 70 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | #include <linux/init.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <net/net_namespace.h> #include <net/netfilter/nf_tables.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_bridge.h> #include <linux/netfilter_arp.h> #include <net/netfilter/nf_tables_ipv4.h> #include <net/netfilter/nf_tables_ipv6.h> #ifdef CONFIG_NF_TABLES_IPV4 static unsigned int nft_do_chain_ipv4(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nft_pktinfo pkt; nft_set_pktinfo(&pkt, skb, state); nft_set_pktinfo_ipv4(&pkt); return nft_do_chain(&pkt, priv); } static const struct nft_chain_type nft_chain_filter_ipv4 = { .name = "filter", .type = NFT_CHAIN_T_DEFAULT, .family = NFPROTO_IPV4, .hook_mask = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_FORWARD) | (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_POST_ROUTING), .hooks = { [NF_INET_LOCAL_IN] = nft_do_chain_ipv4, [NF_INET_LOCAL_OUT] = nft_do_chain_ipv4, [NF_INET_FORWARD] = nft_do_chain_ipv4, [NF_INET_PRE_ROUTING] = nft_do_chain_ipv4, [NF_INET_POST_ROUTING] = nft_do_chain_ipv4, }, }; static void nft_chain_filter_ipv4_init(void) { nft_register_chain_type(&nft_chain_filter_ipv4); } static void nft_chain_filter_ipv4_fini(void) { nft_unregister_chain_type(&nft_chain_filter_ipv4); } #else static inline void nft_chain_filter_ipv4_init(void) {} static inline void nft_chain_filter_ipv4_fini(void) {} #endif /* CONFIG_NF_TABLES_IPV4 */ #ifdef CONFIG_NF_TABLES_ARP static unsigned int nft_do_chain_arp(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nft_pktinfo pkt; nft_set_pktinfo(&pkt, skb, state); nft_set_pktinfo_unspec(&pkt); return nft_do_chain(&pkt, priv); } static const struct nft_chain_type nft_chain_filter_arp = { .name = "filter", .type = NFT_CHAIN_T_DEFAULT, .family = NFPROTO_ARP, .owner = THIS_MODULE, .hook_mask = (1 << NF_ARP_IN) | (1 << NF_ARP_OUT), .hooks = { [NF_ARP_IN] = nft_do_chain_arp, [NF_ARP_OUT] = nft_do_chain_arp, }, }; static void nft_chain_filter_arp_init(void) { nft_register_chain_type(&nft_chain_filter_arp); } static void nft_chain_filter_arp_fini(void) { nft_unregister_chain_type(&nft_chain_filter_arp); } #else static inline void nft_chain_filter_arp_init(void) {} static inline void nft_chain_filter_arp_fini(void) {} #endif /* CONFIG_NF_TABLES_ARP */ #ifdef CONFIG_NF_TABLES_IPV6 static unsigned int nft_do_chain_ipv6(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nft_pktinfo pkt; nft_set_pktinfo(&pkt, skb, state); nft_set_pktinfo_ipv6(&pkt); return nft_do_chain(&pkt, priv); } static const struct nft_chain_type nft_chain_filter_ipv6 = { .name = "filter", .type = NFT_CHAIN_T_DEFAULT, .family = NFPROTO_IPV6, .hook_mask = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_FORWARD) | (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_POST_ROUTING), .hooks = { [NF_INET_LOCAL_IN] = nft_do_chain_ipv6, [NF_INET_LOCAL_OUT] = nft_do_chain_ipv6, [NF_INET_FORWARD] = nft_do_chain_ipv6, [NF_INET_PRE_ROUTING] = nft_do_chain_ipv6, [NF_INET_POST_ROUTING] = nft_do_chain_ipv6, }, }; static void nft_chain_filter_ipv6_init(void) { nft_register_chain_type(&nft_chain_filter_ipv6); } static void nft_chain_filter_ipv6_fini(void) { nft_unregister_chain_type(&nft_chain_filter_ipv6); } #else static inline void nft_chain_filter_ipv6_init(void) {} static inline void nft_chain_filter_ipv6_fini(void) {} #endif /* CONFIG_NF_TABLES_IPV6 */ #ifdef CONFIG_NF_TABLES_INET static unsigned int nft_do_chain_inet(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nft_pktinfo pkt; nft_set_pktinfo(&pkt, skb, state); switch (state->pf) { case NFPROTO_IPV4: nft_set_pktinfo_ipv4(&pkt); break; case NFPROTO_IPV6: nft_set_pktinfo_ipv6(&pkt); break; default: break; } return nft_do_chain(&pkt, priv); } static unsigned int nft_do_chain_inet_ingress(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_hook_state ingress_state = *state; struct nft_pktinfo pkt; switch (skb->protocol) { case htons(ETH_P_IP): /* Original hook is NFPROTO_NETDEV and NF_NETDEV_INGRESS. */ ingress_state.pf = NFPROTO_IPV4; ingress_state.hook = NF_INET_INGRESS; nft_set_pktinfo(&pkt, skb, &ingress_state); if (nft_set_pktinfo_ipv4_ingress(&pkt) < 0) return NF_DROP; break; case htons(ETH_P_IPV6): ingress_state.pf = NFPROTO_IPV6; ingress_state.hook = NF_INET_INGRESS; nft_set_pktinfo(&pkt, skb, &ingress_state); if (nft_set_pktinfo_ipv6_ingress(&pkt) < 0) return NF_DROP; break; default: return NF_ACCEPT; } return nft_do_chain(&pkt, priv); } static const struct nft_chain_type nft_chain_filter_inet = { .name = "filter", .type = NFT_CHAIN_T_DEFAULT, .family = NFPROTO_INET, .hook_mask = (1 << NF_INET_INGRESS) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_FORWARD) | (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_POST_ROUTING), .hooks = { [NF_INET_INGRESS] = nft_do_chain_inet_ingress, [NF_INET_LOCAL_IN] = nft_do_chain_inet, [NF_INET_LOCAL_OUT] = nft_do_chain_inet, [NF_INET_FORWARD] = nft_do_chain_inet, [NF_INET_PRE_ROUTING] = nft_do_chain_inet, [NF_INET_POST_ROUTING] = nft_do_chain_inet, }, }; static void nft_chain_filter_inet_init(void) { nft_register_chain_type(&nft_chain_filter_inet); } static void nft_chain_filter_inet_fini(void) { nft_unregister_chain_type(&nft_chain_filter_inet); } #else static inline void nft_chain_filter_inet_init(void) {} static inline void nft_chain_filter_inet_fini(void) {} #endif /* CONFIG_NF_TABLES_IPV6 */ #if IS_ENABLED(CONFIG_NF_TABLES_BRIDGE) static unsigned int nft_do_chain_bridge(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nft_pktinfo pkt; nft_set_pktinfo(&pkt, skb, state); switch (eth_hdr(skb)->h_proto) { case htons(ETH_P_IP): nft_set_pktinfo_ipv4_validate(&pkt); break; case htons(ETH_P_IPV6): nft_set_pktinfo_ipv6_validate(&pkt); break; default: nft_set_pktinfo_unspec(&pkt); break; } return nft_do_chain(&pkt, priv); } static const struct nft_chain_type nft_chain_filter_bridge = { .name = "filter", .type = NFT_CHAIN_T_DEFAULT, .family = NFPROTO_BRIDGE, .hook_mask = (1 << NF_BR_PRE_ROUTING) | (1 << NF_BR_LOCAL_IN) | (1 << NF_BR_FORWARD) | (1 << NF_BR_LOCAL_OUT) | (1 << NF_BR_POST_ROUTING), .hooks = { [NF_BR_PRE_ROUTING] = nft_do_chain_bridge, [NF_BR_LOCAL_IN] = nft_do_chain_bridge, [NF_BR_FORWARD] = nft_do_chain_bridge, [NF_BR_LOCAL_OUT] = nft_do_chain_bridge, [NF_BR_POST_ROUTING] = nft_do_chain_bridge, }, }; static void nft_chain_filter_bridge_init(void) { nft_register_chain_type(&nft_chain_filter_bridge); } static void nft_chain_filter_bridge_fini(void) { nft_unregister_chain_type(&nft_chain_filter_bridge); } #else static inline void nft_chain_filter_bridge_init(void) {} static inline void nft_chain_filter_bridge_fini(void) {} #endif /* CONFIG_NF_TABLES_BRIDGE */ #ifdef CONFIG_NF_TABLES_NETDEV static unsigned int nft_do_chain_netdev(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nft_pktinfo pkt; nft_set_pktinfo(&pkt, skb, state); switch (skb->protocol) { case htons(ETH_P_IP): nft_set_pktinfo_ipv4_validate(&pkt); break; case htons(ETH_P_IPV6): nft_set_pktinfo_ipv6_validate(&pkt); break; default: nft_set_pktinfo_unspec(&pkt); break; } return nft_do_chain(&pkt, priv); } static const struct nft_chain_type nft_chain_filter_netdev = { .name = "filter", .type = NFT_CHAIN_T_DEFAULT, .family = NFPROTO_NETDEV, .hook_mask = (1 << NF_NETDEV_INGRESS) | (1 << NF_NETDEV_EGRESS), .hooks = { [NF_NETDEV_INGRESS] = nft_do_chain_netdev, [NF_NETDEV_EGRESS] = nft_do_chain_netdev, }, }; static void nft_netdev_event(unsigned long event, struct net_device *dev, struct nft_ctx *ctx) { struct nft_base_chain *basechain = nft_base_chain(ctx->chain); struct nft_hook *hook, *found = NULL; int n = 0; list_for_each_entry(hook, &basechain->hook_list, list) { if (hook->ops.dev == dev) found = hook; n++; } if (!found) return; if (n > 1) { if (!(ctx->chain->table->flags & NFT_TABLE_F_DORMANT)) nf_unregister_net_hook(ctx->net, &found->ops); list_del_rcu(&found->list); kfree_rcu(found, rcu); return; } /* UNREGISTER events are also happening on netns exit. * * Although nf_tables core releases all tables/chains, only this event * handler provides guarantee that hook->ops.dev is still accessible, * so we cannot skip exiting net namespaces. */ __nft_release_basechain(ctx); } static int nf_tables_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct nft_base_chain *basechain; struct nftables_pernet *nft_net; struct nft_chain *chain, *nr; struct nft_table *table; struct nft_ctx ctx = { .net = dev_net(dev), }; if (event != NETDEV_UNREGISTER) return NOTIFY_DONE; nft_net = nft_pernet(ctx.net); mutex_lock(&nft_net->commit_mutex); list_for_each_entry(table, &nft_net->tables, list) { if (table->family != NFPROTO_NETDEV && table->family != NFPROTO_INET) continue; ctx.family = table->family; ctx.table = table; list_for_each_entry_safe(chain, nr, &table->chains, list) { if (!nft_is_base_chain(chain)) continue; basechain = nft_base_chain(chain); if (table->family == NFPROTO_INET && basechain->ops.hooknum != NF_INET_INGRESS) continue; ctx.chain = chain; nft_netdev_event(event, dev, &ctx); } } mutex_unlock(&nft_net->commit_mutex); return NOTIFY_DONE; } static struct notifier_block nf_tables_netdev_notifier = { .notifier_call = nf_tables_netdev_event, }; static int nft_chain_filter_netdev_init(void) { int err; nft_register_chain_type(&nft_chain_filter_netdev); err = register_netdevice_notifier(&nf_tables_netdev_notifier); if (err) goto err_register_netdevice_notifier; return 0; err_register_netdevice_notifier: nft_unregister_chain_type(&nft_chain_filter_netdev); return err; } static void nft_chain_filter_netdev_fini(void) { nft_unregister_chain_type(&nft_chain_filter_netdev); unregister_netdevice_notifier(&nf_tables_netdev_notifier); } #else static inline int nft_chain_filter_netdev_init(void) { return 0; } static inline void nft_chain_filter_netdev_fini(void) {} #endif /* CONFIG_NF_TABLES_NETDEV */ int __init nft_chain_filter_init(void) { int err; err = nft_chain_filter_netdev_init(); if (err < 0) return err; nft_chain_filter_ipv4_init(); nft_chain_filter_ipv6_init(); nft_chain_filter_arp_init(); nft_chain_filter_inet_init(); nft_chain_filter_bridge_init(); return 0; } void nft_chain_filter_fini(void) { nft_chain_filter_bridge_fini(); nft_chain_filter_inet_fini(); nft_chain_filter_arp_fini(); nft_chain_filter_ipv6_fini(); nft_chain_filter_ipv4_fini(); nft_chain_filter_netdev_fini(); } |
43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ERR_H #define _LINUX_ERR_H #include <linux/compiler.h> #include <linux/types.h> #include <asm/errno.h> /* * Kernel pointers have redundant information, so we can use a * scheme where we can return either an error code or a normal * pointer with the same return value. * * This should be a per-architecture thing, to allow different * error and pointer decisions. */ #define MAX_ERRNO 4095 #ifndef __ASSEMBLY__ /** * IS_ERR_VALUE - Detect an error pointer. * @x: The pointer to check. * * Like IS_ERR(), but does not generate a compiler warning if result is unused. */ #define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO) /** * ERR_PTR - Create an error pointer. * @error: A negative error code. * * Encodes @error into a pointer value. Users should consider the result * opaque and not assume anything about how the error is encoded. * * Return: A pointer with @error encoded within its value. */ static inline void * __must_check ERR_PTR(long error) { return (void *) error; } /** * PTR_ERR - Extract the error code from an error pointer. * @ptr: An error pointer. * Return: The error code within @ptr. */ static inline long __must_check PTR_ERR(__force const void *ptr) { return (long) ptr; } /** * IS_ERR - Detect an error pointer. * @ptr: The pointer to check. * Return: true if @ptr is an error pointer, false otherwise. */ static inline bool __must_check IS_ERR(__force const void *ptr) { return IS_ERR_VALUE((unsigned long)ptr); } /** * IS_ERR_OR_NULL - Detect an error pointer or a null pointer. * @ptr: The pointer to check. * * Like IS_ERR(), but also returns true for a null pointer. */ static inline bool __must_check IS_ERR_OR_NULL(__force const void *ptr) { return unlikely(!ptr) || IS_ERR_VALUE((unsigned long)ptr); } /** * ERR_CAST - Explicitly cast an error-valued pointer to another pointer type * @ptr: The pointer to cast. * * Explicitly cast an error-valued pointer to another pointer type in such a * way as to make it clear that's what's going on. */ static inline void * __must_check ERR_CAST(__force const void *ptr) { /* cast away the const */ return (void *) ptr; } /** * PTR_ERR_OR_ZERO - Extract the error code from a pointer if it has one. * @ptr: A potential error pointer. * * Convenience function that can be used inside a function that returns * an error code to propagate errors received as error pointers. * For example, ``return PTR_ERR_OR_ZERO(ptr);`` replaces: * * .. code-block:: c * * if (IS_ERR(ptr)) * return PTR_ERR(ptr); * else * return 0; * * Return: The error code within @ptr if it is an error pointer; 0 otherwise. */ static inline int __must_check PTR_ERR_OR_ZERO(__force const void *ptr) { if (IS_ERR(ptr)) return PTR_ERR(ptr); else return 0; } #endif #endif /* _LINUX_ERR_H */ |
2 20 20 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | /* * DRBG based on NIST SP800-90A * * Copyright Stephan Mueller <smueller@chronox.de>, 2014 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL are * required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #ifndef _DRBG_H #define _DRBG_H #include <linux/random.h> #include <linux/scatterlist.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/crypto.h> #include <linux/slab.h> #include <crypto/internal/rng.h> #include <crypto/rng.h> #include <linux/fips.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/workqueue.h> /* * Concatenation Helper and string operation helper * * SP800-90A requires the concatenation of different data. To avoid copying * buffers around or allocate additional memory, the following data structure * is used to point to the original memory with its size. In addition, it * is used to build a linked list. The linked list defines the concatenation * of individual buffers. The order of memory block referenced in that * linked list determines the order of concatenation. */ struct drbg_string { const unsigned char *buf; size_t len; struct list_head list; }; static inline void drbg_string_fill(struct drbg_string *string, const unsigned char *buf, size_t len) { string->buf = buf; string->len = len; INIT_LIST_HEAD(&string->list); } struct drbg_state; typedef uint32_t drbg_flag_t; struct drbg_core { drbg_flag_t flags; /* flags for the cipher */ __u8 statelen; /* maximum state length */ __u8 blocklen_bytes; /* block size of output in bytes */ char cra_name[CRYPTO_MAX_ALG_NAME]; /* mapping to kernel crypto API */ /* kernel crypto API backend cipher name */ char backend_cra_name[CRYPTO_MAX_ALG_NAME]; }; struct drbg_state_ops { int (*update)(struct drbg_state *drbg, struct list_head *seed, int reseed); int (*generate)(struct drbg_state *drbg, unsigned char *buf, unsigned int buflen, struct list_head *addtl); int (*crypto_init)(struct drbg_state *drbg); int (*crypto_fini)(struct drbg_state *drbg); }; struct drbg_test_data { struct drbg_string *testentropy; /* TEST PARAMETER: test entropy */ }; enum drbg_seed_state { DRBG_SEED_STATE_UNSEEDED, DRBG_SEED_STATE_PARTIAL, /* Seeded with !rng_is_initialized() */ DRBG_SEED_STATE_FULL, }; struct drbg_state { struct mutex drbg_mutex; /* lock around DRBG */ unsigned char *V; /* internal state 10.1.1.1 1a) */ unsigned char *Vbuf; /* hash: static value 10.1.1.1 1b) hmac / ctr: key */ unsigned char *C; unsigned char *Cbuf; /* Number of RNG requests since last reseed -- 10.1.1.1 1c) */ size_t reseed_ctr; size_t reseed_threshold; /* some memory the DRBG can use for its operation */ unsigned char *scratchpad; unsigned char *scratchpadbuf; void *priv_data; /* Cipher handle */ struct crypto_skcipher *ctr_handle; /* CTR mode cipher handle */ struct skcipher_request *ctr_req; /* CTR mode request handle */ __u8 *outscratchpadbuf; /* CTR mode output scratchpad */ __u8 *outscratchpad; /* CTR mode aligned outbuf */ struct crypto_wait ctr_wait; /* CTR mode async wait obj */ struct scatterlist sg_in, sg_out; /* CTR mode SGLs */ enum drbg_seed_state seeded; /* DRBG fully seeded? */ unsigned long last_seed_time; bool pr; /* Prediction resistance enabled? */ bool fips_primed; /* Continuous test primed? */ unsigned char *prev; /* FIPS 140-2 continuous test value */ struct crypto_rng *jent; const struct drbg_state_ops *d_ops; const struct drbg_core *core; struct drbg_string test_data; }; static inline __u8 drbg_statelen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->statelen; return 0; } static inline __u8 drbg_blocklen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->blocklen_bytes; return 0; } static inline __u8 drbg_keylen(struct drbg_state *drbg) { if (drbg && drbg->core) return (drbg->core->statelen - drbg->core->blocklen_bytes); return 0; } static inline size_t drbg_max_request_bytes(struct drbg_state *drbg) { /* SP800-90A requires the limit 2**19 bits, but we return bytes */ return (1 << 16); } static inline size_t drbg_max_addtl(struct drbg_state *drbg) { /* SP800-90A requires 2**35 bytes additional info str / pers str */ #if (__BITS_PER_LONG == 32) /* * SP800-90A allows smaller maximum numbers to be returned -- we * return SIZE_MAX - 1 to allow the verification of the enforcement * of this value in drbg_healthcheck_sanity. */ return (SIZE_MAX - 1); #else return (1UL<<35); #endif } static inline size_t drbg_max_requests(struct drbg_state *drbg) { /* SP800-90A requires 2**48 maximum requests before reseeding */ return (1<<20); } /* * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data. * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl) { return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data and * allow furnishing of test_data * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl_test(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_reset() to allow the caller to provide test_data * * @drng DRBG handle -- see crypto_rng_reset * @pers personalization string input buffer * @perslen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_reset */ static inline int crypto_drbg_reset_test(struct crypto_rng *drng, struct drbg_string *pers, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_reset(drng, pers->buf, pers->len); } /* DRBG type flags */ #define DRBG_CTR ((drbg_flag_t)1<<0) #define DRBG_HMAC ((drbg_flag_t)1<<1) #define DRBG_HASH ((drbg_flag_t)1<<2) #define DRBG_TYPE_MASK (DRBG_CTR | DRBG_HMAC | DRBG_HASH) /* DRBG strength flags */ #define DRBG_STRENGTH128 ((drbg_flag_t)1<<3) #define DRBG_STRENGTH192 ((drbg_flag_t)1<<4) #define DRBG_STRENGTH256 ((drbg_flag_t)1<<5) #define DRBG_STRENGTH_MASK (DRBG_STRENGTH128 | DRBG_STRENGTH192 | \ DRBG_STRENGTH256) enum drbg_prefixes { DRBG_PREFIX0 = 0x00, DRBG_PREFIX1, DRBG_PREFIX2, DRBG_PREFIX3 }; #endif /* _DRBG_H */ |
4 4 2 1 1 4 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Cryptographic API. * * Serpent Cipher Algorithm. * * Copyright (C) 2002 Dag Arne Osvik <osvik@ii.uib.no> */ #include <crypto/algapi.h> #include <linux/init.h> #include <linux/module.h> #include <linux/errno.h> #include <asm/unaligned.h> #include <linux/types.h> #include <crypto/serpent.h> /* Key is padded to the maximum of 256 bits before round key generation. * Any key length <= 256 bits (32 bytes) is allowed by the algorithm. */ #define PHI 0x9e3779b9UL #define keyiter(a, b, c, d, i, j) \ ({ b ^= d; b ^= c; b ^= a; b ^= PHI ^ i; b = rol32(b, 11); k[j] = b; }) #define loadkeys(x0, x1, x2, x3, i) \ ({ x0 = k[i]; x1 = k[i+1]; x2 = k[i+2]; x3 = k[i+3]; }) #define storekeys(x0, x1, x2, x3, i) \ ({ k[i] = x0; k[i+1] = x1; k[i+2] = x2; k[i+3] = x3; }) #define store_and_load_keys(x0, x1, x2, x3, s, l) \ ({ storekeys(x0, x1, x2, x3, s); loadkeys(x0, x1, x2, x3, l); }) #define K(x0, x1, x2, x3, i) ({ \ x3 ^= k[4*(i)+3]; x2 ^= k[4*(i)+2]; \ x1 ^= k[4*(i)+1]; x0 ^= k[4*(i)+0]; \ }) #define LK(x0, x1, x2, x3, x4, i) ({ \ x0 = rol32(x0, 13);\ x2 = rol32(x2, 3); x1 ^= x0; x4 = x0 << 3; \ x3 ^= x2; x1 ^= x2; \ x1 = rol32(x1, 1); x3 ^= x4; \ x3 = rol32(x3, 7); x4 = x1; \ x0 ^= x1; x4 <<= 7; x2 ^= x3; \ x0 ^= x3; x2 ^= x4; x3 ^= k[4*i+3]; \ x1 ^= k[4*i+1]; x0 = rol32(x0, 5); x2 = rol32(x2, 22);\ x0 ^= k[4*i+0]; x2 ^= k[4*i+2]; \ }) #define KL(x0, x1, x2, x3, x4, i) ({ \ x0 ^= k[4*i+0]; x1 ^= k[4*i+1]; x2 ^= k[4*i+2]; \ x3 ^= k[4*i+3]; x0 = ror32(x0, 5); x2 = ror32(x2, 22);\ x4 = x1; x2 ^= x3; x0 ^= x3; \ x4 <<= 7; x0 ^= x1; x1 = ror32(x1, 1); \ x2 ^= x4; x3 = ror32(x3, 7); x4 = x0 << 3; \ x1 ^= x0; x3 ^= x4; x0 = ror32(x0, 13);\ x1 ^= x2; x3 ^= x2; x2 = ror32(x2, 3); \ }) #define S0(x0, x1, x2, x3, x4) ({ \ x4 = x3; \ x3 |= x0; x0 ^= x4; x4 ^= x2; \ x4 = ~x4; x3 ^= x1; x1 &= x0; \ x1 ^= x4; x2 ^= x0; x0 ^= x3; \ x4 |= x0; x0 ^= x2; x2 &= x1; \ x3 ^= x2; x1 = ~x1; x2 ^= x4; \ x1 ^= x2; \ }) #define S1(x0, x1, x2, x3, x4) ({ \ x4 = x1; \ x1 ^= x0; x0 ^= x3; x3 = ~x3; \ x4 &= x1; x0 |= x1; x3 ^= x2; \ x0 ^= x3; x1 ^= x3; x3 ^= x4; \ x1 |= x4; x4 ^= x2; x2 &= x0; \ x2 ^= x1; x1 |= x0; x0 = ~x0; \ x0 ^= x2; x4 ^= x1; \ }) #define S2(x0, x1, x2, x3, x4) ({ \ x3 = ~x3; \ x1 ^= x0; x4 = x0; x0 &= x2; \ x0 ^= x3; x3 |= x4; x2 ^= x1; \ x3 ^= x1; x1 &= x0; x0 ^= x2; \ x2 &= x3; x3 |= x1; x0 = ~x0; \ x3 ^= x0; x4 ^= x0; x0 ^= x2; \ x1 |= x2; \ }) #define S3(x0, x1, x2, x3, x4) ({ \ x4 = x1; \ x1 ^= x3; x3 |= x0; x4 &= x0; \ x0 ^= x2; x2 ^= x1; x1 &= x3; \ x2 ^= x3; x0 |= x4; x4 ^= x3; \ x1 ^= x0; x0 &= x3; x3 &= x4; \ x3 ^= x2; x4 |= x1; x2 &= x1; \ x4 ^= x3; x0 ^= x3; x3 ^= x2; \ }) #define S4(x0, x1, x2, x3, x4) ({ \ x4 = x3; \ x3 &= x0; x0 ^= x4; \ x3 ^= x2; x2 |= x4; x0 ^= x1; \ x4 ^= x3; x2 |= x0; \ x2 ^= x1; x1 &= x0; \ x1 ^= x4; x4 &= x2; x2 ^= x3; \ x4 ^= x0; x3 |= x1; x1 = ~x1; \ x3 ^= x0; \ }) #define S5(x0, x1, x2, x3, x4) ({ \ x4 = x1; x1 |= x0; \ x2 ^= x1; x3 = ~x3; x4 ^= x0; \ x0 ^= x2; x1 &= x4; x4 |= x3; \ x4 ^= x0; x0 &= x3; x1 ^= x3; \ x3 ^= x2; x0 ^= x1; x2 &= x4; \ x1 ^= x2; x2 &= x0; \ x3 ^= x2; \ }) #define S6(x0, x1, x2, x3, x4) ({ \ x4 = x1; \ x3 ^= x0; x1 ^= x2; x2 ^= x0; \ x0 &= x3; x1 |= x3; x4 = ~x4; \ x0 ^= x1; x1 ^= x2; \ x3 ^= x4; x4 ^= x0; x2 &= x0; \ x4 ^= x1; x2 ^= x3; x3 &= x1; \ x3 ^= x0; x1 ^= x2; \ }) #define S7(x0, x1, x2, x3, x4) ({ \ x1 = ~x1; \ x4 = x1; x0 = ~x0; x1 &= x2; \ x1 ^= x3; x3 |= x4; x4 ^= x2; \ x2 ^= x3; x3 ^= x0; x0 |= x1; \ x2 &= x0; x0 ^= x4; x4 ^= x3; \ x3 &= x0; x4 ^= x1; \ x2 ^= x4; x3 ^= x1; x4 |= x0; \ x4 ^= x1; \ }) #define SI0(x0, x1, x2, x3, x4) ({ \ x4 = x3; x1 ^= x0; \ x3 |= x1; x4 ^= x1; x0 = ~x0; \ x2 ^= x3; x3 ^= x0; x0 &= x1; \ x0 ^= x2; x2 &= x3; x3 ^= x4; \ x2 ^= x3; x1 ^= x3; x3 &= x0; \ x1 ^= x0; x0 ^= x2; x4 ^= x3; \ }) #define SI1(x0, x1, x2, x3, x4) ({ \ x1 ^= x3; x4 = x0; \ x0 ^= x2; x2 = ~x2; x4 |= x1; \ x4 ^= x3; x3 &= x1; x1 ^= x2; \ x2 &= x4; x4 ^= x1; x1 |= x3; \ x3 ^= x0; x2 ^= x0; x0 |= x4; \ x2 ^= x4; x1 ^= x0; \ x4 ^= x1; \ }) #define SI2(x0, x1, x2, x3, x4) ({ \ x2 ^= x1; x4 = x3; x3 = ~x3; \ x3 |= x2; x2 ^= x4; x4 ^= x0; \ x3 ^= x1; x1 |= x2; x2 ^= x0; \ x1 ^= x4; x4 |= x3; x2 ^= x3; \ x4 ^= x2; x2 &= x1; \ x2 ^= x3; x3 ^= x4; x4 ^= x0; \ }) #define SI3(x0, x1, x2, x3, x4) ({ \ x2 ^= x1; \ x4 = x1; x1 &= x2; \ x1 ^= x0; x0 |= x4; x4 ^= x3; \ x0 ^= x3; x3 |= x1; x1 ^= x2; \ x1 ^= x3; x0 ^= x2; x2 ^= x3; \ x3 &= x1; x1 ^= x0; x0 &= x2; \ x4 ^= x3; x3 ^= x0; x0 ^= x1; \ }) #define SI4(x0, x1, x2, x3, x4) ({ \ x2 ^= x3; x4 = x0; x0 &= x1; \ x0 ^= x2; x2 |= x3; x4 = ~x4; \ x1 ^= x0; x0 ^= x2; x2 &= x4; \ x2 ^= x0; x0 |= x4; \ x0 ^= x3; x3 &= x2; \ x4 ^= x3; x3 ^= x1; x1 &= x0; \ x4 ^= x1; x0 ^= x3; \ }) #define SI5(x0, x1, x2, x3, x4) ({ \ x4 = x1; x1 |= x2; \ x2 ^= x4; x1 ^= x3; x3 &= x4; \ x2 ^= x3; x3 |= x0; x0 = ~x0; \ x3 ^= x2; x2 |= x0; x4 ^= x1; \ x2 ^= x4; x4 &= x0; x0 ^= x1; \ x1 ^= x3; x0 &= x2; x2 ^= x3; \ x0 ^= x2; x2 ^= x4; x4 ^= x3; \ }) #define SI6(x0, x1, x2, x3, x4) ({ \ x0 ^= x2; \ x4 = x0; x0 &= x3; x2 ^= x3; \ x0 ^= x2; x3 ^= x1; x2 |= x4; \ x2 ^= x3; x3 &= x0; x0 = ~x0; \ x3 ^= x1; x1 &= x2; x4 ^= x0; \ x3 ^= x4; x4 ^= x2; x0 ^= x1; \ x2 ^= x0; \ }) #define SI7(x0, x1, x2, x3, x4) ({ \ x4 = x3; x3 &= x0; x0 ^= x2; \ x2 |= x4; x4 ^= x1; x0 = ~x0; \ x1 |= x3; x4 ^= x0; x0 &= x2; \ x0 ^= x1; x1 &= x2; x3 ^= x2; \ x4 ^= x3; x2 &= x3; x3 |= x0; \ x1 ^= x4; x3 ^= x4; x4 &= x0; \ x4 ^= x2; \ }) /* * both gcc and clang have misoptimized this function in the past, * producing horrible object code from spilling temporary variables * on the stack. Forcing this part out of line avoids that. */ static noinline void __serpent_setkey_sbox(u32 r0, u32 r1, u32 r2, u32 r3, u32 r4, u32 *k) { k += 100; S3(r3, r4, r0, r1, r2); store_and_load_keys(r1, r2, r4, r3, 28, 24); S4(r1, r2, r4, r3, r0); store_and_load_keys(r2, r4, r3, r0, 24, 20); S5(r2, r4, r3, r0, r1); store_and_load_keys(r1, r2, r4, r0, 20, 16); S6(r1, r2, r4, r0, r3); store_and_load_keys(r4, r3, r2, r0, 16, 12); S7(r4, r3, r2, r0, r1); store_and_load_keys(r1, r2, r0, r4, 12, 8); S0(r1, r2, r0, r4, r3); store_and_load_keys(r0, r2, r4, r1, 8, 4); S1(r0, r2, r4, r1, r3); store_and_load_keys(r3, r4, r1, r0, 4, 0); S2(r3, r4, r1, r0, r2); store_and_load_keys(r2, r4, r3, r0, 0, -4); S3(r2, r4, r3, r0, r1); store_and_load_keys(r0, r1, r4, r2, -4, -8); S4(r0, r1, r4, r2, r3); store_and_load_keys(r1, r4, r2, r3, -8, -12); S5(r1, r4, r2, r3, r0); store_and_load_keys(r0, r1, r4, r3, -12, -16); S6(r0, r1, r4, r3, r2); store_and_load_keys(r4, r2, r1, r3, -16, -20); S7(r4, r2, r1, r3, r0); store_and_load_keys(r0, r1, r3, r4, -20, -24); S0(r0, r1, r3, r4, r2); store_and_load_keys(r3, r1, r4, r0, -24, -28); k -= 50; S1(r3, r1, r4, r0, r2); store_and_load_keys(r2, r4, r0, r3, 22, 18); S2(r2, r4, r0, r3, r1); store_and_load_keys(r1, r4, r2, r3, 18, 14); S3(r1, r4, r2, r3, r0); store_and_load_keys(r3, r0, r4, r1, 14, 10); S4(r3, r0, r4, r1, r2); store_and_load_keys(r0, r4, r1, r2, 10, 6); S5(r0, r4, r1, r2, r3); store_and_load_keys(r3, r0, r4, r2, 6, 2); S6(r3, r0, r4, r2, r1); store_and_load_keys(r4, r1, r0, r2, 2, -2); S7(r4, r1, r0, r2, r3); store_and_load_keys(r3, r0, r2, r4, -2, -6); S0(r3, r0, r2, r4, r1); store_and_load_keys(r2, r0, r4, r3, -6, -10); S1(r2, r0, r4, r3, r1); store_and_load_keys(r1, r4, r3, r2, -10, -14); S2(r1, r4, r3, r2, r0); store_and_load_keys(r0, r4, r1, r2, -14, -18); S3(r0, r4, r1, r2, r3); store_and_load_keys(r2, r3, r4, r0, -18, -22); k -= 50; S4(r2, r3, r4, r0, r1); store_and_load_keys(r3, r4, r0, r1, 28, 24); S5(r3, r4, r0, r1, r2); store_and_load_keys(r2, r3, r4, r1, 24, 20); S6(r2, r3, r4, r1, r0); store_and_load_keys(r4, r0, r3, r1, 20, 16); S7(r4, r0, r3, r1, r2); store_and_load_keys(r2, r3, r1, r4, 16, 12); S0(r2, r3, r1, r4, r0); store_and_load_keys(r1, r3, r4, r2, 12, 8); S1(r1, r3, r4, r2, r0); store_and_load_keys(r0, r4, r2, r1, 8, 4); S2(r0, r4, r2, r1, r3); store_and_load_keys(r3, r4, r0, r1, 4, 0); S3(r3, r4, r0, r1, r2); storekeys(r1, r2, r4, r3, 0); } int __serpent_setkey(struct serpent_ctx *ctx, const u8 *key, unsigned int keylen) { u32 *k = ctx->expkey; u8 *k8 = (u8 *)k; u32 r0, r1, r2, r3, r4; __le32 *lk; int i; /* Copy key, add padding */ for (i = 0; i < keylen; ++i) k8[i] = key[i]; if (i < SERPENT_MAX_KEY_SIZE) k8[i++] = 1; while (i < SERPENT_MAX_KEY_SIZE) k8[i++] = 0; lk = (__le32 *)k; k[0] = le32_to_cpu(lk[0]); k[1] = le32_to_cpu(lk[1]); k[2] = le32_to_cpu(lk[2]); k[3] = le32_to_cpu(lk[3]); k[4] = le32_to_cpu(lk[4]); k[5] = le32_to_cpu(lk[5]); k[6] = le32_to_cpu(lk[6]); k[7] = le32_to_cpu(lk[7]); /* Expand key using polynomial */ r0 = k[3]; r1 = k[4]; r2 = k[5]; r3 = k[6]; r4 = k[7]; keyiter(k[0], r0, r4, r2, 0, 0); keyiter(k[1], r1, r0, r3, 1, 1); keyiter(k[2], r2, r1, r4, 2, 2); keyiter(k[3], r3, r2, r0, 3, 3); keyiter(k[4], r4, r3, r1, 4, 4); keyiter(k[5], r0, r4, r2, 5, 5); keyiter(k[6], r1, r0, r3, 6, 6); keyiter(k[7], r2, r1, r4, 7, 7); keyiter(k[0], r3, r2, r0, 8, 8); keyiter(k[1], r4, r3, r1, 9, 9); keyiter(k[2], r0, r4, r2, 10, 10); keyiter(k[3], r1, r0, r3, 11, 11); keyiter(k[4], r2, r1, r4, 12, 12); keyiter(k[5], r3, r2, r0, 13, 13); keyiter(k[6], r4, r3, r1, 14, 14); keyiter(k[7], r0, r4, r2, 15, 15); keyiter(k[8], r1, r0, r3, 16, 16); keyiter(k[9], r2, r1, r4, 17, 17); keyiter(k[10], r3, r2, r0, 18, 18); keyiter(k[11], r4, r3, r1, 19, 19); keyiter(k[12], r0, r4, r2, 20, 20); keyiter(k[13], r1, r0, r3, 21, 21); keyiter(k[14], r2, r1, r4, 22, 22); keyiter(k[15], r3, r2, r0, 23, 23); keyiter(k[16], r4, r3, r1, 24, 24); keyiter(k[17], r0, r4, r2, 25, 25); keyiter(k[18], r1, r0, r3, 26, 26); keyiter(k[19], r2, r1, r4, 27, 27); keyiter(k[20], r3, r2, r0, 28, 28); keyiter(k[21], r4, r3, r1, 29, 29); keyiter(k[22], r0, r4, r2, 30, 30); keyiter(k[23], r1, r0, r3, 31, 31); k += 50; keyiter(k[-26], r2, r1, r4, 32, -18); keyiter(k[-25], r3, r2, r0, 33, -17); keyiter(k[-24], r4, r3, r1, 34, -16); keyiter(k[-23], r0, r4, r2, 35, -15); keyiter(k[-22], r1, r0, r3, 36, -14); keyiter(k[-21], r2, r1, r4, 37, -13); keyiter(k[-20], r3, r2, r0, 38, -12); keyiter(k[-19], r4, r3, r1, 39, -11); keyiter(k[-18], r0, r4, r2, 40, -10); keyiter(k[-17], r1, r0, r3, 41, -9); keyiter(k[-16], r2, r1, r4, 42, -8); keyiter(k[-15], r3, r2, r0, 43, -7); keyiter(k[-14], r4, r3, r1, 44, -6); keyiter(k[-13], r0, r4, r2, 45, -5); keyiter(k[-12], r1, r0, r3, 46, -4); keyiter(k[-11], r2, r1, r4, 47, -3); keyiter(k[-10], r3, r2, r0, 48, -2); keyiter(k[-9], r4, r3, r1, 49, -1); keyiter(k[-8], r0, r4, r2, 50, 0); keyiter(k[-7], r1, r0, r3, 51, 1); keyiter(k[-6], r2, r1, r4, 52, 2); keyiter(k[-5], r3, r2, r0, 53, 3); keyiter(k[-4], r4, r3, r1, 54, 4); keyiter(k[-3], r0, r4, r2, 55, 5); keyiter(k[-2], r1, r0, r3, 56, 6); keyiter(k[-1], r2, r1, r4, 57, 7); keyiter(k[0], r3, r2, r0, 58, 8); keyiter(k[1], r4, r3, r1, 59, 9); keyiter(k[2], r0, r4, r2, 60, 10); keyiter(k[3], r1, r0, r3, 61, 11); keyiter(k[4], r2, r1, r4, 62, 12); keyiter(k[5], r3, r2, r0, 63, 13); keyiter(k[6], r4, r3, r1, 64, 14); keyiter(k[7], r0, r4, r2, 65, 15); keyiter(k[8], r1, r0, r3, 66, 16); keyiter(k[9], r2, r1, r4, 67, 17); keyiter(k[10], r3, r2, r0, 68, 18); keyiter(k[11], r4, r3, r1, 69, 19); keyiter(k[12], r0, r4, r2, 70, 20); keyiter(k[13], r1, r0, r3, 71, 21); keyiter(k[14], r2, r1, r4, 72, 22); keyiter(k[15], r3, r2, r0, 73, 23); keyiter(k[16], r4, r3, r1, 74, 24); keyiter(k[17], r0, r4, r2, 75, 25); keyiter(k[18], r1, r0, r3, 76, 26); keyiter(k[19], r2, r1, r4, 77, 27); keyiter(k[20], r3, r2, r0, 78, 28); keyiter(k[21], r4, r3, r1, 79, 29); keyiter(k[22], r0, r4, r2, 80, 30); keyiter(k[23], r1, r0, r3, 81, 31); k += 50; keyiter(k[-26], r2, r1, r4, 82, -18); keyiter(k[-25], r3, r2, r0, 83, -17); keyiter(k[-24], r4, r3, r1, 84, -16); keyiter(k[-23], r0, r4, r2, 85, -15); keyiter(k[-22], r1, r0, r3, 86, -14); keyiter(k[-21], r2, r1, r4, 87, -13); keyiter(k[-20], r3, r2, r0, 88, -12); keyiter(k[-19], r4, r3, r1, 89, -11); keyiter(k[-18], r0, r4, r2, 90, -10); keyiter(k[-17], r1, r0, r3, 91, -9); keyiter(k[-16], r2, r1, r4, 92, -8); keyiter(k[-15], r3, r2, r0, 93, -7); keyiter(k[-14], r4, r3, r1, 94, -6); keyiter(k[-13], r0, r4, r2, 95, -5); keyiter(k[-12], r1, r0, r3, 96, -4); keyiter(k[-11], r2, r1, r4, 97, -3); keyiter(k[-10], r3, r2, r0, 98, -2); keyiter(k[-9], r4, r3, r1, 99, -1); keyiter(k[-8], r0, r4, r2, 100, 0); keyiter(k[-7], r1, r0, r3, 101, 1); keyiter(k[-6], r2, r1, r4, 102, 2); keyiter(k[-5], r3, r2, r0, 103, 3); keyiter(k[-4], r4, r3, r1, 104, 4); keyiter(k[-3], r0, r4, r2, 105, 5); keyiter(k[-2], r1, r0, r3, 106, 6); keyiter(k[-1], r2, r1, r4, 107, 7); keyiter(k[0], r3, r2, r0, 108, 8); keyiter(k[1], r4, r3, r1, 109, 9); keyiter(k[2], r0, r4, r2, 110, 10); keyiter(k[3], r1, r0, r3, 111, 11); keyiter(k[4], r2, r1, r4, 112, 12); keyiter(k[5], r3, r2, r0, 113, 13); keyiter(k[6], r4, r3, r1, 114, 14); keyiter(k[7], r0, r4, r2, 115, 15); keyiter(k[8], r1, r0, r3, 116, 16); keyiter(k[9], r2, r1, r4, 117, 17); keyiter(k[10], r3, r2, r0, 118, 18); keyiter(k[11], r4, r3, r1, 119, 19); keyiter(k[12], r0, r4, r2, 120, 20); keyiter(k[13], r1, r0, r3, 121, 21); keyiter(k[14], r2, r1, r4, 122, 22); keyiter(k[15], r3, r2, r0, 123, 23); keyiter(k[16], r4, r3, r1, 124, 24); keyiter(k[17], r0, r4, r2, 125, 25); keyiter(k[18], r1, r0, r3, 126, 26); keyiter(k[19], r2, r1, r4, 127, 27); keyiter(k[20], r3, r2, r0, 128, 28); keyiter(k[21], r4, r3, r1, 129, 29); keyiter(k[22], r0, r4, r2, 130, 30); keyiter(k[23], r1, r0, r3, 131, 31); /* Apply S-boxes */ __serpent_setkey_sbox(r0, r1, r2, r3, r4, ctx->expkey); return 0; } EXPORT_SYMBOL_GPL(__serpent_setkey); int serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { return __serpent_setkey(crypto_tfm_ctx(tfm), key, keylen); } EXPORT_SYMBOL_GPL(serpent_setkey); void __serpent_encrypt(const void *c, u8 *dst, const u8 *src) { const struct serpent_ctx *ctx = c; const u32 *k = ctx->expkey; u32 r0, r1, r2, r3, r4; r0 = get_unaligned_le32(src); r1 = get_unaligned_le32(src + 4); r2 = get_unaligned_le32(src + 8); r3 = get_unaligned_le32(src + 12); K(r0, r1, r2, r3, 0); S0(r0, r1, r2, r3, r4); LK(r2, r1, r3, r0, r4, 1); S1(r2, r1, r3, r0, r4); LK(r4, r3, r0, r2, r1, 2); S2(r4, r3, r0, r2, r1); LK(r1, r3, r4, r2, r0, 3); S3(r1, r3, r4, r2, r0); LK(r2, r0, r3, r1, r4, 4); S4(r2, r0, r3, r1, r4); LK(r0, r3, r1, r4, r2, 5); S5(r0, r3, r1, r4, r2); LK(r2, r0, r3, r4, r1, 6); S6(r2, r0, r3, r4, r1); LK(r3, r1, r0, r4, r2, 7); S7(r3, r1, r0, r4, r2); LK(r2, r0, r4, r3, r1, 8); S0(r2, r0, r4, r3, r1); LK(r4, r0, r3, r2, r1, 9); S1(r4, r0, r3, r2, r1); LK(r1, r3, r2, r4, r0, 10); S2(r1, r3, r2, r4, r0); LK(r0, r3, r1, r4, r2, 11); S3(r0, r3, r1, r4, r2); LK(r4, r2, r3, r0, r1, 12); S4(r4, r2, r3, r0, r1); LK(r2, r3, r0, r1, r4, 13); S5(r2, r3, r0, r1, r4); LK(r4, r2, r3, r1, r0, 14); S6(r4, r2, r3, r1, r0); LK(r3, r0, r2, r1, r4, 15); S7(r3, r0, r2, r1, r4); LK(r4, r2, r1, r3, r0, 16); S0(r4, r2, r1, r3, r0); LK(r1, r2, r3, r4, r0, 17); S1(r1, r2, r3, r4, r0); LK(r0, r3, r4, r1, r2, 18); S2(r0, r3, r4, r1, r2); LK(r2, r3, r0, r1, r4, 19); S3(r2, r3, r0, r1, r4); LK(r1, r4, r3, r2, r0, 20); S4(r1, r4, r3, r2, r0); LK(r4, r3, r2, r0, r1, 21); S5(r4, r3, r2, r0, r1); LK(r1, r4, r3, r0, r2, 22); S6(r1, r4, r3, r0, r2); LK(r3, r2, r4, r0, r1, 23); S7(r3, r2, r4, r0, r1); LK(r1, r4, r0, r3, r2, 24); S0(r1, r4, r0, r3, r2); LK(r0, r4, r3, r1, r2, 25); S1(r0, r4, r3, r1, r2); LK(r2, r3, r1, r0, r4, 26); S2(r2, r3, r1, r0, r4); LK(r4, r3, r2, r0, r1, 27); S3(r4, r3, r2, r0, r1); LK(r0, r1, r3, r4, r2, 28); S4(r0, r1, r3, r4, r2); LK(r1, r3, r4, r2, r0, 29); S5(r1, r3, r4, r2, r0); LK(r0, r1, r3, r2, r4, 30); S6(r0, r1, r3, r2, r4); LK(r3, r4, r1, r2, r0, 31); S7(r3, r4, r1, r2, r0); K(r0, r1, r2, r3, 32); put_unaligned_le32(r0, dst); put_unaligned_le32(r1, dst + 4); put_unaligned_le32(r2, dst + 8); put_unaligned_le32(r3, dst + 12); } EXPORT_SYMBOL_GPL(__serpent_encrypt); static void serpent_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct serpent_ctx *ctx = crypto_tfm_ctx(tfm); __serpent_encrypt(ctx, dst, src); } void __serpent_decrypt(const void *c, u8 *dst, const u8 *src) { const struct serpent_ctx *ctx = c; const u32 *k = ctx->expkey; u32 r0, r1, r2, r3, r4; r0 = get_unaligned_le32(src); r1 = get_unaligned_le32(src + 4); r2 = get_unaligned_le32(src + 8); r3 = get_unaligned_le32(src + 12); K(r0, r1, r2, r3, 32); SI7(r0, r1, r2, r3, r4); KL(r1, r3, r0, r4, r2, 31); SI6(r1, r3, r0, r4, r2); KL(r0, r2, r4, r1, r3, 30); SI5(r0, r2, r4, r1, r3); KL(r2, r3, r0, r4, r1, 29); SI4(r2, r3, r0, r4, r1); KL(r2, r0, r1, r4, r3, 28); SI3(r2, r0, r1, r4, r3); KL(r1, r2, r3, r4, r0, 27); SI2(r1, r2, r3, r4, r0); KL(r2, r0, r4, r3, r1, 26); SI1(r2, r0, r4, r3, r1); KL(r1, r0, r4, r3, r2, 25); SI0(r1, r0, r4, r3, r2); KL(r4, r2, r0, r1, r3, 24); SI7(r4, r2, r0, r1, r3); KL(r2, r1, r4, r3, r0, 23); SI6(r2, r1, r4, r3, r0); KL(r4, r0, r3, r2, r1, 22); SI5(r4, r0, r3, r2, r1); KL(r0, r1, r4, r3, r2, 21); SI4(r0, r1, r4, r3, r2); KL(r0, r4, r2, r3, r1, 20); SI3(r0, r4, r2, r3, r1); KL(r2, r0, r1, r3, r4, 19); SI2(r2, r0, r1, r3, r4); KL(r0, r4, r3, r1, r2, 18); SI1(r0, r4, r3, r1, r2); KL(r2, r4, r3, r1, r0, 17); SI0(r2, r4, r3, r1, r0); KL(r3, r0, r4, r2, r1, 16); SI7(r3, r0, r4, r2, r1); KL(r0, r2, r3, r1, r4, 15); SI6(r0, r2, r3, r1, r4); KL(r3, r4, r1, r0, r2, 14); SI5(r3, r4, r1, r0, r2); KL(r4, r2, r3, r1, r0, 13); SI4(r4, r2, r3, r1, r0); KL(r4, r3, r0, r1, r2, 12); SI3(r4, r3, r0, r1, r2); KL(r0, r4, r2, r1, r3, 11); SI2(r0, r4, r2, r1, r3); KL(r4, r3, r1, r2, r0, 10); SI1(r4, r3, r1, r2, r0); KL(r0, r3, r1, r2, r4, 9); SI0(r0, r3, r1, r2, r4); KL(r1, r4, r3, r0, r2, 8); SI7(r1, r4, r3, r0, r2); KL(r4, r0, r1, r2, r3, 7); SI6(r4, r0, r1, r2, r3); KL(r1, r3, r2, r4, r0, 6); SI5(r1, r3, r2, r4, r0); KL(r3, r0, r1, r2, r4, 5); SI4(r3, r0, r1, r2, r4); KL(r3, r1, r4, r2, r0, 4); SI3(r3, r1, r4, r2, r0); KL(r4, r3, r0, r2, r1, 3); SI2(r4, r3, r0, r2, r1); KL(r3, r1, r2, r0, r4, 2); SI1(r3, r1, r2, r0, r4); KL(r4, r1, r2, r0, r3, 1); SI0(r4, r1, r2, r0, r3); K(r2, r3, r1, r4, 0); put_unaligned_le32(r2, dst); put_unaligned_le32(r3, dst + 4); put_unaligned_le32(r1, dst + 8); put_unaligned_le32(r4, dst + 12); } EXPORT_SYMBOL_GPL(__serpent_decrypt); static void serpent_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct serpent_ctx *ctx = crypto_tfm_ctx(tfm); __serpent_decrypt(ctx, dst, src); } static struct crypto_alg srp_alg = { .cra_name = "serpent", .cra_driver_name = "serpent-generic", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = SERPENT_MIN_KEY_SIZE, .cia_max_keysize = SERPENT_MAX_KEY_SIZE, .cia_setkey = serpent_setkey, .cia_encrypt = serpent_encrypt, .cia_decrypt = serpent_decrypt } } }; static int __init serpent_mod_init(void) { return crypto_register_alg(&srp_alg); } static void __exit serpent_mod_fini(void) { crypto_unregister_alg(&srp_alg); } subsys_initcall(serpent_mod_init); module_exit(serpent_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Serpent Cipher Algorithm"); MODULE_AUTHOR("Dag Arne Osvik <osvik@ii.uib.no>"); MODULE_ALIAS_CRYPTO("serpent"); MODULE_ALIAS_CRYPTO("serpent-generic"); |
3 3 3 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | // SPDX-License-Identifier: GPL-2.0 #include <linux/types.h> #include <linux/kconfig.h> #include <linux/list.h> #include <linux/security.h> #include <linux/umh.h> #include <linux/sysctl.h> #include <linux/module.h> #include "fallback.h" #include "firmware.h" /* * firmware fallback mechanism */ /* * use small loading timeout for caching devices' firmware because all these * firmware images have been loaded successfully at lease once, also system is * ready for completing firmware loading now. The maximum size of firmware in * current distributions is about 2M bytes, so 10 secs should be enough. */ void fw_fallback_set_cache_timeout(void) { fw_fallback_config.old_timeout = __firmware_loading_timeout(); __fw_fallback_set_timeout(10); } /* Restores the timeout to the value last configured during normal operation */ void fw_fallback_set_default_timeout(void) { __fw_fallback_set_timeout(fw_fallback_config.old_timeout); } static long firmware_loading_timeout(void) { return __firmware_loading_timeout() > 0 ? __firmware_loading_timeout() * HZ : MAX_JIFFY_OFFSET; } static inline int fw_sysfs_wait_timeout(struct fw_priv *fw_priv, long timeout) { return __fw_state_wait_common(fw_priv, timeout); } static LIST_HEAD(pending_fw_head); void kill_pending_fw_fallback_reqs(bool kill_all) { struct fw_priv *fw_priv; struct fw_priv *next; mutex_lock(&fw_lock); list_for_each_entry_safe(fw_priv, next, &pending_fw_head, pending_list) { if (kill_all || !fw_priv->need_uevent) __fw_load_abort(fw_priv); } if (kill_all) fw_load_abort_all = true; mutex_unlock(&fw_lock); } /** * fw_load_sysfs_fallback() - load a firmware via the sysfs fallback mechanism * @fw_sysfs: firmware sysfs information for the firmware to load * @timeout: timeout to wait for the load * * In charge of constructing a sysfs fallback interface for firmware loading. **/ static int fw_load_sysfs_fallback(struct fw_sysfs *fw_sysfs, long timeout) { int retval = 0; struct device *f_dev = &fw_sysfs->dev; struct fw_priv *fw_priv = fw_sysfs->fw_priv; /* fall back on userspace loading */ if (!fw_priv->data) fw_priv->is_paged_buf = true; dev_set_uevent_suppress(f_dev, true); retval = device_add(f_dev); if (retval) { dev_err(f_dev, "%s: device_register failed\n", __func__); goto err_put_dev; } mutex_lock(&fw_lock); if (fw_load_abort_all || fw_state_is_aborted(fw_priv)) { mutex_unlock(&fw_lock); retval = -EINTR; goto out; } list_add(&fw_priv->pending_list, &pending_fw_head); mutex_unlock(&fw_lock); if (fw_priv->opt_flags & FW_OPT_UEVENT) { fw_priv->need_uevent = true; dev_set_uevent_suppress(f_dev, false); dev_dbg(f_dev, "firmware: requesting %s\n", fw_priv->fw_name); kobject_uevent(&fw_sysfs->dev.kobj, KOBJ_ADD); } else { timeout = MAX_JIFFY_OFFSET; } retval = fw_sysfs_wait_timeout(fw_priv, timeout); if (retval < 0 && retval != -ENOENT) { mutex_lock(&fw_lock); fw_load_abort(fw_sysfs); mutex_unlock(&fw_lock); } if (fw_state_is_aborted(fw_priv)) { if (retval == -ERESTARTSYS) retval = -EINTR; } else if (fw_priv->is_paged_buf && !fw_priv->data) retval = -ENOMEM; out: device_del(f_dev); err_put_dev: put_device(f_dev); return retval; } static int fw_load_from_user_helper(struct firmware *firmware, const char *name, struct device *device, u32 opt_flags) { struct fw_sysfs *fw_sysfs; long timeout; int ret; timeout = firmware_loading_timeout(); if (opt_flags & FW_OPT_NOWAIT) { timeout = usermodehelper_read_lock_wait(timeout); if (!timeout) { dev_dbg(device, "firmware: %s loading timed out\n", name); return -EBUSY; } } else { ret = usermodehelper_read_trylock(); if (WARN_ON(ret)) { dev_err(device, "firmware: %s will not be loaded\n", name); return ret; } } fw_sysfs = fw_create_instance(firmware, name, device, opt_flags); if (IS_ERR(fw_sysfs)) { ret = PTR_ERR(fw_sysfs); goto out_unlock; } fw_sysfs->fw_priv = firmware->priv; ret = fw_load_sysfs_fallback(fw_sysfs, timeout); if (!ret) ret = assign_fw(firmware, device); out_unlock: usermodehelper_read_unlock(); return ret; } static bool fw_force_sysfs_fallback(u32 opt_flags) { if (fw_fallback_config.force_sysfs_fallback) return true; if (!(opt_flags & FW_OPT_USERHELPER)) return false; return true; } static bool fw_run_sysfs_fallback(u32 opt_flags) { int ret; if (fw_fallback_config.ignore_sysfs_fallback) { pr_info_once("Ignoring firmware sysfs fallback due to sysctl knob\n"); return false; } if ((opt_flags & FW_OPT_NOFALLBACK_SYSFS)) return false; /* Also permit LSMs and IMA to fail firmware sysfs fallback */ ret = security_kernel_load_data(LOADING_FIRMWARE, true); if (ret < 0) return false; return fw_force_sysfs_fallback(opt_flags); } /** * firmware_fallback_sysfs() - use the fallback mechanism to find firmware * @fw: pointer to firmware image * @name: name of firmware file to look for * @device: device for which firmware is being loaded * @opt_flags: options to control firmware loading behaviour, as defined by * &enum fw_opt * @ret: return value from direct lookup which triggered the fallback mechanism * * This function is called if direct lookup for the firmware failed, it enables * a fallback mechanism through userspace by exposing a sysfs loading * interface. Userspace is in charge of loading the firmware through the sysfs * loading interface. This sysfs fallback mechanism may be disabled completely * on a system by setting the proc sysctl value ignore_sysfs_fallback to true. * If this is false we check if the internal API caller set the * @FW_OPT_NOFALLBACK_SYSFS flag, if so it would also disable the fallback * mechanism. A system may want to enforce the sysfs fallback mechanism at all * times, it can do this by setting ignore_sysfs_fallback to false and * force_sysfs_fallback to true. * Enabling force_sysfs_fallback is functionally equivalent to build a kernel * with CONFIG_FW_LOADER_USER_HELPER_FALLBACK. **/ int firmware_fallback_sysfs(struct firmware *fw, const char *name, struct device *device, u32 opt_flags, int ret) { if (!fw_run_sysfs_fallback(opt_flags)) return ret; if (!(opt_flags & FW_OPT_NO_WARN)) dev_warn(device, "Falling back to sysfs fallback for: %s\n", name); else dev_dbg(device, "Falling back to sysfs fallback for: %s\n", name); return fw_load_from_user_helper(fw, name, device, opt_flags); } |
19 2 3 1 13 10 5 13 3 2 1 1 1 3 4 2 5 82 6 6 4 4 107 109 1 77 18 80 1 77 14 1 15 12 2 2 9 9 5 2 2 10 1 1 1 5 1 2 1 1 1 6 1 1 2 7 5 1 3 2 21 20 1 1 1 17 1 1 15 1 8 7 4 32 5 1 11 7 8 1 6 16 1 3 1 2 1 1 3 4 6 1 1 3 17 17 19 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/ethtool_netlink.h> #include <linux/bitmap.h> #include "netlink.h" #include "bitset.h" /* Some bitmaps are internally represented as an array of unsigned long, some * as an array of u32 (some even as single u32 for now). To avoid the need of * wrappers on caller side, we provide two set of functions: those with "32" * suffix in their names expect u32 based bitmaps, those without it expect * unsigned long bitmaps. */ static u32 ethnl_lower_bits(unsigned int n) { return ~(u32)0 >> (32 - n % 32); } static u32 ethnl_upper_bits(unsigned int n) { return ~(u32)0 << (n % 32); } /** * ethnl_bitmap32_clear() - Clear u32 based bitmap * @dst: bitmap to clear * @start: beginning of the interval * @end: end of the interval * @mod: set if bitmap was modified * * Clear @nbits bits of a bitmap with indices @start <= i < @end */ static void ethnl_bitmap32_clear(u32 *dst, unsigned int start, unsigned int end, bool *mod) { unsigned int start_word = start / 32; unsigned int end_word = end / 32; unsigned int i; u32 mask; if (end <= start) return; if (start % 32) { mask = ethnl_upper_bits(start); if (end_word == start_word) { mask &= ethnl_lower_bits(end); if (dst[start_word] & mask) { dst[start_word] &= ~mask; *mod = true; } return; } if (dst[start_word] & mask) { dst[start_word] &= ~mask; *mod = true; } start_word++; } for (i = start_word; i < end_word; i++) { if (dst[i]) { dst[i] = 0; *mod = true; } } if (end % 32) { mask = ethnl_lower_bits(end); if (dst[end_word] & mask) { dst[end_word] &= ~mask; *mod = true; } } } /** * ethnl_bitmap32_not_zero() - Check if any bit is set in an interval * @map: bitmap to test * @start: beginning of the interval * @end: end of the interval * * Return: true if there is non-zero bit with index @start <= i < @end, * false if the whole interval is zero */ static bool ethnl_bitmap32_not_zero(const u32 *map, unsigned int start, unsigned int end) { unsigned int start_word = start / 32; unsigned int end_word = end / 32; u32 mask; if (end <= start) return true; if (start % 32) { mask = ethnl_upper_bits(start); if (end_word == start_word) { mask &= ethnl_lower_bits(end); return map[start_word] & mask; } if (map[start_word] & mask) return true; start_word++; } if (!memchr_inv(map + start_word, '\0', (end_word - start_word) * sizeof(u32))) return true; if (end % 32 == 0) return true; return map[end_word] & ethnl_lower_bits(end); } /** * ethnl_bitmap32_update() - Modify u32 based bitmap according to value/mask * pair * @dst: bitmap to update * @nbits: bit size of the bitmap * @value: values to set * @mask: mask of bits to set * @mod: set to true if bitmap is modified, preserve if not * * Set bits in @dst bitmap which are set in @mask to values from @value, leave * the rest untouched. If destination bitmap was modified, set @mod to true, * leave as it is if not. */ static void ethnl_bitmap32_update(u32 *dst, unsigned int nbits, const u32 *value, const u32 *mask, bool *mod) { while (nbits > 0) { u32 real_mask = mask ? *mask : ~(u32)0; u32 new_value; if (nbits < 32) real_mask &= ethnl_lower_bits(nbits); new_value = (*dst & ~real_mask) | (*value & real_mask); if (new_value != *dst) { *dst = new_value; *mod = true; } if (nbits <= 32) break; dst++; nbits -= 32; value++; if (mask) mask++; } } static bool ethnl_bitmap32_test_bit(const u32 *map, unsigned int index) { return map[index / 32] & (1U << (index % 32)); } /** * ethnl_bitset32_size() - Calculate size of bitset nested attribute * @val: value bitmap (u32 based) * @mask: mask bitmap (u32 based, optional) * @nbits: bit length of the bitset * @names: array of bit names (optional) * @compact: assume compact format for output * * Estimate length of netlink attribute composed by a later call to * ethnl_put_bitset32() call with the same arguments. * * Return: negative error code or attribute length estimate */ int ethnl_bitset32_size(const u32 *val, const u32 *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { unsigned int len = 0; /* list flag */ if (!mask) len += nla_total_size(sizeof(u32)); /* size */ len += nla_total_size(sizeof(u32)); if (compact) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); /* value, mask */ len += (mask ? 2 : 1) * nla_total_size(nwords * sizeof(u32)); } else { unsigned int bits_len = 0; unsigned int bit_len, i; for (i = 0; i < nbits; i++) { const char *name = names ? names[i] : NULL; if (!ethnl_bitmap32_test_bit(mask ?: val, i)) continue; /* index */ bit_len = nla_total_size(sizeof(u32)); /* name */ if (name) bit_len += ethnl_strz_size(name); /* value */ if (mask && ethnl_bitmap32_test_bit(val, i)) bit_len += nla_total_size(0); /* bit nest */ bits_len += nla_total_size(bit_len); } /* bits nest */ len += nla_total_size(bits_len); } /* outermost nest */ return nla_total_size(len); } /** * ethnl_put_bitset32() - Put a bitset nest into a message * @skb: skb with the message * @attrtype: attribute type for the bitset nest * @val: value bitmap (u32 based) * @mask: mask bitmap (u32 based, optional) * @nbits: bit length of the bitset * @names: array of bit names (optional) * @compact: use compact format for the output * * Compose a nested attribute representing a bitset. If @mask is null, simple * bitmap (bit list) is created, if @mask is provided, represent a value/mask * pair. Bit names are only used in verbose mode and when provided by calller. * * Return: 0 on success, negative error value on error */ int ethnl_put_bitset32(struct sk_buff *skb, int attrtype, const u32 *val, const u32 *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { struct nlattr *nest; struct nlattr *attr; nest = nla_nest_start(skb, attrtype); if (!nest) return -EMSGSIZE; if (!mask && nla_put_flag(skb, ETHTOOL_A_BITSET_NOMASK)) goto nla_put_failure; if (nla_put_u32(skb, ETHTOOL_A_BITSET_SIZE, nbits)) goto nla_put_failure; if (compact) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); unsigned int nbytes = nwords * sizeof(u32); u32 *dst; attr = nla_reserve(skb, ETHTOOL_A_BITSET_VALUE, nbytes); if (!attr) goto nla_put_failure; dst = nla_data(attr); memcpy(dst, val, nbytes); if (nbits % 32) dst[nwords - 1] &= ethnl_lower_bits(nbits); if (mask) { attr = nla_reserve(skb, ETHTOOL_A_BITSET_MASK, nbytes); if (!attr) goto nla_put_failure; dst = nla_data(attr); memcpy(dst, mask, nbytes); if (nbits % 32) dst[nwords - 1] &= ethnl_lower_bits(nbits); } } else { struct nlattr *bits; unsigned int i; bits = nla_nest_start(skb, ETHTOOL_A_BITSET_BITS); if (!bits) goto nla_put_failure; for (i = 0; i < nbits; i++) { const char *name = names ? names[i] : NULL; if (!ethnl_bitmap32_test_bit(mask ?: val, i)) continue; attr = nla_nest_start(skb, ETHTOOL_A_BITSET_BITS_BIT); if (!attr) goto nla_put_failure; if (nla_put_u32(skb, ETHTOOL_A_BITSET_BIT_INDEX, i)) goto nla_put_failure; if (name && ethnl_put_strz(skb, ETHTOOL_A_BITSET_BIT_NAME, name)) goto nla_put_failure; if (mask && ethnl_bitmap32_test_bit(val, i) && nla_put_flag(skb, ETHTOOL_A_BITSET_BIT_VALUE)) goto nla_put_failure; nla_nest_end(skb, attr); } nla_nest_end(skb, bits); } nla_nest_end(skb, nest); return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static const struct nla_policy bitset_policy[] = { [ETHTOOL_A_BITSET_NOMASK] = { .type = NLA_FLAG }, [ETHTOOL_A_BITSET_SIZE] = NLA_POLICY_MAX(NLA_U32, ETHNL_MAX_BITSET_SIZE), [ETHTOOL_A_BITSET_BITS] = { .type = NLA_NESTED }, [ETHTOOL_A_BITSET_VALUE] = { .type = NLA_BINARY }, [ETHTOOL_A_BITSET_MASK] = { .type = NLA_BINARY }, }; static const struct nla_policy bit_policy[] = { [ETHTOOL_A_BITSET_BIT_INDEX] = { .type = NLA_U32 }, [ETHTOOL_A_BITSET_BIT_NAME] = { .type = NLA_NUL_STRING }, [ETHTOOL_A_BITSET_BIT_VALUE] = { .type = NLA_FLAG }, }; /** * ethnl_bitset_is_compact() - check if bitset attribute represents a compact * bitset * @bitset: nested attribute representing a bitset * @compact: pointer for return value * * Return: 0 on success, negative error code on failure */ int ethnl_bitset_is_compact(const struct nlattr *bitset, bool *compact) { struct nlattr *tb[ARRAY_SIZE(bitset_policy)]; int ret; ret = nla_parse_nested(tb, ARRAY_SIZE(bitset_policy) - 1, bitset, bitset_policy, NULL); if (ret < 0) return ret; if (tb[ETHTOOL_A_BITSET_BITS]) { if (tb[ETHTOOL_A_BITSET_VALUE] || tb[ETHTOOL_A_BITSET_MASK]) return -EINVAL; *compact = false; return 0; } if (!tb[ETHTOOL_A_BITSET_SIZE] || !tb[ETHTOOL_A_BITSET_VALUE]) return -EINVAL; *compact = true; return 0; } /** * ethnl_name_to_idx() - look up string index for a name * @names: array of ETH_GSTRING_LEN sized strings * @n_names: number of strings in the array * @name: name to look up * * Return: index of the string if found, -ENOENT if not found */ static int ethnl_name_to_idx(ethnl_string_array_t names, unsigned int n_names, const char *name) { unsigned int i; if (!names) return -ENOENT; for (i = 0; i < n_names; i++) { /* names[i] may not be null terminated */ if (!strncmp(names[i], name, ETH_GSTRING_LEN) && strlen(name) <= ETH_GSTRING_LEN) return i; } return -ENOENT; } static int ethnl_parse_bit(unsigned int *index, bool *val, unsigned int nbits, const struct nlattr *bit_attr, bool no_mask, ethnl_string_array_t names, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(bit_policy)]; int ret, idx; ret = nla_parse_nested(tb, ARRAY_SIZE(bit_policy) - 1, bit_attr, bit_policy, extack); if (ret < 0) return ret; if (tb[ETHTOOL_A_BITSET_BIT_INDEX]) { const char *name; idx = nla_get_u32(tb[ETHTOOL_A_BITSET_BIT_INDEX]); if (idx >= nbits) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_BIT_INDEX], "bit index too high"); return -EOPNOTSUPP; } name = names ? names[idx] : NULL; if (tb[ETHTOOL_A_BITSET_BIT_NAME] && name && strncmp(nla_data(tb[ETHTOOL_A_BITSET_BIT_NAME]), name, nla_len(tb[ETHTOOL_A_BITSET_BIT_NAME]))) { NL_SET_ERR_MSG_ATTR(extack, bit_attr, "bit index and name mismatch"); return -EINVAL; } } else if (tb[ETHTOOL_A_BITSET_BIT_NAME]) { idx = ethnl_name_to_idx(names, nbits, nla_data(tb[ETHTOOL_A_BITSET_BIT_NAME])); if (idx < 0) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_BIT_NAME], "bit name not found"); return -EOPNOTSUPP; } } else { NL_SET_ERR_MSG_ATTR(extack, bit_attr, "neither bit index nor name specified"); return -EINVAL; } *index = idx; *val = no_mask || tb[ETHTOOL_A_BITSET_BIT_VALUE]; return 0; } static int ethnl_update_bitset32_verbose(u32 *bitmap, unsigned int nbits, const struct nlattr *attr, struct nlattr **tb, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { struct nlattr *bit_attr; bool no_mask; int rem; int ret; if (tb[ETHTOOL_A_BITSET_VALUE]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_VALUE], "value only allowed in compact bitset"); return -EINVAL; } if (tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "mask only allowed in compact bitset"); return -EINVAL; } no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; if (no_mask) ethnl_bitmap32_clear(bitmap, 0, nbits, mod); nla_for_each_nested(bit_attr, tb[ETHTOOL_A_BITSET_BITS], rem) { bool old_val, new_val; unsigned int idx; if (nla_type(bit_attr) != ETHTOOL_A_BITSET_BITS_BIT) { NL_SET_ERR_MSG_ATTR(extack, bit_attr, "only ETHTOOL_A_BITSET_BITS_BIT allowed in ETHTOOL_A_BITSET_BITS"); return -EINVAL; } ret = ethnl_parse_bit(&idx, &new_val, nbits, bit_attr, no_mask, names, extack); if (ret < 0) return ret; old_val = bitmap[idx / 32] & ((u32)1 << (idx % 32)); if (new_val != old_val) { if (new_val) bitmap[idx / 32] |= ((u32)1 << (idx % 32)); else bitmap[idx / 32] &= ~((u32)1 << (idx % 32)); *mod = true; } } return 0; } static int ethnl_compact_sanity_checks(unsigned int nbits, const struct nlattr *nest, struct nlattr **tb, struct netlink_ext_ack *extack) { bool no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; unsigned int attr_nbits, attr_nwords; const struct nlattr *test_attr; if (no_mask && tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "mask not allowed in list bitset"); return -EINVAL; } if (!tb[ETHTOOL_A_BITSET_SIZE]) { NL_SET_ERR_MSG_ATTR(extack, nest, "missing size in compact bitset"); return -EINVAL; } if (!tb[ETHTOOL_A_BITSET_VALUE]) { NL_SET_ERR_MSG_ATTR(extack, nest, "missing value in compact bitset"); return -EINVAL; } if (!no_mask && !tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, nest, "missing mask in compact nonlist bitset"); return -EINVAL; } attr_nbits = nla_get_u32(tb[ETHTOOL_A_BITSET_SIZE]); attr_nwords = DIV_ROUND_UP(attr_nbits, 32); if (nla_len(tb[ETHTOOL_A_BITSET_VALUE]) != attr_nwords * sizeof(u32)) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_VALUE], "bitset value length does not match size"); return -EINVAL; } if (tb[ETHTOOL_A_BITSET_MASK] && nla_len(tb[ETHTOOL_A_BITSET_MASK]) != attr_nwords * sizeof(u32)) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "bitset mask length does not match size"); return -EINVAL; } if (attr_nbits <= nbits) return 0; test_attr = no_mask ? tb[ETHTOOL_A_BITSET_VALUE] : tb[ETHTOOL_A_BITSET_MASK]; if (ethnl_bitmap32_not_zero(nla_data(test_attr), nbits, attr_nbits)) { NL_SET_ERR_MSG_ATTR(extack, test_attr, "cannot modify bits past kernel bitset size"); return -EINVAL; } return 0; } /** * ethnl_update_bitset32() - Apply a bitset nest to a u32 based bitmap * @bitmap: bitmap to update * @nbits: size of the updated bitmap in bits * @attr: nest attribute to parse and apply * @names: array of bit names; may be null for compact format * @extack: extack for error reporting * @mod: set this to true if bitmap is modified, leave as it is if not * * Apply bitset netsted attribute to a bitmap. If the attribute represents * a bit list, @bitmap is set to its contents; otherwise, bits in mask are * set to values from value. Bitmaps in the attribute may be longer than * @nbits but the message must not request modifying any bits past @nbits. * * Return: negative error code on failure, 0 on success */ int ethnl_update_bitset32(u32 *bitmap, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { struct nlattr *tb[ARRAY_SIZE(bitset_policy)]; unsigned int change_bits; bool no_mask; int ret; if (!attr) return 0; ret = nla_parse_nested(tb, ARRAY_SIZE(bitset_policy) - 1, attr, bitset_policy, extack); if (ret < 0) return ret; if (tb[ETHTOOL_A_BITSET_BITS]) return ethnl_update_bitset32_verbose(bitmap, nbits, attr, tb, names, extack, mod); ret = ethnl_compact_sanity_checks(nbits, attr, tb, extack); if (ret < 0) return ret; no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; change_bits = min_t(unsigned int, nla_get_u32(tb[ETHTOOL_A_BITSET_SIZE]), nbits); ethnl_bitmap32_update(bitmap, change_bits, nla_data(tb[ETHTOOL_A_BITSET_VALUE]), no_mask ? NULL : nla_data(tb[ETHTOOL_A_BITSET_MASK]), mod); if (no_mask && change_bits < nbits) ethnl_bitmap32_clear(bitmap, change_bits, nbits, mod); return 0; } /** * ethnl_parse_bitset() - Compute effective value and mask from bitset nest * @val: unsigned long based bitmap to put value into * @mask: unsigned long based bitmap to put mask into * @nbits: size of @val and @mask bitmaps * @attr: nest attribute to parse and apply * @names: array of bit names; may be null for compact format * @extack: extack for error reporting * * Provide @nbits size long bitmaps for value and mask so that * x = (val & mask) | (x & ~mask) would modify any @nbits sized bitmap x * the same way ethnl_update_bitset() with the same bitset attribute would. * * Return: negative error code on failure, 0 on success */ int ethnl_parse_bitset(unsigned long *val, unsigned long *mask, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(bitset_policy)]; const struct nlattr *bit_attr; bool no_mask; int rem; int ret; if (!attr) return 0; ret = nla_parse_nested(tb, ARRAY_SIZE(bitset_policy) - 1, attr, bitset_policy, extack); if (ret < 0) return ret; no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; if (!tb[ETHTOOL_A_BITSET_BITS]) { unsigned int change_bits; ret = ethnl_compact_sanity_checks(nbits, attr, tb, extack); if (ret < 0) return ret; change_bits = nla_get_u32(tb[ETHTOOL_A_BITSET_SIZE]); if (change_bits > nbits) change_bits = nbits; bitmap_from_arr32(val, nla_data(tb[ETHTOOL_A_BITSET_VALUE]), change_bits); if (change_bits < nbits) bitmap_clear(val, change_bits, nbits - change_bits); if (no_mask) { bitmap_fill(mask, nbits); } else { bitmap_from_arr32(mask, nla_data(tb[ETHTOOL_A_BITSET_MASK]), change_bits); if (change_bits < nbits) bitmap_clear(mask, change_bits, nbits - change_bits); } return 0; } if (tb[ETHTOOL_A_BITSET_VALUE]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_VALUE], "value only allowed in compact bitset"); return -EINVAL; } if (tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "mask only allowed in compact bitset"); return -EINVAL; } bitmap_zero(val, nbits); if (no_mask) bitmap_fill(mask, nbits); else bitmap_zero(mask, nbits); nla_for_each_nested(bit_attr, tb[ETHTOOL_A_BITSET_BITS], rem) { unsigned int idx; bool bit_val; ret = ethnl_parse_bit(&idx, &bit_val, nbits, bit_attr, no_mask, names, extack); if (ret < 0) return ret; if (bit_val) __set_bit(idx, val); if (!no_mask) __set_bit(idx, mask); } return 0; } #if BITS_PER_LONG == 64 && defined(__BIG_ENDIAN) /* 64-bit big endian architectures are the only case when u32 based bitmaps * and unsigned long based bitmaps have different memory layout so that we * cannot simply cast the latter to the former and need actual wrappers * converting the latter to the former. * * To reduce the number of slab allocations, the wrappers use fixed size local * variables for bitmaps up to ETHNL_SMALL_BITMAP_BITS bits which is the * majority of bitmaps used by ethtool. */ #define ETHNL_SMALL_BITMAP_BITS 128 #define ETHNL_SMALL_BITMAP_WORDS DIV_ROUND_UP(ETHNL_SMALL_BITMAP_BITS, 32) int ethnl_bitset_size(const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { u32 small_mask32[ETHNL_SMALL_BITMAP_WORDS]; u32 small_val32[ETHNL_SMALL_BITMAP_WORDS]; u32 *mask32; u32 *val32; int ret; if (nbits > ETHNL_SMALL_BITMAP_BITS) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); val32 = kmalloc_array(2 * nwords, sizeof(u32), GFP_KERNEL); if (!val32) return -ENOMEM; mask32 = val32 + nwords; } else { val32 = small_val32; mask32 = small_mask32; } bitmap_to_arr32(val32, val, nbits); if (mask) bitmap_to_arr32(mask32, mask, nbits); else mask32 = NULL; ret = ethnl_bitset32_size(val32, mask32, nbits, names, compact); if (nbits > ETHNL_SMALL_BITMAP_BITS) kfree(val32); return ret; } int ethnl_put_bitset(struct sk_buff *skb, int attrtype, const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { u32 small_mask32[ETHNL_SMALL_BITMAP_WORDS]; u32 small_val32[ETHNL_SMALL_BITMAP_WORDS]; u32 *mask32; u32 *val32; int ret; if (nbits > ETHNL_SMALL_BITMAP_BITS) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); val32 = kmalloc_array(2 * nwords, sizeof(u32), GFP_KERNEL); if (!val32) return -ENOMEM; mask32 = val32 + nwords; } else { val32 = small_val32; mask32 = small_mask32; } bitmap_to_arr32(val32, val, nbits); if (mask) bitmap_to_arr32(mask32, mask, nbits); else mask32 = NULL; ret = ethnl_put_bitset32(skb, attrtype, val32, mask32, nbits, names, compact); if (nbits > ETHNL_SMALL_BITMAP_BITS) kfree(val32); return ret; } int ethnl_update_bitset(unsigned long *bitmap, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { u32 small_bitmap32[ETHNL_SMALL_BITMAP_WORDS]; u32 *bitmap32 = small_bitmap32; bool u32_mod = false; int ret; if (nbits > ETHNL_SMALL_BITMAP_BITS) { unsigned int dst_words = DIV_ROUND_UP(nbits, 32); bitmap32 = kmalloc_array(dst_words, sizeof(u32), GFP_KERNEL); if (!bitmap32) return -ENOMEM; } bitmap_to_arr32(bitmap32, bitmap, nbits); ret = ethnl_update_bitset32(bitmap32, nbits, attr, names, extack, &u32_mod); if (u32_mod) { bitmap_from_arr32(bitmap, bitmap32, nbits); *mod = true; } if (nbits > ETHNL_SMALL_BITMAP_BITS) kfree(bitmap32); return ret; } #else /* On little endian 64-bit and all 32-bit architectures, an unsigned long * based bitmap can be interpreted as u32 based one using a simple cast. */ int ethnl_bitset_size(const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { return ethnl_bitset32_size((const u32 *)val, (const u32 *)mask, nbits, names, compact); } int ethnl_put_bitset(struct sk_buff *skb, int attrtype, const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { return ethnl_put_bitset32(skb, attrtype, (const u32 *)val, (const u32 *)mask, nbits, names, compact); } int ethnl_update_bitset(unsigned long *bitmap, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { return ethnl_update_bitset32((u32 *)bitmap, nbits, attr, names, extack, mod); } #endif /* BITS_PER_LONG == 64 && defined(__BIG_ENDIAN) */ |
5 5 5 5 5 4 5 5 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 | // SPDX-License-Identifier: GPL-2.0-only /* * net/sunrpc/cache.c * * Generic code for various authentication-related caches * used by sunrpc clients and servers. * * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> */ #include <linux/types.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/slab.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kmod.h> #include <linux/list.h> #include <linux/module.h> #include <linux/ctype.h> #include <linux/string_helpers.h> #include <linux/uaccess.h> #include <linux/poll.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/net.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/pagemap.h> #include <asm/ioctls.h> #include <linux/sunrpc/types.h> #include <linux/sunrpc/cache.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/rpc_pipe_fs.h> #include <trace/events/sunrpc.h> #include "netns.h" #include "fail.h" #define RPCDBG_FACILITY RPCDBG_CACHE static bool cache_defer_req(struct cache_req *req, struct cache_head *item); static void cache_revisit_request(struct cache_head *item); static void cache_init(struct cache_head *h, struct cache_detail *detail) { time64_t now = seconds_since_boot(); INIT_HLIST_NODE(&h->cache_list); h->flags = 0; kref_init(&h->ref); h->expiry_time = now + CACHE_NEW_EXPIRY; if (now <= detail->flush_time) /* ensure it isn't already expired */ now = detail->flush_time + 1; h->last_refresh = now; } static void cache_fresh_unlocked(struct cache_head *head, struct cache_detail *detail); static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, struct cache_head *key, int hash) { struct hlist_head *head = &detail->hash_table[hash]; struct cache_head *tmp; rcu_read_lock(); hlist_for_each_entry_rcu(tmp, head, cache_list) { if (!detail->match(tmp, key)) continue; if (test_bit(CACHE_VALID, &tmp->flags) && cache_is_expired(detail, tmp)) continue; tmp = cache_get_rcu(tmp); rcu_read_unlock(); return tmp; } rcu_read_unlock(); return NULL; } static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, struct cache_detail *cd) { /* Must be called under cd->hash_lock */ hlist_del_init_rcu(&ch->cache_list); set_bit(CACHE_CLEANED, &ch->flags); cd->entries --; } static void sunrpc_end_cache_remove_entry(struct cache_head *ch, struct cache_detail *cd) { cache_fresh_unlocked(ch, cd); cache_put(ch, cd); } static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, struct cache_head *key, int hash) { struct cache_head *new, *tmp, *freeme = NULL; struct hlist_head *head = &detail->hash_table[hash]; new = detail->alloc(); if (!new) return NULL; /* must fully initialise 'new', else * we might get lose if we need to * cache_put it soon. */ cache_init(new, detail); detail->init(new, key); spin_lock(&detail->hash_lock); /* check if entry appeared while we slept */ hlist_for_each_entry_rcu(tmp, head, cache_list, lockdep_is_held(&detail->hash_lock)) { if (!detail->match(tmp, key)) continue; if (test_bit(CACHE_VALID, &tmp->flags) && cache_is_expired(detail, tmp)) { sunrpc_begin_cache_remove_entry(tmp, detail); trace_cache_entry_expired(detail, tmp); freeme = tmp; break; } cache_get(tmp); spin_unlock(&detail->hash_lock); cache_put(new, detail); return tmp; } hlist_add_head_rcu(&new->cache_list, head); detail->entries++; cache_get(new); spin_unlock(&detail->hash_lock); if (freeme) sunrpc_end_cache_remove_entry(freeme, detail); return new; } struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, struct cache_head *key, int hash) { struct cache_head *ret; ret = sunrpc_cache_find_rcu(detail, key, hash); if (ret) return ret; /* Didn't find anything, insert an empty entry */ return sunrpc_cache_add_entry(detail, key, hash); } EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); static void cache_fresh_locked(struct cache_head *head, time64_t expiry, struct cache_detail *detail) { time64_t now = seconds_since_boot(); if (now <= detail->flush_time) /* ensure it isn't immediately treated as expired */ now = detail->flush_time + 1; head->expiry_time = expiry; head->last_refresh = now; smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ set_bit(CACHE_VALID, &head->flags); } static void cache_fresh_unlocked(struct cache_head *head, struct cache_detail *detail) { if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { cache_revisit_request(head); cache_dequeue(detail, head); } } static void cache_make_negative(struct cache_detail *detail, struct cache_head *h) { set_bit(CACHE_NEGATIVE, &h->flags); trace_cache_entry_make_negative(detail, h); } static void cache_entry_update(struct cache_detail *detail, struct cache_head *h, struct cache_head *new) { if (!test_bit(CACHE_NEGATIVE, &new->flags)) { detail->update(h, new); trace_cache_entry_update(detail, h); } else { cache_make_negative(detail, h); } } struct cache_head *sunrpc_cache_update(struct cache_detail *detail, struct cache_head *new, struct cache_head *old, int hash) { /* The 'old' entry is to be replaced by 'new'. * If 'old' is not VALID, we update it directly, * otherwise we need to replace it */ struct cache_head *tmp; if (!test_bit(CACHE_VALID, &old->flags)) { spin_lock(&detail->hash_lock); if (!test_bit(CACHE_VALID, &old->flags)) { cache_entry_update(detail, old, new); cache_fresh_locked(old, new->expiry_time, detail); spin_unlock(&detail->hash_lock); cache_fresh_unlocked(old, detail); return old; } spin_unlock(&detail->hash_lock); } /* We need to insert a new entry */ tmp = detail->alloc(); if (!tmp) { cache_put(old, detail); return NULL; } cache_init(tmp, detail); detail->init(tmp, old); spin_lock(&detail->hash_lock); cache_entry_update(detail, tmp, new); hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); detail->entries++; cache_get(tmp); cache_fresh_locked(tmp, new->expiry_time, detail); cache_fresh_locked(old, 0, detail); spin_unlock(&detail->hash_lock); cache_fresh_unlocked(tmp, detail); cache_fresh_unlocked(old, detail); cache_put(old, detail); return tmp; } EXPORT_SYMBOL_GPL(sunrpc_cache_update); static inline int cache_is_valid(struct cache_head *h) { if (!test_bit(CACHE_VALID, &h->flags)) return -EAGAIN; else { /* entry is valid */ if (test_bit(CACHE_NEGATIVE, &h->flags)) return -ENOENT; else { /* * In combination with write barrier in * sunrpc_cache_update, ensures that anyone * using the cache entry after this sees the * updated contents: */ smp_rmb(); return 0; } } } static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) { int rv; spin_lock(&detail->hash_lock); rv = cache_is_valid(h); if (rv == -EAGAIN) { cache_make_negative(detail, h); cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, detail); rv = -ENOENT; } spin_unlock(&detail->hash_lock); cache_fresh_unlocked(h, detail); return rv; } /* * This is the generic cache management routine for all * the authentication caches. * It checks the currency of a cache item and will (later) * initiate an upcall to fill it if needed. * * * Returns 0 if the cache_head can be used, or cache_puts it and returns * -EAGAIN if upcall is pending and request has been queued * -ETIMEDOUT if upcall failed or request could not be queue or * upcall completed but item is still invalid (implying that * the cache item has been replaced with a newer one). * -ENOENT if cache entry was negative */ int cache_check(struct cache_detail *detail, struct cache_head *h, struct cache_req *rqstp) { int rv; time64_t refresh_age, age; /* First decide return status as best we can */ rv = cache_is_valid(h); /* now see if we want to start an upcall */ refresh_age = (h->expiry_time - h->last_refresh); age = seconds_since_boot() - h->last_refresh; if (rqstp == NULL) { if (rv == -EAGAIN) rv = -ENOENT; } else if (rv == -EAGAIN || (h->expiry_time != 0 && age > refresh_age/2)) { dprintk("RPC: Want update, refage=%lld, age=%lld\n", refresh_age, age); switch (detail->cache_upcall(detail, h)) { case -EINVAL: rv = try_to_negate_entry(detail, h); break; case -EAGAIN: cache_fresh_unlocked(h, detail); break; } } if (rv == -EAGAIN) { if (!cache_defer_req(rqstp, h)) { /* * Request was not deferred; handle it as best * we can ourselves: */ rv = cache_is_valid(h); if (rv == -EAGAIN) rv = -ETIMEDOUT; } } if (rv) cache_put(h, detail); return rv; } EXPORT_SYMBOL_GPL(cache_check); /* * caches need to be periodically cleaned. * For this we maintain a list of cache_detail and * a current pointer into that list and into the table * for that entry. * * Each time cache_clean is called it finds the next non-empty entry * in the current table and walks the list in that entry * looking for entries that can be removed. * * An entry gets removed if: * - The expiry is before current time * - The last_refresh time is before the flush_time for that cache * * later we might drop old entries with non-NEVER expiry if that table * is getting 'full' for some definition of 'full' * * The question of "how often to scan a table" is an interesting one * and is answered in part by the use of the "nextcheck" field in the * cache_detail. * When a scan of a table begins, the nextcheck field is set to a time * that is well into the future. * While scanning, if an expiry time is found that is earlier than the * current nextcheck time, nextcheck is set to that expiry time. * If the flush_time is ever set to a time earlier than the nextcheck * time, the nextcheck time is then set to that flush_time. * * A table is then only scanned if the current time is at least * the nextcheck time. * */ static LIST_HEAD(cache_list); static DEFINE_SPINLOCK(cache_list_lock); static struct cache_detail *current_detail; static int current_index; static void do_cache_clean(struct work_struct *work); static struct delayed_work cache_cleaner; void sunrpc_init_cache_detail(struct cache_detail *cd) { spin_lock_init(&cd->hash_lock); INIT_LIST_HEAD(&cd->queue); spin_lock(&cache_list_lock); cd->nextcheck = 0; cd->entries = 0; atomic_set(&cd->writers, 0); cd->last_close = 0; cd->last_warn = -1; list_add(&cd->others, &cache_list); spin_unlock(&cache_list_lock); /* start the cleaning process */ queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); } EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); void sunrpc_destroy_cache_detail(struct cache_detail *cd) { cache_purge(cd); spin_lock(&cache_list_lock); spin_lock(&cd->hash_lock); if (current_detail == cd) current_detail = NULL; list_del_init(&cd->others); spin_unlock(&cd->hash_lock); spin_unlock(&cache_list_lock); if (list_empty(&cache_list)) { /* module must be being unloaded so its safe to kill the worker */ cancel_delayed_work_sync(&cache_cleaner); } } EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); /* clean cache tries to find something to clean * and cleans it. * It returns 1 if it cleaned something, * 0 if it didn't find anything this time * -1 if it fell off the end of the list. */ static int cache_clean(void) { int rv = 0; struct list_head *next; spin_lock(&cache_list_lock); /* find a suitable table if we don't already have one */ while (current_detail == NULL || current_index >= current_detail->hash_size) { if (current_detail) next = current_detail->others.next; else next = cache_list.next; if (next == &cache_list) { current_detail = NULL; spin_unlock(&cache_list_lock); return -1; } current_detail = list_entry(next, struct cache_detail, others); if (current_detail->nextcheck > seconds_since_boot()) current_index = current_detail->hash_size; else { current_index = 0; current_detail->nextcheck = seconds_since_boot()+30*60; } } /* find a non-empty bucket in the table */ while (current_detail && current_index < current_detail->hash_size && hlist_empty(¤t_detail->hash_table[current_index])) current_index++; /* find a cleanable entry in the bucket and clean it, or set to next bucket */ if (current_detail && current_index < current_detail->hash_size) { struct cache_head *ch = NULL; struct cache_detail *d; struct hlist_head *head; struct hlist_node *tmp; spin_lock(¤t_detail->hash_lock); /* Ok, now to clean this strand */ head = ¤t_detail->hash_table[current_index]; hlist_for_each_entry_safe(ch, tmp, head, cache_list) { if (current_detail->nextcheck > ch->expiry_time) current_detail->nextcheck = ch->expiry_time+1; if (!cache_is_expired(current_detail, ch)) continue; sunrpc_begin_cache_remove_entry(ch, current_detail); trace_cache_entry_expired(current_detail, ch); rv = 1; break; } spin_unlock(¤t_detail->hash_lock); d = current_detail; if (!ch) current_index ++; spin_unlock(&cache_list_lock); if (ch) sunrpc_end_cache_remove_entry(ch, d); } else spin_unlock(&cache_list_lock); return rv; } /* * We want to regularly clean the cache, so we need to schedule some work ... */ static void do_cache_clean(struct work_struct *work) { int delay; if (list_empty(&cache_list)) return; if (cache_clean() == -1) delay = round_jiffies_relative(30*HZ); else delay = 5; queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); } /* * Clean all caches promptly. This just calls cache_clean * repeatedly until we are sure that every cache has had a chance to * be fully cleaned */ void cache_flush(void) { while (cache_clean() != -1) cond_resched(); while (cache_clean() != -1) cond_resched(); } EXPORT_SYMBOL_GPL(cache_flush); void cache_purge(struct cache_detail *detail) { struct cache_head *ch = NULL; struct hlist_head *head = NULL; int i = 0; spin_lock(&detail->hash_lock); if (!detail->entries) { spin_unlock(&detail->hash_lock); return; } dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); for (i = 0; i < detail->hash_size; i++) { head = &detail->hash_table[i]; while (!hlist_empty(head)) { ch = hlist_entry(head->first, struct cache_head, cache_list); sunrpc_begin_cache_remove_entry(ch, detail); spin_unlock(&detail->hash_lock); sunrpc_end_cache_remove_entry(ch, detail); spin_lock(&detail->hash_lock); } } spin_unlock(&detail->hash_lock); } EXPORT_SYMBOL_GPL(cache_purge); /* * Deferral and Revisiting of Requests. * * If a cache lookup finds a pending entry, we * need to defer the request and revisit it later. * All deferred requests are stored in a hash table, * indexed by "struct cache_head *". * As it may be wasteful to store a whole request * structure, we allow the request to provide a * deferred form, which must contain a * 'struct cache_deferred_req' * This cache_deferred_req contains a method to allow * it to be revisited when cache info is available */ #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) #define DFR_MAX 300 /* ??? */ static DEFINE_SPINLOCK(cache_defer_lock); static LIST_HEAD(cache_defer_list); static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; static int cache_defer_cnt; static void __unhash_deferred_req(struct cache_deferred_req *dreq) { hlist_del_init(&dreq->hash); if (!list_empty(&dreq->recent)) { list_del_init(&dreq->recent); cache_defer_cnt--; } } static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) { int hash = DFR_HASH(item); INIT_LIST_HEAD(&dreq->recent); hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); } static void setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item, int count_me) { dreq->item = item; spin_lock(&cache_defer_lock); __hash_deferred_req(dreq, item); if (count_me) { cache_defer_cnt++; list_add(&dreq->recent, &cache_defer_list); } spin_unlock(&cache_defer_lock); } struct thread_deferred_req { struct cache_deferred_req handle; struct completion completion; }; static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) { struct thread_deferred_req *dr = container_of(dreq, struct thread_deferred_req, handle); complete(&dr->completion); } static void cache_wait_req(struct cache_req *req, struct cache_head *item) { struct thread_deferred_req sleeper; struct cache_deferred_req *dreq = &sleeper.handle; sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); dreq->revisit = cache_restart_thread; setup_deferral(dreq, item, 0); if (!test_bit(CACHE_PENDING, &item->flags) || wait_for_completion_interruptible_timeout( &sleeper.completion, req->thread_wait) <= 0) { /* The completion wasn't completed, so we need * to clean up */ spin_lock(&cache_defer_lock); if (!hlist_unhashed(&sleeper.handle.hash)) { __unhash_deferred_req(&sleeper.handle); spin_unlock(&cache_defer_lock); } else { /* cache_revisit_request already removed * this from the hash table, but hasn't * called ->revisit yet. It will very soon * and we need to wait for it. */ spin_unlock(&cache_defer_lock); wait_for_completion(&sleeper.completion); } } } static void cache_limit_defers(void) { /* Make sure we haven't exceed the limit of allowed deferred * requests. */ struct cache_deferred_req *discard = NULL; if (cache_defer_cnt <= DFR_MAX) return; spin_lock(&cache_defer_lock); /* Consider removing either the first or the last */ if (cache_defer_cnt > DFR_MAX) { if (get_random_u32_below(2)) discard = list_entry(cache_defer_list.next, struct cache_deferred_req, recent); else discard = list_entry(cache_defer_list.prev, struct cache_deferred_req, recent); __unhash_deferred_req(discard); } spin_unlock(&cache_defer_lock); if (discard) discard->revisit(discard, 1); } #if IS_ENABLED(CONFIG_FAIL_SUNRPC) static inline bool cache_defer_immediately(void) { return !fail_sunrpc.ignore_cache_wait && should_fail(&fail_sunrpc.attr, 1); } #else static inline bool cache_defer_immediately(void) { return false; } #endif /* Return true if and only if a deferred request is queued. */ static bool cache_defer_req(struct cache_req *req, struct cache_head *item) { struct cache_deferred_req *dreq; if (!cache_defer_immediately()) { cache_wait_req(req, item); if (!test_bit(CACHE_PENDING, &item->flags)) return false; } dreq = req->defer(req); if (dreq == NULL) return false; setup_deferral(dreq, item, 1); if (!test_bit(CACHE_PENDING, &item->flags)) /* Bit could have been cleared before we managed to * set up the deferral, so need to revisit just in case */ cache_revisit_request(item); cache_limit_defers(); return true; } static void cache_revisit_request(struct cache_head *item) { struct cache_deferred_req *dreq; struct list_head pending; struct hlist_node *tmp; int hash = DFR_HASH(item); INIT_LIST_HEAD(&pending); spin_lock(&cache_defer_lock); hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) if (dreq->item == item) { __unhash_deferred_req(dreq); list_add(&dreq->recent, &pending); } spin_unlock(&cache_defer_lock); while (!list_empty(&pending)) { dreq = list_entry(pending.next, struct cache_deferred_req, recent); list_del_init(&dreq->recent); dreq->revisit(dreq, 0); } } void cache_clean_deferred(void *owner) { struct cache_deferred_req *dreq, *tmp; struct list_head pending; INIT_LIST_HEAD(&pending); spin_lock(&cache_defer_lock); list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { if (dreq->owner == owner) { __unhash_deferred_req(dreq); list_add(&dreq->recent, &pending); } } spin_unlock(&cache_defer_lock); while (!list_empty(&pending)) { dreq = list_entry(pending.next, struct cache_deferred_req, recent); list_del_init(&dreq->recent); dreq->revisit(dreq, 1); } } /* * communicate with user-space * * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. * On read, you get a full request, or block. * On write, an update request is processed. * Poll works if anything to read, and always allows write. * * Implemented by linked list of requests. Each open file has * a ->private that also exists in this list. New requests are added * to the end and may wakeup and preceding readers. * New readers are added to the head. If, on read, an item is found with * CACHE_UPCALLING clear, we free it from the list. * */ static DEFINE_SPINLOCK(queue_lock); struct cache_queue { struct list_head list; int reader; /* if 0, then request */ }; struct cache_request { struct cache_queue q; struct cache_head *item; char * buf; int len; int readers; }; struct cache_reader { struct cache_queue q; int offset; /* if non-0, we have a refcnt on next request */ }; static int cache_request(struct cache_detail *detail, struct cache_request *crq) { char *bp = crq->buf; int len = PAGE_SIZE; detail->cache_request(detail, crq->item, &bp, &len); if (len < 0) return -E2BIG; return PAGE_SIZE - len; } static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos, struct cache_detail *cd) { struct cache_reader *rp = filp->private_data; struct cache_request *rq; struct inode *inode = file_inode(filp); int err; if (count == 0) return 0; inode_lock(inode); /* protect against multiple concurrent * readers on this file */ again: spin_lock(&queue_lock); /* need to find next request */ while (rp->q.list.next != &cd->queue && list_entry(rp->q.list.next, struct cache_queue, list) ->reader) { struct list_head *next = rp->q.list.next; list_move(&rp->q.list, next); } if (rp->q.list.next == &cd->queue) { spin_unlock(&queue_lock); inode_unlock(inode); WARN_ON_ONCE(rp->offset); return 0; } rq = container_of(rp->q.list.next, struct cache_request, q.list); WARN_ON_ONCE(rq->q.reader); if (rp->offset == 0) rq->readers++; spin_unlock(&queue_lock); if (rq->len == 0) { err = cache_request(cd, rq); if (err < 0) goto out; rq->len = err; } if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { err = -EAGAIN; spin_lock(&queue_lock); list_move(&rp->q.list, &rq->q.list); spin_unlock(&queue_lock); } else { if (rp->offset + count > rq->len) count = rq->len - rp->offset; err = -EFAULT; if (copy_to_user(buf, rq->buf + rp->offset, count)) goto out; rp->offset += count; if (rp->offset >= rq->len) { rp->offset = 0; spin_lock(&queue_lock); list_move(&rp->q.list, &rq->q.list); spin_unlock(&queue_lock); } err = 0; } out: if (rp->offset == 0) { /* need to release rq */ spin_lock(&queue_lock); rq->readers--; if (rq->readers == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { list_del(&rq->q.list); spin_unlock(&queue_lock); cache_put(rq->item, cd); kfree(rq->buf); kfree(rq); } else spin_unlock(&queue_lock); } if (err == -EAGAIN) goto again; inode_unlock(inode); return err ? err : count; } static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, size_t count, struct cache_detail *cd) { ssize_t ret; if (count == 0) return -EINVAL; if (copy_from_user(kaddr, buf, count)) return -EFAULT; kaddr[count] = '\0'; ret = cd->cache_parse(cd, kaddr, count); if (!ret) ret = count; return ret; } static ssize_t cache_downcall(struct address_space *mapping, const char __user *buf, size_t count, struct cache_detail *cd) { char *write_buf; ssize_t ret = -ENOMEM; if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ ret = -EINVAL; goto out; } write_buf = kvmalloc(count + 1, GFP_KERNEL); if (!write_buf) goto out; ret = cache_do_downcall(write_buf, buf, count, cd); kvfree(write_buf); out: return ret; } static ssize_t cache_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos, struct cache_detail *cd) { struct address_space *mapping = filp->f_mapping; struct inode *inode = file_inode(filp); ssize_t ret = -EINVAL; if (!cd->cache_parse) goto out; inode_lock(inode); ret = cache_downcall(mapping, buf, count, cd); inode_unlock(inode); out: return ret; } static DECLARE_WAIT_QUEUE_HEAD(queue_wait); static __poll_t cache_poll(struct file *filp, poll_table *wait, struct cache_detail *cd) { __poll_t mask; struct cache_reader *rp = filp->private_data; struct cache_queue *cq; poll_wait(filp, &queue_wait, wait); /* alway allow write */ mask = EPOLLOUT | EPOLLWRNORM; if (!rp) return mask; spin_lock(&queue_lock); for (cq= &rp->q; &cq->list != &cd->queue; cq = list_entry(cq->list.next, struct cache_queue, list)) if (!cq->reader) { mask |= EPOLLIN | EPOLLRDNORM; break; } spin_unlock(&queue_lock); return mask; } static int cache_ioctl(struct inode *ino, struct file *filp, unsigned int cmd, unsigned long arg, struct cache_detail *cd) { int len = 0; struct cache_reader *rp = filp->private_data; struct cache_queue *cq; if (cmd != FIONREAD || !rp) return -EINVAL; spin_lock(&queue_lock); /* only find the length remaining in current request, * or the length of the next request */ for (cq= &rp->q; &cq->list != &cd->queue; cq = list_entry(cq->list.next, struct cache_queue, list)) if (!cq->reader) { struct cache_request *cr = container_of(cq, struct cache_request, q); len = cr->len - rp->offset; break; } spin_unlock(&queue_lock); return put_user(len, (int __user *)arg); } static int cache_open(struct inode *inode, struct file *filp, struct cache_detail *cd) { struct cache_reader *rp = NULL; if (!cd || !try_module_get(cd->owner)) return -EACCES; nonseekable_open(inode, filp); if (filp->f_mode & FMODE_READ) { rp = kmalloc(sizeof(*rp), GFP_KERNEL); if (!rp) { module_put(cd->owner); return -ENOMEM; } rp->offset = 0; rp->q.reader = 1; spin_lock(&queue_lock); list_add(&rp->q.list, &cd->queue); spin_unlock(&queue_lock); } if (filp->f_mode & FMODE_WRITE) atomic_inc(&cd->writers); filp->private_data = rp; return 0; } static int cache_release(struct inode *inode, struct file *filp, struct cache_detail *cd) { struct cache_reader *rp = filp->private_data; if (rp) { spin_lock(&queue_lock); if (rp->offset) { struct cache_queue *cq; for (cq= &rp->q; &cq->list != &cd->queue; cq = list_entry(cq->list.next, struct cache_queue, list)) if (!cq->reader) { container_of(cq, struct cache_request, q) ->readers--; break; } rp->offset = 0; } list_del(&rp->q.list); spin_unlock(&queue_lock); filp->private_data = NULL; kfree(rp); } if (filp->f_mode & FMODE_WRITE) { atomic_dec(&cd->writers); cd->last_close = seconds_since_boot(); } module_put(cd->owner); return 0; } static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) { struct cache_queue *cq, *tmp; struct cache_request *cr; struct list_head dequeued; INIT_LIST_HEAD(&dequeued); spin_lock(&queue_lock); list_for_each_entry_safe(cq, tmp, &detail->queue, list) if (!cq->reader) { cr = container_of(cq, struct cache_request, q); if (cr->item != ch) continue; if (test_bit(CACHE_PENDING, &ch->flags)) /* Lost a race and it is pending again */ break; if (cr->readers != 0) continue; list_move(&cr->q.list, &dequeued); } spin_unlock(&queue_lock); while (!list_empty(&dequeued)) { cr = list_entry(dequeued.next, struct cache_request, q.list); list_del(&cr->q.list); cache_put(cr->item, detail); kfree(cr->buf); kfree(cr); } } /* * Support routines for text-based upcalls. * Fields are separated by spaces. * Fields are either mangled to quote space tab newline slosh with slosh * or a hexified with a leading \x * Record is terminated with newline. * */ void qword_add(char **bpp, int *lp, char *str) { char *bp = *bpp; int len = *lp; int ret; if (len < 0) return; ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); if (ret >= len) { bp += len; len = -1; } else { bp += ret; len -= ret; *bp++ = ' '; len--; } *bpp = bp; *lp = len; } EXPORT_SYMBOL_GPL(qword_add); void qword_addhex(char **bpp, int *lp, char *buf, int blen) { char *bp = *bpp; int len = *lp; if (len < 0) return; if (len > 2) { *bp++ = '\\'; *bp++ = 'x'; len -= 2; while (blen && len >= 2) { bp = hex_byte_pack(bp, *buf++); len -= 2; blen--; } } if (blen || len<1) len = -1; else { *bp++ = ' '; len--; } *bpp = bp; *lp = len; } EXPORT_SYMBOL_GPL(qword_addhex); static void warn_no_listener(struct cache_detail *detail) { if (detail->last_warn != detail->last_close) { detail->last_warn = detail->last_close; if (detail->warn_no_listener) detail->warn_no_listener(detail, detail->last_close != 0); } } static bool cache_listeners_exist(struct cache_detail *detail) { if (atomic_read(&detail->writers)) return true; if (detail->last_close == 0) /* This cache was never opened */ return false; if (detail->last_close < seconds_since_boot() - 30) /* * We allow for the possibility that someone might * restart a userspace daemon without restarting the * server; but after 30 seconds, we give up. */ return false; return true; } /* * register an upcall request to user-space and queue it up for read() by the * upcall daemon. * * Each request is at most one page long. */ static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) { char *buf; struct cache_request *crq; int ret = 0; if (test_bit(CACHE_CLEANED, &h->flags)) /* Too late to make an upcall */ return -EAGAIN; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) return -EAGAIN; crq = kmalloc(sizeof (*crq), GFP_KERNEL); if (!crq) { kfree(buf); return -EAGAIN; } crq->q.reader = 0; crq->buf = buf; crq->len = 0; crq->readers = 0; spin_lock(&queue_lock); if (test_bit(CACHE_PENDING, &h->flags)) { crq->item = cache_get(h); list_add_tail(&crq->q.list, &detail->queue); trace_cache_entry_upcall(detail, h); } else /* Lost a race, no longer PENDING, so don't enqueue */ ret = -EAGAIN; spin_unlock(&queue_lock); wake_up(&queue_wait); if (ret == -EAGAIN) { kfree(buf); kfree(crq); } return ret; } int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) { if (test_and_set_bit(CACHE_PENDING, &h->flags)) return 0; return cache_pipe_upcall(detail, h); } EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, struct cache_head *h) { if (!cache_listeners_exist(detail)) { warn_no_listener(detail); trace_cache_entry_no_listener(detail, h); return -EINVAL; } return sunrpc_cache_pipe_upcall(detail, h); } EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); /* * parse a message from user-space and pass it * to an appropriate cache * Messages are, like requests, separated into fields by * spaces and dequotes as \xHEXSTRING or embedded \nnn octal * * Message is * reply cachename expiry key ... content.... * * key and content are both parsed by cache */ int qword_get(char **bpp, char *dest, int bufsize) { /* return bytes copied, or -1 on error */ char *bp = *bpp; int len = 0; while (*bp == ' ') bp++; if (bp[0] == '\\' && bp[1] == 'x') { /* HEX STRING */ bp += 2; while (len < bufsize - 1) { int h, l; h = hex_to_bin(bp[0]); if (h < 0) break; l = hex_to_bin(bp[1]); if (l < 0) break; *dest++ = (h << 4) | l; bp += 2; len++; } } else { /* text with \nnn octal quoting */ while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { if (*bp == '\\' && isodigit(bp[1]) && (bp[1] <= '3') && isodigit(bp[2]) && isodigit(bp[3])) { int byte = (*++bp -'0'); bp++; byte = (byte << 3) | (*bp++ - '0'); byte = (byte << 3) | (*bp++ - '0'); *dest++ = byte; len++; } else { *dest++ = *bp++; len++; } } } if (*bp != ' ' && *bp != '\n' && *bp != '\0') return -1; while (*bp == ' ') bp++; *bpp = bp; *dest = '\0'; return len; } EXPORT_SYMBOL_GPL(qword_get); /* * support /proc/net/rpc/$CACHENAME/content * as a seqfile. * We call ->cache_show passing NULL for the item to * get a header, then pass each real item in the cache */ static void *__cache_seq_start(struct seq_file *m, loff_t *pos) { loff_t n = *pos; unsigned int hash, entry; struct cache_head *ch; struct cache_detail *cd = m->private; if (!n--) return SEQ_START_TOKEN; hash = n >> 32; entry = n & ((1LL<<32) - 1); hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) if (!entry--) return ch; n &= ~((1LL<<32) - 1); do { hash++; n += 1LL<<32; } while(hash < cd->hash_size && hlist_empty(&cd->hash_table[hash])); if (hash >= cd->hash_size) return NULL; *pos = n+1; return hlist_entry_safe(rcu_dereference_raw( hlist_first_rcu(&cd->hash_table[hash])), struct cache_head, cache_list); } static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) { struct cache_head *ch = p; int hash = (*pos >> 32); struct cache_detail *cd = m->private; if (p == SEQ_START_TOKEN) hash = 0; else if (ch->cache_list.next == NULL) { hash++; *pos += 1LL<<32; } else { ++*pos; return hlist_entry_safe(rcu_dereference_raw( hlist_next_rcu(&ch->cache_list)), struct cache_head, cache_list); } *pos &= ~((1LL<<32) - 1); while (hash < cd->hash_size && hlist_empty(&cd->hash_table[hash])) { hash++; *pos += 1LL<<32; } if (hash >= cd->hash_size) return NULL; ++*pos; return hlist_entry_safe(rcu_dereference_raw( hlist_first_rcu(&cd->hash_table[hash])), struct cache_head, cache_list); } void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return __cache_seq_start(m, pos); } EXPORT_SYMBOL_GPL(cache_seq_start_rcu); void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) { return cache_seq_next(file, p, pos); } EXPORT_SYMBOL_GPL(cache_seq_next_rcu); void cache_seq_stop_rcu(struct seq_file *m, void *p) __releases(RCU) { rcu_read_unlock(); } EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); static int c_show(struct seq_file *m, void *p) { struct cache_head *cp = p; struct cache_detail *cd = m->private; if (p == SEQ_START_TOKEN) return cd->cache_show(m, cd, NULL); ifdebug(CACHE) seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", convert_to_wallclock(cp->expiry_time), kref_read(&cp->ref), cp->flags); cache_get(cp); if (cache_check(cd, cp, NULL)) /* cache_check does a cache_put on failure */ seq_puts(m, "# "); else { if (cache_is_expired(cd, cp)) seq_puts(m, "# "); cache_put(cp, cd); } return cd->cache_show(m, cd, cp); } static const struct seq_operations cache_content_op = { .start = cache_seq_start_rcu, .next = cache_seq_next_rcu, .stop = cache_seq_stop_rcu, .show = c_show, }; static int content_open(struct inode *inode, struct file *file, struct cache_detail *cd) { struct seq_file *seq; int err; if (!cd || !try_module_get(cd->owner)) return -EACCES; err = seq_open(file, &cache_content_op); if (err) { module_put(cd->owner); return err; } seq = file->private_data; seq->private = cd; return 0; } static int content_release(struct inode *inode, struct file *file, struct cache_detail *cd) { int ret = seq_release(inode, file); module_put(cd->owner); return ret; } static int open_flush(struct inode *inode, struct file *file, struct cache_detail *cd) { if (!cd || !try_module_get(cd->owner)) return -EACCES; return nonseekable_open(inode, file); } static int release_flush(struct inode *inode, struct file *file, struct cache_detail *cd) { module_put(cd->owner); return 0; } static ssize_t read_flush(struct file *file, char __user *buf, size_t count, loff_t *ppos, struct cache_detail *cd) { char tbuf[22]; size_t len; len = snprintf(tbuf, sizeof(tbuf), "%llu\n", convert_to_wallclock(cd->flush_time)); return simple_read_from_buffer(buf, count, ppos, tbuf, len); } static ssize_t write_flush(struct file *file, const char __user *buf, size_t count, loff_t *ppos, struct cache_detail *cd) { char tbuf[20]; char *ep; time64_t now; if (*ppos || count > sizeof(tbuf)-1) return -EINVAL; if (copy_from_user(tbuf, buf, count)) return -EFAULT; tbuf[count] = 0; simple_strtoul(tbuf, &ep, 0); if (*ep && *ep != '\n') return -EINVAL; /* Note that while we check that 'buf' holds a valid number, * we always ignore the value and just flush everything. * Making use of the number leads to races. */ now = seconds_since_boot(); /* Always flush everything, so behave like cache_purge() * Do this by advancing flush_time to the current time, * or by one second if it has already reached the current time. * Newly added cache entries will always have ->last_refresh greater * that ->flush_time, so they don't get flushed prematurely. */ if (cd->flush_time >= now) now = cd->flush_time + 1; cd->flush_time = now; cd->nextcheck = now; cache_flush(); if (cd->flush) cd->flush(); *ppos += count; return count; } static ssize_t cache_read_procfs(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = pde_data(file_inode(filp)); return cache_read(filp, buf, count, ppos, cd); } static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = pde_data(file_inode(filp)); return cache_write(filp, buf, count, ppos, cd); } static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) { struct cache_detail *cd = pde_data(file_inode(filp)); return cache_poll(filp, wait, cd); } static long cache_ioctl_procfs(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(filp); struct cache_detail *cd = pde_data(inode); return cache_ioctl(inode, filp, cmd, arg, cd); } static int cache_open_procfs(struct inode *inode, struct file *filp) { struct cache_detail *cd = pde_data(inode); return cache_open(inode, filp, cd); } static int cache_release_procfs(struct inode *inode, struct file *filp) { struct cache_detail *cd = pde_data(inode); return cache_release(inode, filp, cd); } static const struct proc_ops cache_channel_proc_ops = { .proc_lseek = no_llseek, .proc_read = cache_read_procfs, .proc_write = cache_write_procfs, .proc_poll = cache_poll_procfs, .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ .proc_open = cache_open_procfs, .proc_release = cache_release_procfs, }; static int content_open_procfs(struct inode *inode, struct file *filp) { struct cache_detail *cd = pde_data(inode); return content_open(inode, filp, cd); } static int content_release_procfs(struct inode *inode, struct file *filp) { struct cache_detail *cd = pde_data(inode); return content_release(inode, filp, cd); } static const struct proc_ops content_proc_ops = { .proc_open = content_open_procfs, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = content_release_procfs, }; static int open_flush_procfs(struct inode *inode, struct file *filp) { struct cache_detail *cd = pde_data(inode); return open_flush(inode, filp, cd); } static int release_flush_procfs(struct inode *inode, struct file *filp) { struct cache_detail *cd = pde_data(inode); return release_flush(inode, filp, cd); } static ssize_t read_flush_procfs(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = pde_data(file_inode(filp)); return read_flush(filp, buf, count, ppos, cd); } static ssize_t write_flush_procfs(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = pde_data(file_inode(filp)); return write_flush(filp, buf, count, ppos, cd); } static const struct proc_ops cache_flush_proc_ops = { .proc_open = open_flush_procfs, .proc_read = read_flush_procfs, .proc_write = write_flush_procfs, .proc_release = release_flush_procfs, .proc_lseek = no_llseek, }; static void remove_cache_proc_entries(struct cache_detail *cd) { if (cd->procfs) { proc_remove(cd->procfs); cd->procfs = NULL; } } #ifdef CONFIG_PROC_FS static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) { struct proc_dir_entry *p; struct sunrpc_net *sn; sn = net_generic(net, sunrpc_net_id); cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); if (cd->procfs == NULL) goto out_nomem; p = proc_create_data("flush", S_IFREG | 0600, cd->procfs, &cache_flush_proc_ops, cd); if (p == NULL) goto out_nomem; if (cd->cache_request || cd->cache_parse) { p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, &cache_channel_proc_ops, cd); if (p == NULL) goto out_nomem; } if (cd->cache_show) { p = proc_create_data("content", S_IFREG | 0400, cd->procfs, &content_proc_ops, cd); if (p == NULL) goto out_nomem; } return 0; out_nomem: remove_cache_proc_entries(cd); return -ENOMEM; } #else /* CONFIG_PROC_FS */ static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) { return 0; } #endif void __init cache_initialize(void) { INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); } int cache_register_net(struct cache_detail *cd, struct net *net) { int ret; sunrpc_init_cache_detail(cd); ret = create_cache_proc_entries(cd, net); if (ret) sunrpc_destroy_cache_detail(cd); return ret; } EXPORT_SYMBOL_GPL(cache_register_net); void cache_unregister_net(struct cache_detail *cd, struct net *net) { remove_cache_proc_entries(cd); sunrpc_destroy_cache_detail(cd); } EXPORT_SYMBOL_GPL(cache_unregister_net); struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) { struct cache_detail *cd; int i; cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); if (cd == NULL) return ERR_PTR(-ENOMEM); cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), GFP_KERNEL); if (cd->hash_table == NULL) { kfree(cd); return ERR_PTR(-ENOMEM); } for (i = 0; i < cd->hash_size; i++) INIT_HLIST_HEAD(&cd->hash_table[i]); cd->net = net; return cd; } EXPORT_SYMBOL_GPL(cache_create_net); void cache_destroy_net(struct cache_detail *cd, struct net *net) { kfree(cd->hash_table); kfree(cd); } EXPORT_SYMBOL_GPL(cache_destroy_net); static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = RPC_I(file_inode(filp))->private; return cache_read(filp, buf, count, ppos, cd); } static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = RPC_I(file_inode(filp))->private; return cache_write(filp, buf, count, ppos, cd); } static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) { struct cache_detail *cd = RPC_I(file_inode(filp))->private; return cache_poll(filp, wait, cd); } static long cache_ioctl_pipefs(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(filp); struct cache_detail *cd = RPC_I(inode)->private; return cache_ioctl(inode, filp, cmd, arg, cd); } static int cache_open_pipefs(struct inode *inode, struct file *filp) { struct cache_detail *cd = RPC_I(inode)->private; return cache_open(inode, filp, cd); } static int cache_release_pipefs(struct inode *inode, struct file *filp) { struct cache_detail *cd = RPC_I(inode)->private; return cache_release(inode, filp, cd); } const struct file_operations cache_file_operations_pipefs = { .owner = THIS_MODULE, .llseek = no_llseek, .read = cache_read_pipefs, .write = cache_write_pipefs, .poll = cache_poll_pipefs, .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ .open = cache_open_pipefs, .release = cache_release_pipefs, }; static int content_open_pipefs(struct inode *inode, struct file *filp) { struct cache_detail *cd = RPC_I(inode)->private; return content_open(inode, filp, cd); } static int content_release_pipefs(struct inode *inode, struct file *filp) { struct cache_detail *cd = RPC_I(inode)->private; return content_release(inode, filp, cd); } const struct file_operations content_file_operations_pipefs = { .open = content_open_pipefs, .read = seq_read, .llseek = seq_lseek, .release = content_release_pipefs, }; static int open_flush_pipefs(struct inode *inode, struct file *filp) { struct cache_detail *cd = RPC_I(inode)->private; return open_flush(inode, filp, cd); } static int release_flush_pipefs(struct inode *inode, struct file *filp) { struct cache_detail *cd = RPC_I(inode)->private; return release_flush(inode, filp, cd); } static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = RPC_I(file_inode(filp))->private; return read_flush(filp, buf, count, ppos, cd); } static ssize_t write_flush_pipefs(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct cache_detail *cd = RPC_I(file_inode(filp))->private; return write_flush(filp, buf, count, ppos, cd); } const struct file_operations cache_flush_operations_pipefs = { .open = open_flush_pipefs, .read = read_flush_pipefs, .write = write_flush_pipefs, .release = release_flush_pipefs, .llseek = no_llseek, }; int sunrpc_cache_register_pipefs(struct dentry *parent, const char *name, umode_t umode, struct cache_detail *cd) { struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); if (IS_ERR(dir)) return PTR_ERR(dir); cd->pipefs = dir; return 0; } EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) { if (cd->pipefs) { rpc_remove_cache_dir(cd->pipefs); cd->pipefs = NULL; } } EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) { spin_lock(&cd->hash_lock); if (!hlist_unhashed(&h->cache_list)){ sunrpc_begin_cache_remove_entry(h, cd); spin_unlock(&cd->hash_lock); sunrpc_end_cache_remove_entry(h, cd); } else spin_unlock(&cd->hash_lock); } EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); |
15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * Definitions for SMC Connections, Link Groups and Links * * Copyright IBM Corp. 2016 * * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com> */ #ifndef _SMC_CORE_H #define _SMC_CORE_H #include <linux/atomic.h> #include <linux/smc.h> #include <linux/pci.h> #include <rdma/ib_verbs.h> #include <net/genetlink.h> #include <net/smc.h> #include "smc.h" #include "smc_ib.h" #include "smc_clc.h" #define SMC_RMBS_PER_LGR_MAX 255 /* max. # of RMBs per link group */ #define SMC_CONN_PER_LGR_MIN 16 /* min. # of connections per link group */ #define SMC_CONN_PER_LGR_MAX 255 /* max. # of connections per link group, * also is the default value for SMC-R v1 and v2.0 */ #define SMC_CONN_PER_LGR_PREFER 255 /* Preferred connections per link group used for * SMC-R v2.1 and later negotiation, vendors or * distrubutions may modify it to a value between * 16-255 as needed. */ struct smc_lgr_list { /* list of link group definition */ struct list_head list; spinlock_t lock; /* protects list of link groups */ u32 num; /* unique link group number */ }; enum smc_lgr_role { /* possible roles of a link group */ SMC_CLNT, /* client */ SMC_SERV /* server */ }; enum smc_link_state { /* possible states of a link */ SMC_LNK_UNUSED, /* link is unused */ SMC_LNK_INACTIVE, /* link is inactive */ SMC_LNK_ACTIVATING, /* link is being activated */ SMC_LNK_ACTIVE, /* link is active */ }; #define SMC_WR_BUF_SIZE 48 /* size of work request buffer */ #define SMC_WR_BUF_V2_SIZE 8192 /* size of v2 work request buffer */ struct smc_wr_buf { u8 raw[SMC_WR_BUF_SIZE]; }; struct smc_wr_v2_buf { u8 raw[SMC_WR_BUF_V2_SIZE]; }; #define SMC_WR_REG_MR_WAIT_TIME (5 * HZ)/* wait time for ib_wr_reg_mr result */ enum smc_wr_reg_state { POSTED, /* ib_wr_reg_mr request posted */ CONFIRMED, /* ib_wr_reg_mr response: successful */ FAILED /* ib_wr_reg_mr response: failure */ }; struct smc_rdma_sge { /* sges for RDMA writes */ struct ib_sge wr_tx_rdma_sge[SMC_IB_MAX_SEND_SGE]; }; #define SMC_MAX_RDMA_WRITES 2 /* max. # of RDMA writes per * message send */ struct smc_rdma_sges { /* sges per message send */ struct smc_rdma_sge tx_rdma_sge[SMC_MAX_RDMA_WRITES]; }; struct smc_rdma_wr { /* work requests per message * send */ struct ib_rdma_wr wr_tx_rdma[SMC_MAX_RDMA_WRITES]; }; #define SMC_LGR_ID_SIZE 4 struct smc_link { struct smc_ib_device *smcibdev; /* ib-device */ u8 ibport; /* port - values 1 | 2 */ struct ib_pd *roce_pd; /* IB protection domain, * unique for every RoCE QP */ struct ib_qp *roce_qp; /* IB queue pair */ struct ib_qp_attr qp_attr; /* IB queue pair attributes */ struct smc_wr_buf *wr_tx_bufs; /* WR send payload buffers */ struct ib_send_wr *wr_tx_ibs; /* WR send meta data */ struct ib_sge *wr_tx_sges; /* WR send gather meta data */ struct smc_rdma_sges *wr_tx_rdma_sges;/*RDMA WRITE gather meta data*/ struct smc_rdma_wr *wr_tx_rdmas; /* WR RDMA WRITE */ struct smc_wr_tx_pend *wr_tx_pends; /* WR send waiting for CQE */ struct completion *wr_tx_compl; /* WR send CQE completion */ /* above four vectors have wr_tx_cnt elements and use the same index */ struct ib_send_wr *wr_tx_v2_ib; /* WR send v2 meta data */ struct ib_sge *wr_tx_v2_sge; /* WR send v2 gather meta data*/ struct smc_wr_tx_pend *wr_tx_v2_pend; /* WR send v2 waiting for CQE */ dma_addr_t wr_tx_dma_addr; /* DMA address of wr_tx_bufs */ dma_addr_t wr_tx_v2_dma_addr; /* DMA address of v2 tx buf*/ atomic_long_t wr_tx_id; /* seq # of last sent WR */ unsigned long *wr_tx_mask; /* bit mask of used indexes */ u32 wr_tx_cnt; /* number of WR send buffers */ wait_queue_head_t wr_tx_wait; /* wait for free WR send buf */ struct { struct percpu_ref wr_tx_refs; } ____cacheline_aligned_in_smp; struct completion tx_ref_comp; struct smc_wr_buf *wr_rx_bufs; /* WR recv payload buffers */ struct ib_recv_wr *wr_rx_ibs; /* WR recv meta data */ struct ib_sge *wr_rx_sges; /* WR recv scatter meta data */ /* above three vectors have wr_rx_cnt elements and use the same index */ dma_addr_t wr_rx_dma_addr; /* DMA address of wr_rx_bufs */ dma_addr_t wr_rx_v2_dma_addr; /* DMA address of v2 rx buf*/ u64 wr_rx_id; /* seq # of last recv WR */ u64 wr_rx_id_compl; /* seq # of last completed WR */ u32 wr_rx_cnt; /* number of WR recv buffers */ unsigned long wr_rx_tstamp; /* jiffies when last buf rx */ wait_queue_head_t wr_rx_empty_wait; /* wait for RQ empty */ struct ib_reg_wr wr_reg; /* WR register memory region */ wait_queue_head_t wr_reg_wait; /* wait for wr_reg result */ struct { struct percpu_ref wr_reg_refs; } ____cacheline_aligned_in_smp; struct completion reg_ref_comp; enum smc_wr_reg_state wr_reg_state; /* state of wr_reg request */ u8 gid[SMC_GID_SIZE];/* gid matching used vlan id*/ u8 sgid_index; /* gid index for vlan id */ u32 peer_qpn; /* QP number of peer */ enum ib_mtu path_mtu; /* used mtu */ enum ib_mtu peer_mtu; /* mtu size of peer */ u32 psn_initial; /* QP tx initial packet seqno */ u32 peer_psn; /* QP rx initial packet seqno */ u8 peer_mac[ETH_ALEN]; /* = gid[8:10||13:15] */ u8 peer_gid[SMC_GID_SIZE]; /* gid of peer*/ u8 link_id; /* unique # within link group */ u8 link_uid[SMC_LGR_ID_SIZE]; /* unique lnk id */ u8 peer_link_uid[SMC_LGR_ID_SIZE]; /* peer uid */ u8 link_idx; /* index in lgr link array */ u8 link_is_asym; /* is link asymmetric? */ u8 clearing : 1; /* link is being cleared */ refcount_t refcnt; /* link reference count */ struct smc_link_group *lgr; /* parent link group */ struct work_struct link_down_wrk; /* wrk to bring link down */ char ibname[IB_DEVICE_NAME_MAX]; /* ib device name */ int ndev_ifidx; /* network device ifindex */ enum smc_link_state state; /* state of link */ struct delayed_work llc_testlink_wrk; /* testlink worker */ struct completion llc_testlink_resp; /* wait for rx of testlink */ int llc_testlink_time; /* testlink interval */ atomic_t conn_cnt; /* connections on this link */ }; /* For now we just allow one parallel link per link group. The SMC protocol * allows more (up to 8). */ #define SMC_LINKS_PER_LGR_MAX 3 #define SMC_SINGLE_LINK 0 #define SMC_LINKS_ADD_LNK_MIN 1 /* min. # of links per link group */ #define SMC_LINKS_ADD_LNK_MAX 2 /* max. # of links per link group, also is the * default value for smc-r v1.0 and v2.0 */ #define SMC_LINKS_PER_LGR_MAX_PREFER 2 /* Preferred max links per link group used for * SMC-R v2.1 and later negotiation, vendors or * distrubutions may modify it to a value between * 1-2 as needed. */ /* tx/rx buffer list element for sndbufs list and rmbs list of a lgr */ struct smc_buf_desc { struct list_head list; void *cpu_addr; /* virtual address of buffer */ struct page *pages; int len; /* length of buffer */ u32 used; /* currently used / unused */ union { struct { /* SMC-R */ struct sg_table sgt[SMC_LINKS_PER_LGR_MAX]; /* virtual buffer */ struct ib_mr *mr[SMC_LINKS_PER_LGR_MAX]; /* memory region: for rmb and * vzalloced sndbuf * incl. rkey provided to peer * and lkey provided to local */ u32 order; /* allocation order */ u8 is_conf_rkey; /* confirm_rkey done */ u8 is_reg_mr[SMC_LINKS_PER_LGR_MAX]; /* mem region registered */ u8 is_map_ib[SMC_LINKS_PER_LGR_MAX]; /* mem region mapped to lnk */ u8 is_dma_need_sync; u8 is_reg_err; /* buffer registration err */ u8 is_vm; /* virtually contiguous */ }; struct { /* SMC-D */ unsigned short sba_idx; /* SBA index number */ u64 token; /* DMB token number */ dma_addr_t dma_addr; /* DMA address */ }; }; }; struct smc_rtoken { /* address/key of remote RMB */ u64 dma_addr; u32 rkey; }; #define SMC_BUF_MIN_SIZE 16384 /* minimum size of an RMB */ #define SMC_RMBE_SIZES 16 /* number of distinct RMBE sizes */ /* theoretically, the RFC states that largest size would be 512K, * i.e. compressed 5 and thus 6 sizes (0..5), despite * struct smc_clc_msg_accept_confirm.rmbe_size being a 4 bit value (0..15) */ struct smcd_dev; enum smc_lgr_type { /* redundancy state of lgr */ SMC_LGR_NONE, /* no active links, lgr to be deleted */ SMC_LGR_SINGLE, /* 1 active RNIC on each peer */ SMC_LGR_SYMMETRIC, /* 2 active RNICs on each peer */ SMC_LGR_ASYMMETRIC_PEER, /* local has 2, peer 1 active RNICs */ SMC_LGR_ASYMMETRIC_LOCAL, /* local has 1, peer 2 active RNICs */ }; enum smcr_buf_type { /* types of SMC-R sndbufs and RMBs */ SMCR_PHYS_CONT_BUFS = 0, SMCR_VIRT_CONT_BUFS = 1, SMCR_MIXED_BUFS = 2, }; enum smc_llc_flowtype { SMC_LLC_FLOW_NONE = 0, SMC_LLC_FLOW_ADD_LINK = 2, SMC_LLC_FLOW_DEL_LINK = 4, SMC_LLC_FLOW_REQ_ADD_LINK = 5, SMC_LLC_FLOW_RKEY = 6, }; struct smc_llc_qentry; struct smc_llc_flow { enum smc_llc_flowtype type; struct smc_llc_qentry *qentry; }; struct smc_link_group { struct list_head list; struct rb_root conns_all; /* connection tree */ rwlock_t conns_lock; /* protects conns_all */ unsigned int conns_num; /* current # of connections */ unsigned short vlan_id; /* vlan id of link group */ struct list_head sndbufs[SMC_RMBE_SIZES];/* tx buffers */ struct rw_semaphore sndbufs_lock; /* protects tx buffers */ struct list_head rmbs[SMC_RMBE_SIZES]; /* rx buffers */ struct rw_semaphore rmbs_lock; /* protects rx buffers */ u64 alloc_sndbufs; /* stats of tx buffers */ u64 alloc_rmbs; /* stats of rx buffers */ u8 id[SMC_LGR_ID_SIZE]; /* unique lgr id */ struct delayed_work free_work; /* delayed freeing of an lgr */ struct work_struct terminate_work; /* abnormal lgr termination */ struct workqueue_struct *tx_wq; /* wq for conn. tx workers */ u8 sync_err : 1; /* lgr no longer fits to peer */ u8 terminating : 1;/* lgr is terminating */ u8 freeing : 1; /* lgr is being freed */ refcount_t refcnt; /* lgr reference count */ bool is_smcd; /* SMC-R or SMC-D */ u8 smc_version; u8 negotiated_eid[SMC_MAX_EID_LEN]; u8 peer_os; /* peer operating system */ u8 peer_smc_release; u8 peer_hostname[SMC_MAX_HOSTNAME_LEN]; union { struct { /* SMC-R */ enum smc_lgr_role role; /* client or server */ struct smc_link lnk[SMC_LINKS_PER_LGR_MAX]; /* smc link */ struct smc_wr_v2_buf *wr_rx_buf_v2; /* WR v2 recv payload buffer */ struct smc_wr_v2_buf *wr_tx_buf_v2; /* WR v2 send payload buffer */ char peer_systemid[SMC_SYSTEMID_LEN]; /* unique system_id of peer */ struct smc_rtoken rtokens[SMC_RMBS_PER_LGR_MAX] [SMC_LINKS_PER_LGR_MAX]; /* remote addr/key pairs */ DECLARE_BITMAP(rtokens_used_mask, SMC_RMBS_PER_LGR_MAX); /* used rtoken elements */ u8 next_link_id; enum smc_lgr_type type; enum smcr_buf_type buf_type; /* redundancy state */ u8 pnet_id[SMC_MAX_PNETID_LEN + 1]; /* pnet id of this lgr */ struct list_head llc_event_q; /* queue for llc events */ spinlock_t llc_event_q_lock; /* protects llc_event_q */ struct rw_semaphore llc_conf_mutex; /* protects lgr reconfig. */ struct work_struct llc_add_link_work; struct work_struct llc_del_link_work; struct work_struct llc_event_work; /* llc event worker */ wait_queue_head_t llc_flow_waiter; /* w4 next llc event */ wait_queue_head_t llc_msg_waiter; /* w4 next llc msg */ struct smc_llc_flow llc_flow_lcl; /* llc local control field */ struct smc_llc_flow llc_flow_rmt; /* llc remote control field */ struct smc_llc_qentry *delayed_event; /* arrived when flow active */ spinlock_t llc_flow_lock; /* protects llc flow */ int llc_testlink_time; /* link keep alive time */ u32 llc_termination_rsn; /* rsn code for termination */ u8 nexthop_mac[ETH_ALEN]; u8 uses_gateway; __be32 saddr; /* net namespace */ struct net *net; u8 max_conns; /* max conn can be assigned to lgr */ u8 max_links; /* max links can be added in lgr */ }; struct { /* SMC-D */ struct smcd_gid peer_gid; /* Peer GID (remote) */ struct smcd_dev *smcd; /* ISM device for VLAN reg. */ u8 peer_shutdown : 1; /* peer triggered shutdownn */ }; }; }; struct smc_clc_msg_local; #define GID_LIST_SIZE 2 struct smc_gidlist { u8 len; u8 list[GID_LIST_SIZE][SMC_GID_SIZE]; }; struct smc_init_info_smcrv2 { /* Input fields */ __be32 saddr; struct sock *clc_sk; __be32 daddr; /* Output fields when saddr is set */ struct smc_ib_device *ib_dev_v2; u8 ib_port_v2; u8 ib_gid_v2[SMC_GID_SIZE]; /* Additional output fields when clc_sk and daddr is set as well */ u8 uses_gateway; u8 nexthop_mac[ETH_ALEN]; struct smc_gidlist gidlist; }; #define SMC_MAX_V2_ISM_DEVS SMCD_CLC_MAX_V2_GID_ENTRIES /* max # of proposed non-native ISM devices, * which can't exceed the max # of CHID-GID * entries in CLC proposal SMC-Dv2 extension. */ struct smc_init_info { u8 is_smcd; u8 smc_type_v1; u8 smc_type_v2; u8 release_nr; u8 max_conns; u8 max_links; u8 first_contact_peer; u8 first_contact_local; u16 feature_mask; unsigned short vlan_id; u32 rc; u8 negotiated_eid[SMC_MAX_EID_LEN]; /* SMC-R */ u8 smcr_version; u8 check_smcrv2; u8 peer_gid[SMC_GID_SIZE]; u8 peer_mac[ETH_ALEN]; u8 peer_systemid[SMC_SYSTEMID_LEN]; struct smc_ib_device *ib_dev; u8 ib_gid[SMC_GID_SIZE]; u8 ib_port; u32 ib_clcqpn; struct smc_init_info_smcrv2 smcrv2; /* SMC-D */ struct smcd_gid ism_peer_gid[SMC_MAX_V2_ISM_DEVS + 1]; struct smcd_dev *ism_dev[SMC_MAX_V2_ISM_DEVS + 1]; u16 ism_chid[SMC_MAX_V2_ISM_DEVS + 1]; u8 ism_offered_cnt; /* # of ISM devices offered */ u8 ism_selected; /* index of selected ISM dev*/ u8 smcd_version; }; /* Find the connection associated with the given alert token in the link group. * To use rbtrees we have to implement our own search core. * Requires @conns_lock * @token alert token to search for * @lgr link group to search in * Returns connection associated with token if found, NULL otherwise. */ static inline struct smc_connection *smc_lgr_find_conn( u32 token, struct smc_link_group *lgr) { struct smc_connection *res = NULL; struct rb_node *node; node = lgr->conns_all.rb_node; while (node) { struct smc_connection *cur = rb_entry(node, struct smc_connection, alert_node); if (cur->alert_token_local > token) { node = node->rb_left; } else { if (cur->alert_token_local < token) { node = node->rb_right; } else { res = cur; break; } } } return res; } static inline bool smc_conn_lgr_valid(struct smc_connection *conn) { return conn->lgr && conn->alert_token_local; } /* * Returns true if the specified link is usable. * * usable means the link is ready to receive RDMA messages, map memory * on the link, etc. This doesn't ensure we are able to send RDMA messages * on this link, if sending RDMA messages is needed, use smc_link_sendable() */ static inline bool smc_link_usable(struct smc_link *lnk) { if (lnk->state == SMC_LNK_UNUSED || lnk->state == SMC_LNK_INACTIVE) return false; return true; } /* * Returns true if the specified link is ready to receive AND send RDMA * messages. * * For the client side in first contact, the underlying QP may still in * RESET or RTR when the link state is ACTIVATING, checks in smc_link_usable() * is not strong enough. For those places that need to send any CDC or LLC * messages, use smc_link_sendable(), otherwise, use smc_link_usable() instead */ static inline bool smc_link_sendable(struct smc_link *lnk) { return smc_link_usable(lnk) && lnk->qp_attr.cur_qp_state == IB_QPS_RTS; } static inline bool smc_link_active(struct smc_link *lnk) { return lnk->state == SMC_LNK_ACTIVE; } static inline void smc_gid_be16_convert(__u8 *buf, u8 *gid_raw) { sprintf(buf, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x", be16_to_cpu(((__be16 *)gid_raw)[0]), be16_to_cpu(((__be16 *)gid_raw)[1]), be16_to_cpu(((__be16 *)gid_raw)[2]), be16_to_cpu(((__be16 *)gid_raw)[3]), be16_to_cpu(((__be16 *)gid_raw)[4]), be16_to_cpu(((__be16 *)gid_raw)[5]), be16_to_cpu(((__be16 *)gid_raw)[6]), be16_to_cpu(((__be16 *)gid_raw)[7])); } struct smc_pci_dev { __u32 pci_fid; __u16 pci_pchid; __u16 pci_vendor; __u16 pci_device; __u8 pci_id[SMC_PCI_ID_STR_LEN]; }; static inline void smc_set_pci_values(struct pci_dev *pci_dev, struct smc_pci_dev *smc_dev) { smc_dev->pci_vendor = pci_dev->vendor; smc_dev->pci_device = pci_dev->device; snprintf(smc_dev->pci_id, sizeof(smc_dev->pci_id), "%s", pci_name(pci_dev)); #if IS_ENABLED(CONFIG_S390) { /* Set s390 specific PCI information */ struct zpci_dev *zdev; zdev = to_zpci(pci_dev); smc_dev->pci_fid = zdev->fid; smc_dev->pci_pchid = zdev->pchid; } #endif } struct smc_sock; struct smc_clc_msg_accept_confirm; void smc_lgr_cleanup_early(struct smc_link_group *lgr); void smc_lgr_terminate_sched(struct smc_link_group *lgr); void smc_lgr_hold(struct smc_link_group *lgr); void smc_lgr_put(struct smc_link_group *lgr); void smcr_port_add(struct smc_ib_device *smcibdev, u8 ibport); void smcr_port_err(struct smc_ib_device *smcibdev, u8 ibport); void smc_smcd_terminate(struct smcd_dev *dev, struct smcd_gid *peer_gid, unsigned short vlan); void smc_smcd_terminate_all(struct smcd_dev *dev); void smc_smcr_terminate_all(struct smc_ib_device *smcibdev); int smc_buf_create(struct smc_sock *smc, bool is_smcd); int smcd_buf_attach(struct smc_sock *smc); int smc_uncompress_bufsize(u8 compressed); int smc_rmb_rtoken_handling(struct smc_connection *conn, struct smc_link *link, struct smc_clc_msg_accept_confirm *clc); int smc_rtoken_add(struct smc_link *lnk, __be64 nw_vaddr, __be32 nw_rkey); int smc_rtoken_delete(struct smc_link *lnk, __be32 nw_rkey); void smc_rtoken_set(struct smc_link_group *lgr, int link_idx, int link_idx_new, __be32 nw_rkey_known, __be64 nw_vaddr, __be32 nw_rkey); void smc_rtoken_set2(struct smc_link_group *lgr, int rtok_idx, int link_id, __be64 nw_vaddr, __be32 nw_rkey); void smc_sndbuf_sync_sg_for_device(struct smc_connection *conn); void smc_rmb_sync_sg_for_cpu(struct smc_connection *conn); int smc_vlan_by_tcpsk(struct socket *clcsock, struct smc_init_info *ini); void smc_conn_free(struct smc_connection *conn); int smc_conn_create(struct smc_sock *smc, struct smc_init_info *ini); int smc_core_init(void); void smc_core_exit(void); int smcr_link_init(struct smc_link_group *lgr, struct smc_link *lnk, u8 link_idx, struct smc_init_info *ini); void smcr_link_clear(struct smc_link *lnk, bool log); void smcr_link_hold(struct smc_link *lnk); void smcr_link_put(struct smc_link *lnk); void smc_switch_link_and_count(struct smc_connection *conn, struct smc_link *to_lnk); int smcr_buf_map_lgr(struct smc_link *lnk); int smcr_buf_reg_lgr(struct smc_link *lnk); void smcr_lgr_set_type(struct smc_link_group *lgr, enum smc_lgr_type new_type); void smcr_lgr_set_type_asym(struct smc_link_group *lgr, enum smc_lgr_type new_type, int asym_lnk_idx); int smcr_link_reg_buf(struct smc_link *link, struct smc_buf_desc *rmb_desc); struct smc_link *smc_switch_conns(struct smc_link_group *lgr, struct smc_link *from_lnk, bool is_dev_err); void smcr_link_down_cond(struct smc_link *lnk); void smcr_link_down_cond_sched(struct smc_link *lnk); int smc_nl_get_sys_info(struct sk_buff *skb, struct netlink_callback *cb); int smcr_nl_get_lgr(struct sk_buff *skb, struct netlink_callback *cb); int smcr_nl_get_link(struct sk_buff *skb, struct netlink_callback *cb); int smcd_nl_get_lgr(struct sk_buff *skb, struct netlink_callback *cb); static inline struct smc_link_group *smc_get_lgr(struct smc_link *link) { return link->lgr; } #endif |
25 25 1 1 20 2 18 1 3 15 1 1 2 1 2 1 1 1 2 2 2 2 2 2 2 2 1 1 2 2 25 25 23 23 23 22 25 25 25 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/cls_flow.c Generic flow classifier * * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/list.h> #include <linux/jhash.h> #include <linux/random.h> #include <linux/pkt_cls.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_vlan.h> #include <linux/slab.h> #include <linux/module.h> #include <net/inet_sock.h> #include <net/pkt_cls.h> #include <net/ip.h> #include <net/route.h> #include <net/flow_dissector.h> #include <net/tc_wrapper.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack.h> #endif struct flow_head { struct list_head filters; struct rcu_head rcu; }; struct flow_filter { struct list_head list; struct tcf_exts exts; struct tcf_ematch_tree ematches; struct tcf_proto *tp; struct timer_list perturb_timer; u32 perturb_period; u32 handle; u32 nkeys; u32 keymask; u32 mode; u32 mask; u32 xor; u32 rshift; u32 addend; u32 divisor; u32 baseclass; u32 hashrnd; struct rcu_work rwork; }; static inline u32 addr_fold(void *addr) { unsigned long a = (unsigned long)addr; return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0); } static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow) { __be32 src = flow_get_u32_src(flow); if (src) return ntohl(src); return addr_fold(skb->sk); } static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow) { __be32 dst = flow_get_u32_dst(flow); if (dst) return ntohl(dst); return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true); } static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow) { return flow->basic.ip_proto; } static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow) { if (flow->ports.ports) return ntohs(flow->ports.src); return addr_fold(skb->sk); } static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow) { if (flow->ports.ports) return ntohs(flow->ports.dst); return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true); } static u32 flow_get_iif(const struct sk_buff *skb) { return skb->skb_iif; } static u32 flow_get_priority(const struct sk_buff *skb) { return skb->priority; } static u32 flow_get_mark(const struct sk_buff *skb) { return skb->mark; } static u32 flow_get_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return addr_fold(skb_nfct(skb)); #else return 0; #endif } #if IS_ENABLED(CONFIG_NF_CONNTRACK) #define CTTUPLE(skb, member) \ ({ \ enum ip_conntrack_info ctinfo; \ const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \ if (ct == NULL) \ goto fallback; \ ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \ }) #else #define CTTUPLE(skb, member) \ ({ \ goto fallback; \ 0; \ }) #endif static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow) { switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): return ntohl(CTTUPLE(skb, src.u3.ip)); case htons(ETH_P_IPV6): return ntohl(CTTUPLE(skb, src.u3.ip6[3])); } fallback: return flow_get_src(skb, flow); } static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow) { switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): return ntohl(CTTUPLE(skb, dst.u3.ip)); case htons(ETH_P_IPV6): return ntohl(CTTUPLE(skb, dst.u3.ip6[3])); } fallback: return flow_get_dst(skb, flow); } static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow) { return ntohs(CTTUPLE(skb, src.u.all)); fallback: return flow_get_proto_src(skb, flow); } static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow) { return ntohs(CTTUPLE(skb, dst.u.all)); fallback: return flow_get_proto_dst(skb, flow); } static u32 flow_get_rtclassid(const struct sk_buff *skb) { #ifdef CONFIG_IP_ROUTE_CLASSID if (skb_dst(skb)) return skb_dst(skb)->tclassid; #endif return 0; } static u32 flow_get_skuid(const struct sk_buff *skb) { struct sock *sk = skb_to_full_sk(skb); if (sk && sk->sk_socket && sk->sk_socket->file) { kuid_t skuid = sk->sk_socket->file->f_cred->fsuid; return from_kuid(&init_user_ns, skuid); } return 0; } static u32 flow_get_skgid(const struct sk_buff *skb) { struct sock *sk = skb_to_full_sk(skb); if (sk && sk->sk_socket && sk->sk_socket->file) { kgid_t skgid = sk->sk_socket->file->f_cred->fsgid; return from_kgid(&init_user_ns, skgid); } return 0; } static u32 flow_get_vlan_tag(const struct sk_buff *skb) { u16 tag; if (vlan_get_tag(skb, &tag) < 0) return 0; return tag & VLAN_VID_MASK; } static u32 flow_get_rxhash(struct sk_buff *skb) { return skb_get_hash(skb); } static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow) { switch (key) { case FLOW_KEY_SRC: return flow_get_src(skb, flow); case FLOW_KEY_DST: return flow_get_dst(skb, flow); case FLOW_KEY_PROTO: return flow_get_proto(skb, flow); case FLOW_KEY_PROTO_SRC: return flow_get_proto_src(skb, flow); case FLOW_KEY_PROTO_DST: return flow_get_proto_dst(skb, flow); case FLOW_KEY_IIF: return flow_get_iif(skb); case FLOW_KEY_PRIORITY: return flow_get_priority(skb); case FLOW_KEY_MARK: return flow_get_mark(skb); case FLOW_KEY_NFCT: return flow_get_nfct(skb); case FLOW_KEY_NFCT_SRC: return flow_get_nfct_src(skb, flow); case FLOW_KEY_NFCT_DST: return flow_get_nfct_dst(skb, flow); case FLOW_KEY_NFCT_PROTO_SRC: return flow_get_nfct_proto_src(skb, flow); case FLOW_KEY_NFCT_PROTO_DST: return flow_get_nfct_proto_dst(skb, flow); case FLOW_KEY_RTCLASSID: return flow_get_rtclassid(skb); case FLOW_KEY_SKUID: return flow_get_skuid(skb); case FLOW_KEY_SKGID: return flow_get_skgid(skb); case FLOW_KEY_VLAN_TAG: return flow_get_vlan_tag(skb); case FLOW_KEY_RXHASH: return flow_get_rxhash(skb); default: WARN_ON(1); return 0; } } #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \ (1 << FLOW_KEY_DST) | \ (1 << FLOW_KEY_PROTO) | \ (1 << FLOW_KEY_PROTO_SRC) | \ (1 << FLOW_KEY_PROTO_DST) | \ (1 << FLOW_KEY_NFCT_SRC) | \ (1 << FLOW_KEY_NFCT_DST) | \ (1 << FLOW_KEY_NFCT_PROTO_SRC) | \ (1 << FLOW_KEY_NFCT_PROTO_DST)) TC_INDIRECT_SCOPE int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) { struct flow_head *head = rcu_dereference_bh(tp->root); struct flow_filter *f; u32 keymask; u32 classid; unsigned int n, key; int r; list_for_each_entry_rcu(f, &head->filters, list) { u32 keys[FLOW_KEY_MAX + 1]; struct flow_keys flow_keys; if (!tcf_em_tree_match(skb, &f->ematches, NULL)) continue; keymask = f->keymask; if (keymask & FLOW_KEYS_NEEDED) skb_flow_dissect_flow_keys(skb, &flow_keys, 0); for (n = 0; n < f->nkeys; n++) { key = ffs(keymask) - 1; keymask &= ~(1 << key); keys[n] = flow_key_get(skb, key, &flow_keys); } if (f->mode == FLOW_MODE_HASH) classid = jhash2(keys, f->nkeys, f->hashrnd); else { classid = keys[0]; classid = (classid & f->mask) ^ f->xor; classid = (classid >> f->rshift) + f->addend; } if (f->divisor) classid %= f->divisor; res->class = 0; res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid); r = tcf_exts_exec(skb, &f->exts, res); if (r < 0) continue; return r; } return -1; } static void flow_perturbation(struct timer_list *t) { struct flow_filter *f = from_timer(f, t, perturb_timer); get_random_bytes(&f->hashrnd, 4); if (f->perturb_period) mod_timer(&f->perturb_timer, jiffies + f->perturb_period); } static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = { [TCA_FLOW_KEYS] = { .type = NLA_U32 }, [TCA_FLOW_MODE] = { .type = NLA_U32 }, [TCA_FLOW_BASECLASS] = { .type = NLA_U32 }, [TCA_FLOW_RSHIFT] = { .type = NLA_U32 }, [TCA_FLOW_ADDEND] = { .type = NLA_U32 }, [TCA_FLOW_MASK] = { .type = NLA_U32 }, [TCA_FLOW_XOR] = { .type = NLA_U32 }, [TCA_FLOW_DIVISOR] = { .type = NLA_U32 }, [TCA_FLOW_ACT] = { .type = NLA_NESTED }, [TCA_FLOW_POLICE] = { .type = NLA_NESTED }, [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED }, [TCA_FLOW_PERTURB] = { .type = NLA_U32 }, }; static void __flow_destroy_filter(struct flow_filter *f) { timer_shutdown_sync(&f->perturb_timer); tcf_exts_destroy(&f->exts); tcf_em_tree_destroy(&f->ematches); tcf_exts_put_net(&f->exts); kfree(f); } static void flow_destroy_filter_work(struct work_struct *work) { struct flow_filter *f = container_of(to_rcu_work(work), struct flow_filter, rwork); rtnl_lock(); __flow_destroy_filter(f); rtnl_unlock(); } static int flow_change(struct net *net, struct sk_buff *in_skb, struct tcf_proto *tp, unsigned long base, u32 handle, struct nlattr **tca, void **arg, u32 flags, struct netlink_ext_ack *extack) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *fold, *fnew; struct nlattr *opt = tca[TCA_OPTIONS]; struct nlattr *tb[TCA_FLOW_MAX + 1]; unsigned int nkeys = 0; unsigned int perturb_period = 0; u32 baseclass = 0; u32 keymask = 0; u32 mode; int err; if (opt == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_FLOW_MAX, opt, flow_policy, NULL); if (err < 0) return err; if (tb[TCA_FLOW_BASECLASS]) { baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]); if (TC_H_MIN(baseclass) == 0) return -EINVAL; } if (tb[TCA_FLOW_KEYS]) { keymask = nla_get_u32(tb[TCA_FLOW_KEYS]); nkeys = hweight32(keymask); if (nkeys == 0) return -EINVAL; if (fls(keymask) - 1 > FLOW_KEY_MAX) return -EOPNOTSUPP; if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) && sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns) return -EOPNOTSUPP; } fnew = kzalloc(sizeof(*fnew), GFP_KERNEL); if (!fnew) return -ENOBUFS; err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches); if (err < 0) goto err1; err = tcf_exts_init(&fnew->exts, net, TCA_FLOW_ACT, TCA_FLOW_POLICE); if (err < 0) goto err2; err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, flags, extack); if (err < 0) goto err2; fold = *arg; if (fold) { err = -EINVAL; if (fold->handle != handle && handle) goto err2; /* Copy fold into fnew */ fnew->tp = fold->tp; fnew->handle = fold->handle; fnew->nkeys = fold->nkeys; fnew->keymask = fold->keymask; fnew->mode = fold->mode; fnew->mask = fold->mask; fnew->xor = fold->xor; fnew->rshift = fold->rshift; fnew->addend = fold->addend; fnew->divisor = fold->divisor; fnew->baseclass = fold->baseclass; fnew->hashrnd = fold->hashrnd; mode = fold->mode; if (tb[TCA_FLOW_MODE]) mode = nla_get_u32(tb[TCA_FLOW_MODE]); if (mode != FLOW_MODE_HASH && nkeys > 1) goto err2; if (mode == FLOW_MODE_HASH) perturb_period = fold->perturb_period; if (tb[TCA_FLOW_PERTURB]) { if (mode != FLOW_MODE_HASH) goto err2; perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; } } else { err = -EINVAL; if (!handle) goto err2; if (!tb[TCA_FLOW_KEYS]) goto err2; mode = FLOW_MODE_MAP; if (tb[TCA_FLOW_MODE]) mode = nla_get_u32(tb[TCA_FLOW_MODE]); if (mode != FLOW_MODE_HASH && nkeys > 1) goto err2; if (tb[TCA_FLOW_PERTURB]) { if (mode != FLOW_MODE_HASH) goto err2; perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; } if (TC_H_MAJ(baseclass) == 0) { struct Qdisc *q = tcf_block_q(tp->chain->block); baseclass = TC_H_MAKE(q->handle, baseclass); } if (TC_H_MIN(baseclass) == 0) baseclass = TC_H_MAKE(baseclass, 1); fnew->handle = handle; fnew->mask = ~0U; fnew->tp = tp; get_random_bytes(&fnew->hashrnd, 4); } timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE); tcf_block_netif_keep_dst(tp->chain->block); if (tb[TCA_FLOW_KEYS]) { fnew->keymask = keymask; fnew->nkeys = nkeys; } fnew->mode = mode; if (tb[TCA_FLOW_MASK]) fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]); if (tb[TCA_FLOW_XOR]) fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]); if (tb[TCA_FLOW_RSHIFT]) fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]); if (tb[TCA_FLOW_ADDEND]) fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]); if (tb[TCA_FLOW_DIVISOR]) fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]); if (baseclass) fnew->baseclass = baseclass; fnew->perturb_period = perturb_period; if (perturb_period) mod_timer(&fnew->perturb_timer, jiffies + perturb_period); if (!*arg) list_add_tail_rcu(&fnew->list, &head->filters); else list_replace_rcu(&fold->list, &fnew->list); *arg = fnew; if (fold) { tcf_exts_get_net(&fold->exts); tcf_queue_work(&fold->rwork, flow_destroy_filter_work); } return 0; err2: tcf_exts_destroy(&fnew->exts); tcf_em_tree_destroy(&fnew->ematches); err1: kfree(fnew); return err; } static int flow_delete(struct tcf_proto *tp, void *arg, bool *last, bool rtnl_held, struct netlink_ext_ack *extack) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f = arg; list_del_rcu(&f->list); tcf_exts_get_net(&f->exts); tcf_queue_work(&f->rwork, flow_destroy_filter_work); *last = list_empty(&head->filters); return 0; } static int flow_init(struct tcf_proto *tp) { struct flow_head *head; head = kzalloc(sizeof(*head), GFP_KERNEL); if (head == NULL) return -ENOBUFS; INIT_LIST_HEAD(&head->filters); rcu_assign_pointer(tp->root, head); return 0; } static void flow_destroy(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f, *next; list_for_each_entry_safe(f, next, &head->filters, list) { list_del_rcu(&f->list); if (tcf_exts_get_net(&f->exts)) tcf_queue_work(&f->rwork, flow_destroy_filter_work); else __flow_destroy_filter(f); } kfree_rcu(head, rcu); } static void *flow_get(struct tcf_proto *tp, u32 handle) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f; list_for_each_entry(f, &head->filters, list) if (f->handle == handle) return f; return NULL; } static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) { struct flow_filter *f = fh; struct nlattr *nest; if (f == NULL) return skb->len; t->tcm_handle = f->handle; nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) || nla_put_u32(skb, TCA_FLOW_MODE, f->mode)) goto nla_put_failure; if (f->mask != ~0 || f->xor != 0) { if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) || nla_put_u32(skb, TCA_FLOW_XOR, f->xor)) goto nla_put_failure; } if (f->rshift && nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift)) goto nla_put_failure; if (f->addend && nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend)) goto nla_put_failure; if (f->divisor && nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor)) goto nla_put_failure; if (f->baseclass && nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass)) goto nla_put_failure; if (f->perturb_period && nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ)) goto nla_put_failure; if (tcf_exts_dump(skb, &f->exts) < 0) goto nla_put_failure; #ifdef CONFIG_NET_EMATCH if (f->ematches.hdr.nmatches && tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0) goto nla_put_failure; #endif nla_nest_end(skb, nest); if (tcf_exts_dump_stats(skb, &f->exts) < 0) goto nla_put_failure; return skb->len; nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg, bool rtnl_held) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f; list_for_each_entry(f, &head->filters, list) { if (!tc_cls_stats_dump(tp, arg, f)) break; } } static struct tcf_proto_ops cls_flow_ops __read_mostly = { .kind = "flow", .classify = flow_classify, .init = flow_init, .destroy = flow_destroy, .change = flow_change, .delete = flow_delete, .get = flow_get, .dump = flow_dump, .walk = flow_walk, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_CLS("flow"); static int __init cls_flow_init(void) { return register_tcf_proto_ops(&cls_flow_ops); } static void __exit cls_flow_exit(void) { unregister_tcf_proto_ops(&cls_flow_ops); } module_init(cls_flow_init); module_exit(cls_flow_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_DESCRIPTION("TC flow classifier"); |
39 1 1 4 33 1 1 1 1 18 3 4 7 1 26 1 22 3 1 2 2 2 1 6 14 1 2 4 2 2 1 19 19 3 22 20 2 19 3 22 22 22 10 1 15 10 1 15 15 12 3 12 2 13 2 15 15 15 15 21 20 1 1 1 1 22 21 21 21 21 21 21 20 21 21 1 18 2 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_police.c Input police filter * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * J Hadi Salim (action changes) */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <linux/slab.h> #include <net/act_api.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_cls.h> #include <net/tc_act/tc_police.h> #include <net/tc_wrapper.h> /* Each policer is serialized by its individual spinlock */ static struct tc_action_ops act_police_ops; static const struct nla_policy police_policy[TCA_POLICE_MAX + 1] = { [TCA_POLICE_RATE] = { .len = TC_RTAB_SIZE }, [TCA_POLICE_PEAKRATE] = { .len = TC_RTAB_SIZE }, [TCA_POLICE_AVRATE] = { .type = NLA_U32 }, [TCA_POLICE_RESULT] = { .type = NLA_U32 }, [TCA_POLICE_RATE64] = { .type = NLA_U64 }, [TCA_POLICE_PEAKRATE64] = { .type = NLA_U64 }, [TCA_POLICE_PKTRATE64] = { .type = NLA_U64, .min = 1 }, [TCA_POLICE_PKTBURST64] = { .type = NLA_U64, .min = 1 }, }; static int tcf_police_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { int ret = 0, tcfp_result = TC_ACT_OK, err, size; bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_POLICE_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_police *parm; struct tcf_police *police; struct qdisc_rate_table *R_tab = NULL, *P_tab = NULL; struct tc_action_net *tn = net_generic(net, act_police_ops.net_id); struct tcf_police_params *new; bool exists = false; u32 index; u64 rate64, prate64; u64 pps, ppsburst; if (nla == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_POLICE_MAX, nla, police_policy, NULL); if (err < 0) return err; if (tb[TCA_POLICE_TBF] == NULL) return -EINVAL; size = nla_len(tb[TCA_POLICE_TBF]); if (size != sizeof(*parm) && size != sizeof(struct tc_police_compat)) return -EINVAL; parm = nla_data(tb[TCA_POLICE_TBF]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return ACT_P_BOUND; if (!exists) { ret = tcf_idr_create(tn, index, NULL, a, &act_police_ops, bind, true, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; spin_lock_init(&(to_police(*a)->tcfp_lock)); } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; police = to_police(*a); if (parm->rate.rate) { err = -ENOMEM; R_tab = qdisc_get_rtab(&parm->rate, tb[TCA_POLICE_RATE], NULL); if (R_tab == NULL) goto failure; if (parm->peakrate.rate) { P_tab = qdisc_get_rtab(&parm->peakrate, tb[TCA_POLICE_PEAKRATE], NULL); if (P_tab == NULL) goto failure; } } if (est) { err = gen_replace_estimator(&police->tcf_bstats, police->common.cpu_bstats, &police->tcf_rate_est, &police->tcf_lock, false, est); if (err) goto failure; } else if (tb[TCA_POLICE_AVRATE] && (ret == ACT_P_CREATED || !gen_estimator_active(&police->tcf_rate_est))) { err = -EINVAL; goto failure; } if (tb[TCA_POLICE_RESULT]) { tcfp_result = nla_get_u32(tb[TCA_POLICE_RESULT]); if (TC_ACT_EXT_CMP(tcfp_result, TC_ACT_GOTO_CHAIN)) { NL_SET_ERR_MSG(extack, "goto chain not allowed on fallback"); err = -EINVAL; goto failure; } } if ((tb[TCA_POLICE_PKTRATE64] && !tb[TCA_POLICE_PKTBURST64]) || (!tb[TCA_POLICE_PKTRATE64] && tb[TCA_POLICE_PKTBURST64])) { NL_SET_ERR_MSG(extack, "Both or neither packet-per-second burst and rate must be provided"); err = -EINVAL; goto failure; } if (tb[TCA_POLICE_PKTRATE64] && R_tab) { NL_SET_ERR_MSG(extack, "packet-per-second and byte-per-second rate limits not allowed in same action"); err = -EINVAL; goto failure; } new = kzalloc(sizeof(*new), GFP_KERNEL); if (unlikely(!new)) { err = -ENOMEM; goto failure; } /* No failure allowed after this point */ new->tcfp_result = tcfp_result; new->tcfp_mtu = parm->mtu; if (!new->tcfp_mtu) { new->tcfp_mtu = ~0; if (R_tab) new->tcfp_mtu = 255 << R_tab->rate.cell_log; } if (R_tab) { new->rate_present = true; rate64 = tb[TCA_POLICE_RATE64] ? nla_get_u64(tb[TCA_POLICE_RATE64]) : 0; psched_ratecfg_precompute(&new->rate, &R_tab->rate, rate64); qdisc_put_rtab(R_tab); } else { new->rate_present = false; } if (P_tab) { new->peak_present = true; prate64 = tb[TCA_POLICE_PEAKRATE64] ? nla_get_u64(tb[TCA_POLICE_PEAKRATE64]) : 0; psched_ratecfg_precompute(&new->peak, &P_tab->rate, prate64); qdisc_put_rtab(P_tab); } else { new->peak_present = false; } new->tcfp_burst = PSCHED_TICKS2NS(parm->burst); if (new->peak_present) new->tcfp_mtu_ptoks = (s64)psched_l2t_ns(&new->peak, new->tcfp_mtu); if (tb[TCA_POLICE_AVRATE]) new->tcfp_ewma_rate = nla_get_u32(tb[TCA_POLICE_AVRATE]); if (tb[TCA_POLICE_PKTRATE64]) { pps = nla_get_u64(tb[TCA_POLICE_PKTRATE64]); ppsburst = nla_get_u64(tb[TCA_POLICE_PKTBURST64]); new->pps_present = true; new->tcfp_pkt_burst = PSCHED_TICKS2NS(ppsburst); psched_ppscfg_precompute(&new->ppsrate, pps); } spin_lock_bh(&police->tcf_lock); spin_lock_bh(&police->tcfp_lock); police->tcfp_t_c = ktime_get_ns(); police->tcfp_toks = new->tcfp_burst; if (new->peak_present) police->tcfp_ptoks = new->tcfp_mtu_ptoks; spin_unlock_bh(&police->tcfp_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); new = rcu_replace_pointer(police->params, new, lockdep_is_held(&police->tcf_lock)); spin_unlock_bh(&police->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (new) kfree_rcu(new, rcu); return ret; failure: qdisc_put_rtab(P_tab); qdisc_put_rtab(R_tab); if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static bool tcf_police_mtu_check(struct sk_buff *skb, u32 limit) { u32 len; if (skb_is_gso(skb)) return skb_gso_validate_mac_len(skb, limit); len = qdisc_pkt_len(skb); if (skb_at_tc_ingress(skb)) len += skb->mac_len; return len <= limit; } TC_INDIRECT_SCOPE int tcf_police_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_police *police = to_police(a); s64 now, toks, ppstoks = 0, ptoks = 0; struct tcf_police_params *p; int ret; tcf_lastuse_update(&police->tcf_tm); bstats_update(this_cpu_ptr(police->common.cpu_bstats), skb); ret = READ_ONCE(police->tcf_action); p = rcu_dereference_bh(police->params); if (p->tcfp_ewma_rate) { struct gnet_stats_rate_est64 sample; if (!gen_estimator_read(&police->tcf_rate_est, &sample) || sample.bps >= p->tcfp_ewma_rate) goto inc_overlimits; } if (tcf_police_mtu_check(skb, p->tcfp_mtu)) { if (!p->rate_present && !p->pps_present) { ret = p->tcfp_result; goto end; } now = ktime_get_ns(); spin_lock_bh(&police->tcfp_lock); toks = min_t(s64, now - police->tcfp_t_c, p->tcfp_burst); if (p->peak_present) { ptoks = toks + police->tcfp_ptoks; if (ptoks > p->tcfp_mtu_ptoks) ptoks = p->tcfp_mtu_ptoks; ptoks -= (s64)psched_l2t_ns(&p->peak, qdisc_pkt_len(skb)); } if (p->rate_present) { toks += police->tcfp_toks; if (toks > p->tcfp_burst) toks = p->tcfp_burst; toks -= (s64)psched_l2t_ns(&p->rate, qdisc_pkt_len(skb)); } else if (p->pps_present) { ppstoks = min_t(s64, now - police->tcfp_t_c, p->tcfp_pkt_burst); ppstoks += police->tcfp_pkttoks; if (ppstoks > p->tcfp_pkt_burst) ppstoks = p->tcfp_pkt_burst; ppstoks -= (s64)psched_pkt2t_ns(&p->ppsrate, 1); } if ((toks | ptoks | ppstoks) >= 0) { police->tcfp_t_c = now; police->tcfp_toks = toks; police->tcfp_ptoks = ptoks; police->tcfp_pkttoks = ppstoks; spin_unlock_bh(&police->tcfp_lock); ret = p->tcfp_result; goto inc_drops; } spin_unlock_bh(&police->tcfp_lock); } inc_overlimits: qstats_overlimit_inc(this_cpu_ptr(police->common.cpu_qstats)); inc_drops: if (ret == TC_ACT_SHOT) qstats_drop_inc(this_cpu_ptr(police->common.cpu_qstats)); end: return ret; } static void tcf_police_cleanup(struct tc_action *a) { struct tcf_police *police = to_police(a); struct tcf_police_params *p; p = rcu_dereference_protected(police->params, 1); if (p) kfree_rcu(p, rcu); } static void tcf_police_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_police *police = to_police(a); struct tcf_t *tm = &police->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_police_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_police *police = to_police(a); struct tcf_police_params *p; struct tc_police opt = { .index = police->tcf_index, .refcnt = refcount_read(&police->tcf_refcnt) - ref, .bindcnt = atomic_read(&police->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&police->tcf_lock); opt.action = police->tcf_action; p = rcu_dereference_protected(police->params, lockdep_is_held(&police->tcf_lock)); opt.mtu = p->tcfp_mtu; opt.burst = PSCHED_NS2TICKS(p->tcfp_burst); if (p->rate_present) { psched_ratecfg_getrate(&opt.rate, &p->rate); if ((p->rate.rate_bytes_ps >= (1ULL << 32)) && nla_put_u64_64bit(skb, TCA_POLICE_RATE64, p->rate.rate_bytes_ps, TCA_POLICE_PAD)) goto nla_put_failure; } if (p->peak_present) { psched_ratecfg_getrate(&opt.peakrate, &p->peak); if ((p->peak.rate_bytes_ps >= (1ULL << 32)) && nla_put_u64_64bit(skb, TCA_POLICE_PEAKRATE64, p->peak.rate_bytes_ps, TCA_POLICE_PAD)) goto nla_put_failure; } if (p->pps_present) { if (nla_put_u64_64bit(skb, TCA_POLICE_PKTRATE64, p->ppsrate.rate_pkts_ps, TCA_POLICE_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(skb, TCA_POLICE_PKTBURST64, PSCHED_NS2TICKS(p->tcfp_pkt_burst), TCA_POLICE_PAD)) goto nla_put_failure; } if (nla_put(skb, TCA_POLICE_TBF, sizeof(opt), &opt)) goto nla_put_failure; if (p->tcfp_result && nla_put_u32(skb, TCA_POLICE_RESULT, p->tcfp_result)) goto nla_put_failure; if (p->tcfp_ewma_rate && nla_put_u32(skb, TCA_POLICE_AVRATE, p->tcfp_ewma_rate)) goto nla_put_failure; tcf_tm_dump(&t, &police->tcf_tm); if (nla_put_64bit(skb, TCA_POLICE_TM, sizeof(t), &t, TCA_POLICE_PAD)) goto nla_put_failure; spin_unlock_bh(&police->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&police->tcf_lock); nlmsg_trim(skb, b); return -1; } static int tcf_police_act_to_flow_act(int tc_act, u32 *extval, struct netlink_ext_ack *extack) { int act_id = -EOPNOTSUPP; if (!TC_ACT_EXT_OPCODE(tc_act)) { if (tc_act == TC_ACT_OK) act_id = FLOW_ACTION_ACCEPT; else if (tc_act == TC_ACT_SHOT) act_id = FLOW_ACTION_DROP; else if (tc_act == TC_ACT_PIPE) act_id = FLOW_ACTION_PIPE; else if (tc_act == TC_ACT_RECLASSIFY) NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform/exceed action is \"reclassify\""); else NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload"); } else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_GOTO_CHAIN)) { act_id = FLOW_ACTION_GOTO; *extval = tc_act & TC_ACT_EXT_VAL_MASK; } else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_JUMP)) { act_id = FLOW_ACTION_JUMP; *extval = tc_act & TC_ACT_EXT_VAL_MASK; } else if (tc_act == TC_ACT_UNSPEC) { act_id = FLOW_ACTION_CONTINUE; } else { NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload"); } return act_id; } static int tcf_police_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; struct tcf_police *police = to_police(act); struct tcf_police_params *p; int act_id; p = rcu_dereference_protected(police->params, lockdep_is_held(&police->tcf_lock)); entry->id = FLOW_ACTION_POLICE; entry->police.burst = tcf_police_burst(act); entry->police.rate_bytes_ps = tcf_police_rate_bytes_ps(act); entry->police.peakrate_bytes_ps = tcf_police_peakrate_bytes_ps(act); entry->police.avrate = tcf_police_tcfp_ewma_rate(act); entry->police.overhead = tcf_police_rate_overhead(act); entry->police.burst_pkt = tcf_police_burst_pkt(act); entry->police.rate_pkt_ps = tcf_police_rate_pkt_ps(act); entry->police.mtu = tcf_police_tcfp_mtu(act); act_id = tcf_police_act_to_flow_act(police->tcf_action, &entry->police.exceed.extval, extack); if (act_id < 0) return act_id; entry->police.exceed.act_id = act_id; act_id = tcf_police_act_to_flow_act(p->tcfp_result, &entry->police.notexceed.extval, extack); if (act_id < 0) return act_id; entry->police.notexceed.act_id = act_id; *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; fl_action->id = FLOW_ACTION_POLICE; } return 0; } MODULE_AUTHOR("Alexey Kuznetsov"); MODULE_DESCRIPTION("Policing actions"); MODULE_LICENSE("GPL"); static struct tc_action_ops act_police_ops = { .kind = "police", .id = TCA_ID_POLICE, .owner = THIS_MODULE, .stats_update = tcf_police_stats_update, .act = tcf_police_act, .dump = tcf_police_dump, .init = tcf_police_init, .cleanup = tcf_police_cleanup, .offload_act_setup = tcf_police_offload_act_setup, .size = sizeof(struct tcf_police), }; MODULE_ALIAS_NET_ACT("police"); static __net_init int police_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_police_ops.net_id); return tc_action_net_init(net, tn, &act_police_ops); } static void __net_exit police_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_police_ops.net_id); } static struct pernet_operations police_net_ops = { .init = police_init_net, .exit_batch = police_exit_net, .id = &act_police_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init police_init_module(void) { return tcf_register_action(&act_police_ops, &police_net_ops); } static void __exit police_cleanup_module(void) { tcf_unregister_action(&act_police_ops, &police_net_ops); } module_init(police_init_module); module_exit(police_cleanup_module); |
3 13 13 59 5 59 59 60 1 1 4 5 5 5 1 5 6 6 2 6 1 4 4 3 2 1 25 3 2 1 3 5 9 2 1 1 1 1 1 1 1 1 1 1 7 3 2 1 1 1 1 5 6 1 3 3 1 1 4 1 3 4 1 3 4 4 3 3 3 2 1 1 1 883 882 145 145 36 5 5 5 5 5 8 1 7 8 3 8 8 1 1 1 7 6 1 5 6 6 6 6 6 6 7 4 3 1 1 1 6 2 3 3 3 5 2 2 8 5 1 1 2 59 59 46 2 1 42 14 1 2 2 1 1 1 6 1 1 1 1 1 4 7 3 9 1 1 6 1 1 1 1 1 1 1 1 1 1 2 9 2 3 1 2 2 1 1 4 11 1 8 2 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 1 14 13 3 2 8 1 5 2 16 15 1 3 1 3 1 2 4 4 12 2 10 3 2 1 1 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Linux IPv6 multicast routing support for BSD pim6sd * Based on net/ipv4/ipmr.c. * * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr> * LSIIT Laboratory, Strasbourg, France * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com> * 6WIND, Paris, France * Copyright (C)2007,2008 USAGI/WIDE Project * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> */ #include <linux/uaccess.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/kernel.h> #include <linux/fcntl.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/rhashtable.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <net/raw.h> #include <linux/notifier.h> #include <linux/if_arp.h> #include <net/checksum.h> #include <net/netlink.h> #include <net/fib_rules.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <linux/mroute6.h> #include <linux/pim.h> #include <net/addrconf.h> #include <linux/netfilter_ipv6.h> #include <linux/export.h> #include <net/ip6_checksum.h> #include <linux/netconf.h> #include <net/ip_tunnels.h> #include <linux/nospec.h> struct ip6mr_rule { struct fib_rule common; }; struct ip6mr_result { struct mr_table *mrt; }; /* Big lock, protecting vif table, mrt cache and mroute socket state. Note that the changes are semaphored via rtnl_lock. */ static DEFINE_SPINLOCK(mrt_lock); static struct net_device *vif_dev_read(const struct vif_device *vif) { return rcu_dereference(vif->dev); } /* Multicast router control variables */ /* Special spinlock for queue of unresolved entries */ static DEFINE_SPINLOCK(mfc_unres_lock); /* We return to original Alan's scheme. Hash table of resolved entries is changed only in process context and protected with weak lock mrt_lock. Queue of unresolved entries is protected with strong spinlock mfc_unres_lock. In this case data path is free of exclusive locks at all. */ static struct kmem_cache *mrt_cachep __read_mostly; static struct mr_table *ip6mr_new_table(struct net *net, u32 id); static void ip6mr_free_table(struct mr_table *mrt); static void ip6_mr_forward(struct net *net, struct mr_table *mrt, struct net_device *dev, struct sk_buff *skb, struct mfc6_cache *cache); static int ip6mr_cache_report(const struct mr_table *mrt, struct sk_buff *pkt, mifi_t mifi, int assert); static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc, int cmd); static void mrt6msg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); static int ip6mr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb); static void mroute_clean_tables(struct mr_table *mrt, int flags); static void ipmr_expire_process(struct timer_list *t); #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES #define ip6mr_for_each_table(mrt, net) \ list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list, \ lockdep_rtnl_is_held() || \ list_empty(&net->ipv6.mr6_tables)) static struct mr_table *ip6mr_mr_table_iter(struct net *net, struct mr_table *mrt) { struct mr_table *ret; if (!mrt) ret = list_entry_rcu(net->ipv6.mr6_tables.next, struct mr_table, list); else ret = list_entry_rcu(mrt->list.next, struct mr_table, list); if (&ret->list == &net->ipv6.mr6_tables) return NULL; return ret; } static struct mr_table *ip6mr_get_table(struct net *net, u32 id) { struct mr_table *mrt; ip6mr_for_each_table(mrt, net) { if (mrt->id == id) return mrt; } return NULL; } static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, struct mr_table **mrt) { int err; struct ip6mr_result res; struct fib_lookup_arg arg = { .result = &res, .flags = FIB_LOOKUP_NOREF, }; /* update flow if oif or iif point to device enslaved to l3mdev */ l3mdev_update_flow(net, flowi6_to_flowi(flp6)); err = fib_rules_lookup(net->ipv6.mr6_rules_ops, flowi6_to_flowi(flp6), 0, &arg); if (err < 0) return err; *mrt = res.mrt; return 0; } static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg) { struct ip6mr_result *res = arg->result; struct mr_table *mrt; switch (rule->action) { case FR_ACT_TO_TBL: break; case FR_ACT_UNREACHABLE: return -ENETUNREACH; case FR_ACT_PROHIBIT: return -EACCES; case FR_ACT_BLACKHOLE: default: return -EINVAL; } arg->table = fib_rule_get_table(rule, arg); mrt = ip6mr_get_table(rule->fr_net, arg->table); if (!mrt) return -EAGAIN; res->mrt = mrt; return 0; } static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) { return 1; } static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh, struct nlattr **tb, struct netlink_ext_ack *extack) { return 0; } static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, struct nlattr **tb) { return 1; } static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh) { frh->dst_len = 0; frh->src_len = 0; frh->tos = 0; return 0; } static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = { .family = RTNL_FAMILY_IP6MR, .rule_size = sizeof(struct ip6mr_rule), .addr_size = sizeof(struct in6_addr), .action = ip6mr_rule_action, .match = ip6mr_rule_match, .configure = ip6mr_rule_configure, .compare = ip6mr_rule_compare, .fill = ip6mr_rule_fill, .nlgroup = RTNLGRP_IPV6_RULE, .owner = THIS_MODULE, }; static int __net_init ip6mr_rules_init(struct net *net) { struct fib_rules_ops *ops; struct mr_table *mrt; int err; ops = fib_rules_register(&ip6mr_rules_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); INIT_LIST_HEAD(&net->ipv6.mr6_tables); mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); if (IS_ERR(mrt)) { err = PTR_ERR(mrt); goto err1; } err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT); if (err < 0) goto err2; net->ipv6.mr6_rules_ops = ops; return 0; err2: rtnl_lock(); ip6mr_free_table(mrt); rtnl_unlock(); err1: fib_rules_unregister(ops); return err; } static void __net_exit ip6mr_rules_exit(struct net *net) { struct mr_table *mrt, *next; ASSERT_RTNL(); list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { list_del(&mrt->list); ip6mr_free_table(mrt); } fib_rules_unregister(net->ipv6.mr6_rules_ops); } static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return fib_rules_dump(net, nb, RTNL_FAMILY_IP6MR, extack); } static unsigned int ip6mr_rules_seq_read(struct net *net) { return fib_rules_seq_read(net, RTNL_FAMILY_IP6MR); } bool ip6mr_rule_default(const struct fib_rule *rule) { return fib_rule_matchall(rule) && rule->action == FR_ACT_TO_TBL && rule->table == RT6_TABLE_DFLT && !rule->l3mdev; } EXPORT_SYMBOL(ip6mr_rule_default); #else #define ip6mr_for_each_table(mrt, net) \ for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) static struct mr_table *ip6mr_mr_table_iter(struct net *net, struct mr_table *mrt) { if (!mrt) return net->ipv6.mrt6; return NULL; } static struct mr_table *ip6mr_get_table(struct net *net, u32 id) { return net->ipv6.mrt6; } static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, struct mr_table **mrt) { *mrt = net->ipv6.mrt6; return 0; } static int __net_init ip6mr_rules_init(struct net *net) { struct mr_table *mrt; mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); if (IS_ERR(mrt)) return PTR_ERR(mrt); net->ipv6.mrt6 = mrt; return 0; } static void __net_exit ip6mr_rules_exit(struct net *net) { ASSERT_RTNL(); ip6mr_free_table(net->ipv6.mrt6); net->ipv6.mrt6 = NULL; } static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static unsigned int ip6mr_rules_seq_read(struct net *net) { return 0; } #endif static int ip6mr_hash_cmp(struct rhashtable_compare_arg *arg, const void *ptr) { const struct mfc6_cache_cmp_arg *cmparg = arg->key; struct mfc6_cache *c = (struct mfc6_cache *)ptr; return !ipv6_addr_equal(&c->mf6c_mcastgrp, &cmparg->mf6c_mcastgrp) || !ipv6_addr_equal(&c->mf6c_origin, &cmparg->mf6c_origin); } static const struct rhashtable_params ip6mr_rht_params = { .head_offset = offsetof(struct mr_mfc, mnode), .key_offset = offsetof(struct mfc6_cache, cmparg), .key_len = sizeof(struct mfc6_cache_cmp_arg), .nelem_hint = 3, .obj_cmpfn = ip6mr_hash_cmp, .automatic_shrinking = true, }; static void ip6mr_new_table_set(struct mr_table *mrt, struct net *net) { #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); #endif } static struct mfc6_cache_cmp_arg ip6mr_mr_table_ops_cmparg_any = { .mf6c_origin = IN6ADDR_ANY_INIT, .mf6c_mcastgrp = IN6ADDR_ANY_INIT, }; static struct mr_table_ops ip6mr_mr_table_ops = { .rht_params = &ip6mr_rht_params, .cmparg_any = &ip6mr_mr_table_ops_cmparg_any, }; static struct mr_table *ip6mr_new_table(struct net *net, u32 id) { struct mr_table *mrt; mrt = ip6mr_get_table(net, id); if (mrt) return mrt; return mr_table_alloc(net, id, &ip6mr_mr_table_ops, ipmr_expire_process, ip6mr_new_table_set); } static void ip6mr_free_table(struct mr_table *mrt) { timer_shutdown_sync(&mrt->ipmr_expire_timer); mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC | MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC); rhltable_destroy(&mrt->mfc_hash); kfree(mrt); } #ifdef CONFIG_PROC_FS /* The /proc interfaces to multicast routing * /proc/ip6_mr_cache /proc/ip6_mr_vif */ static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct mr_vif_iter *iter = seq->private; struct net *net = seq_file_net(seq); struct mr_table *mrt; mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); if (!mrt) return ERR_PTR(-ENOENT); iter->mrt = mrt; rcu_read_lock(); return mr_vif_seq_start(seq, pos); } static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) { struct mr_vif_iter *iter = seq->private; struct mr_table *mrt = iter->mrt; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); } else { const struct vif_device *vif = v; const struct net_device *vif_dev; const char *name; vif_dev = vif_dev_read(vif); name = vif_dev ? vif_dev->name : "none"; seq_printf(seq, "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", vif - mrt->vif_table, name, vif->bytes_in, vif->pkt_in, vif->bytes_out, vif->pkt_out, vif->flags); } return 0; } static const struct seq_operations ip6mr_vif_seq_ops = { .start = ip6mr_vif_seq_start, .next = mr_vif_seq_next, .stop = ip6mr_vif_seq_stop, .show = ip6mr_vif_seq_show, }; static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) { struct net *net = seq_file_net(seq); struct mr_table *mrt; mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); if (!mrt) return ERR_PTR(-ENOENT); return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); } static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) { int n; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Group " "Origin " "Iif Pkts Bytes Wrong Oifs\n"); } else { const struct mfc6_cache *mfc = v; const struct mr_mfc_iter *it = seq->private; struct mr_table *mrt = it->mrt; seq_printf(seq, "%pI6 %pI6 %-3hd", &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, mfc->_c.mfc_parent); if (it->cache != &mrt->mfc_unres_queue) { seq_printf(seq, " %8lu %8lu %8lu", mfc->_c.mfc_un.res.pkt, mfc->_c.mfc_un.res.bytes, mfc->_c.mfc_un.res.wrong_if); for (n = mfc->_c.mfc_un.res.minvif; n < mfc->_c.mfc_un.res.maxvif; n++) { if (VIF_EXISTS(mrt, n) && mfc->_c.mfc_un.res.ttls[n] < 255) seq_printf(seq, " %2d:%-3d", n, mfc->_c.mfc_un.res.ttls[n]); } } else { /* unresolved mfc_caches don't contain * pkt, bytes and wrong_if values */ seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); } seq_putc(seq, '\n'); } return 0; } static const struct seq_operations ipmr_mfc_seq_ops = { .start = ipmr_mfc_seq_start, .next = mr_mfc_seq_next, .stop = mr_mfc_seq_stop, .show = ipmr_mfc_seq_show, }; #endif #ifdef CONFIG_IPV6_PIMSM_V2 static int pim6_rcv(struct sk_buff *skb) { struct pimreghdr *pim; struct ipv6hdr *encap; struct net_device *reg_dev = NULL; struct net *net = dev_net(skb->dev); struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .flowi6_mark = skb->mark, }; int reg_vif_num; if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) goto drop; pim = (struct pimreghdr *)skb_transport_header(skb); if (pim->type != ((PIM_VERSION << 4) | PIM_TYPE_REGISTER) || (pim->flags & PIM_NULL_REGISTER) || (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, sizeof(*pim), IPPROTO_PIM, csum_partial((void *)pim, sizeof(*pim), 0)) && csum_fold(skb_checksum(skb, 0, skb->len, 0)))) goto drop; /* check if the inner packet is destined to mcast group */ encap = (struct ipv6hdr *)(skb_transport_header(skb) + sizeof(*pim)); if (!ipv6_addr_is_multicast(&encap->daddr) || encap->payload_len == 0 || ntohs(encap->payload_len) + sizeof(*pim) > skb->len) goto drop; if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) goto drop; /* Pairs with WRITE_ONCE() in mif6_add()/mif6_delete() */ reg_vif_num = READ_ONCE(mrt->mroute_reg_vif_num); if (reg_vif_num >= 0) reg_dev = vif_dev_read(&mrt->vif_table[reg_vif_num]); if (!reg_dev) goto drop; skb->mac_header = skb->network_header; skb_pull(skb, (u8 *)encap - skb->data); skb_reset_network_header(skb); skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = CHECKSUM_NONE; skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); netif_rx(skb); return 0; drop: kfree_skb(skb); return 0; } static const struct inet6_protocol pim6_protocol = { .handler = pim6_rcv, }; /* Service routines creating virtual interfaces: PIMREG */ static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) { struct net *net = dev_net(dev); struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_oif = dev->ifindex, .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, .flowi6_mark = skb->mark, }; if (!pskb_inet_may_pull(skb)) goto tx_err; if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) goto tx_err; DEV_STATS_ADD(dev, tx_bytes, skb->len); DEV_STATS_INC(dev, tx_packets); rcu_read_lock(); ip6mr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), MRT6MSG_WHOLEPKT); rcu_read_unlock(); kfree_skb(skb); return NETDEV_TX_OK; tx_err: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); return NETDEV_TX_OK; } static int reg_vif_get_iflink(const struct net_device *dev) { return 0; } static const struct net_device_ops reg_vif_netdev_ops = { .ndo_start_xmit = reg_vif_xmit, .ndo_get_iflink = reg_vif_get_iflink, }; static void reg_vif_setup(struct net_device *dev) { dev->type = ARPHRD_PIMREG; dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; dev->flags = IFF_NOARP; dev->netdev_ops = ®_vif_netdev_ops; dev->needs_free_netdev = true; dev->netns_local = true; } static struct net_device *ip6mr_reg_vif(struct net *net, struct mr_table *mrt) { struct net_device *dev; char name[IFNAMSIZ]; if (mrt->id == RT6_TABLE_DFLT) sprintf(name, "pim6reg"); else sprintf(name, "pim6reg%u", mrt->id); dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); if (!dev) return NULL; dev_net_set(dev, net); if (register_netdevice(dev)) { free_netdev(dev); return NULL; } if (dev_open(dev, NULL)) goto failure; dev_hold(dev); return dev; failure: unregister_netdevice(dev); return NULL; } #endif static int call_ip6mr_vif_entry_notifiers(struct net *net, enum fib_event_type event_type, struct vif_device *vif, struct net_device *vif_dev, mifi_t vif_index, u32 tb_id) { return mr_call_vif_notifiers(net, RTNL_FAMILY_IP6MR, event_type, vif, vif_dev, vif_index, tb_id, &net->ipv6.ipmr_seq); } static int call_ip6mr_mfc_entry_notifiers(struct net *net, enum fib_event_type event_type, struct mfc6_cache *mfc, u32 tb_id) { return mr_call_mfc_notifiers(net, RTNL_FAMILY_IP6MR, event_type, &mfc->_c, tb_id, &net->ipv6.ipmr_seq); } /* Delete a VIF entry */ static int mif6_delete(struct mr_table *mrt, int vifi, int notify, struct list_head *head) { struct vif_device *v; struct net_device *dev; struct inet6_dev *in6_dev; if (vifi < 0 || vifi >= mrt->maxvif) return -EADDRNOTAVAIL; v = &mrt->vif_table[vifi]; dev = rtnl_dereference(v->dev); if (!dev) return -EADDRNOTAVAIL; call_ip6mr_vif_entry_notifiers(read_pnet(&mrt->net), FIB_EVENT_VIF_DEL, v, dev, vifi, mrt->id); spin_lock(&mrt_lock); RCU_INIT_POINTER(v->dev, NULL); #ifdef CONFIG_IPV6_PIMSM_V2 if (vifi == mrt->mroute_reg_vif_num) { /* Pairs with READ_ONCE() in ip6mr_cache_report() and reg_vif_xmit() */ WRITE_ONCE(mrt->mroute_reg_vif_num, -1); } #endif if (vifi + 1 == mrt->maxvif) { int tmp; for (tmp = vifi - 1; tmp >= 0; tmp--) { if (VIF_EXISTS(mrt, tmp)) break; } WRITE_ONCE(mrt->maxvif, tmp + 1); } spin_unlock(&mrt_lock); dev_set_allmulti(dev, -1); in6_dev = __in6_dev_get(dev); if (in6_dev) { atomic_dec(&in6_dev->cnf.mc_forwarding); inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, dev->ifindex, &in6_dev->cnf); } if ((v->flags & MIFF_REGISTER) && !notify) unregister_netdevice_queue(dev, head); netdev_put(dev, &v->dev_tracker); return 0; } static inline void ip6mr_cache_free_rcu(struct rcu_head *head) { struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); kmem_cache_free(mrt_cachep, (struct mfc6_cache *)c); } static inline void ip6mr_cache_free(struct mfc6_cache *c) { call_rcu(&c->_c.rcu, ip6mr_cache_free_rcu); } /* Destroy an unresolved cache entry, killing queued skbs and reporting error to netlink readers. */ static void ip6mr_destroy_unres(struct mr_table *mrt, struct mfc6_cache *c) { struct net *net = read_pnet(&mrt->net); struct sk_buff *skb; atomic_dec(&mrt->cache_resolve_queue_len); while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved)) != NULL) { if (ipv6_hdr(skb)->version == 0) { struct nlmsghdr *nlh = skb_pull(skb, sizeof(struct ipv6hdr)); nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT; rtnl_unicast(skb, net, NETLINK_CB(skb).portid); } else kfree_skb(skb); } ip6mr_cache_free(c); } /* Timer process for all the unresolved queue. */ static void ipmr_do_expire_process(struct mr_table *mrt) { unsigned long now = jiffies; unsigned long expires = 10 * HZ; struct mr_mfc *c, *next; list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { if (time_after(c->mfc_un.unres.expires, now)) { /* not yet... */ unsigned long interval = c->mfc_un.unres.expires - now; if (interval < expires) expires = interval; continue; } list_del(&c->list); mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c); } if (!list_empty(&mrt->mfc_unres_queue)) mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); } static void ipmr_expire_process(struct timer_list *t) { struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); if (!spin_trylock(&mfc_unres_lock)) { mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); return; } if (!list_empty(&mrt->mfc_unres_queue)) ipmr_do_expire_process(mrt); spin_unlock(&mfc_unres_lock); } /* Fill oifs list. It is called under locked mrt_lock. */ static void ip6mr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, unsigned char *ttls) { int vifi; cache->mfc_un.res.minvif = MAXMIFS; cache->mfc_un.res.maxvif = 0; memset(cache->mfc_un.res.ttls, 255, MAXMIFS); for (vifi = 0; vifi < mrt->maxvif; vifi++) { if (VIF_EXISTS(mrt, vifi) && ttls[vifi] && ttls[vifi] < 255) { cache->mfc_un.res.ttls[vifi] = ttls[vifi]; if (cache->mfc_un.res.minvif > vifi) cache->mfc_un.res.minvif = vifi; if (cache->mfc_un.res.maxvif <= vifi) cache->mfc_un.res.maxvif = vifi + 1; } } cache->mfc_un.res.lastuse = jiffies; } static int mif6_add(struct net *net, struct mr_table *mrt, struct mif6ctl *vifc, int mrtsock) { int vifi = vifc->mif6c_mifi; struct vif_device *v = &mrt->vif_table[vifi]; struct net_device *dev; struct inet6_dev *in6_dev; int err; /* Is vif busy ? */ if (VIF_EXISTS(mrt, vifi)) return -EADDRINUSE; switch (vifc->mif6c_flags) { #ifdef CONFIG_IPV6_PIMSM_V2 case MIFF_REGISTER: /* * Special Purpose VIF in PIM * All the packets will be sent to the daemon */ if (mrt->mroute_reg_vif_num >= 0) return -EADDRINUSE; dev = ip6mr_reg_vif(net, mrt); if (!dev) return -ENOBUFS; err = dev_set_allmulti(dev, 1); if (err) { unregister_netdevice(dev); dev_put(dev); return err; } break; #endif case 0: dev = dev_get_by_index(net, vifc->mif6c_pifi); if (!dev) return -EADDRNOTAVAIL; err = dev_set_allmulti(dev, 1); if (err) { dev_put(dev); return err; } break; default: return -EINVAL; } in6_dev = __in6_dev_get(dev); if (in6_dev) { atomic_inc(&in6_dev->cnf.mc_forwarding); inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, dev->ifindex, &in6_dev->cnf); } /* Fill in the VIF structures */ vif_device_init(v, dev, vifc->vifc_rate_limit, vifc->vifc_threshold, vifc->mif6c_flags | (!mrtsock ? VIFF_STATIC : 0), MIFF_REGISTER); /* And finish update writing critical data */ spin_lock(&mrt_lock); rcu_assign_pointer(v->dev, dev); netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); #ifdef CONFIG_IPV6_PIMSM_V2 if (v->flags & MIFF_REGISTER) WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); #endif if (vifi + 1 > mrt->maxvif) WRITE_ONCE(mrt->maxvif, vifi + 1); spin_unlock(&mrt_lock); call_ip6mr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, vifi, mrt->id); return 0; } static struct mfc6_cache *ip6mr_cache_find(struct mr_table *mrt, const struct in6_addr *origin, const struct in6_addr *mcastgrp) { struct mfc6_cache_cmp_arg arg = { .mf6c_origin = *origin, .mf6c_mcastgrp = *mcastgrp, }; return mr_mfc_find(mrt, &arg); } /* Look for a (*,G) entry */ static struct mfc6_cache *ip6mr_cache_find_any(struct mr_table *mrt, struct in6_addr *mcastgrp, mifi_t mifi) { struct mfc6_cache_cmp_arg arg = { .mf6c_origin = in6addr_any, .mf6c_mcastgrp = *mcastgrp, }; if (ipv6_addr_any(mcastgrp)) return mr_mfc_find_any_parent(mrt, mifi); return mr_mfc_find_any(mrt, mifi, &arg); } /* Look for a (S,G,iif) entry if parent != -1 */ static struct mfc6_cache * ip6mr_cache_find_parent(struct mr_table *mrt, const struct in6_addr *origin, const struct in6_addr *mcastgrp, int parent) { struct mfc6_cache_cmp_arg arg = { .mf6c_origin = *origin, .mf6c_mcastgrp = *mcastgrp, }; return mr_mfc_find_parent(mrt, &arg, parent); } /* Allocate a multicast cache entry */ static struct mfc6_cache *ip6mr_cache_alloc(void) { struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); if (!c) return NULL; c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; c->_c.mfc_un.res.minvif = MAXMIFS; c->_c.free = ip6mr_cache_free_rcu; refcount_set(&c->_c.mfc_un.res.refcount, 1); return c; } static struct mfc6_cache *ip6mr_cache_alloc_unres(void) { struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); if (!c) return NULL; skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; return c; } /* * A cache entry has gone into a resolved state from queued */ static void ip6mr_cache_resolve(struct net *net, struct mr_table *mrt, struct mfc6_cache *uc, struct mfc6_cache *c) { struct sk_buff *skb; /* * Play the pending entries through our router */ while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { if (ipv6_hdr(skb)->version == 0) { struct nlmsghdr *nlh = skb_pull(skb, sizeof(struct ipv6hdr)); if (mr_fill_mroute(mrt, skb, &c->_c, nlmsg_data(nlh)) > 0) { nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; } else { nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE; } rtnl_unicast(skb, net, NETLINK_CB(skb).portid); } else { rcu_read_lock(); ip6_mr_forward(net, mrt, skb->dev, skb, c); rcu_read_unlock(); } } } /* * Bounce a cache query up to pim6sd and netlink. * * Called under rcu_read_lock() */ static int ip6mr_cache_report(const struct mr_table *mrt, struct sk_buff *pkt, mifi_t mifi, int assert) { struct sock *mroute6_sk; struct sk_buff *skb; struct mrt6msg *msg; int ret; #ifdef CONFIG_IPV6_PIMSM_V2 if (assert == MRT6MSG_WHOLEPKT || assert == MRT6MSG_WRMIFWHOLE) skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) +sizeof(*msg)); else #endif skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); if (!skb) return -ENOBUFS; /* I suppose that internal messages * do not require checksums */ skb->ip_summed = CHECKSUM_UNNECESSARY; #ifdef CONFIG_IPV6_PIMSM_V2 if (assert == MRT6MSG_WHOLEPKT || assert == MRT6MSG_WRMIFWHOLE) { /* Ugly, but we have no choice with this interface. Duplicate old header, fix length etc. And all this only to mangle msg->im6_msgtype and to set msg->im6_mbz to "mbz" :-) */ __skb_pull(skb, skb_network_offset(pkt)); skb_push(skb, sizeof(*msg)); skb_reset_transport_header(skb); msg = (struct mrt6msg *)skb_transport_header(skb); msg->im6_mbz = 0; msg->im6_msgtype = assert; if (assert == MRT6MSG_WRMIFWHOLE) msg->im6_mif = mifi; else msg->im6_mif = READ_ONCE(mrt->mroute_reg_vif_num); msg->im6_pad = 0; msg->im6_src = ipv6_hdr(pkt)->saddr; msg->im6_dst = ipv6_hdr(pkt)->daddr; skb->ip_summed = CHECKSUM_UNNECESSARY; } else #endif { /* * Copy the IP header */ skb_put(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); /* * Add our header */ skb_put(skb, sizeof(*msg)); skb_reset_transport_header(skb); msg = (struct mrt6msg *)skb_transport_header(skb); msg->im6_mbz = 0; msg->im6_msgtype = assert; msg->im6_mif = mifi; msg->im6_pad = 0; msg->im6_src = ipv6_hdr(pkt)->saddr; msg->im6_dst = ipv6_hdr(pkt)->daddr; skb_dst_set(skb, dst_clone(skb_dst(pkt))); skb->ip_summed = CHECKSUM_UNNECESSARY; } mroute6_sk = rcu_dereference(mrt->mroute_sk); if (!mroute6_sk) { kfree_skb(skb); return -EINVAL; } mrt6msg_netlink_event(mrt, skb); /* Deliver to user space multicast routing algorithms */ ret = sock_queue_rcv_skb(mroute6_sk, skb); if (ret < 0) { net_warn_ratelimited("mroute6: pending queue full, dropping entries\n"); kfree_skb(skb); } return ret; } /* Queue a packet for resolution. It gets locked cache entry! */ static int ip6mr_cache_unresolved(struct mr_table *mrt, mifi_t mifi, struct sk_buff *skb, struct net_device *dev) { struct mfc6_cache *c; bool found = false; int err; spin_lock_bh(&mfc_unres_lock); list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { found = true; break; } } if (!found) { /* * Create a new entry if allowable */ c = ip6mr_cache_alloc_unres(); if (!c) { spin_unlock_bh(&mfc_unres_lock); kfree_skb(skb); return -ENOBUFS; } /* Fill in the new cache entry */ c->_c.mfc_parent = -1; c->mf6c_origin = ipv6_hdr(skb)->saddr; c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; /* * Reflect first query at pim6sd */ err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); if (err < 0) { /* If the report failed throw the cache entry out - Brad Parker */ spin_unlock_bh(&mfc_unres_lock); ip6mr_cache_free(c); kfree_skb(skb); return err; } atomic_inc(&mrt->cache_resolve_queue_len); list_add(&c->_c.list, &mrt->mfc_unres_queue); mr6_netlink_event(mrt, c, RTM_NEWROUTE); ipmr_do_expire_process(mrt); } /* See if we can append the packet */ if (c->_c.mfc_un.unres.unresolved.qlen > 3) { kfree_skb(skb); err = -ENOBUFS; } else { if (dev) { skb->dev = dev; skb->skb_iif = dev->ifindex; } skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); err = 0; } spin_unlock_bh(&mfc_unres_lock); return err; } /* * MFC6 cache manipulation by user space */ static int ip6mr_mfc_delete(struct mr_table *mrt, struct mf6cctl *mfc, int parent) { struct mfc6_cache *c; /* The entries are added/deleted only under RTNL */ rcu_read_lock(); c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr, &mfc->mf6cc_mcastgrp.sin6_addr, parent); rcu_read_unlock(); if (!c) return -ENOENT; rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ip6mr_rht_params); list_del_rcu(&c->_c.list); call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net), FIB_EVENT_ENTRY_DEL, c, mrt->id); mr6_netlink_event(mrt, c, RTM_DELROUTE); mr_cache_put(&c->_c); return 0; } static int ip6mr_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); struct mr_table *mrt; struct vif_device *v; int ct; if (event != NETDEV_UNREGISTER) return NOTIFY_DONE; ip6mr_for_each_table(mrt, net) { v = &mrt->vif_table[0]; for (ct = 0; ct < mrt->maxvif; ct++, v++) { if (rcu_access_pointer(v->dev) == dev) mif6_delete(mrt, ct, 1, NULL); } } return NOTIFY_DONE; } static unsigned int ip6mr_seq_read(struct net *net) { ASSERT_RTNL(); return net->ipv6.ipmr_seq + ip6mr_rules_seq_read(net); } static int ip6mr_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return mr_dump(net, nb, RTNL_FAMILY_IP6MR, ip6mr_rules_dump, ip6mr_mr_table_iter, extack); } static struct notifier_block ip6_mr_notifier = { .notifier_call = ip6mr_device_event }; static const struct fib_notifier_ops ip6mr_notifier_ops_template = { .family = RTNL_FAMILY_IP6MR, .fib_seq_read = ip6mr_seq_read, .fib_dump = ip6mr_dump, .owner = THIS_MODULE, }; static int __net_init ip6mr_notifier_init(struct net *net) { struct fib_notifier_ops *ops; net->ipv6.ipmr_seq = 0; ops = fib_notifier_ops_register(&ip6mr_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv6.ip6mr_notifier_ops = ops; return 0; } static void __net_exit ip6mr_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv6.ip6mr_notifier_ops); net->ipv6.ip6mr_notifier_ops = NULL; } /* Setup for IP multicast routing */ static int __net_init ip6mr_net_init(struct net *net) { int err; err = ip6mr_notifier_init(net); if (err) return err; err = ip6mr_rules_init(net); if (err < 0) goto ip6mr_rules_fail; #ifdef CONFIG_PROC_FS err = -ENOMEM; if (!proc_create_net("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_seq_ops, sizeof(struct mr_vif_iter))) goto proc_vif_fail; if (!proc_create_net("ip6_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, sizeof(struct mr_mfc_iter))) goto proc_cache_fail; #endif return 0; #ifdef CONFIG_PROC_FS proc_cache_fail: remove_proc_entry("ip6_mr_vif", net->proc_net); proc_vif_fail: rtnl_lock(); ip6mr_rules_exit(net); rtnl_unlock(); #endif ip6mr_rules_fail: ip6mr_notifier_exit(net); return err; } static void __net_exit ip6mr_net_exit(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("ip6_mr_cache", net->proc_net); remove_proc_entry("ip6_mr_vif", net->proc_net); #endif ip6mr_notifier_exit(net); } static void __net_exit ip6mr_net_exit_batch(struct list_head *net_list) { struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) ip6mr_rules_exit(net); rtnl_unlock(); } static struct pernet_operations ip6mr_net_ops = { .init = ip6mr_net_init, .exit = ip6mr_net_exit, .exit_batch = ip6mr_net_exit_batch, }; int __init ip6_mr_init(void) { int err; mrt_cachep = KMEM_CACHE(mfc6_cache, SLAB_HWCACHE_ALIGN); if (!mrt_cachep) return -ENOMEM; err = register_pernet_subsys(&ip6mr_net_ops); if (err) goto reg_pernet_fail; err = register_netdevice_notifier(&ip6_mr_notifier); if (err) goto reg_notif_fail; #ifdef CONFIG_IPV6_PIMSM_V2 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { pr_err("%s: can't add PIM protocol\n", __func__); err = -EAGAIN; goto add_proto_fail; } #endif err = rtnl_register_module(THIS_MODULE, RTNL_FAMILY_IP6MR, RTM_GETROUTE, ip6mr_rtm_getroute, ip6mr_rtm_dumproute, 0); if (err == 0) return 0; #ifdef CONFIG_IPV6_PIMSM_V2 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); add_proto_fail: unregister_netdevice_notifier(&ip6_mr_notifier); #endif reg_notif_fail: unregister_pernet_subsys(&ip6mr_net_ops); reg_pernet_fail: kmem_cache_destroy(mrt_cachep); return err; } void ip6_mr_cleanup(void) { rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE); #ifdef CONFIG_IPV6_PIMSM_V2 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); #endif unregister_netdevice_notifier(&ip6_mr_notifier); unregister_pernet_subsys(&ip6mr_net_ops); kmem_cache_destroy(mrt_cachep); } static int ip6mr_mfc_add(struct net *net, struct mr_table *mrt, struct mf6cctl *mfc, int mrtsock, int parent) { unsigned char ttls[MAXMIFS]; struct mfc6_cache *uc, *c; struct mr_mfc *_uc; bool found; int i, err; if (mfc->mf6cc_parent >= MAXMIFS) return -ENFILE; memset(ttls, 255, MAXMIFS); for (i = 0; i < MAXMIFS; i++) { if (IF_ISSET(i, &mfc->mf6cc_ifset)) ttls[i] = 1; } /* The entries are added/deleted only under RTNL */ rcu_read_lock(); c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr, &mfc->mf6cc_mcastgrp.sin6_addr, parent); rcu_read_unlock(); if (c) { spin_lock(&mrt_lock); c->_c.mfc_parent = mfc->mf6cc_parent; ip6mr_update_thresholds(mrt, &c->_c, ttls); if (!mrtsock) c->_c.mfc_flags |= MFC_STATIC; spin_unlock(&mrt_lock); call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, mrt->id); mr6_netlink_event(mrt, c, RTM_NEWROUTE); return 0; } if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) && !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) return -EINVAL; c = ip6mr_cache_alloc(); if (!c) return -ENOMEM; c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; c->_c.mfc_parent = mfc->mf6cc_parent; ip6mr_update_thresholds(mrt, &c->_c, ttls); if (!mrtsock) c->_c.mfc_flags |= MFC_STATIC; err = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, ip6mr_rht_params); if (err) { pr_err("ip6mr: rhtable insert error %d\n", err); ip6mr_cache_free(c); return err; } list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); /* Check to see if we resolved a queued list. If so we * need to send on the frames and tidy up. */ found = false; spin_lock_bh(&mfc_unres_lock); list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { uc = (struct mfc6_cache *)_uc; if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { list_del(&_uc->list); atomic_dec(&mrt->cache_resolve_queue_len); found = true; break; } } if (list_empty(&mrt->mfc_unres_queue)) del_timer(&mrt->ipmr_expire_timer); spin_unlock_bh(&mfc_unres_lock); if (found) { ip6mr_cache_resolve(net, mrt, uc, c); ip6mr_cache_free(uc); } call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); mr6_netlink_event(mrt, c, RTM_NEWROUTE); return 0; } /* * Close the multicast socket, and clear the vif tables etc */ static void mroute_clean_tables(struct mr_table *mrt, int flags) { struct mr_mfc *c, *tmp; LIST_HEAD(list); int i; /* Shut down all active vif entries */ if (flags & (MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC)) { for (i = 0; i < mrt->maxvif; i++) { if (((mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT6_FLUSH_MIFS_STATIC)) || (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT6_FLUSH_MIFS))) continue; mif6_delete(mrt, i, 0, &list); } unregister_netdevice_many(&list); } /* Wipe the cache */ if (flags & (MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC)) { list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC_STATIC)) || (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC))) continue; rhltable_remove(&mrt->mfc_hash, &c->mnode, ip6mr_rht_params); list_del_rcu(&c->list); call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net), FIB_EVENT_ENTRY_DEL, (struct mfc6_cache *)c, mrt->id); mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); mr_cache_put(c); } } if (flags & MRT6_FLUSH_MFC) { if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { spin_lock_bh(&mfc_unres_lock); list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { list_del(&c->list); mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c); } spin_unlock_bh(&mfc_unres_lock); } } } static int ip6mr_sk_init(struct mr_table *mrt, struct sock *sk) { int err = 0; struct net *net = sock_net(sk); rtnl_lock(); spin_lock(&mrt_lock); if (rtnl_dereference(mrt->mroute_sk)) { err = -EADDRINUSE; } else { rcu_assign_pointer(mrt->mroute_sk, sk); sock_set_flag(sk, SOCK_RCU_FREE); atomic_inc(&net->ipv6.devconf_all->mc_forwarding); } spin_unlock(&mrt_lock); if (!err) inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv6.devconf_all); rtnl_unlock(); return err; } int ip6mr_sk_done(struct sock *sk) { struct net *net = sock_net(sk); struct ipv6_devconf *devconf; struct mr_table *mrt; int err = -EACCES; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return err; devconf = net->ipv6.devconf_all; if (!devconf || !atomic_read(&devconf->mc_forwarding)) return err; rtnl_lock(); ip6mr_for_each_table(mrt, net) { if (sk == rtnl_dereference(mrt->mroute_sk)) { spin_lock(&mrt_lock); RCU_INIT_POINTER(mrt->mroute_sk, NULL); /* Note that mroute_sk had SOCK_RCU_FREE set, * so the RCU grace period before sk freeing * is guaranteed by sk_destruct() */ atomic_dec(&devconf->mc_forwarding); spin_unlock(&mrt_lock); inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv6.devconf_all); mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MFC); err = 0; break; } } rtnl_unlock(); return err; } bool mroute6_is_socket(struct net *net, struct sk_buff *skb) { struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, .flowi6_oif = skb->dev->ifindex, .flowi6_mark = skb->mark, }; if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) return NULL; return rcu_access_pointer(mrt->mroute_sk); } EXPORT_SYMBOL(mroute6_is_socket); /* * Socket options and virtual interface manipulation. The whole * virtual interface system is a complete heap, but unfortunately * that's how BSD mrouted happens to think. Maybe one day with a proper * MOSPF/PIM router set up we can clean this up. */ int ip6_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen) { int ret, parent = 0; struct mif6ctl vif; struct mf6cctl mfc; mifi_t mifi; struct net *net = sock_net(sk); struct mr_table *mrt; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; if (optname != MRT6_INIT) { if (sk != rcu_access_pointer(mrt->mroute_sk) && !ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EACCES; } switch (optname) { case MRT6_INIT: if (optlen < sizeof(int)) return -EINVAL; return ip6mr_sk_init(mrt, sk); case MRT6_DONE: return ip6mr_sk_done(sk); case MRT6_ADD_MIF: if (optlen < sizeof(vif)) return -EINVAL; if (copy_from_sockptr(&vif, optval, sizeof(vif))) return -EFAULT; if (vif.mif6c_mifi >= MAXMIFS) return -ENFILE; rtnl_lock(); ret = mif6_add(net, mrt, &vif, sk == rtnl_dereference(mrt->mroute_sk)); rtnl_unlock(); return ret; case MRT6_DEL_MIF: if (optlen < sizeof(mifi_t)) return -EINVAL; if (copy_from_sockptr(&mifi, optval, sizeof(mifi_t))) return -EFAULT; rtnl_lock(); ret = mif6_delete(mrt, mifi, 0, NULL); rtnl_unlock(); return ret; /* * Manipulate the forwarding caches. These live * in a sort of kernel/user symbiosis. */ case MRT6_ADD_MFC: case MRT6_DEL_MFC: parent = -1; fallthrough; case MRT6_ADD_MFC_PROXY: case MRT6_DEL_MFC_PROXY: if (optlen < sizeof(mfc)) return -EINVAL; if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) return -EFAULT; if (parent == 0) parent = mfc.mf6cc_parent; rtnl_lock(); if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY) ret = ip6mr_mfc_delete(mrt, &mfc, parent); else ret = ip6mr_mfc_add(net, mrt, &mfc, sk == rtnl_dereference(mrt->mroute_sk), parent); rtnl_unlock(); return ret; case MRT6_FLUSH: { int flags; if (optlen != sizeof(flags)) return -EINVAL; if (copy_from_sockptr(&flags, optval, sizeof(flags))) return -EFAULT; rtnl_lock(); mroute_clean_tables(mrt, flags); rtnl_unlock(); return 0; } /* * Control PIM assert (to activate pim will activate assert) */ case MRT6_ASSERT: { int v; if (optlen != sizeof(v)) return -EINVAL; if (copy_from_sockptr(&v, optval, sizeof(v))) return -EFAULT; mrt->mroute_do_assert = v; return 0; } #ifdef CONFIG_IPV6_PIMSM_V2 case MRT6_PIM: { bool do_wrmifwhole; int v; if (optlen != sizeof(v)) return -EINVAL; if (copy_from_sockptr(&v, optval, sizeof(v))) return -EFAULT; do_wrmifwhole = (v == MRT6MSG_WRMIFWHOLE); v = !!v; rtnl_lock(); ret = 0; if (v != mrt->mroute_do_pim) { mrt->mroute_do_pim = v; mrt->mroute_do_assert = v; mrt->mroute_do_wrvifwhole = do_wrmifwhole; } rtnl_unlock(); return ret; } #endif #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES case MRT6_TABLE: { u32 v; if (optlen != sizeof(u32)) return -EINVAL; if (copy_from_sockptr(&v, optval, sizeof(v))) return -EFAULT; /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */ if (v != RT_TABLE_DEFAULT && v >= 100000000) return -EINVAL; if (sk == rcu_access_pointer(mrt->mroute_sk)) return -EBUSY; rtnl_lock(); ret = 0; mrt = ip6mr_new_table(net, v); if (IS_ERR(mrt)) ret = PTR_ERR(mrt); else raw6_sk(sk)->ip6mr_table = v; rtnl_unlock(); return ret; } #endif /* * Spurious command, or MRT6_VERSION which you cannot * set. */ default: return -ENOPROTOOPT; } } /* * Getsock opt support for the multicast routing system. */ int ip6_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, sockptr_t optlen) { int olr; int val; struct net *net = sock_net(sk); struct mr_table *mrt; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; switch (optname) { case MRT6_VERSION: val = 0x0305; break; #ifdef CONFIG_IPV6_PIMSM_V2 case MRT6_PIM: val = mrt->mroute_do_pim; break; #endif case MRT6_ASSERT: val = mrt->mroute_do_assert; break; default: return -ENOPROTOOPT; } if (copy_from_sockptr(&olr, optlen, sizeof(int))) return -EFAULT; olr = min_t(int, olr, sizeof(int)); if (olr < 0) return -EINVAL; if (copy_to_sockptr(optlen, &olr, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, olr)) return -EFAULT; return 0; } /* * The IP multicast ioctl support routines. */ int ip6mr_ioctl(struct sock *sk, int cmd, void *arg) { struct sioc_sg_req6 *sr; struct sioc_mif_req6 *vr; struct vif_device *vif; struct mfc6_cache *c; struct net *net = sock_net(sk); struct mr_table *mrt; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; switch (cmd) { case SIOCGETMIFCNT_IN6: vr = (struct sioc_mif_req6 *)arg; if (vr->mifi >= mrt->maxvif) return -EINVAL; vr->mifi = array_index_nospec(vr->mifi, mrt->maxvif); rcu_read_lock(); vif = &mrt->vif_table[vr->mifi]; if (VIF_EXISTS(mrt, vr->mifi)) { vr->icount = READ_ONCE(vif->pkt_in); vr->ocount = READ_ONCE(vif->pkt_out); vr->ibytes = READ_ONCE(vif->bytes_in); vr->obytes = READ_ONCE(vif->bytes_out); rcu_read_unlock(); return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; case SIOCGETSGCNT_IN6: sr = (struct sioc_sg_req6 *)arg; rcu_read_lock(); c = ip6mr_cache_find(mrt, &sr->src.sin6_addr, &sr->grp.sin6_addr); if (c) { sr->pktcnt = c->_c.mfc_un.res.pkt; sr->bytecnt = c->_c.mfc_un.res.bytes; sr->wrong_if = c->_c.mfc_un.res.wrong_if; rcu_read_unlock(); return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT struct compat_sioc_sg_req6 { struct sockaddr_in6 src; struct sockaddr_in6 grp; compat_ulong_t pktcnt; compat_ulong_t bytecnt; compat_ulong_t wrong_if; }; struct compat_sioc_mif_req6 { mifi_t mifi; compat_ulong_t icount; compat_ulong_t ocount; compat_ulong_t ibytes; compat_ulong_t obytes; }; int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { struct compat_sioc_sg_req6 sr; struct compat_sioc_mif_req6 vr; struct vif_device *vif; struct mfc6_cache *c; struct net *net = sock_net(sk); struct mr_table *mrt; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; switch (cmd) { case SIOCGETMIFCNT_IN6: if (copy_from_user(&vr, arg, sizeof(vr))) return -EFAULT; if (vr.mifi >= mrt->maxvif) return -EINVAL; vr.mifi = array_index_nospec(vr.mifi, mrt->maxvif); rcu_read_lock(); vif = &mrt->vif_table[vr.mifi]; if (VIF_EXISTS(mrt, vr.mifi)) { vr.icount = READ_ONCE(vif->pkt_in); vr.ocount = READ_ONCE(vif->pkt_out); vr.ibytes = READ_ONCE(vif->bytes_in); vr.obytes = READ_ONCE(vif->bytes_out); rcu_read_unlock(); if (copy_to_user(arg, &vr, sizeof(vr))) return -EFAULT; return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; case SIOCGETSGCNT_IN6: if (copy_from_user(&sr, arg, sizeof(sr))) return -EFAULT; rcu_read_lock(); c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); if (c) { sr.pktcnt = c->_c.mfc_un.res.pkt; sr.bytecnt = c->_c.mfc_un.res.bytes; sr.wrong_if = c->_c.mfc_un.res.wrong_if; rcu_read_unlock(); if (copy_to_user(arg, &sr, sizeof(sr))) return -EFAULT; return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } #endif static inline int ip6mr_forward2_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTFORWDATAGRAMS); return dst_output(net, sk, skb); } /* * Processing handlers for ip6mr_forward */ static int ip6mr_forward2(struct net *net, struct mr_table *mrt, struct sk_buff *skb, int vifi) { struct vif_device *vif = &mrt->vif_table[vifi]; struct net_device *vif_dev; struct ipv6hdr *ipv6h; struct dst_entry *dst; struct flowi6 fl6; vif_dev = vif_dev_read(vif); if (!vif_dev) goto out_free; #ifdef CONFIG_IPV6_PIMSM_V2 if (vif->flags & MIFF_REGISTER) { WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); DEV_STATS_INC(vif_dev, tx_packets); ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); goto out_free; } #endif ipv6h = ipv6_hdr(skb); fl6 = (struct flowi6) { .flowi6_oif = vif->link, .daddr = ipv6h->daddr, }; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); goto out_free; } skb_dst_drop(skb); skb_dst_set(skb, dst); /* * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally * not only before forwarding, but after forwarding on all output * interfaces. It is clear, if mrouter runs a multicasting * program, it should receive packets not depending to what interface * program is joined. * If we will not make it, the program will have to join on all * interfaces. On the other hand, multihoming host (or router, but * not mrouter) cannot join to more than one interface - it will * result in receiving multiple packets. */ skb->dev = vif_dev; WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); /* We are about to write */ /* XXX: extension headers? */ if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(vif_dev))) goto out_free; ipv6h = ipv6_hdr(skb); ipv6h->hop_limit--; IP6CB(skb)->flags |= IP6SKB_FORWARDED; return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, net, NULL, skb, skb->dev, vif_dev, ip6mr_forward2_finish); out_free: kfree_skb(skb); return 0; } /* Called with rcu_read_lock() */ static int ip6mr_find_vif(struct mr_table *mrt, struct net_device *dev) { int ct; /* Pairs with WRITE_ONCE() in mif6_delete()/mif6_add() */ for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) break; } return ct; } /* Called under rcu_read_lock() */ static void ip6_mr_forward(struct net *net, struct mr_table *mrt, struct net_device *dev, struct sk_buff *skb, struct mfc6_cache *c) { int psend = -1; int vif, ct; int true_vifi = ip6mr_find_vif(mrt, dev); vif = c->_c.mfc_parent; c->_c.mfc_un.res.pkt++; c->_c.mfc_un.res.bytes += skb->len; c->_c.mfc_un.res.lastuse = jiffies; if (ipv6_addr_any(&c->mf6c_origin) && true_vifi >= 0) { struct mfc6_cache *cache_proxy; /* For an (*,G) entry, we only check that the incoming * interface is part of the static tree. */ cache_proxy = mr_mfc_find_any_parent(mrt, vif); if (cache_proxy && cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) goto forward; } /* * Wrong interface: drop packet and (maybe) send PIM assert. */ if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { c->_c.mfc_un.res.wrong_if++; if (true_vifi >= 0 && mrt->mroute_do_assert && /* pimsm uses asserts, when switching from RPT to SPT, so that we cannot check that packet arrived on an oif. It is bad, but otherwise we would need to move pretty large chunk of pimd to kernel. Ough... --ANK */ (mrt->mroute_do_pim || c->_c.mfc_un.res.ttls[true_vifi] < 255) && time_after(jiffies, c->_c.mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { c->_c.mfc_un.res.last_assert = jiffies; ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); if (mrt->mroute_do_wrvifwhole) ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRMIFWHOLE); } goto dont_forward; } forward: WRITE_ONCE(mrt->vif_table[vif].pkt_in, mrt->vif_table[vif].pkt_in + 1); WRITE_ONCE(mrt->vif_table[vif].bytes_in, mrt->vif_table[vif].bytes_in + skb->len); /* * Forward the frame */ if (ipv6_addr_any(&c->mf6c_origin) && ipv6_addr_any(&c->mf6c_mcastgrp)) { if (true_vifi >= 0 && true_vifi != c->_c.mfc_parent && ipv6_hdr(skb)->hop_limit > c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { /* It's an (*,*) entry and the packet is not coming from * the upstream: forward the packet to the upstream * only. */ psend = c->_c.mfc_parent; goto last_forward; } goto dont_forward; } for (ct = c->_c.mfc_un.res.maxvif - 1; ct >= c->_c.mfc_un.res.minvif; ct--) { /* For (*,G) entry, don't forward to the incoming interface */ if ((!ipv6_addr_any(&c->mf6c_origin) || ct != true_vifi) && ipv6_hdr(skb)->hop_limit > c->_c.mfc_un.res.ttls[ct]) { if (psend != -1) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) ip6mr_forward2(net, mrt, skb2, psend); } psend = ct; } } last_forward: if (psend != -1) { ip6mr_forward2(net, mrt, skb, psend); return; } dont_forward: kfree_skb(skb); } /* * Multicast packets for forwarding arrive here */ int ip6_mr_input(struct sk_buff *skb) { struct mfc6_cache *cache; struct net *net = dev_net(skb->dev); struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .flowi6_mark = skb->mark, }; int err; struct net_device *dev; /* skb->dev passed in is the master dev for vrfs. * Get the proper interface that does have a vif associated with it. */ dev = skb->dev; if (netif_is_l3_master(skb->dev)) { dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); if (!dev) { kfree_skb(skb); return -ENODEV; } } err = ip6mr_fib_lookup(net, &fl6, &mrt); if (err < 0) { kfree_skb(skb); return err; } cache = ip6mr_cache_find(mrt, &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); if (!cache) { int vif = ip6mr_find_vif(mrt, dev); if (vif >= 0) cache = ip6mr_cache_find_any(mrt, &ipv6_hdr(skb)->daddr, vif); } /* * No usable cache entry */ if (!cache) { int vif; vif = ip6mr_find_vif(mrt, dev); if (vif >= 0) { int err = ip6mr_cache_unresolved(mrt, vif, skb, dev); return err; } kfree_skb(skb); return -ENODEV; } ip6_mr_forward(net, mrt, dev, skb, cache); return 0; } int ip6mr_get_route(struct net *net, struct sk_buff *skb, struct rtmsg *rtm, u32 portid) { int err; struct mr_table *mrt; struct mfc6_cache *cache; struct rt6_info *rt = dst_rt6_info(skb_dst(skb)); mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); if (!mrt) return -ENOENT; rcu_read_lock(); cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); if (!cache && skb->dev) { int vif = ip6mr_find_vif(mrt, skb->dev); if (vif >= 0) cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr, vif); } if (!cache) { struct sk_buff *skb2; struct ipv6hdr *iph; struct net_device *dev; int vif; dev = skb->dev; if (!dev || (vif = ip6mr_find_vif(mrt, dev)) < 0) { rcu_read_unlock(); return -ENODEV; } /* really correct? */ skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); if (!skb2) { rcu_read_unlock(); return -ENOMEM; } NETLINK_CB(skb2).portid = portid; skb_reset_transport_header(skb2); skb_put(skb2, sizeof(struct ipv6hdr)); skb_reset_network_header(skb2); iph = ipv6_hdr(skb2); iph->version = 0; iph->priority = 0; iph->flow_lbl[0] = 0; iph->flow_lbl[1] = 0; iph->flow_lbl[2] = 0; iph->payload_len = 0; iph->nexthdr = IPPROTO_NONE; iph->hop_limit = 0; iph->saddr = rt->rt6i_src.addr; iph->daddr = rt->rt6i_dst.addr; err = ip6mr_cache_unresolved(mrt, vif, skb2, dev); rcu_read_unlock(); return err; } err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); rcu_read_unlock(); return err; } static int ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mfc6_cache *c, int cmd, int flags) { struct nlmsghdr *nlh; struct rtmsg *rtm; int err; nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); if (!nlh) return -EMSGSIZE; rtm = nlmsg_data(nlh); rtm->rtm_family = RTNL_FAMILY_IP6MR; rtm->rtm_dst_len = 128; rtm->rtm_src_len = 128; rtm->rtm_tos = 0; rtm->rtm_table = mrt->id; if (nla_put_u32(skb, RTA_TABLE, mrt->id)) goto nla_put_failure; rtm->rtm_type = RTN_MULTICAST; rtm->rtm_scope = RT_SCOPE_UNIVERSE; if (c->_c.mfc_flags & MFC_STATIC) rtm->rtm_protocol = RTPROT_STATIC; else rtm->rtm_protocol = RTPROT_MROUTED; rtm->rtm_flags = 0; if (nla_put_in6_addr(skb, RTA_SRC, &c->mf6c_origin) || nla_put_in6_addr(skb, RTA_DST, &c->mf6c_mcastgrp)) goto nla_put_failure; err = mr_fill_mroute(mrt, skb, &c->_c, rtm); /* do not break the dump if cache is unresolved */ if (err < 0 && err != -ENOENT) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int _ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags) { return ip6mr_fill_mroute(mrt, skb, portid, seq, (struct mfc6_cache *)c, cmd, flags); } static int mr6_msgsize(bool unresolved, int maxvif) { size_t len = NLMSG_ALIGN(sizeof(struct rtmsg)) + nla_total_size(4) /* RTA_TABLE */ + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */ + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */ ; if (!unresolved) len = len + nla_total_size(4) /* RTA_IIF */ + nla_total_size(0) /* RTA_MULTIPATH */ + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) /* RTA_MFC_STATS */ + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) ; return len; } static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc, int cmd) { struct net *net = read_pnet(&mrt->net); struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(mr6_msgsize(mfc->_c.mfc_parent >= MAXMIFS, mrt->maxvif), GFP_ATOMIC); if (!skb) goto errout; err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); if (err < 0) goto errout; rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC); return; errout: kfree_skb(skb); rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err); } static size_t mrt6msg_netlink_msgsize(size_t payloadlen) { size_t len = NLMSG_ALIGN(sizeof(struct rtgenmsg)) + nla_total_size(1) /* IP6MRA_CREPORT_MSGTYPE */ + nla_total_size(4) /* IP6MRA_CREPORT_MIF_ID */ /* IP6MRA_CREPORT_SRC_ADDR */ + nla_total_size(sizeof(struct in6_addr)) /* IP6MRA_CREPORT_DST_ADDR */ + nla_total_size(sizeof(struct in6_addr)) /* IP6MRA_CREPORT_PKT */ + nla_total_size(payloadlen) ; return len; } static void mrt6msg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) { struct net *net = read_pnet(&mrt->net); struct nlmsghdr *nlh; struct rtgenmsg *rtgenm; struct mrt6msg *msg; struct sk_buff *skb; struct nlattr *nla; int payloadlen; payloadlen = pkt->len - sizeof(struct mrt6msg); msg = (struct mrt6msg *)skb_transport_header(pkt); skb = nlmsg_new(mrt6msg_netlink_msgsize(payloadlen), GFP_ATOMIC); if (!skb) goto errout; nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, sizeof(struct rtgenmsg), 0); if (!nlh) goto errout; rtgenm = nlmsg_data(nlh); rtgenm->rtgen_family = RTNL_FAMILY_IP6MR; if (nla_put_u8(skb, IP6MRA_CREPORT_MSGTYPE, msg->im6_msgtype) || nla_put_u32(skb, IP6MRA_CREPORT_MIF_ID, msg->im6_mif) || nla_put_in6_addr(skb, IP6MRA_CREPORT_SRC_ADDR, &msg->im6_src) || nla_put_in6_addr(skb, IP6MRA_CREPORT_DST_ADDR, &msg->im6_dst)) goto nla_put_failure; nla = nla_reserve(skb, IP6MRA_CREPORT_PKT, payloadlen); if (!nla || skb_copy_bits(pkt, sizeof(struct mrt6msg), nla_data(nla), payloadlen)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE_R, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_cancel(skb, nlh); errout: kfree_skb(skb); rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE_R, -ENOBUFS); } static const struct nla_policy ip6mr_getroute_policy[RTA_MAX + 1] = { [RTA_SRC] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [RTA_DST] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [RTA_TABLE] = { .type = NLA_U32 }, }; static int ip6mr_rtm_valid_getroute_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rtmsg *rtm; int err; err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, ip6mr_getroute_policy, extack); if (err) return err; rtm = nlmsg_data(nlh); if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for multicast route get request"); return -EINVAL; } if ((tb[RTA_SRC] && !rtm->rtm_src_len) || (tb[RTA_DST] && !rtm->rtm_dst_len)) { NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); return -EINVAL; } return 0; } static int ip6mr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct in6_addr src = {}, grp = {}; struct nlattr *tb[RTA_MAX + 1]; struct mfc6_cache *cache; struct mr_table *mrt; struct sk_buff *skb; u32 tableid; int err; err = ip6mr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); if (err < 0) return err; if (tb[RTA_SRC]) src = nla_get_in6_addr(tb[RTA_SRC]); if (tb[RTA_DST]) grp = nla_get_in6_addr(tb[RTA_DST]); tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; mrt = ip6mr_get_table(net, tableid ?: RT_TABLE_DEFAULT); if (!mrt) { NL_SET_ERR_MSG_MOD(extack, "MR table does not exist"); return -ENOENT; } /* entries are added/deleted only under RTNL */ rcu_read_lock(); cache = ip6mr_cache_find(mrt, &src, &grp); rcu_read_unlock(); if (!cache) { NL_SET_ERR_MSG_MOD(extack, "MR cache entry not found"); return -ENOENT; } skb = nlmsg_new(mr6_msgsize(false, mrt->maxvif), GFP_KERNEL); if (!skb) return -ENOBUFS; err = ip6mr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, cache, RTM_NEWROUTE, 0); if (err < 0) { kfree_skb(skb); return err; } return rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); } static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct fib_dump_filter filter = { .rtnl_held = true, }; int err; if (cb->strict_check) { err = ip_valid_fib_dump_req(sock_net(skb->sk), nlh, &filter, cb); if (err < 0) return err; } if (filter.table_id) { struct mr_table *mrt; mrt = ip6mr_get_table(sock_net(skb->sk), filter.table_id); if (!mrt) { if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IP6MR) return skb->len; NL_SET_ERR_MSG_MOD(cb->extack, "MR table does not exist"); return -ENOENT; } err = mr_table_dump(mrt, skb, cb, _ip6mr_fill_mroute, &mfc_unres_lock, &filter); return skb->len ? : err; } return mr_rtm_dumproute(skb, cb, ip6mr_mr_table_iter, _ip6mr_fill_mroute, &mfc_unres_lock, &filter); } |
3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | // SPDX-License-Identifier: GPL-2.0-only /* * ebt_pkttype * * Authors: * Bart De Schuymer <bdschuym@pandora.be> * * April, 2003 * */ #include <linux/module.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_bridge/ebtables.h> #include <linux/netfilter_bridge/ebt_pkttype.h> static bool ebt_pkttype_mt(const struct sk_buff *skb, struct xt_action_param *par) { const struct ebt_pkttype_info *info = par->matchinfo; return (skb->pkt_type == info->pkt_type) ^ info->invert; } static int ebt_pkttype_mt_check(const struct xt_mtchk_param *par) { const struct ebt_pkttype_info *info = par->matchinfo; if (info->invert != 0 && info->invert != 1) return -EINVAL; /* Allow any pkt_type value */ return 0; } static struct xt_match ebt_pkttype_mt_reg __read_mostly = { .name = "pkttype", .revision = 0, .family = NFPROTO_BRIDGE, .match = ebt_pkttype_mt, .checkentry = ebt_pkttype_mt_check, .matchsize = sizeof(struct ebt_pkttype_info), .me = THIS_MODULE, }; static int __init ebt_pkttype_init(void) { return xt_register_match(&ebt_pkttype_mt_reg); } static void __exit ebt_pkttype_fini(void) { xt_unregister_match(&ebt_pkttype_mt_reg); } module_init(ebt_pkttype_init); module_exit(ebt_pkttype_fini); MODULE_DESCRIPTION("Ebtables: Link layer packet type match"); MODULE_LICENSE("GPL"); |
7 1 1 2 3 3 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | // SPDX-License-Identifier: GPL-2.0-only /* * net/sched/sch_choke.c CHOKE scheduler * * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com> * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/vmalloc.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/inet_ecn.h> #include <net/red.h> #include <net/flow_dissector.h> /* CHOKe stateless AQM for fair bandwidth allocation ================================================= CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows) is a variant of RED that penalizes misbehaving flows but maintains no flow state. The difference from RED is an additional step during the enqueuing process. If average queue size is over the low threshold (qmin), a packet is chosen at random from the queue. If both the new and chosen packet are from the same flow, both are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it needs to access packets in queue randomly. It has a minimal class interface to allow overriding the builtin flow classifier with filters. Source: R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless Active Queue Management Scheme for Approximating Fair Bandwidth Allocation", IEEE INFOCOM, 2000. A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial Characteristics", IEEE/ACM Transactions on Networking, 2004 */ /* Upper bound on size of sk_buff table (packets) */ #define CHOKE_MAX_QUEUE (128*1024 - 1) struct choke_sched_data { /* Parameters */ u32 limit; unsigned char flags; struct red_parms parms; /* Variables */ struct red_vars vars; struct { u32 prob_drop; /* Early probability drops */ u32 prob_mark; /* Early probability marks */ u32 forced_drop; /* Forced drops, qavg > max_thresh */ u32 forced_mark; /* Forced marks, qavg > max_thresh */ u32 pdrop; /* Drops due to queue limits */ u32 matched; /* Drops to flow match */ } stats; unsigned int head; unsigned int tail; unsigned int tab_mask; /* size - 1 */ struct sk_buff **tab; }; /* number of elements in queue including holes */ static unsigned int choke_len(const struct choke_sched_data *q) { return (q->tail - q->head) & q->tab_mask; } /* Is ECN parameter configured */ static int use_ecn(const struct choke_sched_data *q) { return q->flags & TC_RED_ECN; } /* Should packets over max just be dropped (versus marked) */ static int use_harddrop(const struct choke_sched_data *q) { return q->flags & TC_RED_HARDDROP; } /* Move head pointer forward to skip over holes */ static void choke_zap_head_holes(struct choke_sched_data *q) { do { q->head = (q->head + 1) & q->tab_mask; if (q->head == q->tail) break; } while (q->tab[q->head] == NULL); } /* Move tail pointer backwards to reuse holes */ static void choke_zap_tail_holes(struct choke_sched_data *q) { do { q->tail = (q->tail - 1) & q->tab_mask; if (q->head == q->tail) break; } while (q->tab[q->tail] == NULL); } /* Drop packet from queue array by creating a "hole" */ static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx, struct sk_buff **to_free) { struct choke_sched_data *q = qdisc_priv(sch); struct sk_buff *skb = q->tab[idx]; q->tab[idx] = NULL; if (idx == q->head) choke_zap_head_holes(q); if (idx == q->tail) choke_zap_tail_holes(q); qdisc_qstats_backlog_dec(sch, skb); qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); qdisc_drop(skb, sch, to_free); --sch->q.qlen; } struct choke_skb_cb { u8 keys_valid; struct flow_keys_digest keys; }; static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb) { qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb)); return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data; } /* * Compare flow of two packets * Returns true only if source and destination address and port match. * false for special cases */ static bool choke_match_flow(struct sk_buff *skb1, struct sk_buff *skb2) { struct flow_keys temp; if (skb1->protocol != skb2->protocol) return false; if (!choke_skb_cb(skb1)->keys_valid) { choke_skb_cb(skb1)->keys_valid = 1; skb_flow_dissect_flow_keys(skb1, &temp, 0); make_flow_keys_digest(&choke_skb_cb(skb1)->keys, &temp); } if (!choke_skb_cb(skb2)->keys_valid) { choke_skb_cb(skb2)->keys_valid = 1; skb_flow_dissect_flow_keys(skb2, &temp, 0); make_flow_keys_digest(&choke_skb_cb(skb2)->keys, &temp); } return !memcmp(&choke_skb_cb(skb1)->keys, &choke_skb_cb(skb2)->keys, sizeof(choke_skb_cb(skb1)->keys)); } /* * Select a packet at random from queue * HACK: since queue can have holes from previous deletion; retry several * times to find a random skb but then just give up and return the head * Will return NULL if queue is empty (q->head == q->tail) */ static struct sk_buff *choke_peek_random(const struct choke_sched_data *q, unsigned int *pidx) { struct sk_buff *skb; int retrys = 3; do { *pidx = (q->head + get_random_u32_below(choke_len(q))) & q->tab_mask; skb = q->tab[*pidx]; if (skb) return skb; } while (--retrys > 0); return q->tab[*pidx = q->head]; } /* * Compare new packet with random packet in queue * returns true if matched and sets *pidx */ static bool choke_match_random(const struct choke_sched_data *q, struct sk_buff *nskb, unsigned int *pidx) { struct sk_buff *oskb; if (q->head == q->tail) return false; oskb = choke_peek_random(q, pidx); return choke_match_flow(oskb, nskb); } static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct choke_sched_data *q = qdisc_priv(sch); const struct red_parms *p = &q->parms; choke_skb_cb(skb)->keys_valid = 0; /* Compute average queue usage (see RED) */ q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen); if (red_is_idling(&q->vars)) red_end_of_idle_period(&q->vars); /* Is queue small? */ if (q->vars.qavg <= p->qth_min) q->vars.qcount = -1; else { unsigned int idx; /* Draw a packet at random from queue and compare flow */ if (choke_match_random(q, skb, &idx)) { q->stats.matched++; choke_drop_by_idx(sch, idx, to_free); goto congestion_drop; } /* Queue is large, always mark/drop */ if (q->vars.qavg > p->qth_max) { q->vars.qcount = -1; qdisc_qstats_overlimit(sch); if (use_harddrop(q) || !use_ecn(q) || !INET_ECN_set_ce(skb)) { q->stats.forced_drop++; goto congestion_drop; } q->stats.forced_mark++; } else if (++q->vars.qcount) { if (red_mark_probability(p, &q->vars, q->vars.qavg)) { q->vars.qcount = 0; q->vars.qR = red_random(p); qdisc_qstats_overlimit(sch); if (!use_ecn(q) || !INET_ECN_set_ce(skb)) { q->stats.prob_drop++; goto congestion_drop; } q->stats.prob_mark++; } } else q->vars.qR = red_random(p); } /* Admit new packet */ if (sch->q.qlen < q->limit) { q->tab[q->tail] = skb; q->tail = (q->tail + 1) & q->tab_mask; ++sch->q.qlen; qdisc_qstats_backlog_inc(sch, skb); return NET_XMIT_SUCCESS; } q->stats.pdrop++; return qdisc_drop(skb, sch, to_free); congestion_drop: qdisc_drop(skb, sch, to_free); return NET_XMIT_CN; } static struct sk_buff *choke_dequeue(struct Qdisc *sch) { struct choke_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; if (q->head == q->tail) { if (!red_is_idling(&q->vars)) red_start_of_idle_period(&q->vars); return NULL; } skb = q->tab[q->head]; q->tab[q->head] = NULL; choke_zap_head_holes(q); --sch->q.qlen; qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); return skb; } static void choke_reset(struct Qdisc *sch) { struct choke_sched_data *q = qdisc_priv(sch); while (q->head != q->tail) { struct sk_buff *skb = q->tab[q->head]; q->head = (q->head + 1) & q->tab_mask; if (!skb) continue; rtnl_qdisc_drop(skb, sch); } if (q->tab) memset(q->tab, 0, (q->tab_mask + 1) * sizeof(struct sk_buff *)); q->head = q->tail = 0; red_restart(&q->vars); } static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = { [TCA_CHOKE_PARMS] = { .len = sizeof(struct tc_red_qopt) }, [TCA_CHOKE_STAB] = { .len = RED_STAB_SIZE }, [TCA_CHOKE_MAX_P] = { .type = NLA_U32 }, }; static void choke_free(void *addr) { kvfree(addr); } static int choke_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct choke_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_CHOKE_MAX + 1]; const struct tc_red_qopt *ctl; int err; struct sk_buff **old = NULL; unsigned int mask; u32 max_P; u8 *stab; if (opt == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_CHOKE_MAX, opt, choke_policy, NULL); if (err < 0) return err; if (tb[TCA_CHOKE_PARMS] == NULL || tb[TCA_CHOKE_STAB] == NULL) return -EINVAL; max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0; ctl = nla_data(tb[TCA_CHOKE_PARMS]); stab = nla_data(tb[TCA_CHOKE_STAB]); if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog, ctl->Scell_log, stab)) return -EINVAL; if (ctl->limit > CHOKE_MAX_QUEUE) return -EINVAL; mask = roundup_pow_of_two(ctl->limit + 1) - 1; if (mask != q->tab_mask) { struct sk_buff **ntab; ntab = kvcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL); if (!ntab) return -ENOMEM; sch_tree_lock(sch); old = q->tab; if (old) { unsigned int oqlen = sch->q.qlen, tail = 0; unsigned dropped = 0; while (q->head != q->tail) { struct sk_buff *skb = q->tab[q->head]; q->head = (q->head + 1) & q->tab_mask; if (!skb) continue; if (tail < mask) { ntab[tail++] = skb; continue; } dropped += qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); --sch->q.qlen; rtnl_qdisc_drop(skb, sch); } qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped); q->head = 0; q->tail = tail; } q->tab_mask = mask; q->tab = ntab; } else sch_tree_lock(sch); WRITE_ONCE(q->flags, ctl->flags); WRITE_ONCE(q->limit, ctl->limit); red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog, ctl->Plog, ctl->Scell_log, stab, max_P); red_set_vars(&q->vars); if (q->head == q->tail) red_end_of_idle_period(&q->vars); sch_tree_unlock(sch); choke_free(old); return 0; } static int choke_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { return choke_change(sch, opt, extack); } static int choke_dump(struct Qdisc *sch, struct sk_buff *skb) { struct choke_sched_data *q = qdisc_priv(sch); u8 Wlog = READ_ONCE(q->parms.Wlog); struct nlattr *opts = NULL; struct tc_red_qopt opt = { .limit = READ_ONCE(q->limit), .flags = READ_ONCE(q->flags), .qth_min = READ_ONCE(q->parms.qth_min) >> Wlog, .qth_max = READ_ONCE(q->parms.qth_max) >> Wlog, .Wlog = Wlog, .Plog = READ_ONCE(q->parms.Plog), .Scell_log = READ_ONCE(q->parms.Scell_log), }; opts = nla_nest_start_noflag(skb, TCA_OPTIONS); if (opts == NULL) goto nla_put_failure; if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) || nla_put_u32(skb, TCA_CHOKE_MAX_P, READ_ONCE(q->parms.max_P))) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: nla_nest_cancel(skb, opts); return -EMSGSIZE; } static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct choke_sched_data *q = qdisc_priv(sch); struct tc_choke_xstats st = { .early = q->stats.prob_drop + q->stats.forced_drop, .marked = q->stats.prob_mark + q->stats.forced_mark, .pdrop = q->stats.pdrop, .matched = q->stats.matched, }; return gnet_stats_copy_app(d, &st, sizeof(st)); } static void choke_destroy(struct Qdisc *sch) { struct choke_sched_data *q = qdisc_priv(sch); choke_free(q->tab); } static struct sk_buff *choke_peek_head(struct Qdisc *sch) { struct choke_sched_data *q = qdisc_priv(sch); return (q->head != q->tail) ? q->tab[q->head] : NULL; } static struct Qdisc_ops choke_qdisc_ops __read_mostly = { .id = "choke", .priv_size = sizeof(struct choke_sched_data), .enqueue = choke_enqueue, .dequeue = choke_dequeue, .peek = choke_peek_head, .init = choke_init, .destroy = choke_destroy, .reset = choke_reset, .change = choke_change, .dump = choke_dump, .dump_stats = choke_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("choke"); static int __init choke_module_init(void) { return register_qdisc(&choke_qdisc_ops); } static void __exit choke_module_exit(void) { unregister_qdisc(&choke_qdisc_ops); } module_init(choke_module_init) module_exit(choke_module_exit) MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Choose and keep responsive flows scheduler"); |
31 31 1 29 31 31 30 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | // SPDX-License-Identifier: GPL-2.0-only /* * HT handling * * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007, Michael Wu <flamingice@sourmilk.net> * Copyright 2007-2010, Intel Corporation * Copyright(c) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2023 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "wme.h" /** * DOC: TX A-MPDU aggregation * * Aggregation on the TX side requires setting the hardware flag * %IEEE80211_HW_AMPDU_AGGREGATION. The driver will then be handed * packets with a flag indicating A-MPDU aggregation. The driver * or device is responsible for actually aggregating the frames, * as well as deciding how many and which to aggregate. * * When TX aggregation is started by some subsystem (usually the rate * control algorithm would be appropriate) by calling the * ieee80211_start_tx_ba_session() function, the driver will be * notified via its @ampdu_action function, with the * %IEEE80211_AMPDU_TX_START action. * * In response to that, the driver is later required to call the * ieee80211_start_tx_ba_cb_irqsafe() function, which will really * start the aggregation session after the peer has also responded. * If the peer responds negatively, the session will be stopped * again right away. Note that it is possible for the aggregation * session to be stopped before the driver has indicated that it * is done setting it up, in which case it must not indicate the * setup completion. * * Also note that, since we also need to wait for a response from * the peer, the driver is notified of the completion of the * handshake by the %IEEE80211_AMPDU_TX_OPERATIONAL action to the * @ampdu_action callback. * * Similarly, when the aggregation session is stopped by the peer * or something calling ieee80211_stop_tx_ba_session(), the driver's * @ampdu_action function will be called with the action * %IEEE80211_AMPDU_TX_STOP. In this case, the call must not fail, * and the driver must later call ieee80211_stop_tx_ba_cb_irqsafe(). * Note that the sta can get destroyed before the BA tear down is * complete. */ static void ieee80211_send_addba_request(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u8 dialog_token, u16 start_seq_num, u16 agg_size, u16 timeout) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 capab; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = ieee80211_mgmt_ba(skb, da, sdata); skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ; mgmt->u.action.u.addba_req.dialog_token = dialog_token; capab = IEEE80211_ADDBA_PARAM_AMSDU_MASK; capab |= IEEE80211_ADDBA_PARAM_POLICY_MASK; capab |= u16_encode_bits(tid, IEEE80211_ADDBA_PARAM_TID_MASK); capab |= u16_encode_bits(agg_size, IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK); mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab); mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout); mgmt->u.action.u.addba_req.start_seq_num = cpu_to_le16(start_seq_num << 4); ieee80211_tx_skb_tid(sdata, skb, tid, -1); } void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_bar *bar; u16 bar_control = 0; skb = dev_alloc_skb(sizeof(*bar) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); bar = skb_put_zero(skb, sizeof(*bar)); bar->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); memcpy(bar->ra, ra, ETH_ALEN); memcpy(bar->ta, sdata->vif.addr, ETH_ALEN); bar_control |= (u16)IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL; bar_control |= (u16)IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA; bar_control |= (u16)(tid << IEEE80211_BAR_CTRL_TID_INFO_SHIFT); bar->control = cpu_to_le16(bar_control); bar->start_seq_num = cpu_to_le16(ssn); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_REQ_TX_STATUS; ieee80211_tx_skb_tid(sdata, skb, tid, -1); } EXPORT_SYMBOL(ieee80211_send_bar); void ieee80211_assign_tid_tx(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx) { lockdep_assert_wiphy(sta->local->hw.wiphy); lockdep_assert_held(&sta->lock); rcu_assign_pointer(sta->ampdu_mlme.tid_tx[tid], tid_tx); } /* * When multiple aggregation sessions on multiple stations * are being created/destroyed simultaneously, we need to * refcount the global queue stop caused by that in order * to not get into a situation where one of the aggregation * setup or teardown re-enables queues before the other is * ready to handle that. * * These two functions take care of this issue by keeping * a global "agg_queue_stop" refcount. */ static void __acquires(agg_queue) ieee80211_stop_queue_agg(struct ieee80211_sub_if_data *sdata, int tid) { int queue = sdata->vif.hw_queue[ieee80211_ac_from_tid(tid)]; /* we do refcounting here, so don't use the queue reason refcounting */ if (atomic_inc_return(&sdata->local->agg_queue_stop[queue]) == 1) ieee80211_stop_queue_by_reason( &sdata->local->hw, queue, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, false); __acquire(agg_queue); } static void __releases(agg_queue) ieee80211_wake_queue_agg(struct ieee80211_sub_if_data *sdata, int tid) { int queue = sdata->vif.hw_queue[ieee80211_ac_from_tid(tid)]; if (atomic_dec_return(&sdata->local->agg_queue_stop[queue]) == 0) ieee80211_wake_queue_by_reason( &sdata->local->hw, queue, IEEE80211_QUEUE_STOP_REASON_AGGREGATION, false); __release(agg_queue); } static void ieee80211_agg_stop_txq(struct sta_info *sta, int tid) { struct ieee80211_txq *txq = sta->sta.txq[tid]; struct ieee80211_sub_if_data *sdata; struct fq *fq; struct txq_info *txqi; if (!txq) return; txqi = to_txq_info(txq); sdata = vif_to_sdata(txq->vif); fq = &sdata->local->fq; /* Lock here to protect against further seqno updates on dequeue */ spin_lock_bh(&fq->lock); set_bit(IEEE80211_TXQ_STOP, &txqi->flags); spin_unlock_bh(&fq->lock); } static void ieee80211_agg_start_txq(struct sta_info *sta, int tid, bool enable) { struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi; lockdep_assert_wiphy(sta->local->hw.wiphy); if (!txq) return; txqi = to_txq_info(txq); if (enable) set_bit(IEEE80211_TXQ_AMPDU, &txqi->flags); else clear_bit(IEEE80211_TXQ_AMPDU, &txqi->flags); clear_bit(IEEE80211_TXQ_STOP, &txqi->flags); local_bh_disable(); rcu_read_lock(); schedule_and_wake_txq(sta->sdata->local, txqi); rcu_read_unlock(); local_bh_enable(); } /* * splice packets from the STA's pending to the local pending, * requires a call to ieee80211_agg_splice_finish later */ static void __acquires(agg_queue) ieee80211_agg_splice_packets(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_tx *tid_tx, u16 tid) { struct ieee80211_local *local = sdata->local; int queue = sdata->vif.hw_queue[ieee80211_ac_from_tid(tid)]; unsigned long flags; ieee80211_stop_queue_agg(sdata, tid); if (WARN(!tid_tx, "TID %d gone but expected when splicing aggregates from the pending queue\n", tid)) return; if (!skb_queue_empty(&tid_tx->pending)) { spin_lock_irqsave(&local->queue_stop_reason_lock, flags); /* copy over remaining packets */ skb_queue_splice_tail_init(&tid_tx->pending, &local->pending[queue]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } } static void __releases(agg_queue) ieee80211_agg_splice_finish(struct ieee80211_sub_if_data *sdata, u16 tid) { ieee80211_wake_queue_agg(sdata, tid); } static void ieee80211_remove_tid_tx(struct sta_info *sta, int tid) { struct tid_ampdu_tx *tid_tx; lockdep_assert_wiphy(sta->local->hw.wiphy); lockdep_assert_held(&sta->lock); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); /* * When we get here, the TX path will not be lockless any more wrt. * aggregation, since the OPERATIONAL bit has long been cleared. * Thus it will block on getting the lock, if it occurs. So if we * stop the queue now, we will not get any more packets, and any * that might be being processed will wait for us here, thereby * guaranteeing that no packets go to the tid_tx pending queue any * more. */ ieee80211_agg_splice_packets(sta->sdata, tid_tx, tid); /* future packets must not find the tid_tx struct any more */ ieee80211_assign_tid_tx(sta, tid, NULL); ieee80211_agg_splice_finish(sta->sdata, tid); kfree_rcu(tid_tx, rcu_head); } int __ieee80211_stop_tx_ba_session(struct sta_info *sta, u16 tid, enum ieee80211_agg_stop_reason reason) { struct ieee80211_local *local = sta->local; struct tid_ampdu_tx *tid_tx; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .tid = tid, .buf_size = 0, .amsdu = false, .timeout = 0, .ssn = 0, }; int ret; lockdep_assert_wiphy(sta->local->hw.wiphy); switch (reason) { case AGG_STOP_DECLINED: case AGG_STOP_LOCAL_REQUEST: case AGG_STOP_PEER_REQUEST: params.action = IEEE80211_AMPDU_TX_STOP_CONT; break; case AGG_STOP_DESTROY_STA: params.action = IEEE80211_AMPDU_TX_STOP_FLUSH; break; default: WARN_ON_ONCE(1); return -EINVAL; } spin_lock_bh(&sta->lock); /* free struct pending for start, if present */ tid_tx = sta->ampdu_mlme.tid_start_tx[tid]; kfree(tid_tx); sta->ampdu_mlme.tid_start_tx[tid] = NULL; tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) { spin_unlock_bh(&sta->lock); return -ENOENT; } /* * if we're already stopping ignore any new requests to stop * unless we're destroying it in which case notify the driver */ if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { spin_unlock_bh(&sta->lock); if (reason != AGG_STOP_DESTROY_STA) return -EALREADY; params.action = IEEE80211_AMPDU_TX_STOP_FLUSH_CONT; ret = drv_ampdu_action(local, sta->sdata, ¶ms); WARN_ON_ONCE(ret); return 0; } if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { /* not even started yet! */ ieee80211_assign_tid_tx(sta, tid, NULL); spin_unlock_bh(&sta->lock); kfree_rcu(tid_tx, rcu_head); return 0; } set_bit(HT_AGG_STATE_STOPPING, &tid_tx->state); ieee80211_agg_stop_txq(sta, tid); spin_unlock_bh(&sta->lock); ht_dbg(sta->sdata, "Tx BA session stop requested for %pM tid %u\n", sta->sta.addr, tid); del_timer_sync(&tid_tx->addba_resp_timer); del_timer_sync(&tid_tx->session_timer); /* * After this packets are no longer handed right through * to the driver but are put onto tid_tx->pending instead, * with locking to ensure proper access. */ clear_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state); /* * There might be a few packets being processed right now (on * another CPU) that have already gotten past the aggregation * check when it was still OPERATIONAL and consequently have * IEEE80211_TX_CTL_AMPDU set. In that case, this code might * call into the driver at the same time or even before the * TX paths calls into it, which could confuse the driver. * * Wait for all currently running TX paths to finish before * telling the driver. New packets will not go through since * the aggregation session is no longer OPERATIONAL. */ if (!local->in_reconfig) synchronize_net(); tid_tx->stop_initiator = reason == AGG_STOP_PEER_REQUEST ? WLAN_BACK_RECIPIENT : WLAN_BACK_INITIATOR; tid_tx->tx_stop = reason == AGG_STOP_LOCAL_REQUEST; ret = drv_ampdu_action(local, sta->sdata, ¶ms); /* HW shall not deny going back to legacy */ if (WARN_ON(ret)) { /* * We may have pending packets get stuck in this case... * Not bothering with a workaround for now. */ } /* * In the case of AGG_STOP_DESTROY_STA, the driver won't * necessarily call ieee80211_stop_tx_ba_cb(), so this may * seem like we can leave the tid_tx data pending forever. * This is true, in a way, but "forever" is only until the * station struct is actually destroyed. In the meantime, * leaving it around ensures that we don't transmit packets * to the driver on this TID which might confuse it. */ return 0; } /* * After sending add Block Ack request we activated a timer until * add Block Ack response will arrive from the recipient. * If this timer expires sta_addba_resp_timer_expired will be executed. */ static void sta_addba_resp_timer_expired(struct timer_list *t) { struct tid_ampdu_tx *tid_tx = from_timer(tid_tx, t, addba_resp_timer); struct sta_info *sta = tid_tx->sta; u8 tid = tid_tx->tid; /* check if the TID waits for addBA response */ if (test_bit(HT_AGG_STATE_RESPONSE_RECEIVED, &tid_tx->state)) { ht_dbg(sta->sdata, "timer expired on %pM tid %d not expecting addBA response\n", sta->sta.addr, tid); return; } ht_dbg(sta->sdata, "addBA response timer expired on %pM tid %d\n", sta->sta.addr, tid); ieee80211_stop_tx_ba_session(&sta->sta, tid); } static void ieee80211_send_addba_with_timeout(struct sta_info *sta, struct tid_ampdu_tx *tid_tx) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sta->local; u8 tid = tid_tx->tid; u16 buf_size; if (WARN_ON_ONCE(test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state) || test_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state))) return; lockdep_assert_wiphy(sta->local->hw.wiphy); /* activate the timer for the recipient's addBA response */ mod_timer(&tid_tx->addba_resp_timer, jiffies + ADDBA_RESP_INTERVAL); ht_dbg(sdata, "activated addBA response timer on %pM tid %d\n", sta->sta.addr, tid); spin_lock_bh(&sta->lock); sta->ampdu_mlme.last_addba_req_time[tid] = jiffies; sta->ampdu_mlme.addba_req_num[tid]++; spin_unlock_bh(&sta->lock); if (sta->sta.deflink.he_cap.has_he) { buf_size = local->hw.max_tx_aggregation_subframes; } else { /* * We really should use what the driver told us it will * transmit as the maximum, but certain APs (e.g. the * LinkSys WRT120N with FW v1.0.07 build 002 Jun 18 2012) * will crash when we use a lower number. */ buf_size = IEEE80211_MAX_AMPDU_BUF_HT; } /* send AddBA request */ ieee80211_send_addba_request(sdata, sta->sta.addr, tid, tid_tx->dialog_token, tid_tx->ssn, buf_size, tid_tx->timeout); WARN_ON(test_and_set_bit(HT_AGG_STATE_SENT_ADDBA, &tid_tx->state)); } void ieee80211_tx_ba_session_handle_start(struct sta_info *sta, int tid) { struct tid_ampdu_tx *tid_tx; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .action = IEEE80211_AMPDU_TX_START, .tid = tid, .buf_size = 0, .amsdu = false, .timeout = 0, }; int ret; tid_tx = rcu_dereference_protected_tid_tx(sta, tid); /* * Start queuing up packets for this aggregation session. * We're going to release them once the driver is OK with * that. */ clear_bit(HT_AGG_STATE_WANT_START, &tid_tx->state); /* * Make sure no packets are being processed. This ensures that * we have a valid starting sequence number and that in-flight * packets have been flushed out and no packets for this TID * will go into the driver during the ampdu_action call. */ synchronize_net(); params.ssn = sta->tid_seq[tid] >> 4; ret = drv_ampdu_action(local, sdata, ¶ms); tid_tx->ssn = params.ssn; if (ret == IEEE80211_AMPDU_TX_START_DELAY_ADDBA) { return; } else if (ret == IEEE80211_AMPDU_TX_START_IMMEDIATE) { /* * We didn't send the request yet, so don't need to check * here if we already got a response, just mark as driver * ready immediately. */ set_bit(HT_AGG_STATE_DRV_READY, &tid_tx->state); } else if (ret) { ht_dbg(sdata, "BA request denied - HW unavailable for %pM tid %d\n", sta->sta.addr, tid); spin_lock_bh(&sta->lock); ieee80211_agg_splice_packets(sdata, tid_tx, tid); ieee80211_assign_tid_tx(sta, tid, NULL); ieee80211_agg_splice_finish(sdata, tid); spin_unlock_bh(&sta->lock); ieee80211_agg_start_txq(sta, tid, false); kfree_rcu(tid_tx, rcu_head); return; } ieee80211_send_addba_with_timeout(sta, tid_tx); } void ieee80211_refresh_tx_agg_session_timer(struct ieee80211_sta *pubsta, u16 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct tid_ampdu_tx *tid_tx; if (WARN_ON_ONCE(tid >= IEEE80211_NUM_TIDS)) return; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx) return; tid_tx->last_tx = jiffies; } EXPORT_SYMBOL(ieee80211_refresh_tx_agg_session_timer); /* * After accepting the AddBA Response we activated a timer, * resetting it after each frame that we send. */ static void sta_tx_agg_session_timer_expired(struct timer_list *t) { struct tid_ampdu_tx *tid_tx = from_timer(tid_tx, t, session_timer); struct sta_info *sta = tid_tx->sta; u8 tid = tid_tx->tid; unsigned long timeout; if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { return; } timeout = tid_tx->last_tx + TU_TO_JIFFIES(tid_tx->timeout); if (time_is_after_jiffies(timeout)) { mod_timer(&tid_tx->session_timer, timeout); return; } ht_dbg(sta->sdata, "tx session timer expired on %pM tid %d\n", sta->sta.addr, tid); ieee80211_stop_tx_ba_session(&sta->sta, tid); } int ieee80211_start_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid, u16 timeout) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; int ret = 0; trace_api_start_tx_ba_session(pubsta, tid); if (WARN(sta->reserved_tid == tid, "Requested to start BA session on reserved tid=%d", tid)) return -EINVAL; if (!pubsta->deflink.ht_cap.ht_supported && !pubsta->deflink.vht_cap.vht_supported && !pubsta->deflink.he_cap.has_he && !pubsta->deflink.eht_cap.has_eht) return -EINVAL; if (WARN_ON_ONCE(!local->ops->ampdu_action)) return -EINVAL; if ((tid >= IEEE80211_NUM_TIDS) || !ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) || ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) return -EINVAL; if (WARN_ON(tid >= IEEE80211_FIRST_TSPEC_TSID)) return -EINVAL; ht_dbg(sdata, "Open BA session requested for %pM tid %u\n", pubsta->addr, tid); if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) return -EINVAL; if (test_sta_flag(sta, WLAN_STA_BLOCK_BA)) { ht_dbg(sdata, "BA sessions blocked - Denying BA session request %pM tid %d\n", sta->sta.addr, tid); return -EINVAL; } if (test_sta_flag(sta, WLAN_STA_MFP) && !test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { ht_dbg(sdata, "MFP STA not authorized - deny BA session request %pM tid %d\n", sta->sta.addr, tid); return -EINVAL; } /* * 802.11n-2009 11.5.1.1: If the initiating STA is an HT STA, is a * member of an IBSS, and has no other existing Block Ack agreement * with the recipient STA, then the initiating STA shall transmit a * Probe Request frame to the recipient STA and shall not transmit an * ADDBA Request frame unless it receives a Probe Response frame * from the recipient within dot11ADDBAFailureTimeout. * * The probe request mechanism for ADDBA is currently not implemented, * but we only build up Block Ack session with HT STAs. This information * is set when we receive a bss info from a probe response or a beacon. */ if (sta->sdata->vif.type == NL80211_IFTYPE_ADHOC && !sta->sta.deflink.ht_cap.ht_supported) { ht_dbg(sdata, "BA request denied - IBSS STA %pM does not advertise HT support\n", pubsta->addr); return -EINVAL; } spin_lock_bh(&sta->lock); /* we have tried too many times, receiver does not want A-MPDU */ if (sta->ampdu_mlme.addba_req_num[tid] > HT_AGG_MAX_RETRIES) { ret = -EBUSY; goto err_unlock_sta; } /* * if we have tried more than HT_AGG_BURST_RETRIES times we * will spread our requests in time to avoid stalling connection * for too long */ if (sta->ampdu_mlme.addba_req_num[tid] > HT_AGG_BURST_RETRIES && time_before(jiffies, sta->ampdu_mlme.last_addba_req_time[tid] + HT_AGG_RETRIES_PERIOD)) { ht_dbg(sdata, "BA request denied - %d failed requests on %pM tid %u\n", sta->ampdu_mlme.addba_req_num[tid], sta->sta.addr, tid); ret = -EBUSY; goto err_unlock_sta; } tid_tx = rcu_dereference_protected_tid_tx(sta, tid); /* check if the TID is not in aggregation flow already */ if (tid_tx || sta->ampdu_mlme.tid_start_tx[tid]) { ht_dbg(sdata, "BA request denied - session is not idle on %pM tid %u\n", sta->sta.addr, tid); ret = -EAGAIN; goto err_unlock_sta; } /* prepare A-MPDU MLME for Tx aggregation */ tid_tx = kzalloc(sizeof(struct tid_ampdu_tx), GFP_ATOMIC); if (!tid_tx) { ret = -ENOMEM; goto err_unlock_sta; } skb_queue_head_init(&tid_tx->pending); __set_bit(HT_AGG_STATE_WANT_START, &tid_tx->state); tid_tx->timeout = timeout; tid_tx->sta = sta; tid_tx->tid = tid; /* response timer */ timer_setup(&tid_tx->addba_resp_timer, sta_addba_resp_timer_expired, 0); /* tx timer */ timer_setup(&tid_tx->session_timer, sta_tx_agg_session_timer_expired, TIMER_DEFERRABLE); /* assign a dialog token */ sta->ampdu_mlme.dialog_token_allocator++; tid_tx->dialog_token = sta->ampdu_mlme.dialog_token_allocator; /* * Finally, assign it to the start array; the work item will * collect it and move it to the normal array. */ sta->ampdu_mlme.tid_start_tx[tid] = tid_tx; wiphy_work_queue(local->hw.wiphy, &sta->ampdu_mlme.work); /* this flow continues off the work */ err_unlock_sta: spin_unlock_bh(&sta->lock); return ret; } EXPORT_SYMBOL(ieee80211_start_tx_ba_session); static void ieee80211_agg_tx_operational(struct ieee80211_local *local, struct sta_info *sta, u16 tid) { struct tid_ampdu_tx *tid_tx; struct ieee80211_ampdu_params params = { .sta = &sta->sta, .action = IEEE80211_AMPDU_TX_OPERATIONAL, .tid = tid, .timeout = 0, .ssn = 0, }; lockdep_assert_wiphy(sta->local->hw.wiphy); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); params.buf_size = tid_tx->buf_size; params.amsdu = tid_tx->amsdu; ht_dbg(sta->sdata, "Aggregation is on for %pM tid %d\n", sta->sta.addr, tid); drv_ampdu_action(local, sta->sdata, ¶ms); /* * synchronize with TX path, while splicing the TX path * should block so it won't put more packets onto pending. */ spin_lock_bh(&sta->lock); ieee80211_agg_splice_packets(sta->sdata, tid_tx, tid); /* * Now mark as operational. This will be visible * in the TX path, and lets it go lock-free in * the common case. */ set_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state); ieee80211_agg_splice_finish(sta->sdata, tid); spin_unlock_bh(&sta->lock); ieee80211_agg_start_txq(sta, tid, true); } void ieee80211_start_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; lockdep_assert_wiphy(sta->local->hw.wiphy); if (WARN_ON(test_and_set_bit(HT_AGG_STATE_DRV_READY, &tid_tx->state))) return; if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state) || test_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state)) return; if (!test_bit(HT_AGG_STATE_SENT_ADDBA, &tid_tx->state)) { ieee80211_send_addba_with_timeout(sta, tid_tx); /* RESPONSE_RECEIVED state whould trigger the flow again */ return; } if (test_bit(HT_AGG_STATE_RESPONSE_RECEIVED, &tid_tx->state)) ieee80211_agg_tx_operational(local, sta, tid); } static struct tid_ampdu_tx * ieee80211_lookup_tid_tx(struct ieee80211_sub_if_data *sdata, const u8 *ra, u16 tid, struct sta_info **sta) { struct tid_ampdu_tx *tid_tx; if (tid >= IEEE80211_NUM_TIDS) { ht_dbg(sdata, "Bad TID value: tid = %d (>= %d)\n", tid, IEEE80211_NUM_TIDS); return NULL; } *sta = sta_info_get_bss(sdata, ra); if (!*sta) { ht_dbg(sdata, "Could not find station: %pM\n", ra); return NULL; } tid_tx = rcu_dereference((*sta)->ampdu_mlme.tid_tx[tid]); if (WARN_ON(!tid_tx)) ht_dbg(sdata, "addBA was not requested!\n"); return tid_tx; } void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, u16 tid) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct tid_ampdu_tx *tid_tx; trace_api_start_tx_ba_cb(sdata, ra, tid); rcu_read_lock(); tid_tx = ieee80211_lookup_tid_tx(sdata, ra, tid, &sta); if (!tid_tx) goto out; set_bit(HT_AGG_STATE_START_CB, &tid_tx->state); wiphy_work_queue(local->hw.wiphy, &sta->ampdu_mlme.work); out: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_start_tx_ba_cb_irqsafe); int ieee80211_stop_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; int ret = 0; trace_api_stop_tx_ba_session(pubsta, tid); if (!local->ops->ampdu_action) return -EINVAL; if (tid >= IEEE80211_NUM_TIDS) return -EINVAL; spin_lock_bh(&sta->lock); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) { ret = -ENOENT; goto unlock; } WARN(sta->reserved_tid == tid, "Requested to stop BA session on reserved tid=%d", tid); if (test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { /* already in progress stopping it */ ret = 0; goto unlock; } set_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state); wiphy_work_queue(local->hw.wiphy, &sta->ampdu_mlme.work); unlock: spin_unlock_bh(&sta->lock); return ret; } EXPORT_SYMBOL(ieee80211_stop_tx_ba_session); void ieee80211_stop_tx_ba_cb(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx) { struct ieee80211_sub_if_data *sdata = sta->sdata; bool send_delba = false; bool start_txq = false; ht_dbg(sdata, "Stopping Tx BA session for %pM tid %d\n", sta->sta.addr, tid); spin_lock_bh(&sta->lock); if (!test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { ht_dbg(sdata, "unexpected callback to A-MPDU stop for %pM tid %d\n", sta->sta.addr, tid); goto unlock_sta; } if (tid_tx->stop_initiator == WLAN_BACK_INITIATOR && tid_tx->tx_stop) send_delba = true; ieee80211_remove_tid_tx(sta, tid); start_txq = true; unlock_sta: spin_unlock_bh(&sta->lock); if (start_txq) ieee80211_agg_start_txq(sta, tid, false); if (send_delba) ieee80211_send_delba(sdata, sta->sta.addr, tid, WLAN_BACK_INITIATOR, WLAN_REASON_QSTA_NOT_USE); } void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, u16 tid) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct tid_ampdu_tx *tid_tx; trace_api_stop_tx_ba_cb(sdata, ra, tid); rcu_read_lock(); tid_tx = ieee80211_lookup_tid_tx(sdata, ra, tid, &sta); if (!tid_tx) goto out; set_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state); wiphy_work_queue(local->hw.wiphy, &sta->ampdu_mlme.work); out: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_stop_tx_ba_cb_irqsafe); void ieee80211_process_addba_resp(struct ieee80211_local *local, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len) { struct tid_ampdu_tx *tid_tx; struct ieee80211_txq *txq; u16 capab, tid, buf_size; bool amsdu; lockdep_assert_wiphy(sta->local->hw.wiphy); capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab); amsdu = capab & IEEE80211_ADDBA_PARAM_AMSDU_MASK; tid = u16_get_bits(capab, IEEE80211_ADDBA_PARAM_TID_MASK); buf_size = u16_get_bits(capab, IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK); buf_size = min(buf_size, local->hw.max_tx_aggregation_subframes); txq = sta->sta.txq[tid]; if (!amsdu && txq) set_bit(IEEE80211_TXQ_NO_AMSDU, &to_txq_info(txq)->flags); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) return; if (mgmt->u.action.u.addba_resp.dialog_token != tid_tx->dialog_token) { ht_dbg(sta->sdata, "wrong addBA response token, %pM tid %d\n", sta->sta.addr, tid); return; } del_timer_sync(&tid_tx->addba_resp_timer); ht_dbg(sta->sdata, "switched off addBA timer for %pM tid %d\n", sta->sta.addr, tid); /* * addba_resp_timer may have fired before we got here, and * caused WANT_STOP to be set. If the stop then was already * processed further, STOPPING might be set. */ if (test_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state) || test_bit(HT_AGG_STATE_STOPPING, &tid_tx->state)) { ht_dbg(sta->sdata, "got addBA resp for %pM tid %d but we already gave up\n", sta->sta.addr, tid); return; } /* * IEEE 802.11-2007 7.3.1.14: * In an ADDBA Response frame, when the Status Code field * is set to 0, the Buffer Size subfield is set to a value * of at least 1. */ if (le16_to_cpu(mgmt->u.action.u.addba_resp.status) == WLAN_STATUS_SUCCESS && buf_size) { if (test_and_set_bit(HT_AGG_STATE_RESPONSE_RECEIVED, &tid_tx->state)) { /* ignore duplicate response */ return; } tid_tx->buf_size = buf_size; tid_tx->amsdu = amsdu; if (test_bit(HT_AGG_STATE_DRV_READY, &tid_tx->state)) ieee80211_agg_tx_operational(local, sta, tid); sta->ampdu_mlme.addba_req_num[tid] = 0; tid_tx->timeout = le16_to_cpu(mgmt->u.action.u.addba_resp.timeout); if (tid_tx->timeout) { mod_timer(&tid_tx->session_timer, TU_TO_EXP_TIME(tid_tx->timeout)); tid_tx->last_tx = jiffies; } } else { __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_DECLINED); } } |
1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 | /* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Voltaire, Inc. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2008 Cisco. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define pr_fmt(fmt) "user_mad: " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/dma-mapping.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/kref.h> #include <linux/compat.h> #include <linux/sched.h> #include <linux/semaphore.h> #include <linux/slab.h> #include <linux/nospec.h> #include <linux/uaccess.h> #include <rdma/ib_mad.h> #include <rdma/ib_user_mad.h> #include <rdma/rdma_netlink.h> #include "core_priv.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("InfiniBand userspace MAD packet access"); MODULE_LICENSE("Dual BSD/GPL"); #define MAX_UMAD_RECV_LIST_SIZE 200000 enum { IB_UMAD_MAX_PORTS = RDMA_MAX_PORTS, IB_UMAD_MAX_AGENTS = 32, IB_UMAD_MAJOR = 231, IB_UMAD_MINOR_BASE = 0, IB_UMAD_NUM_FIXED_MINOR = 64, IB_UMAD_NUM_DYNAMIC_MINOR = IB_UMAD_MAX_PORTS - IB_UMAD_NUM_FIXED_MINOR, IB_ISSM_MINOR_BASE = IB_UMAD_NUM_FIXED_MINOR, }; /* * Our lifetime rules for these structs are the following: * device special file is opened, we take a reference on the * ib_umad_port's struct ib_umad_device. We drop these * references in the corresponding close(). * * In addition to references coming from open character devices, there * is one more reference to each ib_umad_device representing the * module's reference taken when allocating the ib_umad_device in * ib_umad_add_one(). * * When destroying an ib_umad_device, we drop the module's reference. */ struct ib_umad_port { struct cdev cdev; struct device dev; struct cdev sm_cdev; struct device sm_dev; struct semaphore sm_sem; struct mutex file_mutex; struct list_head file_list; struct ib_device *ib_dev; struct ib_umad_device *umad_dev; int dev_num; u32 port_num; }; struct ib_umad_device { struct kref kref; struct ib_umad_port ports[]; }; struct ib_umad_file { struct mutex mutex; struct ib_umad_port *port; struct list_head recv_list; atomic_t recv_list_size; struct list_head send_list; struct list_head port_list; spinlock_t send_lock; wait_queue_head_t recv_wait; struct ib_mad_agent *agent[IB_UMAD_MAX_AGENTS]; int agents_dead; u8 use_pkey_index; u8 already_used; }; struct ib_umad_packet { struct ib_mad_send_buf *msg; struct ib_mad_recv_wc *recv_wc; struct list_head list; int length; struct ib_user_mad mad; }; struct ib_rmpp_mad_hdr { struct ib_mad_hdr mad_hdr; struct ib_rmpp_hdr rmpp_hdr; } __packed; #define CREATE_TRACE_POINTS #include <trace/events/ib_umad.h> static const dev_t base_umad_dev = MKDEV(IB_UMAD_MAJOR, IB_UMAD_MINOR_BASE); static const dev_t base_issm_dev = MKDEV(IB_UMAD_MAJOR, IB_UMAD_MINOR_BASE) + IB_UMAD_NUM_FIXED_MINOR; static dev_t dynamic_umad_dev; static dev_t dynamic_issm_dev; static DEFINE_IDA(umad_ida); static int ib_umad_add_one(struct ib_device *device); static void ib_umad_remove_one(struct ib_device *device, void *client_data); static void ib_umad_dev_free(struct kref *kref) { struct ib_umad_device *dev = container_of(kref, struct ib_umad_device, kref); kfree(dev); } static void ib_umad_dev_get(struct ib_umad_device *dev) { kref_get(&dev->kref); } static void ib_umad_dev_put(struct ib_umad_device *dev) { kref_put(&dev->kref, ib_umad_dev_free); } static int hdr_size(struct ib_umad_file *file) { return file->use_pkey_index ? sizeof(struct ib_user_mad_hdr) : sizeof(struct ib_user_mad_hdr_old); } /* caller must hold file->mutex */ static struct ib_mad_agent *__get_agent(struct ib_umad_file *file, int id) { return file->agents_dead ? NULL : file->agent[id]; } static int queue_packet(struct ib_umad_file *file, struct ib_mad_agent *agent, struct ib_umad_packet *packet, bool is_recv_mad) { int ret = 1; mutex_lock(&file->mutex); if (is_recv_mad && atomic_read(&file->recv_list_size) > MAX_UMAD_RECV_LIST_SIZE) goto unlock; for (packet->mad.hdr.id = 0; packet->mad.hdr.id < IB_UMAD_MAX_AGENTS; packet->mad.hdr.id++) if (agent == __get_agent(file, packet->mad.hdr.id)) { list_add_tail(&packet->list, &file->recv_list); atomic_inc(&file->recv_list_size); wake_up_interruptible(&file->recv_wait); ret = 0; break; } unlock: mutex_unlock(&file->mutex); return ret; } static void dequeue_send(struct ib_umad_file *file, struct ib_umad_packet *packet) { spin_lock_irq(&file->send_lock); list_del(&packet->list); spin_unlock_irq(&file->send_lock); } static void send_handler(struct ib_mad_agent *agent, struct ib_mad_send_wc *send_wc) { struct ib_umad_file *file = agent->context; struct ib_umad_packet *packet = send_wc->send_buf->context[0]; dequeue_send(file, packet); rdma_destroy_ah(packet->msg->ah, RDMA_DESTROY_AH_SLEEPABLE); ib_free_send_mad(packet->msg); if (send_wc->status == IB_WC_RESP_TIMEOUT_ERR) { packet->length = IB_MGMT_MAD_HDR; packet->mad.hdr.status = ETIMEDOUT; if (!queue_packet(file, agent, packet, false)) return; } kfree(packet); } static void recv_handler(struct ib_mad_agent *agent, struct ib_mad_send_buf *send_buf, struct ib_mad_recv_wc *mad_recv_wc) { struct ib_umad_file *file = agent->context; struct ib_umad_packet *packet; if (mad_recv_wc->wc->status != IB_WC_SUCCESS) goto err1; packet = kzalloc(sizeof *packet, GFP_KERNEL); if (!packet) goto err1; packet->length = mad_recv_wc->mad_len; packet->recv_wc = mad_recv_wc; packet->mad.hdr.status = 0; packet->mad.hdr.length = hdr_size(file) + mad_recv_wc->mad_len; packet->mad.hdr.qpn = cpu_to_be32(mad_recv_wc->wc->src_qp); /* * On OPA devices it is okay to lose the upper 16 bits of LID as this * information is obtained elsewhere. Mask off the upper 16 bits. */ if (rdma_cap_opa_mad(agent->device, agent->port_num)) packet->mad.hdr.lid = ib_lid_be16(0xFFFF & mad_recv_wc->wc->slid); else packet->mad.hdr.lid = ib_lid_be16(mad_recv_wc->wc->slid); packet->mad.hdr.sl = mad_recv_wc->wc->sl; packet->mad.hdr.path_bits = mad_recv_wc->wc->dlid_path_bits; packet->mad.hdr.pkey_index = mad_recv_wc->wc->pkey_index; packet->mad.hdr.grh_present = !!(mad_recv_wc->wc->wc_flags & IB_WC_GRH); if (packet->mad.hdr.grh_present) { struct rdma_ah_attr ah_attr; const struct ib_global_route *grh; int ret; ret = ib_init_ah_attr_from_wc(agent->device, agent->port_num, mad_recv_wc->wc, mad_recv_wc->recv_buf.grh, &ah_attr); if (ret) goto err2; grh = rdma_ah_read_grh(&ah_attr); packet->mad.hdr.gid_index = grh->sgid_index; packet->mad.hdr.hop_limit = grh->hop_limit; packet->mad.hdr.traffic_class = grh->traffic_class; memcpy(packet->mad.hdr.gid, &grh->dgid, 16); packet->mad.hdr.flow_label = cpu_to_be32(grh->flow_label); rdma_destroy_ah_attr(&ah_attr); } if (queue_packet(file, agent, packet, true)) goto err2; return; err2: kfree(packet); err1: ib_free_recv_mad(mad_recv_wc); } static ssize_t copy_recv_mad(struct ib_umad_file *file, char __user *buf, struct ib_umad_packet *packet, size_t count) { struct ib_mad_recv_buf *recv_buf; int left, seg_payload, offset, max_seg_payload; size_t seg_size; recv_buf = &packet->recv_wc->recv_buf; seg_size = packet->recv_wc->mad_seg_size; /* We need enough room to copy the first (or only) MAD segment. */ if ((packet->length <= seg_size && count < hdr_size(file) + packet->length) || (packet->length > seg_size && count < hdr_size(file) + seg_size)) return -EINVAL; if (copy_to_user(buf, &packet->mad, hdr_size(file))) return -EFAULT; buf += hdr_size(file); seg_payload = min_t(int, packet->length, seg_size); if (copy_to_user(buf, recv_buf->mad, seg_payload)) return -EFAULT; if (seg_payload < packet->length) { /* * Multipacket RMPP MAD message. Copy remainder of message. * Note that last segment may have a shorter payload. */ if (count < hdr_size(file) + packet->length) { /* * The buffer is too small, return the first RMPP segment, * which includes the RMPP message length. */ return -ENOSPC; } offset = ib_get_mad_data_offset(recv_buf->mad->mad_hdr.mgmt_class); max_seg_payload = seg_size - offset; for (left = packet->length - seg_payload, buf += seg_payload; left; left -= seg_payload, buf += seg_payload) { recv_buf = container_of(recv_buf->list.next, struct ib_mad_recv_buf, list); seg_payload = min(left, max_seg_payload); if (copy_to_user(buf, ((void *) recv_buf->mad) + offset, seg_payload)) return -EFAULT; } } trace_ib_umad_read_recv(file, &packet->mad.hdr, &recv_buf->mad->mad_hdr); return hdr_size(file) + packet->length; } static ssize_t copy_send_mad(struct ib_umad_file *file, char __user *buf, struct ib_umad_packet *packet, size_t count) { ssize_t size = hdr_size(file) + packet->length; if (count < size) return -EINVAL; if (copy_to_user(buf, &packet->mad, hdr_size(file))) return -EFAULT; buf += hdr_size(file); if (copy_to_user(buf, packet->mad.data, packet->length)) return -EFAULT; trace_ib_umad_read_send(file, &packet->mad.hdr, (struct ib_mad_hdr *)&packet->mad.data); return size; } static ssize_t ib_umad_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct ib_umad_file *file = filp->private_data; struct ib_umad_packet *packet; ssize_t ret; if (count < hdr_size(file)) return -EINVAL; mutex_lock(&file->mutex); if (file->agents_dead) { mutex_unlock(&file->mutex); return -EIO; } while (list_empty(&file->recv_list)) { mutex_unlock(&file->mutex); if (filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(file->recv_wait, !list_empty(&file->recv_list))) return -ERESTARTSYS; mutex_lock(&file->mutex); } if (file->agents_dead) { mutex_unlock(&file->mutex); return -EIO; } packet = list_entry(file->recv_list.next, struct ib_umad_packet, list); list_del(&packet->list); atomic_dec(&file->recv_list_size); mutex_unlock(&file->mutex); if (packet->recv_wc) ret = copy_recv_mad(file, buf, packet, count); else ret = copy_send_mad(file, buf, packet, count); if (ret < 0) { /* Requeue packet */ mutex_lock(&file->mutex); list_add(&packet->list, &file->recv_list); atomic_inc(&file->recv_list_size); mutex_unlock(&file->mutex); } else { if (packet->recv_wc) ib_free_recv_mad(packet->recv_wc); kfree(packet); } return ret; } static int copy_rmpp_mad(struct ib_mad_send_buf *msg, const char __user *buf) { int left, seg; /* Copy class specific header */ if ((msg->hdr_len > IB_MGMT_RMPP_HDR) && copy_from_user(msg->mad + IB_MGMT_RMPP_HDR, buf + IB_MGMT_RMPP_HDR, msg->hdr_len - IB_MGMT_RMPP_HDR)) return -EFAULT; /* All headers are in place. Copy data segments. */ for (seg = 1, left = msg->data_len, buf += msg->hdr_len; left > 0; seg++, left -= msg->seg_size, buf += msg->seg_size) { if (copy_from_user(ib_get_rmpp_segment(msg, seg), buf, min(left, msg->seg_size))) return -EFAULT; } return 0; } static int same_destination(struct ib_user_mad_hdr *hdr1, struct ib_user_mad_hdr *hdr2) { if (!hdr1->grh_present && !hdr2->grh_present) return (hdr1->lid == hdr2->lid); if (hdr1->grh_present && hdr2->grh_present) return !memcmp(hdr1->gid, hdr2->gid, 16); return 0; } static int is_duplicate(struct ib_umad_file *file, struct ib_umad_packet *packet) { struct ib_umad_packet *sent_packet; struct ib_mad_hdr *sent_hdr, *hdr; hdr = (struct ib_mad_hdr *) packet->mad.data; list_for_each_entry(sent_packet, &file->send_list, list) { sent_hdr = (struct ib_mad_hdr *) sent_packet->mad.data; if ((hdr->tid != sent_hdr->tid) || (hdr->mgmt_class != sent_hdr->mgmt_class)) continue; /* * No need to be overly clever here. If two new operations have * the same TID, reject the second as a duplicate. This is more * restrictive than required by the spec. */ if (!ib_response_mad(hdr)) { if (!ib_response_mad(sent_hdr)) return 1; continue; } else if (!ib_response_mad(sent_hdr)) continue; if (same_destination(&packet->mad.hdr, &sent_packet->mad.hdr)) return 1; } return 0; } static ssize_t ib_umad_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct ib_umad_file *file = filp->private_data; struct ib_rmpp_mad_hdr *rmpp_mad_hdr; struct ib_umad_packet *packet; struct ib_mad_agent *agent; struct rdma_ah_attr ah_attr; struct ib_ah *ah; __be64 *tid; int ret, data_len, hdr_len, copy_offset, rmpp_active; u8 base_version; if (count < hdr_size(file) + IB_MGMT_RMPP_HDR) return -EINVAL; packet = kzalloc(sizeof(*packet) + IB_MGMT_RMPP_HDR, GFP_KERNEL); if (!packet) return -ENOMEM; if (copy_from_user(&packet->mad, buf, hdr_size(file))) { ret = -EFAULT; goto err; } if (packet->mad.hdr.id >= IB_UMAD_MAX_AGENTS) { ret = -EINVAL; goto err; } buf += hdr_size(file); if (copy_from_user(packet->mad.data, buf, IB_MGMT_RMPP_HDR)) { ret = -EFAULT; goto err; } mutex_lock(&file->mutex); trace_ib_umad_write(file, &packet->mad.hdr, (struct ib_mad_hdr *)&packet->mad.data); agent = __get_agent(file, packet->mad.hdr.id); if (!agent) { ret = -EIO; goto err_up; } memset(&ah_attr, 0, sizeof ah_attr); ah_attr.type = rdma_ah_find_type(agent->device, file->port->port_num); rdma_ah_set_dlid(&ah_attr, be16_to_cpu(packet->mad.hdr.lid)); rdma_ah_set_sl(&ah_attr, packet->mad.hdr.sl); rdma_ah_set_path_bits(&ah_attr, packet->mad.hdr.path_bits); rdma_ah_set_port_num(&ah_attr, file->port->port_num); if (packet->mad.hdr.grh_present) { rdma_ah_set_grh(&ah_attr, NULL, be32_to_cpu(packet->mad.hdr.flow_label), packet->mad.hdr.gid_index, packet->mad.hdr.hop_limit, packet->mad.hdr.traffic_class); rdma_ah_set_dgid_raw(&ah_attr, packet->mad.hdr.gid); } ah = rdma_create_user_ah(agent->qp->pd, &ah_attr, NULL); if (IS_ERR(ah)) { ret = PTR_ERR(ah); goto err_up; } rmpp_mad_hdr = (struct ib_rmpp_mad_hdr *)packet->mad.data; hdr_len = ib_get_mad_data_offset(rmpp_mad_hdr->mad_hdr.mgmt_class); if (ib_is_mad_class_rmpp(rmpp_mad_hdr->mad_hdr.mgmt_class) && ib_mad_kernel_rmpp_agent(agent)) { copy_offset = IB_MGMT_RMPP_HDR; rmpp_active = ib_get_rmpp_flags(&rmpp_mad_hdr->rmpp_hdr) & IB_MGMT_RMPP_FLAG_ACTIVE; } else { copy_offset = IB_MGMT_MAD_HDR; rmpp_active = 0; } base_version = ((struct ib_mad_hdr *)&packet->mad.data)->base_version; data_len = count - hdr_size(file) - hdr_len; packet->msg = ib_create_send_mad(agent, be32_to_cpu(packet->mad.hdr.qpn), packet->mad.hdr.pkey_index, rmpp_active, hdr_len, data_len, GFP_KERNEL, base_version); if (IS_ERR(packet->msg)) { ret = PTR_ERR(packet->msg); goto err_ah; } packet->msg->ah = ah; packet->msg->timeout_ms = packet->mad.hdr.timeout_ms; packet->msg->retries = packet->mad.hdr.retries; packet->msg->context[0] = packet; /* Copy MAD header. Any RMPP header is already in place. */ memcpy(packet->msg->mad, packet->mad.data, IB_MGMT_MAD_HDR); if (!rmpp_active) { if (copy_from_user(packet->msg->mad + copy_offset, buf + copy_offset, hdr_len + data_len - copy_offset)) { ret = -EFAULT; goto err_msg; } } else { ret = copy_rmpp_mad(packet->msg, buf); if (ret) goto err_msg; } /* * Set the high-order part of the transaction ID to make MADs from * different agents unique, and allow routing responses back to the * original requestor. */ if (!ib_response_mad(packet->msg->mad)) { tid = &((struct ib_mad_hdr *) packet->msg->mad)->tid; *tid = cpu_to_be64(((u64) agent->hi_tid) << 32 | (be64_to_cpup(tid) & 0xffffffff)); rmpp_mad_hdr->mad_hdr.tid = *tid; } if (!ib_mad_kernel_rmpp_agent(agent) && ib_is_mad_class_rmpp(rmpp_mad_hdr->mad_hdr.mgmt_class) && (ib_get_rmpp_flags(&rmpp_mad_hdr->rmpp_hdr) & IB_MGMT_RMPP_FLAG_ACTIVE)) { spin_lock_irq(&file->send_lock); list_add_tail(&packet->list, &file->send_list); spin_unlock_irq(&file->send_lock); } else { spin_lock_irq(&file->send_lock); ret = is_duplicate(file, packet); if (!ret) list_add_tail(&packet->list, &file->send_list); spin_unlock_irq(&file->send_lock); if (ret) { ret = -EINVAL; goto err_msg; } } ret = ib_post_send_mad(packet->msg, NULL); if (ret) goto err_send; mutex_unlock(&file->mutex); return count; err_send: dequeue_send(file, packet); err_msg: ib_free_send_mad(packet->msg); err_ah: rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE); err_up: mutex_unlock(&file->mutex); err: kfree(packet); return ret; } static __poll_t ib_umad_poll(struct file *filp, struct poll_table_struct *wait) { struct ib_umad_file *file = filp->private_data; /* we will always be able to post a MAD send */ __poll_t mask = EPOLLOUT | EPOLLWRNORM; mutex_lock(&file->mutex); poll_wait(filp, &file->recv_wait, wait); if (!list_empty(&file->recv_list)) mask |= EPOLLIN | EPOLLRDNORM; if (file->agents_dead) mask = EPOLLERR; mutex_unlock(&file->mutex); return mask; } static int ib_umad_reg_agent(struct ib_umad_file *file, void __user *arg, int compat_method_mask) { struct ib_user_mad_reg_req ureq; struct ib_mad_reg_req req; struct ib_mad_agent *agent = NULL; int agent_id; int ret; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); if (!file->port->ib_dev) { dev_notice(&file->port->dev, "%s: invalid device\n", __func__); ret = -EPIPE; goto out; } if (copy_from_user(&ureq, arg, sizeof ureq)) { ret = -EFAULT; goto out; } if (ureq.qpn != 0 && ureq.qpn != 1) { dev_notice(&file->port->dev, "%s: invalid QPN %u specified\n", __func__, ureq.qpn); ret = -EINVAL; goto out; } for (agent_id = 0; agent_id < IB_UMAD_MAX_AGENTS; ++agent_id) if (!__get_agent(file, agent_id)) goto found; dev_notice(&file->port->dev, "%s: Max Agents (%u) reached\n", __func__, IB_UMAD_MAX_AGENTS); ret = -ENOMEM; goto out; found: if (ureq.mgmt_class) { memset(&req, 0, sizeof(req)); req.mgmt_class = ureq.mgmt_class; req.mgmt_class_version = ureq.mgmt_class_version; memcpy(req.oui, ureq.oui, sizeof req.oui); if (compat_method_mask) { u32 *umm = (u32 *) ureq.method_mask; int i; for (i = 0; i < BITS_TO_LONGS(IB_MGMT_MAX_METHODS); ++i) req.method_mask[i] = umm[i * 2] | ((u64) umm[i * 2 + 1] << 32); } else memcpy(req.method_mask, ureq.method_mask, sizeof req.method_mask); } agent = ib_register_mad_agent(file->port->ib_dev, file->port->port_num, ureq.qpn ? IB_QPT_GSI : IB_QPT_SMI, ureq.mgmt_class ? &req : NULL, ureq.rmpp_version, send_handler, recv_handler, file, 0); if (IS_ERR(agent)) { ret = PTR_ERR(agent); agent = NULL; goto out; } if (put_user(agent_id, (u32 __user *) (arg + offsetof(struct ib_user_mad_reg_req, id)))) { ret = -EFAULT; goto out; } if (!file->already_used) { file->already_used = 1; if (!file->use_pkey_index) { dev_warn(&file->port->dev, "process %s did not enable P_Key index support.\n", current->comm); dev_warn(&file->port->dev, " Documentation/infiniband/user_mad.rst has info on the new ABI.\n"); } } file->agent[agent_id] = agent; ret = 0; out: mutex_unlock(&file->mutex); if (ret && agent) ib_unregister_mad_agent(agent); mutex_unlock(&file->port->file_mutex); return ret; } static int ib_umad_reg_agent2(struct ib_umad_file *file, void __user *arg) { struct ib_user_mad_reg_req2 ureq; struct ib_mad_reg_req req; struct ib_mad_agent *agent = NULL; int agent_id; int ret; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); if (!file->port->ib_dev) { dev_notice(&file->port->dev, "%s: invalid device\n", __func__); ret = -EPIPE; goto out; } if (copy_from_user(&ureq, arg, sizeof(ureq))) { ret = -EFAULT; goto out; } if (ureq.qpn != 0 && ureq.qpn != 1) { dev_notice(&file->port->dev, "%s: invalid QPN %u specified\n", __func__, ureq.qpn); ret = -EINVAL; goto out; } if (ureq.flags & ~IB_USER_MAD_REG_FLAGS_CAP) { dev_notice(&file->port->dev, "%s failed: invalid registration flags specified 0x%x; supported 0x%x\n", __func__, ureq.flags, IB_USER_MAD_REG_FLAGS_CAP); ret = -EINVAL; if (put_user((u32)IB_USER_MAD_REG_FLAGS_CAP, (u32 __user *) (arg + offsetof(struct ib_user_mad_reg_req2, flags)))) ret = -EFAULT; goto out; } for (agent_id = 0; agent_id < IB_UMAD_MAX_AGENTS; ++agent_id) if (!__get_agent(file, agent_id)) goto found; dev_notice(&file->port->dev, "%s: Max Agents (%u) reached\n", __func__, IB_UMAD_MAX_AGENTS); ret = -ENOMEM; goto out; found: if (ureq.mgmt_class) { memset(&req, 0, sizeof(req)); req.mgmt_class = ureq.mgmt_class; req.mgmt_class_version = ureq.mgmt_class_version; if (ureq.oui & 0xff000000) { dev_notice(&file->port->dev, "%s failed: oui invalid 0x%08x\n", __func__, ureq.oui); ret = -EINVAL; goto out; } req.oui[2] = ureq.oui & 0x0000ff; req.oui[1] = (ureq.oui & 0x00ff00) >> 8; req.oui[0] = (ureq.oui & 0xff0000) >> 16; memcpy(req.method_mask, ureq.method_mask, sizeof(req.method_mask)); } agent = ib_register_mad_agent(file->port->ib_dev, file->port->port_num, ureq.qpn ? IB_QPT_GSI : IB_QPT_SMI, ureq.mgmt_class ? &req : NULL, ureq.rmpp_version, send_handler, recv_handler, file, ureq.flags); if (IS_ERR(agent)) { ret = PTR_ERR(agent); agent = NULL; goto out; } if (put_user(agent_id, (u32 __user *)(arg + offsetof(struct ib_user_mad_reg_req2, id)))) { ret = -EFAULT; goto out; } if (!file->already_used) { file->already_used = 1; file->use_pkey_index = 1; } file->agent[agent_id] = agent; ret = 0; out: mutex_unlock(&file->mutex); if (ret && agent) ib_unregister_mad_agent(agent); mutex_unlock(&file->port->file_mutex); return ret; } static int ib_umad_unreg_agent(struct ib_umad_file *file, u32 __user *arg) { struct ib_mad_agent *agent = NULL; u32 id; int ret = 0; if (get_user(id, arg)) return -EFAULT; if (id >= IB_UMAD_MAX_AGENTS) return -EINVAL; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); id = array_index_nospec(id, IB_UMAD_MAX_AGENTS); if (!__get_agent(file, id)) { ret = -EINVAL; goto out; } agent = file->agent[id]; file->agent[id] = NULL; out: mutex_unlock(&file->mutex); if (agent) ib_unregister_mad_agent(agent); mutex_unlock(&file->port->file_mutex); return ret; } static long ib_umad_enable_pkey(struct ib_umad_file *file) { int ret = 0; mutex_lock(&file->mutex); if (file->already_used) ret = -EINVAL; else file->use_pkey_index = 1; mutex_unlock(&file->mutex); return ret; } static long ib_umad_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case IB_USER_MAD_REGISTER_AGENT: return ib_umad_reg_agent(filp->private_data, (void __user *) arg, 0); case IB_USER_MAD_UNREGISTER_AGENT: return ib_umad_unreg_agent(filp->private_data, (__u32 __user *) arg); case IB_USER_MAD_ENABLE_PKEY: return ib_umad_enable_pkey(filp->private_data); case IB_USER_MAD_REGISTER_AGENT2: return ib_umad_reg_agent2(filp->private_data, (void __user *) arg); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static long ib_umad_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case IB_USER_MAD_REGISTER_AGENT: return ib_umad_reg_agent(filp->private_data, compat_ptr(arg), 1); case IB_USER_MAD_UNREGISTER_AGENT: return ib_umad_unreg_agent(filp->private_data, compat_ptr(arg)); case IB_USER_MAD_ENABLE_PKEY: return ib_umad_enable_pkey(filp->private_data); case IB_USER_MAD_REGISTER_AGENT2: return ib_umad_reg_agent2(filp->private_data, compat_ptr(arg)); default: return -ENOIOCTLCMD; } } #endif /* * ib_umad_open() does not need the BKL: * * - the ib_umad_port structures are properly reference counted, and * everything else is purely local to the file being created, so * races against other open calls are not a problem; * - the ioctl method does not affect any global state outside of the * file structure being operated on; */ static int ib_umad_open(struct inode *inode, struct file *filp) { struct ib_umad_port *port; struct ib_umad_file *file; int ret = 0; port = container_of(inode->i_cdev, struct ib_umad_port, cdev); mutex_lock(&port->file_mutex); if (!port->ib_dev) { ret = -ENXIO; goto out; } if (!rdma_dev_access_netns(port->ib_dev, current->nsproxy->net_ns)) { ret = -EPERM; goto out; } file = kzalloc(sizeof(*file), GFP_KERNEL); if (!file) { ret = -ENOMEM; goto out; } mutex_init(&file->mutex); spin_lock_init(&file->send_lock); INIT_LIST_HEAD(&file->recv_list); INIT_LIST_HEAD(&file->send_list); init_waitqueue_head(&file->recv_wait); file->port = port; filp->private_data = file; list_add_tail(&file->port_list, &port->file_list); stream_open(inode, filp); out: mutex_unlock(&port->file_mutex); return ret; } static int ib_umad_close(struct inode *inode, struct file *filp) { struct ib_umad_file *file = filp->private_data; struct ib_umad_packet *packet, *tmp; int already_dead; int i; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); already_dead = file->agents_dead; file->agents_dead = 1; list_for_each_entry_safe(packet, tmp, &file->recv_list, list) { if (packet->recv_wc) ib_free_recv_mad(packet->recv_wc); kfree(packet); } list_del(&file->port_list); mutex_unlock(&file->mutex); if (!already_dead) for (i = 0; i < IB_UMAD_MAX_AGENTS; ++i) if (file->agent[i]) ib_unregister_mad_agent(file->agent[i]); mutex_unlock(&file->port->file_mutex); mutex_destroy(&file->mutex); kfree(file); return 0; } static const struct file_operations umad_fops = { .owner = THIS_MODULE, .read = ib_umad_read, .write = ib_umad_write, .poll = ib_umad_poll, .unlocked_ioctl = ib_umad_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ib_umad_compat_ioctl, #endif .open = ib_umad_open, .release = ib_umad_close, .llseek = no_llseek, }; static int ib_umad_sm_open(struct inode *inode, struct file *filp) { struct ib_umad_port *port; struct ib_port_modify props = { .set_port_cap_mask = IB_PORT_SM }; int ret; port = container_of(inode->i_cdev, struct ib_umad_port, sm_cdev); if (filp->f_flags & O_NONBLOCK) { if (down_trylock(&port->sm_sem)) { ret = -EAGAIN; goto fail; } } else { if (down_interruptible(&port->sm_sem)) { ret = -ERESTARTSYS; goto fail; } } if (!rdma_dev_access_netns(port->ib_dev, current->nsproxy->net_ns)) { ret = -EPERM; goto err_up_sem; } ret = ib_modify_port(port->ib_dev, port->port_num, 0, &props); if (ret) goto err_up_sem; filp->private_data = port; nonseekable_open(inode, filp); return 0; err_up_sem: up(&port->sm_sem); fail: return ret; } static int ib_umad_sm_close(struct inode *inode, struct file *filp) { struct ib_umad_port *port = filp->private_data; struct ib_port_modify props = { .clr_port_cap_mask = IB_PORT_SM }; int ret = 0; mutex_lock(&port->file_mutex); if (port->ib_dev) ret = ib_modify_port(port->ib_dev, port->port_num, 0, &props); mutex_unlock(&port->file_mutex); up(&port->sm_sem); return ret; } static const struct file_operations umad_sm_fops = { .owner = THIS_MODULE, .open = ib_umad_sm_open, .release = ib_umad_sm_close, .llseek = no_llseek, }; static struct ib_umad_port *get_port(struct ib_device *ibdev, struct ib_umad_device *umad_dev, u32 port) { if (!umad_dev) return ERR_PTR(-EOPNOTSUPP); if (!rdma_is_port_valid(ibdev, port)) return ERR_PTR(-EINVAL); if (!rdma_cap_ib_mad(ibdev, port)) return ERR_PTR(-EOPNOTSUPP); return &umad_dev->ports[port - rdma_start_port(ibdev)]; } static int ib_umad_get_nl_info(struct ib_device *ibdev, void *client_data, struct ib_client_nl_info *res) { struct ib_umad_port *port = get_port(ibdev, client_data, res->port); if (IS_ERR(port)) return PTR_ERR(port); res->abi = IB_USER_MAD_ABI_VERSION; res->cdev = &port->dev; return 0; } static struct ib_client umad_client = { .name = "umad", .add = ib_umad_add_one, .remove = ib_umad_remove_one, .get_nl_info = ib_umad_get_nl_info, }; MODULE_ALIAS_RDMA_CLIENT("umad"); static int ib_issm_get_nl_info(struct ib_device *ibdev, void *client_data, struct ib_client_nl_info *res) { struct ib_umad_port *port = get_port(ibdev, client_data, res->port); if (IS_ERR(port)) return PTR_ERR(port); res->abi = IB_USER_MAD_ABI_VERSION; res->cdev = &port->sm_dev; return 0; } static struct ib_client issm_client = { .name = "issm", .get_nl_info = ib_issm_get_nl_info, }; MODULE_ALIAS_RDMA_CLIENT("issm"); static ssize_t ibdev_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ib_umad_port *port = dev_get_drvdata(dev); if (!port) return -ENODEV; return sysfs_emit(buf, "%s\n", dev_name(&port->ib_dev->dev)); } static DEVICE_ATTR_RO(ibdev); static ssize_t port_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ib_umad_port *port = dev_get_drvdata(dev); if (!port) return -ENODEV; return sysfs_emit(buf, "%d\n", port->port_num); } static DEVICE_ATTR_RO(port); static struct attribute *umad_class_dev_attrs[] = { &dev_attr_ibdev.attr, &dev_attr_port.attr, NULL, }; ATTRIBUTE_GROUPS(umad_class_dev); static char *umad_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "infiniband/%s", dev_name(dev)); } static ssize_t abi_version_show(const struct class *class, const struct class_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", IB_USER_MAD_ABI_VERSION); } static CLASS_ATTR_RO(abi_version); static struct attribute *umad_class_attrs[] = { &class_attr_abi_version.attr, NULL, }; ATTRIBUTE_GROUPS(umad_class); static struct class umad_class = { .name = "infiniband_mad", .devnode = umad_devnode, .class_groups = umad_class_groups, .dev_groups = umad_class_dev_groups, }; static void ib_umad_release_port(struct device *device) { struct ib_umad_port *port = dev_get_drvdata(device); struct ib_umad_device *umad_dev = port->umad_dev; ib_umad_dev_put(umad_dev); } static void ib_umad_init_port_dev(struct device *dev, struct ib_umad_port *port, const struct ib_device *device) { device_initialize(dev); ib_umad_dev_get(port->umad_dev); dev->class = &umad_class; dev->parent = device->dev.parent; dev_set_drvdata(dev, port); dev->release = ib_umad_release_port; } static int ib_umad_init_port(struct ib_device *device, int port_num, struct ib_umad_device *umad_dev, struct ib_umad_port *port) { int devnum; dev_t base_umad; dev_t base_issm; int ret; devnum = ida_alloc_max(&umad_ida, IB_UMAD_MAX_PORTS - 1, GFP_KERNEL); if (devnum < 0) return -1; port->dev_num = devnum; if (devnum >= IB_UMAD_NUM_FIXED_MINOR) { base_umad = dynamic_umad_dev + devnum - IB_UMAD_NUM_FIXED_MINOR; base_issm = dynamic_issm_dev + devnum - IB_UMAD_NUM_FIXED_MINOR; } else { base_umad = devnum + base_umad_dev; base_issm = devnum + base_issm_dev; } port->ib_dev = device; port->umad_dev = umad_dev; port->port_num = port_num; sema_init(&port->sm_sem, 1); mutex_init(&port->file_mutex); INIT_LIST_HEAD(&port->file_list); ib_umad_init_port_dev(&port->dev, port, device); port->dev.devt = base_umad; dev_set_name(&port->dev, "umad%d", port->dev_num); cdev_init(&port->cdev, &umad_fops); port->cdev.owner = THIS_MODULE; ret = cdev_device_add(&port->cdev, &port->dev); if (ret) goto err_cdev; if (rdma_cap_ib_smi(device, port_num)) { ib_umad_init_port_dev(&port->sm_dev, port, device); port->sm_dev.devt = base_issm; dev_set_name(&port->sm_dev, "issm%d", port->dev_num); cdev_init(&port->sm_cdev, &umad_sm_fops); port->sm_cdev.owner = THIS_MODULE; ret = cdev_device_add(&port->sm_cdev, &port->sm_dev); if (ret) goto err_dev; } return 0; err_dev: put_device(&port->sm_dev); cdev_device_del(&port->cdev, &port->dev); err_cdev: put_device(&port->dev); ida_free(&umad_ida, devnum); return ret; } static void ib_umad_kill_port(struct ib_umad_port *port) { struct ib_umad_file *file; bool has_smi = false; int id; if (rdma_cap_ib_smi(port->ib_dev, port->port_num)) { cdev_device_del(&port->sm_cdev, &port->sm_dev); has_smi = true; } cdev_device_del(&port->cdev, &port->dev); mutex_lock(&port->file_mutex); /* Mark ib_dev NULL and block ioctl or other file ops to progress * further. */ port->ib_dev = NULL; list_for_each_entry(file, &port->file_list, port_list) { mutex_lock(&file->mutex); file->agents_dead = 1; wake_up_interruptible(&file->recv_wait); mutex_unlock(&file->mutex); for (id = 0; id < IB_UMAD_MAX_AGENTS; ++id) if (file->agent[id]) ib_unregister_mad_agent(file->agent[id]); } mutex_unlock(&port->file_mutex); ida_free(&umad_ida, port->dev_num); /* balances device_initialize() */ if (has_smi) put_device(&port->sm_dev); put_device(&port->dev); } static int ib_umad_add_one(struct ib_device *device) { struct ib_umad_device *umad_dev; int s, e, i; int count = 0; int ret; s = rdma_start_port(device); e = rdma_end_port(device); umad_dev = kzalloc(struct_size(umad_dev, ports, size_add(size_sub(e, s), 1)), GFP_KERNEL); if (!umad_dev) return -ENOMEM; kref_init(&umad_dev->kref); for (i = s; i <= e; ++i) { if (!rdma_cap_ib_mad(device, i)) continue; ret = ib_umad_init_port(device, i, umad_dev, &umad_dev->ports[i - s]); if (ret) goto err; count++; } if (!count) { ret = -EOPNOTSUPP; goto free; } ib_set_client_data(device, &umad_client, umad_dev); return 0; err: while (--i >= s) { if (!rdma_cap_ib_mad(device, i)) continue; ib_umad_kill_port(&umad_dev->ports[i - s]); } free: /* balances kref_init */ ib_umad_dev_put(umad_dev); return ret; } static void ib_umad_remove_one(struct ib_device *device, void *client_data) { struct ib_umad_device *umad_dev = client_data; unsigned int i; rdma_for_each_port (device, i) { if (rdma_cap_ib_mad(device, i)) ib_umad_kill_port( &umad_dev->ports[i - rdma_start_port(device)]); } /* balances kref_init() */ ib_umad_dev_put(umad_dev); } static int __init ib_umad_init(void) { int ret; ret = register_chrdev_region(base_umad_dev, IB_UMAD_NUM_FIXED_MINOR * 2, umad_class.name); if (ret) { pr_err("couldn't register device number\n"); goto out; } ret = alloc_chrdev_region(&dynamic_umad_dev, 0, IB_UMAD_NUM_DYNAMIC_MINOR * 2, umad_class.name); if (ret) { pr_err("couldn't register dynamic device number\n"); goto out_alloc; } dynamic_issm_dev = dynamic_umad_dev + IB_UMAD_NUM_DYNAMIC_MINOR; ret = class_register(&umad_class); if (ret) { pr_err("couldn't create class infiniband_mad\n"); goto out_chrdev; } ret = ib_register_client(&umad_client); if (ret) goto out_class; ret = ib_register_client(&issm_client); if (ret) goto out_client; return 0; out_client: ib_unregister_client(&umad_client); out_class: class_unregister(&umad_class); out_chrdev: unregister_chrdev_region(dynamic_umad_dev, IB_UMAD_NUM_DYNAMIC_MINOR * 2); out_alloc: unregister_chrdev_region(base_umad_dev, IB_UMAD_NUM_FIXED_MINOR * 2); out: return ret; } static void __exit ib_umad_cleanup(void) { ib_unregister_client(&issm_client); ib_unregister_client(&umad_client); class_unregister(&umad_class); unregister_chrdev_region(base_umad_dev, IB_UMAD_NUM_FIXED_MINOR * 2); unregister_chrdev_region(dynamic_umad_dev, IB_UMAD_NUM_DYNAMIC_MINOR * 2); } module_init(ib_umad_init); module_exit(ib_umad_cleanup); |
1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Bootlin * */ #include "common.h" #include "netlink.h" #include <linux/phy.h> #include <linux/phy_link_topology.h> #include <linux/sfp.h> struct phy_req_info { struct ethnl_req_info base; struct phy_device_node *pdn; }; #define PHY_REQINFO(__req_base) \ container_of(__req_base, struct phy_req_info, base) const struct nla_policy ethnl_phy_get_policy[ETHTOOL_A_PHY_HEADER + 1] = { [ETHTOOL_A_PHY_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), }; /* Caller holds rtnl */ static ssize_t ethnl_phy_reply_size(const struct ethnl_req_info *req_base, struct netlink_ext_ack *extack) { struct phy_req_info *req_info = PHY_REQINFO(req_base); struct phy_device_node *pdn = req_info->pdn; struct phy_device *phydev = pdn->phy; size_t size = 0; ASSERT_RTNL(); /* ETHTOOL_A_PHY_INDEX */ size += nla_total_size(sizeof(u32)); /* ETHTOOL_A_DRVNAME */ if (phydev->drv) size += nla_total_size(strlen(phydev->drv->name) + 1); /* ETHTOOL_A_NAME */ size += nla_total_size(strlen(dev_name(&phydev->mdio.dev)) + 1); /* ETHTOOL_A_PHY_UPSTREAM_TYPE */ size += nla_total_size(sizeof(u32)); if (phy_on_sfp(phydev)) { const char *upstream_sfp_name = sfp_get_name(pdn->parent_sfp_bus); /* ETHTOOL_A_PHY_UPSTREAM_SFP_NAME */ if (upstream_sfp_name) size += nla_total_size(strlen(upstream_sfp_name) + 1); /* ETHTOOL_A_PHY_UPSTREAM_INDEX */ size += nla_total_size(sizeof(u32)); } /* ETHTOOL_A_PHY_DOWNSTREAM_SFP_NAME */ if (phydev->sfp_bus) { const char *sfp_name = sfp_get_name(phydev->sfp_bus); if (sfp_name) size += nla_total_size(strlen(sfp_name) + 1); } return size; } static int ethnl_phy_fill_reply(const struct ethnl_req_info *req_base, struct sk_buff *skb) { struct phy_req_info *req_info = PHY_REQINFO(req_base); struct phy_device_node *pdn = req_info->pdn; struct phy_device *phydev = pdn->phy; enum phy_upstream ptype; ptype = pdn->upstream_type; if (nla_put_u32(skb, ETHTOOL_A_PHY_INDEX, phydev->phyindex) || nla_put_string(skb, ETHTOOL_A_PHY_NAME, dev_name(&phydev->mdio.dev)) || nla_put_u32(skb, ETHTOOL_A_PHY_UPSTREAM_TYPE, ptype)) return -EMSGSIZE; if (phydev->drv && nla_put_string(skb, ETHTOOL_A_PHY_DRVNAME, phydev->drv->name)) return -EMSGSIZE; if (ptype == PHY_UPSTREAM_PHY) { struct phy_device *upstream = pdn->upstream.phydev; const char *sfp_upstream_name; /* Parent index */ if (nla_put_u32(skb, ETHTOOL_A_PHY_UPSTREAM_INDEX, upstream->phyindex)) return -EMSGSIZE; if (pdn->parent_sfp_bus) { sfp_upstream_name = sfp_get_name(pdn->parent_sfp_bus); if (sfp_upstream_name && nla_put_string(skb, ETHTOOL_A_PHY_UPSTREAM_SFP_NAME, sfp_upstream_name)) return -EMSGSIZE; } } if (phydev->sfp_bus) { const char *sfp_name = sfp_get_name(phydev->sfp_bus); if (sfp_name && nla_put_string(skb, ETHTOOL_A_PHY_DOWNSTREAM_SFP_NAME, sfp_name)) return -EMSGSIZE; } return 0; } static int ethnl_phy_parse_request(struct ethnl_req_info *req_base, struct nlattr **tb, struct netlink_ext_ack *extack) { struct phy_link_topology *topo = req_base->dev->link_topo; struct phy_req_info *req_info = PHY_REQINFO(req_base); struct phy_device *phydev; phydev = ethnl_req_get_phydev(req_base, tb[ETHTOOL_A_PHY_HEADER], extack); if (!phydev) return 0; if (IS_ERR(phydev)) return PTR_ERR(phydev); if (!topo) return 0; req_info->pdn = xa_load(&topo->phys, phydev->phyindex); return 0; } int ethnl_phy_doit(struct sk_buff *skb, struct genl_info *info) { struct phy_req_info req_info = {}; struct nlattr **tb = info->attrs; struct sk_buff *rskb; void *reply_payload; int reply_len; int ret; ret = ethnl_parse_header_dev_get(&req_info.base, tb[ETHTOOL_A_PHY_HEADER], genl_info_net(info), info->extack, true); if (ret < 0) return ret; rtnl_lock(); ret = ethnl_phy_parse_request(&req_info.base, tb, info->extack); if (ret < 0) goto err_unlock_rtnl; /* No PHY, return early */ if (!req_info.pdn) goto err_unlock_rtnl; ret = ethnl_phy_reply_size(&req_info.base, info->extack); if (ret < 0) goto err_unlock_rtnl; reply_len = ret + ethnl_reply_header_size(); rskb = ethnl_reply_init(reply_len, req_info.base.dev, ETHTOOL_MSG_PHY_GET_REPLY, ETHTOOL_A_PHY_HEADER, info, &reply_payload); if (!rskb) { ret = -ENOMEM; goto err_unlock_rtnl; } ret = ethnl_phy_fill_reply(&req_info.base, rskb); if (ret) goto err_free_msg; rtnl_unlock(); ethnl_parse_header_dev_put(&req_info.base); genlmsg_end(rskb, reply_payload); return genlmsg_reply(rskb, info); err_free_msg: nlmsg_free(rskb); err_unlock_rtnl: rtnl_unlock(); ethnl_parse_header_dev_put(&req_info.base); return ret; } struct ethnl_phy_dump_ctx { struct phy_req_info *phy_req_info; unsigned long ifindex; unsigned long phy_index; }; int ethnl_phy_start(struct netlink_callback *cb) { const struct genl_info *info = genl_info_dump(cb); struct ethnl_phy_dump_ctx *ctx = (void *)cb->ctx; int ret; BUILD_BUG_ON(sizeof(*ctx) > sizeof(cb->ctx)); ctx->phy_req_info = kzalloc(sizeof(*ctx->phy_req_info), GFP_KERNEL); if (!ctx->phy_req_info) return -ENOMEM; ret = ethnl_parse_header_dev_get(&ctx->phy_req_info->base, info->attrs[ETHTOOL_A_PHY_HEADER], sock_net(cb->skb->sk), cb->extack, false); ctx->ifindex = 0; ctx->phy_index = 0; if (ret) kfree(ctx->phy_req_info); return ret; } int ethnl_phy_done(struct netlink_callback *cb) { struct ethnl_phy_dump_ctx *ctx = (void *)cb->ctx; if (ctx->phy_req_info->base.dev) ethnl_parse_header_dev_put(&ctx->phy_req_info->base); kfree(ctx->phy_req_info); return 0; } static int ethnl_phy_dump_one_dev(struct sk_buff *skb, struct net_device *dev, struct netlink_callback *cb) { struct ethnl_phy_dump_ctx *ctx = (void *)cb->ctx; struct phy_req_info *pri = ctx->phy_req_info; struct phy_device_node *pdn; int ret = 0; void *ehdr; if (!dev->link_topo) return 0; xa_for_each_start(&dev->link_topo->phys, ctx->phy_index, pdn, ctx->phy_index) { ehdr = ethnl_dump_put(skb, cb, ETHTOOL_MSG_PHY_GET_REPLY); if (!ehdr) { ret = -EMSGSIZE; break; } ret = ethnl_fill_reply_header(skb, dev, ETHTOOL_A_PHY_HEADER); if (ret < 0) { genlmsg_cancel(skb, ehdr); break; } pri->pdn = pdn; ret = ethnl_phy_fill_reply(&pri->base, skb); if (ret < 0) { genlmsg_cancel(skb, ehdr); break; } genlmsg_end(skb, ehdr); } return ret; } int ethnl_phy_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct ethnl_phy_dump_ctx *ctx = (void *)cb->ctx; struct net *net = sock_net(skb->sk); struct net_device *dev; int ret = 0; rtnl_lock(); if (ctx->phy_req_info->base.dev) { ret = ethnl_phy_dump_one_dev(skb, ctx->phy_req_info->base.dev, cb); } else { for_each_netdev_dump(net, dev, ctx->ifindex) { ret = ethnl_phy_dump_one_dev(skb, dev, cb); if (ret) break; ctx->phy_index = 0; } } rtnl_unlock(); return ret; } |
129 883 233 102 34 4 4 11 1 2 2 71 33 20 52 71 71 10 10 2 1 1 2 42 21 169 71 15 1 1 1 128 65 9 178 65 133 4 3 5 4 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux ethernet bridge * * Authors: * Lennert Buytenhek <buytenh@gnu.org> */ #ifndef _BR_PRIVATE_H #define _BR_PRIVATE_H #include <linux/netdevice.h> #include <linux/if_bridge.h> #include <linux/netpoll.h> #include <linux/u64_stats_sync.h> #include <net/route.h> #include <net/ip6_fib.h> #include <net/pkt_cls.h> #include <linux/if_vlan.h> #include <linux/rhashtable.h> #include <linux/refcount.h> #define BR_HASH_BITS 8 #define BR_HASH_SIZE (1 << BR_HASH_BITS) #define BR_HOLD_TIME (1*HZ) #define BR_PORT_BITS 10 #define BR_MAX_PORTS (1<<BR_PORT_BITS) #define BR_MULTICAST_DEFAULT_HASH_MAX 4096 #define BR_MULTICAST_QUERY_INTVL_MIN msecs_to_jiffies(1000) #define BR_MULTICAST_STARTUP_QUERY_INTVL_MIN BR_MULTICAST_QUERY_INTVL_MIN #define BR_HWDOM_MAX BITS_PER_LONG #define BR_VERSION "2.3" /* Control of forwarding link local multicast */ #define BR_GROUPFWD_DEFAULT 0 /* Don't allow forwarding of control protocols like STP, MAC PAUSE and LACP */ enum { BR_GROUPFWD_STP = BIT(0), BR_GROUPFWD_MACPAUSE = BIT(1), BR_GROUPFWD_LACP = BIT(2), }; #define BR_GROUPFWD_RESTRICTED (BR_GROUPFWD_STP | BR_GROUPFWD_MACPAUSE | \ BR_GROUPFWD_LACP) /* The Nearest Customer Bridge Group Address, 01-80-C2-00-00-[00,0B,0C,0D,0F] */ #define BR_GROUPFWD_8021AD 0xB801u /* Path to usermode spanning tree program */ #define BR_STP_PROG "/sbin/bridge-stp" #define BR_FDB_NOTIFY_SETTABLE_BITS (FDB_NOTIFY_BIT | FDB_NOTIFY_INACTIVE_BIT) typedef struct bridge_id bridge_id; typedef struct mac_addr mac_addr; typedef __u16 port_id; struct bridge_id { unsigned char prio[2]; unsigned char addr[ETH_ALEN]; }; struct mac_addr { unsigned char addr[ETH_ALEN]; }; #ifdef CONFIG_BRIDGE_IGMP_SNOOPING /* our own querier */ struct bridge_mcast_own_query { struct timer_list timer; u32 startup_sent; }; /* other querier */ struct bridge_mcast_other_query { struct timer_list timer; struct timer_list delay_timer; }; /* selected querier */ struct bridge_mcast_querier { struct br_ip addr; int port_ifidx; seqcount_spinlock_t seq; }; /* IGMP/MLD statistics */ struct bridge_mcast_stats { struct br_mcast_stats mstats; struct u64_stats_sync syncp; }; struct br_mdb_src_entry { struct br_ip addr; }; struct br_mdb_config { struct net_bridge *br; struct net_bridge_port *p; struct br_mdb_entry *entry; struct br_ip group; bool src_entry; u8 filter_mode; u16 nlflags; struct br_mdb_src_entry *src_entries; int num_src_entries; u8 rt_protocol; }; #endif /* net_bridge_mcast_port must be always defined due to forwarding stubs */ struct net_bridge_mcast_port { #ifdef CONFIG_BRIDGE_IGMP_SNOOPING struct net_bridge_port *port; struct net_bridge_vlan *vlan; struct bridge_mcast_own_query ip4_own_query; struct timer_list ip4_mc_router_timer; struct hlist_node ip4_rlist; #if IS_ENABLED(CONFIG_IPV6) struct bridge_mcast_own_query ip6_own_query; struct timer_list ip6_mc_router_timer; struct hlist_node ip6_rlist; #endif /* IS_ENABLED(CONFIG_IPV6) */ unsigned char multicast_router; u32 mdb_n_entries; u32 mdb_max_entries; #endif /* CONFIG_BRIDGE_IGMP_SNOOPING */ }; /* net_bridge_mcast must be always defined due to forwarding stubs */ struct net_bridge_mcast { #ifdef CONFIG_BRIDGE_IGMP_SNOOPING struct net_bridge *br; struct net_bridge_vlan *vlan; u32 multicast_last_member_count; u32 multicast_startup_query_count; u8 multicast_querier; u8 multicast_igmp_version; u8 multicast_router; #if IS_ENABLED(CONFIG_IPV6) u8 multicast_mld_version; #endif unsigned long multicast_last_member_interval; unsigned long multicast_membership_interval; unsigned long multicast_querier_interval; unsigned long multicast_query_interval; unsigned long multicast_query_response_interval; unsigned long multicast_startup_query_interval; struct hlist_head ip4_mc_router_list; struct timer_list ip4_mc_router_timer; struct bridge_mcast_other_query ip4_other_query; struct bridge_mcast_own_query ip4_own_query; struct bridge_mcast_querier ip4_querier; #if IS_ENABLED(CONFIG_IPV6) struct hlist_head ip6_mc_router_list; struct timer_list ip6_mc_router_timer; struct bridge_mcast_other_query ip6_other_query; struct bridge_mcast_own_query ip6_own_query; struct bridge_mcast_querier ip6_querier; #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* CONFIG_BRIDGE_IGMP_SNOOPING */ }; struct br_tunnel_info { __be64 tunnel_id; struct metadata_dst __rcu *tunnel_dst; }; /* private vlan flags */ enum { BR_VLFLAG_PER_PORT_STATS = BIT(0), BR_VLFLAG_ADDED_BY_SWITCHDEV = BIT(1), BR_VLFLAG_MCAST_ENABLED = BIT(2), BR_VLFLAG_GLOBAL_MCAST_ENABLED = BIT(3), BR_VLFLAG_NEIGH_SUPPRESS_ENABLED = BIT(4), }; /** * struct net_bridge_vlan - per-vlan entry * * @vnode: rhashtable member * @tnode: rhashtable member * @vid: VLAN id * @flags: bridge vlan flags * @priv_flags: private (in-kernel) bridge vlan flags * @state: STP state (e.g. blocking, learning, forwarding) * @stats: per-cpu VLAN statistics * @br: if MASTER flag set, this points to a bridge struct * @port: if MASTER flag unset, this points to a port struct * @refcnt: if MASTER flag set, this is bumped for each port referencing it * @brvlan: if MASTER flag unset, this points to the global per-VLAN context * for this VLAN entry * @tinfo: bridge tunnel info * @br_mcast_ctx: if MASTER flag set, this is the global vlan multicast context * @port_mcast_ctx: if MASTER flag unset, this is the per-port/vlan multicast * context * @msti: if MASTER flag set, this holds the VLANs MST instance * @vlist: sorted list of VLAN entries * @rcu: used for entry destruction * * This structure is shared between the global per-VLAN entries contained in * the bridge rhashtable and the local per-port per-VLAN entries contained in * the port's rhashtable. The union entries should be interpreted depending on * the entry flags that are set. */ struct net_bridge_vlan { struct rhash_head vnode; struct rhash_head tnode; u16 vid; u16 flags; u16 priv_flags; u8 state; struct pcpu_sw_netstats __percpu *stats; union { struct net_bridge *br; struct net_bridge_port *port; }; union { refcount_t refcnt; struct net_bridge_vlan *brvlan; }; struct br_tunnel_info tinfo; union { struct net_bridge_mcast br_mcast_ctx; struct net_bridge_mcast_port port_mcast_ctx; }; u16 msti; struct list_head vlist; struct rcu_head rcu; }; /** * struct net_bridge_vlan_group * * @vlan_hash: VLAN entry rhashtable * @vlan_list: sorted VLAN entry list * @num_vlans: number of total VLAN entries * @pvid: PVID VLAN id * @pvid_state: PVID's STP state (e.g. forwarding, learning, blocking) * * IMPORTANT: Be careful when checking if there're VLAN entries using list * primitives because the bridge can have entries in its list which * are just for global context but not for filtering, i.e. they have * the master flag set but not the brentry flag. If you have to check * if there're "real" entries in the bridge please test @num_vlans */ struct net_bridge_vlan_group { struct rhashtable vlan_hash; struct rhashtable tunnel_hash; struct list_head vlan_list; u16 num_vlans; u16 pvid; u8 pvid_state; }; /* bridge fdb flags */ enum { BR_FDB_LOCAL, BR_FDB_STATIC, BR_FDB_STICKY, BR_FDB_ADDED_BY_USER, BR_FDB_ADDED_BY_EXT_LEARN, BR_FDB_OFFLOADED, BR_FDB_NOTIFY, BR_FDB_NOTIFY_INACTIVE, BR_FDB_LOCKED, BR_FDB_DYNAMIC_LEARNED, }; struct net_bridge_fdb_key { mac_addr addr; u16 vlan_id; }; struct net_bridge_fdb_entry { struct rhash_head rhnode; struct net_bridge_port *dst; struct net_bridge_fdb_key key; struct hlist_node fdb_node; unsigned long flags; /* write-heavy members should not affect lookups */ unsigned long updated ____cacheline_aligned_in_smp; unsigned long used; struct rcu_head rcu; }; struct net_bridge_fdb_flush_desc { unsigned long flags; unsigned long flags_mask; int port_ifindex; u16 vlan_id; }; #define MDB_PG_FLAGS_PERMANENT BIT(0) #define MDB_PG_FLAGS_OFFLOAD BIT(1) #define MDB_PG_FLAGS_FAST_LEAVE BIT(2) #define MDB_PG_FLAGS_STAR_EXCL BIT(3) #define MDB_PG_FLAGS_BLOCKED BIT(4) #define PG_SRC_ENT_LIMIT 32 #define BR_SGRP_F_DELETE BIT(0) #define BR_SGRP_F_SEND BIT(1) #define BR_SGRP_F_INSTALLED BIT(2) #define BR_SGRP_F_USER_ADDED BIT(3) struct net_bridge_mcast_gc { struct hlist_node gc_node; void (*destroy)(struct net_bridge_mcast_gc *gc); }; struct net_bridge_group_src { struct hlist_node node; struct br_ip addr; struct net_bridge_port_group *pg; u8 flags; u8 src_query_rexmit_cnt; struct timer_list timer; struct net_bridge *br; struct net_bridge_mcast_gc mcast_gc; struct rcu_head rcu; }; struct net_bridge_port_group_sg_key { struct net_bridge_port *port; struct br_ip addr; }; struct net_bridge_port_group { struct net_bridge_port_group __rcu *next; struct net_bridge_port_group_sg_key key; unsigned char eth_addr[ETH_ALEN] __aligned(2); unsigned char flags; unsigned char filter_mode; unsigned char grp_query_rexmit_cnt; unsigned char rt_protocol; struct hlist_head src_list; unsigned int src_ents; struct timer_list timer; struct timer_list rexmit_timer; struct hlist_node mglist; struct rb_root eht_set_tree; struct rb_root eht_host_tree; struct rhash_head rhnode; struct net_bridge_mcast_gc mcast_gc; struct rcu_head rcu; }; struct net_bridge_mdb_entry { struct rhash_head rhnode; struct net_bridge *br; struct net_bridge_port_group __rcu *ports; struct br_ip addr; bool host_joined; struct timer_list timer; struct hlist_node mdb_node; struct net_bridge_mcast_gc mcast_gc; struct rcu_head rcu; }; struct net_bridge_port { struct net_bridge *br; struct net_device *dev; netdevice_tracker dev_tracker; struct list_head list; unsigned long flags; #ifdef CONFIG_BRIDGE_VLAN_FILTERING struct net_bridge_vlan_group __rcu *vlgrp; #endif struct net_bridge_port __rcu *backup_port; u32 backup_nhid; /* STP */ u8 priority; u8 state; u16 port_no; unsigned char topology_change_ack; unsigned char config_pending; port_id port_id; port_id designated_port; bridge_id designated_root; bridge_id designated_bridge; u32 path_cost; u32 designated_cost; unsigned long designated_age; struct timer_list forward_delay_timer; struct timer_list hold_timer; struct timer_list message_age_timer; struct kobject kobj; struct rcu_head rcu; struct net_bridge_mcast_port multicast_ctx; #ifdef CONFIG_BRIDGE_IGMP_SNOOPING struct bridge_mcast_stats __percpu *mcast_stats; u32 multicast_eht_hosts_limit; u32 multicast_eht_hosts_cnt; struct hlist_head mglist; #endif #ifdef CONFIG_SYSFS char sysfs_name[IFNAMSIZ]; #endif #ifdef CONFIG_NET_POLL_CONTROLLER struct netpoll *np; #endif #ifdef CONFIG_NET_SWITCHDEV /* Identifier used to group ports that share the same switchdev * hardware domain. */ int hwdom; int offload_count; struct netdev_phys_item_id ppid; #endif u16 group_fwd_mask; u16 backup_redirected_cnt; struct bridge_stp_xstats stp_xstats; }; #define kobj_to_brport(obj) container_of(obj, struct net_bridge_port, kobj) #define br_auto_port(p) ((p)->flags & BR_AUTO_MASK) #define br_promisc_port(p) ((p)->flags & BR_PROMISC) static inline struct net_bridge_port *br_port_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->rx_handler_data); } static inline struct net_bridge_port *br_port_get_rtnl(const struct net_device *dev) { return netif_is_bridge_port(dev) ? rtnl_dereference(dev->rx_handler_data) : NULL; } static inline struct net_bridge_port *br_port_get_rtnl_rcu(const struct net_device *dev) { return netif_is_bridge_port(dev) ? rcu_dereference_rtnl(dev->rx_handler_data) : NULL; } enum net_bridge_opts { BROPT_VLAN_ENABLED, BROPT_VLAN_STATS_ENABLED, BROPT_NF_CALL_IPTABLES, BROPT_NF_CALL_IP6TABLES, BROPT_NF_CALL_ARPTABLES, BROPT_GROUP_ADDR_SET, BROPT_MULTICAST_ENABLED, BROPT_MULTICAST_QUERY_USE_IFADDR, BROPT_MULTICAST_STATS_ENABLED, BROPT_HAS_IPV6_ADDR, BROPT_NEIGH_SUPPRESS_ENABLED, BROPT_MTU_SET_BY_USER, BROPT_VLAN_STATS_PER_PORT, BROPT_NO_LL_LEARN, BROPT_VLAN_BRIDGE_BINDING, BROPT_MCAST_VLAN_SNOOPING_ENABLED, BROPT_MST_ENABLED, }; struct net_bridge { spinlock_t lock; spinlock_t hash_lock; struct hlist_head frame_type_list; struct net_device *dev; unsigned long options; /* These fields are accessed on each packet */ #ifdef CONFIG_BRIDGE_VLAN_FILTERING __be16 vlan_proto; u16 default_pvid; struct net_bridge_vlan_group __rcu *vlgrp; #endif struct rhashtable fdb_hash_tbl; struct list_head port_list; #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) union { struct rtable fake_rtable; struct rt6_info fake_rt6_info; }; #endif u16 group_fwd_mask; u16 group_fwd_mask_required; /* STP */ bridge_id designated_root; bridge_id bridge_id; unsigned char topology_change; unsigned char topology_change_detected; u16 root_port; unsigned long max_age; unsigned long hello_time; unsigned long forward_delay; unsigned long ageing_time; unsigned long bridge_max_age; unsigned long bridge_hello_time; unsigned long bridge_forward_delay; unsigned long bridge_ageing_time; u32 root_path_cost; u8 group_addr[ETH_ALEN]; enum { BR_NO_STP, /* no spanning tree */ BR_KERNEL_STP, /* old STP in kernel */ BR_USER_STP, /* new RSTP in userspace */ } stp_enabled; struct net_bridge_mcast multicast_ctx; #ifdef CONFIG_BRIDGE_IGMP_SNOOPING struct bridge_mcast_stats __percpu *mcast_stats; u32 hash_max; spinlock_t multicast_lock; struct rhashtable mdb_hash_tbl; struct rhashtable sg_port_tbl; struct hlist_head mcast_gc_list; struct hlist_head mdb_list; struct work_struct mcast_gc_work; #endif struct timer_list hello_timer; struct timer_list tcn_timer; struct timer_list topology_change_timer; struct delayed_work gc_work; struct kobject *ifobj; u32 auto_cnt; atomic_t fdb_n_learned; u32 fdb_max_learned; #ifdef CONFIG_NET_SWITCHDEV /* Counter used to make sure that hardware domains get unique * identifiers in case a bridge spans multiple switchdev instances. */ int last_hwdom; /* Bit mask of hardware domain numbers in use */ unsigned long busy_hwdoms; #endif struct hlist_head fdb_list; #if IS_ENABLED(CONFIG_BRIDGE_MRP) struct hlist_head mrp_list; #endif #if IS_ENABLED(CONFIG_BRIDGE_CFM) struct hlist_head mep_list; #endif }; struct br_input_skb_cb { struct net_device *brdev; u16 frag_max_size; #ifdef CONFIG_BRIDGE_IGMP_SNOOPING u8 igmp; u8 mrouters_only:1; #endif u8 proxyarp_replied:1; u8 src_port_isolated:1; u8 promisc:1; #ifdef CONFIG_BRIDGE_VLAN_FILTERING u8 vlan_filtered:1; #endif #ifdef CONFIG_NETFILTER_FAMILY_BRIDGE u8 br_netfilter_broute:1; #endif #ifdef CONFIG_NET_SWITCHDEV /* Set if TX data plane offloading is used towards at least one * hardware domain. */ u8 tx_fwd_offload:1; /* The switchdev hardware domain from which this packet was received. * If skb->offload_fwd_mark was set, then this packet was already * forwarded by hardware to the other ports in the source hardware * domain, otherwise it wasn't. */ int src_hwdom; /* Bit mask of hardware domains towards this packet has already been * transmitted using the TX data plane offload. */ unsigned long fwd_hwdoms; #endif u32 backup_nhid; }; #define BR_INPUT_SKB_CB(__skb) ((struct br_input_skb_cb *)(__skb)->cb) #ifdef CONFIG_BRIDGE_IGMP_SNOOPING # define BR_INPUT_SKB_CB_MROUTERS_ONLY(__skb) (BR_INPUT_SKB_CB(__skb)->mrouters_only) #else # define BR_INPUT_SKB_CB_MROUTERS_ONLY(__skb) (0) #endif #define br_printk(level, br, format, args...) \ printk(level "%s: " format, (br)->dev->name, ##args) #define br_err(__br, format, args...) \ br_printk(KERN_ERR, __br, format, ##args) #define br_warn(__br, format, args...) \ br_printk(KERN_WARNING, __br, format, ##args) #define br_notice(__br, format, args...) \ br_printk(KERN_NOTICE, __br, format, ##args) #define br_info(__br, format, args...) \ br_printk(KERN_INFO, __br, format, ##args) #define br_debug(br, format, args...) \ pr_debug("%s: " format, (br)->dev->name, ##args) /* called under bridge lock */ static inline int br_is_root_bridge(const struct net_bridge *br) { return !memcmp(&br->bridge_id, &br->designated_root, 8); } /* check if a VLAN entry is global */ static inline bool br_vlan_is_master(const struct net_bridge_vlan *v) { return v->flags & BRIDGE_VLAN_INFO_MASTER; } /* check if a VLAN entry is used by the bridge */ static inline bool br_vlan_is_brentry(const struct net_bridge_vlan *v) { return v->flags & BRIDGE_VLAN_INFO_BRENTRY; } /* check if we should use the vlan entry, returns false if it's only context */ static inline bool br_vlan_should_use(const struct net_bridge_vlan *v) { if (br_vlan_is_master(v)) { if (br_vlan_is_brentry(v)) return true; else return false; } return true; } static inline bool nbp_state_should_learn(const struct net_bridge_port *p) { return p->state == BR_STATE_LEARNING || p->state == BR_STATE_FORWARDING; } static inline bool br_vlan_valid_id(u16 vid, struct netlink_ext_ack *extack) { bool ret = vid > 0 && vid < VLAN_VID_MASK; if (!ret) NL_SET_ERR_MSG_MOD(extack, "Vlan id is invalid"); return ret; } static inline bool br_vlan_valid_range(const struct bridge_vlan_info *cur, const struct bridge_vlan_info *last, struct netlink_ext_ack *extack) { /* pvid flag is not allowed in ranges */ if (cur->flags & BRIDGE_VLAN_INFO_PVID) { NL_SET_ERR_MSG_MOD(extack, "Pvid isn't allowed in a range"); return false; } /* when cur is the range end, check if: * - it has range start flag * - range ids are invalid (end is equal to or before start) */ if (last) { if (cur->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) { NL_SET_ERR_MSG_MOD(extack, "Found a new vlan range start while processing one"); return false; } else if (!(cur->flags & BRIDGE_VLAN_INFO_RANGE_END)) { NL_SET_ERR_MSG_MOD(extack, "Vlan range end flag is missing"); return false; } else if (cur->vid <= last->vid) { NL_SET_ERR_MSG_MOD(extack, "End vlan id is less than or equal to start vlan id"); return false; } } /* check for required range flags */ if (!(cur->flags & (BRIDGE_VLAN_INFO_RANGE_BEGIN | BRIDGE_VLAN_INFO_RANGE_END))) { NL_SET_ERR_MSG_MOD(extack, "Both vlan range flags are missing"); return false; } return true; } static inline u8 br_vlan_multicast_router(const struct net_bridge_vlan *v) { u8 mcast_router = MDB_RTR_TYPE_DISABLED; #ifdef CONFIG_BRIDGE_IGMP_SNOOPING if (!br_vlan_is_master(v)) mcast_router = v->port_mcast_ctx.multicast_router; else mcast_router = v->br_mcast_ctx.multicast_router; #endif return mcast_router; } static inline int br_afspec_cmd_to_rtm(int cmd) { switch (cmd) { case RTM_SETLINK: return RTM_NEWVLAN; case RTM_DELLINK: return RTM_DELVLAN; } return 0; } static inline int br_opt_get(const struct net_bridge *br, enum net_bridge_opts opt) { return test_bit(opt, &br->options); } int br_boolopt_toggle(struct net_bridge *br, enum br_boolopt_id opt, bool on, struct netlink_ext_ack *extack); int br_boolopt_get(const struct net_bridge *br, enum br_boolopt_id opt); int br_boolopt_multi_toggle(struct net_bridge *br, struct br_boolopt_multi *bm, struct netlink_ext_ack *extack); void br_boolopt_multi_get(const struct net_bridge *br, struct br_boolopt_multi *bm); void br_opt_toggle(struct net_bridge *br, enum net_bridge_opts opt, bool on); #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static inline void br_tc_skb_miss_set(struct sk_buff *skb, bool miss) { struct tc_skb_ext *ext; if (!tc_skb_ext_tc_enabled()) return; ext = skb_ext_find(skb, TC_SKB_EXT); if (ext) { ext->l2_miss = miss; return; } if (!miss) return; ext = tc_skb_ext_alloc(skb); if (!ext) return; ext->l2_miss = true; } #else static inline void br_tc_skb_miss_set(struct sk_buff *skb, bool miss) { } #endif /* br_device.c */ void br_dev_setup(struct net_device *dev); void br_dev_delete(struct net_device *dev, struct list_head *list); netdev_tx_t br_dev_xmit(struct sk_buff *skb, struct net_device *dev); #ifdef CONFIG_NET_POLL_CONTROLLER static inline void br_netpoll_send_skb(const struct net_bridge_port *p, struct sk_buff *skb) { netpoll_send_skb(p->np, skb); } int br_netpoll_enable(struct net_bridge_port *p); void br_netpoll_disable(struct net_bridge_port *p); #else static inline void br_netpoll_send_skb(const struct net_bridge_port *p, struct sk_buff *skb) { } static inline int br_netpoll_enable(struct net_bridge_port *p) { return 0; } static inline void br_netpoll_disable(struct net_bridge_port *p) { } #endif /* br_fdb.c */ #define FDB_FLUSH_IGNORED_NDM_FLAGS (NTF_MASTER | NTF_SELF) #define FDB_FLUSH_ALLOWED_NDM_STATES (NUD_PERMANENT | NUD_NOARP) #define FDB_FLUSH_ALLOWED_NDM_FLAGS (NTF_USE | NTF_EXT_LEARNED | \ NTF_STICKY | NTF_OFFLOADED) int br_fdb_init(void); void br_fdb_fini(void); int br_fdb_hash_init(struct net_bridge *br); void br_fdb_hash_fini(struct net_bridge *br); void br_fdb_flush(struct net_bridge *br, const struct net_bridge_fdb_flush_desc *desc); void br_fdb_find_delete_local(struct net_bridge *br, const struct net_bridge_port *p, const unsigned char *addr, u16 vid); void br_fdb_changeaddr(struct net_bridge_port *p, const unsigned char *newaddr); void br_fdb_change_mac_address(struct net_bridge *br, const u8 *newaddr); void br_fdb_cleanup(struct work_struct *work); void br_fdb_delete_by_port(struct net_bridge *br, const struct net_bridge_port *p, u16 vid, int do_all); struct net_bridge_fdb_entry *br_fdb_find_rcu(struct net_bridge *br, const unsigned char *addr, __u16 vid); int br_fdb_test_addr(struct net_device *dev, unsigned char *addr); int br_fdb_fillbuf(struct net_bridge *br, void *buf, unsigned long count, unsigned long off); int br_fdb_add_local(struct net_bridge *br, struct net_bridge_port *source, const unsigned char *addr, u16 vid); void br_fdb_update(struct net_bridge *br, struct net_bridge_port *source, const unsigned char *addr, u16 vid, unsigned long flags); int br_fdb_delete(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, struct netlink_ext_ack *extack); int br_fdb_delete_bulk(struct nlmsghdr *nlh, struct net_device *dev, struct netlink_ext_ack *extack); int br_fdb_add(struct ndmsg *nlh, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 nlh_flags, struct netlink_ext_ack *extack); int br_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *fdev, int *idx); int br_fdb_get(struct sk_buff *skb, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u32 portid, u32 seq, struct netlink_ext_ack *extack); int br_fdb_sync_static(struct net_bridge *br, struct net_bridge_port *p); void br_fdb_unsync_static(struct net_bridge *br, struct net_bridge_port *p); int br_fdb_external_learn_add(struct net_bridge *br, struct net_bridge_port *p, const unsigned char *addr, u16 vid, bool locked, bool swdev_notify); int br_fdb_external_learn_del(struct net_bridge *br, struct net_bridge_port *p, const unsigned char *addr, u16 vid, bool swdev_notify); void br_fdb_offloaded_set(struct net_bridge *br, struct net_bridge_port *p, const unsigned char *addr, u16 vid, bool offloaded); /* br_forward.c */ enum br_pkt_type { BR_PKT_UNICAST, BR_PKT_MULTICAST, BR_PKT_BROADCAST }; int br_dev_queue_push_xmit(struct net *net, struct sock *sk, struct sk_buff *skb); void br_forward(const struct net_bridge_port *to, struct sk_buff *skb, bool local_rcv, bool local_orig); int br_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb); void br_flood(struct net_bridge *br, struct sk_buff *skb, enum br_pkt_type pkt_type, bool local_rcv, bool local_orig, u16 vid); /* return true if both source port and dest port are isolated */ static inline bool br_skb_isolated(const struct net_bridge_port *to, const struct sk_buff *skb) { return BR_INPUT_SKB_CB(skb)->src_port_isolated && (to->flags & BR_ISOLATED); } /* br_if.c */ void br_port_carrier_check(struct net_bridge_port *p, bool *notified); int br_add_bridge(struct net *net, const char *name); int br_del_bridge(struct net *net, const char *name); int br_add_if(struct net_bridge *br, struct net_device *dev, struct netlink_ext_ack *extack); int br_del_if(struct net_bridge *br, struct net_device *dev); void br_mtu_auto_adjust(struct net_bridge *br); netdev_features_t br_features_recompute(struct net_bridge *br, netdev_features_t features); void br_port_flags_change(struct net_bridge_port *port, unsigned long mask); void br_manage_promisc(struct net_bridge *br); int nbp_backup_change(struct net_bridge_port *p, struct net_device *backup_dev); /* br_input.c */ int br_handle_frame_finish(struct net *net, struct sock *sk, struct sk_buff *skb); rx_handler_func_t *br_get_rx_handler(const struct net_device *dev); struct br_frame_type { __be16 type; int (*frame_handler)(struct net_bridge_port *port, struct sk_buff *skb); struct hlist_node list; }; void br_add_frame(struct net_bridge *br, struct br_frame_type *ft); void br_del_frame(struct net_bridge *br, struct br_frame_type *ft); static inline bool br_rx_handler_check_rcu(const struct net_device *dev) { return rcu_dereference(dev->rx_handler) == br_get_rx_handler(dev); } static inline bool br_rx_handler_check_rtnl(const struct net_device *dev) { return rcu_dereference_rtnl(dev->rx_handler) == br_get_rx_handler(dev); } static inline struct net_bridge_port *br_port_get_check_rcu(const struct net_device *dev) { return br_rx_handler_check_rcu(dev) ? br_port_get_rcu(dev) : NULL; } static inline struct net_bridge_port * br_port_get_check_rtnl(const struct net_device *dev) { return br_rx_handler_check_rtnl(dev) ? br_port_get_rtnl_rcu(dev) : NULL; } /* br_ioctl.c */ int br_dev_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd); int br_ioctl_stub(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg); /* br_multicast.c */ #ifdef CONFIG_BRIDGE_IGMP_SNOOPING int br_multicast_rcv(struct net_bridge_mcast **brmctx, struct net_bridge_mcast_port **pmctx, struct net_bridge_vlan *vlan, struct sk_buff *skb, u16 vid); struct net_bridge_mdb_entry * br_mdb_entry_skb_get(struct net_bridge_mcast *brmctx, struct sk_buff *skb, u16 vid); int br_multicast_add_port(struct net_bridge_port *port); void br_multicast_del_port(struct net_bridge_port *port); void br_multicast_enable_port(struct net_bridge_port *port); void br_multicast_disable_port(struct net_bridge_port *port); void br_multicast_init(struct net_bridge *br); void br_multicast_join_snoopers(struct net_bridge *br); void br_multicast_leave_snoopers(struct net_bridge *br); void br_multicast_open(struct net_bridge *br); void br_multicast_stop(struct net_bridge *br); void br_multicast_dev_del(struct net_bridge *br); void br_multicast_flood(struct net_bridge_mdb_entry *mdst, struct sk_buff *skb, struct net_bridge_mcast *brmctx, bool local_rcv, bool local_orig); int br_multicast_set_router(struct net_bridge_mcast *brmctx, unsigned long val); int br_multicast_set_port_router(struct net_bridge_mcast_port *pmctx, unsigned long val); int br_multicast_set_vlan_router(struct net_bridge_vlan *v, u8 mcast_router); int br_multicast_toggle(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack); int br_multicast_set_querier(struct net_bridge_mcast *brmctx, unsigned long val); int br_multicast_set_igmp_version(struct net_bridge_mcast *brmctx, unsigned long val); #if IS_ENABLED(CONFIG_IPV6) int br_multicast_set_mld_version(struct net_bridge_mcast *brmctx, unsigned long val); #endif struct net_bridge_mdb_entry * br_mdb_ip_get(struct net_bridge *br, struct br_ip *dst); struct net_bridge_mdb_entry * br_multicast_new_group(struct net_bridge *br, struct br_ip *group); struct net_bridge_port_group * br_multicast_new_port_group(struct net_bridge_port *port, const struct br_ip *group, struct net_bridge_port_group __rcu *next, unsigned char flags, const unsigned char *src, u8 filter_mode, u8 rt_protocol, struct netlink_ext_ack *extack); void br_multicast_del_port_group(struct net_bridge_port_group *p); int br_mdb_hash_init(struct net_bridge *br); void br_mdb_hash_fini(struct net_bridge *br); void br_mdb_notify(struct net_device *dev, struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, int type); void br_rtr_notify(struct net_device *dev, struct net_bridge_mcast_port *pmctx, int type); void br_multicast_del_pg(struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, struct net_bridge_port_group __rcu **pp); void br_multicast_count(struct net_bridge *br, const struct net_bridge_port *p, const struct sk_buff *skb, u8 type, u8 dir); int br_multicast_init_stats(struct net_bridge *br); void br_multicast_uninit_stats(struct net_bridge *br); void br_multicast_get_stats(const struct net_bridge *br, const struct net_bridge_port *p, struct br_mcast_stats *dest); u32 br_multicast_ngroups_get(const struct net_bridge_mcast_port *pmctx); void br_multicast_ngroups_set_max(struct net_bridge_mcast_port *pmctx, u32 max); u32 br_multicast_ngroups_get_max(const struct net_bridge_mcast_port *pmctx); int br_mdb_add(struct net_device *dev, struct nlattr *tb[], u16 nlmsg_flags, struct netlink_ext_ack *extack); int br_mdb_del(struct net_device *dev, struct nlattr *tb[], struct netlink_ext_ack *extack); int br_mdb_del_bulk(struct net_device *dev, struct nlattr *tb[], struct netlink_ext_ack *extack); int br_mdb_dump(struct net_device *dev, struct sk_buff *skb, struct netlink_callback *cb); int br_mdb_get(struct net_device *dev, struct nlattr *tb[], u32 portid, u32 seq, struct netlink_ext_ack *extack); void br_multicast_host_join(const struct net_bridge_mcast *brmctx, struct net_bridge_mdb_entry *mp, bool notify); void br_multicast_host_leave(struct net_bridge_mdb_entry *mp, bool notify); void br_multicast_star_g_handle_mode(struct net_bridge_port_group *pg, u8 filter_mode); void br_multicast_sg_add_exclude_ports(struct net_bridge_mdb_entry *star_mp, struct net_bridge_port_group *sg); struct net_bridge_group_src * br_multicast_find_group_src(struct net_bridge_port_group *pg, struct br_ip *ip); struct net_bridge_group_src * br_multicast_new_group_src(struct net_bridge_port_group *pg, struct br_ip *src_ip); void __br_multicast_del_group_src(struct net_bridge_group_src *src); void br_multicast_del_group_src(struct net_bridge_group_src *src, bool fastleave); void br_multicast_ctx_init(struct net_bridge *br, struct net_bridge_vlan *vlan, struct net_bridge_mcast *brmctx); void br_multicast_ctx_deinit(struct net_bridge_mcast *brmctx); void br_multicast_port_ctx_init(struct net_bridge_port *port, struct net_bridge_vlan *vlan, struct net_bridge_mcast_port *pmctx); void br_multicast_port_ctx_deinit(struct net_bridge_mcast_port *pmctx); void br_multicast_toggle_one_vlan(struct net_bridge_vlan *vlan, bool on); int br_multicast_toggle_vlan_snooping(struct net_bridge *br, bool on, struct netlink_ext_ack *extack); bool br_multicast_toggle_global_vlan(struct net_bridge_vlan *vlan, bool on); int br_rports_fill_info(struct sk_buff *skb, const struct net_bridge_mcast *brmctx); int br_multicast_dump_querier_state(struct sk_buff *skb, const struct net_bridge_mcast *brmctx, int nest_attr); size_t br_multicast_querier_state_size(void); size_t br_rports_size(const struct net_bridge_mcast *brmctx); void br_multicast_set_query_intvl(struct net_bridge_mcast *brmctx, unsigned long val); void br_multicast_set_startup_query_intvl(struct net_bridge_mcast *brmctx, unsigned long val); static inline bool br_group_is_l2(const struct br_ip *group) { return group->proto == 0; } #define mlock_dereference(X, br) \ rcu_dereference_protected(X, lockdep_is_held(&br->multicast_lock)) static inline struct hlist_node * br_multicast_get_first_rport_node(struct net_bridge_mcast *brmctx, struct sk_buff *skb) { #if IS_ENABLED(CONFIG_IPV6) if (skb->protocol == htons(ETH_P_IPV6)) return rcu_dereference(hlist_first_rcu(&brmctx->ip6_mc_router_list)); #endif return rcu_dereference(hlist_first_rcu(&brmctx->ip4_mc_router_list)); } static inline struct net_bridge_port * br_multicast_rport_from_node_skb(struct hlist_node *rp, struct sk_buff *skb) { struct net_bridge_mcast_port *mctx; #if IS_ENABLED(CONFIG_IPV6) if (skb->protocol == htons(ETH_P_IPV6)) mctx = hlist_entry_safe(rp, struct net_bridge_mcast_port, ip6_rlist); else #endif mctx = hlist_entry_safe(rp, struct net_bridge_mcast_port, ip4_rlist); if (mctx) return mctx->port; else return NULL; } static inline bool br_ip4_multicast_is_router(struct net_bridge_mcast *brmctx) { return timer_pending(&brmctx->ip4_mc_router_timer); } static inline bool br_ip6_multicast_is_router(struct net_bridge_mcast *brmctx) { #if IS_ENABLED(CONFIG_IPV6) return timer_pending(&brmctx->ip6_mc_router_timer); #else return false; #endif } static inline bool br_multicast_is_router(struct net_bridge_mcast *brmctx, struct sk_buff *skb) { switch (brmctx->multicast_router) { case MDB_RTR_TYPE_PERM: return true; case MDB_RTR_TYPE_TEMP_QUERY: if (skb) { if (skb->protocol == htons(ETH_P_IP)) return br_ip4_multicast_is_router(brmctx); else if (skb->protocol == htons(ETH_P_IPV6)) return br_ip6_multicast_is_router(brmctx); } else { return br_ip4_multicast_is_router(brmctx) || br_ip6_multicast_is_router(brmctx); } fallthrough; default: return false; } } static inline bool __br_multicast_querier_exists(struct net_bridge_mcast *brmctx, struct bridge_mcast_other_query *querier, const bool is_ipv6) { bool own_querier_enabled; if (brmctx->multicast_querier) { if (is_ipv6 && !br_opt_get(brmctx->br, BROPT_HAS_IPV6_ADDR)) own_querier_enabled = false; else own_querier_enabled = true; } else { own_querier_enabled = false; } return !timer_pending(&querier->delay_timer) && (own_querier_enabled || timer_pending(&querier->timer)); } static inline bool br_multicast_querier_exists(struct net_bridge_mcast *brmctx, struct ethhdr *eth, const struct net_bridge_mdb_entry *mdb) { switch (eth->h_proto) { case (htons(ETH_P_IP)): return __br_multicast_querier_exists(brmctx, &brmctx->ip4_other_query, false); #if IS_ENABLED(CONFIG_IPV6) case (htons(ETH_P_IPV6)): return __br_multicast_querier_exists(brmctx, &brmctx->ip6_other_query, true); #endif default: return !!mdb && br_group_is_l2(&mdb->addr); } } static inline bool br_multicast_is_star_g(const struct br_ip *ip) { switch (ip->proto) { case htons(ETH_P_IP): return ipv4_is_zeronet(ip->src.ip4); #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): return ipv6_addr_any(&ip->src.ip6); #endif default: return false; } } static inline bool br_multicast_should_handle_mode(const struct net_bridge_mcast *brmctx, __be16 proto) { switch (proto) { case htons(ETH_P_IP): return !!(brmctx->multicast_igmp_version == 3); #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): return !!(brmctx->multicast_mld_version == 2); #endif default: return false; } } static inline int br_multicast_igmp_type(const struct sk_buff *skb) { return BR_INPUT_SKB_CB(skb)->igmp; } static inline unsigned long br_multicast_lmqt(const struct net_bridge_mcast *brmctx) { return brmctx->multicast_last_member_interval * brmctx->multicast_last_member_count; } static inline unsigned long br_multicast_gmi(const struct net_bridge_mcast *brmctx) { return brmctx->multicast_membership_interval; } static inline bool br_multicast_ctx_is_vlan(const struct net_bridge_mcast *brmctx) { return !!brmctx->vlan; } static inline bool br_multicast_port_ctx_is_vlan(const struct net_bridge_mcast_port *pmctx) { return !!pmctx->vlan; } static inline struct net_bridge_mcast * br_multicast_port_ctx_get_global(const struct net_bridge_mcast_port *pmctx) { if (!br_multicast_port_ctx_is_vlan(pmctx)) return &pmctx->port->br->multicast_ctx; else return &pmctx->vlan->brvlan->br_mcast_ctx; } static inline bool br_multicast_ctx_vlan_global_disabled(const struct net_bridge_mcast *brmctx) { return br_multicast_ctx_is_vlan(brmctx) && (!br_opt_get(brmctx->br, BROPT_MCAST_VLAN_SNOOPING_ENABLED) || !(brmctx->vlan->priv_flags & BR_VLFLAG_GLOBAL_MCAST_ENABLED)); } static inline bool br_multicast_ctx_vlan_disabled(const struct net_bridge_mcast *brmctx) { return br_multicast_ctx_is_vlan(brmctx) && !(brmctx->vlan->priv_flags & BR_VLFLAG_MCAST_ENABLED); } static inline bool br_multicast_port_ctx_vlan_disabled(const struct net_bridge_mcast_port *pmctx) { return br_multicast_port_ctx_is_vlan(pmctx) && !(pmctx->vlan->priv_flags & BR_VLFLAG_MCAST_ENABLED); } static inline bool br_multicast_port_ctx_state_disabled(const struct net_bridge_mcast_port *pmctx) { return pmctx->port->state == BR_STATE_DISABLED || (br_multicast_port_ctx_is_vlan(pmctx) && (br_multicast_port_ctx_vlan_disabled(pmctx) || pmctx->vlan->state == BR_STATE_DISABLED)); } static inline bool br_multicast_port_ctx_state_stopped(const struct net_bridge_mcast_port *pmctx) { return br_multicast_port_ctx_state_disabled(pmctx) || pmctx->port->state == BR_STATE_BLOCKING || (br_multicast_port_ctx_is_vlan(pmctx) && pmctx->vlan->state == BR_STATE_BLOCKING); } static inline bool br_rports_have_mc_router(const struct net_bridge_mcast *brmctx) { #if IS_ENABLED(CONFIG_IPV6) return !hlist_empty(&brmctx->ip4_mc_router_list) || !hlist_empty(&brmctx->ip6_mc_router_list); #else return !hlist_empty(&brmctx->ip4_mc_router_list); #endif } static inline bool br_multicast_ctx_options_equal(const struct net_bridge_mcast *brmctx1, const struct net_bridge_mcast *brmctx2) { return brmctx1->multicast_igmp_version == brmctx2->multicast_igmp_version && brmctx1->multicast_last_member_count == brmctx2->multicast_last_member_count && brmctx1->multicast_startup_query_count == brmctx2->multicast_startup_query_count && brmctx1->multicast_last_member_interval == brmctx2->multicast_last_member_interval && brmctx1->multicast_membership_interval == brmctx2->multicast_membership_interval && brmctx1->multicast_querier_interval == brmctx2->multicast_querier_interval && brmctx1->multicast_query_interval == brmctx2->multicast_query_interval && brmctx1->multicast_query_response_interval == brmctx2->multicast_query_response_interval && brmctx1->multicast_startup_query_interval == brmctx2->multicast_startup_query_interval && brmctx1->multicast_querier == brmctx2->multicast_querier && brmctx1->multicast_router == brmctx2->multicast_router && !br_rports_have_mc_router(brmctx1) && !br_rports_have_mc_router(brmctx2) && #if IS_ENABLED(CONFIG_IPV6) brmctx1->multicast_mld_version == brmctx2->multicast_mld_version && #endif true; } static inline bool br_multicast_ctx_matches_vlan_snooping(const struct net_bridge_mcast *brmctx) { bool vlan_snooping_enabled; vlan_snooping_enabled = !!br_opt_get(brmctx->br, BROPT_MCAST_VLAN_SNOOPING_ENABLED); return !!(vlan_snooping_enabled == br_multicast_ctx_is_vlan(brmctx)); } #else static inline int br_multicast_rcv(struct net_bridge_mcast **brmctx, struct net_bridge_mcast_port **pmctx, struct net_bridge_vlan *vlan, struct sk_buff *skb, u16 vid) { return 0; } static inline struct net_bridge_mdb_entry * br_mdb_entry_skb_get(struct net_bridge_mcast *brmctx, struct sk_buff *skb, u16 vid) { return NULL; } static inline int br_multicast_add_port(struct net_bridge_port *port) { return 0; } static inline void br_multicast_del_port(struct net_bridge_port *port) { } static inline void br_multicast_enable_port(struct net_bridge_port *port) { } static inline void br_multicast_disable_port(struct net_bridge_port *port) { } static inline void br_multicast_init(struct net_bridge *br) { } static inline void br_multicast_join_snoopers(struct net_bridge *br) { } static inline void br_multicast_leave_snoopers(struct net_bridge *br) { } static inline void br_multicast_open(struct net_bridge *br) { } static inline void br_multicast_stop(struct net_bridge *br) { } static inline void br_multicast_dev_del(struct net_bridge *br) { } static inline void br_multicast_flood(struct net_bridge_mdb_entry *mdst, struct sk_buff *skb, struct net_bridge_mcast *brmctx, bool local_rcv, bool local_orig) { } static inline bool br_multicast_is_router(struct net_bridge_mcast *brmctx, struct sk_buff *skb) { return false; } static inline bool br_multicast_querier_exists(struct net_bridge_mcast *brmctx, struct ethhdr *eth, const struct net_bridge_mdb_entry *mdb) { return false; } static inline int br_mdb_add(struct net_device *dev, struct nlattr *tb[], u16 nlmsg_flags, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int br_mdb_del(struct net_device *dev, struct nlattr *tb[], struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int br_mdb_del_bulk(struct net_device *dev, struct nlattr *tb[], struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int br_mdb_dump(struct net_device *dev, struct sk_buff *skb, struct netlink_callback *cb) { return 0; } static inline int br_mdb_get(struct net_device *dev, struct nlattr *tb[], u32 portid, u32 seq, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int br_mdb_hash_init(struct net_bridge *br) { return 0; } static inline void br_mdb_hash_fini(struct net_bridge *br) { } static inline void br_multicast_count(struct net_bridge *br, const struct net_bridge_port *p, const struct sk_buff *skb, u8 type, u8 dir) { } static inline int br_multicast_init_stats(struct net_bridge *br) { return 0; } static inline void br_multicast_uninit_stats(struct net_bridge *br) { } static inline int br_multicast_igmp_type(const struct sk_buff *skb) { return 0; } static inline void br_multicast_ctx_init(struct net_bridge *br, struct net_bridge_vlan *vlan, struct net_bridge_mcast *brmctx) { } static inline void br_multicast_ctx_deinit(struct net_bridge_mcast *brmctx) { } static inline void br_multicast_port_ctx_init(struct net_bridge_port *port, struct net_bridge_vlan *vlan, struct net_bridge_mcast_port *pmctx) { } static inline void br_multicast_port_ctx_deinit(struct net_bridge_mcast_port *pmctx) { } static inline void br_multicast_toggle_one_vlan(struct net_bridge_vlan *vlan, bool on) { } static inline int br_multicast_toggle_vlan_snooping(struct net_bridge *br, bool on, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline bool br_multicast_toggle_global_vlan(struct net_bridge_vlan *vlan, bool on) { return false; } static inline bool br_multicast_ctx_options_equal(const struct net_bridge_mcast *brmctx1, const struct net_bridge_mcast *brmctx2) { return true; } #endif /* br_vlan.c */ #ifdef CONFIG_BRIDGE_VLAN_FILTERING bool br_allowed_ingress(const struct net_bridge *br, struct net_bridge_vlan_group *vg, struct sk_buff *skb, u16 *vid, u8 *state, struct net_bridge_vlan **vlan); bool br_allowed_egress(struct net_bridge_vlan_group *vg, const struct sk_buff *skb); bool br_should_learn(struct net_bridge_port *p, struct sk_buff *skb, u16 *vid); struct sk_buff *br_handle_vlan(struct net_bridge *br, const struct net_bridge_port *port, struct net_bridge_vlan_group *vg, struct sk_buff *skb); int br_vlan_add(struct net_bridge *br, u16 vid, u16 flags, bool *changed, struct netlink_ext_ack *extack); int br_vlan_delete(struct net_bridge *br, u16 vid); void br_vlan_flush(struct net_bridge *br); struct net_bridge_vlan *br_vlan_find(struct net_bridge_vlan_group *vg, u16 vid); void br_recalculate_fwd_mask(struct net_bridge *br); int br_vlan_filter_toggle(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack); int __br_vlan_set_proto(struct net_bridge *br, __be16 proto, struct netlink_ext_ack *extack); int br_vlan_set_proto(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack); int br_vlan_set_stats(struct net_bridge *br, unsigned long val); int br_vlan_set_stats_per_port(struct net_bridge *br, unsigned long val); int br_vlan_init(struct net_bridge *br); int br_vlan_set_default_pvid(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack); int __br_vlan_set_default_pvid(struct net_bridge *br, u16 pvid, struct netlink_ext_ack *extack); int nbp_vlan_add(struct net_bridge_port *port, u16 vid, u16 flags, bool *changed, struct netlink_ext_ack *extack); int nbp_vlan_delete(struct net_bridge_port *port, u16 vid); void nbp_vlan_flush(struct net_bridge_port *port); int nbp_vlan_init(struct net_bridge_port *port, struct netlink_ext_ack *extack); int nbp_get_num_vlan_infos(struct net_bridge_port *p, u32 filter_mask); void br_vlan_get_stats(const struct net_bridge_vlan *v, struct pcpu_sw_netstats *stats); void br_vlan_port_event(struct net_bridge_port *p, unsigned long event); int br_vlan_bridge_event(struct net_device *dev, unsigned long event, void *ptr); void br_vlan_rtnl_init(void); void br_vlan_rtnl_uninit(void); void br_vlan_notify(const struct net_bridge *br, const struct net_bridge_port *p, u16 vid, u16 vid_range, int cmd); bool br_vlan_can_enter_range(const struct net_bridge_vlan *v_curr, const struct net_bridge_vlan *range_end); void br_vlan_fill_forward_path_pvid(struct net_bridge *br, struct net_device_path_ctx *ctx, struct net_device_path *path); int br_vlan_fill_forward_path_mode(struct net_bridge *br, struct net_bridge_port *dst, struct net_device_path *path); static inline struct net_bridge_vlan_group *br_vlan_group( const struct net_bridge *br) { return rtnl_dereference(br->vlgrp); } static inline struct net_bridge_vlan_group *nbp_vlan_group( const struct net_bridge_port *p) { return rtnl_dereference(p->vlgrp); } static inline struct net_bridge_vlan_group *br_vlan_group_rcu( const struct net_bridge *br) { return rcu_dereference(br->vlgrp); } static inline struct net_bridge_vlan_group *nbp_vlan_group_rcu( const struct net_bridge_port *p) { return rcu_dereference(p->vlgrp); } /* Since bridge now depends on 8021Q module, but the time bridge sees the * skb, the vlan tag will always be present if the frame was tagged. */ static inline int br_vlan_get_tag(const struct sk_buff *skb, u16 *vid) { int err = 0; if (skb_vlan_tag_present(skb)) { *vid = skb_vlan_tag_get_id(skb); } else { *vid = 0; err = -EINVAL; } return err; } static inline u16 br_get_pvid(const struct net_bridge_vlan_group *vg) { if (!vg) return 0; smp_rmb(); return vg->pvid; } static inline u16 br_vlan_flags(const struct net_bridge_vlan *v, u16 pvid) { return v->vid == pvid ? v->flags | BRIDGE_VLAN_INFO_PVID : v->flags; } #else static inline bool br_allowed_ingress(const struct net_bridge *br, struct net_bridge_vlan_group *vg, struct sk_buff *skb, u16 *vid, u8 *state, struct net_bridge_vlan **vlan) { *vlan = NULL; return true; } static inline bool br_allowed_egress(struct net_bridge_vlan_group *vg, const struct sk_buff *skb) { return true; } static inline bool br_should_learn(struct net_bridge_port *p, struct sk_buff *skb, u16 *vid) { return true; } static inline struct sk_buff *br_handle_vlan(struct net_bridge *br, const struct net_bridge_port *port, struct net_bridge_vlan_group *vg, struct sk_buff *skb) { return skb; } static inline int br_vlan_add(struct net_bridge *br, u16 vid, u16 flags, bool *changed, struct netlink_ext_ack *extack) { *changed = false; return -EOPNOTSUPP; } static inline int br_vlan_delete(struct net_bridge *br, u16 vid) { return -EOPNOTSUPP; } static inline void br_vlan_flush(struct net_bridge *br) { } static inline void br_recalculate_fwd_mask(struct net_bridge *br) { } static inline int br_vlan_init(struct net_bridge *br) { return 0; } static inline int nbp_vlan_add(struct net_bridge_port *port, u16 vid, u16 flags, bool *changed, struct netlink_ext_ack *extack) { *changed = false; return -EOPNOTSUPP; } static inline int nbp_vlan_delete(struct net_bridge_port *port, u16 vid) { return -EOPNOTSUPP; } static inline void nbp_vlan_flush(struct net_bridge_port *port) { } static inline struct net_bridge_vlan *br_vlan_find(struct net_bridge_vlan_group *vg, u16 vid) { return NULL; } static inline int nbp_vlan_init(struct net_bridge_port *port, struct netlink_ext_ack *extack) { return 0; } static inline u16 br_vlan_get_tag(const struct sk_buff *skb, u16 *tag) { return 0; } static inline u16 br_get_pvid(const struct net_bridge_vlan_group *vg) { return 0; } static inline int br_vlan_filter_toggle(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int nbp_get_num_vlan_infos(struct net_bridge_port *p, u32 filter_mask) { return 0; } static inline void br_vlan_fill_forward_path_pvid(struct net_bridge *br, struct net_device_path_ctx *ctx, struct net_device_path *path) { } static inline int br_vlan_fill_forward_path_mode(struct net_bridge *br, struct net_bridge_port *dst, struct net_device_path *path) { return 0; } static inline struct net_bridge_vlan_group *br_vlan_group( const struct net_bridge *br) { return NULL; } static inline struct net_bridge_vlan_group *nbp_vlan_group( const struct net_bridge_port *p) { return NULL; } static inline struct net_bridge_vlan_group *br_vlan_group_rcu( const struct net_bridge *br) { return NULL; } static inline struct net_bridge_vlan_group *nbp_vlan_group_rcu( const struct net_bridge_port *p) { return NULL; } static inline void br_vlan_get_stats(const struct net_bridge_vlan *v, struct pcpu_sw_netstats *stats) { } static inline void br_vlan_port_event(struct net_bridge_port *p, unsigned long event) { } static inline int br_vlan_bridge_event(struct net_device *dev, unsigned long event, void *ptr) { return 0; } static inline void br_vlan_rtnl_init(void) { } static inline void br_vlan_rtnl_uninit(void) { } static inline void br_vlan_notify(const struct net_bridge *br, const struct net_bridge_port *p, u16 vid, u16 vid_range, int cmd) { } static inline bool br_vlan_can_enter_range(const struct net_bridge_vlan *v_curr, const struct net_bridge_vlan *range_end) { return true; } static inline u16 br_vlan_flags(const struct net_bridge_vlan *v, u16 pvid) { return 0; } #endif /* br_vlan_options.c */ #ifdef CONFIG_BRIDGE_VLAN_FILTERING bool br_vlan_opts_eq_range(const struct net_bridge_vlan *v_curr, const struct net_bridge_vlan *range_end); bool br_vlan_opts_fill(struct sk_buff *skb, const struct net_bridge_vlan *v, const struct net_bridge_port *p); size_t br_vlan_opts_nl_size(void); int br_vlan_process_options(const struct net_bridge *br, const struct net_bridge_port *p, struct net_bridge_vlan *range_start, struct net_bridge_vlan *range_end, struct nlattr **tb, struct netlink_ext_ack *extack); int br_vlan_rtm_process_global_options(struct net_device *dev, const struct nlattr *attr, int cmd, struct netlink_ext_ack *extack); bool br_vlan_global_opts_can_enter_range(const struct net_bridge_vlan *v_curr, const struct net_bridge_vlan *r_end); bool br_vlan_global_opts_fill(struct sk_buff *skb, u16 vid, u16 vid_range, const struct net_bridge_vlan *v_opts); /* vlan state manipulation helpers using *_ONCE to annotate lock-free access */ static inline u8 br_vlan_get_state(const struct net_bridge_vlan *v) { return READ_ONCE(v->state); } static inline void br_vlan_set_state(struct net_bridge_vlan *v, u8 state) { WRITE_ONCE(v->state, state); } static inline u8 br_vlan_get_pvid_state(const struct net_bridge_vlan_group *vg) { return READ_ONCE(vg->pvid_state); } static inline void br_vlan_set_pvid_state(struct net_bridge_vlan_group *vg, u8 state) { WRITE_ONCE(vg->pvid_state, state); } /* learn_allow is true at ingress and false at egress */ static inline bool br_vlan_state_allowed(u8 state, bool learn_allow) { switch (state) { case BR_STATE_LEARNING: return learn_allow; case BR_STATE_FORWARDING: return true; default: return false; } } #endif /* br_mst.c */ #ifdef CONFIG_BRIDGE_VLAN_FILTERING DECLARE_STATIC_KEY_FALSE(br_mst_used); static inline bool br_mst_is_enabled(struct net_bridge *br) { return static_branch_unlikely(&br_mst_used) && br_opt_get(br, BROPT_MST_ENABLED); } int br_mst_set_state(struct net_bridge_port *p, u16 msti, u8 state, struct netlink_ext_ack *extack); int br_mst_vlan_set_msti(struct net_bridge_vlan *v, u16 msti); void br_mst_vlan_init_state(struct net_bridge_vlan *v); int br_mst_set_enabled(struct net_bridge *br, bool on, struct netlink_ext_ack *extack); size_t br_mst_info_size(const struct net_bridge_vlan_group *vg); int br_mst_fill_info(struct sk_buff *skb, const struct net_bridge_vlan_group *vg); int br_mst_process(struct net_bridge_port *p, const struct nlattr *mst_attr, struct netlink_ext_ack *extack); #else static inline bool br_mst_is_enabled(struct net_bridge *br) { return false; } static inline int br_mst_set_state(struct net_bridge_port *p, u16 msti, u8 state, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int br_mst_set_enabled(struct net_bridge *br, bool on, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline size_t br_mst_info_size(const struct net_bridge_vlan_group *vg) { return 0; } static inline int br_mst_fill_info(struct sk_buff *skb, const struct net_bridge_vlan_group *vg) { return -EOPNOTSUPP; } static inline int br_mst_process(struct net_bridge_port *p, const struct nlattr *mst_attr, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } #endif struct nf_br_ops { int (*br_dev_xmit_hook)(struct sk_buff *skb); }; extern const struct nf_br_ops __rcu *nf_br_ops; /* br_netfilter.c */ #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) int br_nf_core_init(void); void br_nf_core_fini(void); void br_netfilter_rtable_init(struct net_bridge *); #else static inline int br_nf_core_init(void) { return 0; } static inline void br_nf_core_fini(void) {} #define br_netfilter_rtable_init(x) #endif /* br_stp.c */ void br_set_state(struct net_bridge_port *p, unsigned int state); struct net_bridge_port *br_get_port(struct net_bridge *br, u16 port_no); void br_init_port(struct net_bridge_port *p); void br_become_designated_port(struct net_bridge_port *p); void __br_set_forward_delay(struct net_bridge *br, unsigned long t); int br_set_forward_delay(struct net_bridge *br, unsigned long x); int br_set_hello_time(struct net_bridge *br, unsigned long x); int br_set_max_age(struct net_bridge *br, unsigned long x); int __set_ageing_time(struct net_device *dev, unsigned long t); int br_set_ageing_time(struct net_bridge *br, clock_t ageing_time); /* br_stp_if.c */ void br_stp_enable_bridge(struct net_bridge *br); void br_stp_disable_bridge(struct net_bridge *br); int br_stp_set_enabled(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack); void br_stp_enable_port(struct net_bridge_port *p); void br_stp_disable_port(struct net_bridge_port *p); bool br_stp_recalculate_bridge_id(struct net_bridge *br); void br_stp_change_bridge_id(struct net_bridge *br, const unsigned char *a); void br_stp_set_bridge_priority(struct net_bridge *br, u16 newprio); int br_stp_set_port_priority(struct net_bridge_port *p, unsigned long newprio); int br_stp_set_path_cost(struct net_bridge_port *p, unsigned long path_cost); ssize_t br_show_bridge_id(char *buf, const struct bridge_id *id); /* br_stp_bpdu.c */ struct stp_proto; void br_stp_rcv(const struct stp_proto *proto, struct sk_buff *skb, struct net_device *dev); /* br_stp_timer.c */ void br_stp_timer_init(struct net_bridge *br); void br_stp_port_timer_init(struct net_bridge_port *p); unsigned long br_timer_value(const struct timer_list *timer); /* br.c */ #if IS_ENABLED(CONFIG_ATM_LANE) extern int (*br_fdb_test_addr_hook)(struct net_device *dev, unsigned char *addr); #endif /* br_mrp.c */ #if IS_ENABLED(CONFIG_BRIDGE_MRP) int br_mrp_parse(struct net_bridge *br, struct net_bridge_port *p, struct nlattr *attr, int cmd, struct netlink_ext_ack *extack); bool br_mrp_enabled(struct net_bridge *br); void br_mrp_port_del(struct net_bridge *br, struct net_bridge_port *p); int br_mrp_fill_info(struct sk_buff *skb, struct net_bridge *br); #else static inline int br_mrp_parse(struct net_bridge *br, struct net_bridge_port *p, struct nlattr *attr, int cmd, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline bool br_mrp_enabled(struct net_bridge *br) { return false; } static inline void br_mrp_port_del(struct net_bridge *br, struct net_bridge_port *p) { } static inline int br_mrp_fill_info(struct sk_buff *skb, struct net_bridge *br) { return 0; } #endif /* br_cfm.c */ #if IS_ENABLED(CONFIG_BRIDGE_CFM) int br_cfm_parse(struct net_bridge *br, struct net_bridge_port *p, struct nlattr *attr, int cmd, struct netlink_ext_ack *extack); bool br_cfm_created(struct net_bridge *br); void br_cfm_port_del(struct net_bridge *br, struct net_bridge_port *p); int br_cfm_config_fill_info(struct sk_buff *skb, struct net_bridge *br); int br_cfm_status_fill_info(struct sk_buff *skb, struct net_bridge *br, bool getlink); int br_cfm_mep_count(struct net_bridge *br, u32 *count); int br_cfm_peer_mep_count(struct net_bridge *br, u32 *count); #else static inline int br_cfm_parse(struct net_bridge *br, struct net_bridge_port *p, struct nlattr *attr, int cmd, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline bool br_cfm_created(struct net_bridge *br) { return false; } static inline void br_cfm_port_del(struct net_bridge *br, struct net_bridge_port *p) { } static inline int br_cfm_config_fill_info(struct sk_buff *skb, struct net_bridge *br) { return -EOPNOTSUPP; } static inline int br_cfm_status_fill_info(struct sk_buff *skb, struct net_bridge *br, bool getlink) { return -EOPNOTSUPP; } static inline int br_cfm_mep_count(struct net_bridge *br, u32 *count) { *count = 0; return -EOPNOTSUPP; } static inline int br_cfm_peer_mep_count(struct net_bridge *br, u32 *count) { *count = 0; return -EOPNOTSUPP; } #endif /* br_netlink.c */ extern struct rtnl_link_ops br_link_ops; int br_netlink_init(void); void br_netlink_fini(void); void br_ifinfo_notify(int event, const struct net_bridge *br, const struct net_bridge_port *port); void br_info_notify(int event, const struct net_bridge *br, const struct net_bridge_port *port, u32 filter); int br_setlink(struct net_device *dev, struct nlmsghdr *nlmsg, u16 flags, struct netlink_ext_ack *extack); int br_dellink(struct net_device *dev, struct nlmsghdr *nlmsg, u16 flags); int br_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags); int br_process_vlan_info(struct net_bridge *br, struct net_bridge_port *p, int cmd, struct bridge_vlan_info *vinfo_curr, struct bridge_vlan_info **vinfo_last, bool *changed, struct netlink_ext_ack *extack); #ifdef CONFIG_SYSFS /* br_sysfs_if.c */ extern const struct sysfs_ops brport_sysfs_ops; int br_sysfs_addif(struct net_bridge_port *p); int br_sysfs_renameif(struct net_bridge_port *p); /* br_sysfs_br.c */ int br_sysfs_addbr(struct net_device *dev); void br_sysfs_delbr(struct net_device *dev); #else static inline int br_sysfs_addif(struct net_bridge_port *p) { return 0; } static inline int br_sysfs_renameif(struct net_bridge_port *p) { return 0; } static inline int br_sysfs_addbr(struct net_device *dev) { return 0; } static inline void br_sysfs_delbr(struct net_device *dev) { return; } #endif /* CONFIG_SYSFS */ /* br_switchdev.c */ #ifdef CONFIG_NET_SWITCHDEV int br_switchdev_port_offload(struct net_bridge_port *p, struct net_device *dev, const void *ctx, struct notifier_block *atomic_nb, struct notifier_block *blocking_nb, bool tx_fwd_offload, struct netlink_ext_ack *extack); void br_switchdev_port_unoffload(struct net_bridge_port *p, const void *ctx, struct notifier_block *atomic_nb, struct notifier_block *blocking_nb); int br_switchdev_port_replay(struct net_bridge_port *p, struct net_device *dev, const void *ctx, struct notifier_block *atomic_nb, struct notifier_block *blocking_nb, struct netlink_ext_ack *extack); bool br_switchdev_frame_uses_tx_fwd_offload(struct sk_buff *skb); void br_switchdev_frame_set_offload_fwd_mark(struct sk_buff *skb); void nbp_switchdev_frame_mark_tx_fwd_offload(const struct net_bridge_port *p, struct sk_buff *skb); void nbp_switchdev_frame_mark_tx_fwd_to_hwdom(const struct net_bridge_port *p, struct sk_buff *skb); void nbp_switchdev_frame_mark(const struct net_bridge_port *p, struct sk_buff *skb); bool nbp_switchdev_allowed_egress(const struct net_bridge_port *p, const struct sk_buff *skb); int br_switchdev_set_port_flag(struct net_bridge_port *p, unsigned long flags, unsigned long mask, struct netlink_ext_ack *extack); void br_switchdev_fdb_notify(struct net_bridge *br, const struct net_bridge_fdb_entry *fdb, int type); void br_switchdev_mdb_notify(struct net_device *dev, struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, int type); int br_switchdev_port_vlan_add(struct net_device *dev, u16 vid, u16 flags, bool changed, struct netlink_ext_ack *extack); int br_switchdev_port_vlan_del(struct net_device *dev, u16 vid); void br_switchdev_init(struct net_bridge *br); static inline void br_switchdev_frame_unmark(struct sk_buff *skb) { skb->offload_fwd_mark = 0; } #else static inline int br_switchdev_port_offload(struct net_bridge_port *p, struct net_device *dev, const void *ctx, struct notifier_block *atomic_nb, struct notifier_block *blocking_nb, bool tx_fwd_offload, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline void br_switchdev_port_unoffload(struct net_bridge_port *p, const void *ctx, struct notifier_block *atomic_nb, struct notifier_block *blocking_nb) { } static inline int br_switchdev_port_replay(struct net_bridge_port *p, struct net_device *dev, const void *ctx, struct notifier_block *atomic_nb, struct notifier_block *blocking_nb, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline bool br_switchdev_frame_uses_tx_fwd_offload(struct sk_buff *skb) { return false; } static inline void br_switchdev_frame_set_offload_fwd_mark(struct sk_buff *skb) { } static inline void nbp_switchdev_frame_mark_tx_fwd_offload(const struct net_bridge_port *p, struct sk_buff *skb) { } static inline void nbp_switchdev_frame_mark_tx_fwd_to_hwdom(const struct net_bridge_port *p, struct sk_buff *skb) { } static inline void nbp_switchdev_frame_mark(const struct net_bridge_port *p, struct sk_buff *skb) { } static inline bool nbp_switchdev_allowed_egress(const struct net_bridge_port *p, const struct sk_buff *skb) { return true; } static inline int br_switchdev_set_port_flag(struct net_bridge_port *p, unsigned long flags, unsigned long mask, struct netlink_ext_ack *extack) { return 0; } static inline int br_switchdev_port_vlan_add(struct net_device *dev, u16 vid, u16 flags, bool changed, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int br_switchdev_port_vlan_del(struct net_device *dev, u16 vid) { return -EOPNOTSUPP; } static inline void br_switchdev_fdb_notify(struct net_bridge *br, const struct net_bridge_fdb_entry *fdb, int type) { } static inline void br_switchdev_mdb_notify(struct net_device *dev, struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, int type) { } static inline void br_switchdev_frame_unmark(struct sk_buff *skb) { } static inline void br_switchdev_init(struct net_bridge *br) { } #endif /* CONFIG_NET_SWITCHDEV */ /* br_arp_nd_proxy.c */ void br_recalculate_neigh_suppress_enabled(struct net_bridge *br); void br_do_proxy_suppress_arp(struct sk_buff *skb, struct net_bridge *br, u16 vid, struct net_bridge_port *p); void br_do_suppress_nd(struct sk_buff *skb, struct net_bridge *br, u16 vid, struct net_bridge_port *p, struct nd_msg *msg); struct nd_msg *br_is_nd_neigh_msg(struct sk_buff *skb, struct nd_msg *m); bool br_is_neigh_suppress_enabled(const struct net_bridge_port *p, u16 vid); #endif |
1 1 9 9 5 5 2 1 1 1 2 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | // SPDX-License-Identifier: GPL-2.0-only /* * mac80211 ethtool hooks for cfg80211 * * Copied from cfg.c - originally * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2014 Intel Corporation (Author: Johannes Berg) * Copyright (C) 2018, 2022-2023 Intel Corporation */ #include <linux/types.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "driver-ops.h" static int ieee80211_set_ringparam(struct net_device *dev, struct ethtool_ringparam *rp, struct kernel_ethtool_ringparam *kernel_rp, struct netlink_ext_ack *extack) { struct ieee80211_local *local = wiphy_priv(dev->ieee80211_ptr->wiphy); int ret; if (rp->rx_mini_pending != 0 || rp->rx_jumbo_pending != 0) return -EINVAL; wiphy_lock(local->hw.wiphy); ret = drv_set_ringparam(local, rp->tx_pending, rp->rx_pending); wiphy_unlock(local->hw.wiphy); return ret; } static void ieee80211_get_ringparam(struct net_device *dev, struct ethtool_ringparam *rp, struct kernel_ethtool_ringparam *kernel_rp, struct netlink_ext_ack *extack) { struct ieee80211_local *local = wiphy_priv(dev->ieee80211_ptr->wiphy); memset(rp, 0, sizeof(*rp)); wiphy_lock(local->hw.wiphy); drv_get_ringparam(local, &rp->tx_pending, &rp->tx_max_pending, &rp->rx_pending, &rp->rx_max_pending); wiphy_unlock(local->hw.wiphy); } static const char ieee80211_gstrings_sta_stats[][ETH_GSTRING_LEN] = { "rx_packets", "rx_bytes", "rx_duplicates", "rx_fragments", "rx_dropped", "tx_packets", "tx_bytes", "tx_filtered", "tx_retry_failed", "tx_retries", "sta_state", "txrate", "rxrate", "signal", "channel", "noise", "ch_time", "ch_time_busy", "ch_time_ext_busy", "ch_time_rx", "ch_time_tx" }; #define STA_STATS_LEN ARRAY_SIZE(ieee80211_gstrings_sta_stats) static int ieee80211_get_sset_count(struct net_device *dev, int sset) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int rv = 0; if (sset == ETH_SS_STATS) rv += STA_STATS_LEN; rv += drv_get_et_sset_count(sdata, sset); if (rv == 0) return -EOPNOTSUPP; return rv; } static void ieee80211_get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct sta_info *sta; struct ieee80211_local *local = sdata->local; struct station_info sinfo; struct survey_info survey; int i, q; #define STA_STATS_SURVEY_LEN 7 memset(data, 0, sizeof(u64) * STA_STATS_LEN); #define ADD_STA_STATS(sta) \ do { \ data[i++] += sinfo.rx_packets; \ data[i++] += sinfo.rx_bytes; \ data[i++] += (sta)->rx_stats.num_duplicates; \ data[i++] += (sta)->rx_stats.fragments; \ data[i++] += sinfo.rx_dropped_misc; \ \ data[i++] += sinfo.tx_packets; \ data[i++] += sinfo.tx_bytes; \ data[i++] += (sta)->status_stats.filtered; \ data[i++] += sinfo.tx_failed; \ data[i++] += sinfo.tx_retries; \ } while (0) /* For Managed stations, find the single station based on BSSID * and use that. For interface types, iterate through all available * stations and add stats for any station that is assigned to this * network device. */ wiphy_lock(local->hw.wiphy); if (sdata->vif.type == NL80211_IFTYPE_STATION) { sta = sta_info_get_bss(sdata, sdata->deflink.u.mgd.bssid); if (!(sta && !WARN_ON(sta->sdata->dev != dev))) goto do_survey; memset(&sinfo, 0, sizeof(sinfo)); sta_set_sinfo(sta, &sinfo, false); i = 0; ADD_STA_STATS(&sta->deflink); data[i++] = sta->sta_state; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE)) data[i] = 100000ULL * cfg80211_calculate_bitrate(&sinfo.txrate); i++; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE)) data[i] = 100000ULL * cfg80211_calculate_bitrate(&sinfo.rxrate); i++; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG)) data[i] = (u8)sinfo.signal_avg; i++; } else { list_for_each_entry(sta, &local->sta_list, list) { /* Make sure this station belongs to the proper dev */ if (sta->sdata->dev != dev) continue; memset(&sinfo, 0, sizeof(sinfo)); sta_set_sinfo(sta, &sinfo, false); i = 0; ADD_STA_STATS(&sta->deflink); } } do_survey: i = STA_STATS_LEN - STA_STATS_SURVEY_LEN; /* Get survey stats for current channel */ survey.filled = 0; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) channel = chanctx_conf->def.chan; else channel = NULL; rcu_read_unlock(); if (channel) { q = 0; do { survey.filled = 0; if (drv_get_survey(local, q, &survey) != 0) { survey.filled = 0; break; } q++; } while (channel != survey.channel); } if (survey.filled) data[i++] = survey.channel->center_freq; else data[i++] = 0; if (survey.filled & SURVEY_INFO_NOISE_DBM) data[i++] = (u8)survey.noise; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME) data[i++] = survey.time; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_BUSY) data[i++] = survey.time_busy; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_EXT_BUSY) data[i++] = survey.time_ext_busy; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_RX) data[i++] = survey.time_rx; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_TIME_TX) data[i++] = survey.time_tx; else data[i++] = -1LL; if (WARN_ON(i != STA_STATS_LEN)) { wiphy_unlock(local->hw.wiphy); return; } drv_get_et_stats(sdata, stats, &(data[STA_STATS_LEN])); wiphy_unlock(local->hw.wiphy); } static void ieee80211_get_strings(struct net_device *dev, u32 sset, u8 *data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int sz_sta_stats = 0; if (sset == ETH_SS_STATS) { sz_sta_stats = sizeof(ieee80211_gstrings_sta_stats); memcpy(data, ieee80211_gstrings_sta_stats, sz_sta_stats); } drv_get_et_strings(sdata, sset, &(data[sz_sta_stats])); } static int ieee80211_get_regs_len(struct net_device *dev) { return 0; } static void ieee80211_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *data) { struct wireless_dev *wdev = dev->ieee80211_ptr; regs->version = wdev->wiphy->hw_version; regs->len = 0; } const struct ethtool_ops ieee80211_ethtool_ops = { .get_drvinfo = cfg80211_get_drvinfo, .get_regs_len = ieee80211_get_regs_len, .get_regs = ieee80211_get_regs, .get_link = ethtool_op_get_link, .get_ringparam = ieee80211_get_ringparam, .set_ringparam = ieee80211_set_ringparam, .get_strings = ieee80211_get_strings, .get_ethtool_stats = ieee80211_get_stats, .get_sset_count = ieee80211_get_sset_count, }; |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> #include <linux/pid.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); int msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline int msg_init_ns(struct ipc_namespace *ns) { return 0; } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * The function returns the highest assigned index for @ids. The function * doesn't scan the idr tree, it uses a cached value. * * Called with ipc_ids.rwsem held for reading. */ static inline int ipc_get_maxidx(struct ipc_ids *ids) { if (ids->in_use == 0) return -1; if (ids->in_use == ipc_mni) return ipc_mni - 1; return ids->max_idx; } /* * For allocation that need to be freed by RCU. * Objects are reference counted, they start with reference count 1. * getref increases the refcount, the putref call that reduces the recount * to 0 schedules the rcu destruction. Caller must guarantee locking. * * refcount is initialized by ipc_addid(), before that point call_rcu() * must be used. */ bool ipc_rcu_getref(struct kern_ipc_perm *ptr); void ipc_rcu_putref(struct kern_ipc_perm *ptr, void (*func)(struct rcu_head *head)); struct kern_ipc_perm *ipc_obtain_object_idr(struct ipc_ids *ids, int id); void kernel_to_ipc64_perm(struct kern_ipc_perm *in, struct ipc64_perm *out); void ipc64_perm_to_ipc_perm(struct ipc64_perm *in, struct ipc_perm *out); int ipc_update_perm(struct ipc64_perm *in, struct kern_ipc_perm *out); struct kern_ipc_perm *ipcctl_obtain_check(struct ipc_namespace *ns, struct ipc_ids *ids, int id, int cmd, struct ipc64_perm *perm, int extra_perm); static inline void ipc_update_pid(struct pid **pos, struct pid *pid) { struct pid *old = *pos; if (old != pid) { *pos = get_pid(pid); put_pid(old); } } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION int ipc_parse_version(int *cmd); #endif extern void free_msg(struct msg_msg *msg); extern struct msg_msg *load_msg(const void __user *src, size_t len); extern struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst); extern int store_msg(void __user *dest, struct msg_msg *msg, size_t len); static inline int ipc_checkid(struct kern_ipc_perm *ipcp, int id) { return ipcid_to_seqx(id) != ipcp->seq; } static inline void ipc_lock_object(struct kern_ipc_perm *perm) { spin_lock(&perm->lock); } static inline void ipc_unlock_object(struct kern_ipc_perm *perm) { spin_unlock(&perm->lock); } static inline void ipc_assert_locked_object(struct kern_ipc_perm *perm) { assert_spin_locked(&perm->lock); } static inline void ipc_unlock(struct kern_ipc_perm *perm) { ipc_unlock_object(perm); rcu_read_unlock(); } /* * ipc_valid_object() - helper to sort out IPC_RMID races for codepaths * where the respective ipc_ids.rwsem is not being held down. * Checks whether the ipc object is still around or if it's gone already, as * ipc_rmid() may have already freed the ID while the ipc lock was spinning. * Needs to be called with kern_ipc_perm.lock held -- exception made for one * checkpoint case at sys_semtimedop() as noted in code commentary. */ static inline bool ipc_valid_object(struct kern_ipc_perm *perm) { return !perm->deleted; } struct kern_ipc_perm *ipc_obtain_object_check(struct ipc_ids *ids, int id); int ipcget(struct ipc_namespace *ns, struct ipc_ids *ids, const struct ipc_ops *ops, struct ipc_params *params); void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)); static inline int sem_check_semmni(struct ipc_namespace *ns) { /* * Check semmni range [0, ipc_mni] * semmni is the last element of sem_ctls[4] array */ return ((ns->sem_ctls[3] < 0) || (ns->sem_ctls[3] > ipc_mni)) ? -ERANGE : 0; } #ifdef CONFIG_COMPAT #include <linux/compat.h> struct compat_ipc_perm { key_t key; __compat_uid_t uid; __compat_gid_t gid; __compat_uid_t cuid; __compat_gid_t cgid; compat_mode_t mode; unsigned short seq; }; void to_compat_ipc_perm(struct compat_ipc_perm *, struct ipc64_perm *); void to_compat_ipc64_perm(struct compat_ipc64_perm *, struct ipc64_perm *); int get_compat_ipc_perm(struct ipc64_perm *, struct compat_ipc_perm __user *); int get_compat_ipc64_perm(struct ipc64_perm *, struct compat_ipc64_perm __user *); static inline int compat_ipc_parse_version(int *cmd) { int version = *cmd & IPC_64; *cmd &= ~IPC_64; return version; } long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg); long compat_ksys_old_msgctl(int msqid, int cmd, void __user *uptr); long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr); #endif #endif |
1 1 1 1 2 1 1 1 1 1 1 2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | // SPDX-License-Identifier: GPL-2.0-or-later /* * The AEGIS-128 Authenticated-Encryption Algorithm * Glue for AES-NI + SSE2 implementation * * Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com> * Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved. */ #include <crypto/internal/aead.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/module.h> #include <asm/fpu/api.h> #include <asm/cpu_device_id.h> #define AEGIS128_BLOCK_ALIGN 16 #define AEGIS128_BLOCK_SIZE 16 #define AEGIS128_NONCE_SIZE 16 #define AEGIS128_STATE_BLOCKS 5 #define AEGIS128_KEY_SIZE 16 #define AEGIS128_MIN_AUTH_SIZE 8 #define AEGIS128_MAX_AUTH_SIZE 16 asmlinkage void crypto_aegis128_aesni_init(void *state, void *key, void *iv); asmlinkage void crypto_aegis128_aesni_ad( void *state, unsigned int length, const void *data); asmlinkage void crypto_aegis128_aesni_enc( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_dec( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_enc_tail( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_dec_tail( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_final( void *state, void *tag_xor, unsigned int cryptlen, unsigned int assoclen); struct aegis_block { u8 bytes[AEGIS128_BLOCK_SIZE] __aligned(AEGIS128_BLOCK_ALIGN); }; struct aegis_state { struct aegis_block blocks[AEGIS128_STATE_BLOCKS]; }; struct aegis_ctx { struct aegis_block key; }; struct aegis_crypt_ops { int (*skcipher_walk_init)(struct skcipher_walk *walk, struct aead_request *req, bool atomic); void (*crypt_blocks)(void *state, unsigned int length, const void *src, void *dst); void (*crypt_tail)(void *state, unsigned int length, const void *src, void *dst); }; static void crypto_aegis128_aesni_process_ad( struct aegis_state *state, struct scatterlist *sg_src, unsigned int assoclen) { struct scatter_walk walk; struct aegis_block buf; unsigned int pos = 0; scatterwalk_start(&walk, sg_src); while (assoclen != 0) { unsigned int size = scatterwalk_clamp(&walk, assoclen); unsigned int left = size; void *mapped = scatterwalk_map(&walk); const u8 *src = (const u8 *)mapped; if (pos + size >= AEGIS128_BLOCK_SIZE) { if (pos > 0) { unsigned int fill = AEGIS128_BLOCK_SIZE - pos; memcpy(buf.bytes + pos, src, fill); crypto_aegis128_aesni_ad(state, AEGIS128_BLOCK_SIZE, buf.bytes); pos = 0; left -= fill; src += fill; } crypto_aegis128_aesni_ad(state, left, src); src += left & ~(AEGIS128_BLOCK_SIZE - 1); left &= AEGIS128_BLOCK_SIZE - 1; } memcpy(buf.bytes + pos, src, left); pos += left; assoclen -= size; scatterwalk_unmap(mapped); scatterwalk_advance(&walk, size); scatterwalk_done(&walk, 0, assoclen); } if (pos > 0) { memset(buf.bytes + pos, 0, AEGIS128_BLOCK_SIZE - pos); crypto_aegis128_aesni_ad(state, AEGIS128_BLOCK_SIZE, buf.bytes); } } static void crypto_aegis128_aesni_process_crypt( struct aegis_state *state, struct skcipher_walk *walk, const struct aegis_crypt_ops *ops) { while (walk->nbytes >= AEGIS128_BLOCK_SIZE) { ops->crypt_blocks(state, round_down(walk->nbytes, AEGIS128_BLOCK_SIZE), walk->src.virt.addr, walk->dst.virt.addr); skcipher_walk_done(walk, walk->nbytes % AEGIS128_BLOCK_SIZE); } if (walk->nbytes) { ops->crypt_tail(state, walk->nbytes, walk->src.virt.addr, walk->dst.virt.addr); skcipher_walk_done(walk, 0); } } static struct aegis_ctx *crypto_aegis128_aesni_ctx(struct crypto_aead *aead) { u8 *ctx = crypto_aead_ctx(aead); ctx = PTR_ALIGN(ctx, __alignof__(struct aegis_ctx)); return (void *)ctx; } static int crypto_aegis128_aesni_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(aead); if (keylen != AEGIS128_KEY_SIZE) return -EINVAL; memcpy(ctx->key.bytes, key, AEGIS128_KEY_SIZE); return 0; } static int crypto_aegis128_aesni_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { if (authsize > AEGIS128_MAX_AUTH_SIZE) return -EINVAL; if (authsize < AEGIS128_MIN_AUTH_SIZE) return -EINVAL; return 0; } static void crypto_aegis128_aesni_crypt(struct aead_request *req, struct aegis_block *tag_xor, unsigned int cryptlen, const struct aegis_crypt_ops *ops) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(tfm); struct skcipher_walk walk; struct aegis_state state; ops->skcipher_walk_init(&walk, req, true); kernel_fpu_begin(); crypto_aegis128_aesni_init(&state, ctx->key.bytes, req->iv); crypto_aegis128_aesni_process_ad(&state, req->src, req->assoclen); crypto_aegis128_aesni_process_crypt(&state, &walk, ops); crypto_aegis128_aesni_final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); } static int crypto_aegis128_aesni_encrypt(struct aead_request *req) { static const struct aegis_crypt_ops OPS = { .skcipher_walk_init = skcipher_walk_aead_encrypt, .crypt_blocks = crypto_aegis128_aesni_enc, .crypt_tail = crypto_aegis128_aesni_enc_tail, }; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_block tag = {}; unsigned int authsize = crypto_aead_authsize(tfm); unsigned int cryptlen = req->cryptlen; crypto_aegis128_aesni_crypt(req, &tag, cryptlen, &OPS); scatterwalk_map_and_copy(tag.bytes, req->dst, req->assoclen + cryptlen, authsize, 1); return 0; } static int crypto_aegis128_aesni_decrypt(struct aead_request *req) { static const struct aegis_block zeros = {}; static const struct aegis_crypt_ops OPS = { .skcipher_walk_init = skcipher_walk_aead_decrypt, .crypt_blocks = crypto_aegis128_aesni_dec, .crypt_tail = crypto_aegis128_aesni_dec_tail, }; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_block tag; unsigned int authsize = crypto_aead_authsize(tfm); unsigned int cryptlen = req->cryptlen - authsize; scatterwalk_map_and_copy(tag.bytes, req->src, req->assoclen + cryptlen, authsize, 0); crypto_aegis128_aesni_crypt(req, &tag, cryptlen, &OPS); return crypto_memneq(tag.bytes, zeros.bytes, authsize) ? -EBADMSG : 0; } static int crypto_aegis128_aesni_init_tfm(struct crypto_aead *aead) { return 0; } static void crypto_aegis128_aesni_exit_tfm(struct crypto_aead *aead) { } static struct aead_alg crypto_aegis128_aesni_alg = { .setkey = crypto_aegis128_aesni_setkey, .setauthsize = crypto_aegis128_aesni_setauthsize, .encrypt = crypto_aegis128_aesni_encrypt, .decrypt = crypto_aegis128_aesni_decrypt, .init = crypto_aegis128_aesni_init_tfm, .exit = crypto_aegis128_aesni_exit_tfm, .ivsize = AEGIS128_NONCE_SIZE, .maxauthsize = AEGIS128_MAX_AUTH_SIZE, .chunksize = AEGIS128_BLOCK_SIZE, .base = { .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct aegis_ctx) + __alignof__(struct aegis_ctx), .cra_alignmask = 0, .cra_priority = 400, .cra_name = "__aegis128", .cra_driver_name = "__aegis128-aesni", .cra_module = THIS_MODULE, } }; static struct simd_aead_alg *simd_alg; static int __init crypto_aegis128_aesni_module_init(void) { if (!boot_cpu_has(X86_FEATURE_XMM2) || !boot_cpu_has(X86_FEATURE_AES) || !cpu_has_xfeatures(XFEATURE_MASK_SSE, NULL)) return -ENODEV; return simd_register_aeads_compat(&crypto_aegis128_aesni_alg, 1, &simd_alg); } static void __exit crypto_aegis128_aesni_module_exit(void) { simd_unregister_aeads(&crypto_aegis128_aesni_alg, 1, &simd_alg); } module_init(crypto_aegis128_aesni_module_init); module_exit(crypto_aegis128_aesni_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>"); MODULE_DESCRIPTION("AEGIS-128 AEAD algorithm -- AESNI+SSE2 implementation"); MODULE_ALIAS_CRYPTO("aegis128"); MODULE_ALIAS_CRYPTO("aegis128-aesni"); |
6 1 1 3 1 2 8 1 1 5 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | // SPDX-License-Identifier: GPL-2.0-only /* * Xtables module for matching the value of the IPv4/IPv6 and TCP ECN bits * * (C) 2002 by Harald Welte <laforge@gnumonks.org> * (C) 2011 Patrick McHardy <kaber@trash.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/in.h> #include <linux/ip.h> #include <net/ip.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/tcp.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_ecn.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); MODULE_DESCRIPTION("Xtables: Explicit Congestion Notification (ECN) flag match"); MODULE_LICENSE("GPL"); MODULE_ALIAS("ipt_ecn"); MODULE_ALIAS("ip6t_ecn"); static bool match_tcp(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_ecn_info *einfo = par->matchinfo; struct tcphdr _tcph; const struct tcphdr *th; /* In practice, TCP match does this, so can't fail. But let's * be good citizens. */ th = skb_header_pointer(skb, par->thoff, sizeof(_tcph), &_tcph); if (th == NULL) return false; if (einfo->operation & XT_ECN_OP_MATCH_ECE) { if (einfo->invert & XT_ECN_OP_MATCH_ECE) { if (th->ece == 1) return false; } else { if (th->ece == 0) return false; } } if (einfo->operation & XT_ECN_OP_MATCH_CWR) { if (einfo->invert & XT_ECN_OP_MATCH_CWR) { if (th->cwr == 1) return false; } else { if (th->cwr == 0) return false; } } return true; } static inline bool match_ip(const struct sk_buff *skb, const struct xt_ecn_info *einfo) { return ((ip_hdr(skb)->tos & XT_ECN_IP_MASK) == einfo->ip_ect) ^ !!(einfo->invert & XT_ECN_OP_MATCH_IP); } static bool ecn_mt4(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_ecn_info *info = par->matchinfo; if (info->operation & XT_ECN_OP_MATCH_IP && !match_ip(skb, info)) return false; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && !match_tcp(skb, par)) return false; return true; } static int ecn_mt_check4(const struct xt_mtchk_param *par) { const struct xt_ecn_info *info = par->matchinfo; const struct ipt_ip *ip = par->entryinfo; if (info->operation & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->invert & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && (ip->proto != IPPROTO_TCP || ip->invflags & IPT_INV_PROTO)) { pr_info_ratelimited("cannot match TCP bits for non-tcp packets\n"); return -EINVAL; } return 0; } static inline bool match_ipv6(const struct sk_buff *skb, const struct xt_ecn_info *einfo) { return (((ipv6_hdr(skb)->flow_lbl[0] >> 4) & XT_ECN_IP_MASK) == einfo->ip_ect) ^ !!(einfo->invert & XT_ECN_OP_MATCH_IP); } static bool ecn_mt6(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_ecn_info *info = par->matchinfo; if (info->operation & XT_ECN_OP_MATCH_IP && !match_ipv6(skb, info)) return false; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && !match_tcp(skb, par)) return false; return true; } static int ecn_mt_check6(const struct xt_mtchk_param *par) { const struct xt_ecn_info *info = par->matchinfo; const struct ip6t_ip6 *ip = par->entryinfo; if (info->operation & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->invert & XT_ECN_OP_MATCH_MASK) return -EINVAL; if (info->operation & (XT_ECN_OP_MATCH_ECE | XT_ECN_OP_MATCH_CWR) && (ip->proto != IPPROTO_TCP || ip->invflags & IP6T_INV_PROTO)) { pr_info_ratelimited("cannot match TCP bits for non-tcp packets\n"); return -EINVAL; } return 0; } static struct xt_match ecn_mt_reg[] __read_mostly = { { .name = "ecn", .family = NFPROTO_IPV4, .match = ecn_mt4, .matchsize = sizeof(struct xt_ecn_info), .checkentry = ecn_mt_check4, .me = THIS_MODULE, }, { .name = "ecn", .family = NFPROTO_IPV6, .match = ecn_mt6, .matchsize = sizeof(struct xt_ecn_info), .checkentry = ecn_mt_check6, .me = THIS_MODULE, }, }; static int __init ecn_mt_init(void) { return xt_register_matches(ecn_mt_reg, ARRAY_SIZE(ecn_mt_reg)); } static void __exit ecn_mt_exit(void) { xt_unregister_matches(ecn_mt_reg, ARRAY_SIZE(ecn_mt_reg)); } module_init(ecn_mt_init); module_exit(ecn_mt_exit); |
1 4 1 1 2 1 2 1 3 2 1 1 1 1 1 1 1 3 2 1 2 1 1 1 1 1 1 1 4 3 1 2 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | // SPDX-License-Identifier: GPL-2.0+ /* * IPv6 IOAM implementation * * Author: * Justin Iurman <justin.iurman@uliege.be> */ #include <linux/errno.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/ioam6.h> #include <linux/ioam6_genl.h> #include <linux/rhashtable.h> #include <linux/netdevice.h> #include <net/addrconf.h> #include <net/genetlink.h> #include <net/ioam6.h> #include <net/sch_generic.h> static void ioam6_ns_release(struct ioam6_namespace *ns) { kfree_rcu(ns, rcu); } static void ioam6_sc_release(struct ioam6_schema *sc) { kfree_rcu(sc, rcu); } static void ioam6_free_ns(void *ptr, void *arg) { struct ioam6_namespace *ns = (struct ioam6_namespace *)ptr; if (ns) ioam6_ns_release(ns); } static void ioam6_free_sc(void *ptr, void *arg) { struct ioam6_schema *sc = (struct ioam6_schema *)ptr; if (sc) ioam6_sc_release(sc); } static int ioam6_ns_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ioam6_namespace *ns = obj; return (ns->id != *(__be16 *)arg->key); } static int ioam6_sc_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ioam6_schema *sc = obj; return (sc->id != *(u32 *)arg->key); } static const struct rhashtable_params rht_ns_params = { .key_len = sizeof(__be16), .key_offset = offsetof(struct ioam6_namespace, id), .head_offset = offsetof(struct ioam6_namespace, head), .automatic_shrinking = true, .obj_cmpfn = ioam6_ns_cmpfn, }; static const struct rhashtable_params rht_sc_params = { .key_len = sizeof(u32), .key_offset = offsetof(struct ioam6_schema, id), .head_offset = offsetof(struct ioam6_schema, head), .automatic_shrinking = true, .obj_cmpfn = ioam6_sc_cmpfn, }; static struct genl_family ioam6_genl_family; static const struct nla_policy ioam6_genl_policy_addns[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, [IOAM6_ATTR_NS_DATA] = { .type = NLA_U32 }, [IOAM6_ATTR_NS_DATA_WIDE] = { .type = NLA_U64 }, }; static const struct nla_policy ioam6_genl_policy_delns[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, }; static const struct nla_policy ioam6_genl_policy_addsc[] = { [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, [IOAM6_ATTR_SC_DATA] = { .type = NLA_BINARY, .len = IOAM6_MAX_SCHEMA_DATA_LEN }, }; static const struct nla_policy ioam6_genl_policy_delsc[] = { [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, }; static const struct nla_policy ioam6_genl_policy_ns_sc[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, [IOAM6_ATTR_SC_NONE] = { .type = NLA_FLAG }, }; static int ioam6_genl_addns(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; u64 data64; u32 data32; __be16 id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID]) return -EINVAL; id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); if (ns) { err = -EEXIST; goto out_unlock; } ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) { err = -ENOMEM; goto out_unlock; } ns->id = id; if (!info->attrs[IOAM6_ATTR_NS_DATA]) data32 = IOAM6_U32_UNAVAILABLE; else data32 = nla_get_u32(info->attrs[IOAM6_ATTR_NS_DATA]); if (!info->attrs[IOAM6_ATTR_NS_DATA_WIDE]) data64 = IOAM6_U64_UNAVAILABLE; else data64 = nla_get_u64(info->attrs[IOAM6_ATTR_NS_DATA_WIDE]); ns->data = cpu_to_be32(data32); ns->data_wide = cpu_to_be64(data64); err = rhashtable_lookup_insert_fast(&nsdata->namespaces, &ns->head, rht_ns_params); if (err) kfree(ns); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int ioam6_genl_delns(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; struct ioam6_schema *sc; __be16 id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID]) return -EINVAL; id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); if (!ns) { err = -ENOENT; goto out_unlock; } sc = rcu_dereference_protected(ns->schema, lockdep_is_held(&nsdata->lock)); err = rhashtable_remove_fast(&nsdata->namespaces, &ns->head, rht_ns_params); if (err) goto out_unlock; if (sc) rcu_assign_pointer(sc->ns, NULL); ioam6_ns_release(ns); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int __ioam6_genl_dumpns_element(struct ioam6_namespace *ns, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { struct ioam6_schema *sc; u64 data64; u32 data32; void *hdr; hdr = genlmsg_put(skb, portid, seq, &ioam6_genl_family, flags, cmd); if (!hdr) return -ENOMEM; data32 = be32_to_cpu(ns->data); data64 = be64_to_cpu(ns->data_wide); if (nla_put_u16(skb, IOAM6_ATTR_NS_ID, be16_to_cpu(ns->id)) || (data32 != IOAM6_U32_UNAVAILABLE && nla_put_u32(skb, IOAM6_ATTR_NS_DATA, data32)) || (data64 != IOAM6_U64_UNAVAILABLE && nla_put_u64_64bit(skb, IOAM6_ATTR_NS_DATA_WIDE, data64, IOAM6_ATTR_PAD))) goto nla_put_failure; rcu_read_lock(); sc = rcu_dereference(ns->schema); if (sc && nla_put_u32(skb, IOAM6_ATTR_SC_ID, sc->id)) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } static int ioam6_genl_dumpns_start(struct netlink_callback *cb) { struct ioam6_pernet_data *nsdata = ioam6_pernet(sock_net(cb->skb->sk)); struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; if (!iter) { iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; cb->args[0] = (long)iter; } rhashtable_walk_enter(&nsdata->namespaces, iter); return 0; } static int ioam6_genl_dumpns_done(struct netlink_callback *cb) { struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_exit(iter); kfree(iter); return 0; } static int ioam6_genl_dumpns(struct sk_buff *skb, struct netlink_callback *cb) { struct rhashtable_iter *iter; struct ioam6_namespace *ns; int err; iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_start(iter); for (;;) { ns = rhashtable_walk_next(iter); if (IS_ERR(ns)) { if (PTR_ERR(ns) == -EAGAIN) continue; err = PTR_ERR(ns); goto done; } else if (!ns) { break; } err = __ioam6_genl_dumpns_element(ns, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, IOAM6_CMD_DUMP_NAMESPACES); if (err) goto done; } err = skb->len; done: rhashtable_walk_stop(iter); return err; } static int ioam6_genl_addsc(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; int len, len_aligned, err; struct ioam6_schema *sc; u32 id; if (!info->attrs[IOAM6_ATTR_SC_ID] || !info->attrs[IOAM6_ATTR_SC_DATA]) return -EINVAL; id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); sc = rhashtable_lookup_fast(&nsdata->schemas, &id, rht_sc_params); if (sc) { err = -EEXIST; goto out_unlock; } len = nla_len(info->attrs[IOAM6_ATTR_SC_DATA]); len_aligned = ALIGN(len, 4); sc = kzalloc(sizeof(*sc) + len_aligned, GFP_KERNEL); if (!sc) { err = -ENOMEM; goto out_unlock; } sc->id = id; sc->len = len_aligned; sc->hdr = cpu_to_be32(sc->id | ((u8)(sc->len / 4) << 24)); nla_memcpy(sc->data, info->attrs[IOAM6_ATTR_SC_DATA], len); err = rhashtable_lookup_insert_fast(&nsdata->schemas, &sc->head, rht_sc_params); if (err) goto free_sc; out_unlock: mutex_unlock(&nsdata->lock); return err; free_sc: kfree(sc); goto out_unlock; } static int ioam6_genl_delsc(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; struct ioam6_schema *sc; int err; u32 id; if (!info->attrs[IOAM6_ATTR_SC_ID]) return -EINVAL; id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); sc = rhashtable_lookup_fast(&nsdata->schemas, &id, rht_sc_params); if (!sc) { err = -ENOENT; goto out_unlock; } ns = rcu_dereference_protected(sc->ns, lockdep_is_held(&nsdata->lock)); err = rhashtable_remove_fast(&nsdata->schemas, &sc->head, rht_sc_params); if (err) goto out_unlock; if (ns) rcu_assign_pointer(ns->schema, NULL); ioam6_sc_release(sc); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int __ioam6_genl_dumpsc_element(struct ioam6_schema *sc, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { struct ioam6_namespace *ns; void *hdr; hdr = genlmsg_put(skb, portid, seq, &ioam6_genl_family, flags, cmd); if (!hdr) return -ENOMEM; if (nla_put_u32(skb, IOAM6_ATTR_SC_ID, sc->id) || nla_put(skb, IOAM6_ATTR_SC_DATA, sc->len, sc->data)) goto nla_put_failure; rcu_read_lock(); ns = rcu_dereference(sc->ns); if (ns && nla_put_u16(skb, IOAM6_ATTR_NS_ID, be16_to_cpu(ns->id))) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } static int ioam6_genl_dumpsc_start(struct netlink_callback *cb) { struct ioam6_pernet_data *nsdata = ioam6_pernet(sock_net(cb->skb->sk)); struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; if (!iter) { iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; cb->args[0] = (long)iter; } rhashtable_walk_enter(&nsdata->schemas, iter); return 0; } static int ioam6_genl_dumpsc_done(struct netlink_callback *cb) { struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_exit(iter); kfree(iter); return 0; } static int ioam6_genl_dumpsc(struct sk_buff *skb, struct netlink_callback *cb) { struct rhashtable_iter *iter; struct ioam6_schema *sc; int err; iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_start(iter); for (;;) { sc = rhashtable_walk_next(iter); if (IS_ERR(sc)) { if (PTR_ERR(sc) == -EAGAIN) continue; err = PTR_ERR(sc); goto done; } else if (!sc) { break; } err = __ioam6_genl_dumpsc_element(sc, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, IOAM6_CMD_DUMP_SCHEMAS); if (err) goto done; } err = skb->len; done: rhashtable_walk_stop(iter); return err; } static int ioam6_genl_ns_set_schema(struct sk_buff *skb, struct genl_info *info) { struct ioam6_namespace *ns, *ns_ref; struct ioam6_schema *sc, *sc_ref; struct ioam6_pernet_data *nsdata; __be16 ns_id; u32 sc_id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID] || (!info->attrs[IOAM6_ATTR_SC_ID] && !info->attrs[IOAM6_ATTR_SC_NONE])) return -EINVAL; ns_id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &ns_id, rht_ns_params); if (!ns) { err = -ENOENT; goto out_unlock; } if (info->attrs[IOAM6_ATTR_SC_NONE]) { sc = NULL; } else { sc_id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); sc = rhashtable_lookup_fast(&nsdata->schemas, &sc_id, rht_sc_params); if (!sc) { err = -ENOENT; goto out_unlock; } } sc_ref = rcu_dereference_protected(ns->schema, lockdep_is_held(&nsdata->lock)); if (sc_ref) rcu_assign_pointer(sc_ref->ns, NULL); rcu_assign_pointer(ns->schema, sc); if (sc) { ns_ref = rcu_dereference_protected(sc->ns, lockdep_is_held(&nsdata->lock)); if (ns_ref) rcu_assign_pointer(ns_ref->schema, NULL); rcu_assign_pointer(sc->ns, ns); } err = 0; out_unlock: mutex_unlock(&nsdata->lock); return err; } static const struct genl_ops ioam6_genl_ops[] = { { .cmd = IOAM6_CMD_ADD_NAMESPACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_addns, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_addns, .maxattr = ARRAY_SIZE(ioam6_genl_policy_addns) - 1, }, { .cmd = IOAM6_CMD_DEL_NAMESPACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_delns, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_delns, .maxattr = ARRAY_SIZE(ioam6_genl_policy_delns) - 1, }, { .cmd = IOAM6_CMD_DUMP_NAMESPACES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .start = ioam6_genl_dumpns_start, .dumpit = ioam6_genl_dumpns, .done = ioam6_genl_dumpns_done, .flags = GENL_ADMIN_PERM, }, { .cmd = IOAM6_CMD_ADD_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_addsc, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_addsc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_addsc) - 1, }, { .cmd = IOAM6_CMD_DEL_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_delsc, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_delsc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_delsc) - 1, }, { .cmd = IOAM6_CMD_DUMP_SCHEMAS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .start = ioam6_genl_dumpsc_start, .dumpit = ioam6_genl_dumpsc, .done = ioam6_genl_dumpsc_done, .flags = GENL_ADMIN_PERM, }, { .cmd = IOAM6_CMD_NS_SET_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_ns_set_schema, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_ns_sc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_ns_sc) - 1, }, }; #define IOAM6_GENL_EV_GRP_OFFSET 0 static const struct genl_multicast_group ioam6_mcgrps[] = { [IOAM6_GENL_EV_GRP_OFFSET] = { .name = IOAM6_GENL_EV_GRP_NAME, .flags = GENL_MCAST_CAP_NET_ADMIN }, }; static int ioam6_event_put_trace(struct sk_buff *skb, struct ioam6_trace_hdr *trace, unsigned int len) { if (nla_put_u16(skb, IOAM6_EVENT_ATTR_TRACE_NAMESPACE, be16_to_cpu(trace->namespace_id)) || nla_put_u8(skb, IOAM6_EVENT_ATTR_TRACE_NODELEN, trace->nodelen) || nla_put_u32(skb, IOAM6_EVENT_ATTR_TRACE_TYPE, be32_to_cpu(trace->type_be32)) || nla_put(skb, IOAM6_EVENT_ATTR_TRACE_DATA, len - sizeof(struct ioam6_trace_hdr) - trace->remlen * 4, trace->data + trace->remlen * 4)) return 1; return 0; } void ioam6_event(enum ioam6_event_type type, struct net *net, gfp_t gfp, void *opt, unsigned int opt_len) { struct nlmsghdr *nlh; struct sk_buff *skb; if (!genl_has_listeners(&ioam6_genl_family, net, IOAM6_GENL_EV_GRP_OFFSET)) return; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!skb) return; nlh = genlmsg_put(skb, 0, 0, &ioam6_genl_family, 0, type); if (!nlh) goto nla_put_failure; switch (type) { case IOAM6_EVENT_UNSPEC: WARN_ON_ONCE(1); break; case IOAM6_EVENT_TRACE: if (ioam6_event_put_trace(skb, (struct ioam6_trace_hdr *)opt, opt_len)) goto nla_put_failure; break; } genlmsg_end(skb, nlh); genlmsg_multicast_netns(&ioam6_genl_family, net, skb, 0, IOAM6_GENL_EV_GRP_OFFSET, gfp); return; nla_put_failure: nlmsg_free(skb); } static struct genl_family ioam6_genl_family __ro_after_init = { .name = IOAM6_GENL_NAME, .version = IOAM6_GENL_VERSION, .netnsok = true, .parallel_ops = true, .ops = ioam6_genl_ops, .n_ops = ARRAY_SIZE(ioam6_genl_ops), .resv_start_op = IOAM6_CMD_NS_SET_SCHEMA + 1, .mcgrps = ioam6_mcgrps, .n_mcgrps = ARRAY_SIZE(ioam6_mcgrps), .module = THIS_MODULE, }; struct ioam6_namespace *ioam6_namespace(struct net *net, __be16 id) { struct ioam6_pernet_data *nsdata = ioam6_pernet(net); return rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); } static void __ioam6_fill_trace_data(struct sk_buff *skb, struct ioam6_namespace *ns, struct ioam6_trace_hdr *trace, struct ioam6_schema *sc, u8 sclen, bool is_input) { struct timespec64 ts; ktime_t tstamp; u64 raw64; u32 raw32; u16 raw16; u8 *data; u8 byte; data = trace->data + trace->remlen * 4 - trace->nodelen * 4 - sclen * 4; /* hop_lim and node_id */ if (trace->type.bit0) { byte = ipv6_hdr(skb)->hop_limit; if (is_input) byte--; raw32 = dev_net(skb_dst(skb)->dev)->ipv6.sysctl.ioam6_id; *(__be32 *)data = cpu_to_be32((byte << 24) | raw32); data += sizeof(__be32); } /* ingress_if_id and egress_if_id */ if (trace->type.bit1) { if (!skb->dev) raw16 = IOAM6_U16_UNAVAILABLE; else raw16 = (__force u16)READ_ONCE(__in6_dev_get(skb->dev)->cnf.ioam6_id); *(__be16 *)data = cpu_to_be16(raw16); data += sizeof(__be16); if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) raw16 = IOAM6_U16_UNAVAILABLE; else raw16 = (__force u16)READ_ONCE(__in6_dev_get(skb_dst(skb)->dev)->cnf.ioam6_id); *(__be16 *)data = cpu_to_be16(raw16); data += sizeof(__be16); } /* timestamp seconds */ if (trace->type.bit2) { if (!skb->dev) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { tstamp = skb_tstamp_cond(skb, true); ts = ktime_to_timespec64(tstamp); *(__be32 *)data = cpu_to_be32((u32)ts.tv_sec); } data += sizeof(__be32); } /* timestamp subseconds */ if (trace->type.bit3) { if (!skb->dev) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { if (!trace->type.bit2) { tstamp = skb_tstamp_cond(skb, true); ts = ktime_to_timespec64(tstamp); } *(__be32 *)data = cpu_to_be32((u32)(ts.tv_nsec / NSEC_PER_USEC)); } data += sizeof(__be32); } /* transit delay */ if (trace->type.bit4) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* namespace data */ if (trace->type.bit5) { *(__be32 *)data = ns->data; data += sizeof(__be32); } /* queue depth */ if (trace->type.bit6) { struct netdev_queue *queue; struct Qdisc *qdisc; __u32 qlen, backlog; if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { queue = skb_get_tx_queue(skb_dst(skb)->dev, skb); qdisc = rcu_dereference(queue->qdisc); qdisc_qstats_qlen_backlog(qdisc, &qlen, &backlog); *(__be32 *)data = cpu_to_be32(backlog); } data += sizeof(__be32); } /* checksum complement */ if (trace->type.bit7) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* hop_lim and node_id (wide) */ if (trace->type.bit8) { byte = ipv6_hdr(skb)->hop_limit; if (is_input) byte--; raw64 = dev_net(skb_dst(skb)->dev)->ipv6.sysctl.ioam6_id_wide; *(__be64 *)data = cpu_to_be64(((u64)byte << 56) | raw64); data += sizeof(__be64); } /* ingress_if_id and egress_if_id (wide) */ if (trace->type.bit9) { if (!skb->dev) raw32 = IOAM6_U32_UNAVAILABLE; else raw32 = READ_ONCE(__in6_dev_get(skb->dev)->cnf.ioam6_id_wide); *(__be32 *)data = cpu_to_be32(raw32); data += sizeof(__be32); if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) raw32 = IOAM6_U32_UNAVAILABLE; else raw32 = READ_ONCE(__in6_dev_get(skb_dst(skb)->dev)->cnf.ioam6_id_wide); *(__be32 *)data = cpu_to_be32(raw32); data += sizeof(__be32); } /* namespace data (wide) */ if (trace->type.bit10) { *(__be64 *)data = ns->data_wide; data += sizeof(__be64); } /* buffer occupancy */ if (trace->type.bit11) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit12 undefined: filled with empty value */ if (trace->type.bit12) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit13 undefined: filled with empty value */ if (trace->type.bit13) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit14 undefined: filled with empty value */ if (trace->type.bit14) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit15 undefined: filled with empty value */ if (trace->type.bit15) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit16 undefined: filled with empty value */ if (trace->type.bit16) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit17 undefined: filled with empty value */ if (trace->type.bit17) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit18 undefined: filled with empty value */ if (trace->type.bit18) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit19 undefined: filled with empty value */ if (trace->type.bit19) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit20 undefined: filled with empty value */ if (trace->type.bit20) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit21 undefined: filled with empty value */ if (trace->type.bit21) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* opaque state snapshot */ if (trace->type.bit22) { if (!sc) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE >> 8); } else { *(__be32 *)data = sc->hdr; data += sizeof(__be32); memcpy(data, sc->data, sc->len); } } } /* called with rcu_read_lock() */ void ioam6_fill_trace_data(struct sk_buff *skb, struct ioam6_namespace *ns, struct ioam6_trace_hdr *trace, bool is_input) { struct ioam6_schema *sc; u8 sclen = 0; /* Skip if Overflow flag is set */ if (trace->overflow) return; /* NodeLen does not include Opaque State Snapshot length. We need to * take it into account if the corresponding bit is set (bit 22) and * if the current IOAM namespace has an active schema attached to it */ sc = rcu_dereference(ns->schema); if (trace->type.bit22) { sclen = sizeof_field(struct ioam6_schema, hdr) / 4; if (sc) sclen += sc->len / 4; } /* If there is no space remaining, we set the Overflow flag and we * skip without filling the trace */ if (!trace->remlen || trace->remlen < trace->nodelen + sclen) { trace->overflow = 1; return; } __ioam6_fill_trace_data(skb, ns, trace, sc, sclen, is_input); trace->remlen -= trace->nodelen + sclen; } static int __net_init ioam6_net_init(struct net *net) { struct ioam6_pernet_data *nsdata; int err = -ENOMEM; nsdata = kzalloc(sizeof(*nsdata), GFP_KERNEL); if (!nsdata) goto out; mutex_init(&nsdata->lock); net->ipv6.ioam6_data = nsdata; err = rhashtable_init(&nsdata->namespaces, &rht_ns_params); if (err) goto free_nsdata; err = rhashtable_init(&nsdata->schemas, &rht_sc_params); if (err) goto free_rht_ns; out: return err; free_rht_ns: rhashtable_destroy(&nsdata->namespaces); free_nsdata: kfree(nsdata); net->ipv6.ioam6_data = NULL; goto out; } static void __net_exit ioam6_net_exit(struct net *net) { struct ioam6_pernet_data *nsdata = ioam6_pernet(net); rhashtable_free_and_destroy(&nsdata->namespaces, ioam6_free_ns, NULL); rhashtable_free_and_destroy(&nsdata->schemas, ioam6_free_sc, NULL); kfree(nsdata); } static struct pernet_operations ioam6_net_ops = { .init = ioam6_net_init, .exit = ioam6_net_exit, }; int __init ioam6_init(void) { int err = register_pernet_subsys(&ioam6_net_ops); if (err) goto out; err = genl_register_family(&ioam6_genl_family); if (err) goto out_unregister_pernet_subsys; #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL err = ioam6_iptunnel_init(); if (err) goto out_unregister_genl; #endif pr_info("In-situ OAM (IOAM) with IPv6\n"); out: return err; #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL out_unregister_genl: genl_unregister_family(&ioam6_genl_family); #endif out_unregister_pernet_subsys: unregister_pernet_subsys(&ioam6_net_ops); goto out; } void ioam6_exit(void) { #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL ioam6_iptunnel_exit(); #endif genl_unregister_family(&ioam6_genl_family); unregister_pernet_subsys(&ioam6_net_ops); } |
1 1 1 1 1 1 4 4 4 17 17 17 124 124 4 4 4 4 4 16 12 3 1 4 4 16 4 11 19 3 16 15 3 16 16 16 16 17 1 16 4 7 1 4 2 1 3 18 2 19 2 21 21 5 12 13 7 7 1 1 1 8 8 8 8 8 8 5 5 3 3 1 1 2 2 13 12 12 13 13 13 13 13 5 5 5 10 5 5 8 8 8 8 8 1 7 10 2 8 8 8 18 1 18 1 2 15 1 1 16 1 14 12 2 10 7 7 7 8 1 1 5 5 5 5 3 3 2 2 1 3 2 2 8 2 4 3 4 2 2 2 1 1 5 1 5 6 1 4 1 5 3 1 1 1 1 1 1 1 1 1 2 61 1 4 56 55 5 5 51 27 17 2 4 2 1 2 1 1 32 4 26 14 1 1 1 2 1 1 1 2 4 2 2 1 1 4 4 4 1 1 2 4 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |