423 416 419 1 1 349 167 68 1 64 63 142 27 395 393 396 301 226 222 391 395 395 9 426 9 53 411 422 423 426 425 426 424 426 2 413 4 240 240 239 235 4 230 10 9 232 2 2 2 234 3 237 237 239 237 237 237 238 236 21 21 21 21 21 40 40 40 40 40 10 10 10 10 10 10 10 10 10 10 4 30 30 30 29 29 30 53 53 1 52 2 51 41 10 2 40 21 19 2 18 11 7 13 11 10 10 10 10 7 29 3 29 29 18 21 78 63 2 21 14 1 488 322 301 297 305 305 303 280 112 281 379 131 459 464 461 459 451 9 38 458 1 71 84 382 129 414 14 76 78 78 70 65 6 29 23 40 194 196 197 171 29 29 29 29 29 29 197 197 195 211 24 196 210 210 1 208 3 209 3 173 36 14 7 1 6 1 4 3 192 2 204 2 205 202 40 10 197 193 195 14 182 80 145 196 194 1 193 192 184 14 144 80 25 2 1 22 22 22 21 3 139 90 5 1 169 169 6 24 145 149 163 219 190 209 16 195 2 187 7 191 35 194 194 189 6 30 193 193 194 190 194 139 84 7 77 7 83 190 188 190 182 16 189 144 145 1 143 33 33 8 27 27 55 55 1 1 53 6 51 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 output functions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Based on linux/net/ipv4/ip_output.c * * Changes: * A.N.Kuznetsov : airthmetics in fragmentation. * extension headers are implemented. * route changes now work. * ip6_forward does not confuse sniffers. * etc. * * H. von Brand : Added missing #include <linux/string.h> * Imran Patel : frag id should be in NBO * Kazunori MIYAZAWA @USAGI * : add ip6_append_data and related functions * for datagram xmit */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/route.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/bpf-cgroup.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/gso.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/rawv6.h> #include <net/icmp.h> #include <net/xfrm.h> #include <net/checksum.h> #include <linux/mroute6.h> #include <net/l3mdev.h> #include <net/lwtunnel.h> #include <net/ip_tunnels.h> static int ip6_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; struct inet6_dev *idev = ip6_dst_idev(dst); unsigned int hh_len = LL_RESERVED_SPACE(dev); const struct in6_addr *daddr, *nexthop; struct ipv6hdr *hdr; struct neighbour *neigh; int ret; /* Be paranoid, rather than too clever. */ if (unlikely(hh_len > skb_headroom(skb)) && dev->header_ops) { /* Make sure idev stays alive */ rcu_read_lock(); skb = skb_expand_head(skb, hh_len); if (!skb) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); rcu_read_unlock(); return -ENOMEM; } rcu_read_unlock(); } hdr = ipv6_hdr(skb); daddr = &hdr->daddr; if (ipv6_addr_is_multicast(daddr)) { if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) && ((mroute6_is_socket(net, skb) && !(IP6CB(skb)->flags & IP6SKB_FORWARDED)) || ipv6_chk_mcast_addr(dev, daddr, &hdr->saddr))) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); /* Do not check for IFF_ALLMULTI; multicast routing is not supported in any case. */ if (newskb) NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, dev_loopback_xmit); if (hdr->hop_limit == 0) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return 0; } } IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUTMCAST, skb->len); if (IPV6_ADDR_MC_SCOPE(daddr) <= IPV6_ADDR_SCOPE_NODELOCAL && !(dev->flags & IFF_LOOPBACK)) { kfree_skb(skb); return 0; } } if (lwtunnel_xmit_redirect(dst->lwtstate)) { int res = lwtunnel_xmit(skb); if (res != LWTUNNEL_XMIT_CONTINUE) return res; } IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); rcu_read_lock(); nexthop = rt6_nexthop(dst_rt6_info(dst), daddr); neigh = __ipv6_neigh_lookup_noref(dev, nexthop); if (IS_ERR_OR_NULL(neigh)) { if (unlikely(!neigh)) neigh = __neigh_create(&nd_tbl, nexthop, dev, false); if (IS_ERR(neigh)) { rcu_read_unlock(); IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTNOROUTES); kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); return -EINVAL; } } sock_confirm_neigh(skb, neigh); ret = neigh_output(neigh, skb, false); rcu_read_unlock(); return ret; } static int ip6_finish_output_gso_slowpath_drop(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu) { struct sk_buff *segs, *nskb; netdev_features_t features; int ret = 0; /* Please see corresponding comment in ip_finish_output_gso * describing the cases where GSO segment length exceeds the * egress MTU. */ features = netif_skb_features(skb); segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) { kfree_skb(skb); return -ENOMEM; } consume_skb(skb); skb_list_walk_safe(segs, segs, nskb) { int err; skb_mark_not_on_list(segs); /* Last GSO segment can be smaller than gso_size (and MTU). * Adding a fragment header would produce an "atomic fragment", * which is considered harmful (RFC-8021). Avoid that. */ err = segs->len > mtu ? ip6_fragment(net, sk, segs, ip6_finish_output2) : ip6_finish_output2(net, sk, segs); if (err && ret == 0) ret = err; } return ret; } static int ip6_finish_output_gso(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu) { if (!(IP6CB(skb)->flags & IP6SKB_FAKEJUMBO) && !skb_gso_validate_network_len(skb, mtu)) return ip6_finish_output_gso_slowpath_drop(net, sk, skb, mtu); return ip6_finish_output2(net, sk, skb); } static int __ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { unsigned int mtu; #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) /* Policy lookup after SNAT yielded a new policy */ if (skb_dst(skb)->xfrm) { IP6CB(skb)->flags |= IP6SKB_REROUTED; return dst_output(net, sk, skb); } #endif mtu = ip6_skb_dst_mtu(skb); if (skb_is_gso(skb)) return ip6_finish_output_gso(net, sk, skb, mtu); if (skb->len > mtu || (IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size)) return ip6_fragment(net, sk, skb, ip6_finish_output2); return ip6_finish_output2(net, sk, skb); } static int ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { int ret; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_SUCCESS: case NET_XMIT_CN: return __ip6_finish_output(net, sk, skb) ? : ret; default: kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); return ret; } } int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; if (unlikely(!idev || READ_ONCE(idev->cnf.disable_ipv6))) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb_reason(skb, SKB_DROP_REASON_IPV6DISABLED); return 0; } return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, indev, dev, ip6_finish_output, !(IP6CB(skb)->flags & IP6SKB_REROUTED)); } EXPORT_SYMBOL(ip6_output); bool ip6_autoflowlabel(struct net *net, const struct sock *sk) { if (!inet6_test_bit(AUTOFLOWLABEL_SET, sk)) return ip6_default_np_autolabel(net); return inet6_test_bit(AUTOFLOWLABEL, sk); } /* * xmit an sk_buff (used by TCP, SCTP and DCCP) * Note : socket lock is not held for SYNACK packets, but might be modified * by calls to skb_set_owner_w() and ipv6_local_error(), * which are using proper atomic operations or spinlocks. */ int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority) { struct net *net = sock_net(sk); const struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *first_hop = &fl6->daddr; struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; struct inet6_dev *idev = ip6_dst_idev(dst); struct hop_jumbo_hdr *hop_jumbo; int hoplen = sizeof(*hop_jumbo); unsigned int head_room; struct ipv6hdr *hdr; u8 proto = fl6->flowi6_proto; int seg_len = skb->len; int hlimit = -1; u32 mtu; head_room = sizeof(struct ipv6hdr) + hoplen + LL_RESERVED_SPACE(dev); if (opt) head_room += opt->opt_nflen + opt->opt_flen; if (unlikely(head_room > skb_headroom(skb))) { /* Make sure idev stays alive */ rcu_read_lock(); skb = skb_expand_head(skb, head_room); if (!skb) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); rcu_read_unlock(); return -ENOBUFS; } rcu_read_unlock(); } if (opt) { seg_len += opt->opt_nflen + opt->opt_flen; if (opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop, &fl6->saddr); } if (unlikely(seg_len > IPV6_MAXPLEN)) { hop_jumbo = skb_push(skb, hoplen); hop_jumbo->nexthdr = proto; hop_jumbo->hdrlen = 0; hop_jumbo->tlv_type = IPV6_TLV_JUMBO; hop_jumbo->tlv_len = 4; hop_jumbo->jumbo_payload_len = htonl(seg_len + hoplen); proto = IPPROTO_HOPOPTS; seg_len = 0; IP6CB(skb)->flags |= IP6SKB_FAKEJUMBO; } skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); /* * Fill in the IPv6 header */ if (np) hlimit = READ_ONCE(np->hop_limit); if (hlimit < 0) hlimit = ip6_dst_hoplimit(dst); ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, ip6_autoflowlabel(net, sk), fl6)); hdr->payload_len = htons(seg_len); hdr->nexthdr = proto; hdr->hop_limit = hlimit; hdr->saddr = fl6->saddr; hdr->daddr = *first_hop; skb->protocol = htons(ETH_P_IPV6); skb->priority = priority; skb->mark = mark; mtu = dst_mtu(dst); if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTREQUESTS); /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_out((struct sock *)sk, skb); if (unlikely(!skb)) return 0; /* hooks should never assume socket lock is held. * we promote our socket to non const */ return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, (struct sock *)sk, skb, NULL, dev, dst_output); } skb->dev = dev; /* ipv6_local_error() does not require socket lock, * we promote our socket to non const */ ipv6_local_error((struct sock *)sk, EMSGSIZE, fl6, mtu); IP6_INC_STATS(net, idev, IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } EXPORT_SYMBOL(ip6_xmit); static int ip6_call_ra_chain(struct sk_buff *skb, int sel) { struct ip6_ra_chain *ra; struct sock *last = NULL; read_lock(&ip6_ra_lock); for (ra = ip6_ra_chain; ra; ra = ra->next) { struct sock *sk = ra->sk; if (sk && ra->sel == sel && (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == skb->dev->ifindex)) { if (inet6_test_bit(RTALERT_ISOLATE, sk) && !net_eq(sock_net(sk), dev_net(skb->dev))) { continue; } if (last) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) rawv6_rcv(last, skb2); } last = sk; } } if (last) { rawv6_rcv(last, skb); read_unlock(&ip6_ra_lock); return 1; } read_unlock(&ip6_ra_lock); return 0; } static int ip6_forward_proxy_check(struct sk_buff *skb) { struct ipv6hdr *hdr = ipv6_hdr(skb); u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; if (ipv6_ext_hdr(nexthdr)) { offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) return 0; } else offset = sizeof(struct ipv6hdr); if (nexthdr == IPPROTO_ICMPV6) { struct icmp6hdr *icmp6; if (!pskb_may_pull(skb, (skb_network_header(skb) + offset + 1 - skb->data))) return 0; icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (icmp6->icmp6_type) { case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: /* For reaction involving unicast neighbor discovery * message destined to the proxied address, pass it to * input function. */ return 1; default: break; } } /* * The proxying router can't forward traffic sent to a link-local * address, so signal the sender and discard the packet. This * behavior is clarified by the MIPv6 specification. */ if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) { dst_link_failure(skb); return -1; } return 0; } static inline int ip6_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { #ifdef CONFIG_NET_SWITCHDEV if (skb->offload_l3_fwd_mark) { consume_skb(skb); return 0; } #endif skb_clear_tstamp(skb); return dst_output(net, sk, skb); } static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu) { if (skb->len <= mtu) return false; /* ipv6 conntrack defrag sets max_frag_size + ignore_df */ if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu) return true; if (skb->ignore_df) return false; if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu)) return false; return true; } int ip6_forward(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct ipv6hdr *hdr = ipv6_hdr(skb); struct inet6_skb_parm *opt = IP6CB(skb); struct net *net = dev_net(dst->dev); struct inet6_dev *idev; SKB_DR(reason); u32 mtu; idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); if (READ_ONCE(net->ipv6.devconf_all->forwarding) == 0) goto error; if (skb->pkt_type != PACKET_HOST) goto drop; if (unlikely(skb->sk)) goto drop; if (skb_warn_if_lro(skb)) goto drop; if (!READ_ONCE(net->ipv6.devconf_all->disable_policy) && (!idev || !READ_ONCE(idev->cnf.disable_policy)) && !xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } skb_forward_csum(skb); /* * We DO NOT make any processing on * RA packets, pushing them to user level AS IS * without ane WARRANTY that application will be able * to interpret them. The reason is that we * cannot make anything clever here. * * We are not end-node, so that if packet contains * AH/ESP, we cannot make anything. * Defragmentation also would be mistake, RA packets * cannot be fragmented, because there is no warranty * that different fragments will go along one path. --ANK */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { if (ip6_call_ra_chain(skb, ntohs(opt->ra))) return 0; } /* * check and decrement ttl */ if (hdr->hop_limit <= 1) { icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0); __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); kfree_skb_reason(skb, SKB_DROP_REASON_IP_INHDR); return -ETIMEDOUT; } /* XXX: idev->cnf.proxy_ndp? */ if (READ_ONCE(net->ipv6.devconf_all->proxy_ndp) && pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) { int proxied = ip6_forward_proxy_check(skb); if (proxied > 0) { /* It's tempting to decrease the hop limit * here by 1, as we do at the end of the * function too. * * But that would be incorrect, as proxying is * not forwarding. The ip6_input function * will handle this packet locally, and it * depends on the hop limit being unchanged. * * One example is the NDP hop limit, that * always has to stay 255, but other would be * similar checks around RA packets, where the * user can even change the desired limit. */ return ip6_input(skb); } else if (proxied < 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } } if (!xfrm6_route_forward(skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); SKB_DR_SET(reason, XFRM_POLICY); goto drop; } dst = skb_dst(skb); /* IPv6 specs say nothing about it, but it is clear that we cannot send redirects to source routed frames. We don't send redirects to frames decapsulated from IPsec. */ if (IP6CB(skb)->iif == dst->dev->ifindex && opt->srcrt == 0 && !skb_sec_path(skb)) { struct in6_addr *target = NULL; struct inet_peer *peer; struct rt6_info *rt; /* * incoming and outgoing devices are the same * send a redirect. */ rt = dst_rt6_info(dst); if (rt->rt6i_flags & RTF_GATEWAY) target = &rt->rt6i_gateway; else target = &hdr->daddr; peer = inet_getpeer_v6(net->ipv6.peers, &hdr->daddr, 1); /* Limit redirects both by destination (here) and by source (inside ndisc_send_redirect) */ if (inet_peer_xrlim_allow(peer, 1*HZ)) ndisc_send_redirect(skb, target); if (peer) inet_putpeer(peer); } else { int addrtype = ipv6_addr_type(&hdr->saddr); /* This check is security critical. */ if (addrtype == IPV6_ADDR_ANY || addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK)) goto error; if (addrtype & IPV6_ADDR_LINKLOCAL) { icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOT_NEIGHBOUR, 0); goto error; } } __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS); mtu = ip6_dst_mtu_maybe_forward(dst, true); if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; if (ip6_pkt_too_big(skb, mtu)) { /* Again, force OUTPUT device used as source address */ skb->dev = dst->dev; icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTOOBIGERRORS); __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS); kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG); return -EMSGSIZE; } if (skb_cow(skb, dst->dev->hard_header_len)) { __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS); goto drop; } hdr = ipv6_hdr(skb); /* Mangling hops number delayed to point after skb COW */ hdr->hop_limit--; return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, net, NULL, skb, skb->dev, dst->dev, ip6_forward_finish); error: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); SKB_DR_SET(reason, IP_INADDRERRORS); drop: kfree_skb_reason(skb, reason); return -EINVAL; } static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; skb_dst_drop(to); skb_dst_set(to, dst_clone(skb_dst(from))); to->dev = from->dev; to->mark = from->mark; skb_copy_hash(to, from); #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); skb_ext_copy(to, from); skb_copy_secmark(to, from); } int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_fraglist_iter *iter) { unsigned int first_len; struct frag_hdr *fh; /* BUILD HEADER */ *prevhdr = NEXTHDR_FRAGMENT; iter->tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); if (!iter->tmp_hdr) return -ENOMEM; iter->frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); iter->offset = 0; iter->hlen = hlen; iter->frag_id = frag_id; iter->nexthdr = nexthdr; __skb_pull(skb, hlen); fh = __skb_push(skb, sizeof(struct frag_hdr)); __skb_push(skb, hlen); skb_reset_network_header(skb); memcpy(skb_network_header(skb), iter->tmp_hdr, hlen); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(IP6_MF); fh->identification = frag_id; first_len = skb_pagelen(skb); skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr)); return 0; } EXPORT_SYMBOL(ip6_fraglist_init); void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter) { struct sk_buff *frag = iter->frag; unsigned int hlen = iter->hlen; struct frag_hdr *fh; frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); fh = __skb_push(frag, sizeof(struct frag_hdr)); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), iter->tmp_hdr, hlen); iter->offset += skb->len - hlen - sizeof(struct frag_hdr); fh->nexthdr = iter->nexthdr; fh->reserved = 0; fh->frag_off = htons(iter->offset); if (frag->next) fh->frag_off |= htons(IP6_MF); fh->identification = iter->frag_id; ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ip6_copy_metadata(frag, skb); } EXPORT_SYMBOL(ip6_fraglist_prepare); void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state) { state->prevhdr = prevhdr; state->nexthdr = nexthdr; state->frag_id = frag_id; state->hlen = hlen; state->mtu = mtu; state->left = skb->len - hlen; /* Space per frame */ state->ptr = hlen; /* Where to start from */ state->hroom = hdr_room; state->troom = needed_tailroom; state->offset = 0; } EXPORT_SYMBOL(ip6_frag_init); struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state) { u8 *prevhdr = state->prevhdr, *fragnexthdr_offset; struct sk_buff *frag; struct frag_hdr *fh; unsigned int len; len = state->left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > state->mtu) len = state->mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < state->left) len &= ~7; /* Allocate buffer */ frag = alloc_skb(len + state->hlen + sizeof(struct frag_hdr) + state->hroom + state->troom, GFP_ATOMIC); if (!frag) return ERR_PTR(-ENOMEM); /* * Set up data on packet */ ip6_copy_metadata(frag, skb); skb_reserve(frag, state->hroom); skb_put(frag, len + state->hlen + sizeof(struct frag_hdr)); skb_reset_network_header(frag); fh = (struct frag_hdr *)(skb_network_header(frag) + state->hlen); frag->transport_header = (frag->network_header + state->hlen + sizeof(struct frag_hdr)); /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(frag, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(frag), state->hlen); fragnexthdr_offset = skb_network_header(frag); fragnexthdr_offset += prevhdr - skb_network_header(skb); *fragnexthdr_offset = NEXTHDR_FRAGMENT; /* * Build fragment header. */ fh->nexthdr = state->nexthdr; fh->reserved = 0; fh->identification = state->frag_id; /* * Copy a block of the IP datagram. */ BUG_ON(skb_copy_bits(skb, state->ptr, skb_transport_header(frag), len)); state->left -= len; fh->frag_off = htons(state->offset); if (state->left > 0) fh->frag_off |= htons(IP6_MF); ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); state->ptr += len; state->offset += len; return frag; } EXPORT_SYMBOL(ip6_frag_next); int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct sk_buff *frag; struct rt6_info *rt = dst_rt6_info(skb_dst(skb)); struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; u8 tstamp_type = skb->tstamp_type; struct ip6_frag_state state; unsigned int mtu, hlen, nexthdr_offset; ktime_t tstamp = skb->tstamp; int hroom, err = 0; __be32 frag_id; u8 *prevhdr, nexthdr = 0; err = ip6_find_1stfragopt(skb, &prevhdr); if (err < 0) goto fail; hlen = err; nexthdr = *prevhdr; nexthdr_offset = prevhdr - skb_network_header(skb); mtu = ip6_skb_dst_mtu(skb); /* We must not fragment if the socket is set to force MTU discovery * or if the skb it not generated by a local socket. */ if (unlikely(!skb->ignore_df && skb->len > mtu)) goto fail_toobig; if (IP6CB(skb)->frag_max_size) { if (IP6CB(skb)->frag_max_size > mtu) goto fail_toobig; /* don't send fragments larger than what we received */ mtu = IP6CB(skb)->frag_max_size; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; } if (np) { u32 frag_size = READ_ONCE(np->frag_size); if (frag_size && frag_size < mtu) mtu = frag_size; } if (mtu < hlen + sizeof(struct frag_hdr) + 8) goto fail_toobig; mtu -= hlen + sizeof(struct frag_hdr); frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr); if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_checksum_help(skb))) goto fail; prevhdr = skb_network_header(skb) + nexthdr_offset; hroom = LL_RESERVED_SPACE(rt->dst.dev); if (skb_has_frag_list(skb)) { unsigned int first_len = skb_pagelen(skb); struct ip6_fraglist_iter iter; struct sk_buff *frag2; if (first_len - hlen > mtu || ((first_len - hlen) & 7) || skb_cloned(skb) || skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr))) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } err = ip6_fraglist_init(skb, hlen, prevhdr, nexthdr, frag_id, &iter); if (err < 0) goto fail; /* We prevent @rt from being freed. */ rcu_read_lock(); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (iter.frag) ip6_fraglist_prepare(skb, &iter); skb_set_delivery_time(skb, tstamp, tstamp_type); err = output(net, sk, skb); if (!err) IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGCREATES); if (err || !iter.frag) break; skb = ip6_fraglist_next(&iter); } kfree(iter.tmp_hdr); if (err == 0) { IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGOKS); rcu_read_unlock(); return 0; } kfree_skb_list(iter.frag); IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGFAILS); rcu_read_unlock(); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: /* * Fragment the datagram. */ ip6_frag_init(skb, hlen, mtu, rt->dst.dev->needed_tailroom, LL_RESERVED_SPACE(rt->dst.dev), prevhdr, nexthdr, frag_id, &state); /* * Keep copying data until we run out. */ while (state.left > 0) { frag = ip6_frag_next(skb, &state); if (IS_ERR(frag)) { err = PTR_ERR(frag); goto fail; } /* * Put this fragment into the sending queue. */ skb_set_delivery_time(frag, tstamp, tstamp_type); err = output(net, sk, frag); if (err) goto fail; IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGCREATES); } IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGOKS); consume_skb(skb); return err; fail_toobig: icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); err = -EMSGSIZE; fail: IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return err; } static inline int ip6_rt_check(const struct rt6key *rt_key, const struct in6_addr *fl_addr, const struct in6_addr *addr_cache) { return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) && (!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache)); } static struct dst_entry *ip6_sk_dst_check(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6) { struct ipv6_pinfo *np = inet6_sk(sk); struct rt6_info *rt; if (!dst) goto out; if (dst->ops->family != AF_INET6) { dst_release(dst); return NULL; } rt = dst_rt6_info(dst); /* Yes, checking route validity in not connected * case is not very simple. Take into account, * that we do not support routing by source, TOS, * and MSG_DONTROUTE --ANK (980726) * * 1. ip6_rt_check(): If route was host route, * check that cached destination is current. * If it is network route, we still may * check its validity using saved pointer * to the last used address: daddr_cache. * We do not want to save whole address now, * (because main consumer of this service * is tcp, which has not this problem), * so that the last trick works only on connected * sockets. * 2. oif also should be the same. */ if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) || #ifdef CONFIG_IPV6_SUBTREES ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) || #endif (fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex)) { dst_release(dst); dst = NULL; } out: return dst; } static int ip6_dst_lookup_tail(struct net *net, const struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { #ifdef CONFIG_IPV6_OPTIMISTIC_DAD struct neighbour *n; struct rt6_info *rt; #endif int err; int flags = 0; /* The correct way to handle this would be to do * ip6_route_get_saddr, and then ip6_route_output; however, * the route-specific preferred source forces the * ip6_route_output call _before_ ip6_route_get_saddr. * * In source specific routing (no src=any default route), * ip6_route_output will fail given src=any saddr, though, so * that's why we try it again later. */ if (ipv6_addr_any(&fl6->saddr)) { struct fib6_info *from; struct rt6_info *rt; *dst = ip6_route_output(net, sk, fl6); rt = (*dst)->error ? NULL : dst_rt6_info(*dst); rcu_read_lock(); from = rt ? rcu_dereference(rt->from) : NULL; err = ip6_route_get_saddr(net, from, &fl6->daddr, sk ? READ_ONCE(inet6_sk(sk)->srcprefs) : 0, fl6->flowi6_l3mdev, &fl6->saddr); rcu_read_unlock(); if (err) goto out_err_release; /* If we had an erroneous initial result, pretend it * never existed and let the SA-enabled version take * over. */ if ((*dst)->error) { dst_release(*dst); *dst = NULL; } if (fl6->flowi6_oif) flags |= RT6_LOOKUP_F_IFACE; } if (!*dst) *dst = ip6_route_output_flags(net, sk, fl6, flags); err = (*dst)->error; if (err) goto out_err_release; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * Here if the dst entry we've looked up * has a neighbour entry that is in the INCOMPLETE * state and the src address from the flow is * marked as OPTIMISTIC, we release the found * dst entry and replace it instead with the * dst entry of the nexthop router */ rt = dst_rt6_info(*dst); rcu_read_lock(); n = __ipv6_neigh_lookup_noref(rt->dst.dev, rt6_nexthop(rt, &fl6->daddr)); err = n && !(READ_ONCE(n->nud_state) & NUD_VALID) ? -EINVAL : 0; rcu_read_unlock(); if (err) { struct inet6_ifaddr *ifp; struct flowi6 fl_gw6; int redirect; ifp = ipv6_get_ifaddr(net, &fl6->saddr, (*dst)->dev, 1); redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC); if (ifp) in6_ifa_put(ifp); if (redirect) { /* * We need to get the dst entry for the * default router instead */ dst_release(*dst); memcpy(&fl_gw6, fl6, sizeof(struct flowi6)); memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr)); *dst = ip6_route_output(net, sk, &fl_gw6); err = (*dst)->error; if (err) goto out_err_release; } } #endif if (ipv6_addr_v4mapped(&fl6->saddr) && !(ipv6_addr_v4mapped(&fl6->daddr) || ipv6_addr_any(&fl6->daddr))) { err = -EAFNOSUPPORT; goto out_err_release; } return 0; out_err_release: dst_release(*dst); *dst = NULL; if (err == -ENETUNREACH) IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES); return err; } /** * ip6_dst_lookup - perform route lookup on flow * @net: Network namespace to perform lookup in * @sk: socket which provides route info * @dst: pointer to dst_entry * for result * @fl6: flow to lookup * * This function performs a route lookup on the given flow. * * It returns zero on success, or a standard errno code on error. */ int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { *dst = NULL; return ip6_dst_lookup_tail(net, sk, dst, fl6); } EXPORT_SYMBOL_GPL(ip6_dst_lookup); /** * ip6_dst_lookup_flow - perform route lookup on flow with ipsec * @net: Network namespace to perform lookup in * @sk: socket which provides route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * * This function performs a route lookup on the given flow. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { struct dst_entry *dst = NULL; int err; err = ip6_dst_lookup_tail(net, sk, &dst, fl6); if (err) return ERR_PTR(err); if (final_dst) fl6->daddr = *final_dst; return xfrm_lookup_route(net, dst, flowi6_to_flowi(fl6), sk, 0); } EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow); /** * ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow * @sk: socket which provides the dst cache and route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * @connected: whether @sk is connected or not * * This function performs a route lookup on the given flow with the * possibility of using the cached route in the socket if it is valid. * It will take the socket dst lock when operating on the dst cache. * As a result, this function can only be used in process context. * * In addition, for a connected socket, cache the dst in the socket * if the current cache is not valid. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst, bool connected) { struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie); dst = ip6_sk_dst_check(sk, dst, fl6); if (dst) return dst; dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_dst); if (connected && !IS_ERR(dst)) ip6_sk_dst_store_flow(sk, dst_clone(dst), fl6); return dst; } EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow); static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static void ip6_append_data_mtu(unsigned int *mtu, int *maxfraglen, unsigned int fragheaderlen, struct sk_buff *skb, struct rt6_info *rt, unsigned int orig_mtu) { if (!(rt->dst.flags & DST_XFRM_TUNNEL)) { if (!skb) { /* first fragment, reserve header_len */ *mtu = orig_mtu - rt->dst.header_len; } else { /* * this fragment is not first, the headers * space is regarded as data space. */ *mtu = orig_mtu; } *maxfraglen = ((*mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); } } static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork, struct inet6_cork *v6_cork, struct ipcm6_cookie *ipc6, struct rt6_info *rt) { struct ipv6_pinfo *np = inet6_sk(sk); unsigned int mtu, frag_size; struct ipv6_txoptions *nopt, *opt = ipc6->opt; /* callers pass dst together with a reference, set it first so * ip6_cork_release() can put it down even in case of an error. */ cork->base.dst = &rt->dst; /* * setup for corking */ if (opt) { if (WARN_ON(v6_cork->opt)) return -EINVAL; nopt = v6_cork->opt = kzalloc(sizeof(*opt), sk->sk_allocation); if (unlikely(!nopt)) return -ENOBUFS; nopt->tot_len = sizeof(*opt); nopt->opt_flen = opt->opt_flen; nopt->opt_nflen = opt->opt_nflen; nopt->dst0opt = ip6_opt_dup(opt->dst0opt, sk->sk_allocation); if (opt->dst0opt && !nopt->dst0opt) return -ENOBUFS; nopt->dst1opt = ip6_opt_dup(opt->dst1opt, sk->sk_allocation); if (opt->dst1opt && !nopt->dst1opt) return -ENOBUFS; nopt->hopopt = ip6_opt_dup(opt->hopopt, sk->sk_allocation); if (opt->hopopt && !nopt->hopopt) return -ENOBUFS; nopt->srcrt = ip6_rthdr_dup(opt->srcrt, sk->sk_allocation); if (opt->srcrt && !nopt->srcrt) return -ENOBUFS; /* need source address above miyazawa*/ } v6_cork->hop_limit = ipc6->hlimit; v6_cork->tclass = ipc6->tclass; if (rt->dst.flags & DST_XFRM_TUNNEL) mtu = READ_ONCE(np->pmtudisc) >= IPV6_PMTUDISC_PROBE ? READ_ONCE(rt->dst.dev->mtu) : dst_mtu(&rt->dst); else mtu = READ_ONCE(np->pmtudisc) >= IPV6_PMTUDISC_PROBE ? READ_ONCE(rt->dst.dev->mtu) : dst_mtu(xfrm_dst_path(&rt->dst)); frag_size = READ_ONCE(np->frag_size); if (frag_size && frag_size < mtu) mtu = frag_size; cork->base.fragsize = mtu; cork->base.gso_size = ipc6->gso_size; cork->base.tx_flags = 0; cork->base.mark = ipc6->sockc.mark; sock_tx_timestamp(sk, &ipc6->sockc, &cork->base.tx_flags); if (ipc6->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) { cork->base.flags |= IPCORK_TS_OPT_ID; cork->base.ts_opt_id = ipc6->sockc.ts_opt_id; } cork->base.length = 0; cork->base.transmit_time = ipc6->sockc.transmit_time; return 0; } static int __ip6_append_data(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork_full, struct inet6_cork *v6_cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, size_t length, int transhdrlen, unsigned int flags, struct ipcm6_cookie *ipc6) { struct sk_buff *skb, *skb_prev = NULL; struct inet_cork *cork = &cork_full->base; struct flowi6 *fl6 = &cork_full->fl.u.ip6; unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu, pmtu; struct ubuf_info *uarg = NULL; int exthdrlen = 0; int dst_exthdrlen = 0; int hh_len; int copy; int err; int offset = 0; bool zc = false; u32 tskey = 0; struct rt6_info *rt = dst_rt6_info(cork->dst); bool paged, hold_tskey = false, extra_uref = false; struct ipv6_txoptions *opt = v6_cork->opt; int csummode = CHECKSUM_NONE; unsigned int maxnonfragsize, headersize; unsigned int wmem_alloc_delta = 0; skb = skb_peek_tail(queue); if (!skb) { exthdrlen = opt ? opt->opt_flen : 0; dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; } paged = !!cork->gso_size; mtu = cork->gso_size ? IP6_MAX_MTU : cork->fragsize; orig_mtu = mtu; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + (opt ? opt->opt_nflen : 0); headersize = sizeof(struct ipv6hdr) + (opt ? opt->opt_flen + opt->opt_nflen : 0) + rt->rt6i_nfheader_len; if (mtu <= fragheaderlen || ((mtu - fragheaderlen) & ~7) + fragheaderlen <= sizeof(struct frag_hdr)) goto emsgsize; maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); /* as per RFC 7112 section 5, the entire IPv6 Header Chain must fit * the first fragment */ if (headersize + transhdrlen > mtu) goto emsgsize; if (cork->length + length > mtu - headersize && ipc6->dontfrag && (sk->sk_protocol == IPPROTO_UDP || sk->sk_protocol == IPPROTO_ICMPV6 || sk->sk_protocol == IPPROTO_RAW)) { ipv6_local_rxpmtu(sk, fl6, mtu - headersize + sizeof(struct ipv6hdr)); goto emsgsize; } if (ip6_sk_ignore_df(sk)) maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; else maxnonfragsize = mtu; if (cork->length + length > maxnonfragsize - headersize) { emsgsize: pmtu = max_t(int, mtu - headersize + sizeof(struct ipv6hdr), 0); ipv6_local_error(sk, EMSGSIZE, fl6, pmtu); return -EMSGSIZE; } /* CHECKSUM_PARTIAL only with no extension headers and when * we are not going to fragment */ if (transhdrlen && sk->sk_protocol == IPPROTO_UDP && headersize == sizeof(struct ipv6hdr) && length <= mtu - headersize && (!(flags & MSG_MORE) || cork->gso_size) && rt->dst.dev->features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) csummode = CHECKSUM_PARTIAL; if ((flags & MSG_ZEROCOPY) && length) { struct msghdr *msg = from; if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) return -EINVAL; /* Leave uarg NULL if can't zerocopy, callers should * be able to handle it. */ if ((rt->dst.dev->features & NETIF_F_SG) && csummode == CHECKSUM_PARTIAL) { paged = true; zc = true; uarg = msg->msg_ubuf; } } else if (sock_flag(sk, SOCK_ZEROCOPY)) { uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); if (!uarg) return -ENOBUFS; extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ if (rt->dst.dev->features & NETIF_F_SG && csummode == CHECKSUM_PARTIAL) { paged = true; zc = true; } else { uarg_to_msgzc(uarg)->zerocopy = 0; skb_zcopy_set(skb, uarg, &extra_uref); } } } else if ((flags & MSG_SPLICE_PAGES) && length) { if (inet_test_bit(HDRINCL, sk)) return -EPERM; if (rt->dst.dev->features & NETIF_F_SG && getfrag == ip_generic_getfrag) /* We need an empty buffer to attach stuff to */ paged = true; else flags &= ~MSG_SPLICE_PAGES; } if (cork->tx_flags & SKBTX_ANY_TSTAMP && READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { if (cork->flags & IPCORK_TS_OPT_ID) { tskey = cork->ts_opt_id; } else { tskey = atomic_inc_return(&sk->sk_tskey) - 1; hold_tskey = true; } } /* * Let's try using as much space as possible. * Use MTU if total length of the message fits into the MTU. * Otherwise, we need to reserve fragment header and * fragment alignment (= 8-15 octects, in total). * * Note that we may need to "move" the data from the tail * of the buffer to the new fragment when we split * the message. * * FIXME: It may be fragmented into multiple chunks * at once if non-fragmentable extension headers * are too large. * --yoshfuji */ cork->length += length; if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = (cork->length <= mtu ? mtu : maxfraglen) - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen, alloc_extra; unsigned int pagedlen; alloc_new_skb: /* There's no room in the current skb */ if (skb) fraggap = skb->len - maxfraglen; else fraggap = 0; /* update mtu and maxfraglen if necessary */ if (!skb || !skb_prev) ip6_append_data_mtu(&mtu, &maxfraglen, fragheaderlen, skb, rt, orig_mtu); skb_prev = skb; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > (cork->length <= mtu ? mtu : maxfraglen) - fragheaderlen) datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; fraglen = datalen + fragheaderlen; pagedlen = 0; alloc_extra = hh_len; alloc_extra += dst_exthdrlen; alloc_extra += rt->dst.trailer_len; /* We just reserve space for fragment header. * Note: this may be overallocation if the message * (without MSG_MORE) fits into the MTU. */ alloc_extra += sizeof(struct frag_hdr); if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else if (!paged && (fraglen + alloc_extra < SKB_MAX_ALLOC || !(rt->dst.dev->features & NETIF_F_SG))) alloclen = fraglen; else { alloclen = fragheaderlen + transhdrlen; pagedlen = datalen - transhdrlen; } alloclen += alloc_extra; if (datalen != length + fraggap) { /* * this is not the last fragment, the trailer * space is regarded as data space. */ datalen += rt->dst.trailer_len; } fraglen = datalen + fragheaderlen; copy = datalen - transhdrlen - fraggap - pagedlen; /* [!] NOTE: copy may be negative if pagedlen>0 * because then the equation may reduces to -fraggap. */ if (copy < 0 && !(flags & MSG_SPLICE_PAGES)) { err = -EINVAL; goto error; } if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 2 * sk->sk_sndbuf) skb = alloc_skb(alloclen, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = csummode; skb->csum = 0; /* reserve for fragmentation and ipsec header */ skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + dst_exthdrlen); /* * Find where to start putting bytes */ data = skb_put(skb, fraglen - pagedlen); skb_set_network_header(skb, exthdrlen); data += fragheaderlen; skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } else if (flags & MSG_SPLICE_PAGES) { copy = 0; } offset += copy; length -= copy + transhdrlen; transhdrlen = 0; exthdrlen = 0; dst_exthdrlen = 0; /* Only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = cork->tx_flags; cork->tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; skb_zcopy_set(skb, uarg, &extra_uref); if ((flags & MSG_CONFIRM) && !skb_prev) skb_set_dst_pending_confirm(skb, 1); /* * Put the packet on the pending queue */ if (!skb->destructor) { skb->destructor = sock_wfree; skb->sk = sk; wmem_alloc_delta += skb->truesize; } __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG) && skb_tailroom(skb) >= copy) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else if (flags & MSG_SPLICE_PAGES) { struct msghdr *msg = from; err = -EIO; if (WARN_ON_ONCE(copy > msg->msg_iter.count)) goto error; err = skb_splice_from_iter(skb, &msg->msg_iter, copy, sk->sk_allocation); if (err < 0) goto error; copy = err; wmem_alloc_delta += copy; } else if (!zc) { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; skb_zcopy_downgrade_managed(skb); if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; wmem_alloc_delta += copy; } else { err = skb_zerocopy_iter_dgram(skb, from, copy); if (err < 0) goto error; } offset += copy; length -= copy; } if (wmem_alloc_delta) refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return 0; error_efault: err = -EFAULT; error: net_zcopy_put_abort(uarg, extra_uref); cork->length -= length; IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); if (hold_tskey) atomic_dec(&sk->sk_tskey); return err; } int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, size_t length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); int exthdrlen; int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { /* * setup for corking */ dst_hold(&rt->dst); err = ip6_setup_cork(sk, &inet->cork, &np->cork, ipc6, rt); if (err) return err; inet->cork.fl.u.ip6 = *fl6; exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); length += exthdrlen; transhdrlen += exthdrlen; } else { transhdrlen = 0; } return __ip6_append_data(sk, &sk->sk_write_queue, &inet->cork, &np->cork, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags, ipc6); } EXPORT_SYMBOL_GPL(ip6_append_data); static void ip6_cork_steal_dst(struct sk_buff *skb, struct inet_cork_full *cork) { struct dst_entry *dst = cork->base.dst; cork->base.dst = NULL; skb_dst_set(skb, dst); } static void ip6_cork_release(struct inet_cork_full *cork, struct inet6_cork *v6_cork) { if (v6_cork->opt) { struct ipv6_txoptions *opt = v6_cork->opt; kfree(opt->dst0opt); kfree(opt->dst1opt); kfree(opt->hopopt); kfree(opt->srcrt); kfree(opt); v6_cork->opt = NULL; } if (cork->base.dst) { dst_release(cork->base.dst); cork->base.dst = NULL; } } struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct in6_addr *final_dst; struct net *net = sock_net(sk); struct ipv6hdr *hdr; struct ipv6_txoptions *opt = v6_cork->opt; struct rt6_info *rt = dst_rt6_info(cork->base.dst); struct flowi6 *fl6 = &cork->fl.u.ip6; unsigned char proto = fl6->flowi6_proto; skb = __skb_dequeue(queue); if (!skb) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Allow local fragmentation. */ skb->ignore_df = ip6_sk_ignore_df(sk); __skb_pull(skb, skb_network_header_len(skb)); final_dst = &fl6->daddr; if (opt && opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt && opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst, &fl6->saddr); skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, v6_cork->tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, ip6_autoflowlabel(net, sk), fl6)); hdr->hop_limit = v6_cork->hop_limit; hdr->nexthdr = proto; hdr->saddr = fl6->saddr; hdr->daddr = *final_dst; skb->priority = READ_ONCE(sk->sk_priority); skb->mark = cork->base.mark; if (sk_is_tcp(sk)) skb_set_delivery_time(skb, cork->base.transmit_time, SKB_CLOCK_MONOTONIC); else skb_set_delivery_type_by_clockid(skb, cork->base.transmit_time, sk->sk_clockid); ip6_cork_steal_dst(skb, cork); IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTREQUESTS); if (proto == IPPROTO_ICMPV6) { struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); u8 icmp6_type; if (sk->sk_socket->type == SOCK_RAW && !(fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH)) icmp6_type = fl6->fl6_icmp_type; else icmp6_type = icmp6_hdr(skb)->icmp6_type; ICMP6MSGOUT_INC_STATS(net, idev, icmp6_type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } ip6_cork_release(cork, v6_cork); out: return skb; } int ip6_send_skb(struct sk_buff *skb) { struct net *net = sock_net(skb->sk); struct rt6_info *rt = dst_rt6_info(skb_dst(skb)); int err; rcu_read_lock(); err = ip6_local_out(net, skb->sk, skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); } rcu_read_unlock(); return err; } int ip6_push_pending_frames(struct sock *sk) { struct sk_buff *skb; skb = ip6_finish_skb(sk); if (!skb) return 0; return ip6_send_skb(skb); } EXPORT_SYMBOL_GPL(ip6_push_pending_frames); static void __ip6_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) { if (skb_dst(skb)) IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); } ip6_cork_release(cork, v6_cork); } void ip6_flush_pending_frames(struct sock *sk) { __ip6_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, &inet6_sk(sk)->cork); } EXPORT_SYMBOL_GPL(ip6_flush_pending_frames); struct sk_buff *ip6_make_skb(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, size_t length, int transhdrlen, struct ipcm6_cookie *ipc6, struct rt6_info *rt, unsigned int flags, struct inet_cork_full *cork) { struct inet6_cork v6_cork; struct sk_buff_head queue; int exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); int err; if (flags & MSG_PROBE) { dst_release(&rt->dst); return NULL; } __skb_queue_head_init(&queue); cork->base.flags = 0; cork->base.addr = 0; cork->base.opt = NULL; v6_cork.opt = NULL; err = ip6_setup_cork(sk, cork, &v6_cork, ipc6, rt); if (err) { ip6_cork_release(cork, &v6_cork); return ERR_PTR(err); } if (ipc6->dontfrag < 0) ipc6->dontfrag = inet6_test_bit(DONTFRAG, sk); err = __ip6_append_data(sk, &queue, cork, &v6_cork, ¤t->task_frag, getfrag, from, length + exthdrlen, transhdrlen + exthdrlen, flags, ipc6); if (err) { __ip6_flush_pending_frames(sk, &queue, cork, &v6_cork); return ERR_PTR(err); } return __ip6_make_skb(sk, &queue, cork, &v6_cork); } |
15439 2 163 15439 2 163 4379 15439 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_IRQFLAGS_H_ #define _X86_IRQFLAGS_H_ #include <asm/processor-flags.h> #ifndef __ASSEMBLY__ #include <asm/nospec-branch.h> /* * Interrupt control: */ /* Declaration required for gcc < 4.9 to prevent -Werror=missing-prototypes */ extern inline unsigned long native_save_fl(void); extern __always_inline unsigned long native_save_fl(void) { unsigned long flags; /* * "=rm" is safe here, because "pop" adjusts the stack before * it evaluates its effective address -- this is part of the * documented behavior of the "pop" instruction. */ asm volatile("# __raw_save_flags\n\t" "pushf ; pop %0" : "=rm" (flags) : /* no input */ : "memory"); return flags; } static __always_inline void native_irq_disable(void) { asm volatile("cli": : :"memory"); } static __always_inline void native_irq_enable(void) { asm volatile("sti": : :"memory"); } static __always_inline void native_safe_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("sti; hlt": : :"memory"); } static __always_inline void native_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("hlt": : :"memory"); } static __always_inline int native_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline unsigned long native_local_irq_save(void) { unsigned long flags = native_save_fl(); native_irq_disable(); return flags; } static __always_inline void native_local_irq_restore(unsigned long flags) { if (!native_irqs_disabled_flags(flags)) native_irq_enable(); } #endif #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #ifndef __ASSEMBLY__ #include <linux/types.h> static __always_inline unsigned long arch_local_save_flags(void) { return native_save_fl(); } static __always_inline void arch_local_irq_disable(void) { native_irq_disable(); } static __always_inline void arch_local_irq_enable(void) { native_irq_enable(); } /* * Used in the idle loop; sti takes one instruction cycle * to complete: */ static __always_inline void arch_safe_halt(void) { native_safe_halt(); } /* * Used when interrupts are already enabled or to * shutdown the processor: */ static __always_inline void halt(void) { native_halt(); } /* * For spinlocks, etc: */ static __always_inline unsigned long arch_local_irq_save(void) { unsigned long flags = arch_local_save_flags(); arch_local_irq_disable(); return flags; } #else #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS pushfq; popq %rax #endif #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT_XXL */ #ifndef __ASSEMBLY__ static __always_inline int arch_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline int arch_irqs_disabled(void) { unsigned long flags = arch_local_save_flags(); return arch_irqs_disabled_flags(flags); } static __always_inline void arch_local_irq_restore(unsigned long flags) { if (!arch_irqs_disabled_flags(flags)) arch_local_irq_enable(); } #endif /* !__ASSEMBLY__ */ #endif |
256 171 157 33 8 8 358 18 17 2 2 4 4 3 2 3 3 3 4 4 4 3 3 250 254 5 8 13 260 251 255 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> * * Scatterlist handling helpers. */ #include <linux/export.h> #include <linux/slab.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <linux/kmemleak.h> #include <linux/bvec.h> #include <linux/uio.h> #include <linux/folio_queue.h> /** * sg_next - return the next scatterlist entry in a list * @sg: The current sg entry * * Description: * Usually the next entry will be @sg@ + 1, but if this sg element is part * of a chained scatterlist, it could jump to the start of a new * scatterlist array. * **/ struct scatterlist *sg_next(struct scatterlist *sg) { if (sg_is_last(sg)) return NULL; sg++; if (unlikely(sg_is_chain(sg))) sg = sg_chain_ptr(sg); return sg; } EXPORT_SYMBOL(sg_next); /** * sg_nents - return total count of entries in scatterlist * @sg: The scatterlist * * Description: * Allows to know how many entries are in sg, taking into account * chaining as well * **/ int sg_nents(struct scatterlist *sg) { int nents; for (nents = 0; sg; sg = sg_next(sg)) nents++; return nents; } EXPORT_SYMBOL(sg_nents); /** * sg_nents_for_len - return total count of entries in scatterlist * needed to satisfy the supplied length * @sg: The scatterlist * @len: The total required length * * Description: * Determines the number of entries in sg that are required to meet * the supplied length, taking into account chaining as well * * Returns: * the number of sg entries needed, negative error on failure * **/ int sg_nents_for_len(struct scatterlist *sg, u64 len) { int nents; u64 total; if (!len) return 0; for (nents = 0, total = 0; sg; sg = sg_next(sg)) { nents++; total += sg->length; if (total >= len) return nents; } return -EINVAL; } EXPORT_SYMBOL(sg_nents_for_len); /** * sg_last - return the last scatterlist entry in a list * @sgl: First entry in the scatterlist * @nents: Number of entries in the scatterlist * * Description: * Should only be used casually, it (currently) scans the entire list * to get the last entry. * * Note that the @sgl@ pointer passed in need not be the first one, * the important bit is that @nents@ denotes the number of entries that * exist from @sgl@. * **/ struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) { struct scatterlist *sg, *ret = NULL; unsigned int i; for_each_sg(sgl, sg, nents, i) ret = sg; BUG_ON(!sg_is_last(ret)); return ret; } EXPORT_SYMBOL(sg_last); /** * sg_init_table - Initialize SG table * @sgl: The SG table * @nents: Number of entries in table * * Notes: * If this is part of a chained sg table, sg_mark_end() should be * used only on the last table part. * **/ void sg_init_table(struct scatterlist *sgl, unsigned int nents) { memset(sgl, 0, sizeof(*sgl) * nents); sg_init_marker(sgl, nents); } EXPORT_SYMBOL(sg_init_table); /** * sg_init_one - Initialize a single entry sg list * @sg: SG entry * @buf: Virtual address for IO * @buflen: IO length * **/ void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) { sg_init_table(sg, 1); sg_set_buf(sg, buf, buflen); } EXPORT_SYMBOL(sg_init_one); /* * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree * helpers. */ static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) { if (nents == SG_MAX_SINGLE_ALLOC) { /* * Kmemleak doesn't track page allocations as they are not * commonly used (in a raw form) for kernel data structures. * As we chain together a list of pages and then a normal * kmalloc (tracked by kmemleak), in order to for that last * allocation not to become decoupled (and thus a * false-positive) we need to inform kmemleak of all the * intermediate allocations. */ void *ptr = (void *) __get_free_page(gfp_mask); kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask); return ptr; } else return kmalloc_array(nents, sizeof(struct scatterlist), gfp_mask); } static void sg_kfree(struct scatterlist *sg, unsigned int nents) { if (nents == SG_MAX_SINGLE_ALLOC) { kmemleak_free(sg); free_page((unsigned long) sg); } else kfree(sg); } /** * __sg_free_table - Free a previously mapped sg table * @table: The sg table header to use * @max_ents: The maximum number of entries per single scatterlist * @nents_first_chunk: Number of entries int the (preallocated) first * scatterlist chunk, 0 means no such preallocated first chunk * @free_fn: Free function * @num_ents: Number of entries in the table * * Description: * Free an sg table previously allocated and setup with * __sg_alloc_table(). The @max_ents value must be identical to * that previously used with __sg_alloc_table(). * **/ void __sg_free_table(struct sg_table *table, unsigned int max_ents, unsigned int nents_first_chunk, sg_free_fn *free_fn, unsigned int num_ents) { struct scatterlist *sgl, *next; unsigned curr_max_ents = nents_first_chunk ?: max_ents; if (unlikely(!table->sgl)) return; sgl = table->sgl; while (num_ents) { unsigned int alloc_size = num_ents; unsigned int sg_size; /* * If we have more than max_ents segments left, * then assign 'next' to the sg table after the current one. * sg_size is then one less than alloc size, since the last * element is the chain pointer. */ if (alloc_size > curr_max_ents) { next = sg_chain_ptr(&sgl[curr_max_ents - 1]); alloc_size = curr_max_ents; sg_size = alloc_size - 1; } else { sg_size = alloc_size; next = NULL; } num_ents -= sg_size; if (nents_first_chunk) nents_first_chunk = 0; else free_fn(sgl, alloc_size); sgl = next; curr_max_ents = max_ents; } table->sgl = NULL; } EXPORT_SYMBOL(__sg_free_table); /** * sg_free_append_table - Free a previously allocated append sg table. * @table: The mapped sg append table header * **/ void sg_free_append_table(struct sg_append_table *table) { __sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree, table->total_nents); } EXPORT_SYMBOL(sg_free_append_table); /** * sg_free_table - Free a previously allocated sg table * @table: The mapped sg table header * **/ void sg_free_table(struct sg_table *table) { __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree, table->orig_nents); } EXPORT_SYMBOL(sg_free_table); /** * __sg_alloc_table - Allocate and initialize an sg table with given allocator * @table: The sg table header to use * @nents: Number of entries in sg list * @max_ents: The maximum number of entries the allocator returns per call * @first_chunk: first SGL if preallocated (may be %NULL) * @nents_first_chunk: Number of entries in the (preallocated) first * scatterlist chunk, 0 means no such preallocated chunk provided by user * @gfp_mask: GFP allocation mask * @alloc_fn: Allocator to use * * Description: * This function returns a @table @nents long. The allocator is * defined to return scatterlist chunks of maximum size @max_ents. * Thus if @nents is bigger than @max_ents, the scatterlists will be * chained in units of @max_ents. * * Notes: * If this function returns non-0 (eg failure), the caller must call * __sg_free_table() to cleanup any leftover allocations. * **/ int __sg_alloc_table(struct sg_table *table, unsigned int nents, unsigned int max_ents, struct scatterlist *first_chunk, unsigned int nents_first_chunk, gfp_t gfp_mask, sg_alloc_fn *alloc_fn) { struct scatterlist *sg, *prv; unsigned int left; unsigned curr_max_ents = nents_first_chunk ?: max_ents; unsigned prv_max_ents; memset(table, 0, sizeof(*table)); if (nents == 0) return -EINVAL; #ifdef CONFIG_ARCH_NO_SG_CHAIN if (WARN_ON_ONCE(nents > max_ents)) return -EINVAL; #endif left = nents; prv = NULL; do { unsigned int sg_size, alloc_size = left; if (alloc_size > curr_max_ents) { alloc_size = curr_max_ents; sg_size = alloc_size - 1; } else sg_size = alloc_size; left -= sg_size; if (first_chunk) { sg = first_chunk; first_chunk = NULL; } else { sg = alloc_fn(alloc_size, gfp_mask); } if (unlikely(!sg)) { /* * Adjust entry count to reflect that the last * entry of the previous table won't be used for * linkage. Without this, sg_kfree() may get * confused. */ if (prv) table->nents = ++table->orig_nents; return -ENOMEM; } sg_init_table(sg, alloc_size); table->nents = table->orig_nents += sg_size; /* * If this is the first mapping, assign the sg table header. * If this is not the first mapping, chain previous part. */ if (prv) sg_chain(prv, prv_max_ents, sg); else table->sgl = sg; /* * If no more entries after this one, mark the end */ if (!left) sg_mark_end(&sg[sg_size - 1]); prv = sg; prv_max_ents = curr_max_ents; curr_max_ents = max_ents; } while (left); return 0; } EXPORT_SYMBOL(__sg_alloc_table); /** * sg_alloc_table - Allocate and initialize an sg table * @table: The sg table header to use * @nents: Number of entries in sg list * @gfp_mask: GFP allocation mask * * Description: * Allocate and initialize an sg table. If @nents@ is larger than * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. * **/ int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) { int ret; ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, NULL, 0, gfp_mask, sg_kmalloc); if (unlikely(ret)) sg_free_table(table); return ret; } EXPORT_SYMBOL(sg_alloc_table); static struct scatterlist *get_next_sg(struct sg_append_table *table, struct scatterlist *cur, unsigned long needed_sges, gfp_t gfp_mask) { struct scatterlist *new_sg, *next_sg; unsigned int alloc_size; if (cur) { next_sg = sg_next(cur); /* Check if last entry should be keeped for chainning */ if (!sg_is_last(next_sg) || needed_sges == 1) return next_sg; } alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC); new_sg = sg_kmalloc(alloc_size, gfp_mask); if (!new_sg) return ERR_PTR(-ENOMEM); sg_init_table(new_sg, alloc_size); if (cur) { table->total_nents += alloc_size - 1; __sg_chain(next_sg, new_sg); } else { table->sgt.sgl = new_sg; table->total_nents = alloc_size; } return new_sg; } static bool pages_are_mergeable(struct page *a, struct page *b) { if (page_to_pfn(a) != page_to_pfn(b) + 1) return false; if (!zone_device_pages_have_same_pgmap(a, b)) return false; return true; } /** * sg_alloc_append_table_from_pages - Allocate and initialize an append sg * table from an array of pages * @sgt_append: The sg append table to use * @pages: Pointer to an array of page pointers * @n_pages: Number of pages in the pages array * @offset: Offset from start of the first page to the start of a buffer * @size: Number of valid bytes in the buffer (after offset) * @max_segment: Maximum size of a scatterlist element in bytes * @left_pages: Left pages caller have to set after this call * @gfp_mask: GFP allocation mask * * Description: * In the first call it allocate and initialize an sg table from a list of * pages, else reuse the scatterlist from sgt_append. Contiguous ranges of * the pages are squashed into a single scatterlist entry up to the maximum * size specified in @max_segment. A user may provide an offset at a start * and a size of valid data in a buffer specified by the page array. The * returned sg table is released by sg_free_append_table * * Returns: * 0 on success, negative error on failure * * Notes: * If this function returns non-0 (eg failure), the caller must call * sg_free_append_table() to cleanup any leftover allocations. * * In the fist call, sgt_append must by initialized. */ int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, unsigned int left_pages, gfp_t gfp_mask) { unsigned int chunks, cur_page, seg_len, i, prv_len = 0; unsigned int added_nents = 0; struct scatterlist *s = sgt_append->prv; struct page *last_pg; /* * The algorithm below requires max_segment to be aligned to PAGE_SIZE * otherwise it can overshoot. */ max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE); if (WARN_ON(max_segment < PAGE_SIZE)) return -EINVAL; if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv) return -EOPNOTSUPP; if (sgt_append->prv) { unsigned long next_pfn; if (WARN_ON(offset)) return -EINVAL; /* Merge contiguous pages into the last SG */ prv_len = sgt_append->prv->length; next_pfn = (sg_phys(sgt_append->prv) + prv_len) / PAGE_SIZE; if (page_to_pfn(pages[0]) == next_pfn) { last_pg = pfn_to_page(next_pfn - 1); while (n_pages && pages_are_mergeable(pages[0], last_pg)) { if (sgt_append->prv->length + PAGE_SIZE > max_segment) break; sgt_append->prv->length += PAGE_SIZE; last_pg = pages[0]; pages++; n_pages--; } if (!n_pages) goto out; } } /* compute number of contiguous chunks */ chunks = 1; seg_len = 0; for (i = 1; i < n_pages; i++) { seg_len += PAGE_SIZE; if (seg_len >= max_segment || !pages_are_mergeable(pages[i], pages[i - 1])) { chunks++; seg_len = 0; } } /* merging chunks and putting them into the scatterlist */ cur_page = 0; for (i = 0; i < chunks; i++) { unsigned int j, chunk_size; /* look for the end of the current chunk */ seg_len = 0; for (j = cur_page + 1; j < n_pages; j++) { seg_len += PAGE_SIZE; if (seg_len >= max_segment || !pages_are_mergeable(pages[j], pages[j - 1])) break; } /* Pass how many chunks might be left */ s = get_next_sg(sgt_append, s, chunks - i + left_pages, gfp_mask); if (IS_ERR(s)) { /* * Adjust entry length to be as before function was * called. */ if (sgt_append->prv) sgt_append->prv->length = prv_len; return PTR_ERR(s); } chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset; sg_set_page(s, pages[cur_page], min_t(unsigned long, size, chunk_size), offset); added_nents++; size -= chunk_size; offset = 0; cur_page = j; } sgt_append->sgt.nents += added_nents; sgt_append->sgt.orig_nents = sgt_append->sgt.nents; sgt_append->prv = s; out: if (!left_pages) sg_mark_end(s); return 0; } EXPORT_SYMBOL(sg_alloc_append_table_from_pages); /** * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from * an array of pages and given maximum * segment. * @sgt: The sg table header to use * @pages: Pointer to an array of page pointers * @n_pages: Number of pages in the pages array * @offset: Offset from start of the first page to the start of a buffer * @size: Number of valid bytes in the buffer (after offset) * @max_segment: Maximum size of a scatterlist element in bytes * @gfp_mask: GFP allocation mask * * Description: * Allocate and initialize an sg table from a list of pages. Contiguous * ranges of the pages are squashed into a single scatterlist node up to the * maximum size specified in @max_segment. A user may provide an offset at a * start and a size of valid data in a buffer specified by the page array. * * The returned sg table is released by sg_free_table. * * Returns: * 0 on success, negative error on failure */ int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, gfp_t gfp_mask) { struct sg_append_table append = {}; int err; err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset, size, max_segment, 0, gfp_mask); if (err) { sg_free_append_table(&append); return err; } memcpy(sgt, &append.sgt, sizeof(*sgt)); WARN_ON(append.total_nents != sgt->orig_nents); return 0; } EXPORT_SYMBOL(sg_alloc_table_from_pages_segment); #ifdef CONFIG_SGL_ALLOC /** * sgl_alloc_order - allocate a scatterlist and its pages * @length: Length in bytes of the scatterlist. Must be at least one * @order: Second argument for alloc_pages() * @chainable: Whether or not to allocate an extra element in the scatterlist * for scatterlist chaining purposes * @gfp: Memory allocation flags * @nent_p: [out] Number of entries in the scatterlist that have pages * * Returns: A pointer to an initialized scatterlist or %NULL upon failure. */ struct scatterlist *sgl_alloc_order(unsigned long long length, unsigned int order, bool chainable, gfp_t gfp, unsigned int *nent_p) { struct scatterlist *sgl, *sg; struct page *page; unsigned int nent, nalloc; u32 elem_len; nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order); /* Check for integer overflow */ if (length > (nent << (PAGE_SHIFT + order))) return NULL; nalloc = nent; if (chainable) { /* Check for integer overflow */ if (nalloc + 1 < nalloc) return NULL; nalloc++; } sgl = kmalloc_array(nalloc, sizeof(struct scatterlist), gfp & ~GFP_DMA); if (!sgl) return NULL; sg_init_table(sgl, nalloc); sg = sgl; while (length) { elem_len = min_t(u64, length, PAGE_SIZE << order); page = alloc_pages(gfp, order); if (!page) { sgl_free_order(sgl, order); return NULL; } sg_set_page(sg, page, elem_len, 0); length -= elem_len; sg = sg_next(sg); } WARN_ONCE(length, "length = %lld\n", length); if (nent_p) *nent_p = nent; return sgl; } EXPORT_SYMBOL(sgl_alloc_order); /** * sgl_alloc - allocate a scatterlist and its pages * @length: Length in bytes of the scatterlist * @gfp: Memory allocation flags * @nent_p: [out] Number of entries in the scatterlist * * Returns: A pointer to an initialized scatterlist or %NULL upon failure. */ struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, unsigned int *nent_p) { return sgl_alloc_order(length, 0, false, gfp, nent_p); } EXPORT_SYMBOL(sgl_alloc); /** * sgl_free_n_order - free a scatterlist and its pages * @sgl: Scatterlist with one or more elements * @nents: Maximum number of elements to free * @order: Second argument for __free_pages() * * Notes: * - If several scatterlists have been chained and each chain element is * freed separately then it's essential to set nents correctly to avoid that a * page would get freed twice. * - All pages in a chained scatterlist can be freed at once by setting @nents * to a high number. */ void sgl_free_n_order(struct scatterlist *sgl, int nents, int order) { struct scatterlist *sg; struct page *page; int i; for_each_sg(sgl, sg, nents, i) { if (!sg) break; page = sg_page(sg); if (page) __free_pages(page, order); } kfree(sgl); } EXPORT_SYMBOL(sgl_free_n_order); /** * sgl_free_order - free a scatterlist and its pages * @sgl: Scatterlist with one or more elements * @order: Second argument for __free_pages() */ void sgl_free_order(struct scatterlist *sgl, int order) { sgl_free_n_order(sgl, INT_MAX, order); } EXPORT_SYMBOL(sgl_free_order); /** * sgl_free - free a scatterlist and its pages * @sgl: Scatterlist with one or more elements */ void sgl_free(struct scatterlist *sgl) { sgl_free_order(sgl, 0); } EXPORT_SYMBOL(sgl_free); #endif /* CONFIG_SGL_ALLOC */ void __sg_page_iter_start(struct sg_page_iter *piter, struct scatterlist *sglist, unsigned int nents, unsigned long pgoffset) { piter->__pg_advance = 0; piter->__nents = nents; piter->sg = sglist; piter->sg_pgoffset = pgoffset; } EXPORT_SYMBOL(__sg_page_iter_start); static int sg_page_count(struct scatterlist *sg) { return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT; } bool __sg_page_iter_next(struct sg_page_iter *piter) { if (!piter->__nents || !piter->sg) return false; piter->sg_pgoffset += piter->__pg_advance; piter->__pg_advance = 1; while (piter->sg_pgoffset >= sg_page_count(piter->sg)) { piter->sg_pgoffset -= sg_page_count(piter->sg); piter->sg = sg_next(piter->sg); if (!--piter->__nents || !piter->sg) return false; } return true; } EXPORT_SYMBOL(__sg_page_iter_next); static int sg_dma_page_count(struct scatterlist *sg) { return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT; } bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter) { struct sg_page_iter *piter = &dma_iter->base; if (!piter->__nents || !piter->sg) return false; piter->sg_pgoffset += piter->__pg_advance; piter->__pg_advance = 1; while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) { piter->sg_pgoffset -= sg_dma_page_count(piter->sg); piter->sg = sg_next(piter->sg); if (!--piter->__nents || !piter->sg) return false; } return true; } EXPORT_SYMBOL(__sg_page_iter_dma_next); /** * sg_miter_start - start mapping iteration over a sg list * @miter: sg mapping iter to be started * @sgl: sg list to iterate over * @nents: number of sg entries * @flags: sg iterator flags * * Description: * Starts mapping iterator @miter. * * Context: * Don't care. */ void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, unsigned int nents, unsigned int flags) { memset(miter, 0, sizeof(struct sg_mapping_iter)); __sg_page_iter_start(&miter->piter, sgl, nents, 0); WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); miter->__flags = flags; } EXPORT_SYMBOL(sg_miter_start); static bool sg_miter_get_next_page(struct sg_mapping_iter *miter) { if (!miter->__remaining) { struct scatterlist *sg; if (!__sg_page_iter_next(&miter->piter)) return false; sg = miter->piter.sg; miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset; miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT; miter->__offset &= PAGE_SIZE - 1; miter->__remaining = sg->offset + sg->length - (miter->piter.sg_pgoffset << PAGE_SHIFT) - miter->__offset; miter->__remaining = min_t(unsigned long, miter->__remaining, PAGE_SIZE - miter->__offset); } return true; } /** * sg_miter_skip - reposition mapping iterator * @miter: sg mapping iter to be skipped * @offset: number of bytes to plus the current location * * Description: * Sets the offset of @miter to its current location plus @offset bytes. * If mapping iterator @miter has been proceeded by sg_miter_next(), this * stops @miter. * * Context: * Don't care. * * Returns: * true if @miter contains the valid mapping. false if end of sg * list is reached. */ bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset) { sg_miter_stop(miter); while (offset) { off_t consumed; if (!sg_miter_get_next_page(miter)) return false; consumed = min_t(off_t, offset, miter->__remaining); miter->__offset += consumed; miter->__remaining -= consumed; offset -= consumed; } return true; } EXPORT_SYMBOL(sg_miter_skip); /** * sg_miter_next - proceed mapping iterator to the next mapping * @miter: sg mapping iter to proceed * * Description: * Proceeds @miter to the next mapping. @miter should have been started * using sg_miter_start(). On successful return, @miter->page, * @miter->addr and @miter->length point to the current mapping. * * Context: * May sleep if !SG_MITER_ATOMIC. * * Returns: * true if @miter contains the next mapping. false if end of sg * list is reached. */ bool sg_miter_next(struct sg_mapping_iter *miter) { sg_miter_stop(miter); /* * Get to the next page if necessary. * __remaining, __offset is adjusted by sg_miter_stop */ if (!sg_miter_get_next_page(miter)) return false; miter->page = sg_page_iter_page(&miter->piter); miter->consumed = miter->length = miter->__remaining; if (miter->__flags & SG_MITER_ATOMIC) miter->addr = kmap_atomic(miter->page) + miter->__offset; else miter->addr = kmap(miter->page) + miter->__offset; return true; } EXPORT_SYMBOL(sg_miter_next); /** * sg_miter_stop - stop mapping iteration * @miter: sg mapping iter to be stopped * * Description: * Stops mapping iterator @miter. @miter should have been started * using sg_miter_start(). A stopped iteration can be resumed by * calling sg_miter_next() on it. This is useful when resources (kmap) * need to be released during iteration. * * Context: * Don't care otherwise. */ void sg_miter_stop(struct sg_mapping_iter *miter) { WARN_ON(miter->consumed > miter->length); /* drop resources from the last iteration */ if (miter->addr) { miter->__offset += miter->consumed; miter->__remaining -= miter->consumed; if (miter->__flags & SG_MITER_TO_SG) flush_dcache_page(miter->page); if (miter->__flags & SG_MITER_ATOMIC) { WARN_ON_ONCE(!pagefault_disabled()); kunmap_atomic(miter->addr); } else kunmap(miter->page); miter->page = NULL; miter->addr = NULL; miter->length = 0; miter->consumed = 0; } } EXPORT_SYMBOL(sg_miter_stop); /** * sg_copy_buffer - Copy data between a linear buffer and an SG list * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy from * @buflen: The number of bytes to copy * @skip: Number of bytes to skip before copying * @to_buffer: transfer direction (true == from an sg list to a * buffer, false == from a buffer to an sg list) * * Returns the number of copied bytes. * **/ size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip, bool to_buffer) { unsigned int offset = 0; struct sg_mapping_iter miter; unsigned int sg_flags = SG_MITER_ATOMIC; if (to_buffer) sg_flags |= SG_MITER_FROM_SG; else sg_flags |= SG_MITER_TO_SG; sg_miter_start(&miter, sgl, nents, sg_flags); if (!sg_miter_skip(&miter, skip)) return 0; while ((offset < buflen) && sg_miter_next(&miter)) { unsigned int len; len = min(miter.length, buflen - offset); if (to_buffer) memcpy(buf + offset, miter.addr, len); else memcpy(miter.addr, buf + offset, len); offset += len; } sg_miter_stop(&miter); return offset; } EXPORT_SYMBOL(sg_copy_buffer); /** * sg_copy_from_buffer - Copy from a linear buffer to an SG list * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy from * @buflen: The number of bytes to copy * * Returns the number of copied bytes. * **/ size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen) { return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false); } EXPORT_SYMBOL(sg_copy_from_buffer); /** * sg_copy_to_buffer - Copy from an SG list to a linear buffer * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy to * @buflen: The number of bytes to copy * * Returns the number of copied bytes. * **/ size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { return sg_copy_buffer(sgl, nents, buf, buflen, 0, true); } EXPORT_SYMBOL(sg_copy_to_buffer); /** * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy from * @buflen: The number of bytes to copy * @skip: Number of bytes to skip before copying * * Returns the number of copied bytes. * **/ size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen, off_t skip) { return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false); } EXPORT_SYMBOL(sg_pcopy_from_buffer); /** * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy to * @buflen: The number of bytes to copy * @skip: Number of bytes to skip before copying * * Returns the number of copied bytes. * **/ size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip) { return sg_copy_buffer(sgl, nents, buf, buflen, skip, true); } EXPORT_SYMBOL(sg_pcopy_to_buffer); /** * sg_zero_buffer - Zero-out a part of a SG list * @sgl: The SG list * @nents: Number of SG entries * @buflen: The number of bytes to zero out * @skip: Number of bytes to skip before zeroing * * Returns the number of bytes zeroed. **/ size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, size_t buflen, off_t skip) { unsigned int offset = 0; struct sg_mapping_iter miter; unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG; sg_miter_start(&miter, sgl, nents, sg_flags); if (!sg_miter_skip(&miter, skip)) return false; while (offset < buflen && sg_miter_next(&miter)) { unsigned int len; len = min(miter.length, buflen - offset); memset(miter.addr, 0, len); offset += len; } sg_miter_stop(&miter); return offset; } EXPORT_SYMBOL(sg_zero_buffer); /* * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class * iterators, and add them to the scatterlist. */ static ssize_t extract_user_to_sg(struct iov_iter *iter, ssize_t maxsize, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags) { struct scatterlist *sg = sgtable->sgl + sgtable->nents; struct page **pages; unsigned int npages; ssize_t ret = 0, res; size_t len, off; /* We decant the page list into the tail of the scatterlist */ pages = (void *)sgtable->sgl + array_size(sg_max, sizeof(struct scatterlist)); pages -= sg_max; do { res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max, extraction_flags, &off); if (res <= 0) goto failed; len = res; maxsize -= len; ret += len; npages = DIV_ROUND_UP(off + len, PAGE_SIZE); sg_max -= npages; for (; npages > 0; npages--) { struct page *page = *pages; size_t seg = min_t(size_t, PAGE_SIZE - off, len); *pages++ = NULL; sg_set_page(sg, page, seg, off); sgtable->nents++; sg++; len -= seg; off = 0; } } while (maxsize > 0 && sg_max > 0); return ret; failed: while (sgtable->nents > sgtable->orig_nents) unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents])); return res; } /* * Extract up to sg_max pages from a BVEC-type iterator and add them to the * scatterlist. The pages are not pinned. */ static ssize_t extract_bvec_to_sg(struct iov_iter *iter, ssize_t maxsize, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags) { const struct bio_vec *bv = iter->bvec; struct scatterlist *sg = sgtable->sgl + sgtable->nents; unsigned long start = iter->iov_offset; unsigned int i; ssize_t ret = 0; for (i = 0; i < iter->nr_segs; i++) { size_t off, len; len = bv[i].bv_len; if (start >= len) { start -= len; continue; } len = min_t(size_t, maxsize, len - start); off = bv[i].bv_offset + start; sg_set_page(sg, bv[i].bv_page, len, off); sgtable->nents++; sg++; sg_max--; ret += len; maxsize -= len; if (maxsize <= 0 || sg_max == 0) break; start = 0; } if (ret > 0) iov_iter_advance(iter, ret); return ret; } /* * Extract up to sg_max pages from a KVEC-type iterator and add them to the * scatterlist. This can deal with vmalloc'd buffers as well as kmalloc'd or * static buffers. The pages are not pinned. */ static ssize_t extract_kvec_to_sg(struct iov_iter *iter, ssize_t maxsize, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags) { const struct kvec *kv = iter->kvec; struct scatterlist *sg = sgtable->sgl + sgtable->nents; unsigned long start = iter->iov_offset; unsigned int i; ssize_t ret = 0; for (i = 0; i < iter->nr_segs; i++) { struct page *page; unsigned long kaddr; size_t off, len, seg; len = kv[i].iov_len; if (start >= len) { start -= len; continue; } kaddr = (unsigned long)kv[i].iov_base + start; off = kaddr & ~PAGE_MASK; len = min_t(size_t, maxsize, len - start); kaddr &= PAGE_MASK; maxsize -= len; ret += len; do { seg = min_t(size_t, len, PAGE_SIZE - off); if (is_vmalloc_or_module_addr((void *)kaddr)) page = vmalloc_to_page((void *)kaddr); else page = virt_to_page((void *)kaddr); sg_set_page(sg, page, len, off); sgtable->nents++; sg++; sg_max--; len -= seg; kaddr += PAGE_SIZE; off = 0; } while (len > 0 && sg_max > 0); if (maxsize <= 0 || sg_max == 0) break; start = 0; } if (ret > 0) iov_iter_advance(iter, ret); return ret; } /* * Extract up to sg_max folios from an FOLIOQ-type iterator and add them to * the scatterlist. The pages are not pinned. */ static ssize_t extract_folioq_to_sg(struct iov_iter *iter, ssize_t maxsize, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags) { const struct folio_queue *folioq = iter->folioq; struct scatterlist *sg = sgtable->sgl + sgtable->nents; unsigned int slot = iter->folioq_slot; ssize_t ret = 0; size_t offset = iter->iov_offset; BUG_ON(!folioq); if (slot >= folioq_nr_slots(folioq)) { folioq = folioq->next; if (WARN_ON_ONCE(!folioq)) return 0; slot = 0; } do { struct folio *folio = folioq_folio(folioq, slot); size_t fsize = folioq_folio_size(folioq, slot); if (offset < fsize) { size_t part = umin(maxsize - ret, fsize - offset); sg_set_page(sg, folio_page(folio, 0), part, offset); sgtable->nents++; sg++; sg_max--; offset += part; ret += part; } if (offset >= fsize) { offset = 0; slot++; if (slot >= folioq_nr_slots(folioq)) { if (!folioq->next) { WARN_ON_ONCE(ret < iter->count); break; } folioq = folioq->next; slot = 0; } } } while (sg_max > 0 && ret < maxsize); iter->folioq = folioq; iter->folioq_slot = slot; iter->iov_offset = offset; iter->count -= ret; return ret; } /* * Extract up to sg_max folios from an XARRAY-type iterator and add them to * the scatterlist. The pages are not pinned. */ static ssize_t extract_xarray_to_sg(struct iov_iter *iter, ssize_t maxsize, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags) { struct scatterlist *sg = sgtable->sgl + sgtable->nents; struct xarray *xa = iter->xarray; struct folio *folio; loff_t start = iter->xarray_start + iter->iov_offset; pgoff_t index = start / PAGE_SIZE; ssize_t ret = 0; size_t offset, len; XA_STATE(xas, xa, index); rcu_read_lock(); xas_for_each(&xas, folio, ULONG_MAX) { if (xas_retry(&xas, folio)) continue; if (WARN_ON(xa_is_value(folio))) break; if (WARN_ON(folio_test_hugetlb(folio))) break; offset = offset_in_folio(folio, start); len = min_t(size_t, maxsize, folio_size(folio) - offset); sg_set_page(sg, folio_page(folio, 0), len, offset); sgtable->nents++; sg++; sg_max--; maxsize -= len; ret += len; if (maxsize <= 0 || sg_max == 0) break; } rcu_read_unlock(); if (ret > 0) iov_iter_advance(iter, ret); return ret; } /** * extract_iter_to_sg - Extract pages from an iterator and add to an sglist * @iter: The iterator to extract from * @maxsize: The amount of iterator to copy * @sgtable: The scatterlist table to fill in * @sg_max: Maximum number of elements in @sgtable that may be filled * @extraction_flags: Flags to qualify the request * * Extract the page fragments from the given amount of the source iterator and * add them to a scatterlist that refers to all of those bits, to a maximum * addition of @sg_max elements. * * The pages referred to by UBUF- and IOVEC-type iterators are extracted and * pinned; BVEC-, KVEC-, FOLIOQ- and XARRAY-type are extracted but aren't * pinned; DISCARD-type is not supported. * * No end mark is placed on the scatterlist; that's left to the caller. * * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA * be allowed on the pages extracted. * * If successful, @sgtable->nents is updated to include the number of elements * added and the number of bytes added is returned. @sgtable->orig_nents is * left unaltered. * * The iov_iter_extract_mode() function should be used to query how cleanup * should be performed. */ ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags) { if (maxsize == 0) return 0; switch (iov_iter_type(iter)) { case ITER_UBUF: case ITER_IOVEC: return extract_user_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); case ITER_BVEC: return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); case ITER_KVEC: return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); case ITER_FOLIOQ: return extract_folioq_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); case ITER_XARRAY: return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); default: pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter)); WARN_ON_ONCE(1); return -EIO; } } EXPORT_SYMBOL_GPL(extract_iter_to_sg); |
4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TTY_PORT_H #define _LINUX_TTY_PORT_H #include <linux/kfifo.h> #include <linux/kref.h> #include <linux/mutex.h> #include <linux/tty_buffer.h> #include <linux/wait.h> struct attribute_group; struct tty_driver; struct tty_port; struct tty_struct; /** * struct tty_port_operations -- operations on tty_port * @carrier_raised: return true if the carrier is raised on @port * @dtr_rts: raise the DTR line if @active is true, otherwise lower DTR * @shutdown: called when the last close completes or a hangup finishes IFF the * port was initialized. Do not use to free resources. Turn off the device * only. Called under the port mutex to serialize against @activate and * @shutdown. * @activate: called under the port mutex from tty_port_open(), serialized using * the port mutex. Supposed to turn on the device. * * FIXME: long term getting the tty argument *out* of this would be good * for consoles. * * @destruct: called on the final put of a port. Free resources, possibly incl. * the port itself. */ struct tty_port_operations { bool (*carrier_raised)(struct tty_port *port); void (*dtr_rts)(struct tty_port *port, bool active); void (*shutdown)(struct tty_port *port); int (*activate)(struct tty_port *port, struct tty_struct *tty); void (*destruct)(struct tty_port *port); }; struct tty_port_client_operations { size_t (*receive_buf)(struct tty_port *port, const u8 *cp, const u8 *fp, size_t count); void (*lookahead_buf)(struct tty_port *port, const u8 *cp, const u8 *fp, size_t count); void (*write_wakeup)(struct tty_port *port); }; extern const struct tty_port_client_operations tty_port_default_client_ops; /** * struct tty_port -- port level information * * @buf: buffer for this port, locked internally * @tty: back pointer to &struct tty_struct, valid only if the tty is open. Use * tty_port_tty_get() to obtain it (and tty_kref_put() to release). * @itty: internal back pointer to &struct tty_struct. Avoid this. It should be * eliminated in the long term. * @ops: tty port operations (like activate, shutdown), see &struct * tty_port_operations * @client_ops: tty port client operations (like receive_buf, write_wakeup). * By default, tty_port_default_client_ops is used. * @lock: lock protecting @tty * @blocked_open: # of procs waiting for open in tty_port_block_til_ready() * @count: usage count * @open_wait: open waiters queue (waiting e.g. for a carrier) * @delta_msr_wait: modem status change queue (waiting for MSR changes) * @flags: user TTY flags (%ASYNC_) * @iflags: internal flags (%TTY_PORT_) * @console: when set, the port is a console * @mutex: locking, for open, shutdown and other port operations * @buf_mutex: @xmit_buf alloc lock * @xmit_buf: optional xmit buffer used by some drivers * @xmit_fifo: optional xmit buffer used by some drivers * @close_delay: delay in jiffies to wait when closing the port * @closing_wait: delay in jiffies for output to be sent before closing * @drain_delay: set to zero if no pure time based drain is needed else set to * size of fifo * @kref: references counter. Reaching zero calls @ops->destruct() if non-%NULL * or frees the port otherwise. * @client_data: pointer to private data, for @client_ops * * Each device keeps its own port level information. &struct tty_port was * introduced as a common structure for such information. As every TTY device * shall have a backing tty_port structure, every driver can use these members. * * The tty port has a different lifetime to the tty so must be kept apart. * In addition be careful as tty -> port mappings are valid for the life * of the tty object but in many cases port -> tty mappings are valid only * until a hangup so don't use the wrong path. * * Tty port shall be initialized by tty_port_init() and shut down either by * tty_port_destroy() (refcounting not used), or tty_port_put() (refcounting). * * There is a lot of helpers around &struct tty_port too. To name the most * significant ones: tty_port_open(), tty_port_close() (or * tty_port_close_start() and tty_port_close_end() separately if need be), and * tty_port_hangup(). These call @ops->activate() and @ops->shutdown() as * needed. */ struct tty_port { struct tty_bufhead buf; struct tty_struct *tty; struct tty_struct *itty; const struct tty_port_operations *ops; const struct tty_port_client_operations *client_ops; spinlock_t lock; int blocked_open; int count; wait_queue_head_t open_wait; wait_queue_head_t delta_msr_wait; unsigned long flags; unsigned long iflags; unsigned char console:1; struct mutex mutex; struct mutex buf_mutex; u8 *xmit_buf; DECLARE_KFIFO_PTR(xmit_fifo, u8); unsigned int close_delay; unsigned int closing_wait; int drain_delay; struct kref kref; void *client_data; }; /* tty_port::iflags bits -- use atomic bit ops */ #define TTY_PORT_INITIALIZED 0 /* device is initialized */ #define TTY_PORT_SUSPENDED 1 /* device is suspended */ #define TTY_PORT_ACTIVE 2 /* device is open */ /* * uart drivers: use the uart_port::status field and the UPSTAT_* defines * for s/w-based flow control steering and carrier detection status */ #define TTY_PORT_CTS_FLOW 3 /* h/w flow control enabled */ #define TTY_PORT_CHECK_CD 4 /* carrier detect enabled */ #define TTY_PORT_KOPENED 5 /* device exclusively opened by kernel */ void tty_port_init(struct tty_port *port); void tty_port_link_device(struct tty_port *port, struct tty_driver *driver, unsigned index); struct device *tty_port_register_device(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); struct device *tty_port_register_device_attr(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); struct device *tty_port_register_device_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *host, struct device *parent); struct device *tty_port_register_device_attr_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *host, struct device *parent, void *drvdata, const struct attribute_group **attr_grp); void tty_port_unregister_device(struct tty_port *port, struct tty_driver *driver, unsigned index); int tty_port_alloc_xmit_buf(struct tty_port *port); void tty_port_free_xmit_buf(struct tty_port *port); void tty_port_destroy(struct tty_port *port); void tty_port_put(struct tty_port *port); static inline struct tty_port *tty_port_get(struct tty_port *port) { if (port && kref_get_unless_zero(&port->kref)) return port; return NULL; } /* If the cts flow control is enabled, return true. */ static inline bool tty_port_cts_enabled(const struct tty_port *port) { return test_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline void tty_port_set_cts_flow(struct tty_port *port, bool val) { assign_bit(TTY_PORT_CTS_FLOW, &port->iflags, val); } static inline bool tty_port_active(const struct tty_port *port) { return test_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline void tty_port_set_active(struct tty_port *port, bool val) { assign_bit(TTY_PORT_ACTIVE, &port->iflags, val); } static inline bool tty_port_check_carrier(const struct tty_port *port) { return test_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline void tty_port_set_check_carrier(struct tty_port *port, bool val) { assign_bit(TTY_PORT_CHECK_CD, &port->iflags, val); } static inline bool tty_port_suspended(const struct tty_port *port) { return test_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline void tty_port_set_suspended(struct tty_port *port, bool val) { assign_bit(TTY_PORT_SUSPENDED, &port->iflags, val); } static inline bool tty_port_initialized(const struct tty_port *port) { return test_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline void tty_port_set_initialized(struct tty_port *port, bool val) { assign_bit(TTY_PORT_INITIALIZED, &port->iflags, val); } static inline bool tty_port_kopened(const struct tty_port *port) { return test_bit(TTY_PORT_KOPENED, &port->iflags); } static inline void tty_port_set_kopened(struct tty_port *port, bool val) { assign_bit(TTY_PORT_KOPENED, &port->iflags, val); } struct tty_struct *tty_port_tty_get(struct tty_port *port); void tty_port_tty_set(struct tty_port *port, struct tty_struct *tty); bool tty_port_carrier_raised(struct tty_port *port); void tty_port_raise_dtr_rts(struct tty_port *port); void tty_port_lower_dtr_rts(struct tty_port *port); void tty_port_hangup(struct tty_port *port); void tty_port_tty_hangup(struct tty_port *port, bool check_clocal); void tty_port_tty_wakeup(struct tty_port *port); int tty_port_block_til_ready(struct tty_port *port, struct tty_struct *tty, struct file *filp); int tty_port_close_start(struct tty_port *port, struct tty_struct *tty, struct file *filp); void tty_port_close_end(struct tty_port *port, struct tty_struct *tty); void tty_port_close(struct tty_port *port, struct tty_struct *tty, struct file *filp); int tty_port_install(struct tty_port *port, struct tty_driver *driver, struct tty_struct *tty); int tty_port_open(struct tty_port *port, struct tty_struct *tty, struct file *filp); static inline int tty_port_users(struct tty_port *port) { return port->count + port->blocked_open; } #endif |
6 6 6 6 7 7 6 17 12 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #include "queueing.h" #include <linux/skb_array.h> struct multicore_worker __percpu * wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr) { int cpu; struct multicore_worker __percpu *worker = alloc_percpu(struct multicore_worker); if (!worker) return NULL; for_each_possible_cpu(cpu) { per_cpu_ptr(worker, cpu)->ptr = ptr; INIT_WORK(&per_cpu_ptr(worker, cpu)->work, function); } return worker; } int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function, unsigned int len) { int ret; memset(queue, 0, sizeof(*queue)); queue->last_cpu = -1; ret = ptr_ring_init(&queue->ring, len, GFP_KERNEL); if (ret) return ret; queue->worker = wg_packet_percpu_multicore_worker_alloc(function, queue); if (!queue->worker) { ptr_ring_cleanup(&queue->ring, NULL); return -ENOMEM; } return 0; } void wg_packet_queue_free(struct crypt_queue *queue, bool purge) { free_percpu(queue->worker); WARN_ON(!purge && !__ptr_ring_empty(&queue->ring)); ptr_ring_cleanup(&queue->ring, purge ? __skb_array_destroy_skb : NULL); } #define NEXT(skb) ((skb)->prev) #define STUB(queue) ((struct sk_buff *)&queue->empty) void wg_prev_queue_init(struct prev_queue *queue) { NEXT(STUB(queue)) = NULL; queue->head = queue->tail = STUB(queue); queue->peeked = NULL; atomic_set(&queue->count, 0); BUILD_BUG_ON( offsetof(struct sk_buff, next) != offsetof(struct prev_queue, empty.next) - offsetof(struct prev_queue, empty) || offsetof(struct sk_buff, prev) != offsetof(struct prev_queue, empty.prev) - offsetof(struct prev_queue, empty)); } static void __wg_prev_queue_enqueue(struct prev_queue *queue, struct sk_buff *skb) { WRITE_ONCE(NEXT(skb), NULL); WRITE_ONCE(NEXT(xchg_release(&queue->head, skb)), skb); } bool wg_prev_queue_enqueue(struct prev_queue *queue, struct sk_buff *skb) { if (!atomic_add_unless(&queue->count, 1, MAX_QUEUED_PACKETS)) return false; __wg_prev_queue_enqueue(queue, skb); return true; } struct sk_buff *wg_prev_queue_dequeue(struct prev_queue *queue) { struct sk_buff *tail = queue->tail, *next = smp_load_acquire(&NEXT(tail)); if (tail == STUB(queue)) { if (!next) return NULL; queue->tail = next; tail = next; next = smp_load_acquire(&NEXT(next)); } if (next) { queue->tail = next; atomic_dec(&queue->count); return tail; } if (tail != READ_ONCE(queue->head)) return NULL; __wg_prev_queue_enqueue(queue, STUB(queue)); next = smp_load_acquire(&NEXT(tail)); if (next) { queue->tail = next; atomic_dec(&queue->count); return tail; } return NULL; } #undef NEXT #undef STUB |
1 1 1 1 1 1 1 75 6 1 72 70 1 1 71 18 1 65 62 2 65 63 2 2 8 6 54 1 63 1 1 1 1 5 131 130 119 121 30 30 3 27 9 14 24 24 1 19 18 7 7 12 2 2 1 1 2 16 1 17 17 17 17 7 7 7 12 17 17 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 9 7 2 44 43 31 13 1 11 3 8 8 12 12 1 8 1 1 7 7 7 6 6 5 6 6 4 3 3 4 4 1 3 12 1 11 1 7 2 6 2 2 4 1 1 2 2 1 2 7 7 7 7 5 5 4 1 14 8 6 116 57 59 59 22 42 42 76 14 14 62 76 8 1 68 6 63 61 1 60 48 13 9 9 1 76 43 45 54 55 55 4 50 47 48 47 33 25 1 4 3 4 3 3 1 1 26 1 2 15 8 8 14 9 1 34 4 28 27 28 48 54 54 54 53 54 50 51 7 53 7 105 108 7 7 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 | // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * IPv4 specific functions * * code split from: * linux/ipv4/tcp.c * linux/ipv4/tcp_input.c * linux/ipv4/tcp_output.c * * See tcp.c for author information */ /* * Changes: * David S. Miller : New socket lookup architecture. * This code is dedicated to John Dyson. * David S. Miller : Change semantics of established hash, * half is devoted to TIME_WAIT sockets * and the rest go in the other half. * Andi Kleen : Add support for syncookies and fixed * some bugs: ip options weren't passed to * the TCP layer, missed a check for an * ACK bit. * Andi Kleen : Implemented fast path mtu discovery. * Fixed many serious bugs in the * request_sock handling and moved * most of it into the af independent code. * Added tail drop and some other bugfixes. * Added new listen semantics. * Mike McLagan : Routing by source * Juan Jose Ciarlante: ip_dynaddr bits * Andi Kleen: various fixes. * Vitaly E. Lavrov : Transparent proxy revived after year * coma. * Andi Kleen : Fix new listen. * Andi Kleen : Fix accept error reporting. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind * a single port at the same time. */ #define pr_fmt(fmt) "TCP: " fmt #include <linux/bottom_half.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/module.h> #include <linux/random.h> #include <linux/cache.h> #include <linux/jhash.h> #include <linux/init.h> #include <linux/times.h> #include <linux/slab.h> #include <linux/sched.h> #include <net/net_namespace.h> #include <net/icmp.h> #include <net/inet_hashtables.h> #include <net/tcp.h> #include <net/transp_v6.h> #include <net/ipv6.h> #include <net/inet_common.h> #include <net/timewait_sock.h> #include <net/xfrm.h> #include <net/secure_seq.h> #include <net/busy_poll.h> #include <net/rstreason.h> #include <linux/inet.h> #include <linux/ipv6.h> #include <linux/stddef.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/inetdevice.h> #include <linux/btf_ids.h> #include <linux/skbuff_ref.h> #include <crypto/hash.h> #include <linux/scatterlist.h> #include <trace/events/tcp.h> #ifdef CONFIG_TCP_MD5SIG static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, __be32 daddr, __be32 saddr, const struct tcphdr *th); #endif struct inet_hashinfo tcp_hashinfo; EXPORT_SYMBOL(tcp_hashinfo); static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = { .bh_lock = INIT_LOCAL_LOCK(bh_lock), }; static DEFINE_MUTEX(tcp_exit_batch_mutex); static u32 tcp_v4_init_seq(const struct sk_buff *skb) { return secure_tcp_seq(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr, tcp_hdr(skb)->dest, tcp_hdr(skb)->source); } static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) { return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); } int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) { int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse); const struct inet_timewait_sock *tw = inet_twsk(sktw); const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); struct tcp_sock *tp = tcp_sk(sk); int ts_recent_stamp; if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) reuse = 0; if (reuse == 2) { /* Still does not detect *everything* that goes through * lo, since we require a loopback src or dst address * or direct binding to 'lo' interface. */ bool loopback = false; if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) loopback = true; #if IS_ENABLED(CONFIG_IPV6) if (tw->tw_family == AF_INET6) { if (ipv6_addr_loopback(&tw->tw_v6_daddr) || ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) loopback = true; } else #endif { if (ipv4_is_loopback(tw->tw_daddr) || ipv4_is_loopback(tw->tw_rcv_saddr)) loopback = true; } if (!loopback) reuse = 0; } /* With PAWS, it is safe from the viewpoint of data integrity. Even without PAWS it is safe provided sequence spaces do not overlap i.e. at data rates <= 80Mbit/sec. Actually, the idea is close to VJ's one, only timestamp cache is held not per host, but per port pair and TW bucket is used as state holder. If TW bucket has been already destroyed we fall back to VJ's scheme and use initial timestamp retrieved from peer table. */ ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp); if (ts_recent_stamp && (!twp || (reuse && time_after32(ktime_get_seconds(), ts_recent_stamp)))) { /* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk * and releasing the bucket lock. */ if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt))) return 0; /* In case of repair and re-using TIME-WAIT sockets we still * want to be sure that it is safe as above but honor the * sequence numbers and time stamps set as part of the repair * process. * * Without this check re-using a TIME-WAIT socket with TCP * repair would accumulate a -1 on the repair assigned * sequence number. The first time it is reused the sequence * is -1, the second time -2, etc. This fixes that issue * without appearing to create any others. */ if (likely(!tp->repair)) { u32 seq = tcptw->tw_snd_nxt + 65535 + 2; if (!seq) seq = 1; WRITE_ONCE(tp->write_seq, seq); tp->rx_opt.ts_recent = READ_ONCE(tcptw->tw_ts_recent); tp->rx_opt.ts_recent_stamp = ts_recent_stamp; } return 1; } return 0; } EXPORT_SYMBOL_GPL(tcp_twsk_unique); static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from tcp_v4_connect() and intended to * prevent BPF program called below from accessing bytes that are out * of the bound specified by user in addr_len. */ if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; sock_owned_by_me(sk); return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len); } /* This will initiate an outgoing connection. */ int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; struct inet_timewait_death_row *tcp_death_row; struct inet_sock *inet = inet_sk(sk); struct tcp_sock *tp = tcp_sk(sk); struct ip_options_rcu *inet_opt; struct net *net = sock_net(sk); __be16 orig_sport, orig_dport; __be32 daddr, nexthop; struct flowi4 *fl4; struct rtable *rt; int err; if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; if (usin->sin_family != AF_INET) return -EAFNOSUPPORT; nexthop = daddr = usin->sin_addr.s_addr; inet_opt = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_opt && inet_opt->opt.srr) { if (!daddr) return -EINVAL; nexthop = inet_opt->opt.faddr; } orig_sport = inet->inet_sport; orig_dport = usin->sin_port; fl4 = &inet->cork.fl.u.ip4; rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, orig_dport, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); if (err == -ENETUNREACH) IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); return err; } if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { ip_rt_put(rt); return -ENETUNREACH; } if (!inet_opt || !inet_opt->opt.srr) daddr = fl4->daddr; tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; if (!inet->inet_saddr) { err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET); if (err) { ip_rt_put(rt); return err; } } else { sk_rcv_saddr_set(sk, inet->inet_saddr); } if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { /* Reset inherited state */ tp->rx_opt.ts_recent = 0; tp->rx_opt.ts_recent_stamp = 0; if (likely(!tp->repair)) WRITE_ONCE(tp->write_seq, 0); } inet->inet_dport = usin->sin_port; sk_daddr_set(sk, daddr); inet_csk(sk)->icsk_ext_hdr_len = 0; if (inet_opt) inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; /* Socket identity is still unknown (sport may be zero). * However we set state to SYN-SENT and not releasing socket * lock select source port, enter ourselves into the hash tables and * complete initialization after this. */ tcp_set_state(sk, TCP_SYN_SENT); err = inet_hash_connect(tcp_death_row, sk); if (err) goto failure; sk_set_txhash(sk); rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, inet->inet_sport, inet->inet_dport, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto failure; } tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst); /* OK, now commit destination to socket. */ sk->sk_gso_type = SKB_GSO_TCPV4; sk_setup_caps(sk, &rt->dst); rt = NULL; if (likely(!tp->repair)) { if (!tp->write_seq) WRITE_ONCE(tp->write_seq, secure_tcp_seq(inet->inet_saddr, inet->inet_daddr, inet->inet_sport, usin->sin_port)); WRITE_ONCE(tp->tsoffset, secure_tcp_ts_off(net, inet->inet_saddr, inet->inet_daddr)); } atomic_set(&inet->inet_id, get_random_u16()); if (tcp_fastopen_defer_connect(sk, &err)) return err; if (err) goto failure; err = tcp_connect(sk); if (err) goto failure; return 0; failure: /* * This unhashes the socket and releases the local port, * if necessary. */ tcp_set_state(sk, TCP_CLOSE); inet_bhash2_reset_saddr(sk); ip_rt_put(rt); sk->sk_route_caps = 0; inet->inet_dport = 0; return err; } EXPORT_SYMBOL(tcp_v4_connect); /* * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. * It can be called through tcp_release_cb() if socket was owned by user * at the time tcp_v4_err() was called to handle ICMP message. */ void tcp_v4_mtu_reduced(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); struct dst_entry *dst; u32 mtu; if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) return; mtu = READ_ONCE(tcp_sk(sk)->mtu_info); dst = inet_csk_update_pmtu(sk, mtu); if (!dst) return; /* Something is about to be wrong... Remember soft error * for the case, if this connection will not able to recover. */ if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) WRITE_ONCE(sk->sk_err_soft, EMSGSIZE); mtu = dst_mtu(dst); if (inet->pmtudisc != IP_PMTUDISC_DONT && ip_sk_accept_pmtu(sk) && inet_csk(sk)->icsk_pmtu_cookie > mtu) { tcp_sync_mss(sk, mtu); /* Resend the TCP packet because it's * clear that the old packet has been * dropped. This is the new "fast" path mtu * discovery. */ tcp_simple_retransmit(sk); } /* else let the usual retransmit timer handle it */ } EXPORT_SYMBOL(tcp_v4_mtu_reduced); static void do_redirect(struct sk_buff *skb, struct sock *sk) { struct dst_entry *dst = __sk_dst_check(sk, 0); if (dst) dst->ops->redirect(dst, sk, skb); } /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ void tcp_req_err(struct sock *sk, u32 seq, bool abort) { struct request_sock *req = inet_reqsk(sk); struct net *net = sock_net(sk); /* ICMPs are not backlogged, hence we cannot get * an established socket here. */ if (seq != tcp_rsk(req)->snt_isn) { __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); } else if (abort) { /* * Still in SYN_RECV, just remove it silently. * There is no good way to pass the error to the newly * created socket, and POSIX does not want network * errors returned from accept(). */ inet_csk_reqsk_queue_drop(req->rsk_listener, req); tcp_listendrop(req->rsk_listener); } reqsk_put(req); } EXPORT_SYMBOL(tcp_req_err); /* TCP-LD (RFC 6069) logic */ void tcp_ld_RTO_revert(struct sock *sk, u32 seq) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; s32 remaining; u32 delta_us; if (sock_owned_by_user(sk)) return; if (seq != tp->snd_una || !icsk->icsk_retransmits || !icsk->icsk_backoff) return; skb = tcp_rtx_queue_head(sk); if (WARN_ON_ONCE(!skb)) return; icsk->icsk_backoff--; icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); tcp_mstamp_refresh(tp); delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); if (remaining > 0) { inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, remaining, TCP_RTO_MAX); } else { /* RTO revert clocked out retransmission. * Will retransmit now. */ tcp_retransmit_timer(sk); } } EXPORT_SYMBOL(tcp_ld_RTO_revert); /* * This routine is called by the ICMP module when it gets some * sort of error condition. If err < 0 then the socket should * be closed and the error returned to the user. If err > 0 * it's just the icmp type << 8 | icmp code. After adjustment * header points to the first 8 bytes of the tcp header. We need * to find the appropriate port. * * The locking strategy used here is very "optimistic". When * someone else accesses the socket the ICMP is just dropped * and for some paths there is no check at all. * A more general error queue to queue errors for later handling * is probably better. * */ int tcp_v4_err(struct sk_buff *skb, u32 info) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); struct tcp_sock *tp; const int type = icmp_hdr(skb)->type; const int code = icmp_hdr(skb)->code; struct sock *sk; struct request_sock *fastopen; u32 seq, snd_una; int err; struct net *net = dev_net(skb->dev); sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, iph->daddr, th->dest, iph->saddr, ntohs(th->source), inet_iif(skb), 0); if (!sk) { __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); return -ENOENT; } if (sk->sk_state == TCP_TIME_WAIT) { /* To increase the counter of ignored icmps for TCP-AO */ tcp_ao_ignore_icmp(sk, AF_INET, type, code); inet_twsk_put(inet_twsk(sk)); return 0; } seq = ntohl(th->seq); if (sk->sk_state == TCP_NEW_SYN_RECV) { tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || type == ICMP_TIME_EXCEEDED || (type == ICMP_DEST_UNREACH && (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))); return 0; } if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) { sock_put(sk); return 0; } bh_lock_sock(sk); /* If too many ICMPs get dropped on busy * servers this needs to be solved differently. * We do take care of PMTU discovery (RFC1191) special case : * we can receive locally generated ICMP messages while socket is held. */ if (sock_owned_by_user(sk)) { if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); } if (sk->sk_state == TCP_CLOSE) goto out; if (static_branch_unlikely(&ip4_min_ttl)) { /* min_ttl can be changed concurrently from do_ip_setsockopt() */ if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); goto out; } } tp = tcp_sk(sk); /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ fastopen = rcu_dereference(tp->fastopen_rsk); snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; if (sk->sk_state != TCP_LISTEN && !between(seq, snd_una, tp->snd_nxt)) { __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); goto out; } switch (type) { case ICMP_REDIRECT: if (!sock_owned_by_user(sk)) do_redirect(skb, sk); goto out; case ICMP_SOURCE_QUENCH: /* Just silently ignore these. */ goto out; case ICMP_PARAMETERPROB: err = EPROTO; break; case ICMP_DEST_UNREACH: if (code > NR_ICMP_UNREACH) goto out; if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ /* We are not interested in TCP_LISTEN and open_requests * (SYN-ACKs send out by Linux are always <576bytes so * they should go through unfragmented). */ if (sk->sk_state == TCP_LISTEN) goto out; WRITE_ONCE(tp->mtu_info, info); if (!sock_owned_by_user(sk)) { tcp_v4_mtu_reduced(sk); } else { if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) sock_hold(sk); } goto out; } err = icmp_err_convert[code].errno; /* check if this ICMP message allows revert of backoff. * (see RFC 6069) */ if (!fastopen && (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) tcp_ld_RTO_revert(sk, seq); break; case ICMP_TIME_EXCEEDED: err = EHOSTUNREACH; break; default: goto out; } switch (sk->sk_state) { case TCP_SYN_SENT: case TCP_SYN_RECV: /* Only in fast or simultaneous open. If a fast open socket is * already accepted it is treated as a connected one below. */ if (fastopen && !fastopen->sk) break; ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); if (!sock_owned_by_user(sk)) tcp_done_with_error(sk, err); else WRITE_ONCE(sk->sk_err_soft, err); goto out; } /* If we've already connected we will keep trying * until we time out, or the user gives up. * * rfc1122 4.2.3.9 allows to consider as hard errors * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, * but it is obsoleted by pmtu discovery). * * Note, that in modern internet, where routing is unreliable * and in each dark corner broken firewalls sit, sending random * errors ordered by their masters even this two messages finally lose * their original sense (even Linux sends invalid PORT_UNREACHs) * * Now we are in compliance with RFCs. * --ANK (980905) */ if (!sock_owned_by_user(sk) && inet_test_bit(RECVERR, sk)) { WRITE_ONCE(sk->sk_err, err); sk_error_report(sk); } else { /* Only an error on timeout */ WRITE_ONCE(sk->sk_err_soft, err); } out: bh_unlock_sock(sk); sock_put(sk); return 0; } void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) { struct tcphdr *th = tcp_hdr(skb); th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } /* This routine computes an IPv4 TCP checksum. */ void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) { const struct inet_sock *inet = inet_sk(sk); __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); } EXPORT_SYMBOL(tcp_v4_send_check); #define REPLY_OPTIONS_LEN (MAX_TCP_OPTION_SPACE / sizeof(__be32)) static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb, const struct tcp_ao_hdr *aoh, struct ip_reply_arg *arg, struct tcphdr *reply, __be32 reply_options[REPLY_OPTIONS_LEN]) { #ifdef CONFIG_TCP_AO int sdif = tcp_v4_sdif(skb); int dif = inet_iif(skb); int l3index = sdif ? dif : 0; bool allocated_traffic_key; struct tcp_ao_key *key; char *traffic_key; bool drop = true; u32 ao_sne = 0; u8 keyid; rcu_read_lock(); if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq), &key, &traffic_key, &allocated_traffic_key, &keyid, &ao_sne)) goto out; reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) | (aoh->rnext_keyid << 8) | keyid); arg->iov[0].iov_len += tcp_ao_len_aligned(key); reply->doff = arg->iov[0].iov_len / 4; if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1], key, traffic_key, (union tcp_ao_addr *)&ip_hdr(skb)->saddr, (union tcp_ao_addr *)&ip_hdr(skb)->daddr, reply, ao_sne)) goto out; drop = false; out: rcu_read_unlock(); if (allocated_traffic_key) kfree(traffic_key); return drop; #else return true; #endif } /* * This routine will send an RST to the other tcp. * * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) * for reset. * Answer: if a packet caused RST, it is not for a socket * existing in our system, if it is matched to a socket, * it is just duplicate segment or bug in other side's TCP. * So that we build reply only basing on parameters * arrived with segment. * Exception: precedence violation. We do not implement it in any case. */ static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb, enum sk_rst_reason reason) { const struct tcphdr *th = tcp_hdr(skb); struct { struct tcphdr th; __be32 opt[REPLY_OPTIONS_LEN]; } rep; const __u8 *md5_hash_location = NULL; const struct tcp_ao_hdr *aoh; struct ip_reply_arg arg; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *key = NULL; unsigned char newhash[16]; struct sock *sk1 = NULL; int genhash; #endif u64 transmit_time = 0; struct sock *ctl_sk; struct net *net; u32 txhash = 0; /* Never send a reset in response to a reset. */ if (th->rst) return; /* If sk not NULL, it means we did a successful lookup and incoming * route had to be correct. prequeue might have dropped our dst. */ if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) return; /* Swap the send and the receive. */ memset(&rep, 0, sizeof(rep)); rep.th.dest = th->source; rep.th.source = th->dest; rep.th.doff = sizeof(struct tcphdr) / 4; rep.th.rst = 1; if (th->ack) { rep.th.seq = th->ack_seq; } else { rep.th.ack = 1; rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + skb->len - (th->doff << 2)); } memset(&arg, 0, sizeof(arg)); arg.iov[0].iov_base = (unsigned char *)&rep; arg.iov[0].iov_len = sizeof(rep.th); net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); /* Invalid TCP option size or twice included auth */ if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh)) return; if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt)) return; #ifdef CONFIG_TCP_MD5SIG rcu_read_lock(); if (sk && sk_fullsock(sk)) { const union tcp_md5_addr *addr; int l3index; /* sdif set, means packet ingressed via a device * in an L3 domain and inet_iif is set to it. */ l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); } else if (md5_hash_location) { const union tcp_md5_addr *addr; int sdif = tcp_v4_sdif(skb); int dif = inet_iif(skb); int l3index; /* * active side is lost. Try to find listening socket through * source port, and then find md5 key through listening socket. * we are not loose security here: * Incoming packet is checked with md5 hash with finding key, * no RST generated if md5 hash doesn't match. */ sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, NULL, 0, ip_hdr(skb)->saddr, th->source, ip_hdr(skb)->daddr, ntohs(th->source), dif, sdif); /* don't send rst if it can't find key */ if (!sk1) goto out; /* sdif set, means packet ingressed via a device * in an L3 domain and dif is set to it. */ l3index = sdif ? dif : 0; addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); if (!key) goto out; genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); if (genhash || memcmp(md5_hash_location, newhash, 16) != 0) goto out; } if (key) { rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); /* Update length and the length the header thinks exists */ arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; rep.th.doff = arg.iov[0].iov_len / 4; tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], key, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &rep.th); } #endif /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ if (rep.opt[0] == 0) { __be32 mrst = mptcp_reset_option(skb); if (mrst) { rep.opt[0] = mrst; arg.iov[0].iov_len += sizeof(mrst); rep.th.doff = arg.iov[0].iov_len / 4; } } arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr, /* XXX */ arg.iov[0].iov_len, IPPROTO_TCP, 0); arg.csumoffset = offsetof(struct tcphdr, check) / 2; arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; /* When socket is gone, all binding information is lost. * routing might fail in this case. No choice here, if we choose to force * input interface, we will misroute in case of asymmetric route. */ if (sk) arg.bound_dev_if = sk->sk_bound_dev_if; trace_tcp_send_reset(sk, skb, reason); BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != offsetof(struct inet_timewait_sock, tw_bound_dev_if)); arg.tos = ip_hdr(skb)->tos; arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); local_bh_disable(); local_lock_nested_bh(&ipv4_tcp_sk.bh_lock); ctl_sk = this_cpu_read(ipv4_tcp_sk.sock); sock_net_set(ctl_sk, net); if (sk) { ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_mark : sk->sk_mark; ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); transmit_time = tcp_transmit_time(sk); xfrm_sk_clone_policy(ctl_sk, sk); txhash = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_txhash : sk->sk_txhash; } else { ctl_sk->sk_mark = 0; ctl_sk->sk_priority = 0; } ip_send_unicast_reply(ctl_sk, sk, skb, &TCP_SKB_CB(skb)->header.h4.opt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len, transmit_time, txhash); xfrm_sk_free_policy(ctl_sk); sock_net_set(ctl_sk, &init_net); __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock); local_bh_enable(); #ifdef CONFIG_TCP_MD5SIG out: rcu_read_unlock(); #endif } /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states outside socket context is ugly, certainly. What can I do? */ static void tcp_v4_send_ack(const struct sock *sk, struct sk_buff *skb, u32 seq, u32 ack, u32 win, u32 tsval, u32 tsecr, int oif, struct tcp_key *key, int reply_flags, u8 tos, u32 txhash) { const struct tcphdr *th = tcp_hdr(skb); struct { struct tcphdr th; __be32 opt[(MAX_TCP_OPTION_SPACE >> 2)]; } rep; struct net *net = sock_net(sk); struct ip_reply_arg arg; struct sock *ctl_sk; u64 transmit_time; memset(&rep.th, 0, sizeof(struct tcphdr)); memset(&arg, 0, sizeof(arg)); arg.iov[0].iov_base = (unsigned char *)&rep; arg.iov[0].iov_len = sizeof(rep.th); if (tsecr) { rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); rep.opt[1] = htonl(tsval); rep.opt[2] = htonl(tsecr); arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; } /* Swap the send and the receive. */ rep.th.dest = th->source; rep.th.source = th->dest; rep.th.doff = arg.iov[0].iov_len / 4; rep.th.seq = htonl(seq); rep.th.ack_seq = htonl(ack); rep.th.ack = 1; rep.th.window = htons(win); #ifdef CONFIG_TCP_MD5SIG if (tcp_key_is_md5(key)) { int offset = (tsecr) ? 3 : 0; rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; rep.th.doff = arg.iov[0].iov_len/4; tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], key->md5_key, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &rep.th); } #endif #ifdef CONFIG_TCP_AO if (tcp_key_is_ao(key)) { int offset = (tsecr) ? 3 : 0; rep.opt[offset++] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key->ao_key) << 16) | (key->ao_key->sndid << 8) | key->rcv_next); arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key); rep.th.doff = arg.iov[0].iov_len / 4; tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset], key->ao_key, key->traffic_key, (union tcp_ao_addr *)&ip_hdr(skb)->saddr, (union tcp_ao_addr *)&ip_hdr(skb)->daddr, &rep.th, key->sne); } #endif arg.flags = reply_flags; arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr, /* XXX */ arg.iov[0].iov_len, IPPROTO_TCP, 0); arg.csumoffset = offsetof(struct tcphdr, check) / 2; if (oif) arg.bound_dev_if = oif; arg.tos = tos; arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); local_bh_disable(); local_lock_nested_bh(&ipv4_tcp_sk.bh_lock); ctl_sk = this_cpu_read(ipv4_tcp_sk.sock); sock_net_set(ctl_sk, net); ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark); ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); transmit_time = tcp_transmit_time(sk); ip_send_unicast_reply(ctl_sk, sk, skb, &TCP_SKB_CB(skb)->header.h4.opt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len, transmit_time, txhash); sock_net_set(ctl_sk, &init_net); __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock); local_bh_enable(); } static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) { struct inet_timewait_sock *tw = inet_twsk(sk); struct tcp_timewait_sock *tcptw = tcp_twsk(sk); struct tcp_key key = {}; #ifdef CONFIG_TCP_AO struct tcp_ao_info *ao_info; if (static_branch_unlikely(&tcp_ao_needed.key)) { /* FIXME: the segment to-be-acked is not verified yet */ ao_info = rcu_dereference(tcptw->ao_info); if (ao_info) { const struct tcp_ao_hdr *aoh; if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) { inet_twsk_put(tw); return; } if (aoh) key.ao_key = tcp_ao_established_key(sk, ao_info, aoh->rnext_keyid, -1); } } if (key.ao_key) { struct tcp_ao_key *rnext_key; key.traffic_key = snd_other_key(key.ao_key); key.sne = READ_ONCE(ao_info->snd_sne); rnext_key = READ_ONCE(ao_info->rnext_key); key.rcv_next = rnext_key->rcvid; key.type = TCP_KEY_AO; #else if (0) { #endif } else if (static_branch_tcp_md5()) { key.md5_key = tcp_twsk_md5_key(tcptw); if (key.md5_key) key.type = TCP_KEY_MD5; } tcp_v4_send_ack(sk, skb, tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt), tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcp_tw_tsval(tcptw), READ_ONCE(tcptw->tw_ts_recent), tw->tw_bound_dev_if, &key, tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, tw->tw_tos, tw->tw_txhash); inet_twsk_put(tw); } static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *req) { struct tcp_key key = {}; /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV * sk->sk_state == TCP_SYN_RECV -> for Fast Open. */ u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt; #ifdef CONFIG_TCP_AO if (static_branch_unlikely(&tcp_ao_needed.key) && tcp_rsk_used_ao(req)) { const union tcp_md5_addr *addr; const struct tcp_ao_hdr *aoh; int l3index; /* Invalid TCP option size or twice included auth */ if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) return; if (!aoh) return; addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, aoh->rnext_keyid, -1); if (unlikely(!key.ao_key)) { /* Send ACK with any matching MKT for the peer */ key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1); /* Matching key disappeared (user removed the key?) * let the handshake timeout. */ if (!key.ao_key) { net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n", addr, ntohs(tcp_hdr(skb)->source), &ip_hdr(skb)->daddr, ntohs(tcp_hdr(skb)->dest)); return; } } key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC); if (!key.traffic_key) return; key.type = TCP_KEY_AO; key.rcv_next = aoh->keyid; tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req); #else if (0) { #endif } else if (static_branch_tcp_md5()) { const union tcp_md5_addr *addr; int l3index; addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); if (key.md5_key) key.type = TCP_KEY_MD5; } tcp_v4_send_ack(sk, skb, seq, tcp_rsk(req)->rcv_nxt, tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale, tcp_rsk_tsval(tcp_rsk(req)), READ_ONCE(req->ts_recent), 0, &key, inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, ip_hdr(skb)->tos, READ_ONCE(tcp_rsk(req)->txhash)); if (tcp_key_is_ao(&key)) kfree(key.traffic_key); } /* * Send a SYN-ACK after having received a SYN. * This still operates on a request_sock only, not on a big * socket. */ static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb) { const struct inet_request_sock *ireq = inet_rsk(req); struct flowi4 fl4; int err = -1; struct sk_buff *skb; u8 tos; /* First, grab a route. */ if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) return -1; skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); if (skb) { __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); tos = READ_ONCE(inet_sk(sk)->tos); if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | (tos & INET_ECN_MASK); if (!INET_ECN_is_capable(tos) && tcp_bpf_ca_needs_ecn((struct sock *)req)) tos |= INET_ECN_ECT_0; rcu_read_lock(); err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, ireq->ir_rmt_addr, rcu_dereference(ireq->ireq_opt), tos); rcu_read_unlock(); err = net_xmit_eval(err); } return err; } /* * IPv4 request_sock destructor. */ static void tcp_v4_reqsk_destructor(struct request_sock *req) { kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); } #ifdef CONFIG_TCP_MD5SIG /* * RFC2385 MD5 checksumming requires a mapping of * IP address->MD5 Key. * We need to maintain these in the sk structure. */ DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ); EXPORT_SYMBOL(tcp_md5_needed); static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) { if (!old) return true; /* l3index always overrides non-l3index */ if (old->l3index && new->l3index == 0) return false; if (old->l3index == 0 && new->l3index) return true; return old->prefixlen < new->prefixlen; } /* Find the Key structure for an address. */ struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family, bool any_l3index) { const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; const struct tcp_md5sig_info *md5sig; __be32 mask; struct tcp_md5sig_key *best_match = NULL; bool match; /* caller either holds rcu_read_lock() or socket lock */ md5sig = rcu_dereference_check(tp->md5sig_info, lockdep_sock_is_held(sk)); if (!md5sig) return NULL; hlist_for_each_entry_rcu(key, &md5sig->head, node, lockdep_sock_is_held(sk)) { if (key->family != family) continue; if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index) continue; if (family == AF_INET) { mask = inet_make_mask(key->prefixlen); match = (key->addr.a4.s_addr & mask) == (addr->a4.s_addr & mask); #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, key->prefixlen); #endif } else { match = false; } if (match && better_md5_match(best_match, key)) best_match = key; } return best_match; } EXPORT_SYMBOL(__tcp_md5_do_lookup); static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, u8 flags) { const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; unsigned int size = sizeof(struct in_addr); const struct tcp_md5sig_info *md5sig; /* caller either holds rcu_read_lock() or socket lock */ md5sig = rcu_dereference_check(tp->md5sig_info, lockdep_sock_is_held(sk)); if (!md5sig) return NULL; #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6) size = sizeof(struct in6_addr); #endif hlist_for_each_entry_rcu(key, &md5sig->head, node, lockdep_sock_is_held(sk)) { if (key->family != family) continue; if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) continue; if (key->l3index != l3index) continue; if (!memcmp(&key->addr, addr, size) && key->prefixlen == prefixlen) return key; } return NULL; } struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, const struct sock *addr_sk) { const union tcp_md5_addr *addr; int l3index; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), addr_sk->sk_bound_dev_if); addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); } EXPORT_SYMBOL(tcp_v4_md5_lookup); static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_info *md5sig; md5sig = kmalloc(sizeof(*md5sig), gfp); if (!md5sig) return -ENOMEM; sk_gso_disable(sk); INIT_HLIST_HEAD(&md5sig->head); rcu_assign_pointer(tp->md5sig_info, md5sig); return 0; } /* This can be called on a newly created socket, from other files */ static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, u8 flags, const u8 *newkey, u8 newkeylen, gfp_t gfp) { /* Add Key to the list */ struct tcp_md5sig_key *key; struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_info *md5sig; key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); if (key) { /* Pre-existing entry - just update that one. * Note that the key might be used concurrently. * data_race() is telling kcsan that we do not care of * key mismatches, since changing MD5 key on live flows * can lead to packet drops. */ data_race(memcpy(key->key, newkey, newkeylen)); /* Pairs with READ_ONCE() in tcp_md5_hash_key(). * Also note that a reader could catch new key->keylen value * but old key->key[], this is the reason we use __GFP_ZERO * at sock_kmalloc() time below these lines. */ WRITE_ONCE(key->keylen, newkeylen); return 0; } md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); if (!key) return -ENOMEM; memcpy(key->key, newkey, newkeylen); key->keylen = newkeylen; key->family = family; key->prefixlen = prefixlen; key->l3index = l3index; key->flags = flags; memcpy(&key->addr, addr, (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : sizeof(struct in_addr)); hlist_add_head_rcu(&key->node, &md5sig->head); return 0; } int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, u8 flags, const u8 *newkey, u8 newkeylen) { struct tcp_sock *tp = tcp_sk(sk); if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { if (tcp_md5_alloc_sigpool()) return -ENOMEM; if (tcp_md5sig_info_add(sk, GFP_KERNEL)) { tcp_md5_release_sigpool(); return -ENOMEM; } if (!static_branch_inc(&tcp_md5_needed.key)) { struct tcp_md5sig_info *md5sig; md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); rcu_assign_pointer(tp->md5sig_info, NULL); kfree_rcu(md5sig, rcu); tcp_md5_release_sigpool(); return -EUSERS; } } return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags, newkey, newkeylen, GFP_KERNEL); } EXPORT_SYMBOL(tcp_md5_do_add); int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, struct tcp_md5sig_key *key) { struct tcp_sock *tp = tcp_sk(sk); if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { tcp_md5_add_sigpool(); if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) { tcp_md5_release_sigpool(); return -ENOMEM; } if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) { struct tcp_md5sig_info *md5sig; md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); net_warn_ratelimited("Too many TCP-MD5 keys in the system\n"); rcu_assign_pointer(tp->md5sig_info, NULL); kfree_rcu(md5sig, rcu); tcp_md5_release_sigpool(); return -EUSERS; } } return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, key->flags, key->key, key->keylen, sk_gfp_mask(sk, GFP_ATOMIC)); } EXPORT_SYMBOL(tcp_md5_key_copy); int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, u8 flags) { struct tcp_md5sig_key *key; key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); if (!key) return -ENOENT; hlist_del_rcu(&key->node); atomic_sub(sizeof(*key), &sk->sk_omem_alloc); kfree_rcu(key, rcu); return 0; } EXPORT_SYMBOL(tcp_md5_do_del); void tcp_clear_md5_list(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; struct hlist_node *n; struct tcp_md5sig_info *md5sig; md5sig = rcu_dereference_protected(tp->md5sig_info, 1); hlist_for_each_entry_safe(key, n, &md5sig->head, node) { hlist_del_rcu(&key->node); atomic_sub(sizeof(*key), &sk->sk_omem_alloc); kfree_rcu(key, rcu); } } static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct tcp_md5sig cmd; struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; const union tcp_md5_addr *addr; u8 prefixlen = 32; int l3index = 0; bool l3flag; u8 flags; if (optlen < sizeof(cmd)) return -EINVAL; if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) return -EFAULT; if (sin->sin_family != AF_INET) return -EINVAL; flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; if (optname == TCP_MD5SIG_EXT && cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { prefixlen = cmd.tcpm_prefixlen; if (prefixlen > 32) return -EINVAL; } if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); if (dev && netif_is_l3_master(dev)) l3index = dev->ifindex; rcu_read_unlock(); /* ok to reference set/not set outside of rcu; * right now device MUST be an L3 master */ if (!dev || !l3index) return -EINVAL; } addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; if (!cmd.tcpm_keylen) return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) return -EINVAL; /* Don't allow keys for peers that have a matching TCP-AO key. * See the comment in tcp_ao_add_cmd() */ if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false)) return -EKEYREJECTED; return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, cmd.tcpm_key, cmd.tcpm_keylen); } static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp, __be32 daddr, __be32 saddr, const struct tcphdr *th, int nbytes) { struct tcp4_pseudohdr *bp; struct scatterlist sg; struct tcphdr *_th; bp = hp->scratch; bp->saddr = saddr; bp->daddr = daddr; bp->pad = 0; bp->protocol = IPPROTO_TCP; bp->len = cpu_to_be16(nbytes); _th = (struct tcphdr *)(bp + 1); memcpy(_th, th, sizeof(*th)); _th->check = 0; sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp) + sizeof(*th)); return crypto_ahash_update(hp->req); } static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, __be32 daddr, __be32 saddr, const struct tcphdr *th) { struct tcp_sigpool hp; if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) goto clear_hash_nostart; if (crypto_ahash_init(hp.req)) goto clear_hash; if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(&hp, key)) goto clear_hash; ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); if (crypto_ahash_final(hp.req)) goto clear_hash; tcp_sigpool_end(&hp); return 0; clear_hash: tcp_sigpool_end(&hp); clear_hash_nostart: memset(md5_hash, 0, 16); return 1; } int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb) { const struct tcphdr *th = tcp_hdr(skb); struct tcp_sigpool hp; __be32 saddr, daddr; if (sk) { /* valid for establish/request sockets */ saddr = sk->sk_rcv_saddr; daddr = sk->sk_daddr; } else { const struct iphdr *iph = ip_hdr(skb); saddr = iph->saddr; daddr = iph->daddr; } if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) goto clear_hash_nostart; if (crypto_ahash_init(hp.req)) goto clear_hash; if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len)) goto clear_hash; if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(&hp, key)) goto clear_hash; ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); if (crypto_ahash_final(hp.req)) goto clear_hash; tcp_sigpool_end(&hp); return 0; clear_hash: tcp_sigpool_end(&hp); clear_hash_nostart: memset(md5_hash, 0, 16); return 1; } EXPORT_SYMBOL(tcp_v4_md5_hash_skb); #endif static void tcp_v4_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { struct inet_request_sock *ireq = inet_rsk(req); struct net *net = sock_net(sk_listener); sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); } static struct dst_entry *tcp_v4_route_req(const struct sock *sk, struct sk_buff *skb, struct flowi *fl, struct request_sock *req, u32 tw_isn) { tcp_v4_init_req(req, sk, skb); if (security_inet_conn_request(sk, skb, req)) return NULL; return inet_csk_route_req(sk, &fl->u.ip4, req); } struct request_sock_ops tcp_request_sock_ops __read_mostly = { .family = PF_INET, .obj_size = sizeof(struct tcp_request_sock), .rtx_syn_ack = tcp_rtx_synack, .send_ack = tcp_v4_reqsk_send_ack, .destructor = tcp_v4_reqsk_destructor, .send_reset = tcp_v4_send_reset, .syn_ack_timeout = tcp_syn_ack_timeout, }; const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { .mss_clamp = TCP_MSS_DEFAULT, #ifdef CONFIG_TCP_MD5SIG .req_md5_lookup = tcp_v4_md5_lookup, .calc_md5_hash = tcp_v4_md5_hash_skb, #endif #ifdef CONFIG_TCP_AO .ao_lookup = tcp_v4_ao_lookup_rsk, .ao_calc_key = tcp_v4_ao_calc_key_rsk, .ao_synack_hash = tcp_v4_ao_synack_hash, #endif #ifdef CONFIG_SYN_COOKIES .cookie_init_seq = cookie_v4_init_sequence, #endif .route_req = tcp_v4_route_req, .init_seq = tcp_v4_init_seq, .init_ts_off = tcp_v4_init_ts_off, .send_synack = tcp_v4_send_synack, }; int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) { /* Never answer to SYNs send to broadcast or multicast */ if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) goto drop; return tcp_conn_request(&tcp_request_sock_ops, &tcp_request_sock_ipv4_ops, sk, skb); drop: tcp_listendrop(sk); return 0; } EXPORT_SYMBOL(tcp_v4_conn_request); /* * The three way handshake has completed - we got a valid synack - * now create the new socket. */ struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct inet_request_sock *ireq; bool found_dup_sk = false; struct inet_sock *newinet; struct tcp_sock *newtp; struct sock *newsk; #ifdef CONFIG_TCP_MD5SIG const union tcp_md5_addr *addr; struct tcp_md5sig_key *key; int l3index; #endif struct ip_options_rcu *inet_opt; if (sk_acceptq_is_full(sk)) goto exit_overflow; newsk = tcp_create_openreq_child(sk, req, skb); if (!newsk) goto exit_nonewsk; newsk->sk_gso_type = SKB_GSO_TCPV4; inet_sk_rx_dst_set(newsk, skb); newtp = tcp_sk(newsk); newinet = inet_sk(newsk); ireq = inet_rsk(req); sk_daddr_set(newsk, ireq->ir_rmt_addr); sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); newsk->sk_bound_dev_if = ireq->ir_iif; newinet->inet_saddr = ireq->ir_loc_addr; inet_opt = rcu_dereference(ireq->ireq_opt); RCU_INIT_POINTER(newinet->inet_opt, inet_opt); newinet->mc_index = inet_iif(skb); newinet->mc_ttl = ip_hdr(skb)->ttl; newinet->rcv_tos = ip_hdr(skb)->tos; inet_csk(newsk)->icsk_ext_hdr_len = 0; if (inet_opt) inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; atomic_set(&newinet->inet_id, get_random_u16()); /* Set ToS of the new socket based upon the value of incoming SYN. * ECT bits are set later in tcp_init_transfer(). */ if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; if (!dst) { dst = inet_csk_route_child_sock(sk, newsk, req); if (!dst) goto put_and_exit; } else { /* syncookie case : see end of cookie_v4_check() */ } sk_setup_caps(newsk, dst); tcp_ca_openreq_child(newsk, dst); tcp_sync_mss(newsk, dst_mtu(dst)); newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); tcp_initialize_rcv_mss(newsk); #ifdef CONFIG_TCP_MD5SIG l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); /* Copy over the MD5 key from the original socket */ addr = (union tcp_md5_addr *)&newinet->inet_daddr; key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); if (key && !tcp_rsk_used_ao(req)) { if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key)) goto put_and_exit; sk_gso_disable(newsk); } #endif #ifdef CONFIG_TCP_AO if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET)) goto put_and_exit; /* OOM, release back memory */ #endif if (__inet_inherit_port(sk, newsk) < 0) goto put_and_exit; *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), &found_dup_sk); if (likely(*own_req)) { tcp_move_syn(newtp, req); ireq->ireq_opt = NULL; } else { newinet->inet_opt = NULL; if (!req_unhash && found_dup_sk) { /* This code path should only be executed in the * syncookie case only */ bh_unlock_sock(newsk); sock_put(newsk); newsk = NULL; } } return newsk; exit_overflow: NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); exit_nonewsk: dst_release(dst); exit: tcp_listendrop(sk); return NULL; put_and_exit: newinet->inet_opt = NULL; inet_csk_prepare_forced_close(newsk); tcp_done(newsk); goto exit; } EXPORT_SYMBOL(tcp_v4_syn_recv_sock); static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) { #ifdef CONFIG_SYN_COOKIES const struct tcphdr *th = tcp_hdr(skb); if (!th->syn) sk = cookie_v4_check(sk, skb); #endif return sk; } u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, struct tcphdr *th, u32 *cookie) { u16 mss = 0; #ifdef CONFIG_SYN_COOKIES mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, &tcp_request_sock_ipv4_ops, sk, th); if (mss) { *cookie = __cookie_v4_init_sequence(iph, th, &mss); tcp_synq_overflow(sk); } #endif return mss; } INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, u32)); /* The socket must have it's spinlock held when we get * here, unless it is a TCP_LISTEN socket. * * We have a potential double-lock case here, so even when * doing backlog processing we use the BH locking scheme. * This is because we cannot sleep with the original spinlock * held. */ int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) { enum skb_drop_reason reason; struct sock *rsk; if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ struct dst_entry *dst; dst = rcu_dereference_protected(sk->sk_rx_dst, lockdep_sock_is_held(sk)); sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); if (dst) { if (sk->sk_rx_dst_ifindex != skb->skb_iif || !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, dst, 0)) { RCU_INIT_POINTER(sk->sk_rx_dst, NULL); dst_release(dst); } } tcp_rcv_established(sk, skb); return 0; } if (tcp_checksum_complete(skb)) goto csum_err; if (sk->sk_state == TCP_LISTEN) { struct sock *nsk = tcp_v4_cookie_check(sk, skb); if (!nsk) return 0; if (nsk != sk) { reason = tcp_child_process(sk, nsk, skb); if (reason) { rsk = nsk; goto reset; } return 0; } } else sock_rps_save_rxhash(sk, skb); reason = tcp_rcv_state_process(sk, skb); if (reason) { rsk = sk; goto reset; } return 0; reset: tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason)); discard: sk_skb_reason_drop(sk, skb, reason); /* Be careful here. If this function gets more complicated and * gcc suffers from register pressure on the x86, sk (in %ebx) * might be destroyed here. This current version compiles correctly, * but you have been warned. */ return 0; csum_err: reason = SKB_DROP_REASON_TCP_CSUM; trace_tcp_bad_csum(skb); TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); goto discard; } EXPORT_SYMBOL(tcp_v4_do_rcv); int tcp_v4_early_demux(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); const struct iphdr *iph; const struct tcphdr *th; struct sock *sk; if (skb->pkt_type != PACKET_HOST) return 0; if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) return 0; iph = ip_hdr(skb); th = tcp_hdr(skb); if (th->doff < sizeof(struct tcphdr) / 4) return 0; sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, iph->saddr, th->source, iph->daddr, ntohs(th->dest), skb->skb_iif, inet_sdif(skb)); if (sk) { skb->sk = sk; skb->destructor = sock_edemux; if (sk_fullsock(sk)) { struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); if (dst) dst = dst_check(dst, 0); if (dst && sk->sk_rx_dst_ifindex == skb->skb_iif) skb_dst_set_noref(skb, dst); } } return 0; } bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason) { u32 tail_gso_size, tail_gso_segs; struct skb_shared_info *shinfo; const struct tcphdr *th; struct tcphdr *thtail; struct sk_buff *tail; unsigned int hdrlen; bool fragstolen; u32 gso_segs; u32 gso_size; u64 limit; int delta; /* In case all data was pulled from skb frags (in __pskb_pull_tail()), * we can fix skb->truesize to its real value to avoid future drops. * This is valid because skb is not yet charged to the socket. * It has been noticed pure SACK packets were sometimes dropped * (if cooked by drivers without copybreak feature). */ skb_condense(skb); skb_dst_drop(skb); if (unlikely(tcp_checksum_complete(skb))) { bh_unlock_sock(sk); trace_tcp_bad_csum(skb); *reason = SKB_DROP_REASON_TCP_CSUM; __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); return true; } /* Attempt coalescing to last skb in backlog, even if we are * above the limits. * This is okay because skb capacity is limited to MAX_SKB_FRAGS. */ th = (const struct tcphdr *)skb->data; hdrlen = th->doff * 4; tail = sk->sk_backlog.tail; if (!tail) goto no_coalesce; thtail = (struct tcphdr *)tail->data; if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || ((TCP_SKB_CB(tail)->tcp_flags | TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || !((TCP_SKB_CB(tail)->tcp_flags & TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || ((TCP_SKB_CB(tail)->tcp_flags ^ TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || !tcp_skb_can_collapse_rx(tail, skb) || thtail->doff != th->doff || memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) goto no_coalesce; __skb_pull(skb, hdrlen); shinfo = skb_shinfo(skb); gso_size = shinfo->gso_size ?: skb->len; gso_segs = shinfo->gso_segs ?: 1; shinfo = skb_shinfo(tail); tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); tail_gso_segs = shinfo->gso_segs ?: 1; if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; thtail->window = th->window; } /* We have to update both TCP_SKB_CB(tail)->tcp_flags and * thtail->fin, so that the fast path in tcp_rcv_established() * is not entered if we append a packet with a FIN. * SYN, RST, URG are not present. * ACK is set on both packets. * PSH : we do not really care in TCP stack, * at least for 'GRO' packets. */ thtail->fin |= th->fin; TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; if (TCP_SKB_CB(skb)->has_rxtstamp) { TCP_SKB_CB(tail)->has_rxtstamp = true; tail->tstamp = skb->tstamp; skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; } /* Not as strict as GRO. We only need to carry mss max value */ shinfo->gso_size = max(gso_size, tail_gso_size); shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); sk->sk_backlog.len += delta; __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGCOALESCE); kfree_skb_partial(skb, fragstolen); return false; } __skb_push(skb, hdrlen); no_coalesce: /* sk->sk_backlog.len is reset only at the end of __release_sock(). * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach * sk_rcvbuf in normal conditions. */ limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1; limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1; /* Only socket owner can try to collapse/prune rx queues * to reduce memory overhead, so add a little headroom here. * Few sockets backlog are possibly concurrently non empty. */ limit += 64 * 1024; limit = min_t(u64, limit, UINT_MAX); if (unlikely(sk_add_backlog(sk, skb, limit))) { bh_unlock_sock(sk); *reason = SKB_DROP_REASON_SOCKET_BACKLOG; __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); return true; } return false; } EXPORT_SYMBOL(tcp_add_backlog); int tcp_filter(struct sock *sk, struct sk_buff *skb) { struct tcphdr *th = (struct tcphdr *)skb->data; return sk_filter_trim_cap(sk, skb, th->doff * 4); } EXPORT_SYMBOL(tcp_filter); static void tcp_v4_restore_cb(struct sk_buff *skb) { memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, sizeof(struct inet_skb_parm)); } static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, const struct tcphdr *th) { /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() * barrier() makes sure compiler wont play fool^Waliasing games. */ memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), sizeof(struct inet_skb_parm)); barrier(); TCP_SKB_CB(skb)->seq = ntohl(th->seq); TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + skb->len - th->doff * 4); TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); TCP_SKB_CB(skb)->sacked = 0; TCP_SKB_CB(skb)->has_rxtstamp = skb->tstamp || skb_hwtstamps(skb)->hwtstamp; } /* * From tcp_input.c */ int tcp_v4_rcv(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); enum skb_drop_reason drop_reason; int sdif = inet_sdif(skb); int dif = inet_iif(skb); const struct iphdr *iph; const struct tcphdr *th; struct sock *sk = NULL; bool refcounted; int ret; u32 isn; drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; if (skb->pkt_type != PACKET_HOST) goto discard_it; /* Count it even if it's bad */ __TCP_INC_STATS(net, TCP_MIB_INSEGS); if (!pskb_may_pull(skb, sizeof(struct tcphdr))) goto discard_it; th = (const struct tcphdr *)skb->data; if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; goto bad_packet; } if (!pskb_may_pull(skb, th->doff * 4)) goto discard_it; /* An explanation is required here, I think. * Packet length and doff are validated by header prediction, * provided case of th->doff==0 is eliminated. * So, we defer the checks. */ if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) goto csum_error; th = (const struct tcphdr *)skb->data; iph = ip_hdr(skb); lookup: sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo, skb, __tcp_hdrlen(th), th->source, th->dest, sdif, &refcounted); if (!sk) goto no_tcp_socket; if (sk->sk_state == TCP_TIME_WAIT) goto do_time_wait; if (sk->sk_state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); bool req_stolen = false; struct sock *nsk; sk = req->rsk_listener; if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) drop_reason = SKB_DROP_REASON_XFRM_POLICY; else drop_reason = tcp_inbound_hash(sk, req, skb, &iph->saddr, &iph->daddr, AF_INET, dif, sdif); if (unlikely(drop_reason)) { sk_drops_add(sk, skb); reqsk_put(req); goto discard_it; } if (tcp_checksum_complete(skb)) { reqsk_put(req); goto csum_error; } if (unlikely(sk->sk_state != TCP_LISTEN)) { nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); if (!nsk) { inet_csk_reqsk_queue_drop_and_put(sk, req); goto lookup; } sk = nsk; /* reuseport_migrate_sock() has already held one sk_refcnt * before returning. */ } else { /* We own a reference on the listener, increase it again * as we might lose it too soon. */ sock_hold(sk); } refcounted = true; nsk = NULL; if (!tcp_filter(sk, skb)) { th = (const struct tcphdr *)skb->data; iph = ip_hdr(skb); tcp_v4_fill_cb(skb, iph, th); nsk = tcp_check_req(sk, skb, req, false, &req_stolen); } else { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; } if (!nsk) { reqsk_put(req); if (req_stolen) { /* Another cpu got exclusive access to req * and created a full blown socket. * Try to feed this packet to this socket * instead of discarding it. */ tcp_v4_restore_cb(skb); sock_put(sk); goto lookup; } goto discard_and_relse; } nf_reset_ct(skb); if (nsk == sk) { reqsk_put(req); tcp_v4_restore_cb(skb); } else { drop_reason = tcp_child_process(sk, nsk, skb); if (drop_reason) { enum sk_rst_reason rst_reason; rst_reason = sk_rst_convert_drop_reason(drop_reason); tcp_v4_send_reset(nsk, skb, rst_reason); goto discard_and_relse; } sock_put(sk); return 0; } } process: if (static_branch_unlikely(&ip4_min_ttl)) { /* min_ttl can be changed concurrently from do_ip_setsockopt() */ if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); drop_reason = SKB_DROP_REASON_TCP_MINTTL; goto discard_and_relse; } } if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; goto discard_and_relse; } drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr, AF_INET, dif, sdif); if (drop_reason) goto discard_and_relse; nf_reset_ct(skb); if (tcp_filter(sk, skb)) { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; goto discard_and_relse; } th = (const struct tcphdr *)skb->data; iph = ip_hdr(skb); tcp_v4_fill_cb(skb, iph, th); skb->dev = NULL; if (sk->sk_state == TCP_LISTEN) { ret = tcp_v4_do_rcv(sk, skb); goto put_and_return; } sk_incoming_cpu_update(sk); bh_lock_sock_nested(sk); tcp_segs_in(tcp_sk(sk), skb); ret = 0; if (!sock_owned_by_user(sk)) { ret = tcp_v4_do_rcv(sk, skb); } else { if (tcp_add_backlog(sk, skb, &drop_reason)) goto discard_and_relse; } bh_unlock_sock(sk); put_and_return: if (refcounted) sock_put(sk); return ret; no_tcp_socket: drop_reason = SKB_DROP_REASON_NO_SOCKET; if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) goto discard_it; tcp_v4_fill_cb(skb, iph, th); if (tcp_checksum_complete(skb)) { csum_error: drop_reason = SKB_DROP_REASON_TCP_CSUM; trace_tcp_bad_csum(skb); __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); bad_packet: __TCP_INC_STATS(net, TCP_MIB_INERRS); } else { tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason)); } discard_it: SKB_DR_OR(drop_reason, NOT_SPECIFIED); /* Discard frame. */ sk_skb_reason_drop(sk, skb, drop_reason); return 0; discard_and_relse: sk_drops_add(sk, skb); if (refcounted) sock_put(sk); goto discard_it; do_time_wait: if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; inet_twsk_put(inet_twsk(sk)); goto discard_it; } tcp_v4_fill_cb(skb, iph, th); if (tcp_checksum_complete(skb)) { inet_twsk_put(inet_twsk(sk)); goto csum_error; } switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) { case TCP_TW_SYN: { struct sock *sk2 = inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, skb, __tcp_hdrlen(th), iph->saddr, th->source, iph->daddr, th->dest, inet_iif(skb), sdif); if (sk2) { inet_twsk_deschedule_put(inet_twsk(sk)); sk = sk2; tcp_v4_restore_cb(skb); refcounted = false; __this_cpu_write(tcp_tw_isn, isn); goto process; } } /* to ACK */ fallthrough; case TCP_TW_ACK: tcp_v4_timewait_ack(sk, skb); break; case TCP_TW_RST: tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET); inet_twsk_deschedule_put(inet_twsk(sk)); goto discard_it; case TCP_TW_SUCCESS:; } goto discard_it; } static struct timewait_sock_ops tcp_timewait_sock_ops = { .twsk_obj_size = sizeof(struct tcp_timewait_sock), .twsk_destructor= tcp_twsk_destructor, }; void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); if (dst && dst_hold_safe(dst)) { rcu_assign_pointer(sk->sk_rx_dst, dst); sk->sk_rx_dst_ifindex = skb->skb_iif; } } EXPORT_SYMBOL(inet_sk_rx_dst_set); const struct inet_connection_sock_af_ops ipv4_specific = { .queue_xmit = ip_queue_xmit, .send_check = tcp_v4_send_check, .rebuild_header = inet_sk_rebuild_header, .sk_rx_dst_set = inet_sk_rx_dst_set, .conn_request = tcp_v4_conn_request, .syn_recv_sock = tcp_v4_syn_recv_sock, .net_header_len = sizeof(struct iphdr), .setsockopt = ip_setsockopt, .getsockopt = ip_getsockopt, .addr2sockaddr = inet_csk_addr2sockaddr, .sockaddr_len = sizeof(struct sockaddr_in), .mtu_reduced = tcp_v4_mtu_reduced, }; EXPORT_SYMBOL(ipv4_specific); #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { #ifdef CONFIG_TCP_MD5SIG .md5_lookup = tcp_v4_md5_lookup, .calc_md5_hash = tcp_v4_md5_hash_skb, .md5_parse = tcp_v4_parse_md5_keys, #endif #ifdef CONFIG_TCP_AO .ao_lookup = tcp_v4_ao_lookup, .calc_ao_hash = tcp_v4_ao_hash_skb, .ao_parse = tcp_v4_parse_ao, .ao_calc_key_sk = tcp_v4_ao_calc_key_sk, #endif }; #endif /* NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ static int tcp_v4_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); tcp_init_sock(sk); icsk->icsk_af_ops = &ipv4_specific; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; #endif return 0; } #ifdef CONFIG_TCP_MD5SIG static void tcp_md5sig_info_free_rcu(struct rcu_head *head) { struct tcp_md5sig_info *md5sig; md5sig = container_of(head, struct tcp_md5sig_info, rcu); kfree(md5sig); static_branch_slow_dec_deferred(&tcp_md5_needed); tcp_md5_release_sigpool(); } #endif static void tcp_release_user_frags(struct sock *sk) { #ifdef CONFIG_PAGE_POOL unsigned long index; void *netmem; xa_for_each(&sk->sk_user_frags, index, netmem) WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem)); #endif } void tcp_v4_destroy_sock(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); tcp_release_user_frags(sk); xa_destroy(&sk->sk_user_frags); trace_tcp_destroy_sock(sk); tcp_clear_xmit_timers(sk); tcp_cleanup_congestion_control(sk); tcp_cleanup_ulp(sk); /* Cleanup up the write buffer. */ tcp_write_queue_purge(sk); /* Check if we want to disable active TFO */ tcp_fastopen_active_disable_ofo_check(sk); /* Cleans up our, hopefully empty, out_of_order_queue. */ skb_rbtree_purge(&tp->out_of_order_queue); #ifdef CONFIG_TCP_MD5SIG /* Clean up the MD5 key list, if any */ if (tp->md5sig_info) { struct tcp_md5sig_info *md5sig; md5sig = rcu_dereference_protected(tp->md5sig_info, 1); tcp_clear_md5_list(sk); call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu); rcu_assign_pointer(tp->md5sig_info, NULL); } #endif tcp_ao_destroy_sock(sk, false); /* Clean up a referenced TCP bind bucket. */ if (inet_csk(sk)->icsk_bind_hash) inet_put_port(sk); BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); /* If socket is aborted during connect operation */ tcp_free_fastopen_req(tp); tcp_fastopen_destroy_cipher(sk); tcp_saved_syn_free(tp); sk_sockets_allocated_dec(sk); } EXPORT_SYMBOL(tcp_v4_destroy_sock); #ifdef CONFIG_PROC_FS /* Proc filesystem TCP sock list dumping. */ static unsigned short seq_file_family(const struct seq_file *seq); static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) { unsigned short family = seq_file_family(seq); /* AF_UNSPEC is used as a match all */ return ((family == AF_UNSPEC || family == sk->sk_family) && net_eq(sock_net(sk), seq_file_net(seq))); } /* Find a non empty bucket (starting from st->bucket) * and return the first sk from it. */ static void *listening_get_first(struct seq_file *seq) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct tcp_iter_state *st = seq->private; st->offset = 0; for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) { struct inet_listen_hashbucket *ilb2; struct hlist_nulls_node *node; struct sock *sk; ilb2 = &hinfo->lhash2[st->bucket]; if (hlist_nulls_empty(&ilb2->nulls_head)) continue; spin_lock(&ilb2->lock); sk_nulls_for_each(sk, node, &ilb2->nulls_head) { if (seq_sk_match(seq, sk)) return sk; } spin_unlock(&ilb2->lock); } return NULL; } /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). * If "cur" is the last one in the st->bucket, * call listening_get_first() to return the first sk of the next * non empty bucket. */ static void *listening_get_next(struct seq_file *seq, void *cur) { struct tcp_iter_state *st = seq->private; struct inet_listen_hashbucket *ilb2; struct hlist_nulls_node *node; struct inet_hashinfo *hinfo; struct sock *sk = cur; ++st->num; ++st->offset; sk = sk_nulls_next(sk); sk_nulls_for_each_from(sk, node) { if (seq_sk_match(seq, sk)) return sk; } hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; ilb2 = &hinfo->lhash2[st->bucket]; spin_unlock(&ilb2->lock); ++st->bucket; return listening_get_first(seq); } static void *listening_get_idx(struct seq_file *seq, loff_t *pos) { struct tcp_iter_state *st = seq->private; void *rc; st->bucket = 0; st->offset = 0; rc = listening_get_first(seq); while (rc && *pos) { rc = listening_get_next(seq, rc); --*pos; } return rc; } static inline bool empty_bucket(struct inet_hashinfo *hinfo, const struct tcp_iter_state *st) { return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain); } /* * Get first established socket starting from bucket given in st->bucket. * If st->bucket is zero, the very first socket in the hash is returned. */ static void *established_get_first(struct seq_file *seq) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct tcp_iter_state *st = seq->private; st->offset = 0; for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) { struct sock *sk; struct hlist_nulls_node *node; spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket); cond_resched(); /* Lockless fast path for the common case of empty buckets */ if (empty_bucket(hinfo, st)) continue; spin_lock_bh(lock); sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) { if (seq_sk_match(seq, sk)) return sk; } spin_unlock_bh(lock); } return NULL; } static void *established_get_next(struct seq_file *seq, void *cur) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct tcp_iter_state *st = seq->private; struct hlist_nulls_node *node; struct sock *sk = cur; ++st->num; ++st->offset; sk = sk_nulls_next(sk); sk_nulls_for_each_from(sk, node) { if (seq_sk_match(seq, sk)) return sk; } spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); ++st->bucket; return established_get_first(seq); } static void *established_get_idx(struct seq_file *seq, loff_t pos) { struct tcp_iter_state *st = seq->private; void *rc; st->bucket = 0; rc = established_get_first(seq); while (rc && pos) { rc = established_get_next(seq, rc); --pos; } return rc; } static void *tcp_get_idx(struct seq_file *seq, loff_t pos) { void *rc; struct tcp_iter_state *st = seq->private; st->state = TCP_SEQ_STATE_LISTENING; rc = listening_get_idx(seq, &pos); if (!rc) { st->state = TCP_SEQ_STATE_ESTABLISHED; rc = established_get_idx(seq, pos); } return rc; } static void *tcp_seek_last_pos(struct seq_file *seq) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct tcp_iter_state *st = seq->private; int bucket = st->bucket; int offset = st->offset; int orig_num = st->num; void *rc = NULL; switch (st->state) { case TCP_SEQ_STATE_LISTENING: if (st->bucket > hinfo->lhash2_mask) break; rc = listening_get_first(seq); while (offset-- && rc && bucket == st->bucket) rc = listening_get_next(seq, rc); if (rc) break; st->bucket = 0; st->state = TCP_SEQ_STATE_ESTABLISHED; fallthrough; case TCP_SEQ_STATE_ESTABLISHED: if (st->bucket > hinfo->ehash_mask) break; rc = established_get_first(seq); while (offset-- && rc && bucket == st->bucket) rc = established_get_next(seq, rc); } st->num = orig_num; return rc; } void *tcp_seq_start(struct seq_file *seq, loff_t *pos) { struct tcp_iter_state *st = seq->private; void *rc; if (*pos && *pos == st->last_pos) { rc = tcp_seek_last_pos(seq); if (rc) goto out; } st->state = TCP_SEQ_STATE_LISTENING; st->num = 0; st->bucket = 0; st->offset = 0; rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; out: st->last_pos = *pos; return rc; } EXPORT_SYMBOL(tcp_seq_start); void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct tcp_iter_state *st = seq->private; void *rc = NULL; if (v == SEQ_START_TOKEN) { rc = tcp_get_idx(seq, 0); goto out; } switch (st->state) { case TCP_SEQ_STATE_LISTENING: rc = listening_get_next(seq, v); if (!rc) { st->state = TCP_SEQ_STATE_ESTABLISHED; st->bucket = 0; st->offset = 0; rc = established_get_first(seq); } break; case TCP_SEQ_STATE_ESTABLISHED: rc = established_get_next(seq, v); break; } out: ++*pos; st->last_pos = *pos; return rc; } EXPORT_SYMBOL(tcp_seq_next); void tcp_seq_stop(struct seq_file *seq, void *v) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct tcp_iter_state *st = seq->private; switch (st->state) { case TCP_SEQ_STATE_LISTENING: if (v != SEQ_START_TOKEN) spin_unlock(&hinfo->lhash2[st->bucket].lock); break; case TCP_SEQ_STATE_ESTABLISHED: if (v) spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); break; } } EXPORT_SYMBOL(tcp_seq_stop); static void get_openreq4(const struct request_sock *req, struct seq_file *f, int i) { const struct inet_request_sock *ireq = inet_rsk(req); long delta = req->rsk_timer.expires - jiffies; seq_printf(f, "%4d: %08X:%04X %08X:%04X" " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", i, ireq->ir_loc_addr, ireq->ir_num, ireq->ir_rmt_addr, ntohs(ireq->ir_rmt_port), TCP_SYN_RECV, 0, 0, /* could print option size, but that is af dependent. */ 1, /* timers active (only the expire timer) */ jiffies_delta_to_clock_t(delta), req->num_timeout, from_kuid_munged(seq_user_ns(f), sock_i_uid(req->rsk_listener)), 0, /* non standard timer */ 0, /* open_requests have no inode */ 0, req); } static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) { int timer_active; unsigned long timer_expires; const struct tcp_sock *tp = tcp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); const struct inet_sock *inet = inet_sk(sk); const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; __be32 dest = inet->inet_daddr; __be32 src = inet->inet_rcv_saddr; __u16 destp = ntohs(inet->inet_dport); __u16 srcp = ntohs(inet->inet_sport); u8 icsk_pending; int rx_queue; int state; icsk_pending = smp_load_acquire(&icsk->icsk_pending); if (icsk_pending == ICSK_TIME_RETRANS || icsk_pending == ICSK_TIME_REO_TIMEOUT || icsk_pending == ICSK_TIME_LOSS_PROBE) { timer_active = 1; timer_expires = icsk->icsk_timeout; } else if (icsk_pending == ICSK_TIME_PROBE0) { timer_active = 4; timer_expires = icsk->icsk_timeout; } else if (timer_pending(&sk->sk_timer)) { timer_active = 2; timer_expires = sk->sk_timer.expires; } else { timer_active = 0; timer_expires = jiffies; } state = inet_sk_state_load(sk); if (state == TCP_LISTEN) rx_queue = READ_ONCE(sk->sk_ack_backlog); else /* Because we don't lock the socket, * we might find a transient negative value. */ rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq), 0); seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", i, src, srcp, dest, destp, state, READ_ONCE(tp->write_seq) - tp->snd_una, rx_queue, timer_active, jiffies_delta_to_clock_t(timer_expires - jiffies), icsk->icsk_retransmits, from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), icsk->icsk_probes_out, sock_i_ino(sk), refcount_read(&sk->sk_refcnt), sk, jiffies_to_clock_t(icsk->icsk_rto), jiffies_to_clock_t(icsk->icsk_ack.ato), (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), tcp_snd_cwnd(tp), state == TCP_LISTEN ? fastopenq->max_qlen : (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); } static void get_timewait4_sock(const struct inet_timewait_sock *tw, struct seq_file *f, int i) { long delta = tw->tw_timer.expires - jiffies; __be32 dest, src; __u16 destp, srcp; dest = tw->tw_daddr; src = tw->tw_rcv_saddr; destp = ntohs(tw->tw_dport); srcp = ntohs(tw->tw_sport); seq_printf(f, "%4d: %08X:%04X %08X:%04X" " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0, 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, refcount_read(&tw->tw_refcnt), tw); } #define TMPSZ 150 static int tcp4_seq_show(struct seq_file *seq, void *v) { struct tcp_iter_state *st; struct sock *sk = v; seq_setwidth(seq, TMPSZ - 1); if (v == SEQ_START_TOKEN) { seq_puts(seq, " sl local_address rem_address st tx_queue " "rx_queue tr tm->when retrnsmt uid timeout " "inode"); goto out; } st = seq->private; if (sk->sk_state == TCP_TIME_WAIT) get_timewait4_sock(v, seq, st->num); else if (sk->sk_state == TCP_NEW_SYN_RECV) get_openreq4(v, seq, st->num); else get_tcp4_sock(v, seq, st->num); out: seq_pad(seq, '\n'); return 0; } #ifdef CONFIG_BPF_SYSCALL struct bpf_tcp_iter_state { struct tcp_iter_state state; unsigned int cur_sk; unsigned int end_sk; unsigned int max_sk; struct sock **batch; bool st_bucket_done; }; struct bpf_iter__tcp { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct sock_common *, sk_common); uid_t uid __aligned(8); }; static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, struct sock_common *sk_common, uid_t uid) { struct bpf_iter__tcp ctx; meta->seq_num--; /* skip SEQ_START_TOKEN */ ctx.meta = meta; ctx.sk_common = sk_common; ctx.uid = uid; return bpf_iter_run_prog(prog, &ctx); } static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) { while (iter->cur_sk < iter->end_sk) sock_gen_put(iter->batch[iter->cur_sk++]); } static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, unsigned int new_batch_sz) { struct sock **new_batch; new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, GFP_USER | __GFP_NOWARN); if (!new_batch) return -ENOMEM; bpf_iter_tcp_put_batch(iter); kvfree(iter->batch); iter->batch = new_batch; iter->max_sk = new_batch_sz; return 0; } static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, struct sock *start_sk) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct bpf_tcp_iter_state *iter = seq->private; struct tcp_iter_state *st = &iter->state; struct hlist_nulls_node *node; unsigned int expected = 1; struct sock *sk; sock_hold(start_sk); iter->batch[iter->end_sk++] = start_sk; sk = sk_nulls_next(start_sk); sk_nulls_for_each_from(sk, node) { if (seq_sk_match(seq, sk)) { if (iter->end_sk < iter->max_sk) { sock_hold(sk); iter->batch[iter->end_sk++] = sk; } expected++; } } spin_unlock(&hinfo->lhash2[st->bucket].lock); return expected; } static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, struct sock *start_sk) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct bpf_tcp_iter_state *iter = seq->private; struct tcp_iter_state *st = &iter->state; struct hlist_nulls_node *node; unsigned int expected = 1; struct sock *sk; sock_hold(start_sk); iter->batch[iter->end_sk++] = start_sk; sk = sk_nulls_next(start_sk); sk_nulls_for_each_from(sk, node) { if (seq_sk_match(seq, sk)) { if (iter->end_sk < iter->max_sk) { sock_hold(sk); iter->batch[iter->end_sk++] = sk; } expected++; } } spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); return expected; } static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) { struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; struct bpf_tcp_iter_state *iter = seq->private; struct tcp_iter_state *st = &iter->state; unsigned int expected; bool resized = false; struct sock *sk; /* The st->bucket is done. Directly advance to the next * bucket instead of having the tcp_seek_last_pos() to skip * one by one in the current bucket and eventually find out * it has to advance to the next bucket. */ if (iter->st_bucket_done) { st->offset = 0; st->bucket++; if (st->state == TCP_SEQ_STATE_LISTENING && st->bucket > hinfo->lhash2_mask) { st->state = TCP_SEQ_STATE_ESTABLISHED; st->bucket = 0; } } again: /* Get a new batch */ iter->cur_sk = 0; iter->end_sk = 0; iter->st_bucket_done = false; sk = tcp_seek_last_pos(seq); if (!sk) return NULL; /* Done */ if (st->state == TCP_SEQ_STATE_LISTENING) expected = bpf_iter_tcp_listening_batch(seq, sk); else expected = bpf_iter_tcp_established_batch(seq, sk); if (iter->end_sk == expected) { iter->st_bucket_done = true; return sk; } if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { resized = true; goto again; } return sk; } static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) { /* bpf iter does not support lseek, so it always * continue from where it was stop()-ped. */ if (*pos) return bpf_iter_tcp_batch(seq); return SEQ_START_TOKEN; } static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_tcp_iter_state *iter = seq->private; struct tcp_iter_state *st = &iter->state; struct sock *sk; /* Whenever seq_next() is called, the iter->cur_sk is * done with seq_show(), so advance to the next sk in * the batch. */ if (iter->cur_sk < iter->end_sk) { /* Keeping st->num consistent in tcp_iter_state. * bpf_iter_tcp does not use st->num. * meta.seq_num is used instead. */ st->num++; /* Move st->offset to the next sk in the bucket such that * the future start() will resume at st->offset in * st->bucket. See tcp_seek_last_pos(). */ st->offset++; sock_gen_put(iter->batch[iter->cur_sk++]); } if (iter->cur_sk < iter->end_sk) sk = iter->batch[iter->cur_sk]; else sk = bpf_iter_tcp_batch(seq); ++*pos; /* Keeping st->last_pos consistent in tcp_iter_state. * bpf iter does not do lseek, so st->last_pos always equals to *pos. */ st->last_pos = *pos; return sk; } static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; struct sock *sk = v; uid_t uid; int ret; if (v == SEQ_START_TOKEN) return 0; if (sk_fullsock(sk)) lock_sock(sk); if (unlikely(sk_unhashed(sk))) { ret = SEQ_SKIP; goto unlock; } if (sk->sk_state == TCP_TIME_WAIT) { uid = 0; } else if (sk->sk_state == TCP_NEW_SYN_RECV) { const struct request_sock *req = v; uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(req->rsk_listener)); } else { uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); } meta.seq = seq; prog = bpf_iter_get_info(&meta, false); ret = tcp_prog_seq_show(prog, &meta, v, uid); unlock: if (sk_fullsock(sk)) release_sock(sk); return ret; } static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) { struct bpf_tcp_iter_state *iter = seq->private; struct bpf_iter_meta meta; struct bpf_prog *prog; if (!v) { meta.seq = seq; prog = bpf_iter_get_info(&meta, true); if (prog) (void)tcp_prog_seq_show(prog, &meta, v, 0); } if (iter->cur_sk < iter->end_sk) { bpf_iter_tcp_put_batch(iter); iter->st_bucket_done = false; } } static const struct seq_operations bpf_iter_tcp_seq_ops = { .show = bpf_iter_tcp_seq_show, .start = bpf_iter_tcp_seq_start, .next = bpf_iter_tcp_seq_next, .stop = bpf_iter_tcp_seq_stop, }; #endif static unsigned short seq_file_family(const struct seq_file *seq) { const struct tcp_seq_afinfo *afinfo; #ifdef CONFIG_BPF_SYSCALL /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ if (seq->op == &bpf_iter_tcp_seq_ops) return AF_UNSPEC; #endif /* Iterated from proc fs */ afinfo = pde_data(file_inode(seq->file)); return afinfo->family; } static const struct seq_operations tcp4_seq_ops = { .show = tcp4_seq_show, .start = tcp_seq_start, .next = tcp_seq_next, .stop = tcp_seq_stop, }; static struct tcp_seq_afinfo tcp4_seq_afinfo = { .family = AF_INET, }; static int __net_init tcp4_proc_init_net(struct net *net) { if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) return -ENOMEM; return 0; } static void __net_exit tcp4_proc_exit_net(struct net *net) { remove_proc_entry("tcp", net->proc_net); } static struct pernet_operations tcp4_net_ops = { .init = tcp4_proc_init_net, .exit = tcp4_proc_exit_net, }; int __init tcp4_proc_init(void) { return register_pernet_subsys(&tcp4_net_ops); } void tcp4_proc_exit(void) { unregister_pernet_subsys(&tcp4_net_ops); } #endif /* CONFIG_PROC_FS */ /* @wake is one when sk_stream_write_space() calls us. * This sends EPOLLOUT only if notsent_bytes is half the limit. * This mimics the strategy used in sock_def_write_space(). */ bool tcp_stream_memory_free(const struct sock *sk, int wake) { const struct tcp_sock *tp = tcp_sk(sk); u32 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); return (notsent_bytes << wake) < tcp_notsent_lowat(tp); } EXPORT_SYMBOL(tcp_stream_memory_free); struct proto tcp_prot = { .name = "TCP", .owner = THIS_MODULE, .close = tcp_close, .pre_connect = tcp_v4_pre_connect, .connect = tcp_v4_connect, .disconnect = tcp_disconnect, .accept = inet_csk_accept, .ioctl = tcp_ioctl, .init = tcp_v4_init_sock, .destroy = tcp_v4_destroy_sock, .shutdown = tcp_shutdown, .setsockopt = tcp_setsockopt, .getsockopt = tcp_getsockopt, .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, .keepalive = tcp_set_keepalive, .recvmsg = tcp_recvmsg, .sendmsg = tcp_sendmsg, .splice_eof = tcp_splice_eof, .backlog_rcv = tcp_v4_do_rcv, .release_cb = tcp_release_cb, .hash = inet_hash, .unhash = inet_unhash, .get_port = inet_csk_get_port, .put_port = inet_put_port, #ifdef CONFIG_BPF_SYSCALL .psock_update_sk_prot = tcp_bpf_update_proto, #endif .enter_memory_pressure = tcp_enter_memory_pressure, .leave_memory_pressure = tcp_leave_memory_pressure, .stream_memory_free = tcp_stream_memory_free, .sockets_allocated = &tcp_sockets_allocated, .orphan_count = &tcp_orphan_count, .memory_allocated = &tcp_memory_allocated, .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, .memory_pressure = &tcp_memory_pressure, .sysctl_mem = sysctl_tcp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), .max_header = MAX_TCP_HEADER, .obj_size = sizeof(struct tcp_sock), .slab_flags = SLAB_TYPESAFE_BY_RCU, .twsk_prot = &tcp_timewait_sock_ops, .rsk_prot = &tcp_request_sock_ops, .h.hashinfo = NULL, .no_autobind = true, .diag_destroy = tcp_abort, }; EXPORT_SYMBOL(tcp_prot); static void __net_exit tcp_sk_exit(struct net *net) { if (net->ipv4.tcp_congestion_control) bpf_module_put(net->ipv4.tcp_congestion_control, net->ipv4.tcp_congestion_control->owner); } static void __net_init tcp_set_hashinfo(struct net *net) { struct inet_hashinfo *hinfo; unsigned int ehash_entries; struct net *old_net; if (net_eq(net, &init_net)) goto fallback; old_net = current->nsproxy->net_ns; ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries); if (!ehash_entries) goto fallback; ehash_entries = roundup_pow_of_two(ehash_entries); hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries); if (!hinfo) { pr_warn("Failed to allocate TCP ehash (entries: %u) " "for a netns, fallback to the global one\n", ehash_entries); fallback: hinfo = &tcp_hashinfo; ehash_entries = tcp_hashinfo.ehash_mask + 1; } net->ipv4.tcp_death_row.hashinfo = hinfo; net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2; net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128); } static int __net_init tcp_sk_init(struct net *net) { net->ipv4.sysctl_tcp_ecn = 2; net->ipv4.sysctl_tcp_ecn_fallback = 1; net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; net->ipv4.sysctl_tcp_syncookies = 1; net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; net->ipv4.sysctl_tcp_orphan_retries = 0; net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; net->ipv4.sysctl_tcp_tw_reuse = 2; net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1); tcp_set_hashinfo(net); net->ipv4.sysctl_tcp_sack = 1; net->ipv4.sysctl_tcp_window_scaling = 1; net->ipv4.sysctl_tcp_timestamps = 1; net->ipv4.sysctl_tcp_early_retrans = 3; net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ net->ipv4.sysctl_tcp_retrans_collapse = 1; net->ipv4.sysctl_tcp_max_reordering = 300; net->ipv4.sysctl_tcp_dsack = 1; net->ipv4.sysctl_tcp_app_win = 31; net->ipv4.sysctl_tcp_adv_win_scale = 1; net->ipv4.sysctl_tcp_frto = 2; net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; /* This limits the percentage of the congestion window which we * will allow a single TSO frame to consume. Building TSO frames * which are too large can cause TCP streams to be bursty. */ net->ipv4.sysctl_tcp_tso_win_divisor = 3; /* Default TSQ limit of 16 TSO segments */ net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */ net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX; net->ipv4.sysctl_tcp_min_tso_segs = 2; net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ net->ipv4.sysctl_tcp_min_rtt_wlen = 300; net->ipv4.sysctl_tcp_autocorking = 1; net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; if (net != &init_net) { memcpy(net->ipv4.sysctl_tcp_rmem, init_net.ipv4.sysctl_tcp_rmem, sizeof(init_net.ipv4.sysctl_tcp_rmem)); memcpy(net->ipv4.sysctl_tcp_wmem, init_net.ipv4.sysctl_tcp_wmem, sizeof(init_net.ipv4.sysctl_tcp_wmem)); } net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; net->ipv4.sysctl_tcp_comp_sack_nr = 44; net->ipv4.sysctl_tcp_backlog_ack_defer = 1; net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; atomic_set(&net->ipv4.tfo_active_disable_times, 0); /* Set default values for PLB */ net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */ net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3; net->ipv4.sysctl_tcp_plb_rehash_rounds = 12; net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60; /* Default congestion threshold for PLB to mark a round is 50% */ net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2; /* Reno is always built in */ if (!net_eq(net, &init_net) && bpf_try_module_get(init_net.ipv4.tcp_congestion_control, init_net.ipv4.tcp_congestion_control->owner)) net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; else net->ipv4.tcp_congestion_control = &tcp_reno; net->ipv4.sysctl_tcp_syn_linear_timeouts = 4; net->ipv4.sysctl_tcp_shrink_window = 0; net->ipv4.sysctl_tcp_pingpong_thresh = 1; net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN); return 0; } static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) { struct net *net; /* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work * and failed setup_net error unwinding path are serialized. * * tcp_twsk_purge() handles twsk in any dead netns, not just those in * net_exit_list, the thread that dismantles a particular twsk must * do so without other thread progressing to refcount_dec_and_test() of * tcp_death_row.tw_refcount. */ mutex_lock(&tcp_exit_batch_mutex); tcp_twsk_purge(net_exit_list); list_for_each_entry(net, net_exit_list, exit_list) { inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo); WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); tcp_fastopen_ctx_destroy(net); } mutex_unlock(&tcp_exit_batch_mutex); } static struct pernet_operations __net_initdata tcp_sk_ops = { .init = tcp_sk_init, .exit = tcp_sk_exit, .exit_batch = tcp_sk_exit_batch, }; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, struct sock_common *sk_common, uid_t uid) #define INIT_BATCH_SZ 16 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_tcp_iter_state *iter = priv_data; int err; err = bpf_iter_init_seq_net(priv_data, aux); if (err) return err; err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); if (err) { bpf_iter_fini_seq_net(priv_data); return err; } return 0; } static void bpf_iter_fini_tcp(void *priv_data) { struct bpf_tcp_iter_state *iter = priv_data; bpf_iter_fini_seq_net(priv_data); kvfree(iter->batch); } static const struct bpf_iter_seq_info tcp_seq_info = { .seq_ops = &bpf_iter_tcp_seq_ops, .init_seq_private = bpf_iter_init_tcp, .fini_seq_private = bpf_iter_fini_tcp, .seq_priv_size = sizeof(struct bpf_tcp_iter_state), }; static const struct bpf_func_proto * bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_setsockopt: return &bpf_sk_setsockopt_proto; case BPF_FUNC_getsockopt: return &bpf_sk_getsockopt_proto; default: return NULL; } } static struct bpf_iter_reg tcp_reg_info = { .target = "tcp", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__tcp, sk_common), PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, }, .get_func_proto = bpf_iter_tcp_get_func_proto, .seq_info = &tcp_seq_info, }; static void __init bpf_iter_register(void) { tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; if (bpf_iter_reg_target(&tcp_reg_info)) pr_warn("Warning: could not register bpf iterator tcp\n"); } #endif void __init tcp_v4_init(void) { int cpu, res; for_each_possible_cpu(cpu) { struct sock *sk; res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, IPPROTO_TCP, &init_net); if (res) panic("Failed to create the TCP control socket.\n"); sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); /* Please enforce IP_DF and IPID==0 for RST and * ACK sent in SYN-RECV and TIME-WAIT state. */ inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; sk->sk_clockid = CLOCK_MONOTONIC; per_cpu(ipv4_tcp_sk.sock, cpu) = sk; } if (register_pernet_subsys(&tcp_sk_ops)) panic("Failed to create the TCP control socket.\n"); #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) bpf_iter_register(); #endif } |
4 5 5 5 7 1 1 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | /* * net/tipc/diag.c: TIPC socket diag * * Copyright (c) 2018, Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "socket.h" #include <linux/sock_diag.h> #include <linux/tipc_sockets_diag.h> static u64 __tipc_diag_gen_cookie(struct sock *sk) { u32 res[2]; sock_diag_save_cookie(sk, res); return *((u64 *)res); } static int __tipc_add_sock_diag(struct sk_buff *skb, struct netlink_callback *cb, struct tipc_sock *tsk) { struct tipc_sock_diag_req *req = nlmsg_data(cb->nlh); struct nlmsghdr *nlh; int err; nlh = nlmsg_put_answer(skb, cb, SOCK_DIAG_BY_FAMILY, 0, NLM_F_MULTI); if (!nlh) return -EMSGSIZE; err = tipc_sk_fill_sock_diag(skb, cb, tsk, req->tidiag_states, __tipc_diag_gen_cookie); if (err) return err; nlmsg_end(skb, nlh); return 0; } static int tipc_diag_dump(struct sk_buff *skb, struct netlink_callback *cb) { return tipc_nl_sk_walk(skb, cb, __tipc_add_sock_diag); } static int tipc_sock_diag_handler_dump(struct sk_buff *skb, struct nlmsghdr *h) { int hdrlen = sizeof(struct tipc_sock_diag_req); struct net *net = sock_net(skb->sk); if (nlmsg_len(h) < hdrlen) return -EINVAL; if (h->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = tipc_dump_start, .dump = tipc_diag_dump, .done = tipc_dump_done, }; netlink_dump_start(net->diag_nlsk, skb, h, &c); return 0; } return -EOPNOTSUPP; } static const struct sock_diag_handler tipc_sock_diag_handler = { .owner = THIS_MODULE, .family = AF_TIPC, .dump = tipc_sock_diag_handler_dump, }; static int __init tipc_diag_init(void) { return sock_diag_register(&tipc_sock_diag_handler); } static void __exit tipc_diag_exit(void) { sock_diag_unregister(&tipc_sock_diag_handler); } module_init(tipc_diag_init); module_exit(tipc_diag_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("TIPC socket monitoring via SOCK_DIAG"); MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, AF_TIPC); |
28 29 35 37 30 37 37 3 1129 1125 1119 184 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | // SPDX-License-Identifier: GPL-2.0-only /* Page fragment allocator * * Page Fragment: * An arbitrary-length arbitrary-offset area of memory which resides within a * 0 or higher order page. Multiple fragments within that page are * individually refcounted, in the page's reference counter. * * The page_frag functions provide a simple allocation framework for page * fragments. This is used by the network stack and network device drivers to * provide a backing region of memory for use as either an sk_buff->head, or to * be used in the "frags" portion of skb_shared_info. */ #include <linux/build_bug.h> #include <linux/export.h> #include <linux/gfp_types.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/page_frag_cache.h> #include "internal.h" static unsigned long encoded_page_create(struct page *page, unsigned int order, bool pfmemalloc) { BUILD_BUG_ON(PAGE_FRAG_CACHE_MAX_ORDER > PAGE_FRAG_CACHE_ORDER_MASK); BUILD_BUG_ON(PAGE_FRAG_CACHE_PFMEMALLOC_BIT >= PAGE_SIZE); return (unsigned long)page_address(page) | (order & PAGE_FRAG_CACHE_ORDER_MASK) | ((unsigned long)pfmemalloc * PAGE_FRAG_CACHE_PFMEMALLOC_BIT); } static unsigned long encoded_page_decode_order(unsigned long encoded_page) { return encoded_page & PAGE_FRAG_CACHE_ORDER_MASK; } static void *encoded_page_decode_virt(unsigned long encoded_page) { return (void *)(encoded_page & PAGE_MASK); } static struct page *encoded_page_decode_page(unsigned long encoded_page) { return virt_to_page((void *)encoded_page); } static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, gfp_t gfp_mask) { unsigned long order = PAGE_FRAG_CACHE_MAX_ORDER; struct page *page = NULL; gfp_t gfp = gfp_mask; #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; page = __alloc_pages(gfp_mask, PAGE_FRAG_CACHE_MAX_ORDER, numa_mem_id(), NULL); #endif if (unlikely(!page)) { page = __alloc_pages(gfp, 0, numa_mem_id(), NULL); order = 0; } nc->encoded_page = page ? encoded_page_create(page, order, page_is_pfmemalloc(page)) : 0; return page; } void page_frag_cache_drain(struct page_frag_cache *nc) { if (!nc->encoded_page) return; __page_frag_cache_drain(encoded_page_decode_page(nc->encoded_page), nc->pagecnt_bias); nc->encoded_page = 0; } EXPORT_SYMBOL(page_frag_cache_drain); void __page_frag_cache_drain(struct page *page, unsigned int count) { VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); if (page_ref_sub_and_test(page, count)) free_unref_page(page, compound_order(page)); } EXPORT_SYMBOL(__page_frag_cache_drain); void *__page_frag_alloc_align(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask, unsigned int align_mask) { unsigned long encoded_page = nc->encoded_page; unsigned int size, offset; struct page *page; if (unlikely(!encoded_page)) { refill: page = __page_frag_cache_refill(nc, gfp_mask); if (!page) return NULL; encoded_page = nc->encoded_page; /* Even if we own the page, we do not use atomic_set(). * This would break get_page_unless_zero() users. */ page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); /* reset page count bias and offset to start of new frag */ nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; nc->offset = 0; } size = PAGE_SIZE << encoded_page_decode_order(encoded_page); offset = __ALIGN_KERNEL_MASK(nc->offset, ~align_mask); if (unlikely(offset + fragsz > size)) { if (unlikely(fragsz > PAGE_SIZE)) { /* * The caller is trying to allocate a fragment * with fragsz > PAGE_SIZE but the cache isn't big * enough to satisfy the request, this may * happen in low memory conditions. * We don't release the cache page because * it could make memory pressure worse * so we simply return NULL here. */ return NULL; } page = encoded_page_decode_page(encoded_page); if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) goto refill; if (unlikely(encoded_page_decode_pfmemalloc(encoded_page))) { free_unref_page(page, encoded_page_decode_order(encoded_page)); goto refill; } /* OK, page count is 0, we can safely set it */ set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); /* reset page count bias and offset to start of new frag */ nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; offset = 0; } nc->pagecnt_bias--; nc->offset = offset + fragsz; return encoded_page_decode_virt(encoded_page) + offset; } EXPORT_SYMBOL(__page_frag_alloc_align); /* * Frees a page fragment allocated out of either a compound or order 0 page. */ void page_frag_free(void *addr) { struct page *page = virt_to_head_page(addr); if (unlikely(put_page_testzero(page))) free_unref_page(page, compound_order(page)); } EXPORT_SYMBOL(page_frag_free); |
33 35 3 32 35 35 22 13 13 13 13 13 1 13 13 13 13 37 37 3 28 16 21 2 21 1 1 1 2 13 13 22 33 2 8 24 24 32 10 11 11 5 13 14 35 3 32 13 32 31 13 1 1 31 35 35 21 18 18 3 33 2 34 3 35 24 13 35 35 35 35 35 35 1 21 11 23 11 2 34 24 13 13 35 35 34 35 35 35 13 2 37 2 33 4 22 16 37 2 2 2 22 16 22 16 29 13 9 1 25 6 20 9 7 9 9 9 8 9 9 9 9 9 9 36 33 3 4 40 40 40 39 40 3 2 29 2 30 2 30 29 29 29 29 29 29 29 1 1 35 35 35 9 9 26 26 26 1 1 26 26 26 26 37 37 37 35 35 7 35 35 35 35 34 35 35 37 37 37 7 9 26 37 24 13 23 37 4 37 11 37 34 3 37 13 12 6 7 3 3 3 13 13 13 1 1 1 12 1 11 2 12 12 12 10 10 2 8 10 4 1 9 9 10 10 7 3 7 7 7 7 1 2 5 4 3 4 4 4 4 1 3 1 3 7 2 4 4 4 4 52 51 52 3 50 35 36 1 13 13 13 1 9 8 9 9 9 7 2 9 9 9 9 9 9 2 7 2 7 2 9 9 9 9 9 7 2 2 8 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 14 1 13 13 13 13 13 2 1 1 10 3 10 13 13 7 7 9 2 7 18 18 18 3 2 1 27 27 27 21 21 21 21 21 21 6 6 1 4 5 5 5 5 2 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2018-2024 Intel Corporation * * Transmit and frame generation functions. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/etherdevice.h> #include <linux/bitmap.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/ieee80211_radiotap.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include <net/codel.h> #include <net/codel_impl.h> #include <linux/unaligned.h> #include <net/fq_impl.h> #include <net/gso.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "led.h" #include "mesh.h" #include "wep.h" #include "wpa.h" #include "wme.h" #include "rate.h" /* misc utils */ static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, struct sk_buff *skb, int group_addr, int next_frag_len) { int rate, mrate, erp, dur, i; struct ieee80211_rate *txrate; struct ieee80211_local *local = tx->local; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_chanctx_conf *chanctx_conf; u32 rate_flags = 0; /* assume HW handles this */ if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS)) return 0; rcu_read_lock(); chanctx_conf = rcu_dereference(tx->sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def); rcu_read_unlock(); /* uh huh? */ if (WARN_ON_ONCE(tx->rate.idx < 0)) return 0; sband = local->hw.wiphy->bands[info->band]; txrate = &sband->bitrates[tx->rate.idx]; erp = txrate->flags & IEEE80211_RATE_ERP_G; /* device is expected to do this */ if (sband->band == NL80211_BAND_S1GHZ) return 0; /* * data and mgmt (except PS Poll): * - during CFP: 32768 * - during contention period: * if addr1 is group address: 0 * if more fragments = 0 and addr1 is individual address: time to * transmit one ACK plus SIFS * if more fragments = 1 and addr1 is individual address: time to * transmit next fragment plus 2 x ACK plus 3 x SIFS * * IEEE 802.11, 9.6: * - control response frame (CTS or ACK) shall be transmitted using the * same rate as the immediately previous frame in the frame exchange * sequence, if this rate belongs to the PHY mandatory rates, or else * at the highest possible rate belonging to the PHY rates in the * BSSBasicRateSet */ hdr = (struct ieee80211_hdr *)skb->data; if (ieee80211_is_ctl(hdr->frame_control)) { /* TODO: These control frames are not currently sent by * mac80211, but should they be implemented, this function * needs to be updated to support duration field calculation. * * RTS: time needed to transmit pending data/mgmt frame plus * one CTS frame plus one ACK frame plus 3 x SIFS * CTS: duration of immediately previous RTS minus time * required to transmit CTS and its SIFS * ACK: 0 if immediately previous directed data/mgmt had * more=0, with more=1 duration in ACK frame is duration * from previous frame minus time needed to transmit ACK * and its SIFS * PS Poll: BIT(15) | BIT(14) | aid */ return 0; } /* data/mgmt */ if (0 /* FIX: data/mgmt during CFP */) return cpu_to_le16(32768); if (group_addr) /* Group address as the destination - no ACK */ return 0; /* Individual destination address: * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) * CTS and ACK frames shall be transmitted using the highest rate in * basic rate set that is less than or equal to the rate of the * immediately previous frame and that is using the same modulation * (CCK or OFDM). If no basic rate set matches with these requirements, * the highest mandatory rate of the PHY that is less than or equal to * the rate of the previous frame is used. * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps */ rate = -1; /* use lowest available if everything fails */ mrate = sband->bitrates[0].bitrate; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *r = &sband->bitrates[i]; u32 flag; if (r->bitrate > txrate->bitrate) break; if ((rate_flags & r->flags) != rate_flags) continue; if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) rate = r->bitrate; switch (sband->band) { case NL80211_BAND_2GHZ: case NL80211_BAND_LC: if (tx->sdata->deflink.operating_11g_mode) flag = IEEE80211_RATE_MANDATORY_G; else flag = IEEE80211_RATE_MANDATORY_B; break; case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: flag = IEEE80211_RATE_MANDATORY_A; break; default: flag = 0; WARN_ON(1); break; } if (r->flags & flag) mrate = r->bitrate; } if (rate == -1) { /* No matching basic rate found; use highest suitable mandatory * PHY rate */ rate = mrate; } /* Don't calculate ACKs for QoS Frames with NoAck Policy set */ if (ieee80211_is_data_qos(hdr->frame_control) && *(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK) dur = 0; else /* Time needed to transmit ACK * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up * to closest integer */ dur = ieee80211_frame_duration(sband->band, 10, rate, erp, tx->sdata->vif.bss_conf.use_short_preamble); if (next_frag_len) { /* Frame is fragmented: duration increases with time needed to * transmit next fragment plus ACK and 2 x SIFS. */ dur *= 2; /* ACK + SIFS */ /* next fragment */ dur += ieee80211_frame_duration(sband->band, next_frag_len, txrate->bitrate, erp, tx->sdata->vif.bss_conf.use_short_preamble); } return cpu_to_le16(dur); } /* tx handlers */ static ieee80211_tx_result debug_noinline ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) { struct ieee80211_local *local = tx->local; struct ieee80211_if_managed *ifmgd; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); /* driver doesn't support power save */ if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS)) return TX_CONTINUE; /* hardware does dynamic power save */ if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) return TX_CONTINUE; /* dynamic power save disabled */ if (local->hw.conf.dynamic_ps_timeout <= 0) return TX_CONTINUE; /* we are scanning, don't enable power save */ if (local->scanning) return TX_CONTINUE; if (!local->ps_sdata) return TX_CONTINUE; /* No point if we're going to suspend */ if (local->quiescing) return TX_CONTINUE; /* dynamic ps is supported only in managed mode */ if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) return TX_CONTINUE; if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) return TX_CONTINUE; ifmgd = &tx->sdata->u.mgd; /* * Don't wakeup from power save if u-apsd is enabled, voip ac has * u-apsd enabled and the frame is in voip class. This effectively * means that even if all access categories have u-apsd enabled, in * practise u-apsd is only used with the voip ac. This is a * workaround for the case when received voip class packets do not * have correct qos tag for some reason, due the network or the * peer application. * * Note: ifmgd->uapsd_queues access is racy here. If the value is * changed via debugfs, user needs to reassociate manually to have * everything in sync. */ if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) && (ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) && skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO) return TX_CONTINUE; if (local->hw.conf.flags & IEEE80211_CONF_PS) { ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; wiphy_work_queue(local->hw.wiphy, &local->dynamic_ps_disable_work); } /* Don't restart the timer if we're not disassociated */ if (!ifmgd->associated) return TX_CONTINUE; mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); bool assoc = false; if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) return TX_CONTINUE; if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && !ieee80211_is_probe_req(hdr->frame_control) && !ieee80211_is_any_nullfunc(hdr->frame_control)) /* * When software scanning only nullfunc frames (to notify * the sleep state to the AP) and probe requests (for the * active scan) are allowed, all other frames should not be * sent and we should not get here, but if we do * nonetheless, drop them to avoid sending them * off-channel. See the link below and * ieee80211_start_scan() for more. * * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 */ return TX_DROP; if (tx->sdata->vif.type == NL80211_IFTYPE_OCB) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_PS_BUFFERED) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); if (likely(tx->flags & IEEE80211_TX_UNICAST)) { if (unlikely(!assoc && ieee80211_is_data(hdr->frame_control))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG sdata_info(tx->sdata, "dropped data frame to not associated station %pM\n", hdr->addr1); #endif I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); return TX_DROP; } } else if (unlikely(ieee80211_is_data(hdr->frame_control) && ieee80211_vif_get_num_mcast_if(tx->sdata) == 0)) { /* * No associated STAs - no need to send multicast * frames. */ return TX_DROP; } return TX_CONTINUE; } /* This function is called whenever the AP is about to exceed the maximum limit * of buffered frames for power saving STAs. This situation should not really * happen often during normal operation, so dropping the oldest buffered packet * from each queue should be OK to make some room for new frames. */ static void purge_old_ps_buffers(struct ieee80211_local *local) { int total = 0, purged = 0; struct sk_buff *skb; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; list_for_each_entry_rcu(sdata, &local->interfaces, list) { struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->u.ap.ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else continue; skb = skb_dequeue(&ps->bc_buf); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); } total += skb_queue_len(&ps->bc_buf); } /* * Drop one frame from each station from the lowest-priority * AC that has frames at all. */ list_for_each_entry_rcu(sta, &local->sta_list, list) { int ac; for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) { skb = skb_dequeue(&sta->ps_tx_buf[ac]); total += skb_queue_len(&sta->ps_tx_buf[ac]); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); break; } } } local->total_ps_buffered = total; ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged); } static ieee80211_tx_result ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ps_data *ps; /* * broadcast/multicast frame * * If any of the associated/peer stations is in power save mode, * the frame is buffered to be sent after DTIM beacon frame. * This is done either by the hardware or us. */ /* powersaving STAs currently only in AP/VLAN/mesh mode */ if (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!tx->sdata->bss) return TX_CONTINUE; ps = &tx->sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) { ps = &tx->sdata->u.mesh.ps; } else { return TX_CONTINUE; } /* no buffering for ordered frames */ if (ieee80211_has_order(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_is_probe_req(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL)) info->hw_queue = tx->sdata->vif.cab_queue; /* no stations in PS mode and no buffered packets */ if (!atomic_read(&ps->num_sta_ps) && skb_queue_empty(&ps->bc_buf)) return TX_CONTINUE; info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; /* device releases frame after DTIM beacon */ if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING)) return TX_CONTINUE; /* buffered in mac80211 */ if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) { ps_dbg(tx->sdata, "BC TX buffer full - dropping the oldest frame\n"); ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf)); } else tx->local->total_ps_buffered++; skb_queue_tail(&ps->bc_buf, tx->skb); return TX_QUEUED; } static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, struct sk_buff *skb) { if (!ieee80211_is_mgmt(fc)) return 0; if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP)) return 0; if (!ieee80211_is_robust_mgmt_frame(skb)) return 0; return 1; } static ieee80211_tx_result ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) { struct sta_info *sta = tx->sta; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_local *local = tx->local; if (unlikely(!sta)) return TX_CONTINUE; if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) && !(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) { int ac = skb_get_queue_mapping(tx->skb); if (ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_is_bufferable_mmpdu(tx->skb)) { info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; return TX_CONTINUE; } ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n", sta->sta.addr, sta->sta.aid, ac); if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); /* sync with ieee80211_sta_ps_deliver_wakeup */ spin_lock(&sta->ps_lock); /* * STA woke up the meantime and all the frames on ps_tx_buf have * been queued to pending queue. No reordering can happen, go * ahead and Tx the packet. */ if (!test_sta_flag(sta, WLAN_STA_PS_STA) && !test_sta_flag(sta, WLAN_STA_PS_DRIVER) && !test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { spin_unlock(&sta->ps_lock); return TX_CONTINUE; } if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) { struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]); ps_dbg(tx->sdata, "STA %pM TX buffer for AC %d full - dropping oldest frame\n", sta->sta.addr, ac); ieee80211_free_txskb(&local->hw, old); } else tx->local->total_ps_buffered++; info->control.jiffies = jiffies; info->control.vif = &tx->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb); spin_unlock(&sta->ps_lock); if (!timer_pending(&local->sta_cleanup)) mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); /* * We queued up some frames, so the TIM bit might * need to be set, recalculate it. */ sta_info_recalc_tim(sta); return TX_QUEUED; } else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) { ps_dbg(tx->sdata, "STA %pM in PS mode, but polling/in SP -> send frame\n", sta->sta.addr); } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) { if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_UNICAST) return ieee80211_tx_h_unicast_ps_buf(tx); else return ieee80211_tx_h_multicast_ps_buf(tx); } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) { if (tx->sdata->control_port_no_encrypt) info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO; info->flags |= IEEE80211_TX_CTL_USE_MINRATE; } return TX_CONTINUE; } static struct ieee80211_key * ieee80211_select_link_key(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_link_data *link; unsigned int link_id; link_id = u32_get_bits(info->control.flags, IEEE80211_TX_CTRL_MLO_LINK); if (link_id == IEEE80211_LINK_UNSPECIFIED) { link = &tx->sdata->deflink; } else { link = rcu_dereference(tx->sdata->link[link_id]); if (!link) return NULL; } if (ieee80211_is_group_privacy_action(tx->skb)) return rcu_dereference(link->default_multicast_key); else if (ieee80211_is_mgmt(hdr->frame_control) && is_multicast_ether_addr(hdr->addr1) && ieee80211_is_robust_mgmt_frame(tx->skb)) return rcu_dereference(link->default_mgmt_key); else if (is_multicast_ether_addr(hdr->addr1)) return rcu_dereference(link->default_multicast_key); return NULL; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) { struct ieee80211_key *key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) { tx->key = NULL; return TX_CONTINUE; } if (tx->sta && (key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx]))) tx->key = key; else if ((key = ieee80211_select_link_key(tx))) tx->key = key; else if (!is_multicast_ether_addr(hdr->addr1) && (key = rcu_dereference(tx->sdata->default_unicast_key))) tx->key = key; else tx->key = NULL; if (tx->key) { bool skip_hw = false; /* TODO: add threshold stuff again */ switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: if (!ieee80211_is_data_present(hdr->frame_control)) tx->key = NULL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (!ieee80211_is_data_present(hdr->frame_control) && !ieee80211_use_mfp(hdr->frame_control, tx->sta, tx->skb) && !ieee80211_is_group_privacy_action(tx->skb)) tx->key = NULL; else skip_hw = (tx->key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && ieee80211_is_mgmt(hdr->frame_control); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (!ieee80211_is_mgmt(hdr->frame_control)) tx->key = NULL; break; } if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED && !ieee80211_is_deauth(hdr->frame_control)) && tx->skb->protocol != tx->sdata->control_port_protocol) return TX_DROP; if (!skip_hw && tx->key && tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) info->control.hw_key = &tx->key->conf; } else if (ieee80211_is_data_present(hdr->frame_control) && tx->sta && test_sta_flag(tx->sta, WLAN_STA_USES_ENCRYPTION)) { return TX_DROP; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (void *)tx->skb->data; struct ieee80211_supported_band *sband; u32 len; struct ieee80211_tx_rate_control txrc; struct ieee80211_sta_rates *ratetbl = NULL; bool encap = info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP; bool assoc = false; memset(&txrc, 0, sizeof(txrc)); sband = tx->local->hw.wiphy->bands[info->band]; len = min_t(u32, tx->skb->len + FCS_LEN, tx->local->hw.wiphy->frag_threshold); /* set up the tx rate control struct we give the RC algo */ txrc.hw = &tx->local->hw; txrc.sband = sband; txrc.bss_conf = &tx->sdata->vif.bss_conf; txrc.skb = tx->skb; txrc.reported_rate.idx = -1; if (unlikely(info->control.flags & IEEE80211_TX_CTRL_DONT_USE_RATE_MASK)) { txrc.rate_idx_mask = ~0; } else { txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band]; if (tx->sdata->rc_has_mcs_mask[info->band]) txrc.rate_idx_mcs_mask = tx->sdata->rc_rateidx_mcs_mask[info->band]; } txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT || tx->sdata->vif.type == NL80211_IFTYPE_ADHOC || tx->sdata->vif.type == NL80211_IFTYPE_OCB); /* set up RTS protection if desired */ if (len > tx->local->hw.wiphy->rts_threshold) { txrc.rts = true; } info->control.use_rts = txrc.rts; info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot; /* * Use short preamble if the BSS can handle it, but not for * management frames unless we know the receiver can handle * that -- the management frame might be to a station that * just wants a probe response. */ if (tx->sdata->vif.bss_conf.use_short_preamble && (ieee80211_is_tx_data(tx->skb) || (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) txrc.short_preamble = true; info->control.short_preamble = txrc.short_preamble; /* don't ask rate control when rate already injected via radiotap */ if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); /* * Lets not bother rate control if we're associated and cannot * talk to the sta. This should not happen. */ if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc && !rate_usable_index_exists(sband, &tx->sta->sta), "%s: Dropped data frame as no usable bitrate found while " "scanning and associated. Target station: " "%pM on %d GHz band\n", tx->sdata->name, encap ? ((struct ethhdr *)hdr)->h_dest : hdr->addr1, info->band ? 5 : 2)) return TX_DROP; /* * If we're associated with the sta at this point we know we can at * least send the frame at the lowest bit rate. */ rate_control_get_rate(tx->sdata, tx->sta, &txrc); if (tx->sta && !info->control.skip_table) ratetbl = rcu_dereference(tx->sta->sta.rates); if (unlikely(info->control.rates[0].idx < 0)) { if (ratetbl) { struct ieee80211_tx_rate rate = { .idx = ratetbl->rate[0].idx, .flags = ratetbl->rate[0].flags, .count = ratetbl->rate[0].count }; if (ratetbl->rate[0].idx < 0) return TX_DROP; tx->rate = rate; } else { return TX_DROP; } } else { tx->rate = info->control.rates[0]; } if (txrc.reported_rate.idx < 0) { txrc.reported_rate = tx->rate; if (tx->sta && ieee80211_is_tx_data(tx->skb)) tx->sta->deflink.tx_stats.last_rate = txrc.reported_rate; } else if (tx->sta) tx->sta->deflink.tx_stats.last_rate = txrc.reported_rate; if (ratetbl) return TX_CONTINUE; if (unlikely(!info->control.rates[0].count)) info->control.rates[0].count = 1; if (WARN_ON_ONCE((info->control.rates[0].count > 1) && (info->flags & IEEE80211_TX_CTL_NO_ACK))) info->control.rates[0].count = 1; return TX_CONTINUE; } static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid) { u16 *seq = &sta->tid_seq[tid]; __le16 ret = cpu_to_le16(*seq); /* Increase the sequence number. */ *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; return ret; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; int tid; /* * Packet injection may want to control the sequence * number, if we have no matching interface then we * neither assign one ourselves nor ask the driver to. */ if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) return TX_CONTINUE; if (unlikely(ieee80211_is_ctl(hdr->frame_control))) return TX_CONTINUE; if (ieee80211_hdrlen(hdr->frame_control) < 24) return TX_CONTINUE; if (ieee80211_is_qos_nullfunc(hdr->frame_control)) return TX_CONTINUE; if (info->control.flags & IEEE80211_TX_CTRL_NO_SEQNO) return TX_CONTINUE; /* SNS11 from 802.11be 10.3.2.14 */ if (unlikely(is_multicast_ether_addr(hdr->addr1) && ieee80211_vif_is_mld(info->control.vif) && info->control.vif->type == NL80211_IFTYPE_AP)) { if (info->control.flags & IEEE80211_TX_CTRL_MCAST_MLO_FIRST_TX) tx->sdata->mld_mcast_seq += 0x10; hdr->seq_ctrl = cpu_to_le16(tx->sdata->mld_mcast_seq); return TX_CONTINUE; } /* * Anything but QoS data that has a sequence number field * (is long enough) gets a sequence number from the global * counter. QoS data frames with a multicast destination * also use the global counter (802.11-2012 9.3.2.10). */ if (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) { /* driver should assign sequence number */ info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; /* for pure STA mode without beacons, we can do it */ hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); tx->sdata->sequence_number += 0x10; if (tx->sta) tx->sta->deflink.tx_stats.msdu[IEEE80211_NUM_TIDS]++; return TX_CONTINUE; } /* * This should be true for injected/management frames only, for * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ * above since they are not QoS-data frames. */ if (!tx->sta) return TX_CONTINUE; /* include per-STA, per-TID sequence counter */ tid = ieee80211_get_tid(hdr); tx->sta->deflink.tx_stats.msdu[tid]++; hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid); return TX_CONTINUE; } static int ieee80211_fragment(struct ieee80211_tx_data *tx, struct sk_buff *skb, int hdrlen, int frag_threshold) { struct ieee80211_local *local = tx->local; struct ieee80211_tx_info *info; struct sk_buff *tmp; int per_fragm = frag_threshold - hdrlen - FCS_LEN; int pos = hdrlen + per_fragm; int rem = skb->len - hdrlen - per_fragm; if (WARN_ON(rem < 0)) return -EINVAL; /* first fragment was already added to queue by caller */ while (rem) { int fraglen = per_fragm; if (fraglen > rem) fraglen = rem; rem -= fraglen; tmp = dev_alloc_skb(local->tx_headroom + frag_threshold + IEEE80211_ENCRYPT_HEADROOM + IEEE80211_ENCRYPT_TAILROOM); if (!tmp) return -ENOMEM; __skb_queue_tail(&tx->skbs, tmp); skb_reserve(tmp, local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM); /* copy control information */ memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); info = IEEE80211_SKB_CB(tmp); info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT); if (rem) info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; skb_copy_queue_mapping(tmp, skb); tmp->priority = skb->priority; tmp->dev = skb->dev; /* copy header and data */ skb_put_data(tmp, skb->data, hdrlen); skb_put_data(tmp, skb->data + pos, fraglen); pos += fraglen; } /* adjust first fragment's length */ skb_trim(skb, hdrlen + per_fragm); return 0; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; int frag_threshold = tx->local->hw.wiphy->frag_threshold; int hdrlen; int fragnum; /* no matter what happens, tx->skb moves to tx->skbs */ __skb_queue_tail(&tx->skbs, skb); tx->skb = NULL; if (info->flags & IEEE80211_TX_CTL_DONTFRAG) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) return TX_CONTINUE; /* * Warn when submitting a fragmented A-MPDU frame and drop it. * This scenario is handled in ieee80211_tx_prepare but extra * caution taken here as fragmented ampdu may cause Tx stop. */ if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) return TX_DROP; hdrlen = ieee80211_hdrlen(hdr->frame_control); /* internal error, why isn't DONTFRAG set? */ if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) return TX_DROP; /* * Now fragment the frame. This will allocate all the fragments and * chain them (using skb as the first fragment) to skb->next. * During transmission, we will remove the successfully transmitted * fragments from this list. When the low-level driver rejects one * of the fragments then we will simply pretend to accept the skb * but store it away as pending. */ if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold)) return TX_DROP; /* update duration/seq/flags of fragments */ fragnum = 0; skb_queue_walk(&tx->skbs, skb) { const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); hdr = (void *)skb->data; info = IEEE80211_SKB_CB(skb); if (!skb_queue_is_last(&tx->skbs, skb)) { hdr->frame_control |= morefrags; /* * No multi-rate retries for fragmented frames, that * would completely throw off the NAV at other STAs. */ info->control.rates[1].idx = -1; info->control.rates[2].idx = -1; info->control.rates[3].idx = -1; BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4); info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; } else { hdr->frame_control &= ~morefrags; } hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); fragnum++; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) { struct sk_buff *skb; int ac = -1; if (!tx->sta) return TX_CONTINUE; skb_queue_walk(&tx->skbs, skb) { ac = skb_get_queue_mapping(skb); tx->sta->deflink.tx_stats.bytes[ac] += skb->len; } if (ac >= 0) tx->sta->deflink.tx_stats.packets[ac]++; return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) { if (!tx->key) return TX_CONTINUE; switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: return ieee80211_crypto_wep_encrypt(tx); case WLAN_CIPHER_SUITE_TKIP: return ieee80211_crypto_tkip_encrypt(tx); case WLAN_CIPHER_SUITE_CCMP: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_MIC_LEN); case WLAN_CIPHER_SUITE_CCMP_256: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_256_MIC_LEN); case WLAN_CIPHER_SUITE_AES_CMAC: return ieee80211_crypto_aes_cmac_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_CMAC_256: return ieee80211_crypto_aes_cmac_256_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: return ieee80211_crypto_aes_gmac_encrypt(tx); case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: return ieee80211_crypto_gcmp_encrypt(tx); } return TX_DROP; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; int next_len; bool group_addr; skb_queue_walk(&tx->skbs, skb) { hdr = (void *) skb->data; if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) break; /* must not overwrite AID */ if (!skb_queue_is_last(&tx->skbs, skb)) { struct sk_buff *next = skb_queue_next(&tx->skbs, skb); next_len = next->len; } else next_len = 0; group_addr = is_multicast_ether_addr(hdr->addr1); hdr->duration_id = ieee80211_duration(tx, skb, group_addr, next_len); } return TX_CONTINUE; } /* actual transmit path */ static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, struct sk_buff *skb, struct ieee80211_tx_info *info, struct tid_ampdu_tx *tid_tx, int tid) { bool queued = false; bool reset_agg_timer = false; struct sk_buff *purge_skb = NULL; if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { reset_agg_timer = true; } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { /* * nothing -- this aggregation session is being started * but that might still fail with the driver */ } else if (!tx->sta->sta.txq[tid]) { spin_lock(&tx->sta->lock); /* * Need to re-check now, because we may get here * * 1) in the window during which the setup is actually * already done, but not marked yet because not all * packets are spliced over to the driver pending * queue yet -- if this happened we acquire the lock * either before or after the splice happens, but * need to recheck which of these cases happened. * * 2) during session teardown, if the OPERATIONAL bit * was cleared due to the teardown but the pointer * hasn't been assigned NULL yet (or we loaded it * before it was assigned) -- in this case it may * now be NULL which means we should just let the * packet pass through because splicing the frames * back is already done. */ tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); if (!tid_tx) { /* do nothing, let packet pass through */ } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { reset_agg_timer = true; } else { queued = true; if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) { clear_sta_flag(tx->sta, WLAN_STA_SP); ps_dbg(tx->sta->sdata, "STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n", tx->sta->sta.addr, tx->sta->sta.aid); } info->control.vif = &tx->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; __skb_queue_tail(&tid_tx->pending, skb); if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER) purge_skb = __skb_dequeue(&tid_tx->pending); } spin_unlock(&tx->sta->lock); if (purge_skb) ieee80211_free_txskb(&tx->local->hw, purge_skb); } /* reset session timer */ if (reset_agg_timer) tid_tx->last_tx = jiffies; return queued; } void ieee80211_aggr_check(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct rate_control_ref *ref = sdata->local->rate_ctrl; u16 tid; if (!ref || !(ref->ops->capa & RATE_CTRL_CAPA_AMPDU_TRIGGER)) return; if (!sta || !sta->sta.deflink.ht_cap.ht_supported || !sta->sta.wme || skb_get_queue_mapping(skb) == IEEE80211_AC_VO || skb->protocol == sdata->control_port_protocol) return; tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; if (likely(sta->ampdu_mlme.tid_tx[tid])) return; ieee80211_start_tx_ba_session(&sta->sta, tid, 0); } /* * initialises @tx * pass %NULL for the station if unknown, a valid pointer if known * or an ERR_PTR() if the station is known not to exist */ static ieee80211_tx_result ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_data *tx, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool aggr_check = false; int tid; memset(tx, 0, sizeof(*tx)); tx->skb = skb; tx->local = local; tx->sdata = sdata; __skb_queue_head_init(&tx->skbs); /* * If this flag is set to true anywhere, and we get here, * we are doing the needed processing, so remove the flag * now. */ info->control.flags &= ~IEEE80211_TX_INTCFL_NEED_TXPROCESSING; hdr = (struct ieee80211_hdr *) skb->data; if (likely(sta)) { if (!IS_ERR(sta)) tx->sta = sta; } else { if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { tx->sta = rcu_dereference(sdata->u.vlan.sta); if (!tx->sta && sdata->wdev.use_4addr) return TX_DROP; } else if (tx->sdata->control_port_protocol == tx->skb->protocol) { tx->sta = sta_info_get_bss(sdata, hdr->addr1); } if (!tx->sta && !is_multicast_ether_addr(hdr->addr1)) { tx->sta = sta_info_get(sdata, hdr->addr1); aggr_check = true; } } if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && !ieee80211_is_qos_nullfunc(hdr->frame_control) && ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && !ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) { struct tid_ampdu_tx *tid_tx; tid = ieee80211_get_tid(hdr); tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx && aggr_check) { ieee80211_aggr_check(sdata, tx->sta, skb); tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); } if (tid_tx) { bool queued; queued = ieee80211_tx_prep_agg(tx, skb, info, tid_tx, tid); if (unlikely(queued)) return TX_QUEUED; } } if (is_multicast_ether_addr(hdr->addr1)) { tx->flags &= ~IEEE80211_TX_UNICAST; info->flags |= IEEE80211_TX_CTL_NO_ACK; } else tx->flags |= IEEE80211_TX_UNICAST; if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) { if (!(tx->flags & IEEE80211_TX_UNICAST) || skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold || info->flags & IEEE80211_TX_CTL_AMPDU) info->flags |= IEEE80211_TX_CTL_DONTFRAG; } if (!tx->sta) info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) { info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; ieee80211_check_fast_xmit(tx->sta); } info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; return TX_CONTINUE; } static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local, struct ieee80211_vif *vif, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_txq *txq = NULL; if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) || (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) return NULL; if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) && unlikely(!ieee80211_is_data_present(hdr->frame_control))) { if ((!ieee80211_is_mgmt(hdr->frame_control) || ieee80211_is_bufferable_mmpdu(skb) || vif->type == NL80211_IFTYPE_STATION) && sta && sta->uploaded) { /* * This will be NULL if the driver didn't set the * opt-in hardware flag. */ txq = sta->sta.txq[IEEE80211_NUM_TIDS]; } } else if (sta) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; if (!sta->uploaded) return NULL; txq = sta->sta.txq[tid]; } else { txq = vif->txq; } if (!txq) return NULL; return to_txq_info(txq); } static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb) { struct sk_buff *next; codel_time_t now = codel_get_time(); skb_list_walk_safe(skb, skb, next) IEEE80211_SKB_CB(skb)->control.enqueue_time = now; } static u32 codel_skb_len_func(const struct sk_buff *skb) { return skb->len; } static codel_time_t codel_skb_time_func(const struct sk_buff *skb) { const struct ieee80211_tx_info *info; info = (const struct ieee80211_tx_info *)skb->cb; return info->control.enqueue_time; } static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars, void *ctx) { struct ieee80211_local *local; struct txq_info *txqi; struct fq *fq; struct fq_flow *flow; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; fq = &local->fq; if (cvars == &txqi->def_cvars) flow = &txqi->tin.default_flow; else flow = &fq->flows[cvars - local->cvars]; return fq_flow_dequeue(fq, flow); } static void codel_drop_func(struct sk_buff *skb, void *ctx) { struct ieee80211_local *local; struct ieee80211_hw *hw; struct txq_info *txqi; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; hw = &local->hw; ieee80211_free_txskb(hw, skb); } static struct sk_buff *fq_tin_dequeue_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct ieee80211_local *local; struct txq_info *txqi; struct codel_vars *cvars; struct codel_params *cparams; struct codel_stats *cstats; local = container_of(fq, struct ieee80211_local, fq); txqi = container_of(tin, struct txq_info, tin); cstats = &txqi->cstats; if (txqi->txq.sta) { struct sta_info *sta = container_of(txqi->txq.sta, struct sta_info, sta); cparams = &sta->cparams; } else { cparams = &local->cparams; } if (flow == &tin->default_flow) cvars = &txqi->def_cvars; else cvars = &local->cvars[flow - fq->flows]; return codel_dequeue(txqi, &flow->backlog, cparams, cvars, cstats, codel_skb_len_func, codel_skb_time_func, codel_drop_func, codel_dequeue_func); } static void fq_skb_free_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb) { struct ieee80211_local *local; local = container_of(fq, struct ieee80211_local, fq); ieee80211_free_txskb(&local->hw, skb); } static void ieee80211_txq_enqueue(struct ieee80211_local *local, struct txq_info *txqi, struct sk_buff *skb) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; u32 flow_idx = fq_flow_idx(fq, skb); ieee80211_set_skb_enqueue_time(skb); spin_lock_bh(&fq->lock); /* * For management frames, don't really apply codel etc., * we don't want to apply any shaping or anything we just * want to simplify the driver API by having them on the * txqi. */ if (unlikely(txqi->txq.tid == IEEE80211_NUM_TIDS)) { IEEE80211_SKB_CB(skb)->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; __skb_queue_tail(&txqi->frags, skb); } else { fq_tin_enqueue(fq, tin, flow_idx, skb, fq_skb_free_func); } spin_unlock_bh(&fq->lock); } static bool fq_vlan_filter_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb, void *data) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); return info->control.vif == data; } void ieee80211_txq_remove_vlan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct fq *fq = &local->fq; struct txq_info *txqi; struct fq_tin *tin; struct ieee80211_sub_if_data *ap; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) return; ap = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); if (!ap->vif.txq) return; txqi = to_txq_info(ap->vif.txq); tin = &txqi->tin; spin_lock_bh(&fq->lock); fq_tin_filter(fq, tin, fq_vlan_filter_func, &sdata->vif, fq_skb_free_func); spin_unlock_bh(&fq->lock); } void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txqi, int tid) { fq_tin_init(&txqi->tin); codel_vars_init(&txqi->def_cvars); codel_stats_init(&txqi->cstats); __skb_queue_head_init(&txqi->frags); INIT_LIST_HEAD(&txqi->schedule_order); txqi->txq.vif = &sdata->vif; if (!sta) { sdata->vif.txq = &txqi->txq; txqi->txq.tid = 0; txqi->txq.ac = IEEE80211_AC_BE; return; } if (tid == IEEE80211_NUM_TIDS) { if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* Drivers need to opt in to the management MPDU TXQ */ if (!ieee80211_hw_check(&sdata->local->hw, STA_MMPDU_TXQ)) return; } else if (!ieee80211_hw_check(&sdata->local->hw, BUFF_MMPDU_TXQ)) { /* Drivers need to opt in to the bufferable MMPDU TXQ */ return; } txqi->txq.ac = IEEE80211_AC_VO; } else { txqi->txq.ac = ieee80211_ac_from_tid(tid); } txqi->txq.sta = &sta->sta; txqi->txq.tid = tid; sta->sta.txq[tid] = &txqi->txq; } void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; spin_lock_bh(&fq->lock); fq_tin_reset(fq, tin, fq_skb_free_func); ieee80211_purge_tx_queue(&local->hw, &txqi->frags); spin_unlock_bh(&fq->lock); spin_lock_bh(&local->active_txq_lock[txqi->txq.ac]); list_del_init(&txqi->schedule_order); spin_unlock_bh(&local->active_txq_lock[txqi->txq.ac]); } void ieee80211_txq_set_params(struct ieee80211_local *local) { if (local->hw.wiphy->txq_limit) local->fq.limit = local->hw.wiphy->txq_limit; else local->hw.wiphy->txq_limit = local->fq.limit; if (local->hw.wiphy->txq_memory_limit) local->fq.memory_limit = local->hw.wiphy->txq_memory_limit; else local->hw.wiphy->txq_memory_limit = local->fq.memory_limit; if (local->hw.wiphy->txq_quantum) local->fq.quantum = local->hw.wiphy->txq_quantum; else local->hw.wiphy->txq_quantum = local->fq.quantum; } int ieee80211_txq_setup_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; int ret; int i; bool supp_vht = false; enum nl80211_band band; ret = fq_init(fq, 4096); if (ret) return ret; /* * If the hardware doesn't support VHT, it is safe to limit the maximum * queue size. 4 Mbytes is 64 max-size aggregates in 802.11n. */ for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[band]; if (!sband) continue; supp_vht = supp_vht || sband->vht_cap.vht_supported; } if (!supp_vht) fq->memory_limit = 4 << 20; /* 4 Mbytes */ codel_params_init(&local->cparams); local->cparams.interval = MS2TIME(100); local->cparams.target = MS2TIME(20); local->cparams.ecn = true; local->cvars = kvcalloc(fq->flows_cnt, sizeof(local->cvars[0]), GFP_KERNEL); if (!local->cvars) { spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); return -ENOMEM; } for (i = 0; i < fq->flows_cnt; i++) codel_vars_init(&local->cvars[i]); ieee80211_txq_set_params(local); return 0; } void ieee80211_txq_teardown_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; kvfree(local->cvars); local->cvars = NULL; spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); } static bool ieee80211_queue_skb(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_vif *vif; struct txq_info *txqi; if (sdata->vif.type == NL80211_IFTYPE_MONITOR) return false; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); vif = &sdata->vif; txqi = ieee80211_get_txq(local, vif, sta, skb); if (!txqi) return false; ieee80211_txq_enqueue(local, txqi, skb); schedule_and_wake_txq(local, txqi); return true; } static bool ieee80211_tx_frags(struct ieee80211_local *local, struct ieee80211_vif *vif, struct sta_info *sta, struct sk_buff_head *skbs, bool txpending) { struct ieee80211_tx_control control = {}; struct sk_buff *skb, *tmp; unsigned long flags; skb_queue_walk_safe(skbs, skb, tmp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int q = info->hw_queue; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (WARN_ON_ONCE(q >= local->hw.queues)) { __skb_unlink(skb, skbs); ieee80211_free_txskb(&local->hw, skb); continue; } #endif spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) { if (local->queue_stop_reasons[q] & ~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) { /* * Drop off-channel frames if queues * are stopped for any reason other * than off-channel operation. Never * queue them. */ spin_unlock_irqrestore( &local->queue_stop_reason_lock, flags); ieee80211_purge_tx_queue(&local->hw, skbs); return true; } } else { /* * Since queue is stopped, queue up frames for * later transmission from the tx-pending * tasklet when the queue is woken again. */ if (txpending) skb_queue_splice_init(skbs, &local->pending[q]); else skb_queue_splice_tail_init(skbs, &local->pending[q]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); info->control.vif = vif; control.sta = sta ? &sta->sta : NULL; __skb_unlink(skb, skbs); drv_tx(local, &control, skb); } return true; } /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff_head *skbs, struct sta_info *sta, bool txpending) { struct ieee80211_tx_info *info; struct ieee80211_sub_if_data *sdata; struct ieee80211_vif *vif; struct sk_buff *skb; bool result; if (WARN_ON(skb_queue_empty(skbs))) return true; skb = skb_peek(skbs); info = IEEE80211_SKB_CB(skb); sdata = vif_to_sdata(info->control.vif); if (sta && !sta->uploaded) sta = NULL; switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if ((sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) || ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) { vif = &sdata->vif; break; } sdata = rcu_dereference(local->monitor_sdata); if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { vif = &sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_purge_tx_queue(&local->hw, skbs); return true; } else vif = NULL; break; case NL80211_IFTYPE_AP_VLAN: sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); fallthrough; default: vif = &sdata->vif; break; } result = ieee80211_tx_frags(local, vif, sta, skbs, txpending); WARN_ON_ONCE(!skb_queue_empty(skbs)); return result; } /* * Invoke TX handlers, return 0 on success and non-zero if the * frame was dropped or queued. * * The handlers are split into an early and late part. The latter is everything * that can be sensitive to reordering, and will be deferred to after packets * are dequeued from the intermediate queues (when they are enabled). */ static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx) { ieee80211_tx_result res = TX_DROP; #define CALL_TXH(txh) \ do { \ res = txh(tx); \ if (res != TX_CONTINUE) \ goto txh_done; \ } while (0) CALL_TXH(ieee80211_tx_h_dynamic_ps); CALL_TXH(ieee80211_tx_h_check_assoc); CALL_TXH(ieee80211_tx_h_ps_buf); CALL_TXH(ieee80211_tx_h_check_control_port_protocol); CALL_TXH(ieee80211_tx_h_select_key); txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } /* * Late handlers can be called while the sta lock is held. Handlers that can * cause packets to be generated will cause deadlock! */ static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); ieee80211_tx_result res = TX_CONTINUE; if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_rate_ctrl); if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) { __skb_queue_tail(&tx->skbs, tx->skb); tx->skb = NULL; goto txh_done; } CALL_TXH(ieee80211_tx_h_michael_mic_add); CALL_TXH(ieee80211_tx_h_sequence); CALL_TXH(ieee80211_tx_h_fragment); /* handlers after fragment must be aware of tx info fragmentation! */ CALL_TXH(ieee80211_tx_h_stats); CALL_TXH(ieee80211_tx_h_encrypt); if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_calculate_duration); #undef CALL_TXH txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } static int invoke_tx_handlers(struct ieee80211_tx_data *tx) { int r = invoke_tx_handlers_early(tx); if (r) return r; return invoke_tx_handlers_late(tx); } bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb, int band, struct ieee80211_sta **sta) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_data tx; struct sk_buff *skb2; if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP) return false; info->band = band; info->control.vif = vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers(&tx)) return false; if (sta) { if (tx.sta) *sta = &tx.sta->sta; else *sta = NULL; } /* this function isn't suitable for fragmented data frames */ skb2 = __skb_dequeue(&tx.skbs); if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) { ieee80211_free_txskb(hw, skb2); ieee80211_purge_tx_queue(hw, &tx.skbs); return false; } return true; } EXPORT_SYMBOL(ieee80211_tx_prepare_skb); /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_data tx; ieee80211_tx_result res_prepare; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool result = true; if (unlikely(skb->len < 10)) { dev_kfree_skb(skb); return true; } /* initialises tx */ res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb); if (unlikely(res_prepare == TX_DROP)) { ieee80211_free_txskb(&local->hw, skb); return true; } else if (unlikely(res_prepare == TX_QUEUED)) { return true; } /* set up hw_queue value early */ if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers_early(&tx)) return true; if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb)) return true; if (!invoke_tx_handlers_late(&tx)) result = __ieee80211_tx(local, &tx.skbs, tx.sta, txpending); return result; } /* device xmit handlers */ enum ieee80211_encrypt { ENCRYPT_NO, ENCRYPT_MGMT, ENCRYPT_DATA, }; static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int head_need, enum ieee80211_encrypt encrypt) { struct ieee80211_local *local = sdata->local; bool enc_tailroom; int tail_need = 0; enc_tailroom = encrypt == ENCRYPT_MGMT || (encrypt == ENCRYPT_DATA && sdata->crypto_tx_tailroom_needed_cnt); if (enc_tailroom) { tail_need = IEEE80211_ENCRYPT_TAILROOM; tail_need -= skb_tailroom(skb); tail_need = max_t(int, tail_need, 0); } if (skb_cloned(skb) && (!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) || !skb_clone_writable(skb, ETH_HLEN) || enc_tailroom)) I802_DEBUG_INC(local->tx_expand_skb_head_cloned); else if (head_need || tail_need) I802_DEBUG_INC(local->tx_expand_skb_head); else return 0; if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return -ENOMEM; } return 0; } void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; int headroom; enum ieee80211_encrypt encrypt; if (info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT) encrypt = ENCRYPT_NO; else if (ieee80211_is_mgmt(hdr->frame_control)) encrypt = ENCRYPT_MGMT; else encrypt = ENCRYPT_DATA; headroom = local->tx_headroom; if (encrypt != ENCRYPT_NO) headroom += IEEE80211_ENCRYPT_HEADROOM; headroom -= skb_headroom(skb); headroom = max_t(int, 0, headroom); if (ieee80211_skb_resize(sdata, skb, headroom, encrypt)) { ieee80211_free_txskb(&local->hw, skb); return; } /* reload after potential resize */ hdr = (struct ieee80211_hdr *) skb->data; info->control.vif = &sdata->vif; if (ieee80211_vif_is_mesh(&sdata->vif)) { if (ieee80211_is_data(hdr->frame_control) && is_unicast_ether_addr(hdr->addr1)) { if (mesh_nexthop_resolve(sdata, skb)) return; /* skb queued: don't free */ } else { ieee80211_mps_set_frame_flags(sdata, NULL, hdr); } } ieee80211_set_qos_hdr(sdata, skb); ieee80211_tx(sdata, sta, skb, false); } static bool ieee80211_validate_radiotap_len(struct sk_buff *skb) { struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *)skb->data; /* check for not even having the fixed radiotap header part */ if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) return false; /* too short to be possibly valid */ /* is it a header version we can trust to find length from? */ if (unlikely(rthdr->it_version)) return false; /* only version 0 is supported */ /* does the skb contain enough to deliver on the alleged length? */ if (unlikely(skb->len < ieee80211_get_radiotap_len(skb->data))) return false; /* skb too short for claimed rt header extent */ return true; } bool ieee80211_parse_tx_radiotap(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_radiotap_iterator iterator; struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, NULL); u16 txflags; u16 rate = 0; bool rate_found = false; u8 rate_retries = 0; u16 rate_flags = 0; u8 mcs_known, mcs_flags, mcs_bw; u16 vht_known; u8 vht_mcs = 0, vht_nss = 0; int i; if (!ieee80211_validate_radiotap_len(skb)) return false; info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_DONTFRAG; /* * for every radiotap entry that is present * (ieee80211_radiotap_iterator_next returns -ENOENT when no more * entries present, or -EINVAL on error) */ while (!ret) { ret = ieee80211_radiotap_iterator_next(&iterator); if (ret) continue; /* see if this argument is something we can use */ switch (iterator.this_arg_index) { /* * You must take care when dereferencing iterator.this_arg * for multibyte types... the pointer is not aligned. Use * get_unaligned((type *)iterator.this_arg) to dereference * iterator.this_arg for type "type" safely on all arches. */ case IEEE80211_RADIOTAP_FLAGS: if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { /* * this indicates that the skb we have been * handed has the 32-bit FCS CRC at the end... * we should react to that by snipping it off * because it will be recomputed and added * on transmission */ if (skb->len < (iterator._max_length + FCS_LEN)) return false; skb_trim(skb, skb->len - FCS_LEN); } if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) info->flags &= ~IEEE80211_TX_CTL_DONTFRAG; break; case IEEE80211_RADIOTAP_TX_FLAGS: txflags = get_unaligned_le16(iterator.this_arg); if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK) info->flags |= IEEE80211_TX_CTL_NO_ACK; if (txflags & IEEE80211_RADIOTAP_F_TX_NOSEQNO) info->control.flags |= IEEE80211_TX_CTRL_NO_SEQNO; if (txflags & IEEE80211_RADIOTAP_F_TX_ORDER) info->control.flags |= IEEE80211_TX_CTRL_DONT_REORDER; break; case IEEE80211_RADIOTAP_RATE: rate = *iterator.this_arg; rate_flags = 0; rate_found = true; break; case IEEE80211_RADIOTAP_ANTENNA: /* this can appear multiple times, keep a bitmap */ info->control.antennas |= BIT(*iterator.this_arg); break; case IEEE80211_RADIOTAP_DATA_RETRIES: rate_retries = *iterator.this_arg; break; case IEEE80211_RADIOTAP_MCS: mcs_known = iterator.this_arg[0]; mcs_flags = iterator.this_arg[1]; if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS)) break; rate_found = true; rate = iterator.this_arg[2]; rate_flags = IEEE80211_TX_RC_MCS; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI && mcs_flags & IEEE80211_RADIOTAP_MCS_SGI) rate_flags |= IEEE80211_TX_RC_SHORT_GI; mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW && mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_FEC && mcs_flags & IEEE80211_RADIOTAP_MCS_FEC_LDPC) info->flags |= IEEE80211_TX_CTL_LDPC; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_STBC) { u8 stbc = u8_get_bits(mcs_flags, IEEE80211_RADIOTAP_MCS_STBC_MASK); info->flags |= u32_encode_bits(stbc, IEEE80211_TX_CTL_STBC); } break; case IEEE80211_RADIOTAP_VHT: vht_known = get_unaligned_le16(iterator.this_arg); rate_found = true; rate_flags = IEEE80211_TX_RC_VHT_MCS; if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) && (iterator.this_arg[2] & IEEE80211_RADIOTAP_VHT_FLAG_SGI)) rate_flags |= IEEE80211_TX_RC_SHORT_GI; if (vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) { if (iterator.this_arg[3] == 1) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; else if (iterator.this_arg[3] == 4) rate_flags |= IEEE80211_TX_RC_80_MHZ_WIDTH; else if (iterator.this_arg[3] == 11) rate_flags |= IEEE80211_TX_RC_160_MHZ_WIDTH; } vht_mcs = iterator.this_arg[4] >> 4; if (vht_mcs > 11) vht_mcs = 0; vht_nss = iterator.this_arg[4] & 0xF; if (!vht_nss || vht_nss > 8) vht_nss = 1; break; /* * Please update the file * Documentation/networking/mac80211-injection.rst * when parsing new fields here. */ default: break; } } if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ return false; if (rate_found) { struct ieee80211_supported_band *sband = local->hw.wiphy->bands[info->band]; info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { info->control.rates[i].idx = -1; info->control.rates[i].flags = 0; info->control.rates[i].count = 0; } if (rate_flags & IEEE80211_TX_RC_MCS) { /* reset antennas if not enough */ if (IEEE80211_HT_MCS_CHAINS(rate) > hweight8(info->control.antennas)) info->control.antennas = 0; info->control.rates[0].idx = rate; } else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) { /* reset antennas if not enough */ if (vht_nss > hweight8(info->control.antennas)) info->control.antennas = 0; ieee80211_rate_set_vht(info->control.rates, vht_mcs, vht_nss); } else if (sband) { for (i = 0; i < sband->n_bitrates; i++) { if (rate * 5 != sband->bitrates[i].bitrate) continue; info->control.rates[0].idx = i; break; } } if (info->control.rates[0].idx < 0) info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT; info->control.rates[0].flags = rate_flags; info->control.rates[0].count = min_t(u8, rate_retries + 1, local->hw.max_rate_tries); } return true; } netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *tmp_sdata, *sdata; struct cfg80211_chan_def *chandef; u16 len_rthdr; int hdrlen; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (unlikely(!ieee80211_sdata_running(sdata))) goto fail; memset(info, 0, sizeof(*info)); info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_CTL_INJECTED; /* Sanity-check the length of the radiotap header */ if (!ieee80211_validate_radiotap_len(skb)) goto fail; /* we now know there is a radiotap header with a length we can use */ len_rthdr = ieee80211_get_radiotap_len(skb->data); /* * fix up the pointers accounting for the radiotap * header still being in there. We are being given * a precooked IEEE80211 header so no need for * normal processing */ skb_set_mac_header(skb, len_rthdr); /* * these are just fixed to the end of the rt area since we * don't have any better information and at this point, nobody cares */ skb_set_network_header(skb, len_rthdr); skb_set_transport_header(skb, len_rthdr); if (skb->len < len_rthdr + 2) goto fail; hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < len_rthdr + hdrlen) goto fail; /* * Initialize skb->protocol if the injected frame is a data frame * carrying a rfc1042 header */ if (ieee80211_is_data(hdr->frame_control) && skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) { u8 *payload = (u8 *)hdr + hdrlen; if (ether_addr_equal(payload, rfc1042_header)) skb->protocol = cpu_to_be16((payload[6] << 8) | payload[7]); } rcu_read_lock(); /* * We process outgoing injected frames that have a local address * we handle as though they are non-injected frames. * This code here isn't entirely correct, the local MAC address * isn't always enough to find the interface to use; for proper * VLAN support we have an nl80211-based mechanism. * * This is necessary, for example, for old hostapd versions that * don't use nl80211-based management TX/RX. */ list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(tmp_sdata)) continue; if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR || tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) { sdata = tmp_sdata; break; } } chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { tmp_sdata = rcu_dereference(local->monitor_sdata); if (tmp_sdata) chanctx_conf = rcu_dereference(tmp_sdata->vif.bss_conf.chanctx_conf); } if (chanctx_conf) chandef = &chanctx_conf->def; else goto fail_rcu; /* * If driver/HW supports IEEE80211_CHAN_CAN_MONITOR we still * shouldn't transmit on disabled channels. */ if (!cfg80211_chandef_usable(local->hw.wiphy, chandef, IEEE80211_CHAN_DISABLED)) goto fail_rcu; /* * Frame injection is not allowed if beaconing is not allowed * or if we need radar detection. Beaconing is usually not allowed when * the mode or operation (Adhoc, AP, Mesh) does not support DFS. * Passive scan is also used in world regulatory domains where * your country is not known and as such it should be treated as * NO TX unless the channel is explicitly allowed in which case * your current regulatory domain would not have the passive scan * flag. * * Since AP mode uses monitor interfaces to inject/TX management * frames we can make AP mode the exception to this rule once it * supports radar detection as its implementation can deal with * radar detection by itself. We can do that later by adding a * monitor flag interfaces used for AP support. */ if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef, sdata->vif.type)) goto fail_rcu; info->band = chandef->chan->band; /* Initialize skb->priority according to frame type and TID class, * with respect to the sub interface that the frame will actually * be transmitted on. If the DONT_REORDER flag is set, the original * skb-priority is preserved to assure frames injected with this * flag are not reordered relative to each other. */ ieee80211_select_queue_80211(sdata, skb, hdr); skb_set_queue_mapping(skb, ieee80211_ac_from_tid(skb->priority)); /* * Process the radiotap header. This will now take into account the * selected chandef above to accurately set injection rates and * retransmissions. */ if (!ieee80211_parse_tx_radiotap(skb, dev)) goto fail_rcu; /* remove the injection radiotap header */ skb_pull(skb, len_rthdr); ieee80211_xmit(sdata, NULL, skb); rcu_read_unlock(); return NETDEV_TX_OK; fail_rcu: rcu_read_unlock(); fail: dev_kfree_skb(skb); return NETDEV_TX_OK; /* meaning, we dealt with the skb */ } static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; return ethertype == ETH_P_TDLS && skb->len > 14 && skb->data[14] == WLAN_TDLS_SNAP_RFTYPE; } int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out) { struct sta_info *sta; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: sta = rcu_dereference(sdata->u.vlan.sta); if (sta) { *sta_out = sta; return 0; } else if (sdata->wdev.use_4addr) { return -ENOLINK; } fallthrough; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_ADHOC: if (is_multicast_ether_addr(skb->data)) { *sta_out = ERR_PTR(-ENOENT); return 0; } sta = sta_info_get_bss(sdata, skb->data); break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: /* determined much later */ *sta_out = NULL; return 0; #endif case NL80211_IFTYPE_STATION: if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { sta = sta_info_get(sdata, skb->data); if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { if (test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) { *sta_out = sta; return 0; } /* * TDLS link during setup - throw out frames to * peer. Allow TDLS-setup frames to unauthorized * peers for the special case of a link teardown * after a TDLS sta is removed due to being * unreachable. */ if (!ieee80211_is_tdls_setup(skb)) return -EINVAL; } } sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (!sta) return -ENOLINK; break; default: return -EINVAL; } *sta_out = sta ?: ERR_PTR(-ENOENT); return 0; } static u16 ieee80211_store_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u32 *info_flags, u64 *cookie) { struct sk_buff *ack_skb; u16 info_id = 0; if (skb->sk) ack_skb = skb_clone_sk(skb); else ack_skb = skb_clone(skb, GFP_ATOMIC); if (ack_skb) { unsigned long flags; int id; spin_lock_irqsave(&local->ack_status_lock, flags); id = idr_alloc(&local->ack_status_frames, ack_skb, 1, 0x2000, GFP_ATOMIC); spin_unlock_irqrestore(&local->ack_status_lock, flags); if (id >= 0) { info_id = id; *info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; if (cookie) { *cookie = ieee80211_mgmt_tx_cookie(local); IEEE80211_SKB_CB(ack_skb)->ack.cookie = *cookie; } } else { kfree_skb(ack_skb); } } return info_id; } /** * ieee80211_build_hdr - build 802.11 header in the given frame * @sdata: virtual interface to build the header for * @skb: the skb to build the header in * @info_flags: skb flags to set * @sta: the station pointer * @ctrl_flags: info control flags to set * @cookie: cookie pointer to fill (if not %NULL) * * This function takes the skb with 802.3 header and reformats the header to * the appropriate IEEE 802.11 header based on which interface the packet is * being transmitted on. * * Note that this function also takes care of the TX status request and * potential unsharing of the SKB - this needs to be interleaved with the * header building. * * The function requires the read-side RCU lock held * * Returns: the (possibly reallocated) skb or an ERR_PTR() code */ static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags, struct sta_info *sta, u32 ctrl_flags, u64 *cookie) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info; int head_need; u16 ethertype, hdrlen, meshhdrlen = 0; __le16 fc; struct ieee80211_hdr hdr; struct ieee80211s_hdr mesh_hdr __maybe_unused; struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL; const u8 *encaps_data; int encaps_len, skip_header_bytes; bool wme_sta = false, authorized = false; bool tdls_peer; bool multicast; u16 info_id = 0; struct ieee80211_chanctx_conf *chanctx_conf = NULL; enum nl80211_band band; int ret; u8 link_id = u32_get_bits(ctrl_flags, IEEE80211_TX_CTRL_MLO_LINK); if (IS_ERR(sta)) sta = NULL; #ifdef CONFIG_MAC80211_DEBUGFS if (local->force_tx_status) info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; #endif /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); if (!ieee80211_vif_is_mld(&sdata->vif)) chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } if (!ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_sub_if_data *ap_sdata; /* override chanctx_conf from AP (we don't have one) */ ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); chanctx_conf = rcu_dereference(ap_sdata->vif.bss_conf.chanctx_conf); } if (sdata->wdev.use_4addr) break; fallthrough; case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); if (ieee80211_vif_is_mld(&sdata->vif) && sta && !sta->sta.mlo) { struct ieee80211_link_data *link; link_id = sta->deflink.link_id; link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { ret = -ENOLINK; goto free; } memcpy(hdr.addr2, link->conf->addr, ETH_ALEN); } else if (link_id == IEEE80211_LINK_UNSPECIFIED || (sta && sta->sta.mlo)) { memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_bss_conf *conf; conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (unlikely(!conf)) { ret = -ENOLINK; goto free; } memcpy(hdr.addr2, conf->addr, ETH_ALEN); } memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 24; break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: if (!is_multicast_ether_addr(skb->data)) { struct sta_info *next_hop; bool mpp_lookup = true; mpath = mesh_path_lookup(sdata, skb->data); if (mpath) { mpp_lookup = false; next_hop = rcu_dereference(mpath->next_hop); if (!next_hop || !(mpath->flags & (MESH_PATH_ACTIVE | MESH_PATH_RESOLVING))) mpp_lookup = true; } if (mpp_lookup) { mppath = mpp_path_lookup(sdata, skb->data); if (mppath) mppath->exp_time = jiffies; } if (mppath && mpath) mesh_path_del(sdata, mpath->dst); } /* * Use address extension if it is a packet from * another interface or if we know the destination * is being proxied by a portal (i.e. portal address * differs from proxied address) */ if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) && !(mppath && !ether_addr_equal(mppath->mpp, skb->data))) { hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, skb->data, skb->data + ETH_ALEN); meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr, NULL, NULL); } else { /* DS -> MBSS (802.11-2012 13.11.3.3). * For unicast with unknown forwarding information, * destination might be in the MBSS or if that fails * forwarded to another mesh gate. In either case * resolution will be handled in ieee80211_xmit(), so * leave the original DA. This also works for mcast */ const u8 *mesh_da = skb->data; if (mppath) mesh_da = mppath->mpp; else if (mpath) mesh_da = mpath->dst; hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, mesh_da, sdata->vif.addr); if (is_multicast_ether_addr(mesh_da)) /* DA TA mSA AE:SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data + ETH_ALEN, NULL); else /* RA TA mDA mSA AE:DA SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data, skb->data + ETH_ALEN); } /* For injected frames, fill RA right away as nexthop lookup * will be skipped. */ if ((ctrl_flags & IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP) && is_zero_ether_addr(hdr.addr1)) memcpy(hdr.addr1, skb->data, ETH_ALEN); break; #endif case NL80211_IFTYPE_STATION: /* we already did checks when looking up the RA STA */ tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER); if (tdls_peer) { /* For TDLS only one link can be valid with peer STA */ int tdls_link_id = ieee80211_tdls_sta_link_id(sta); struct ieee80211_link_data *link; /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); link = rcu_dereference(sdata->link[tdls_link_id]); if (WARN_ON_ONCE(!link)) { ret = -EINVAL; goto free; } memcpy(hdr.addr3, link->u.mgd.bssid, ETH_ALEN); hdrlen = 24; } else if (sdata->u.mgd.use_4addr && cpu_to_be16(ethertype) != sdata->control_port_protocol) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; } else { fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr.addr1, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); hdrlen = 24; } break; case NL80211_IFTYPE_OCB: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); eth_broadcast_addr(hdr.addr3); hdrlen = 24; break; case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); hdrlen = 24; break; default: ret = -EINVAL; goto free; } if (!chanctx_conf) { if (!ieee80211_vif_is_mld(&sdata->vif)) { ret = -ENOTCONN; goto free; } /* MLD transmissions must not rely on the band */ band = 0; } else { band = chanctx_conf->def.chan->band; } multicast = is_multicast_ether_addr(hdr.addr1); /* sta is always NULL for mesh */ if (sta) { authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { /* For mesh, the use of the QoS header is mandatory */ wme_sta = true; } /* receiver does QoS (which also means we do) use it */ if (wme_sta) { fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); hdrlen += 2; } /* * Drop unicast frames to unauthorised stations unless they are * EAPOL frames from the local station. */ if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) && (sdata->vif.type != NL80211_IFTYPE_OCB) && !multicast && !authorized && (cpu_to_be16(ethertype) != sdata->control_port_protocol || !ieee80211_is_our_addr(sdata, skb->data + ETH_ALEN, NULL)))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n", sdata->name, hdr.addr1); #endif I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ret = -EPERM; goto free; } if (unlikely(!multicast && ((skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) || ctrl_flags & IEEE80211_TX_CTL_REQ_TX_STATUS))) info_id = ieee80211_store_ack_skb(local, skb, &info_flags, cookie); /* * If the skb is shared we need to obtain our own copy. */ skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) { ret = -ENOMEM; goto free; } hdr.frame_control = fc; hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype >= ETH_P_802_3_MIN) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); /* * So we need to modify the skb header and hence need a copy of * that. The head_need variable above doesn't, so far, include * the needed header space that we don't need right away. If we * can, then we don't reallocate right now but only after the * frame arrives at the master device (if it does...) * * If we cannot, however, then we will reallocate to include all * the ever needed space. Also, if we need to reallocate it anyway, * make it big enough for everything we may ever need. */ if (head_need > 0 || skb_cloned(skb)) { head_need += IEEE80211_ENCRYPT_HEADROOM; head_need += local->tx_headroom; head_need = max_t(int, 0, head_need); if (ieee80211_skb_resize(sdata, skb, head_need, ENCRYPT_DATA)) { ieee80211_free_txskb(&local->hw, skb); skb = NULL; return ERR_PTR(-ENOMEM); } } if (encaps_data) memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); #ifdef CONFIG_MAC80211_MESH if (meshhdrlen > 0) memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); #endif if (ieee80211_is_data_qos(fc)) { __le16 *qos_control; qos_control = skb_push(skb, 2); memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); /* * Maybe we could actually set some fields here, for now just * initialise to zero to indicate no special operation. */ *qos_control = 0; } else memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); skb_reset_mac_header(skb); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->flags = info_flags; if (info_id) { info->status_data = info_id; info->status_data_idr = 1; } info->band = band; if (likely(!cookie)) { ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); } else { unsigned int pre_conf_link_id; /* * ctrl_flags already have been set by * ieee80211_tx_control_port(), here * we just sanity check that */ pre_conf_link_id = u32_get_bits(ctrl_flags, IEEE80211_TX_CTRL_MLO_LINK); if (pre_conf_link_id != link_id && link_id != IEEE80211_LINK_UNSPECIFIED) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM with bad link ID request (%d vs. %d)\n", sdata->name, hdr.addr1, pre_conf_link_id, link_id); #endif ret = -EINVAL; goto free; } } info->control.flags = ctrl_flags; return skb; free: kfree_skb(skb); return ERR_PTR(ret); } /* * fast-xmit overview * * The core idea of this fast-xmit is to remove per-packet checks by checking * them out of band. ieee80211_check_fast_xmit() implements the out-of-band * checks that are needed to get the sta->fast_tx pointer assigned, after which * much less work can be done per packet. For example, fragmentation must be * disabled or the fast_tx pointer will not be set. All the conditions are seen * in the code here. * * Once assigned, the fast_tx data structure also caches the per-packet 802.11 * header and other data to aid packet processing in ieee80211_xmit_fast(). * * The most difficult part of this is that when any of these assumptions * change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(), * ieee80211_check_fast_xmit() or friends) is required to reset the data, * since the per-packet code no longer checks the conditions. This is reflected * by the calls to these functions throughout the rest of the code, and must be * maintained if any of the TX path checks change. */ void ieee80211_check_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_hdr *hdr = (void *)build.hdr; struct ieee80211_chanctx_conf *chanctx_conf; __le16 fc; if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT)) return; if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_fast_tx_flush_sta(sdata, sta); /* Locking here protects both the pointer itself, and against concurrent * invocations winning data access races to, e.g., the key pointer that * is used. * Without it, the invocation of this function right after the key * pointer changes wouldn't be sufficient, as another CPU could access * the pointer, then stall, and then do the cache update after the CPU * that invalidated the key. * With the locking, such scenarios cannot happen as the check for the * key and the fast-tx assignment are done atomically, so the CPU that * modifies the key will either wait or other one will see the key * cleared/changed already. */ spin_lock_bh(&sta->lock); if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && sdata->vif.type == NL80211_IFTYPE_STATION) goto out; if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED) || !sta->uploaded) goto out; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER) || test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT)) goto out; if (sdata->noack_map) goto out; /* fast-xmit doesn't handle fragmentation at all */ if (local->hw.wiphy->frag_threshold != (u32)-1 && !ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG)) goto out; if (!ieee80211_vif_is_mld(&sdata->vif)) { rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); goto out; } build.band = chanctx_conf->def.chan->band; rcu_read_unlock(); } else { /* MLD transmissions must not rely on the band */ build.band = 0; } fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN); build.hdr_len = 24; break; case NL80211_IFTYPE_STATION: if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { /* For TDLS only one link can be valid with peer STA */ int tdls_link_id = ieee80211_tdls_sta_link_id(sta); struct ieee80211_link_data *link; /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); rcu_read_lock(); link = rcu_dereference(sdata->link[tdls_link_id]); if (!WARN_ON_ONCE(!link)) memcpy(hdr->addr3, link->u.mgd.bssid, ETH_ALEN); rcu_read_unlock(); build.hdr_len = 24; break; } if (sdata->u.mgd.use_4addr) { /* non-regular ethertype cannot use the fastpath */ fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr->addr1, sdata->vif.cfg.ap_addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); build.hdr_len = 24; break; case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fallthrough; case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); if (sta->sta.mlo || !ieee80211_vif_is_mld(&sdata->vif)) { memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); } else { unsigned int link_id = sta->deflink.link_id; struct ieee80211_link_data *link; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { rcu_read_unlock(); goto out; } memcpy(hdr->addr2, link->conf->addr, ETH_ALEN); rcu_read_unlock(); } build.sa_offs = offsetof(struct ieee80211_hdr, addr3); build.hdr_len = 24; break; default: /* not handled on fast-xmit */ goto out; } if (sta->sta.wme) { build.hdr_len += 2; fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); } /* We store the key here so there's no point in using rcu_dereference() * but that's fine because the code that changes the pointers will call * this function after doing so. For a single CPU that would be enough, * for multiple see the comment above. */ build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]); if (!build.key) build.key = rcu_access_pointer(sdata->default_unicast_key); if (build.key) { bool gen_iv, iv_spc, mmic; gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV; iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE; mmic = build.key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE); /* don't handle software crypto */ if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) goto out; /* Key is being removed */ if (build.key->flags & KEY_FLAG_TAINTED) goto out; switch (build.key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (gen_iv) build.pn_offs = build.hdr_len; if (gen_iv || iv_spc) build.hdr_len += IEEE80211_CCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (gen_iv) build.pn_offs = build.hdr_len; if (gen_iv || iv_spc) build.hdr_len += IEEE80211_GCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_TKIP: /* cannot handle MMIC or IV generation in xmit-fast */ if (mmic || gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_TKIP_IV_LEN; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* cannot handle IV generation in fast-xmit */ if (gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_WEP_IV_LEN; break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: WARN(1, "management cipher suite 0x%x enabled for data\n", build.key->conf.cipher); goto out; default: /* we don't know how to generate IVs for this at all */ if (WARN_ON(gen_iv)) goto out; } fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } hdr->frame_control = fc; memcpy(build.hdr + build.hdr_len, rfc1042_header, sizeof(rfc1042_header)); build.hdr_len += sizeof(rfc1042_header); fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC); /* if the kmemdup fails, continue w/o fast_tx */ out: /* we might have raced against another call to this function */ old = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); rcu_assign_pointer(sta->fast_tx, fast_tx); if (old) kfree_rcu(old, rcu_head); spin_unlock_bh(&sta->lock); } void ieee80211_check_fast_xmit_all(struct ieee80211_local *local) { struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) ieee80211_check_fast_xmit(sta); rcu_read_unlock(); } void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata && (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) continue; ieee80211_check_fast_xmit(sta); } rcu_read_unlock(); } void ieee80211_clear_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx *fast_tx; spin_lock_bh(&sta->lock); fast_tx = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); RCU_INIT_POINTER(sta->fast_tx, NULL); spin_unlock_bh(&sta->lock); if (fast_tx) kfree_rcu(fast_tx, rcu_head); } static bool ieee80211_amsdu_realloc_pad(struct ieee80211_local *local, struct sk_buff *skb, int headroom) { if (skb_headroom(skb) < headroom) { I802_DEBUG_INC(local->tx_expand_skb_head); if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return false; } } return true; } static bool ieee80211_amsdu_prepare_head(struct ieee80211_sub_if_data *sdata, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ethhdr *amsdu_hdr; int hdr_len = fast_tx->hdr_len - sizeof(rfc1042_header); int subframe_len = skb->len - hdr_len; void *data; u8 *qc, *h_80211_src, *h_80211_dst; const u8 *bssid; if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) return false; if (info->control.flags & IEEE80211_TX_CTRL_AMSDU) return true; if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(*amsdu_hdr) + local->hw.extra_tx_headroom)) return false; data = skb_push(skb, sizeof(*amsdu_hdr)); memmove(data, data + sizeof(*amsdu_hdr), hdr_len); hdr = data; amsdu_hdr = data + hdr_len; /* h_80211_src/dst is addr* field within hdr */ h_80211_src = data + fast_tx->sa_offs; h_80211_dst = data + fast_tx->da_offs; amsdu_hdr->h_proto = cpu_to_be16(subframe_len); ether_addr_copy(amsdu_hdr->h_source, h_80211_src); ether_addr_copy(amsdu_hdr->h_dest, h_80211_dst); /* according to IEEE 802.11-2012 8.3.2 table 8-19, the outer SA/DA * fields needs to be changed to BSSID for A-MSDU frames depending * on FromDS/ToDS values. */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: bssid = sdata->vif.cfg.ap_addr; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: bssid = sdata->vif.addr; break; default: bssid = NULL; } if (bssid && ieee80211_has_fromds(hdr->frame_control)) ether_addr_copy(h_80211_src, bssid); if (bssid && ieee80211_has_tods(hdr->frame_control)) ether_addr_copy(h_80211_dst, bssid); qc = ieee80211_get_qos_ctl(hdr); *qc |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; info->control.flags |= IEEE80211_TX_CTRL_AMSDU; return true; } static bool ieee80211_amsdu_aggregate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, const u8 *da, const u8 *sa) { struct ieee80211_local *local = sdata->local; struct fq *fq = &local->fq; struct fq_tin *tin; struct fq_flow *flow; u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi; struct sk_buff **frag_tail, *head; int subframe_len = skb->len - ETH_ALEN; u8 max_subframes = sta->sta.max_amsdu_subframes; int max_frags = local->hw.max_tx_fragments; int max_amsdu_len = sta->sta.cur->max_amsdu_len; int orig_truesize; u32 flow_idx; __be16 len; void *data; bool ret = false; unsigned int orig_len; int n = 2, nfrags, pad = 0; u16 hdrlen; if (!ieee80211_hw_check(&local->hw, TX_AMSDU)) return false; if (sdata->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED) return false; if (ieee80211_vif_is_mesh(&sdata->vif)) return false; if (skb_is_gso(skb)) return false; if (!txq) return false; txqi = to_txq_info(txq); if (test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags)) return false; if (sta->sta.cur->max_rc_amsdu_len) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.cur->max_rc_amsdu_len); if (sta->sta.cur->max_tid_amsdu_len[tid]) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.cur->max_tid_amsdu_len[tid]); flow_idx = fq_flow_idx(fq, skb); spin_lock_bh(&fq->lock); /* TODO: Ideally aggregation should be done on dequeue to remain * responsive to environment changes. */ tin = &txqi->tin; flow = fq_flow_classify(fq, tin, flow_idx, skb); head = skb_peek_tail(&flow->queue); if (!head || skb_is_gso(head)) goto out; orig_truesize = head->truesize; orig_len = head->len; if (skb->len + head->len > max_amsdu_len) goto out; nfrags = 1 + skb_shinfo(skb)->nr_frags; nfrags += 1 + skb_shinfo(head)->nr_frags; frag_tail = &skb_shinfo(head)->frag_list; while (*frag_tail) { nfrags += 1 + skb_shinfo(*frag_tail)->nr_frags; frag_tail = &(*frag_tail)->next; n++; } if (max_subframes && n > max_subframes) goto out; if (max_frags && nfrags > max_frags) goto out; if (!drv_can_aggregate_in_amsdu(local, head, skb)) goto out; if (!ieee80211_amsdu_prepare_head(sdata, fast_tx, head)) goto out; /* If n == 2, the "while (*frag_tail)" loop above didn't execute * and frag_tail should be &skb_shinfo(head)->frag_list. * However, ieee80211_amsdu_prepare_head() can reallocate it. * Reload frag_tail to have it pointing to the correct place. */ if (n == 2) frag_tail = &skb_shinfo(head)->frag_list; /* * Pad out the previous subframe to a multiple of 4 by adding the * padding to the next one, that's being added. Note that head->len * is the length of the full A-MSDU, but that works since each time * we add a new subframe we pad out the previous one to a multiple * of 4 and thus it no longer matters in the next round. */ hdrlen = fast_tx->hdr_len - sizeof(rfc1042_header); if ((head->len - hdrlen) & 3) pad = 4 - ((head->len - hdrlen) & 3); if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(rfc1042_header) + 2 + pad)) goto out_recalc; ret = true; data = skb_push(skb, ETH_ALEN + 2); ether_addr_copy(data, da); ether_addr_copy(data + ETH_ALEN, sa); data += 2 * ETH_ALEN; len = cpu_to_be16(subframe_len); memcpy(data, &len, 2); memcpy(data + 2, rfc1042_header, sizeof(rfc1042_header)); memset(skb_push(skb, pad), 0, pad); head->len += skb->len; head->data_len += skb->len; *frag_tail = skb; out_recalc: fq->memory_usage += head->truesize - orig_truesize; if (head->len != orig_len) { flow->backlog += head->len - orig_len; tin->backlog_bytes += head->len - orig_len; } out: spin_unlock_bh(&fq->lock); return ret; } /* * Can be called while the sta lock is held. Anything that can cause packets to * be generated will cause deadlock! */ static ieee80211_tx_result ieee80211_xmit_fast_finish(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 pn_offs, struct ieee80211_key *key, struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; u8 tid = IEEE80211_NUM_TIDS; if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL) && ieee80211_tx_h_rate_ctrl(tx) != TX_CONTINUE) return TX_DROP; if (key) info->control.hw_key = &key->conf; dev_sw_netstats_tx_add(skb->dev, 1, skb->len); if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; hdr->seq_ctrl = ieee80211_tx_next_seq(sta, tid); } else { info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; hdr->seq_ctrl = cpu_to_le16(sdata->sequence_number); sdata->sequence_number += 0x10; } if (skb_shinfo(skb)->gso_size) sta->deflink.tx_stats.msdu[tid] += DIV_ROUND_UP(skb->len, skb_shinfo(skb)->gso_size); else sta->deflink.tx_stats.msdu[tid]++; info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; /* statistics normally done by ieee80211_tx_h_stats (but that * has to consider fragmentation, so is more complex) */ sta->deflink.tx_stats.bytes[skb_get_queue_mapping(skb)] += skb->len; sta->deflink.tx_stats.packets[skb_get_queue_mapping(skb)]++; if (pn_offs) { u64 pn; u8 *crypto_hdr = skb->data + pn_offs; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn = atomic64_inc_return(&key->conf.tx_pn); crypto_hdr[0] = pn; crypto_hdr[1] = pn >> 8; crypto_hdr[3] = 0x20 | (key->conf.keyidx << 6); crypto_hdr[4] = pn >> 16; crypto_hdr[5] = pn >> 24; crypto_hdr[6] = pn >> 32; crypto_hdr[7] = pn >> 40; break; } } return TX_CONTINUE; } static netdev_features_t ieee80211_sdata_netdev_features(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) return sdata->vif.netdev_features; if (!sdata->bss) return 0; sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); return sdata->vif.netdev_features; } static struct sk_buff * ieee80211_tx_skb_fixup(struct sk_buff *skb, netdev_features_t features) { if (skb_is_gso(skb)) { struct sk_buff *segs; segs = skb_gso_segment(skb, features); if (!segs) return skb; if (IS_ERR(segs)) goto free; consume_skb(skb); return segs; } if (skb_needs_linearize(skb, features) && __skb_linearize(skb)) goto free; if (skb->ip_summed == CHECKSUM_PARTIAL) { int ofs = skb_checksum_start_offset(skb); if (skb->encapsulation) skb_set_inner_transport_header(skb, ofs); else skb_set_transport_header(skb, ofs); if (skb_csum_hwoffload_help(skb, features)) goto free; } skb_mark_not_on_list(skb); return skb; free: kfree_skb(skb); return NULL; } void __ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, bool ampdu, const u8 *da, const u8 *sa) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; int hw_headroom = sdata->local->hw.extra_tx_headroom; int extra_head = fast_tx->hdr_len - (ETH_HLEN - 2); skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; if ((hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) && ieee80211_amsdu_aggregate(sdata, sta, fast_tx, skb, da, sa)) return; /* will not be crypto-handled beyond what we do here, so use false * as the may-encrypt argument for the resize to not account for * more room than we already have in 'extra_head' */ if (unlikely(ieee80211_skb_resize(sdata, skb, max_t(int, extra_head + hw_headroom - skb_headroom(skb), 0), ENCRYPT_NO))) goto free; hdr = skb_push(skb, extra_head); memcpy(skb->data, fast_tx->hdr, fast_tx->hdr_len); memcpy(skb->data + fast_tx->da_offs, da, ETH_ALEN); memcpy(skb->data + fast_tx->sa_offs, sa, ETH_ALEN); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->band = fast_tx->band; info->control.vif = &sdata->vif; info->flags = IEEE80211_TX_CTL_FIRST_FRAGMENT | IEEE80211_TX_CTL_DONTFRAG; info->control.flags = IEEE80211_TX_CTRL_FAST_XMIT | u32_encode_bits(IEEE80211_LINK_UNSPECIFIED, IEEE80211_TX_CTRL_MLO_LINK); #ifdef CONFIG_MAC80211_DEBUGFS if (local->force_tx_status) info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; #endif if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; *ieee80211_get_qos_ctl(hdr) = tid; } __skb_queue_head_init(&tx.skbs); tx.flags = IEEE80211_TX_UNICAST; tx.local = local; tx.sdata = sdata; tx.sta = sta; tx.key = fast_tx->key; if (ieee80211_queue_skb(local, sdata, sta, skb)) return; tx.skb = skb; r = ieee80211_xmit_fast_finish(sdata, sta, fast_tx->pn_offs, fast_tx->key, &tx); tx.skb = NULL; if (r == TX_DROP) goto free; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); __skb_queue_tail(&tx.skbs, skb); ieee80211_tx_frags(local, &sdata->vif, sta, &tx.skbs, false); return; free: kfree_skb(skb); } static bool ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct tid_ampdu_tx *tid_tx = NULL; struct sk_buff *next; struct ethhdr eth; u8 tid = IEEE80211_NUM_TIDS; /* control port protocol needs a lot of special handling */ if (cpu_to_be16(ethertype) == sdata->control_port_protocol) return false; /* only RFC 1042 SNAP */ if (ethertype < ETH_P_802_3_MIN) return false; /* don't handle TX status request here either */ if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) return false; if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } } memcpy(ð, skb->data, ETH_HLEN - 2); /* after this point (skb is modified) we cannot return false */ skb = ieee80211_tx_skb_fixup(skb, ieee80211_sdata_netdev_features(sdata)); if (!skb) return true; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); __ieee80211_xmit_fast(sdata, sta, fast_tx, skb, tid_tx, eth.h_dest, eth.h_source); } return true; } struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = container_of(txq, struct txq_info, txq); struct ieee80211_hdr *hdr; struct sk_buff *skb = NULL; struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; struct ieee80211_vif *vif = txq->vif; int q = vif->hw_queue[txq->ac]; unsigned long flags; bool q_stopped; WARN_ON_ONCE(softirq_count() == 0); if (!ieee80211_txq_airtime_check(hw, txq)) return NULL; begin: spin_lock_irqsave(&local->queue_stop_reason_lock, flags); q_stopped = local->queue_stop_reasons[q]; spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (unlikely(q_stopped)) { /* mark for waking later */ set_bit(IEEE80211_TXQ_DIRTY, &txqi->flags); return NULL; } spin_lock_bh(&fq->lock); /* Make sure fragments stay together. */ skb = __skb_dequeue(&txqi->frags); if (unlikely(skb)) { if (!(IEEE80211_SKB_CB(skb)->control.flags & IEEE80211_TX_INTCFL_NEED_TXPROCESSING)) goto out; IEEE80211_SKB_CB(skb)->control.flags &= ~IEEE80211_TX_INTCFL_NEED_TXPROCESSING; } else { if (unlikely(test_bit(IEEE80211_TXQ_STOP, &txqi->flags))) goto out; skb = fq_tin_dequeue(fq, tin, fq_tin_dequeue_func); } if (!skb) goto out; spin_unlock_bh(&fq->lock); hdr = (struct ieee80211_hdr *)skb->data; info = IEEE80211_SKB_CB(skb); memset(&tx, 0, sizeof(tx)); __skb_queue_head_init(&tx.skbs); tx.local = local; tx.skb = skb; tx.sdata = vif_to_sdata(info->control.vif); if (txq->sta) { tx.sta = container_of(txq->sta, struct sta_info, sta); /* * Drop unicast frames to unauthorised stations unless they are * injected frames or EAPOL frames from the local station. */ if (unlikely(!(info->flags & IEEE80211_TX_CTL_INJECTED) && ieee80211_is_data(hdr->frame_control) && !ieee80211_vif_is_mesh(&tx.sdata->vif) && tx.sdata->vif.type != NL80211_IFTYPE_OCB && !is_multicast_ether_addr(hdr->addr1) && !test_sta_flag(tx.sta, WLAN_STA_AUTHORIZED) && (!(info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO) || !ieee80211_is_our_addr(tx.sdata, hdr->addr2, NULL)))) { I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ieee80211_free_txskb(&local->hw, skb); goto begin; } } /* * The key can be removed while the packet was queued, so need to call * this here to get the current key. */ r = ieee80211_tx_h_select_key(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } if (test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags)) info->flags |= (IEEE80211_TX_CTL_AMPDU | IEEE80211_TX_CTL_DONTFRAG); if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { if (!ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) { r = ieee80211_tx_h_rate_ctrl(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } goto encap_out; } if (info->control.flags & IEEE80211_TX_CTRL_FAST_XMIT) { struct sta_info *sta = container_of(txq->sta, struct sta_info, sta); u8 pn_offs = 0; if (tx.key && (tx.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) pn_offs = ieee80211_hdrlen(hdr->frame_control); r = ieee80211_xmit_fast_finish(sta->sdata, sta, pn_offs, tx.key, &tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } else { if (invoke_tx_handlers_late(&tx)) goto begin; skb = __skb_dequeue(&tx.skbs); info = IEEE80211_SKB_CB(skb); if (!skb_queue_empty(&tx.skbs)) { spin_lock_bh(&fq->lock); skb_queue_splice_tail(&tx.skbs, &txqi->frags); spin_unlock_bh(&fq->lock); } } if (skb_has_frag_list(skb) && !ieee80211_hw_check(&local->hw, TX_FRAG_LIST)) { if (skb_linearize(skb)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } switch (tx.sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if ((tx.sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) || ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) { vif = &tx.sdata->vif; break; } tx.sdata = rcu_dereference(local->monitor_sdata); if (tx.sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { vif = &tx.sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } else { info->control.vif = NULL; return skb; } break; case NL80211_IFTYPE_AP_VLAN: tx.sdata = container_of(tx.sdata->bss, struct ieee80211_sub_if_data, u.ap); fallthrough; default: vif = &tx.sdata->vif; break; } encap_out: info->control.vif = vif; if (tx.sta && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) { bool ampdu = txq->ac != IEEE80211_AC_VO; u32 airtime; airtime = ieee80211_calc_expected_tx_airtime(hw, vif, txq->sta, skb->len, ampdu); if (airtime) { airtime = ieee80211_info_set_tx_time_est(info, airtime); ieee80211_sta_update_pending_airtime(local, tx.sta, txq->ac, airtime, false); } } return skb; out: spin_unlock_bh(&fq->lock); return skb; } EXPORT_SYMBOL(ieee80211_tx_dequeue); static inline s32 ieee80211_sta_deficit(struct sta_info *sta, u8 ac) { struct airtime_info *air_info = &sta->airtime[ac]; return air_info->deficit - atomic_read(&air_info->aql_tx_pending); } static void ieee80211_txq_set_active(struct txq_info *txqi) { struct sta_info *sta; if (!txqi->txq.sta) return; sta = container_of(txqi->txq.sta, struct sta_info, sta); sta->airtime[txqi->txq.ac].last_active = jiffies; } static bool ieee80211_txq_keep_active(struct txq_info *txqi) { struct sta_info *sta; if (!txqi->txq.sta) return false; sta = container_of(txqi->txq.sta, struct sta_info, sta); if (ieee80211_sta_deficit(sta, txqi->txq.ac) >= 0) return false; return ieee80211_sta_keep_active(sta, txqi->txq.ac); } struct ieee80211_txq *ieee80211_next_txq(struct ieee80211_hw *hw, u8 ac) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_txq *ret = NULL; struct txq_info *txqi = NULL, *head = NULL; bool found_eligible_txq = false; spin_lock_bh(&local->active_txq_lock[ac]); if (!local->schedule_round[ac]) goto out; begin: txqi = list_first_entry_or_null(&local->active_txqs[ac], struct txq_info, schedule_order); if (!txqi) goto out; if (txqi == head) { if (!found_eligible_txq) goto out; else found_eligible_txq = false; } if (!head) head = txqi; if (txqi->txq.sta) { struct sta_info *sta = container_of(txqi->txq.sta, struct sta_info, sta); bool aql_check = ieee80211_txq_airtime_check(hw, &txqi->txq); s32 deficit = ieee80211_sta_deficit(sta, txqi->txq.ac); if (aql_check) found_eligible_txq = true; if (deficit < 0) sta->airtime[txqi->txq.ac].deficit += sta->airtime_weight; if (deficit < 0 || !aql_check) { list_move_tail(&txqi->schedule_order, &local->active_txqs[txqi->txq.ac]); goto begin; } } if (txqi->schedule_round == local->schedule_round[ac]) goto out; list_del_init(&txqi->schedule_order); txqi->schedule_round = local->schedule_round[ac]; ret = &txqi->txq; out: spin_unlock_bh(&local->active_txq_lock[ac]); return ret; } EXPORT_SYMBOL(ieee80211_next_txq); void __ieee80211_schedule_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq, bool force) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = to_txq_info(txq); bool has_queue; spin_lock_bh(&local->active_txq_lock[txq->ac]); has_queue = force || txq_has_queue(txq); if (list_empty(&txqi->schedule_order) && (has_queue || ieee80211_txq_keep_active(txqi))) { /* If airtime accounting is active, always enqueue STAs at the * head of the list to ensure that they only get moved to the * back by the airtime DRR scheduler once they have a negative * deficit. A station that already has a negative deficit will * get immediately moved to the back of the list on the next * call to ieee80211_next_txq(). */ if (txqi->txq.sta && local->airtime_flags && has_queue && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS)) list_add(&txqi->schedule_order, &local->active_txqs[txq->ac]); else list_add_tail(&txqi->schedule_order, &local->active_txqs[txq->ac]); if (has_queue) ieee80211_txq_set_active(txqi); } spin_unlock_bh(&local->active_txq_lock[txq->ac]); } EXPORT_SYMBOL(__ieee80211_schedule_txq); DEFINE_STATIC_KEY_FALSE(aql_disable); bool ieee80211_txq_airtime_check(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct sta_info *sta; struct ieee80211_local *local = hw_to_local(hw); if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return true; if (static_branch_unlikely(&aql_disable)) return true; if (!txq->sta) return true; if (unlikely(txq->tid == IEEE80211_NUM_TIDS)) return true; sta = container_of(txq->sta, struct sta_info, sta); if (atomic_read(&sta->airtime[txq->ac].aql_tx_pending) < sta->airtime[txq->ac].aql_limit_low) return true; if (atomic_read(&local->aql_total_pending_airtime) < local->aql_threshold && atomic_read(&sta->airtime[txq->ac].aql_tx_pending) < sta->airtime[txq->ac].aql_limit_high) return true; return false; } EXPORT_SYMBOL(ieee80211_txq_airtime_check); static bool ieee80211_txq_schedule_airtime_check(struct ieee80211_local *local, u8 ac) { unsigned int num_txq = 0; struct txq_info *txq; u32 aql_limit; if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return true; list_for_each_entry(txq, &local->active_txqs[ac], schedule_order) num_txq++; aql_limit = (num_txq - 1) * local->aql_txq_limit_low[ac] / 2 + local->aql_txq_limit_high[ac]; return atomic_read(&local->aql_ac_pending_airtime[ac]) < aql_limit; } bool ieee80211_txq_may_transmit(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *iter, *tmp, *txqi = to_txq_info(txq); struct sta_info *sta; u8 ac = txq->ac; spin_lock_bh(&local->active_txq_lock[ac]); if (!txqi->txq.sta) goto out; if (list_empty(&txqi->schedule_order)) goto out; if (!ieee80211_txq_schedule_airtime_check(local, ac)) goto out; list_for_each_entry_safe(iter, tmp, &local->active_txqs[ac], schedule_order) { if (iter == txqi) break; if (!iter->txq.sta) { list_move_tail(&iter->schedule_order, &local->active_txqs[ac]); continue; } sta = container_of(iter->txq.sta, struct sta_info, sta); if (ieee80211_sta_deficit(sta, ac) < 0) sta->airtime[ac].deficit += sta->airtime_weight; list_move_tail(&iter->schedule_order, &local->active_txqs[ac]); } sta = container_of(txqi->txq.sta, struct sta_info, sta); if (sta->airtime[ac].deficit >= 0) goto out; sta->airtime[ac].deficit += sta->airtime_weight; list_move_tail(&txqi->schedule_order, &local->active_txqs[ac]); spin_unlock_bh(&local->active_txq_lock[ac]); return false; out: if (!list_empty(&txqi->schedule_order)) list_del_init(&txqi->schedule_order); spin_unlock_bh(&local->active_txq_lock[ac]); return true; } EXPORT_SYMBOL(ieee80211_txq_may_transmit); void ieee80211_txq_schedule_start(struct ieee80211_hw *hw, u8 ac) { struct ieee80211_local *local = hw_to_local(hw); spin_lock_bh(&local->active_txq_lock[ac]); if (ieee80211_txq_schedule_airtime_check(local, ac)) { local->schedule_round[ac]++; if (!local->schedule_round[ac]) local->schedule_round[ac]++; } else { local->schedule_round[ac] = 0; } spin_unlock_bh(&local->active_txq_lock[ac]); } EXPORT_SYMBOL(ieee80211_txq_schedule_start); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags, u32 ctrl_flags, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *next; int len = skb->len; if (unlikely(!ieee80211_sdata_running(sdata) || skb->len < ETH_HLEN)) { kfree_skb(skb); return; } sk_pacing_shift_update(skb->sk, sdata->local->hw.tx_sk_pacing_shift); rcu_read_lock(); if (ieee80211_vif_is_mesh(&sdata->vif) && ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT) && ieee80211_mesh_xmit_fast(sdata, skb, ctrl_flags)) goto out; if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) goto out_free; if (IS_ERR(sta)) sta = NULL; skb_set_queue_mapping(skb, ieee80211_select_queue(sdata, sta, skb)); ieee80211_aggr_check(sdata, sta, skb); if (sta) { struct ieee80211_fast_tx *fast_tx; fast_tx = rcu_dereference(sta->fast_tx); if (fast_tx && ieee80211_xmit_fast(sdata, sta, fast_tx, skb)) goto out; } /* the frame could be fragmented, software-encrypted, and other * things so we cannot really handle checksum or GSO offload. * fix it up in software before we handle anything else. */ skb = ieee80211_tx_skb_fixup(skb, 0); if (!skb) { len = 0; goto out; } skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); if (skb->protocol == sdata->control_port_protocol) ctrl_flags |= IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP; skb = ieee80211_build_hdr(sdata, skb, info_flags, sta, ctrl_flags, cookie); if (IS_ERR(skb)) { kfree_skb_list(next); goto out; } dev_sw_netstats_tx_add(dev, 1, skb->len); ieee80211_xmit(sdata, sta, skb); } goto out; out_free: kfree_skb(skb); len = 0; out: if (len) ieee80211_tpt_led_trig_tx(local, len); rcu_read_unlock(); } static int ieee80211_change_da(struct sk_buff *skb, struct sta_info *sta) { struct ethhdr *eth; int err; err = skb_ensure_writable(skb, ETH_HLEN); if (unlikely(err)) return err; eth = (void *)skb->data; ether_addr_copy(eth->h_dest, sta->sta.addr); return 0; } static bool ieee80211_multicast_to_unicast(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; const struct vlan_ethhdr *ethvlan = (void *)skb->data; __be16 ethertype; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->u.vlan.sta) return false; if (sdata->wdev.use_4addr) return false; fallthrough; case NL80211_IFTYPE_AP: /* check runtime toggle for this bss */ if (!sdata->bss->multicast_to_unicast) return false; break; default: return false; } /* multicast to unicast conversion only for some payload */ ethertype = eth->h_proto; if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN) ethertype = ethvlan->h_vlan_encapsulated_proto; switch (ethertype) { case htons(ETH_P_ARP): case htons(ETH_P_IP): case htons(ETH_P_IPV6): break; default: return false; } return true; } static void ieee80211_convert_to_unicast(struct sk_buff *skb, struct net_device *dev, struct sk_buff_head *queue) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; const struct ethhdr *eth = (struct ethhdr *)skb->data; struct sta_info *sta, *first = NULL; struct sk_buff *cloned_skb; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) /* AP-VLAN mismatch */ continue; if (unlikely(ether_addr_equal(eth->h_source, sta->sta.addr))) /* do not send back to source */ continue; if (!first) { first = sta; continue; } cloned_skb = skb_clone(skb, GFP_ATOMIC); if (!cloned_skb) goto multicast; if (unlikely(ieee80211_change_da(cloned_skb, sta))) { dev_kfree_skb(cloned_skb); goto multicast; } __skb_queue_tail(queue, cloned_skb); } if (likely(first)) { if (unlikely(ieee80211_change_da(skb, first))) goto multicast; __skb_queue_tail(queue, skb); } else { /* no STA connected, drop */ kfree_skb(skb); skb = NULL; } goto out; multicast: __skb_queue_purge(queue); __skb_queue_tail(queue, skb); out: rcu_read_unlock(); } static void ieee80211_mlo_multicast_tx_one(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 ctrl_flags, unsigned int link_id) { struct sk_buff *out; out = skb_copy(skb, GFP_ATOMIC); if (!out) return; ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); __ieee80211_subif_start_xmit(out, sdata->dev, 0, ctrl_flags, NULL); } static void ieee80211_mlo_multicast_tx(struct net_device *dev, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); unsigned long links = sdata->vif.active_links; unsigned int link; u32 ctrl_flags = IEEE80211_TX_CTRL_MCAST_MLO_FIRST_TX; if (hweight16(links) == 1) { ctrl_flags |= u32_encode_bits(__ffs(links), IEEE80211_TX_CTRL_MLO_LINK); __ieee80211_subif_start_xmit(skb, sdata->dev, 0, ctrl_flags, NULL); return; } for_each_set_bit(link, &links, IEEE80211_MLD_MAX_NUM_LINKS) { ieee80211_mlo_multicast_tx_one(sdata, skb, ctrl_flags, link); ctrl_flags = 0; } kfree_skb(skb); } /** * ieee80211_subif_start_xmit - netif start_xmit function for 802.3 vifs * @skb: packet to be sent * @dev: incoming interface * * On failure skb will be freed. * * Returns: the netdev TX status (but really only %NETDEV_TX_OK) */ netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; if (likely(!is_multicast_ether_addr(eth->h_dest))) goto normal; if (unlikely(!ieee80211_sdata_running(sdata))) { kfree_skb(skb); return NETDEV_TX_OK; } if (unlikely(ieee80211_multicast_to_unicast(skb, dev))) { struct sk_buff_head queue; __skb_queue_head_init(&queue); ieee80211_convert_to_unicast(skb, dev, &queue); while ((skb = __skb_dequeue(&queue))) __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); } else if (ieee80211_vif_is_mld(&sdata->vif) && sdata->vif.type == NL80211_IFTYPE_AP && !ieee80211_hw_check(&sdata->local->hw, MLO_MCAST_MULTI_LINK_TX)) { ieee80211_mlo_multicast_tx(dev, skb); } else { normal: __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); } return NETDEV_TX_OK; } static bool __ieee80211_tx_8023(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info *sta, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_control control = {}; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sta *pubsta = NULL; unsigned long flags; int q = info->hw_queue; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (txpending) skb_queue_head(&local->pending[q], skb); else skb_queue_tail(&local->pending[q], skb); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (sta && sta->uploaded) pubsta = &sta->sta; control.sta = pubsta; drv_tx(local, &control, skb); return true; } static bool ieee80211_tx_8023(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info *sta, bool txpending) { struct ieee80211_local *local = sdata->local; struct sk_buff *next; bool ret = true; if (ieee80211_queue_skb(local, sdata, sta, skb)) return true; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); if (!__ieee80211_tx_8023(sdata, skb, sta, txpending)) ret = false; } return ret; } static void ieee80211_8023_xmit(struct ieee80211_sub_if_data *sdata, struct net_device *dev, struct sta_info *sta, struct ieee80211_key *key, struct sk_buff *skb) { struct ieee80211_tx_info *info; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; struct sk_buff *seg, *next; unsigned int skbs = 0, len = 0; u16 queue; u8 tid; queue = ieee80211_select_queue(sdata, sta, skb); skb_set_queue_mapping(skb, queue); if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)) goto out_free; skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; ieee80211_aggr_check(sdata, sta, skb); tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { /* fall back to non-offload slow path */ __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); return; } if (tid_tx->timeout) tid_tx->last_tx = jiffies; } skb = ieee80211_tx_skb_fixup(skb, ieee80211_sdata_netdev_features(sdata)); if (!skb) return; info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->hw_queue = sdata->vif.hw_queue[queue]; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); info->flags |= IEEE80211_TX_CTL_HW_80211_ENCAP; info->control.vif = &sdata->vif; if (key) info->control.hw_key = &key->conf; skb_list_walk_safe(skb, seg, next) { skbs++; len += seg->len; if (seg != skb) memcpy(IEEE80211_SKB_CB(seg), info, sizeof(*info)); } if (unlikely(skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) { info->status_data = ieee80211_store_ack_skb(local, skb, &info->flags, NULL); if (info->status_data) info->status_data_idr = 1; } dev_sw_netstats_tx_add(dev, skbs, len); sta->deflink.tx_stats.packets[queue] += skbs; sta->deflink.tx_stats.bytes[queue] += len; ieee80211_tpt_led_trig_tx(local, len); ieee80211_tx_8023(sdata, skb, sta, false); return; out_free: kfree_skb(skb); } netdev_tx_t ieee80211_subif_start_xmit_8023(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ethhdr *ehdr = (struct ethhdr *)skb->data; struct ieee80211_key *key; struct sta_info *sta; if (unlikely(!ieee80211_sdata_running(sdata) || skb->len < ETH_HLEN)) { kfree_skb(skb); return NETDEV_TX_OK; } rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); goto out; } if (unlikely(IS_ERR_OR_NULL(sta) || !sta->uploaded || !test_sta_flag(sta, WLAN_STA_AUTHORIZED) || sdata->control_port_protocol == ehdr->h_proto)) goto skip_offload; key = rcu_dereference(sta->ptk[sta->ptk_idx]); if (!key) key = rcu_dereference(sdata->default_unicast_key); if (key && (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) || key->conf.cipher == WLAN_CIPHER_SUITE_TKIP)) goto skip_offload; sk_pacing_shift_update(skb->sk, sdata->local->hw.tx_sk_pacing_shift); ieee80211_8023_xmit(sdata, dev, sta, key, skb); goto out; skip_offload: ieee80211_subif_start_xmit(skb, dev); out: rcu_read_unlock(); return NETDEV_TX_OK; } struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags) { struct ieee80211_hdr *hdr; struct ieee80211_tx_data tx = { .local = sdata->local, .sdata = sdata, }; struct sta_info *sta; rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); skb = ERR_PTR(-EINVAL); goto out; } skb = ieee80211_build_hdr(sdata, skb, info_flags, sta, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); if (IS_ERR(skb)) goto out; hdr = (void *)skb->data; tx.sta = sta_info_get(sdata, hdr->addr1); tx.skb = skb; if (ieee80211_tx_h_select_key(&tx) != TX_CONTINUE) { rcu_read_unlock(); kfree_skb(skb); return ERR_PTR(-EINVAL); } out: rcu_read_unlock(); return skb; } /* * ieee80211_clear_tx_pending may not be called in a context where * it is possible that it packets could come in again. */ void ieee80211_clear_tx_pending(struct ieee80211_local *local) { struct sk_buff *skb; int i; for (i = 0; i < local->hw.queues; i++) { while ((skb = skb_dequeue(&local->pending[i])) != NULL) ieee80211_free_txskb(&local->hw, skb); } } /* * Returns false if the frame couldn't be transmitted but was queued instead, * which in this case means re-queued -- take as an indication to stop sending * more pending frames. */ static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_hdr *hdr; bool result; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(info->control.vif); if (info->control.flags & IEEE80211_TX_INTCFL_NEED_TXPROCESSING) { /* update band only for non-MLD */ if (!ieee80211_vif_is_mld(&sdata->vif)) { chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (unlikely(!chanctx_conf)) { dev_kfree_skb(skb); return true; } info->band = chanctx_conf->def.chan->band; } result = ieee80211_tx(sdata, NULL, skb, true); } else if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { dev_kfree_skb(skb); return true; } if (IS_ERR(sta) || (sta && !sta->uploaded)) sta = NULL; result = ieee80211_tx_8023(sdata, skb, sta, true); } else { struct sk_buff_head skbs; __skb_queue_head_init(&skbs); __skb_queue_tail(&skbs, skb); hdr = (struct ieee80211_hdr *)skb->data; sta = sta_info_get(sdata, hdr->addr1); result = __ieee80211_tx(local, &skbs, sta, true); } return result; } /* * Transmit all pending packets. Called from tasklet. */ void ieee80211_tx_pending(struct tasklet_struct *t) { struct ieee80211_local *local = from_tasklet(local, t, tx_pending_tasklet); unsigned long flags; int i; bool txok; rcu_read_lock(); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (i = 0; i < local->hw.queues; i++) { /* * If queue is stopped by something other than due to pending * frames, or we have no pending frames, proceed to next queue. */ if (local->queue_stop_reasons[i] || skb_queue_empty(&local->pending[i])) continue; while (!skb_queue_empty(&local->pending[i])) { struct sk_buff *skb = __skb_dequeue(&local->pending[i]); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); txok = ieee80211_tx_pending_skb(local, skb); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (!txok) break; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); rcu_read_unlock(); } /* functions for drivers to get certain frames */ static void __ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ps_data *ps, struct sk_buff *skb, bool is_template) { u8 *pos, *tim; int aid0 = 0; int i, have_bits = 0, n1, n2; struct ieee80211_bss_conf *link_conf = link->conf; /* Generate bitmap for TIM only if there are any STAs in power save * mode. */ if (atomic_read(&ps->num_sta_ps) > 0) /* in the hope that this is faster than * checking byte-for-byte */ have_bits = !bitmap_empty((unsigned long *)ps->tim, IEEE80211_MAX_AID+1); if (!is_template) { if (ps->dtim_count == 0) ps->dtim_count = link_conf->dtim_period - 1; else ps->dtim_count--; } tim = pos = skb_put(skb, 5); *pos++ = WLAN_EID_TIM; *pos++ = 3; *pos++ = ps->dtim_count; *pos++ = link_conf->dtim_period; if (ps->dtim_count == 0 && !skb_queue_empty(&ps->bc_buf)) aid0 = 1; ps->dtim_bc_mc = aid0 == 1; if (have_bits) { /* Find largest even number N1 so that bits numbered 1 through * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits * (N2 + 1) x 8 through 2007 are 0. */ n1 = 0; for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { if (ps->tim[i]) { n1 = i & 0xfe; break; } } n2 = n1; for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { if (ps->tim[i]) { n2 = i; break; } } /* Bitmap control */ *pos++ = n1 | aid0; /* Part Virt Bitmap */ skb_put_data(skb, ps->tim + n1, n2 - n1 + 1); tim[1] = n2 - n1 + 4; } else { *pos++ = aid0; /* Bitmap control */ if (ieee80211_get_link_sband(link)->band != NL80211_BAND_S1GHZ) { tim[1] = 4; /* Part Virt Bitmap */ skb_put_u8(skb, 0); } } } static int ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ps_data *ps, struct sk_buff *skb, bool is_template) { struct ieee80211_local *local = sdata->local; /* * Not very nice, but we want to allow the driver to call * ieee80211_beacon_get() as a response to the set_tim() * callback. That, however, is already invoked under the * sta_lock to guarantee consistent and race-free update * of the tim bitmap in mac80211 and the driver. */ if (local->tim_in_locked_section) { __ieee80211_beacon_add_tim(sdata, link, ps, skb, is_template); } else { spin_lock_bh(&local->tim_lock); __ieee80211_beacon_add_tim(sdata, link, ps, skb, is_template); spin_unlock_bh(&local->tim_lock); } return 0; } static void ieee80211_set_beacon_cntdwn(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon, struct ieee80211_link_data *link) { u8 *beacon_data, count, max_count = 1; struct probe_resp *resp; size_t beacon_data_len; u16 *bcn_offsets; int i; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; break; case NL80211_IFTYPE_ADHOC: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; case NL80211_IFTYPE_MESH_POINT: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; default: return; } resp = rcu_dereference(link->u.ap.probe_resp); bcn_offsets = beacon->cntdwn_counter_offsets; count = beacon->cntdwn_current_counter; if (link->conf->csa_active) max_count = IEEE80211_MAX_CNTDWN_COUNTERS_NUM; for (i = 0; i < max_count; ++i) { if (bcn_offsets[i]) { if (WARN_ON_ONCE(bcn_offsets[i] >= beacon_data_len)) return; beacon_data[bcn_offsets[i]] = count; } if (sdata->vif.type == NL80211_IFTYPE_AP && resp) { u16 *resp_offsets = resp->cntdwn_counter_offsets; resp->data[resp_offsets[i]] = count; } } } static u8 __ieee80211_beacon_update_cntdwn(struct beacon_data *beacon) { beacon->cntdwn_current_counter--; /* the counter should never reach 0 */ WARN_ON_ONCE(!beacon->cntdwn_current_counter); return beacon->cntdwn_current_counter; } u8 ieee80211_beacon_update_cntdwn(struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link; struct beacon_data *beacon = NULL; u8 count = 0; if (WARN_ON(link_id >= IEEE80211_MLD_MAX_NUM_LINKS)) return 0; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (!link) goto unlock; if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(link->u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; count = __ieee80211_beacon_update_cntdwn(beacon); unlock: rcu_read_unlock(); return count; } EXPORT_SYMBOL(ieee80211_beacon_update_cntdwn); void ieee80211_beacon_set_cntdwn(struct ieee80211_vif *vif, u8 counter) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; rcu_read_lock(); if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(sdata->deflink.u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; if (counter < beacon->cntdwn_current_counter) beacon->cntdwn_current_counter = counter; unlock: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_beacon_set_cntdwn); bool ieee80211_beacon_cntdwn_is_complete(struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link; struct beacon_data *beacon = NULL; u8 *beacon_data; size_t beacon_data_len; int ret = false; if (!ieee80211_sdata_running(sdata)) return false; if (WARN_ON(link_id >= IEEE80211_MLD_MAX_NUM_LINKS)) return 0; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (!link) goto out; if (vif->type == NL80211_IFTYPE_AP) { beacon = rcu_dereference(link->u.ap.beacon); if (WARN_ON(!beacon || !beacon->tail)) goto out; beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; } else if (vif->type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else if (vif->type == NL80211_IFTYPE_MESH_POINT) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else { WARN_ON(1); goto out; } if (!beacon->cntdwn_counter_offsets[0]) goto out; if (WARN_ON_ONCE(beacon->cntdwn_counter_offsets[0] > beacon_data_len)) goto out; if (beacon_data[beacon->cntdwn_counter_offsets[0]] == 1) ret = true; out: rcu_read_unlock(); return ret; } EXPORT_SYMBOL(ieee80211_beacon_cntdwn_is_complete); static int ieee80211_beacon_protect(struct sk_buff *skb, struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { ieee80211_tx_result res; struct ieee80211_tx_data tx; struct sk_buff *check_skb; memset(&tx, 0, sizeof(tx)); tx.key = rcu_dereference(link->default_beacon_key); if (!tx.key) return 0; if (unlikely(tx.key->flags & KEY_FLAG_TAINTED)) { tx.key = NULL; return -EINVAL; } if (!(tx.key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && tx.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) IEEE80211_SKB_CB(skb)->control.hw_key = &tx.key->conf; tx.local = local; tx.sdata = sdata; __skb_queue_head_init(&tx.skbs); __skb_queue_tail(&tx.skbs, skb); res = ieee80211_tx_h_encrypt(&tx); check_skb = __skb_dequeue(&tx.skbs); /* we may crash after this, but it'd be a bug in crypto */ WARN_ON(check_skb != skb); if (WARN_ON_ONCE(res != TX_CONTINUE)) return -EINVAL; return 0; } static void ieee80211_beacon_get_finish(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, struct beacon_data *beacon, struct sk_buff *skb, struct ieee80211_chanctx_conf *chanctx_conf, u16 csa_off_base) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info; enum nl80211_band band; struct ieee80211_tx_rate_control txrc; /* CSA offsets */ if (offs && beacon) { u16 i; for (i = 0; i < IEEE80211_MAX_CNTDWN_COUNTERS_NUM; i++) { u16 csa_off = beacon->cntdwn_counter_offsets[i]; if (!csa_off) continue; offs->cntdwn_counter_offs[i] = csa_off_base + csa_off; } } band = chanctx_conf->def.chan->band; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->flags |= IEEE80211_TX_CTL_NO_ACK; info->band = band; memset(&txrc, 0, sizeof(txrc)); txrc.hw = hw; txrc.sband = local->hw.wiphy->bands[band]; txrc.bss_conf = link->conf; txrc.skb = skb; txrc.reported_rate.idx = -1; if (sdata->beacon_rate_set && sdata->beacon_rateidx_mask[band]) txrc.rate_idx_mask = sdata->beacon_rateidx_mask[band]; else txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; txrc.bss = true; rate_control_get_rate(sdata, NULL, &txrc); info->control.vif = vif; info->control.flags |= u32_encode_bits(link->link_id, IEEE80211_TX_CTRL_MLO_LINK); info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_ASSIGN_SEQ | IEEE80211_TX_CTL_FIRST_FRAGMENT; } static void ieee80211_beacon_add_mbssid(struct sk_buff *skb, struct beacon_data *beacon, u8 i) { if (!beacon->mbssid_ies || !beacon->mbssid_ies->cnt || i > beacon->mbssid_ies->cnt) return; if (i < beacon->mbssid_ies->cnt) { skb_put_data(skb, beacon->mbssid_ies->elem[i].data, beacon->mbssid_ies->elem[i].len); if (beacon->rnr_ies && beacon->rnr_ies->cnt) { skb_put_data(skb, beacon->rnr_ies->elem[i].data, beacon->rnr_ies->elem[i].len); for (i = beacon->mbssid_ies->cnt; i < beacon->rnr_ies->cnt; i++) skb_put_data(skb, beacon->rnr_ies->elem[i].data, beacon->rnr_ies->elem[i].len); } return; } /* i == beacon->mbssid_ies->cnt, include all MBSSID elements */ for (i = 0; i < beacon->mbssid_ies->cnt; i++) skb_put_data(skb, beacon->mbssid_ies->elem[i].data, beacon->mbssid_ies->elem[i].len); } static struct sk_buff * ieee80211_beacon_get_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, bool is_template, struct beacon_data *beacon, struct ieee80211_chanctx_conf *chanctx_conf, u8 ema_index) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_ap *ap = &sdata->u.ap; struct sk_buff *skb = NULL; u16 csa_off_base = 0; int mbssid_len; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) ieee80211_beacon_update_cntdwn(vif, link->link_id); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } /* headroom, head length, * tail length, maximum TIM length and multiple BSSID length */ mbssid_len = ieee80211_get_mbssid_beacon_len(beacon->mbssid_ies, beacon->rnr_ies, ema_index); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + beacon->tail_len + 256 + local->hw.extra_beacon_tailroom + mbssid_len); if (!skb) return NULL; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, link, &ap->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; offs->cntdwn_counter_offs[0] = beacon->cntdwn_counter_offsets[0]; if (mbssid_len) { ieee80211_beacon_add_mbssid(skb, beacon, ema_index); offs->mbssid_off = skb->len - mbssid_len; } /* for AP the csa offsets are from tail */ csa_off_base = skb->len; } if (beacon->tail) skb_put_data(skb, beacon->tail, beacon->tail_len); if (ieee80211_beacon_protect(skb, local, sdata, link) < 0) { dev_kfree_skb(skb); return NULL; } ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, csa_off_base); return skb; } static struct ieee80211_ema_beacons * ieee80211_beacon_get_ap_ema_list(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, bool is_template, struct beacon_data *beacon, struct ieee80211_chanctx_conf *chanctx_conf) { struct ieee80211_ema_beacons *ema = NULL; if (!beacon->mbssid_ies || !beacon->mbssid_ies->cnt) return NULL; ema = kzalloc(struct_size(ema, bcn, beacon->mbssid_ies->cnt), GFP_ATOMIC); if (!ema) return NULL; for (ema->cnt = 0; ema->cnt < beacon->mbssid_ies->cnt; ema->cnt++) { ema->bcn[ema->cnt].skb = ieee80211_beacon_get_ap(hw, vif, link, &ema->bcn[ema->cnt].offs, is_template, beacon, chanctx_conf, ema->cnt); if (!ema->bcn[ema->cnt].skb) break; } if (ema->cnt == beacon->mbssid_ies->cnt) return ema; ieee80211_beacon_free_ema_list(ema); return NULL; } #define IEEE80211_INCLUDE_ALL_MBSSID_ELEMS -1 static struct sk_buff * __ieee80211_beacon_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, bool is_template, unsigned int link_id, int ema_index, struct ieee80211_ema_beacons **ema_beacons) { struct ieee80211_local *local = hw_to_local(hw); struct beacon_data *beacon = NULL; struct sk_buff *skb = NULL; struct ieee80211_sub_if_data *sdata = NULL; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_link_data *link; rcu_read_lock(); sdata = vif_to_sdata(vif); link = rcu_dereference(sdata->link[link_id]); if (!link) goto out; chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (!ieee80211_sdata_running(sdata) || !chanctx_conf) goto out; if (offs) memset(offs, 0, sizeof(*offs)); if (sdata->vif.type == NL80211_IFTYPE_AP) { beacon = rcu_dereference(link->u.ap.beacon); if (!beacon) goto out; if (ema_beacons) { *ema_beacons = ieee80211_beacon_get_ap_ema_list(hw, vif, link, offs, is_template, beacon, chanctx_conf); } else { if (beacon->mbssid_ies && beacon->mbssid_ies->cnt) { if (ema_index >= beacon->mbssid_ies->cnt) goto out; /* End of MBSSID elements */ if (ema_index <= IEEE80211_INCLUDE_ALL_MBSSID_ELEMS) ema_index = beacon->mbssid_ies->cnt; } else { ema_index = 0; } skb = ieee80211_beacon_get_ap(hw, vif, link, offs, is_template, beacon, chanctx_conf, ema_index); } } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_hdr *hdr; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) __ieee80211_beacon_update_cntdwn(beacon); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, 0); } else if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) /* TODO: For mesh csa_counter is in TU, so * decrementing it by one isn't correct, but * for now we leave it consistent with overall * mac80211's behavior. */ __ieee80211_beacon_update_cntdwn(beacon); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } if (ifmsh->sync_ops) ifmsh->sync_ops->adjust_tsf(sdata, beacon); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + 256 + /* TIM IE */ beacon->tail_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, link, &ifmsh->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; } skb_put_data(skb, beacon->tail, beacon->tail_len); ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, 0); } else { WARN_ON(1); goto out; } out: rcu_read_unlock(); return skb; } struct sk_buff * ieee80211_beacon_get_template(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, unsigned int link_id) { return __ieee80211_beacon_get(hw, vif, offs, true, link_id, IEEE80211_INCLUDE_ALL_MBSSID_ELEMS, NULL); } EXPORT_SYMBOL(ieee80211_beacon_get_template); struct sk_buff * ieee80211_beacon_get_template_ema_index(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, unsigned int link_id, u8 ema_index) { return __ieee80211_beacon_get(hw, vif, offs, true, link_id, ema_index, NULL); } EXPORT_SYMBOL(ieee80211_beacon_get_template_ema_index); void ieee80211_beacon_free_ema_list(struct ieee80211_ema_beacons *ema_beacons) { u8 i; if (!ema_beacons) return; for (i = 0; i < ema_beacons->cnt; i++) kfree_skb(ema_beacons->bcn[i].skb); kfree(ema_beacons); } EXPORT_SYMBOL(ieee80211_beacon_free_ema_list); struct ieee80211_ema_beacons * ieee80211_beacon_get_template_ema_list(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_ema_beacons *ema_beacons = NULL; WARN_ON(__ieee80211_beacon_get(hw, vif, NULL, true, link_id, 0, &ema_beacons)); return ema_beacons; } EXPORT_SYMBOL(ieee80211_beacon_get_template_ema_list); struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 *tim_offset, u16 *tim_length, unsigned int link_id) { struct ieee80211_mutable_offsets offs = {}; struct sk_buff *bcn = __ieee80211_beacon_get(hw, vif, &offs, false, link_id, IEEE80211_INCLUDE_ALL_MBSSID_ELEMS, NULL); struct sk_buff *copy; if (!bcn) return bcn; if (tim_offset) *tim_offset = offs.tim_offset; if (tim_length) *tim_length = offs.tim_length; if (ieee80211_hw_check(hw, BEACON_TX_STATUS) || !hw_to_local(hw)->monitors) return bcn; /* send a copy to monitor interfaces */ copy = skb_copy(bcn, GFP_ATOMIC); if (!copy) return bcn; ieee80211_tx_monitor(hw_to_local(hw), copy, 1, false, NULL); return bcn; } EXPORT_SYMBOL(ieee80211_beacon_get_tim); struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct probe_resp *presp = NULL; struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); presp = rcu_dereference(sdata->deflink.u.ap.probe_resp); if (!presp) goto out; skb = dev_alloc_skb(presp->len); if (!skb) goto out; skb_put_data(skb, presp->data, presp->len); hdr = (struct ieee80211_hdr *) skb->data; memset(hdr->addr1, 0, sizeof(hdr->addr1)); out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_proberesp_get); struct sk_buff *ieee80211_get_fils_discovery_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct fils_discovery_data *tmpl = NULL; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); tmpl = rcu_dereference(sdata->deflink.u.ap.fils_discovery); if (!tmpl) { rcu_read_unlock(); return NULL; } skb = dev_alloc_skb(sdata->local->hw.extra_tx_headroom + tmpl->len); if (skb) { skb_reserve(skb, sdata->local->hw.extra_tx_headroom); skb_put_data(skb, tmpl->data, tmpl->len); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_fils_discovery_tmpl); struct sk_buff * ieee80211_get_unsol_bcast_probe_resp_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct unsol_bcast_probe_resp_data *tmpl = NULL; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); tmpl = rcu_dereference(sdata->deflink.u.ap.unsol_bcast_probe_resp); if (!tmpl) { rcu_read_unlock(); return NULL; } skb = dev_alloc_skb(sdata->local->hw.extra_tx_headroom + tmpl->len); if (skb) { skb_reserve(skb, sdata->local->hw.extra_tx_headroom); skb_put_data(skb, tmpl->data, tmpl->len); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_unsol_bcast_probe_resp_tmpl); struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_pspoll *pspoll; struct ieee80211_local *local; struct sk_buff *skb; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; sdata = vif_to_sdata(vif); local = sdata->local; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); pspoll = skb_put_zero(skb, sizeof(*pspoll)); pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); pspoll->aid = cpu_to_le16(sdata->vif.cfg.aid); /* aid in PS-Poll has its two MSBs each set to 1 */ pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); memcpy(pspoll->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(pspoll->ta, vif->addr, ETH_ALEN); return skb; } EXPORT_SYMBOL(ieee80211_pspoll_get); struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int link_id, bool qos_ok) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_link_data *link = NULL; struct ieee80211_hdr_3addr *nullfunc; struct sk_buff *skb; bool qos = false; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc) + 2); if (!skb) return NULL; rcu_read_lock(); if (qos_ok) { struct sta_info *sta; sta = sta_info_get(sdata, vif->cfg.ap_addr); qos = sta && sta->sta.wme; } if (link_id >= 0) { link = rcu_dereference(sdata->link[link_id]); if (WARN_ON_ONCE(!link)) { rcu_read_unlock(); kfree_skb(skb); return NULL; } } skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put_zero(skb, sizeof(*nullfunc)); nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS); if (qos) { __le16 qoshdr = cpu_to_le16(7); BUILD_BUG_ON((IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_STYPE_NULLFUNC) != IEEE80211_STYPE_QOS_NULLFUNC); nullfunc->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_NULLFUNC); skb->priority = 7; skb_set_queue_mapping(skb, IEEE80211_AC_VO); skb_put_data(skb, &qoshdr, sizeof(qoshdr)); } if (link) { memcpy(nullfunc->addr1, link->conf->bssid, ETH_ALEN); memcpy(nullfunc->addr2, link->conf->addr, ETH_ALEN); memcpy(nullfunc->addr3, link->conf->bssid, ETH_ALEN); } else { memcpy(nullfunc->addr1, vif->cfg.ap_addr, ETH_ALEN); memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); memcpy(nullfunc->addr3, vif->cfg.ap_addr, ETH_ALEN); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_nullfunc_get); struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, const u8 *src_addr, const u8 *ssid, size_t ssid_len, size_t tailroom) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_hdr_3addr *hdr; struct sk_buff *skb; size_t ie_ssid_len; u8 *pos; ie_ssid_len = 2 + ssid_len; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + ie_ssid_len + tailroom); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); hdr = skb_put_zero(skb, sizeof(*hdr)); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); eth_broadcast_addr(hdr->addr1); memcpy(hdr->addr2, src_addr, ETH_ALEN); eth_broadcast_addr(hdr->addr3); pos = skb_put(skb, ie_ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ssid_len; if (ssid_len) memcpy(pos, ssid, ssid_len); pos += ssid_len; return skb; } EXPORT_SYMBOL(ieee80211_probereq_get); void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_rts *rts) { const struct ieee80211_hdr *hdr = frame; rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); rts->duration = ieee80211_rts_duration(hw, vif, frame_len, frame_txctl); memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); } EXPORT_SYMBOL(ieee80211_rts_get); void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_cts *cts) { const struct ieee80211_hdr *hdr = frame; cts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); cts->duration = ieee80211_ctstoself_duration(hw, vif, frame_len, frame_txctl); memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); } EXPORT_SYMBOL(ieee80211_ctstoself_get); struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_local *local = hw_to_local(hw); struct sk_buff *skb = NULL; struct ieee80211_tx_data tx; struct ieee80211_sub_if_data *sdata; struct ps_data *ps; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(vif); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) goto out; if (sdata->vif.type == NL80211_IFTYPE_AP) { struct beacon_data *beacon = rcu_dereference(sdata->deflink.u.ap.beacon); if (!beacon || !beacon->head) goto out; ps = &sdata->u.ap.ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { goto out; } if (ps->dtim_count != 0 || !ps->dtim_bc_mc) goto out; /* send buffered bc/mc only after DTIM beacon */ while (1) { skb = skb_dequeue(&ps->bc_buf); if (!skb) goto out; local->total_ps_buffered--; if (!skb_queue_empty(&ps->bc_buf) && skb->len >= 2) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* more buffered multicast/broadcast frames ==> set * MoreData flag in IEEE 802.11 header to inform PS * STAs */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } if (sdata->vif.type == NL80211_IFTYPE_AP) sdata = IEEE80211_DEV_TO_SUB_IF(skb->dev); if (!ieee80211_tx_prepare(sdata, &tx, NULL, skb)) break; ieee80211_free_txskb(hw, skb); } info = IEEE80211_SKB_CB(skb); tx.flags |= IEEE80211_TX_PS_BUFFERED; info->band = chanctx_conf->def.chan->band; if (invoke_tx_handlers(&tx)) skb = NULL; out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_buffered_bc); int ieee80211_reserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ret; u32 queues; lockdep_assert_wiphy(local->hw.wiphy); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return -EINVAL; } if (WARN_ON(tid >= IEEE80211_NUM_UPS)) return -EINVAL; if (sta->reserved_tid == tid) { ret = 0; goto out; } if (sta->reserved_tid != IEEE80211_TID_UNRESERVED) { sdata_err(sdata, "TID reservation already active\n"); ret = -EALREADY; goto out; } ieee80211_stop_vif_queues(sdata->local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); synchronize_net(); /* Tear down BA sessions so we stop aggregating on this TID */ if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { set_sta_flag(sta, WLAN_STA_BLOCK_BA); __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_LOCAL_REQUEST); } queues = BIT(sdata->vif.hw_queue[ieee802_1d_to_ac[tid]]); __ieee80211_flush_queues(local, sdata, queues, false); sta->reserved_tid = tid; ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ret = 0; out: return ret; } EXPORT_SYMBOL(ieee80211_reserve_tid); void ieee80211_unreserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return; } if (tid != sta->reserved_tid) { sdata_err(sdata, "TID to unreserve (%d) isn't reserved\n", tid); return; } sta->reserved_tid = IEEE80211_TID_UNRESERVED; } EXPORT_SYMBOL(ieee80211_unreserve_tid); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id, enum nl80211_band band) { const struct ieee80211_hdr *hdr = (void *)skb->data; int ac = ieee80211_ac_from_tid(tid); unsigned int link; skb_reset_mac_header(skb); skb_set_queue_mapping(skb, ac); skb->priority = tid; skb->dev = sdata->dev; BUILD_BUG_ON(IEEE80211_LINK_UNSPECIFIED < IEEE80211_MLD_MAX_NUM_LINKS); BUILD_BUG_ON(!FIELD_FIT(IEEE80211_TX_CTRL_MLO_LINK, IEEE80211_LINK_UNSPECIFIED)); if (!ieee80211_vif_is_mld(&sdata->vif)) { link = 0; } else if (link_id >= 0) { link = link_id; } else if (memcmp(sdata->vif.addr, hdr->addr2, ETH_ALEN) == 0) { /* address from the MLD */ link = IEEE80211_LINK_UNSPECIFIED; } else { /* otherwise must be addressed from a link */ rcu_read_lock(); for (link = 0; link < ARRAY_SIZE(sdata->vif.link_conf); link++) { struct ieee80211_bss_conf *link_conf; link_conf = rcu_dereference(sdata->vif.link_conf[link]); if (!link_conf) continue; if (memcmp(link_conf->addr, hdr->addr2, ETH_ALEN) == 0) break; } rcu_read_unlock(); if (WARN_ON_ONCE(link == ARRAY_SIZE(sdata->vif.link_conf))) link = ffs(sdata->vif.active_links) - 1; } IEEE80211_SKB_CB(skb)->control.flags |= u32_encode_bits(link, IEEE80211_TX_CTRL_MLO_LINK); /* * The other path calling ieee80211_xmit is from the tasklet, * and while we can handle concurrent transmissions locking * requirements are that we do not come into tx with bhs on. */ local_bh_disable(); IEEE80211_SKB_CB(skb)->band = band; ieee80211_xmit(sdata, NULL, skb); local_bh_enable(); } void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id) { struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; rcu_read_lock(); if (!ieee80211_vif_is_mld(&sdata->vif)) { WARN_ON(link_id >= 0); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } band = chanctx_conf->def.chan->band; } else { WARN_ON(link_id >= 0 && !(sdata->vif.active_links & BIT(link_id))); /* MLD transmissions must not rely on the band */ band = 0; } __ieee80211_tx_skb_tid_band(sdata, skb, tid, link_id, band); rcu_read_unlock(); } int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted, int link_id, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *skb; struct ethhdr *ehdr; u32 ctrl_flags = 0; u32 flags = 0; int err; /* mutex lock is only needed for incrementing the cookie counter */ lockdep_assert_wiphy(local->hw.wiphy); /* Only accept CONTROL_PORT_PROTOCOL configured in CONNECT/ASSOCIATE * or Pre-Authentication */ if (proto != sdata->control_port_protocol && proto != cpu_to_be16(ETH_P_PREAUTH)) return -EINVAL; if (proto == sdata->control_port_protocol) ctrl_flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO | IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP; if (unencrypted) flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; if (cookie) ctrl_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; flags |= IEEE80211_TX_INTFL_NL80211_FRAME_TX; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(struct ethhdr) + len); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom + sizeof(struct ethhdr)); skb_put_data(skb, buf, len); ehdr = skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr->h_dest, dest, ETH_ALEN); /* we may override the SA for MLO STA later */ if (link_id < 0) { ctrl_flags |= u32_encode_bits(IEEE80211_LINK_UNSPECIFIED, IEEE80211_TX_CTRL_MLO_LINK); memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_bss_conf *link_conf; ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); rcu_read_lock(); link_conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (!link_conf) { dev_kfree_skb(skb); rcu_read_unlock(); return -ENOLINK; } memcpy(ehdr->h_source, link_conf->addr, ETH_ALEN); rcu_read_unlock(); } ehdr->h_proto = proto; skb->dev = dev; skb->protocol = proto; skb_reset_network_header(skb); skb_reset_mac_header(skb); if (local->hw.queues < IEEE80211_NUM_ACS) goto start_xmit; /* update QoS header to prioritize control port frames if possible, * prioritization also happens for control port frames send over * AF_PACKET */ rcu_read_lock(); err = ieee80211_lookup_ra_sta(sdata, skb, &sta); if (err) { dev_kfree_skb(skb); rcu_read_unlock(); return err; } if (!IS_ERR(sta)) { u16 queue = ieee80211_select_queue(sdata, sta, skb); skb_set_queue_mapping(skb, queue); /* * for MLO STA, the SA should be the AP MLD address, but * the link ID has been selected already */ if (sta && sta->sta.mlo) memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN); } rcu_read_unlock(); start_xmit: local_bh_disable(); __ieee80211_subif_start_xmit(skb, skb->dev, flags, ctrl_flags, cookie); local_bh_enable(); return 0; } int ieee80211_probe_mesh_link(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; skb = dev_alloc_skb(local->hw.extra_tx_headroom + len + 30 + /* header size */ 18); /* 11s header size */ if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); skb_put_data(skb, buf, len); skb->dev = dev; skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(skb); skb_reset_mac_header(skb); local_bh_disable(); __ieee80211_subif_start_xmit(skb, skb->dev, 0, IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP, NULL); local_bh_enable(); return 0; } |
2443 2442 2441 12 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 | // SPDX-License-Identifier: GPL-2.0 // Generated by scripts/atomic/gen-atomic-long.sh // DO NOT MODIFY THIS FILE DIRECTLY #ifndef _LINUX_ATOMIC_LONG_H #define _LINUX_ATOMIC_LONG_H #include <linux/compiler.h> #include <asm/types.h> #ifdef CONFIG_64BIT typedef atomic64_t atomic_long_t; #define ATOMIC_LONG_INIT(i) ATOMIC64_INIT(i) #define atomic_long_cond_read_acquire atomic64_cond_read_acquire #define atomic_long_cond_read_relaxed atomic64_cond_read_relaxed #else typedef atomic_t atomic_long_t; #define ATOMIC_LONG_INIT(i) ATOMIC_INIT(i) #define atomic_long_cond_read_acquire atomic_cond_read_acquire #define atomic_long_cond_read_relaxed atomic_cond_read_relaxed #endif /** * raw_atomic_long_read() - atomic load with relaxed ordering * @v: pointer to atomic_long_t * * Atomically loads the value of @v with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_read() elsewhere. * * Return: The value loaded from @v. */ static __always_inline long raw_atomic_long_read(const atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_read(v); #else return raw_atomic_read(v); #endif } /** * raw_atomic_long_read_acquire() - atomic load with acquire ordering * @v: pointer to atomic_long_t * * Atomically loads the value of @v with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_read_acquire() elsewhere. * * Return: The value loaded from @v. */ static __always_inline long raw_atomic_long_read_acquire(const atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_read_acquire(v); #else return raw_atomic_read_acquire(v); #endif } /** * raw_atomic_long_set() - atomic set with relaxed ordering * @v: pointer to atomic_long_t * @i: long value to assign * * Atomically sets @v to @i with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_set() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_set(atomic_long_t *v, long i) { #ifdef CONFIG_64BIT raw_atomic64_set(v, i); #else raw_atomic_set(v, i); #endif } /** * raw_atomic_long_set_release() - atomic set with release ordering * @v: pointer to atomic_long_t * @i: long value to assign * * Atomically sets @v to @i with release ordering. * * Safe to use in noinstr code; prefer atomic_long_set_release() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_set_release(atomic_long_t *v, long i) { #ifdef CONFIG_64BIT raw_atomic64_set_release(v, i); #else raw_atomic_set_release(v, i); #endif } /** * raw_atomic_long_add() - atomic add with relaxed ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_add() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_add(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_add(i, v); #else raw_atomic_add(i, v); #endif } /** * raw_atomic_long_add_return() - atomic add with full ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_add_return() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_add_return(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_return(i, v); #else return raw_atomic_add_return(i, v); #endif } /** * raw_atomic_long_add_return_acquire() - atomic add with acquire ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_add_return_acquire() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_add_return_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_return_acquire(i, v); #else return raw_atomic_add_return_acquire(i, v); #endif } /** * raw_atomic_long_add_return_release() - atomic add with release ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_add_return_release() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_add_return_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_return_release(i, v); #else return raw_atomic_add_return_release(i, v); #endif } /** * raw_atomic_long_add_return_relaxed() - atomic add with relaxed ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_add_return_relaxed() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_add_return_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_return_relaxed(i, v); #else return raw_atomic_add_return_relaxed(i, v); #endif } /** * raw_atomic_long_fetch_add() - atomic add with full ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_add() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_add(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_add(i, v); #else return raw_atomic_fetch_add(i, v); #endif } /** * raw_atomic_long_fetch_add_acquire() - atomic add with acquire ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_add_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_add_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_add_acquire(i, v); #else return raw_atomic_fetch_add_acquire(i, v); #endif } /** * raw_atomic_long_fetch_add_release() - atomic add with release ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_add_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_add_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_add_release(i, v); #else return raw_atomic_fetch_add_release(i, v); #endif } /** * raw_atomic_long_fetch_add_relaxed() - atomic add with relaxed ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_add_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_add_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_add_relaxed(i, v); #else return raw_atomic_fetch_add_relaxed(i, v); #endif } /** * raw_atomic_long_sub() - atomic subtract with relaxed ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_sub() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_sub(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_sub(i, v); #else raw_atomic_sub(i, v); #endif } /** * raw_atomic_long_sub_return() - atomic subtract with full ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_sub_return() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_sub_return(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_sub_return(i, v); #else return raw_atomic_sub_return(i, v); #endif } /** * raw_atomic_long_sub_return_acquire() - atomic subtract with acquire ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_sub_return_acquire() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_sub_return_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_sub_return_acquire(i, v); #else return raw_atomic_sub_return_acquire(i, v); #endif } /** * raw_atomic_long_sub_return_release() - atomic subtract with release ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_sub_return_release() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_sub_return_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_sub_return_release(i, v); #else return raw_atomic_sub_return_release(i, v); #endif } /** * raw_atomic_long_sub_return_relaxed() - atomic subtract with relaxed ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_sub_return_relaxed() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_sub_return_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_sub_return_relaxed(i, v); #else return raw_atomic_sub_return_relaxed(i, v); #endif } /** * raw_atomic_long_fetch_sub() - atomic subtract with full ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_sub() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_sub(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_sub(i, v); #else return raw_atomic_fetch_sub(i, v); #endif } /** * raw_atomic_long_fetch_sub_acquire() - atomic subtract with acquire ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_sub_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_sub_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_sub_acquire(i, v); #else return raw_atomic_fetch_sub_acquire(i, v); #endif } /** * raw_atomic_long_fetch_sub_release() - atomic subtract with release ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_sub_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_sub_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_sub_release(i, v); #else return raw_atomic_fetch_sub_release(i, v); #endif } /** * raw_atomic_long_fetch_sub_relaxed() - atomic subtract with relaxed ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_sub_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_sub_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_sub_relaxed(i, v); #else return raw_atomic_fetch_sub_relaxed(i, v); #endif } /** * raw_atomic_long_inc() - atomic increment with relaxed ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_inc() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_inc(atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_inc(v); #else raw_atomic_inc(v); #endif } /** * raw_atomic_long_inc_return() - atomic increment with full ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_inc_return() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_inc_return(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_return(v); #else return raw_atomic_inc_return(v); #endif } /** * raw_atomic_long_inc_return_acquire() - atomic increment with acquire ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_inc_return_acquire() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_inc_return_acquire(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_return_acquire(v); #else return raw_atomic_inc_return_acquire(v); #endif } /** * raw_atomic_long_inc_return_release() - atomic increment with release ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_inc_return_release() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_inc_return_release(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_return_release(v); #else return raw_atomic_inc_return_release(v); #endif } /** * raw_atomic_long_inc_return_relaxed() - atomic increment with relaxed ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_inc_return_relaxed() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_inc_return_relaxed(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_return_relaxed(v); #else return raw_atomic_inc_return_relaxed(v); #endif } /** * raw_atomic_long_fetch_inc() - atomic increment with full ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_inc() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_inc(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_inc(v); #else return raw_atomic_fetch_inc(v); #endif } /** * raw_atomic_long_fetch_inc_acquire() - atomic increment with acquire ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_inc_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_inc_acquire(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_inc_acquire(v); #else return raw_atomic_fetch_inc_acquire(v); #endif } /** * raw_atomic_long_fetch_inc_release() - atomic increment with release ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_inc_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_inc_release(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_inc_release(v); #else return raw_atomic_fetch_inc_release(v); #endif } /** * raw_atomic_long_fetch_inc_relaxed() - atomic increment with relaxed ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_inc_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_inc_relaxed(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_inc_relaxed(v); #else return raw_atomic_fetch_inc_relaxed(v); #endif } /** * raw_atomic_long_dec() - atomic decrement with relaxed ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_dec() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_dec(atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_dec(v); #else raw_atomic_dec(v); #endif } /** * raw_atomic_long_dec_return() - atomic decrement with full ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_dec_return() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_dec_return(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_return(v); #else return raw_atomic_dec_return(v); #endif } /** * raw_atomic_long_dec_return_acquire() - atomic decrement with acquire ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_dec_return_acquire() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_dec_return_acquire(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_return_acquire(v); #else return raw_atomic_dec_return_acquire(v); #endif } /** * raw_atomic_long_dec_return_release() - atomic decrement with release ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_dec_return_release() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_dec_return_release(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_return_release(v); #else return raw_atomic_dec_return_release(v); #endif } /** * raw_atomic_long_dec_return_relaxed() - atomic decrement with relaxed ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_dec_return_relaxed() elsewhere. * * Return: The updated value of @v. */ static __always_inline long raw_atomic_long_dec_return_relaxed(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_return_relaxed(v); #else return raw_atomic_dec_return_relaxed(v); #endif } /** * raw_atomic_long_fetch_dec() - atomic decrement with full ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_dec() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_dec(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_dec(v); #else return raw_atomic_fetch_dec(v); #endif } /** * raw_atomic_long_fetch_dec_acquire() - atomic decrement with acquire ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_dec_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_dec_acquire(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_dec_acquire(v); #else return raw_atomic_fetch_dec_acquire(v); #endif } /** * raw_atomic_long_fetch_dec_release() - atomic decrement with release ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_dec_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_dec_release(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_dec_release(v); #else return raw_atomic_fetch_dec_release(v); #endif } /** * raw_atomic_long_fetch_dec_relaxed() - atomic decrement with relaxed ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_dec_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_dec_relaxed(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_dec_relaxed(v); #else return raw_atomic_fetch_dec_relaxed(v); #endif } /** * raw_atomic_long_and() - atomic bitwise AND with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_and() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_and(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_and(i, v); #else raw_atomic_and(i, v); #endif } /** * raw_atomic_long_fetch_and() - atomic bitwise AND with full ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_and() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_and(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_and(i, v); #else return raw_atomic_fetch_and(i, v); #endif } /** * raw_atomic_long_fetch_and_acquire() - atomic bitwise AND with acquire ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_and_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_and_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_and_acquire(i, v); #else return raw_atomic_fetch_and_acquire(i, v); #endif } /** * raw_atomic_long_fetch_and_release() - atomic bitwise AND with release ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_and_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_and_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_and_release(i, v); #else return raw_atomic_fetch_and_release(i, v); #endif } /** * raw_atomic_long_fetch_and_relaxed() - atomic bitwise AND with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_and_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_and_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_and_relaxed(i, v); #else return raw_atomic_fetch_and_relaxed(i, v); #endif } /** * raw_atomic_long_andnot() - atomic bitwise AND NOT with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & ~@i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_andnot() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_andnot(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_andnot(i, v); #else raw_atomic_andnot(i, v); #endif } /** * raw_atomic_long_fetch_andnot() - atomic bitwise AND NOT with full ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & ~@i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_andnot() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_andnot(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_andnot(i, v); #else return raw_atomic_fetch_andnot(i, v); #endif } /** * raw_atomic_long_fetch_andnot_acquire() - atomic bitwise AND NOT with acquire ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & ~@i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_andnot_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_andnot_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_andnot_acquire(i, v); #else return raw_atomic_fetch_andnot_acquire(i, v); #endif } /** * raw_atomic_long_fetch_andnot_release() - atomic bitwise AND NOT with release ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & ~@i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_andnot_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_andnot_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_andnot_release(i, v); #else return raw_atomic_fetch_andnot_release(i, v); #endif } /** * raw_atomic_long_fetch_andnot_relaxed() - atomic bitwise AND NOT with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v & ~@i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_andnot_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_andnot_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_andnot_relaxed(i, v); #else return raw_atomic_fetch_andnot_relaxed(i, v); #endif } /** * raw_atomic_long_or() - atomic bitwise OR with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v | @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_or() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_or(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_or(i, v); #else raw_atomic_or(i, v); #endif } /** * raw_atomic_long_fetch_or() - atomic bitwise OR with full ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v | @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_or() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_or(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_or(i, v); #else return raw_atomic_fetch_or(i, v); #endif } /** * raw_atomic_long_fetch_or_acquire() - atomic bitwise OR with acquire ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v | @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_or_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_or_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_or_acquire(i, v); #else return raw_atomic_fetch_or_acquire(i, v); #endif } /** * raw_atomic_long_fetch_or_release() - atomic bitwise OR with release ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v | @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_or_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_or_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_or_release(i, v); #else return raw_atomic_fetch_or_release(i, v); #endif } /** * raw_atomic_long_fetch_or_relaxed() - atomic bitwise OR with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v | @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_or_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_or_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_or_relaxed(i, v); #else return raw_atomic_fetch_or_relaxed(i, v); #endif } /** * raw_atomic_long_xor() - atomic bitwise XOR with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v ^ @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_xor() elsewhere. * * Return: Nothing. */ static __always_inline void raw_atomic_long_xor(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT raw_atomic64_xor(i, v); #else raw_atomic_xor(i, v); #endif } /** * raw_atomic_long_fetch_xor() - atomic bitwise XOR with full ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v ^ @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_xor() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_xor(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_xor(i, v); #else return raw_atomic_fetch_xor(i, v); #endif } /** * raw_atomic_long_fetch_xor_acquire() - atomic bitwise XOR with acquire ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v ^ @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_xor_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_xor_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_xor_acquire(i, v); #else return raw_atomic_fetch_xor_acquire(i, v); #endif } /** * raw_atomic_long_fetch_xor_release() - atomic bitwise XOR with release ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v ^ @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_xor_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_xor_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_xor_release(i, v); #else return raw_atomic_fetch_xor_release(i, v); #endif } /** * raw_atomic_long_fetch_xor_relaxed() - atomic bitwise XOR with relaxed ordering * @i: long value * @v: pointer to atomic_long_t * * Atomically updates @v to (@v ^ @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_fetch_xor_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_xor_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_xor_relaxed(i, v); #else return raw_atomic_fetch_xor_relaxed(i, v); #endif } /** * raw_atomic_long_xchg() - atomic exchange with full ordering * @v: pointer to atomic_long_t * @new: long value to assign * * Atomically updates @v to @new with full ordering. * * Safe to use in noinstr code; prefer atomic_long_xchg() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_xchg(atomic_long_t *v, long new) { #ifdef CONFIG_64BIT return raw_atomic64_xchg(v, new); #else return raw_atomic_xchg(v, new); #endif } /** * raw_atomic_long_xchg_acquire() - atomic exchange with acquire ordering * @v: pointer to atomic_long_t * @new: long value to assign * * Atomically updates @v to @new with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_xchg_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_xchg_acquire(atomic_long_t *v, long new) { #ifdef CONFIG_64BIT return raw_atomic64_xchg_acquire(v, new); #else return raw_atomic_xchg_acquire(v, new); #endif } /** * raw_atomic_long_xchg_release() - atomic exchange with release ordering * @v: pointer to atomic_long_t * @new: long value to assign * * Atomically updates @v to @new with release ordering. * * Safe to use in noinstr code; prefer atomic_long_xchg_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_xchg_release(atomic_long_t *v, long new) { #ifdef CONFIG_64BIT return raw_atomic64_xchg_release(v, new); #else return raw_atomic_xchg_release(v, new); #endif } /** * raw_atomic_long_xchg_relaxed() - atomic exchange with relaxed ordering * @v: pointer to atomic_long_t * @new: long value to assign * * Atomically updates @v to @new with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_xchg_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_xchg_relaxed(atomic_long_t *v, long new) { #ifdef CONFIG_64BIT return raw_atomic64_xchg_relaxed(v, new); #else return raw_atomic_xchg_relaxed(v, new); #endif } /** * raw_atomic_long_cmpxchg() - atomic compare and exchange with full ordering * @v: pointer to atomic_long_t * @old: long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_cmpxchg() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_cmpxchg(atomic_long_t *v, long old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_cmpxchg(v, old, new); #else return raw_atomic_cmpxchg(v, old, new); #endif } /** * raw_atomic_long_cmpxchg_acquire() - atomic compare and exchange with acquire ordering * @v: pointer to atomic_long_t * @old: long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with acquire ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_cmpxchg_acquire() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_cmpxchg_acquire(atomic_long_t *v, long old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_cmpxchg_acquire(v, old, new); #else return raw_atomic_cmpxchg_acquire(v, old, new); #endif } /** * raw_atomic_long_cmpxchg_release() - atomic compare and exchange with release ordering * @v: pointer to atomic_long_t * @old: long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with release ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_cmpxchg_release() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_cmpxchg_release(atomic_long_t *v, long old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_cmpxchg_release(v, old, new); #else return raw_atomic_cmpxchg_release(v, old, new); #endif } /** * raw_atomic_long_cmpxchg_relaxed() - atomic compare and exchange with relaxed ordering * @v: pointer to atomic_long_t * @old: long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with relaxed ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_cmpxchg_relaxed() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_cmpxchg_relaxed(atomic_long_t *v, long old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_cmpxchg_relaxed(v, old, new); #else return raw_atomic_cmpxchg_relaxed(v, old, new); #endif } /** * raw_atomic_long_try_cmpxchg() - atomic compare and exchange with full ordering * @v: pointer to atomic_long_t * @old: pointer to long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with full ordering. * Otherwise, @v is not modified, @old is updated to the current value of @v, * and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_try_cmpxchg() elsewhere. * * Return: @true if the exchange occured, @false otherwise. */ static __always_inline bool raw_atomic_long_try_cmpxchg(atomic_long_t *v, long *old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_try_cmpxchg(v, (s64 *)old, new); #else return raw_atomic_try_cmpxchg(v, (int *)old, new); #endif } /** * raw_atomic_long_try_cmpxchg_acquire() - atomic compare and exchange with acquire ordering * @v: pointer to atomic_long_t * @old: pointer to long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with acquire ordering. * Otherwise, @v is not modified, @old is updated to the current value of @v, * and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_try_cmpxchg_acquire() elsewhere. * * Return: @true if the exchange occured, @false otherwise. */ static __always_inline bool raw_atomic_long_try_cmpxchg_acquire(atomic_long_t *v, long *old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_try_cmpxchg_acquire(v, (s64 *)old, new); #else return raw_atomic_try_cmpxchg_acquire(v, (int *)old, new); #endif } /** * raw_atomic_long_try_cmpxchg_release() - atomic compare and exchange with release ordering * @v: pointer to atomic_long_t * @old: pointer to long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with release ordering. * Otherwise, @v is not modified, @old is updated to the current value of @v, * and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_try_cmpxchg_release() elsewhere. * * Return: @true if the exchange occured, @false otherwise. */ static __always_inline bool raw_atomic_long_try_cmpxchg_release(atomic_long_t *v, long *old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_try_cmpxchg_release(v, (s64 *)old, new); #else return raw_atomic_try_cmpxchg_release(v, (int *)old, new); #endif } /** * raw_atomic_long_try_cmpxchg_relaxed() - atomic compare and exchange with relaxed ordering * @v: pointer to atomic_long_t * @old: pointer to long value to compare with * @new: long value to assign * * If (@v == @old), atomically updates @v to @new with relaxed ordering. * Otherwise, @v is not modified, @old is updated to the current value of @v, * and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_try_cmpxchg_relaxed() elsewhere. * * Return: @true if the exchange occured, @false otherwise. */ static __always_inline bool raw_atomic_long_try_cmpxchg_relaxed(atomic_long_t *v, long *old, long new) { #ifdef CONFIG_64BIT return raw_atomic64_try_cmpxchg_relaxed(v, (s64 *)old, new); #else return raw_atomic_try_cmpxchg_relaxed(v, (int *)old, new); #endif } /** * raw_atomic_long_sub_and_test() - atomic subtract and test if zero with full ordering * @i: long value to subtract * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_sub_and_test() elsewhere. * * Return: @true if the resulting value of @v is zero, @false otherwise. */ static __always_inline bool raw_atomic_long_sub_and_test(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_sub_and_test(i, v); #else return raw_atomic_sub_and_test(i, v); #endif } /** * raw_atomic_long_dec_and_test() - atomic decrement and test if zero with full ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v - 1) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_dec_and_test() elsewhere. * * Return: @true if the resulting value of @v is zero, @false otherwise. */ static __always_inline bool raw_atomic_long_dec_and_test(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_and_test(v); #else return raw_atomic_dec_and_test(v); #endif } /** * raw_atomic_long_inc_and_test() - atomic increment and test if zero with full ordering * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + 1) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_inc_and_test() elsewhere. * * Return: @true if the resulting value of @v is zero, @false otherwise. */ static __always_inline bool raw_atomic_long_inc_and_test(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_and_test(v); #else return raw_atomic_inc_and_test(v); #endif } /** * raw_atomic_long_add_negative() - atomic add and test if negative with full ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with full ordering. * * Safe to use in noinstr code; prefer atomic_long_add_negative() elsewhere. * * Return: @true if the resulting value of @v is negative, @false otherwise. */ static __always_inline bool raw_atomic_long_add_negative(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_negative(i, v); #else return raw_atomic_add_negative(i, v); #endif } /** * raw_atomic_long_add_negative_acquire() - atomic add and test if negative with acquire ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with acquire ordering. * * Safe to use in noinstr code; prefer atomic_long_add_negative_acquire() elsewhere. * * Return: @true if the resulting value of @v is negative, @false otherwise. */ static __always_inline bool raw_atomic_long_add_negative_acquire(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_negative_acquire(i, v); #else return raw_atomic_add_negative_acquire(i, v); #endif } /** * raw_atomic_long_add_negative_release() - atomic add and test if negative with release ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with release ordering. * * Safe to use in noinstr code; prefer atomic_long_add_negative_release() elsewhere. * * Return: @true if the resulting value of @v is negative, @false otherwise. */ static __always_inline bool raw_atomic_long_add_negative_release(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_negative_release(i, v); #else return raw_atomic_add_negative_release(i, v); #endif } /** * raw_atomic_long_add_negative_relaxed() - atomic add and test if negative with relaxed ordering * @i: long value to add * @v: pointer to atomic_long_t * * Atomically updates @v to (@v + @i) with relaxed ordering. * * Safe to use in noinstr code; prefer atomic_long_add_negative_relaxed() elsewhere. * * Return: @true if the resulting value of @v is negative, @false otherwise. */ static __always_inline bool raw_atomic_long_add_negative_relaxed(long i, atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_add_negative_relaxed(i, v); #else return raw_atomic_add_negative_relaxed(i, v); #endif } /** * raw_atomic_long_fetch_add_unless() - atomic add unless value with full ordering * @v: pointer to atomic_long_t * @a: long value to add * @u: long value to compare with * * If (@v != @u), atomically updates @v to (@v + @a) with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_fetch_add_unless() elsewhere. * * Return: The original value of @v. */ static __always_inline long raw_atomic_long_fetch_add_unless(atomic_long_t *v, long a, long u) { #ifdef CONFIG_64BIT return raw_atomic64_fetch_add_unless(v, a, u); #else return raw_atomic_fetch_add_unless(v, a, u); #endif } /** * raw_atomic_long_add_unless() - atomic add unless value with full ordering * @v: pointer to atomic_long_t * @a: long value to add * @u: long value to compare with * * If (@v != @u), atomically updates @v to (@v + @a) with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_add_unless() elsewhere. * * Return: @true if @v was updated, @false otherwise. */ static __always_inline bool raw_atomic_long_add_unless(atomic_long_t *v, long a, long u) { #ifdef CONFIG_64BIT return raw_atomic64_add_unless(v, a, u); #else return raw_atomic_add_unless(v, a, u); #endif } /** * raw_atomic_long_inc_not_zero() - atomic increment unless zero with full ordering * @v: pointer to atomic_long_t * * If (@v != 0), atomically updates @v to (@v + 1) with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_inc_not_zero() elsewhere. * * Return: @true if @v was updated, @false otherwise. */ static __always_inline bool raw_atomic_long_inc_not_zero(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_not_zero(v); #else return raw_atomic_inc_not_zero(v); #endif } /** * raw_atomic_long_inc_unless_negative() - atomic increment unless negative with full ordering * @v: pointer to atomic_long_t * * If (@v >= 0), atomically updates @v to (@v + 1) with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_inc_unless_negative() elsewhere. * * Return: @true if @v was updated, @false otherwise. */ static __always_inline bool raw_atomic_long_inc_unless_negative(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_inc_unless_negative(v); #else return raw_atomic_inc_unless_negative(v); #endif } /** * raw_atomic_long_dec_unless_positive() - atomic decrement unless positive with full ordering * @v: pointer to atomic_long_t * * If (@v <= 0), atomically updates @v to (@v - 1) with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_dec_unless_positive() elsewhere. * * Return: @true if @v was updated, @false otherwise. */ static __always_inline bool raw_atomic_long_dec_unless_positive(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_unless_positive(v); #else return raw_atomic_dec_unless_positive(v); #endif } /** * raw_atomic_long_dec_if_positive() - atomic decrement if positive with full ordering * @v: pointer to atomic_long_t * * If (@v > 0), atomically updates @v to (@v - 1) with full ordering. * Otherwise, @v is not modified and relaxed ordering is provided. * * Safe to use in noinstr code; prefer atomic_long_dec_if_positive() elsewhere. * * Return: The old value of (@v - 1), regardless of whether @v was updated. */ static __always_inline long raw_atomic_long_dec_if_positive(atomic_long_t *v) { #ifdef CONFIG_64BIT return raw_atomic64_dec_if_positive(v); #else return raw_atomic_dec_if_positive(v); #endif } #endif /* _LINUX_ATOMIC_LONG_H */ // eadf183c3600b8b92b91839dd3be6bcc560c752d |
104 1 101 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | /* SPDX-License-Identifier: GPL-2.0 */ /* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/debug_locks.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/atomic.h> #include <linux/jump_label.h> #ifdef CONFIG_FREEZER DECLARE_STATIC_KEY_FALSE(freezer_active); extern bool pm_freezing; /* PM freezing in effect */ extern bool pm_nosig_freezing; /* PM nosig freezing in effect */ /* * Timeout for stopping processes */ extern unsigned int freeze_timeout_msecs; /* * Check if a process has been frozen */ extern bool frozen(struct task_struct *p); extern bool freezing_slow_path(struct task_struct *p); /* * Check if there is a request to freeze a process */ static inline bool freezing(struct task_struct *p) { if (static_branch_unlikely(&freezer_active)) return freezing_slow_path(p); return false; } /* Takes and releases task alloc lock using task_lock() */ extern void __thaw_task(struct task_struct *t); extern bool __refrigerator(bool check_kthr_stop); extern int freeze_processes(void); extern int freeze_kernel_threads(void); extern void thaw_processes(void); extern void thaw_kernel_threads(void); static inline bool try_to_freeze(void) { might_sleep(); if (likely(!freezing(current))) return false; if (!(current->flags & PF_NOFREEZE)) debug_check_no_locks_held(); return __refrigerator(false); } extern bool freeze_task(struct task_struct *p); extern bool set_freezable(void); #ifdef CONFIG_CGROUP_FREEZER extern bool cgroup_freezing(struct task_struct *task); #else /* !CONFIG_CGROUP_FREEZER */ static inline bool cgroup_freezing(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUP_FREEZER */ #else /* !CONFIG_FREEZER */ static inline bool frozen(struct task_struct *p) { return false; } static inline bool freezing(struct task_struct *p) { return false; } static inline void __thaw_task(struct task_struct *t) {} static inline bool __refrigerator(bool check_kthr_stop) { return false; } static inline int freeze_processes(void) { return -ENOSYS; } static inline int freeze_kernel_threads(void) { return -ENOSYS; } static inline void thaw_processes(void) {} static inline void thaw_kernel_threads(void) {} static inline bool try_to_freeze(void) { return false; } static inline void set_freezable(void) {} #endif /* !CONFIG_FREEZER */ #endif /* FREEZER_H_INCLUDED */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BITOPS_H #define _ASM_X86_BITOPS_H /* * Copyright 1992, Linus Torvalds. * * Note: inlines with more than a single statement should be marked * __always_inline to avoid problems with older gcc's inlining heuristics. */ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <asm/alternative.h> #include <asm/rmwcc.h> #include <asm/barrier.h> #if BITS_PER_LONG == 32 # define _BITOPS_LONG_SHIFT 5 #elif BITS_PER_LONG == 64 # define _BITOPS_LONG_SHIFT 6 #else # error "Unexpected BITS_PER_LONG" #endif #define BIT_64(n) (U64_C(1) << (n)) /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #define RLONG_ADDR(x) "m" (*(volatile long *) (x)) #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x)) #define ADDR RLONG_ADDR(addr) /* * We do the locked ops that don't return the old value as * a mask operation on a byte. */ #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3)) #define CONST_MASK(nr) (1 << ((nr) & 7)) static __always_inline void arch_set_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "orb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr)) : "memory"); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch___set_bit(unsigned long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_clear_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "andb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (~CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch_clear_bit_unlock(long nr, volatile unsigned long *addr) { barrier(); arch_clear_bit(nr, addr); } static __always_inline void arch___clear_bit(unsigned long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask, volatile unsigned long *addr) { bool negative; asm volatile(LOCK_PREFIX "xorb %2,%1" CC_SET(s) : CC_OUT(s) (negative), WBYTE_ADDR(addr) : "iq" ((char)mask) : "memory"); return negative; } #define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte static __always_inline void arch___clear_bit_unlock(long nr, volatile unsigned long *addr) { arch___clear_bit(nr, addr); } static __always_inline void arch___change_bit(unsigned long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_change_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "xorb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline bool arch_test_and_set_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); } static __always_inline bool arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr) { return arch_test_and_set_bit(nr, addr); } static __always_inline bool arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm(__ASM_SIZE(bts) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_clear_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); } /* * Note: the operation is performed atomically with respect to * the local CPU, but not other CPUs. Portable code should not * rely on this behaviour. * KVM relies on this behaviour on x86 for modifying memory that is also * accessed from a hypervisor on the same CPU if running in a VM: don't change * this without also updating arch/x86/kernel/kvm.c */ static __always_inline bool arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btr) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btc) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_change_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); } static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) { return ((1UL << (nr & (BITS_PER_LONG-1))) & (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; } static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr) { bool oldbit; asm volatile("testb %2,%1" CC_SET(nz) : CC_OUT(nz) (oldbit) : "m" (((unsigned char *)addr)[nr >> 3]), "i" (1 << (nr & 7)) :"memory"); return oldbit; } static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(bt) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_bit(unsigned long nr, const volatile unsigned long *addr) { return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) : variable_test_bit(nr, addr); } static __always_inline bool arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr) { return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) : variable_test_bit(nr, addr); } static __always_inline unsigned long variable__ffs(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : ASM_INPUT_RM (word)); return word; } /** * __ffs - find first set bit in word * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ #define __ffs(word) \ (__builtin_constant_p(word) ? \ (unsigned long)__builtin_ctzl(word) : \ variable__ffs(word)) static __always_inline unsigned long variable_ffz(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "r" (~word)); return word; } /** * ffz - find first zero bit in word * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ #define ffz(word) \ (__builtin_constant_p(word) ? \ (unsigned long)__builtin_ctzl(~word) : \ variable_ffz(word)) /* * __fls: find last set bit in word * @word: The word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static __always_inline unsigned long __fls(unsigned long word) { if (__builtin_constant_p(word)) return BITS_PER_LONG - 1 - __builtin_clzl(word); asm("bsr %1,%0" : "=r" (word) : ASM_INPUT_RM (word)); return word; } #undef ADDR #ifdef __KERNEL__ static __always_inline int variable_ffs(int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsfl %1,%0" : "=r" (r) : ASM_INPUT_RM (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsfl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "r" (-1)); #else asm("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * ffs - find first set bit in word * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs * routines, therefore differs in spirit from the other bitops. * * ffs(value) returns 0 if value is 0 or the position of the first * set bit if value is nonzero. The first (least significant) bit * is at position 1. */ #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x)) /** * fls - find last set bit in word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffs, but returns the position of the most significant set bit. * * fls(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 32. */ static __always_inline int fls(unsigned int x) { int r; if (__builtin_constant_p(x)) return x ? 32 - __builtin_clz(x) : 0; #ifdef CONFIG_X86_64 /* * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsrl %1,%0" : "=r" (r) : ASM_INPUT_RM (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsrl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "rm" (-1)); #else asm("bsrl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls64 - find last set bit in a 64-bit word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ #ifdef CONFIG_X86_64 static __always_inline int fls64(__u64 x) { int bitpos = -1; if (__builtin_constant_p(x)) return x ? 64 - __builtin_clzll(x) : 0; /* * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before. */ asm("bsrq %1,%q0" : "+r" (bitpos) : ASM_INPUT_RM (x)); return bitpos + 1; } #else #include <asm-generic/bitops/fls64.h> #endif #include <asm-generic/bitops/sched.h> #include <asm/arch_hweight.h> #include <asm-generic/bitops/const_hweight.h> #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-non-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* __KERNEL__ */ #endif /* _ASM_X86_BITOPS_H */ |
8 28 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 9 2 2 1 2 1 2 1 2 3 7 2 1 1 3 1 4 2 1 2 1 4 2 1 1 1 2 1 2 2 14 8 4 3 4 5 2 1 13 6 3 6 4 2 5 4 1 1 2 4 2 1 5 2 2 2 2 2 2 2 2 2 2 2 1 8 18 3 1 2 2 8 11 1 3 2 1 1 8 2 1 1 2 4 4 2 1 1 4 2 1 1 1 2 1 1 7 1 3 1 2 4 2 1 1 10 3 1 7 5 4 1 10 3 2 1 1 1 3 1 2 3 2 1 1 1 1 3 2 1 1 3 1 17 1 5 1 9 1 5 2 1 1 1 6 3 3 1 1 4 3 1 3 2 1 1 6 6 7 7 7 6 6 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 | /* * Copyright (c) 2017 Mellanox Technologies. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <linux/module.h> #include <linux/pid.h> #include <linux/pid_namespace.h> #include <linux/mutex.h> #include <net/netlink.h> #include <rdma/rdma_cm.h> #include <rdma/rdma_netlink.h> #include "core_priv.h" #include "cma_priv.h" #include "restrack.h" #include "uverbs.h" /* * This determines whether a non-privileged user is allowed to specify a * controlled QKEY or not, when true non-privileged user is allowed to specify * a controlled QKEY. */ static bool privileged_qkey; typedef int (*res_fill_func_t)(struct sk_buff*, bool, struct rdma_restrack_entry*, uint32_t); /* * Sort array elements by the netlink attribute name */ static const struct nla_policy nldev_policy[RDMA_NLDEV_ATTR_MAX] = { [RDMA_NLDEV_ATTR_CHARDEV] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_CHARDEV_ABI] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_CHARDEV_NAME] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_CHARDEV_TYPE] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_CHARDEV_TYPE_SIZE }, [RDMA_NLDEV_ATTR_DEV_DIM] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_DEV_INDEX] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_DEV_NAME] = { .type = NLA_NUL_STRING, .len = IB_DEVICE_NAME_MAX }, [RDMA_NLDEV_ATTR_DEV_NODE_TYPE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_DEV_PROTOCOL] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_DRIVER] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_DRIVER_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_DRIVER_PRINT_TYPE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_DRIVER_STRING] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_DRIVER_S32] = { .type = NLA_S32 }, [RDMA_NLDEV_ATTR_DRIVER_S64] = { .type = NLA_S64 }, [RDMA_NLDEV_ATTR_DRIVER_U32] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_DRIVER_U64] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_FW_VERSION] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_LID] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_LINK_TYPE] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ }, [RDMA_NLDEV_ATTR_LMC] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_NDEV_INDEX] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_NDEV_NAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ }, [RDMA_NLDEV_ATTR_NODE_GUID] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_PORT_INDEX] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_PORT_PHYS_STATE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_PORT_STATE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_RES_CM_ID] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_CM_IDN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_CM_ID_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_CQ] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_CQE] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_CQN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_CQ_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_CTX] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_CTXN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_CTX_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_DST_ADDR] = { .len = sizeof(struct __kernel_sockaddr_storage) }, [RDMA_NLDEV_ATTR_RES_IOVA] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_RES_KERN_NAME] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_RES_LKEY] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_LOCAL_DMA_LKEY] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_LQPN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_MR] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_MRLEN] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_RES_MRN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_MR_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_PATH_MIG_STATE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_RES_PD] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_PDN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_PD_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_PID] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_POLL_CTX] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_RES_PS] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_QP] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_QP_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_RAW] = { .type = NLA_BINARY }, [RDMA_NLDEV_ATTR_RES_RKEY] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_RQPN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_RQ_PSN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_SQ_PSN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_SRC_ADDR] = { .len = sizeof(struct __kernel_sockaddr_storage) }, [RDMA_NLDEV_ATTR_RES_STATE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_RES_SUMMARY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_SUMMARY_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_SUMMARY_ENTRY_CURR]= { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_RES_SUMMARY_ENTRY_NAME]= { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_RES_TYPE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_RES_SUBTYPE] = { .type = NLA_NUL_STRING, .len = RDMA_NLDEV_ATTR_EMPTY_STRING }, [RDMA_NLDEV_ATTR_RES_UNSAFE_GLOBAL_RKEY]= { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_USECNT] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_RES_SRQ] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_RES_SRQN] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_RES_SRQ_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_MIN_RANGE] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_MAX_RANGE] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_SM_LID] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_SUBNET_PREFIX] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_STAT_AUTO_MODE_MASK] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_STAT_MODE] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_STAT_RES] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_STAT_COUNTER] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_STAT_COUNTER_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_STAT_COUNTER_ID] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_STAT_HWCOUNTERS] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY] = { .type = NLA_NESTED }, [RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY_NAME] = { .type = NLA_NUL_STRING }, [RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY_VALUE] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_SYS_IMAGE_GUID] = { .type = NLA_U64 }, [RDMA_NLDEV_ATTR_UVERBS_DRIVER_ID] = { .type = NLA_U32 }, [RDMA_NLDEV_NET_NS_FD] = { .type = NLA_U32 }, [RDMA_NLDEV_SYS_ATTR_NETNS_MODE] = { .type = NLA_U8 }, [RDMA_NLDEV_SYS_ATTR_COPY_ON_FORK] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_STAT_HWCOUNTER_INDEX] = { .type = NLA_U32 }, [RDMA_NLDEV_ATTR_STAT_HWCOUNTER_DYNAMIC] = { .type = NLA_U8 }, [RDMA_NLDEV_SYS_ATTR_PRIVILEGED_QKEY_MODE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_DRIVER_DETAILS] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_DEV_TYPE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_PARENT_NAME] = { .type = NLA_NUL_STRING }, [RDMA_NLDEV_ATTR_NAME_ASSIGN_TYPE] = { .type = NLA_U8 }, [RDMA_NLDEV_ATTR_EVENT_TYPE] = { .type = NLA_U8 }, }; static int put_driver_name_print_type(struct sk_buff *msg, const char *name, enum rdma_nldev_print_type print_type) { if (nla_put_string(msg, RDMA_NLDEV_ATTR_DRIVER_STRING, name)) return -EMSGSIZE; if (print_type != RDMA_NLDEV_PRINT_TYPE_UNSPEC && nla_put_u8(msg, RDMA_NLDEV_ATTR_DRIVER_PRINT_TYPE, print_type)) return -EMSGSIZE; return 0; } static int _rdma_nl_put_driver_u32(struct sk_buff *msg, const char *name, enum rdma_nldev_print_type print_type, u32 value) { if (put_driver_name_print_type(msg, name, print_type)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_DRIVER_U32, value)) return -EMSGSIZE; return 0; } static int _rdma_nl_put_driver_u64(struct sk_buff *msg, const char *name, enum rdma_nldev_print_type print_type, u64 value) { if (put_driver_name_print_type(msg, name, print_type)) return -EMSGSIZE; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_DRIVER_U64, value, RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; return 0; } int rdma_nl_put_driver_string(struct sk_buff *msg, const char *name, const char *str) { if (put_driver_name_print_type(msg, name, RDMA_NLDEV_PRINT_TYPE_UNSPEC)) return -EMSGSIZE; if (nla_put_string(msg, RDMA_NLDEV_ATTR_DRIVER_STRING, str)) return -EMSGSIZE; return 0; } EXPORT_SYMBOL(rdma_nl_put_driver_string); int rdma_nl_put_driver_u32(struct sk_buff *msg, const char *name, u32 value) { return _rdma_nl_put_driver_u32(msg, name, RDMA_NLDEV_PRINT_TYPE_UNSPEC, value); } EXPORT_SYMBOL(rdma_nl_put_driver_u32); int rdma_nl_put_driver_u32_hex(struct sk_buff *msg, const char *name, u32 value) { return _rdma_nl_put_driver_u32(msg, name, RDMA_NLDEV_PRINT_TYPE_HEX, value); } EXPORT_SYMBOL(rdma_nl_put_driver_u32_hex); int rdma_nl_put_driver_u64(struct sk_buff *msg, const char *name, u64 value) { return _rdma_nl_put_driver_u64(msg, name, RDMA_NLDEV_PRINT_TYPE_UNSPEC, value); } EXPORT_SYMBOL(rdma_nl_put_driver_u64); int rdma_nl_put_driver_u64_hex(struct sk_buff *msg, const char *name, u64 value) { return _rdma_nl_put_driver_u64(msg, name, RDMA_NLDEV_PRINT_TYPE_HEX, value); } EXPORT_SYMBOL(rdma_nl_put_driver_u64_hex); bool rdma_nl_get_privileged_qkey(void) { return privileged_qkey || capable(CAP_NET_RAW); } EXPORT_SYMBOL(rdma_nl_get_privileged_qkey); static int fill_nldev_handle(struct sk_buff *msg, struct ib_device *device) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_DEV_INDEX, device->index)) return -EMSGSIZE; if (nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_NAME, dev_name(&device->dev))) return -EMSGSIZE; return 0; } static int fill_dev_info(struct sk_buff *msg, struct ib_device *device) { char fw[IB_FW_VERSION_NAME_MAX]; int ret = 0; u32 port; if (fill_nldev_handle(msg, device)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, rdma_end_port(device))) return -EMSGSIZE; BUILD_BUG_ON(sizeof(device->attrs.device_cap_flags) != sizeof(u64)); if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_CAP_FLAGS, device->attrs.device_cap_flags, RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; ib_get_device_fw_str(device, fw); /* Device without FW has strlen(fw) = 0 */ if (strlen(fw) && nla_put_string(msg, RDMA_NLDEV_ATTR_FW_VERSION, fw)) return -EMSGSIZE; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_NODE_GUID, be64_to_cpu(device->node_guid), RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_SYS_IMAGE_GUID, be64_to_cpu(device->attrs.sys_image_guid), RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_DEV_NODE_TYPE, device->node_type)) return -EMSGSIZE; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_DEV_DIM, device->use_cq_dim)) return -EMSGSIZE; if (device->type && nla_put_u8(msg, RDMA_NLDEV_ATTR_DEV_TYPE, device->type)) return -EMSGSIZE; if (device->parent && nla_put_string(msg, RDMA_NLDEV_ATTR_PARENT_NAME, dev_name(&device->parent->dev))) return -EMSGSIZE; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_NAME_ASSIGN_TYPE, device->name_assign_type)) return -EMSGSIZE; /* * Link type is determined on first port and mlx4 device * which can potentially have two different link type for the same * IB device is considered as better to be avoided in the future, */ port = rdma_start_port(device); if (rdma_cap_opa_mad(device, port)) ret = nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_PROTOCOL, "opa"); else if (rdma_protocol_ib(device, port)) ret = nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_PROTOCOL, "ib"); else if (rdma_protocol_iwarp(device, port)) ret = nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_PROTOCOL, "iw"); else if (rdma_protocol_roce(device, port)) ret = nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_PROTOCOL, "roce"); else if (rdma_protocol_usnic(device, port)) ret = nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_PROTOCOL, "usnic"); return ret; } static int fill_port_info(struct sk_buff *msg, struct ib_device *device, u32 port, const struct net *net) { struct net_device *netdev = NULL; struct ib_port_attr attr; int ret; u64 cap_flags = 0; if (fill_nldev_handle(msg, device)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port)) return -EMSGSIZE; ret = ib_query_port(device, port, &attr); if (ret) return ret; if (rdma_protocol_ib(device, port)) { BUILD_BUG_ON((sizeof(attr.port_cap_flags) + sizeof(attr.port_cap_flags2)) > sizeof(u64)); cap_flags = attr.port_cap_flags | ((u64)attr.port_cap_flags2 << 32); if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_CAP_FLAGS, cap_flags, RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_SUBNET_PREFIX, attr.subnet_prefix, RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_LID, attr.lid)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_SM_LID, attr.sm_lid)) return -EMSGSIZE; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_LMC, attr.lmc)) return -EMSGSIZE; } if (nla_put_u8(msg, RDMA_NLDEV_ATTR_PORT_STATE, attr.state)) return -EMSGSIZE; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_PORT_PHYS_STATE, attr.phys_state)) return -EMSGSIZE; netdev = ib_device_get_netdev(device, port); if (netdev && net_eq(dev_net(netdev), net)) { ret = nla_put_u32(msg, RDMA_NLDEV_ATTR_NDEV_INDEX, netdev->ifindex); if (ret) goto out; ret = nla_put_string(msg, RDMA_NLDEV_ATTR_NDEV_NAME, netdev->name); } out: dev_put(netdev); return ret; } static int fill_res_info_entry(struct sk_buff *msg, const char *name, u64 curr) { struct nlattr *entry_attr; entry_attr = nla_nest_start_noflag(msg, RDMA_NLDEV_ATTR_RES_SUMMARY_ENTRY); if (!entry_attr) return -EMSGSIZE; if (nla_put_string(msg, RDMA_NLDEV_ATTR_RES_SUMMARY_ENTRY_NAME, name)) goto err; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_RES_SUMMARY_ENTRY_CURR, curr, RDMA_NLDEV_ATTR_PAD)) goto err; nla_nest_end(msg, entry_attr); return 0; err: nla_nest_cancel(msg, entry_attr); return -EMSGSIZE; } static int fill_res_info(struct sk_buff *msg, struct ib_device *device, bool show_details) { static const char * const names[RDMA_RESTRACK_MAX] = { [RDMA_RESTRACK_PD] = "pd", [RDMA_RESTRACK_CQ] = "cq", [RDMA_RESTRACK_QP] = "qp", [RDMA_RESTRACK_CM_ID] = "cm_id", [RDMA_RESTRACK_MR] = "mr", [RDMA_RESTRACK_CTX] = "ctx", [RDMA_RESTRACK_SRQ] = "srq", }; struct nlattr *table_attr; int ret, i, curr; if (fill_nldev_handle(msg, device)) return -EMSGSIZE; table_attr = nla_nest_start_noflag(msg, RDMA_NLDEV_ATTR_RES_SUMMARY); if (!table_attr) return -EMSGSIZE; for (i = 0; i < RDMA_RESTRACK_MAX; i++) { if (!names[i]) continue; curr = rdma_restrack_count(device, i, show_details); ret = fill_res_info_entry(msg, names[i], curr); if (ret) goto err; } nla_nest_end(msg, table_attr); return 0; err: nla_nest_cancel(msg, table_attr); return ret; } static int fill_res_name_pid(struct sk_buff *msg, struct rdma_restrack_entry *res) { int err = 0; /* * For user resources, user is should read /proc/PID/comm to get the * name of the task file. */ if (rdma_is_kernel_res(res)) { err = nla_put_string(msg, RDMA_NLDEV_ATTR_RES_KERN_NAME, res->kern_name); } else { pid_t pid; pid = task_pid_vnr(res->task); /* * Task is dead and in zombie state. * There is no need to print PID anymore. */ if (pid) /* * This part is racy, task can be killed and PID will * be zero right here but it is ok, next query won't * return PID. We don't promise real-time reflection * of SW objects. */ err = nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_PID, pid); } return err ? -EMSGSIZE : 0; } static int fill_res_qp_entry_query(struct sk_buff *msg, struct rdma_restrack_entry *res, struct ib_device *dev, struct ib_qp *qp) { struct ib_qp_init_attr qp_init_attr; struct ib_qp_attr qp_attr; int ret; ret = ib_query_qp(qp, &qp_attr, 0, &qp_init_attr); if (ret) return ret; if (qp->qp_type == IB_QPT_RC || qp->qp_type == IB_QPT_UC) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_RQPN, qp_attr.dest_qp_num)) goto err; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_RQ_PSN, qp_attr.rq_psn)) goto err; } if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_SQ_PSN, qp_attr.sq_psn)) goto err; if (qp->qp_type == IB_QPT_RC || qp->qp_type == IB_QPT_UC || qp->qp_type == IB_QPT_XRC_INI || qp->qp_type == IB_QPT_XRC_TGT) { if (nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_PATH_MIG_STATE, qp_attr.path_mig_state)) goto err; } if (nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_TYPE, qp->qp_type)) goto err; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_STATE, qp_attr.qp_state)) goto err; if (dev->ops.fill_res_qp_entry) return dev->ops.fill_res_qp_entry(msg, qp); return 0; err: return -EMSGSIZE; } static int fill_res_qp_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_qp *qp = container_of(res, struct ib_qp, res); struct ib_device *dev = qp->device; int ret; if (port && port != qp->port) return -EAGAIN; /* In create_qp() port is not set yet */ if (qp->port && nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, qp->port)) return -EMSGSIZE; ret = nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LQPN, qp->qp_num); if (ret) return -EMSGSIZE; if (!rdma_is_kernel_res(res) && nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_PDN, qp->pd->res.id)) return -EMSGSIZE; ret = fill_res_name_pid(msg, res); if (ret) return -EMSGSIZE; return fill_res_qp_entry_query(msg, res, dev, qp); } static int fill_res_qp_raw_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_qp *qp = container_of(res, struct ib_qp, res); struct ib_device *dev = qp->device; if (port && port != qp->port) return -EAGAIN; if (!dev->ops.fill_res_qp_entry_raw) return -EINVAL; return dev->ops.fill_res_qp_entry_raw(msg, qp); } static int fill_res_cm_id_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct rdma_id_private *id_priv = container_of(res, struct rdma_id_private, res); struct ib_device *dev = id_priv->id.device; struct rdma_cm_id *cm_id = &id_priv->id; if (port && port != cm_id->port_num) return -EAGAIN; if (cm_id->port_num && nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, cm_id->port_num)) goto err; if (id_priv->qp_num) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LQPN, id_priv->qp_num)) goto err; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_TYPE, cm_id->qp_type)) goto err; } if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_PS, cm_id->ps)) goto err; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_STATE, id_priv->state)) goto err; if (cm_id->route.addr.src_addr.ss_family && nla_put(msg, RDMA_NLDEV_ATTR_RES_SRC_ADDR, sizeof(cm_id->route.addr.src_addr), &cm_id->route.addr.src_addr)) goto err; if (cm_id->route.addr.dst_addr.ss_family && nla_put(msg, RDMA_NLDEV_ATTR_RES_DST_ADDR, sizeof(cm_id->route.addr.dst_addr), &cm_id->route.addr.dst_addr)) goto err; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CM_IDN, res->id)) goto err; if (fill_res_name_pid(msg, res)) goto err; if (dev->ops.fill_res_cm_id_entry) return dev->ops.fill_res_cm_id_entry(msg, cm_id); return 0; err: return -EMSGSIZE; } static int fill_res_cq_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_cq *cq = container_of(res, struct ib_cq, res); struct ib_device *dev = cq->device; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CQE, cq->cqe)) return -EMSGSIZE; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_RES_USECNT, atomic_read(&cq->usecnt), RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; /* Poll context is only valid for kernel CQs */ if (rdma_is_kernel_res(res) && nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_POLL_CTX, cq->poll_ctx)) return -EMSGSIZE; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_DEV_DIM, (cq->dim != NULL))) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CQN, res->id)) return -EMSGSIZE; if (!rdma_is_kernel_res(res) && nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CTXN, cq->uobject->uevent.uobject.context->res.id)) return -EMSGSIZE; if (fill_res_name_pid(msg, res)) return -EMSGSIZE; return (dev->ops.fill_res_cq_entry) ? dev->ops.fill_res_cq_entry(msg, cq) : 0; } static int fill_res_cq_raw_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_cq *cq = container_of(res, struct ib_cq, res); struct ib_device *dev = cq->device; if (!dev->ops.fill_res_cq_entry_raw) return -EINVAL; return dev->ops.fill_res_cq_entry_raw(msg, cq); } static int fill_res_mr_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_mr *mr = container_of(res, struct ib_mr, res); struct ib_device *dev = mr->pd->device; if (has_cap_net_admin) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_RKEY, mr->rkey)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LKEY, mr->lkey)) return -EMSGSIZE; } if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_RES_MRLEN, mr->length, RDMA_NLDEV_ATTR_PAD)) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_MRN, res->id)) return -EMSGSIZE; if (!rdma_is_kernel_res(res) && nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_PDN, mr->pd->res.id)) return -EMSGSIZE; if (fill_res_name_pid(msg, res)) return -EMSGSIZE; return (dev->ops.fill_res_mr_entry) ? dev->ops.fill_res_mr_entry(msg, mr) : 0; } static int fill_res_mr_raw_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_mr *mr = container_of(res, struct ib_mr, res); struct ib_device *dev = mr->pd->device; if (!dev->ops.fill_res_mr_entry_raw) return -EINVAL; return dev->ops.fill_res_mr_entry_raw(msg, mr); } static int fill_res_pd_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_pd *pd = container_of(res, struct ib_pd, res); if (has_cap_net_admin) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LOCAL_DMA_LKEY, pd->local_dma_lkey)) goto err; if ((pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) && nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_UNSAFE_GLOBAL_RKEY, pd->unsafe_global_rkey)) goto err; } if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_RES_USECNT, atomic_read(&pd->usecnt), RDMA_NLDEV_ATTR_PAD)) goto err; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_PDN, res->id)) goto err; if (!rdma_is_kernel_res(res) && nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CTXN, pd->uobject->context->res.id)) goto err; return fill_res_name_pid(msg, res); err: return -EMSGSIZE; } static int fill_res_ctx_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_ucontext *ctx = container_of(res, struct ib_ucontext, res); if (rdma_is_kernel_res(res)) return 0; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CTXN, ctx->res.id)) return -EMSGSIZE; return fill_res_name_pid(msg, res); } static int fill_res_range_qp_entry(struct sk_buff *msg, uint32_t min_range, uint32_t max_range) { struct nlattr *entry_attr; if (!min_range) return 0; entry_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_RES_QP_ENTRY); if (!entry_attr) return -EMSGSIZE; if (min_range == max_range) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LQPN, min_range)) goto err; } else { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_MIN_RANGE, min_range)) goto err; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_MAX_RANGE, max_range)) goto err; } nla_nest_end(msg, entry_attr); return 0; err: nla_nest_cancel(msg, entry_attr); return -EMSGSIZE; } static int fill_res_srq_qps(struct sk_buff *msg, struct ib_srq *srq) { uint32_t min_range = 0, prev = 0; struct rdma_restrack_entry *res; struct rdma_restrack_root *rt; struct nlattr *table_attr; struct ib_qp *qp = NULL; unsigned long id = 0; table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_RES_QP); if (!table_attr) return -EMSGSIZE; rt = &srq->device->res[RDMA_RESTRACK_QP]; xa_lock(&rt->xa); xa_for_each(&rt->xa, id, res) { if (!rdma_restrack_get(res)) continue; qp = container_of(res, struct ib_qp, res); if (!qp->srq || (qp->srq->res.id != srq->res.id)) { rdma_restrack_put(res); continue; } if (qp->qp_num < prev) /* qp_num should be ascending */ goto err_loop; if (min_range == 0) { min_range = qp->qp_num; } else if (qp->qp_num > (prev + 1)) { if (fill_res_range_qp_entry(msg, min_range, prev)) goto err_loop; min_range = qp->qp_num; } prev = qp->qp_num; rdma_restrack_put(res); } xa_unlock(&rt->xa); if (fill_res_range_qp_entry(msg, min_range, prev)) goto err; nla_nest_end(msg, table_attr); return 0; err_loop: rdma_restrack_put(res); xa_unlock(&rt->xa); err: nla_nest_cancel(msg, table_attr); return -EMSGSIZE; } static int fill_res_srq_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_srq *srq = container_of(res, struct ib_srq, res); struct ib_device *dev = srq->device; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_SRQN, srq->res.id)) goto err; if (nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_TYPE, srq->srq_type)) goto err; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_PDN, srq->pd->res.id)) goto err; if (ib_srq_has_cq(srq->srq_type)) { if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_CQN, srq->ext.cq->res.id)) goto err; } if (fill_res_srq_qps(msg, srq)) goto err; if (fill_res_name_pid(msg, res)) goto err; if (dev->ops.fill_res_srq_entry) return dev->ops.fill_res_srq_entry(msg, srq); return 0; err: return -EMSGSIZE; } static int fill_res_srq_raw_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_srq *srq = container_of(res, struct ib_srq, res); struct ib_device *dev = srq->device; if (!dev->ops.fill_res_srq_entry_raw) return -EINVAL; return dev->ops.fill_res_srq_entry_raw(msg, srq); } static int fill_stat_counter_mode(struct sk_buff *msg, struct rdma_counter *counter) { struct rdma_counter_mode *m = &counter->mode; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_MODE, m->mode)) return -EMSGSIZE; if (m->mode == RDMA_COUNTER_MODE_AUTO) { if ((m->mask & RDMA_COUNTER_MASK_QP_TYPE) && nla_put_u8(msg, RDMA_NLDEV_ATTR_RES_TYPE, m->param.qp_type)) return -EMSGSIZE; if ((m->mask & RDMA_COUNTER_MASK_PID) && fill_res_name_pid(msg, &counter->res)) return -EMSGSIZE; } return 0; } static int fill_stat_counter_qp_entry(struct sk_buff *msg, u32 qpn) { struct nlattr *entry_attr; entry_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_RES_QP_ENTRY); if (!entry_attr) return -EMSGSIZE; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LQPN, qpn)) goto err; nla_nest_end(msg, entry_attr); return 0; err: nla_nest_cancel(msg, entry_attr); return -EMSGSIZE; } static int fill_stat_counter_qps(struct sk_buff *msg, struct rdma_counter *counter) { struct rdma_restrack_entry *res; struct rdma_restrack_root *rt; struct nlattr *table_attr; struct ib_qp *qp = NULL; unsigned long id = 0; int ret = 0; table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_RES_QP); if (!table_attr) return -EMSGSIZE; rt = &counter->device->res[RDMA_RESTRACK_QP]; xa_lock(&rt->xa); xa_for_each(&rt->xa, id, res) { qp = container_of(res, struct ib_qp, res); if (!qp->counter || (qp->counter->id != counter->id)) continue; ret = fill_stat_counter_qp_entry(msg, qp->qp_num); if (ret) goto err; } xa_unlock(&rt->xa); nla_nest_end(msg, table_attr); return 0; err: xa_unlock(&rt->xa); nla_nest_cancel(msg, table_attr); return ret; } int rdma_nl_stat_hwcounter_entry(struct sk_buff *msg, const char *name, u64 value) { struct nlattr *entry_attr; entry_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY); if (!entry_attr) return -EMSGSIZE; if (nla_put_string(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY_NAME, name)) goto err; if (nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY_VALUE, value, RDMA_NLDEV_ATTR_PAD)) goto err; nla_nest_end(msg, entry_attr); return 0; err: nla_nest_cancel(msg, entry_attr); return -EMSGSIZE; } EXPORT_SYMBOL(rdma_nl_stat_hwcounter_entry); static int fill_stat_mr_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct ib_mr *mr = container_of(res, struct ib_mr, res); struct ib_device *dev = mr->pd->device; if (nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_MRN, res->id)) goto err; if (dev->ops.fill_stat_mr_entry) return dev->ops.fill_stat_mr_entry(msg, mr); return 0; err: return -EMSGSIZE; } static int fill_stat_counter_hwcounters(struct sk_buff *msg, struct rdma_counter *counter) { struct rdma_hw_stats *st = counter->stats; struct nlattr *table_attr; int i; table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTERS); if (!table_attr) return -EMSGSIZE; mutex_lock(&st->lock); for (i = 0; i < st->num_counters; i++) { if (test_bit(i, st->is_disabled)) continue; if (rdma_nl_stat_hwcounter_entry(msg, st->descs[i].name, st->value[i])) goto err; } mutex_unlock(&st->lock); nla_nest_end(msg, table_attr); return 0; err: mutex_unlock(&st->lock); nla_nest_cancel(msg, table_attr); return -EMSGSIZE; } static int fill_res_counter_entry(struct sk_buff *msg, bool has_cap_net_admin, struct rdma_restrack_entry *res, uint32_t port) { struct rdma_counter *counter = container_of(res, struct rdma_counter, res); if (port && port != counter->port) return -EAGAIN; /* Dump it even query failed */ rdma_counter_query_stats(counter); if (nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, counter->port) || nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_COUNTER_ID, counter->id) || fill_stat_counter_mode(msg, counter) || fill_stat_counter_qps(msg, counter) || fill_stat_counter_hwcounters(msg, counter)) return -EMSGSIZE; return 0; } static int nldev_get_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; struct sk_buff *msg; u32 index; int err; err = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (err || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { err = -ENOMEM; goto err; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET), 0, 0); if (!nlh) { err = -EMSGSIZE; goto err_free; } err = fill_dev_info(msg, device); if (err) goto err_free; nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_free: nlmsg_free(msg); err: ib_device_put(device); return err; } static int nldev_set_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; u32 index; int err; err = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (err || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; if (tb[RDMA_NLDEV_ATTR_DEV_NAME]) { char name[IB_DEVICE_NAME_MAX] = {}; nla_strscpy(name, tb[RDMA_NLDEV_ATTR_DEV_NAME], IB_DEVICE_NAME_MAX); if (strlen(name) == 0) { err = -EINVAL; goto done; } err = ib_device_rename(device, name); goto done; } if (tb[RDMA_NLDEV_NET_NS_FD]) { u32 ns_fd; ns_fd = nla_get_u32(tb[RDMA_NLDEV_NET_NS_FD]); err = ib_device_set_netns_put(skb, device, ns_fd); goto put_done; } if (tb[RDMA_NLDEV_ATTR_DEV_DIM]) { u8 use_dim; use_dim = nla_get_u8(tb[RDMA_NLDEV_ATTR_DEV_DIM]); err = ib_device_set_dim(device, use_dim); goto done; } done: ib_device_put(device); put_done: return err; } static int _nldev_get_dumpit(struct ib_device *device, struct sk_buff *skb, struct netlink_callback *cb, unsigned int idx) { int start = cb->args[0]; struct nlmsghdr *nlh; if (idx < start) return 0; nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET), 0, NLM_F_MULTI); if (!nlh || fill_dev_info(skb, device)) { nlmsg_cancel(skb, nlh); goto out; } nlmsg_end(skb, nlh); idx++; out: cb->args[0] = idx; return skb->len; } static int nldev_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { /* * There is no need to take lock, because * we are relying on ib_core's locking. */ return ib_enum_all_devs(_nldev_get_dumpit, skb, cb); } static int nldev_port_get_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; struct sk_buff *msg; u32 index; u32 port; int err; err = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (err || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_PORT_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { err = -EINVAL; goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { err = -ENOMEM; goto err; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET), 0, 0); if (!nlh) { err = -EMSGSIZE; goto err_free; } err = fill_port_info(msg, device, port, sock_net(skb->sk)); if (err) goto err_free; nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_free: nlmsg_free(msg); err: ib_device_put(device); return err; } static int nldev_port_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; int start = cb->args[0]; struct nlmsghdr *nlh; u32 idx = 0; u32 ifindex; int err; unsigned int p; err = __nlmsg_parse(cb->nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, NULL); if (err || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; ifindex = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), ifindex); if (!device) return -EINVAL; rdma_for_each_port (device, p) { /* * The dumpit function returns all information from specific * index. This specific index is taken from the netlink * messages request sent by user and it is available * in cb->args[0]. * * Usually, the user doesn't fill this field and it causes * to return everything. * */ if (idx < start) { idx++; continue; } nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_PORT_GET), 0, NLM_F_MULTI); if (!nlh || fill_port_info(skb, device, p, sock_net(skb->sk))) { nlmsg_cancel(skb, nlh); goto out; } idx++; nlmsg_end(skb, nlh); } out: ib_device_put(device); cb->args[0] = idx; return skb->len; } static int nldev_res_get_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; bool show_details = false; struct ib_device *device; struct sk_buff *msg; u32 index; int ret; ret = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (ret || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; if (tb[RDMA_NLDEV_ATTR_DRIVER_DETAILS]) show_details = nla_get_u8(tb[RDMA_NLDEV_ATTR_DRIVER_DETAILS]); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_RES_GET), 0, 0); if (!nlh) { ret = -EMSGSIZE; goto err_free; } ret = fill_res_info(msg, device, show_details); if (ret) goto err_free; nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_free: nlmsg_free(msg); err: ib_device_put(device); return ret; } static int _nldev_res_get_dumpit(struct ib_device *device, struct sk_buff *skb, struct netlink_callback *cb, unsigned int idx) { int start = cb->args[0]; struct nlmsghdr *nlh; if (idx < start) return 0; nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_RES_GET), 0, NLM_F_MULTI); if (!nlh || fill_res_info(skb, device, false)) { nlmsg_cancel(skb, nlh); goto out; } nlmsg_end(skb, nlh); idx++; out: cb->args[0] = idx; return skb->len; } static int nldev_res_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return ib_enum_all_devs(_nldev_res_get_dumpit, skb, cb); } struct nldev_fill_res_entry { enum rdma_nldev_attr nldev_attr; u8 flags; u32 entry; u32 id; }; enum nldev_res_flags { NLDEV_PER_DEV = 1 << 0, }; static const struct nldev_fill_res_entry fill_entries[RDMA_RESTRACK_MAX] = { [RDMA_RESTRACK_QP] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_QP, .entry = RDMA_NLDEV_ATTR_RES_QP_ENTRY, .id = RDMA_NLDEV_ATTR_RES_LQPN, }, [RDMA_RESTRACK_CM_ID] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_CM_ID, .entry = RDMA_NLDEV_ATTR_RES_CM_ID_ENTRY, .id = RDMA_NLDEV_ATTR_RES_CM_IDN, }, [RDMA_RESTRACK_CQ] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_CQ, .flags = NLDEV_PER_DEV, .entry = RDMA_NLDEV_ATTR_RES_CQ_ENTRY, .id = RDMA_NLDEV_ATTR_RES_CQN, }, [RDMA_RESTRACK_MR] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_MR, .flags = NLDEV_PER_DEV, .entry = RDMA_NLDEV_ATTR_RES_MR_ENTRY, .id = RDMA_NLDEV_ATTR_RES_MRN, }, [RDMA_RESTRACK_PD] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_PD, .flags = NLDEV_PER_DEV, .entry = RDMA_NLDEV_ATTR_RES_PD_ENTRY, .id = RDMA_NLDEV_ATTR_RES_PDN, }, [RDMA_RESTRACK_COUNTER] = { .nldev_attr = RDMA_NLDEV_ATTR_STAT_COUNTER, .entry = RDMA_NLDEV_ATTR_STAT_COUNTER_ENTRY, .id = RDMA_NLDEV_ATTR_STAT_COUNTER_ID, }, [RDMA_RESTRACK_CTX] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_CTX, .flags = NLDEV_PER_DEV, .entry = RDMA_NLDEV_ATTR_RES_CTX_ENTRY, .id = RDMA_NLDEV_ATTR_RES_CTXN, }, [RDMA_RESTRACK_SRQ] = { .nldev_attr = RDMA_NLDEV_ATTR_RES_SRQ, .flags = NLDEV_PER_DEV, .entry = RDMA_NLDEV_ATTR_RES_SRQ_ENTRY, .id = RDMA_NLDEV_ATTR_RES_SRQN, }, }; static int res_get_common_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack, enum rdma_restrack_type res_type, res_fill_func_t fill_func) { const struct nldev_fill_res_entry *fe = &fill_entries[res_type]; struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct rdma_restrack_entry *res; struct ib_device *device; u32 index, id, port = 0; bool has_cap_net_admin; struct sk_buff *msg; int ret; ret = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (ret || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !fe->id || !tb[fe->id]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; if (tb[RDMA_NLDEV_ATTR_PORT_INDEX]) { port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { ret = -EINVAL; goto err; } } if ((port && fe->flags & NLDEV_PER_DEV) || (!port && ~fe->flags & NLDEV_PER_DEV)) { ret = -EINVAL; goto err; } id = nla_get_u32(tb[fe->id]); res = rdma_restrack_get_byid(device, res_type, id); if (IS_ERR(res)) { ret = PTR_ERR(res); goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err_get; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NL_GET_OP(nlh->nlmsg_type)), 0, 0); if (!nlh || fill_nldev_handle(msg, device)) { ret = -EMSGSIZE; goto err_free; } has_cap_net_admin = netlink_capable(skb, CAP_NET_ADMIN); ret = fill_func(msg, has_cap_net_admin, res, port); if (ret) goto err_free; rdma_restrack_put(res); nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_free: nlmsg_free(msg); err_get: rdma_restrack_put(res); err: ib_device_put(device); return ret; } static int res_get_common_dumpit(struct sk_buff *skb, struct netlink_callback *cb, enum rdma_restrack_type res_type, res_fill_func_t fill_func) { const struct nldev_fill_res_entry *fe = &fill_entries[res_type]; struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct rdma_restrack_entry *res; struct rdma_restrack_root *rt; int err, ret = 0, idx = 0; bool show_details = false; struct nlattr *table_attr; struct nlattr *entry_attr; struct ib_device *device; int start = cb->args[0]; bool has_cap_net_admin; struct nlmsghdr *nlh; unsigned long id; u32 index, port = 0; bool filled = false; err = __nlmsg_parse(cb->nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, NULL); /* * Right now, we are expecting the device index to get res information, * but it is possible to extend this code to return all devices in * one shot by checking the existence of RDMA_NLDEV_ATTR_DEV_INDEX. * if it doesn't exist, we will iterate over all devices. * * But it is not needed for now. */ if (err || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; if (tb[RDMA_NLDEV_ATTR_DRIVER_DETAILS]) show_details = nla_get_u8(tb[RDMA_NLDEV_ATTR_DRIVER_DETAILS]); /* * If no PORT_INDEX is supplied, we will return all QPs from that device */ if (tb[RDMA_NLDEV_ATTR_PORT_INDEX]) { port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { ret = -EINVAL; goto err_index; } } nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NL_GET_OP(cb->nlh->nlmsg_type)), 0, NLM_F_MULTI); if (!nlh || fill_nldev_handle(skb, device)) { ret = -EMSGSIZE; goto err; } table_attr = nla_nest_start_noflag(skb, fe->nldev_attr); if (!table_attr) { ret = -EMSGSIZE; goto err; } has_cap_net_admin = netlink_capable(cb->skb, CAP_NET_ADMIN); rt = &device->res[res_type]; xa_lock(&rt->xa); /* * FIXME: if the skip ahead is something common this loop should * use xas_for_each & xas_pause to optimize, we can have a lot of * objects. */ xa_for_each(&rt->xa, id, res) { if (xa_get_mark(&rt->xa, res->id, RESTRACK_DD) && !show_details) goto next; if (idx < start || !rdma_restrack_get(res)) goto next; xa_unlock(&rt->xa); filled = true; entry_attr = nla_nest_start_noflag(skb, fe->entry); if (!entry_attr) { ret = -EMSGSIZE; rdma_restrack_put(res); goto msg_full; } ret = fill_func(skb, has_cap_net_admin, res, port); rdma_restrack_put(res); if (ret) { nla_nest_cancel(skb, entry_attr); if (ret == -EMSGSIZE) goto msg_full; if (ret == -EAGAIN) goto again; goto res_err; } nla_nest_end(skb, entry_attr); again: xa_lock(&rt->xa); next: idx++; } xa_unlock(&rt->xa); msg_full: nla_nest_end(skb, table_attr); nlmsg_end(skb, nlh); cb->args[0] = idx; /* * No more entries to fill, cancel the message and * return 0 to mark end of dumpit. */ if (!filled) goto err; ib_device_put(device); return skb->len; res_err: nla_nest_cancel(skb, table_attr); err: nlmsg_cancel(skb, nlh); err_index: ib_device_put(device); return ret; } #define RES_GET_FUNCS(name, type) \ static int nldev_res_get_##name##_dumpit(struct sk_buff *skb, \ struct netlink_callback *cb) \ { \ return res_get_common_dumpit(skb, cb, type, \ fill_res_##name##_entry); \ } \ static int nldev_res_get_##name##_doit(struct sk_buff *skb, \ struct nlmsghdr *nlh, \ struct netlink_ext_ack *extack) \ { \ return res_get_common_doit(skb, nlh, extack, type, \ fill_res_##name##_entry); \ } RES_GET_FUNCS(qp, RDMA_RESTRACK_QP); RES_GET_FUNCS(qp_raw, RDMA_RESTRACK_QP); RES_GET_FUNCS(cm_id, RDMA_RESTRACK_CM_ID); RES_GET_FUNCS(cq, RDMA_RESTRACK_CQ); RES_GET_FUNCS(cq_raw, RDMA_RESTRACK_CQ); RES_GET_FUNCS(pd, RDMA_RESTRACK_PD); RES_GET_FUNCS(mr, RDMA_RESTRACK_MR); RES_GET_FUNCS(mr_raw, RDMA_RESTRACK_MR); RES_GET_FUNCS(counter, RDMA_RESTRACK_COUNTER); RES_GET_FUNCS(ctx, RDMA_RESTRACK_CTX); RES_GET_FUNCS(srq, RDMA_RESTRACK_SRQ); RES_GET_FUNCS(srq_raw, RDMA_RESTRACK_SRQ); static LIST_HEAD(link_ops); static DECLARE_RWSEM(link_ops_rwsem); static const struct rdma_link_ops *link_ops_get(const char *type) { const struct rdma_link_ops *ops; list_for_each_entry(ops, &link_ops, list) { if (!strcmp(ops->type, type)) goto out; } ops = NULL; out: return ops; } void rdma_link_register(struct rdma_link_ops *ops) { down_write(&link_ops_rwsem); if (WARN_ON_ONCE(link_ops_get(ops->type))) goto out; list_add(&ops->list, &link_ops); out: up_write(&link_ops_rwsem); } EXPORT_SYMBOL(rdma_link_register); void rdma_link_unregister(struct rdma_link_ops *ops) { down_write(&link_ops_rwsem); list_del(&ops->list); up_write(&link_ops_rwsem); } EXPORT_SYMBOL(rdma_link_unregister); static int nldev_newlink(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; char ibdev_name[IB_DEVICE_NAME_MAX]; const struct rdma_link_ops *ops; char ndev_name[IFNAMSIZ]; struct net_device *ndev; char type[IFNAMSIZ]; int err; err = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (err || !tb[RDMA_NLDEV_ATTR_DEV_NAME] || !tb[RDMA_NLDEV_ATTR_LINK_TYPE] || !tb[RDMA_NLDEV_ATTR_NDEV_NAME]) return -EINVAL; nla_strscpy(ibdev_name, tb[RDMA_NLDEV_ATTR_DEV_NAME], sizeof(ibdev_name)); if (strchr(ibdev_name, '%') || strlen(ibdev_name) == 0) return -EINVAL; nla_strscpy(type, tb[RDMA_NLDEV_ATTR_LINK_TYPE], sizeof(type)); nla_strscpy(ndev_name, tb[RDMA_NLDEV_ATTR_NDEV_NAME], sizeof(ndev_name)); ndev = dev_get_by_name(sock_net(skb->sk), ndev_name); if (!ndev) return -ENODEV; down_read(&link_ops_rwsem); ops = link_ops_get(type); #ifdef CONFIG_MODULES if (!ops) { up_read(&link_ops_rwsem); request_module("rdma-link-%s", type); down_read(&link_ops_rwsem); ops = link_ops_get(type); } #endif err = ops ? ops->newlink(ibdev_name, ndev) : -EINVAL; up_read(&link_ops_rwsem); dev_put(ndev); return err; } static int nldev_dellink(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; u32 index; int err; err = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (err || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; if (!(device->attrs.kernel_cap_flags & IBK_ALLOW_USER_UNREG)) { ib_device_put(device); return -EINVAL; } ib_unregister_device_and_put(device); return 0; } static int nldev_get_chardev(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; char client_name[RDMA_NLDEV_ATTR_CHARDEV_TYPE_SIZE]; struct ib_client_nl_info data = {}; struct ib_device *ibdev = NULL; struct sk_buff *msg; u32 index; int err; err = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (err || !tb[RDMA_NLDEV_ATTR_CHARDEV_TYPE]) return -EINVAL; nla_strscpy(client_name, tb[RDMA_NLDEV_ATTR_CHARDEV_TYPE], sizeof(client_name)); if (tb[RDMA_NLDEV_ATTR_DEV_INDEX]) { index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); ibdev = ib_device_get_by_index(sock_net(skb->sk), index); if (!ibdev) return -EINVAL; if (tb[RDMA_NLDEV_ATTR_PORT_INDEX]) { data.port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(ibdev, data.port)) { err = -EINVAL; goto out_put; } } else { data.port = -1; } } else if (tb[RDMA_NLDEV_ATTR_PORT_INDEX]) { return -EINVAL; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { err = -ENOMEM; goto out_put; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_GET_CHARDEV), 0, 0); if (!nlh) { err = -EMSGSIZE; goto out_nlmsg; } data.nl_msg = msg; err = ib_get_client_nl_info(ibdev, client_name, &data); if (err) goto out_nlmsg; err = nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_CHARDEV, huge_encode_dev(data.cdev->devt), RDMA_NLDEV_ATTR_PAD); if (err) goto out_data; err = nla_put_u64_64bit(msg, RDMA_NLDEV_ATTR_CHARDEV_ABI, data.abi, RDMA_NLDEV_ATTR_PAD); if (err) goto out_data; if (nla_put_string(msg, RDMA_NLDEV_ATTR_CHARDEV_NAME, dev_name(data.cdev))) { err = -EMSGSIZE; goto out_data; } nlmsg_end(msg, nlh); put_device(data.cdev); if (ibdev) ib_device_put(ibdev); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); out_data: put_device(data.cdev); out_nlmsg: nlmsg_free(msg); out_put: if (ibdev) ib_device_put(ibdev); return err; } static int nldev_sys_get_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct sk_buff *msg; int err; err = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (err) return err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_SYS_GET), 0, 0); if (!nlh) { nlmsg_free(msg); return -EMSGSIZE; } err = nla_put_u8(msg, RDMA_NLDEV_SYS_ATTR_NETNS_MODE, (u8)ib_devices_shared_netns); if (err) { nlmsg_free(msg); return err; } err = nla_put_u8(msg, RDMA_NLDEV_SYS_ATTR_PRIVILEGED_QKEY_MODE, (u8)privileged_qkey); if (err) { nlmsg_free(msg); return err; } err = nla_put_u8(msg, RDMA_NLDEV_SYS_ATTR_MONITOR_MODE, 1); if (err) { nlmsg_free(msg); return err; } /* * Copy-on-fork is supported. * See commits: * 70e806e4e645 ("mm: Do early cow for pinned pages during fork() for ptes") * 4eae4efa2c29 ("hugetlb: do early cow when page pinned on src mm") * for more details. Don't backport this without them. * * Return value ignored on purpose, assume copy-on-fork is not * supported in case of failure. */ nla_put_u8(msg, RDMA_NLDEV_SYS_ATTR_COPY_ON_FORK, 1); nlmsg_end(msg, nlh); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); } static int nldev_set_sys_set_netns_doit(struct nlattr *tb[]) { u8 enable; int err; enable = nla_get_u8(tb[RDMA_NLDEV_SYS_ATTR_NETNS_MODE]); /* Only 0 and 1 are supported */ if (enable > 1) return -EINVAL; err = rdma_compatdev_set(enable); return err; } static int nldev_set_sys_set_pqkey_doit(struct nlattr *tb[]) { u8 enable; enable = nla_get_u8(tb[RDMA_NLDEV_SYS_ATTR_PRIVILEGED_QKEY_MODE]); /* Only 0 and 1 are supported */ if (enable > 1) return -EINVAL; privileged_qkey = enable; return 0; } static int nldev_set_sys_set_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; int err; err = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (err) return -EINVAL; if (tb[RDMA_NLDEV_SYS_ATTR_NETNS_MODE]) return nldev_set_sys_set_netns_doit(tb); if (tb[RDMA_NLDEV_SYS_ATTR_PRIVILEGED_QKEY_MODE]) return nldev_set_sys_set_pqkey_doit(tb); return -EINVAL; } static int nldev_stat_set_mode_doit(struct sk_buff *msg, struct netlink_ext_ack *extack, struct nlattr *tb[], struct ib_device *device, u32 port) { u32 mode, mask = 0, qpn, cntn = 0; int ret; /* Currently only counter for QP is supported */ if (!tb[RDMA_NLDEV_ATTR_STAT_RES] || nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_RES]) != RDMA_NLDEV_ATTR_RES_QP) return -EINVAL; mode = nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_MODE]); if (mode == RDMA_COUNTER_MODE_AUTO) { if (tb[RDMA_NLDEV_ATTR_STAT_AUTO_MODE_MASK]) mask = nla_get_u32( tb[RDMA_NLDEV_ATTR_STAT_AUTO_MODE_MASK]); return rdma_counter_set_auto_mode(device, port, mask, extack); } if (!tb[RDMA_NLDEV_ATTR_RES_LQPN]) return -EINVAL; qpn = nla_get_u32(tb[RDMA_NLDEV_ATTR_RES_LQPN]); if (tb[RDMA_NLDEV_ATTR_STAT_COUNTER_ID]) { cntn = nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_COUNTER_ID]); ret = rdma_counter_bind_qpn(device, port, qpn, cntn); if (ret) return ret; } else { ret = rdma_counter_bind_qpn_alloc(device, port, qpn, &cntn); if (ret) return ret; } if (nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_COUNTER_ID, cntn) || nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LQPN, qpn)) { ret = -EMSGSIZE; goto err_fill; } return 0; err_fill: rdma_counter_unbind_qpn(device, port, qpn, cntn); return ret; } static int nldev_stat_set_counter_dynamic_doit(struct nlattr *tb[], struct ib_device *device, u32 port) { struct rdma_hw_stats *stats; struct nlattr *entry_attr; unsigned long *target; int rem, i, ret = 0; u32 index; stats = ib_get_hw_stats_port(device, port); if (!stats) return -EINVAL; target = kcalloc(BITS_TO_LONGS(stats->num_counters), sizeof(*stats->is_disabled), GFP_KERNEL); if (!target) return -ENOMEM; nla_for_each_nested(entry_attr, tb[RDMA_NLDEV_ATTR_STAT_HWCOUNTERS], rem) { index = nla_get_u32(entry_attr); if ((index >= stats->num_counters) || !(stats->descs[index].flags & IB_STAT_FLAG_OPTIONAL)) { ret = -EINVAL; goto out; } set_bit(index, target); } for (i = 0; i < stats->num_counters; i++) { if (!(stats->descs[i].flags & IB_STAT_FLAG_OPTIONAL)) continue; ret = rdma_counter_modify(device, port, i, test_bit(i, target)); if (ret) goto out; } out: kfree(target); return ret; } static int nldev_stat_set_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; struct sk_buff *msg; u32 index, port; int ret; ret = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (ret || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_PORT_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { ret = -EINVAL; goto err_put_device; } if (!tb[RDMA_NLDEV_ATTR_STAT_MODE] && !tb[RDMA_NLDEV_ATTR_STAT_HWCOUNTERS]) { ret = -EINVAL; goto err_put_device; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err_put_device; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_STAT_SET), 0, 0); if (!nlh || fill_nldev_handle(msg, device) || nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port)) { ret = -EMSGSIZE; goto err_free_msg; } if (tb[RDMA_NLDEV_ATTR_STAT_MODE]) { ret = nldev_stat_set_mode_doit(msg, extack, tb, device, port); if (ret) goto err_free_msg; } if (tb[RDMA_NLDEV_ATTR_STAT_HWCOUNTERS]) { ret = nldev_stat_set_counter_dynamic_doit(tb, device, port); if (ret) goto err_free_msg; } nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_free_msg: nlmsg_free(msg); err_put_device: ib_device_put(device); return ret; } static int nldev_stat_del_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; struct sk_buff *msg; u32 index, port, qpn, cntn; int ret; ret = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (ret || !tb[RDMA_NLDEV_ATTR_STAT_RES] || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_PORT_INDEX] || !tb[RDMA_NLDEV_ATTR_STAT_COUNTER_ID] || !tb[RDMA_NLDEV_ATTR_RES_LQPN]) return -EINVAL; if (nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_RES]) != RDMA_NLDEV_ATTR_RES_QP) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { ret = -EINVAL; goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_STAT_SET), 0, 0); if (!nlh) { ret = -EMSGSIZE; goto err_fill; } cntn = nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_COUNTER_ID]); qpn = nla_get_u32(tb[RDMA_NLDEV_ATTR_RES_LQPN]); if (fill_nldev_handle(msg, device) || nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port) || nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_COUNTER_ID, cntn) || nla_put_u32(msg, RDMA_NLDEV_ATTR_RES_LQPN, qpn)) { ret = -EMSGSIZE; goto err_fill; } ret = rdma_counter_unbind_qpn(device, port, qpn, cntn); if (ret) goto err_fill; nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_fill: nlmsg_free(msg); err: ib_device_put(device); return ret; } static int stat_get_doit_default_counter(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack, struct nlattr *tb[]) { struct rdma_hw_stats *stats; struct nlattr *table_attr; struct ib_device *device; int ret, num_cnts, i; struct sk_buff *msg; u32 index, port; u64 v; if (!tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_PORT_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; if (!device->ops.alloc_hw_port_stats || !device->ops.get_hw_stats) { ret = -EINVAL; goto err; } port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); stats = ib_get_hw_stats_port(device, port); if (!stats) { ret = -EINVAL; goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_STAT_GET), 0, 0); if (!nlh || fill_nldev_handle(msg, device) || nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port)) { ret = -EMSGSIZE; goto err_msg; } mutex_lock(&stats->lock); num_cnts = device->ops.get_hw_stats(device, stats, port, 0); if (num_cnts < 0) { ret = -EINVAL; goto err_stats; } table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTERS); if (!table_attr) { ret = -EMSGSIZE; goto err_stats; } for (i = 0; i < num_cnts; i++) { if (test_bit(i, stats->is_disabled)) continue; v = stats->value[i] + rdma_counter_get_hwstat_value(device, port, i); if (rdma_nl_stat_hwcounter_entry(msg, stats->descs[i].name, v)) { ret = -EMSGSIZE; goto err_table; } } nla_nest_end(msg, table_attr); mutex_unlock(&stats->lock); nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_table: nla_nest_cancel(msg, table_attr); err_stats: mutex_unlock(&stats->lock); err_msg: nlmsg_free(msg); err: ib_device_put(device); return ret; } static int stat_get_doit_qp(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack, struct nlattr *tb[]) { static enum rdma_nl_counter_mode mode; static enum rdma_nl_counter_mask mask; struct ib_device *device; struct sk_buff *msg; u32 index, port; int ret; if (tb[RDMA_NLDEV_ATTR_STAT_COUNTER_ID]) return nldev_res_get_counter_doit(skb, nlh, extack); if (!tb[RDMA_NLDEV_ATTR_STAT_MODE] || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_PORT_INDEX]) return -EINVAL; index = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), index); if (!device) return -EINVAL; port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { ret = -EINVAL; goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err; } nlh = nlmsg_put(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_STAT_GET), 0, 0); if (!nlh) { ret = -EMSGSIZE; goto err_msg; } ret = rdma_counter_get_mode(device, port, &mode, &mask); if (ret) goto err_msg; if (fill_nldev_handle(msg, device) || nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port) || nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_MODE, mode)) { ret = -EMSGSIZE; goto err_msg; } if ((mode == RDMA_COUNTER_MODE_AUTO) && nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_AUTO_MODE_MASK, mask)) { ret = -EMSGSIZE; goto err_msg; } nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_msg: nlmsg_free(msg); err: ib_device_put(device); return ret; } static int nldev_stat_get_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; int ret; ret = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (ret) return -EINVAL; if (!tb[RDMA_NLDEV_ATTR_STAT_RES]) return stat_get_doit_default_counter(skb, nlh, extack, tb); switch (nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_RES])) { case RDMA_NLDEV_ATTR_RES_QP: ret = stat_get_doit_qp(skb, nlh, extack, tb); break; case RDMA_NLDEV_ATTR_RES_MR: ret = res_get_common_doit(skb, nlh, extack, RDMA_RESTRACK_MR, fill_stat_mr_entry); break; default: ret = -EINVAL; break; } return ret; } static int nldev_stat_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; int ret; ret = __nlmsg_parse(cb->nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, NULL); if (ret || !tb[RDMA_NLDEV_ATTR_STAT_RES]) return -EINVAL; switch (nla_get_u32(tb[RDMA_NLDEV_ATTR_STAT_RES])) { case RDMA_NLDEV_ATTR_RES_QP: ret = nldev_res_get_counter_dumpit(skb, cb); break; case RDMA_NLDEV_ATTR_RES_MR: ret = res_get_common_dumpit(skb, cb, RDMA_RESTRACK_MR, fill_stat_mr_entry); break; default: ret = -EINVAL; break; } return ret; } static int nldev_stat_get_counter_status_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX], *table, *entry; struct rdma_hw_stats *stats; struct ib_device *device; struct sk_buff *msg; u32 devid, port; int ret, i; ret = __nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, NL_VALIDATE_LIBERAL, extack); if (ret || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_PORT_INDEX]) return -EINVAL; devid = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), devid); if (!device) return -EINVAL; port = nla_get_u32(tb[RDMA_NLDEV_ATTR_PORT_INDEX]); if (!rdma_is_port_valid(device, port)) { ret = -EINVAL; goto err; } stats = ib_get_hw_stats_port(device, port); if (!stats) { ret = -EINVAL; goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err; } nlh = nlmsg_put( msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_STAT_GET_STATUS), 0, 0); ret = -EMSGSIZE; if (!nlh || fill_nldev_handle(msg, device) || nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port)) goto err_msg; table = nla_nest_start(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTERS); if (!table) goto err_msg; mutex_lock(&stats->lock); for (i = 0; i < stats->num_counters; i++) { entry = nla_nest_start(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY); if (!entry) goto err_msg_table; if (nla_put_string(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_ENTRY_NAME, stats->descs[i].name) || nla_put_u32(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_INDEX, i)) goto err_msg_entry; if ((stats->descs[i].flags & IB_STAT_FLAG_OPTIONAL) && (nla_put_u8(msg, RDMA_NLDEV_ATTR_STAT_HWCOUNTER_DYNAMIC, !test_bit(i, stats->is_disabled)))) goto err_msg_entry; nla_nest_end(msg, entry); } mutex_unlock(&stats->lock); nla_nest_end(msg, table); nlmsg_end(msg, nlh); ib_device_put(device); return rdma_nl_unicast(sock_net(skb->sk), msg, NETLINK_CB(skb).portid); err_msg_entry: nla_nest_cancel(msg, entry); err_msg_table: mutex_unlock(&stats->lock); nla_nest_cancel(msg, table); err_msg: nlmsg_free(msg); err: ib_device_put(device); return ret; } static int nldev_newdev(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; enum rdma_nl_dev_type type; struct ib_device *parent; char name[IFNAMSIZ] = {}; u32 parentid; int ret; ret = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (ret || !tb[RDMA_NLDEV_ATTR_DEV_INDEX] || !tb[RDMA_NLDEV_ATTR_DEV_NAME] || !tb[RDMA_NLDEV_ATTR_DEV_TYPE]) return -EINVAL; nla_strscpy(name, tb[RDMA_NLDEV_ATTR_DEV_NAME], sizeof(name)); type = nla_get_u8(tb[RDMA_NLDEV_ATTR_DEV_TYPE]); parentid = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); parent = ib_device_get_by_index(sock_net(skb->sk), parentid); if (!parent) return -EINVAL; ret = ib_add_sub_device(parent, type, name); ib_device_put(parent); return ret; } static int nldev_deldev(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *tb[RDMA_NLDEV_ATTR_MAX]; struct ib_device *device; u32 devid; int ret; ret = nlmsg_parse(nlh, 0, tb, RDMA_NLDEV_ATTR_MAX - 1, nldev_policy, extack); if (ret || !tb[RDMA_NLDEV_ATTR_DEV_INDEX]) return -EINVAL; devid = nla_get_u32(tb[RDMA_NLDEV_ATTR_DEV_INDEX]); device = ib_device_get_by_index(sock_net(skb->sk), devid); if (!device) return -EINVAL; return ib_del_sub_device_and_put(device); } static const struct rdma_nl_cbs nldev_cb_table[RDMA_NLDEV_NUM_OPS] = { [RDMA_NLDEV_CMD_GET] = { .doit = nldev_get_doit, .dump = nldev_get_dumpit, }, [RDMA_NLDEV_CMD_GET_CHARDEV] = { .doit = nldev_get_chardev, }, [RDMA_NLDEV_CMD_SET] = { .doit = nldev_set_doit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_NEWLINK] = { .doit = nldev_newlink, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_DELLINK] = { .doit = nldev_dellink, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_PORT_GET] = { .doit = nldev_port_get_doit, .dump = nldev_port_get_dumpit, }, [RDMA_NLDEV_CMD_RES_GET] = { .doit = nldev_res_get_doit, .dump = nldev_res_get_dumpit, }, [RDMA_NLDEV_CMD_RES_QP_GET] = { .doit = nldev_res_get_qp_doit, .dump = nldev_res_get_qp_dumpit, }, [RDMA_NLDEV_CMD_RES_CM_ID_GET] = { .doit = nldev_res_get_cm_id_doit, .dump = nldev_res_get_cm_id_dumpit, }, [RDMA_NLDEV_CMD_RES_CQ_GET] = { .doit = nldev_res_get_cq_doit, .dump = nldev_res_get_cq_dumpit, }, [RDMA_NLDEV_CMD_RES_MR_GET] = { .doit = nldev_res_get_mr_doit, .dump = nldev_res_get_mr_dumpit, }, [RDMA_NLDEV_CMD_RES_PD_GET] = { .doit = nldev_res_get_pd_doit, .dump = nldev_res_get_pd_dumpit, }, [RDMA_NLDEV_CMD_RES_CTX_GET] = { .doit = nldev_res_get_ctx_doit, .dump = nldev_res_get_ctx_dumpit, }, [RDMA_NLDEV_CMD_RES_SRQ_GET] = { .doit = nldev_res_get_srq_doit, .dump = nldev_res_get_srq_dumpit, }, [RDMA_NLDEV_CMD_SYS_GET] = { .doit = nldev_sys_get_doit, }, [RDMA_NLDEV_CMD_SYS_SET] = { .doit = nldev_set_sys_set_doit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_STAT_SET] = { .doit = nldev_stat_set_doit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_STAT_GET] = { .doit = nldev_stat_get_doit, .dump = nldev_stat_get_dumpit, }, [RDMA_NLDEV_CMD_STAT_DEL] = { .doit = nldev_stat_del_doit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_RES_QP_GET_RAW] = { .doit = nldev_res_get_qp_raw_doit, .dump = nldev_res_get_qp_raw_dumpit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_RES_CQ_GET_RAW] = { .doit = nldev_res_get_cq_raw_doit, .dump = nldev_res_get_cq_raw_dumpit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_RES_MR_GET_RAW] = { .doit = nldev_res_get_mr_raw_doit, .dump = nldev_res_get_mr_raw_dumpit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_RES_SRQ_GET_RAW] = { .doit = nldev_res_get_srq_raw_doit, .dump = nldev_res_get_srq_raw_dumpit, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_STAT_GET_STATUS] = { .doit = nldev_stat_get_counter_status_doit, }, [RDMA_NLDEV_CMD_NEWDEV] = { .doit = nldev_newdev, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NLDEV_CMD_DELDEV] = { .doit = nldev_deldev, .flags = RDMA_NL_ADMIN_PERM, }, }; static int fill_mon_netdev_rename(struct sk_buff *msg, struct ib_device *device, u32 port, const struct net *net) { struct net_device *netdev = ib_device_get_netdev(device, port); int ret = 0; if (!netdev || !net_eq(dev_net(netdev), net)) goto out; ret = nla_put_u32(msg, RDMA_NLDEV_ATTR_NDEV_INDEX, netdev->ifindex); if (ret) goto out; ret = nla_put_string(msg, RDMA_NLDEV_ATTR_NDEV_NAME, netdev->name); out: dev_put(netdev); return ret; } static int fill_mon_netdev_association(struct sk_buff *msg, struct ib_device *device, u32 port, const struct net *net) { struct net_device *netdev = ib_device_get_netdev(device, port); int ret = 0; if (netdev && !net_eq(dev_net(netdev), net)) goto out; ret = nla_put_u32(msg, RDMA_NLDEV_ATTR_DEV_INDEX, device->index); if (ret) goto out; ret = nla_put_string(msg, RDMA_NLDEV_ATTR_DEV_NAME, dev_name(&device->dev)); if (ret) goto out; ret = nla_put_u32(msg, RDMA_NLDEV_ATTR_PORT_INDEX, port); if (ret) goto out; if (netdev) { ret = nla_put_u32(msg, RDMA_NLDEV_ATTR_NDEV_INDEX, netdev->ifindex); if (ret) goto out; ret = nla_put_string(msg, RDMA_NLDEV_ATTR_NDEV_NAME, netdev->name); } out: dev_put(netdev); return ret; } static void rdma_nl_notify_err_msg(struct ib_device *device, u32 port_num, enum rdma_nl_notify_event_type type) { struct net_device *netdev; switch (type) { case RDMA_REGISTER_EVENT: dev_warn_ratelimited(&device->dev, "Failed to send RDMA monitor register device event\n"); break; case RDMA_UNREGISTER_EVENT: dev_warn_ratelimited(&device->dev, "Failed to send RDMA monitor unregister device event\n"); break; case RDMA_NETDEV_ATTACH_EVENT: netdev = ib_device_get_netdev(device, port_num); dev_warn_ratelimited(&device->dev, "Failed to send RDMA monitor netdev attach event: port %d netdev %d\n", port_num, netdev->ifindex); dev_put(netdev); break; case RDMA_NETDEV_DETACH_EVENT: dev_warn_ratelimited(&device->dev, "Failed to send RDMA monitor netdev detach event: port %d\n", port_num); break; case RDMA_RENAME_EVENT: dev_warn_ratelimited(&device->dev, "Failed to send RDMA monitor rename device event\n"); break; case RDMA_NETDEV_RENAME_EVENT: netdev = ib_device_get_netdev(device, port_num); dev_warn_ratelimited(&device->dev, "Failed to send RDMA monitor netdev rename event: port %d netdev %d\n", port_num, netdev->ifindex); dev_put(netdev); break; default: break; } } int rdma_nl_notify_event(struct ib_device *device, u32 port_num, enum rdma_nl_notify_event_type type) { struct sk_buff *skb; struct net *net; int ret = 0; void *nlh; net = read_pnet(&device->coredev.rdma_net); if (!net) return -EINVAL; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; nlh = nlmsg_put(skb, 0, 0, RDMA_NL_GET_TYPE(RDMA_NL_NLDEV, RDMA_NLDEV_CMD_MONITOR), 0, 0); if (!nlh) goto err_free; switch (type) { case RDMA_REGISTER_EVENT: case RDMA_UNREGISTER_EVENT: case RDMA_RENAME_EVENT: ret = fill_nldev_handle(skb, device); if (ret) goto err_free; break; case RDMA_NETDEV_ATTACH_EVENT: case RDMA_NETDEV_DETACH_EVENT: ret = fill_mon_netdev_association(skb, device, port_num, net); if (ret) goto err_free; break; case RDMA_NETDEV_RENAME_EVENT: ret = fill_mon_netdev_rename(skb, device, port_num, net); if (ret) goto err_free; break; default: break; } ret = nla_put_u8(skb, RDMA_NLDEV_ATTR_EVENT_TYPE, type); if (ret) goto err_free; nlmsg_end(skb, nlh); ret = rdma_nl_multicast(net, skb, RDMA_NL_GROUP_NOTIFY, GFP_KERNEL); if (ret && ret != -ESRCH) { skb = NULL; /* skb is freed in the netlink send-op handling */ goto err_free; } return 0; err_free: rdma_nl_notify_err_msg(device, port_num, type); nlmsg_free(skb); return ret; } void __init nldev_init(void) { rdma_nl_register(RDMA_NL_NLDEV, nldev_cb_table); } void nldev_exit(void) { rdma_nl_unregister(RDMA_NL_NLDEV); } MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_NLDEV, 5); |
1 46 45 45 14 15 15 219 217 179 6 4 2 3 3 16 8 1 7 1 7 12 3 1 1 2 5 416 2 2 134 4 136 137 135 135 144 8 4 101 41 2 1 2 2 2 2 231 229 223 229 13 80 80 79 26 3 5 15 3 7 5 4 4 4 4 7 2 4 1 4 4 6 6 6 5 1 1 2 2 193 9 21 162 5 51 1 51 4 52 52 45 7 2 1 2 2 1 1 1 1 17 1 1 8 7 2 1 1 10 3 10 5 5 3 1 2 1 1 6 3 1 2 1 2 1 2 2 1150 1330 1160 1333 87 88 2 223 7 3 26 189 4 1 1 2 2 2 1 1 2 3 1 2 1 1 2 1 1 1 1 1 1 5 174 36 3 1 2 1 1 5 4 1 2 2 1 1 1 1 2 5 12 8 1 10 1 33 1 3 1 7 1 8 3 2 1 1 3 1 1 1 1 1 3 1 4 7 5 1 1 3 1 1 3 2 5 1 1 1 1 178 171 4 4 3 2 2 1 122 1 122 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 4 1 1 2 1 1 1 15 5 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 63 660 412 267 660 312 355 657 147 272 661 267 411 418 415 409 410 1 415 409 418 414 228 186 418 1 75 416 476 214 270 479 1 478 534 628 659 662 660 660 406 266 93 169 259 274 153 121 9 269 264 9 16 262 263 2049 200 1564 400 402 407 401 406 1 1569 1738 97 96 2058 2059 2065 1 2057 2061 67 15 67 54 8396 8378 64 65 4 4 532 532 2 108 107 108 50 50 2 49 10 20 3 20 636 4 634 127 324 320 324 126 127 11 9 6 3 885 880 888 6 17 6 1 11 3 880 17 7 3 1 2 1 1 2 1 1 5 2 1 1 11 6 2 4 6 86 132 1092 1048 63 63 47 1055 121 123 214 211 208 347 350 303 306 103 16 15 33 34 34 30 205 205 203 204 206 207 206 210 210 212 210 189 70 1 1 8 23 2 1 1 1 1 1 2 4 3 1 300 301 300 217 98 297 213 215 213 198 34 213 213 8003 8056 8007 7995 7906 197 8001 8001 417 418 2 422 414 9 423 417 9 400 397 7 405 210 19 1 16 2 215 79 191 198 175 98 1 1 659 442 224 657 434 227 13192 13195 208 13191 13173 297 11510 1872 13200 13198 111 108 5 6 6 5 1 1 2 3 3 59 8 5 2 1 3 1087 45 21 28 2024 122 12 111 123 120 50 50 7 4 1 1 2 1 7 3 3 5 2 81 35 129 100 9 19 89 13 29 116 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 | // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic socket support routines. Memory allocators, socket lock/release * handler for protocols to use and generic option handler. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Florian La Roche, <flla@stud.uni-sb.de> * Alan Cox, <A.Cox@swansea.ac.uk> * * Fixes: * Alan Cox : Numerous verify_area() problems * Alan Cox : Connecting on a connecting socket * now returns an error for tcp. * Alan Cox : sock->protocol is set correctly. * and is not sometimes left as 0. * Alan Cox : connect handles icmp errors on a * connect properly. Unfortunately there * is a restart syscall nasty there. I * can't match BSD without hacking the C * library. Ideas urgently sought! * Alan Cox : Disallow bind() to addresses that are * not ours - especially broadcast ones!! * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, * instead they leave that for the DESTROY timer. * Alan Cox : Clean up error flag in accept * Alan Cox : TCP ack handling is buggy, the DESTROY timer * was buggy. Put a remove_sock() in the handler * for memory when we hit 0. Also altered the timer * code. The ACK stuff can wait and needs major * TCP layer surgery. * Alan Cox : Fixed TCP ack bug, removed remove sock * and fixed timer/inet_bh race. * Alan Cox : Added zapped flag for TCP * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... * Rick Sladkey : Relaxed UDP rules for matching packets. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support * Pauline Middelink : identd support * Alan Cox : Fixed connect() taking signals I think. * Alan Cox : SO_LINGER supported * Alan Cox : Error reporting fixes * Anonymous : inet_create tidied up (sk->reuse setting) * Alan Cox : inet sockets don't set sk->type! * Alan Cox : Split socket option code * Alan Cox : Callbacks * Alan Cox : Nagle flag for Charles & Johannes stuff * Alex : Removed restriction on inet fioctl * Alan Cox : Splitting INET from NET core * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code * Alan Cox : Split IP from generic code * Alan Cox : New kfree_skbmem() * Alan Cox : Make SO_DEBUG superuser only. * Alan Cox : Allow anyone to clear SO_DEBUG * (compatibility fix) * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. * Alan Cox : Allocator for a socket is settable. * Alan Cox : SO_ERROR includes soft errors. * Alan Cox : Allow NULL arguments on some SO_ opts * Alan Cox : Generic socket allocation to make hooks * easier (suggested by Craig Metz). * Michael Pall : SO_ERROR returns positive errno again * Steve Whitehouse: Added default destructor to free * protocol private data. * Steve Whitehouse: Added various other default routines * common to several socket families. * Chris Evans : Call suser() check last on F_SETOWN * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() * Andi Kleen : Fix write_space callback * Chris Evans : Security fixes - signedness again * Arnaldo C. Melo : cleanups, use skb_queue_purge * * To Fix: */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/unaligned.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/errqueue.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/poll.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/user_namespace.h> #include <linux/static_key.h> #include <linux/memcontrol.h> #include <linux/prefetch.h> #include <linux/compat.h> #include <linux/mroute.h> #include <linux/mroute6.h> #include <linux/icmpv6.h> #include <linux/uaccess.h> #include <linux/netdevice.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <linux/skbuff_ref.h> #include <net/net_namespace.h> #include <net/request_sock.h> #include <net/sock.h> #include <net/proto_memory.h> #include <linux/net_tstamp.h> #include <net/xfrm.h> #include <linux/ipsec.h> #include <net/cls_cgroup.h> #include <net/netprio_cgroup.h> #include <linux/sock_diag.h> #include <linux/filter.h> #include <net/sock_reuseport.h> #include <net/bpf_sk_storage.h> #include <trace/events/sock.h> #include <net/tcp.h> #include <net/busy_poll.h> #include <net/phonet/phonet.h> #include <linux/ethtool.h> #include "dev.h" static DEFINE_MUTEX(proto_list_mutex); static LIST_HEAD(proto_list); static void sock_def_write_space_wfree(struct sock *sk); static void sock_def_write_space(struct sock *sk); /** * sk_ns_capable - General socket capability test * @sk: Socket to use a capability on or through * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket had when the socket was * created and the current process has the capability @cap in the user * namespace @user_ns. */ bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap) { return file_ns_capable(sk->sk_socket->file, user_ns, cap) && ns_capable(user_ns, cap); } EXPORT_SYMBOL(sk_ns_capable); /** * sk_capable - Socket global capability test * @sk: Socket to use a capability on or through * @cap: The global capability to use * * Test to see if the opener of the socket had when the socket was * created and the current process has the capability @cap in all user * namespaces. */ bool sk_capable(const struct sock *sk, int cap) { return sk_ns_capable(sk, &init_user_ns, cap); } EXPORT_SYMBOL(sk_capable); /** * sk_net_capable - Network namespace socket capability test * @sk: Socket to use a capability on or through * @cap: The capability to use * * Test to see if the opener of the socket had when the socket was created * and the current process has the capability @cap over the network namespace * the socket is a member of. */ bool sk_net_capable(const struct sock *sk, int cap) { return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); } EXPORT_SYMBOL(sk_net_capable); /* * Each address family might have different locking rules, so we have * one slock key per address family and separate keys for internal and * userspace sockets. */ static struct lock_class_key af_family_keys[AF_MAX]; static struct lock_class_key af_family_kern_keys[AF_MAX]; static struct lock_class_key af_family_slock_keys[AF_MAX]; static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; /* * Make lock validator output more readable. (we pre-construct these * strings build-time, so that runtime initialization of socket * locks is fast): */ #define _sock_locks(x) \ x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ x "27" , x "28" , x "AF_CAN" , \ x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ x "AF_MCTP" , \ x "AF_MAX" static const char *const af_family_key_strings[AF_MAX+1] = { _sock_locks("sk_lock-") }; static const char *const af_family_slock_key_strings[AF_MAX+1] = { _sock_locks("slock-") }; static const char *const af_family_clock_key_strings[AF_MAX+1] = { _sock_locks("clock-") }; static const char *const af_family_kern_key_strings[AF_MAX+1] = { _sock_locks("k-sk_lock-") }; static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { _sock_locks("k-slock-") }; static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { _sock_locks("k-clock-") }; static const char *const af_family_rlock_key_strings[AF_MAX+1] = { _sock_locks("rlock-") }; static const char *const af_family_wlock_key_strings[AF_MAX+1] = { _sock_locks("wlock-") }; static const char *const af_family_elock_key_strings[AF_MAX+1] = { _sock_locks("elock-") }; /* * sk_callback_lock and sk queues locking rules are per-address-family, * so split the lock classes by using a per-AF key: */ static struct lock_class_key af_callback_keys[AF_MAX]; static struct lock_class_key af_rlock_keys[AF_MAX]; static struct lock_class_key af_wlock_keys[AF_MAX]; static struct lock_class_key af_elock_keys[AF_MAX]; static struct lock_class_key af_kern_callback_keys[AF_MAX]; /* Run time adjustable parameters. */ __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; EXPORT_SYMBOL(sysctl_wmem_max); __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; EXPORT_SYMBOL(sysctl_rmem_max); __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); EXPORT_SYMBOL_GPL(memalloc_socks_key); /** * sk_set_memalloc - sets %SOCK_MEMALLOC * @sk: socket to set it on * * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. * It's the responsibility of the admin to adjust min_free_kbytes * to meet the requirements */ void sk_set_memalloc(struct sock *sk) { sock_set_flag(sk, SOCK_MEMALLOC); sk->sk_allocation |= __GFP_MEMALLOC; static_branch_inc(&memalloc_socks_key); } EXPORT_SYMBOL_GPL(sk_set_memalloc); void sk_clear_memalloc(struct sock *sk) { sock_reset_flag(sk, SOCK_MEMALLOC); sk->sk_allocation &= ~__GFP_MEMALLOC; static_branch_dec(&memalloc_socks_key); /* * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward * progress of swapping. SOCK_MEMALLOC may be cleared while * it has rmem allocations due to the last swapfile being deactivated * but there is a risk that the socket is unusable due to exceeding * the rmem limits. Reclaim the reserves and obey rmem limits again. */ sk_mem_reclaim(sk); } EXPORT_SYMBOL_GPL(sk_clear_memalloc); int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { int ret; unsigned int noreclaim_flag; /* these should have been dropped before queueing */ BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); noreclaim_flag = memalloc_noreclaim_save(); ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, tcp_v6_do_rcv, tcp_v4_do_rcv, sk, skb); memalloc_noreclaim_restore(noreclaim_flag); return ret; } EXPORT_SYMBOL(__sk_backlog_rcv); void sk_error_report(struct sock *sk) { sk->sk_error_report(sk); switch (sk->sk_family) { case AF_INET: fallthrough; case AF_INET6: trace_inet_sk_error_report(sk); break; default: break; } } EXPORT_SYMBOL(sk_error_report); int sock_get_timeout(long timeo, void *optval, bool old_timeval) { struct __kernel_sock_timeval tv; if (timeo == MAX_SCHEDULE_TIMEOUT) { tv.tv_sec = 0; tv.tv_usec = 0; } else { tv.tv_sec = timeo / HZ; tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; } if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; *(struct old_timeval32 *)optval = tv32; return sizeof(tv32); } if (old_timeval) { struct __kernel_old_timeval old_tv; old_tv.tv_sec = tv.tv_sec; old_tv.tv_usec = tv.tv_usec; *(struct __kernel_old_timeval *)optval = old_tv; return sizeof(old_tv); } *(struct __kernel_sock_timeval *)optval = tv; return sizeof(tv); } EXPORT_SYMBOL(sock_get_timeout); int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, sockptr_t optval, int optlen, bool old_timeval) { if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { struct old_timeval32 tv32; if (optlen < sizeof(tv32)) return -EINVAL; if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) return -EFAULT; tv->tv_sec = tv32.tv_sec; tv->tv_usec = tv32.tv_usec; } else if (old_timeval) { struct __kernel_old_timeval old_tv; if (optlen < sizeof(old_tv)) return -EINVAL; if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) return -EFAULT; tv->tv_sec = old_tv.tv_sec; tv->tv_usec = old_tv.tv_usec; } else { if (optlen < sizeof(*tv)) return -EINVAL; if (copy_from_sockptr(tv, optval, sizeof(*tv))) return -EFAULT; } return 0; } EXPORT_SYMBOL(sock_copy_user_timeval); static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, bool old_timeval) { struct __kernel_sock_timeval tv; int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); long val; if (err) return err; if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) return -EDOM; if (tv.tv_sec < 0) { static int warned __read_mostly; WRITE_ONCE(*timeo_p, 0); if (warned < 10 && net_ratelimit()) { warned++; pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", __func__, current->comm, task_pid_nr(current)); } return 0; } val = MAX_SCHEDULE_TIMEOUT; if ((tv.tv_sec || tv.tv_usec) && (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); WRITE_ONCE(*timeo_p, val); return 0; } static bool sock_needs_netstamp(const struct sock *sk) { switch (sk->sk_family) { case AF_UNSPEC: case AF_UNIX: return false; default: return true; } } static void sock_disable_timestamp(struct sock *sk, unsigned long flags) { if (sk->sk_flags & flags) { sk->sk_flags &= ~flags; if (sock_needs_netstamp(sk) && !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) net_disable_timestamp(); } } int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { unsigned long flags; struct sk_buff_head *list = &sk->sk_receive_queue; if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { atomic_inc(&sk->sk_drops); trace_sock_rcvqueue_full(sk, skb); return -ENOMEM; } if (!sk_rmem_schedule(sk, skb, skb->truesize)) { atomic_inc(&sk->sk_drops); return -ENOBUFS; } skb->dev = NULL; skb_set_owner_r(skb, sk); /* we escape from rcu protected region, make sure we dont leak * a norefcounted dst */ skb_dst_force(skb); spin_lock_irqsave(&list->lock, flags); sock_skb_set_dropcount(sk, skb); __skb_queue_tail(list, skb); spin_unlock_irqrestore(&list->lock, flags); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return 0; } EXPORT_SYMBOL(__sock_queue_rcv_skb); int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason) { enum skb_drop_reason drop_reason; int err; err = sk_filter(sk, skb); if (err) { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; goto out; } err = __sock_queue_rcv_skb(sk, skb); switch (err) { case -ENOMEM: drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; break; case -ENOBUFS: drop_reason = SKB_DROP_REASON_PROTO_MEM; break; default: drop_reason = SKB_NOT_DROPPED_YET; break; } out: if (reason) *reason = drop_reason; return err; } EXPORT_SYMBOL(sock_queue_rcv_skb_reason); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted) { int rc = NET_RX_SUCCESS; if (sk_filter_trim_cap(sk, skb, trim_cap)) goto discard_and_relse; skb->dev = NULL; if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { atomic_inc(&sk->sk_drops); goto discard_and_relse; } if (nested) bh_lock_sock_nested(sk); else bh_lock_sock(sk); if (!sock_owned_by_user(sk)) { /* * trylock + unlock semantics: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); rc = sk_backlog_rcv(sk, skb); mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { bh_unlock_sock(sk); atomic_inc(&sk->sk_drops); goto discard_and_relse; } bh_unlock_sock(sk); out: if (refcounted) sock_put(sk); return rc; discard_and_relse: kfree_skb(skb); goto out; } EXPORT_SYMBOL(__sk_receive_skb); INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, u32)); INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, u32)); struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst->obsolete && INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, dst, cookie) == NULL) { sk_tx_queue_clear(sk); WRITE_ONCE(sk->sk_dst_pending_confirm, 0); RCU_INIT_POINTER(sk->sk_dst_cache, NULL); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(__sk_dst_check); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = sk_dst_get(sk); if (dst && dst->obsolete && INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, dst, cookie) == NULL) { sk_dst_reset(sk); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(sk_dst_check); static int sock_bindtoindex_locked(struct sock *sk, int ifindex) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); /* Sorry... */ ret = -EPERM; if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) goto out; ret = -EINVAL; if (ifindex < 0) goto out; /* Paired with all READ_ONCE() done locklessly. */ WRITE_ONCE(sk->sk_bound_dev_if, ifindex); if (sk->sk_prot->rehash) sk->sk_prot->rehash(sk); sk_dst_reset(sk); ret = 0; out: #endif return ret; } int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) { int ret; if (lock_sk) lock_sock(sk); ret = sock_bindtoindex_locked(sk, ifindex); if (lock_sk) release_sock(sk); return ret; } EXPORT_SYMBOL(sock_bindtoindex); static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); char devname[IFNAMSIZ]; int index; ret = -EINVAL; if (optlen < 0) goto out; /* Bind this socket to a particular device like "eth0", * as specified in the passed interface name. If the * name is "" or the option length is zero the socket * is not bound. */ if (optlen > IFNAMSIZ - 1) optlen = IFNAMSIZ - 1; memset(devname, 0, sizeof(devname)); ret = -EFAULT; if (copy_from_sockptr(devname, optval, optlen)) goto out; index = 0; if (devname[0] != '\0') { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_name_rcu(net, devname); if (dev) index = dev->ifindex; rcu_read_unlock(); ret = -ENODEV; if (!dev) goto out; } sockopt_lock_sock(sk); ret = sock_bindtoindex_locked(sk, index); sockopt_release_sock(sk); out: #endif return ret; } static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); struct net *net = sock_net(sk); char devname[IFNAMSIZ]; if (bound_dev_if == 0) { len = 0; goto zero; } ret = -EINVAL; if (len < IFNAMSIZ) goto out; ret = netdev_get_name(net, devname, bound_dev_if); if (ret) goto out; len = strlen(devname) + 1; ret = -EFAULT; if (copy_to_sockptr(optval, devname, len)) goto out; zero: ret = -EFAULT; if (copy_to_sockptr(optlen, &len, sizeof(int))) goto out; ret = 0; out: #endif return ret; } bool sk_mc_loop(const struct sock *sk) { if (dev_recursion_level()) return false; if (!sk) return true; /* IPV6_ADDRFORM can change sk->sk_family under us. */ switch (READ_ONCE(sk->sk_family)) { case AF_INET: return inet_test_bit(MC_LOOP, sk); #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return inet6_test_bit(MC6_LOOP, sk); #endif } WARN_ON_ONCE(1); return true; } EXPORT_SYMBOL(sk_mc_loop); void sock_set_reuseaddr(struct sock *sk) { lock_sock(sk); sk->sk_reuse = SK_CAN_REUSE; release_sock(sk); } EXPORT_SYMBOL(sock_set_reuseaddr); void sock_set_reuseport(struct sock *sk) { lock_sock(sk); sk->sk_reuseport = true; release_sock(sk); } EXPORT_SYMBOL(sock_set_reuseport); void sock_no_linger(struct sock *sk) { lock_sock(sk); WRITE_ONCE(sk->sk_lingertime, 0); sock_set_flag(sk, SOCK_LINGER); release_sock(sk); } EXPORT_SYMBOL(sock_no_linger); void sock_set_priority(struct sock *sk, u32 priority) { WRITE_ONCE(sk->sk_priority, priority); } EXPORT_SYMBOL(sock_set_priority); void sock_set_sndtimeo(struct sock *sk, s64 secs) { lock_sock(sk); if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); else WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); release_sock(sk); } EXPORT_SYMBOL(sock_set_sndtimeo); static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) { sock_valbool_flag(sk, SOCK_RCVTSTAMP, val); sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns); if (val) { sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); sock_enable_timestamp(sk, SOCK_TIMESTAMP); } } void sock_enable_timestamps(struct sock *sk) { lock_sock(sk); __sock_set_timestamps(sk, true, false, true); release_sock(sk); } EXPORT_SYMBOL(sock_enable_timestamps); void sock_set_timestamp(struct sock *sk, int optname, bool valbool) { switch (optname) { case SO_TIMESTAMP_OLD: __sock_set_timestamps(sk, valbool, false, false); break; case SO_TIMESTAMP_NEW: __sock_set_timestamps(sk, valbool, true, false); break; case SO_TIMESTAMPNS_OLD: __sock_set_timestamps(sk, valbool, false, true); break; case SO_TIMESTAMPNS_NEW: __sock_set_timestamps(sk, valbool, true, true); break; } } static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) { struct net *net = sock_net(sk); struct net_device *dev = NULL; bool match = false; int *vclock_index; int i, num; if (sk->sk_bound_dev_if) dev = dev_get_by_index(net, sk->sk_bound_dev_if); if (!dev) { pr_err("%s: sock not bind to device\n", __func__); return -EOPNOTSUPP; } num = ethtool_get_phc_vclocks(dev, &vclock_index); dev_put(dev); for (i = 0; i < num; i++) { if (*(vclock_index + i) == phc_index) { match = true; break; } } if (num > 0) kfree(vclock_index); if (!match) return -EINVAL; WRITE_ONCE(sk->sk_bind_phc, phc_index); return 0; } int sock_set_timestamping(struct sock *sk, int optname, struct so_timestamping timestamping) { int val = timestamping.flags; int ret; if (val & ~SOF_TIMESTAMPING_MASK) return -EINVAL; if (val & SOF_TIMESTAMPING_OPT_ID_TCP && !(val & SOF_TIMESTAMPING_OPT_ID)) return -EINVAL; if (val & SOF_TIMESTAMPING_OPT_ID && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { if (sk_is_tcp(sk)) { if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) return -EINVAL; if (val & SOF_TIMESTAMPING_OPT_ID_TCP) atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); else atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); } else { atomic_set(&sk->sk_tskey, 0); } } if (val & SOF_TIMESTAMPING_OPT_STATS && !(val & SOF_TIMESTAMPING_OPT_TSONLY)) return -EINVAL; if (val & SOF_TIMESTAMPING_BIND_PHC) { ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); if (ret) return ret; } WRITE_ONCE(sk->sk_tsflags, val); sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); if (val & SOF_TIMESTAMPING_RX_SOFTWARE) sock_enable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); else sock_disable_timestamp(sk, (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); return 0; } void sock_set_keepalive(struct sock *sk) { lock_sock(sk); if (sk->sk_prot->keepalive) sk->sk_prot->keepalive(sk, true); sock_valbool_flag(sk, SOCK_KEEPOPEN, true); release_sock(sk); } EXPORT_SYMBOL(sock_set_keepalive); static void __sock_set_rcvbuf(struct sock *sk, int val) { /* Ensure val * 2 fits into an int, to prevent max_t() from treating it * as a negative value. */ val = min_t(int, val, INT_MAX / 2); sk->sk_userlocks |= SOCK_RCVBUF_LOCK; /* We double it on the way in to account for "struct sk_buff" etc. * overhead. Applications assume that the SO_RCVBUF setting they make * will allow that much actual data to be received on that socket. * * Applications are unaware that "struct sk_buff" and other overheads * allocate from the receive buffer during socket buffer allocation. * * And after considering the possible alternatives, returning the value * we actually used in getsockopt is the most desirable behavior. */ WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); } void sock_set_rcvbuf(struct sock *sk, int val) { lock_sock(sk); __sock_set_rcvbuf(sk, val); release_sock(sk); } EXPORT_SYMBOL(sock_set_rcvbuf); static void __sock_set_mark(struct sock *sk, u32 val) { if (val != sk->sk_mark) { WRITE_ONCE(sk->sk_mark, val); sk_dst_reset(sk); } } void sock_set_mark(struct sock *sk, u32 val) { lock_sock(sk); __sock_set_mark(sk, val); release_sock(sk); } EXPORT_SYMBOL(sock_set_mark); static void sock_release_reserved_memory(struct sock *sk, int bytes) { /* Round down bytes to multiple of pages */ bytes = round_down(bytes, PAGE_SIZE); WARN_ON(bytes > sk->sk_reserved_mem); WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); sk_mem_reclaim(sk); } static int sock_reserve_memory(struct sock *sk, int bytes) { long allocated; bool charged; int pages; if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) return -EOPNOTSUPP; if (!bytes) return 0; pages = sk_mem_pages(bytes); /* pre-charge to memcg */ charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, GFP_KERNEL | __GFP_RETRY_MAYFAIL); if (!charged) return -ENOMEM; /* pre-charge to forward_alloc */ sk_memory_allocated_add(sk, pages); allocated = sk_memory_allocated(sk); /* If the system goes into memory pressure with this * precharge, give up and return error. */ if (allocated > sk_prot_mem_limits(sk, 1)) { sk_memory_allocated_sub(sk, pages); mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); return -ENOMEM; } sk_forward_alloc_add(sk, pages << PAGE_SHIFT); WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem + (pages << PAGE_SHIFT)); return 0; } #ifdef CONFIG_PAGE_POOL /* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED * in 1 syscall. The limit exists to limit the amount of memory the kernel * allocates to copy these tokens, and to prevent looping over the frags for * too long. */ #define MAX_DONTNEED_TOKENS 128 #define MAX_DONTNEED_FRAGS 1024 static noinline_for_stack int sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) { unsigned int num_tokens, i, j, k, netmem_num = 0; struct dmabuf_token *tokens; int ret = 0, num_frags = 0; netmem_ref netmems[16]; if (!sk_is_tcp(sk)) return -EBADF; if (optlen % sizeof(*tokens) || optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) return -EINVAL; num_tokens = optlen / sizeof(*tokens); tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL); if (!tokens) return -ENOMEM; if (copy_from_sockptr(tokens, optval, optlen)) { kvfree(tokens); return -EFAULT; } xa_lock_bh(&sk->sk_user_frags); for (i = 0; i < num_tokens; i++) { for (j = 0; j < tokens[i].token_count; j++) { if (++num_frags > MAX_DONTNEED_FRAGS) goto frag_limit_reached; netmem_ref netmem = (__force netmem_ref)__xa_erase( &sk->sk_user_frags, tokens[i].token_start + j); if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem))) continue; netmems[netmem_num++] = netmem; if (netmem_num == ARRAY_SIZE(netmems)) { xa_unlock_bh(&sk->sk_user_frags); for (k = 0; k < netmem_num; k++) WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); netmem_num = 0; xa_lock_bh(&sk->sk_user_frags); } ret++; } } frag_limit_reached: xa_unlock_bh(&sk->sk_user_frags); for (k = 0; k < netmem_num; k++) WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); kvfree(tokens); return ret; } #endif void sockopt_lock_sock(struct sock *sk) { /* When current->bpf_ctx is set, the setsockopt is called from * a bpf prog. bpf has ensured the sk lock has been * acquired before calling setsockopt(). */ if (has_current_bpf_ctx()) return; lock_sock(sk); } EXPORT_SYMBOL(sockopt_lock_sock); void sockopt_release_sock(struct sock *sk) { if (has_current_bpf_ctx()) return; release_sock(sk); } EXPORT_SYMBOL(sockopt_release_sock); bool sockopt_ns_capable(struct user_namespace *ns, int cap) { return has_current_bpf_ctx() || ns_capable(ns, cap); } EXPORT_SYMBOL(sockopt_ns_capable); bool sockopt_capable(int cap) { return has_current_bpf_ctx() || capable(cap); } EXPORT_SYMBOL(sockopt_capable); static int sockopt_validate_clockid(__kernel_clockid_t value) { switch (value) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_TAI: return 0; } return -EINVAL; } /* * This is meant for all protocols to use and covers goings on * at the socket level. Everything here is generic. */ int sk_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct so_timestamping timestamping; struct socket *sock = sk->sk_socket; struct sock_txtime sk_txtime; int val; int valbool; struct linger ling; int ret = 0; /* * Options without arguments */ if (optname == SO_BINDTODEVICE) return sock_setbindtodevice(sk, optval, optlen); if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; valbool = val ? 1 : 0; /* handle options which do not require locking the socket. */ switch (optname) { case SO_PRIORITY: if ((val >= 0 && val <= 6) || sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { sock_set_priority(sk, val); return 0; } return -EPERM; case SO_PASSSEC: assign_bit(SOCK_PASSSEC, &sock->flags, valbool); return 0; case SO_PASSCRED: assign_bit(SOCK_PASSCRED, &sock->flags, valbool); return 0; case SO_PASSPIDFD: assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); return 0; case SO_TYPE: case SO_PROTOCOL: case SO_DOMAIN: case SO_ERROR: return -ENOPROTOOPT; #ifdef CONFIG_NET_RX_BUSY_POLL case SO_BUSY_POLL: if (val < 0) return -EINVAL; WRITE_ONCE(sk->sk_ll_usec, val); return 0; case SO_PREFER_BUSY_POLL: if (valbool && !sockopt_capable(CAP_NET_ADMIN)) return -EPERM; WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); return 0; case SO_BUSY_POLL_BUDGET: if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) return -EPERM; if (val < 0 || val > U16_MAX) return -EINVAL; WRITE_ONCE(sk->sk_busy_poll_budget, val); return 0; #endif case SO_MAX_PACING_RATE: { unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; unsigned long pacing_rate; if (sizeof(ulval) != sizeof(val) && optlen >= sizeof(ulval) && copy_from_sockptr(&ulval, optval, sizeof(ulval))) { return -EFAULT; } if (ulval != ~0UL) cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED); /* Pairs with READ_ONCE() from sk_getsockopt() */ WRITE_ONCE(sk->sk_max_pacing_rate, ulval); pacing_rate = READ_ONCE(sk->sk_pacing_rate); if (ulval < pacing_rate) WRITE_ONCE(sk->sk_pacing_rate, ulval); return 0; } case SO_TXREHASH: if (val < -1 || val > 1) return -EINVAL; if ((u8)val == SOCK_TXREHASH_DEFAULT) val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); /* Paired with READ_ONCE() in tcp_rtx_synack() * and sk_getsockopt(). */ WRITE_ONCE(sk->sk_txrehash, (u8)val); return 0; case SO_PEEK_OFF: { int (*set_peek_off)(struct sock *sk, int val); set_peek_off = READ_ONCE(sock->ops)->set_peek_off; if (set_peek_off) ret = set_peek_off(sk, val); else ret = -EOPNOTSUPP; return ret; } #ifdef CONFIG_PAGE_POOL case SO_DEVMEM_DONTNEED: return sock_devmem_dontneed(sk, optval, optlen); #endif } sockopt_lock_sock(sk); switch (optname) { case SO_DEBUG: if (val && !sockopt_capable(CAP_NET_ADMIN)) ret = -EACCES; else sock_valbool_flag(sk, SOCK_DBG, valbool); break; case SO_REUSEADDR: sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); break; case SO_REUSEPORT: sk->sk_reuseport = valbool; break; case SO_DONTROUTE: sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); sk_dst_reset(sk); break; case SO_BROADCAST: sock_valbool_flag(sk, SOCK_BROADCAST, valbool); break; case SO_SNDBUF: /* Don't error on this BSD doesn't and if you think * about it this is right. Otherwise apps have to * play 'guess the biggest size' games. RCVBUF/SNDBUF * are treated in BSD as hints */ val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); set_sndbuf: /* Ensure val * 2 fits into an int, to prevent max_t() * from treating it as a negative value. */ val = min_t(int, val, INT_MAX / 2); sk->sk_userlocks |= SOCK_SNDBUF_LOCK; WRITE_ONCE(sk->sk_sndbuf, max_t(int, val * 2, SOCK_MIN_SNDBUF)); /* Wake up sending tasks if we upped the value. */ sk->sk_write_space(sk); break; case SO_SNDBUFFORCE: if (!sockopt_capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } /* No negative values (to prevent underflow, as val will be * multiplied by 2). */ if (val < 0) val = 0; goto set_sndbuf; case SO_RCVBUF: /* Don't error on this BSD doesn't and if you think * about it this is right. Otherwise apps have to * play 'guess the biggest size' games. RCVBUF/SNDBUF * are treated in BSD as hints */ __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); break; case SO_RCVBUFFORCE: if (!sockopt_capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } /* No negative values (to prevent underflow, as val will be * multiplied by 2). */ __sock_set_rcvbuf(sk, max(val, 0)); break; case SO_KEEPALIVE: if (sk->sk_prot->keepalive) sk->sk_prot->keepalive(sk, valbool); sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); break; case SO_OOBINLINE: sock_valbool_flag(sk, SOCK_URGINLINE, valbool); break; case SO_NO_CHECK: sk->sk_no_check_tx = valbool; break; case SO_LINGER: if (optlen < sizeof(ling)) { ret = -EINVAL; /* 1003.1g */ break; } if (copy_from_sockptr(&ling, optval, sizeof(ling))) { ret = -EFAULT; break; } if (!ling.l_onoff) { sock_reset_flag(sk, SOCK_LINGER); } else { unsigned long t_sec = ling.l_linger; if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); else WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); sock_set_flag(sk, SOCK_LINGER); } break; case SO_BSDCOMPAT: break; case SO_TIMESTAMP_OLD: case SO_TIMESTAMP_NEW: case SO_TIMESTAMPNS_OLD: case SO_TIMESTAMPNS_NEW: sock_set_timestamp(sk, optname, valbool); break; case SO_TIMESTAMPING_NEW: case SO_TIMESTAMPING_OLD: if (optlen == sizeof(timestamping)) { if (copy_from_sockptr(×tamping, optval, sizeof(timestamping))) { ret = -EFAULT; break; } } else { memset(×tamping, 0, sizeof(timestamping)); timestamping.flags = val; } ret = sock_set_timestamping(sk, optname, timestamping); break; case SO_RCVLOWAT: { int (*set_rcvlowat)(struct sock *sk, int val) = NULL; if (val < 0) val = INT_MAX; if (sock) set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; if (set_rcvlowat) ret = set_rcvlowat(sk, val); else WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); break; } case SO_RCVTIMEO_OLD: case SO_RCVTIMEO_NEW: ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); break; case SO_SNDTIMEO_OLD: case SO_SNDTIMEO_NEW: ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); break; case SO_ATTACH_FILTER: { struct sock_fprog fprog; ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); if (!ret) ret = sk_attach_filter(&fprog, sk); break; } case SO_ATTACH_BPF: ret = -EINVAL; if (optlen == sizeof(u32)) { u32 ufd; ret = -EFAULT; if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) break; ret = sk_attach_bpf(ufd, sk); } break; case SO_ATTACH_REUSEPORT_CBPF: { struct sock_fprog fprog; ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); if (!ret) ret = sk_reuseport_attach_filter(&fprog, sk); break; } case SO_ATTACH_REUSEPORT_EBPF: ret = -EINVAL; if (optlen == sizeof(u32)) { u32 ufd; ret = -EFAULT; if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) break; ret = sk_reuseport_attach_bpf(ufd, sk); } break; case SO_DETACH_REUSEPORT_BPF: ret = reuseport_detach_prog(sk); break; case SO_DETACH_FILTER: ret = sk_detach_filter(sk); break; case SO_LOCK_FILTER: if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) ret = -EPERM; else sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); break; case SO_MARK: if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { ret = -EPERM; break; } __sock_set_mark(sk, val); break; case SO_RCVMARK: sock_valbool_flag(sk, SOCK_RCVMARK, valbool); break; case SO_RXQ_OVFL: sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); break; case SO_WIFI_STATUS: sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); break; case SO_NOFCS: sock_valbool_flag(sk, SOCK_NOFCS, valbool); break; case SO_SELECT_ERR_QUEUE: sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); break; case SO_INCOMING_CPU: reuseport_update_incoming_cpu(sk, val); break; case SO_CNX_ADVICE: if (val == 1) dst_negative_advice(sk); break; case SO_ZEROCOPY: if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { if (!(sk_is_tcp(sk) || (sk->sk_type == SOCK_DGRAM && sk->sk_protocol == IPPROTO_UDP))) ret = -EOPNOTSUPP; } else if (sk->sk_family != PF_RDS) { ret = -EOPNOTSUPP; } if (!ret) { if (val < 0 || val > 1) ret = -EINVAL; else sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); } break; case SO_TXTIME: if (optlen != sizeof(struct sock_txtime)) { ret = -EINVAL; break; } else if (copy_from_sockptr(&sk_txtime, optval, sizeof(struct sock_txtime))) { ret = -EFAULT; break; } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { ret = -EINVAL; break; } /* CLOCK_MONOTONIC is only used by sch_fq, and this packet * scheduler has enough safe guards. */ if (sk_txtime.clockid != CLOCK_MONOTONIC && !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { ret = -EPERM; break; } ret = sockopt_validate_clockid(sk_txtime.clockid); if (ret) break; sock_valbool_flag(sk, SOCK_TXTIME, true); sk->sk_clockid = sk_txtime.clockid; sk->sk_txtime_deadline_mode = !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); sk->sk_txtime_report_errors = !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); break; case SO_BINDTOIFINDEX: ret = sock_bindtoindex_locked(sk, val); break; case SO_BUF_LOCK: if (val & ~SOCK_BUF_LOCK_MASK) { ret = -EINVAL; break; } sk->sk_userlocks = val | (sk->sk_userlocks & ~SOCK_BUF_LOCK_MASK); break; case SO_RESERVE_MEM: { int delta; if (val < 0) { ret = -EINVAL; break; } delta = val - sk->sk_reserved_mem; if (delta < 0) sock_release_reserved_memory(sk, -delta); else ret = sock_reserve_memory(sk, delta); break; } default: ret = -ENOPROTOOPT; break; } sockopt_release_sock(sk); return ret; } int sock_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { return sk_setsockopt(sock->sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_setsockopt); static const struct cred *sk_get_peer_cred(struct sock *sk) { const struct cred *cred; spin_lock(&sk->sk_peer_lock); cred = get_cred(sk->sk_peer_cred); spin_unlock(&sk->sk_peer_lock); return cred; } static void cred_to_ucred(struct pid *pid, const struct cred *cred, struct ucred *ucred) { ucred->pid = pid_vnr(pid); ucred->uid = ucred->gid = -1; if (cred) { struct user_namespace *current_ns = current_user_ns(); ucred->uid = from_kuid_munged(current_ns, cred->euid); ucred->gid = from_kgid_munged(current_ns, cred->egid); } } static int groups_to_user(sockptr_t dst, const struct group_info *src) { struct user_namespace *user_ns = current_user_ns(); int i; for (i = 0; i < src->ngroups; i++) { gid_t gid = from_kgid_munged(user_ns, src->gid[i]); if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) return -EFAULT; } return 0; } int sk_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen) { struct socket *sock = sk->sk_socket; union { int val; u64 val64; unsigned long ulval; struct linger ling; struct old_timeval32 tm32; struct __kernel_old_timeval tm; struct __kernel_sock_timeval stm; struct sock_txtime txtime; struct so_timestamping timestamping; } v; int lv = sizeof(int); int len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len < 0) return -EINVAL; memset(&v, 0, sizeof(v)); switch (optname) { case SO_DEBUG: v.val = sock_flag(sk, SOCK_DBG); break; case SO_DONTROUTE: v.val = sock_flag(sk, SOCK_LOCALROUTE); break; case SO_BROADCAST: v.val = sock_flag(sk, SOCK_BROADCAST); break; case SO_SNDBUF: v.val = READ_ONCE(sk->sk_sndbuf); break; case SO_RCVBUF: v.val = READ_ONCE(sk->sk_rcvbuf); break; case SO_REUSEADDR: v.val = sk->sk_reuse; break; case SO_REUSEPORT: v.val = sk->sk_reuseport; break; case SO_KEEPALIVE: v.val = sock_flag(sk, SOCK_KEEPOPEN); break; case SO_TYPE: v.val = sk->sk_type; break; case SO_PROTOCOL: v.val = sk->sk_protocol; break; case SO_DOMAIN: v.val = sk->sk_family; break; case SO_ERROR: v.val = -sock_error(sk); if (v.val == 0) v.val = xchg(&sk->sk_err_soft, 0); break; case SO_OOBINLINE: v.val = sock_flag(sk, SOCK_URGINLINE); break; case SO_NO_CHECK: v.val = sk->sk_no_check_tx; break; case SO_PRIORITY: v.val = READ_ONCE(sk->sk_priority); break; case SO_LINGER: lv = sizeof(v.ling); v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; break; case SO_BSDCOMPAT: break; case SO_TIMESTAMP_OLD: v.val = sock_flag(sk, SOCK_RCVTSTAMP) && !sock_flag(sk, SOCK_TSTAMP_NEW) && !sock_flag(sk, SOCK_RCVTSTAMPNS); break; case SO_TIMESTAMPNS_OLD: v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); break; case SO_TIMESTAMP_NEW: v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); break; case SO_TIMESTAMPNS_NEW: v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); break; case SO_TIMESTAMPING_OLD: case SO_TIMESTAMPING_NEW: lv = sizeof(v.timestamping); /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only * returning the flags when they were set through the same option. * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. */ if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { v.timestamping.flags = READ_ONCE(sk->sk_tsflags); v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); } break; case SO_RCVTIMEO_OLD: case SO_RCVTIMEO_NEW: lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, SO_RCVTIMEO_OLD == optname); break; case SO_SNDTIMEO_OLD: case SO_SNDTIMEO_NEW: lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, SO_SNDTIMEO_OLD == optname); break; case SO_RCVLOWAT: v.val = READ_ONCE(sk->sk_rcvlowat); break; case SO_SNDLOWAT: v.val = 1; break; case SO_PASSCRED: v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); break; case SO_PASSPIDFD: v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); break; case SO_PEERCRED: { struct ucred peercred; if (len > sizeof(peercred)) len = sizeof(peercred); spin_lock(&sk->sk_peer_lock); cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); spin_unlock(&sk->sk_peer_lock); if (copy_to_sockptr(optval, &peercred, len)) return -EFAULT; goto lenout; } case SO_PEERPIDFD: { struct pid *peer_pid; struct file *pidfd_file = NULL; int pidfd; if (len > sizeof(pidfd)) len = sizeof(pidfd); spin_lock(&sk->sk_peer_lock); peer_pid = get_pid(sk->sk_peer_pid); spin_unlock(&sk->sk_peer_lock); if (!peer_pid) return -ENODATA; pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); put_pid(peer_pid); if (pidfd < 0) return pidfd; if (copy_to_sockptr(optval, &pidfd, len) || copy_to_sockptr(optlen, &len, sizeof(int))) { put_unused_fd(pidfd); fput(pidfd_file); return -EFAULT; } fd_install(pidfd, pidfd_file); return 0; } case SO_PEERGROUPS: { const struct cred *cred; int ret, n; cred = sk_get_peer_cred(sk); if (!cred) return -ENODATA; n = cred->group_info->ngroups; if (len < n * sizeof(gid_t)) { len = n * sizeof(gid_t); put_cred(cred); return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; } len = n * sizeof(gid_t); ret = groups_to_user(optval, cred->group_info); put_cred(cred); if (ret) return ret; goto lenout; } case SO_PEERNAME: { struct sockaddr_storage address; lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); if (lv < 0) return -ENOTCONN; if (lv < len) return -EINVAL; if (copy_to_sockptr(optval, &address, len)) return -EFAULT; goto lenout; } /* Dubious BSD thing... Probably nobody even uses it, but * the UNIX standard wants it for whatever reason... -DaveM */ case SO_ACCEPTCONN: v.val = sk->sk_state == TCP_LISTEN; break; case SO_PASSSEC: v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); break; case SO_PEERSEC: return security_socket_getpeersec_stream(sock, optval, optlen, len); case SO_MARK: v.val = READ_ONCE(sk->sk_mark); break; case SO_RCVMARK: v.val = sock_flag(sk, SOCK_RCVMARK); break; case SO_RXQ_OVFL: v.val = sock_flag(sk, SOCK_RXQ_OVFL); break; case SO_WIFI_STATUS: v.val = sock_flag(sk, SOCK_WIFI_STATUS); break; case SO_PEEK_OFF: if (!READ_ONCE(sock->ops)->set_peek_off) return -EOPNOTSUPP; v.val = READ_ONCE(sk->sk_peek_off); break; case SO_NOFCS: v.val = sock_flag(sk, SOCK_NOFCS); break; case SO_BINDTODEVICE: return sock_getbindtodevice(sk, optval, optlen, len); case SO_GET_FILTER: len = sk_get_filter(sk, optval, len); if (len < 0) return len; goto lenout; case SO_LOCK_FILTER: v.val = sock_flag(sk, SOCK_FILTER_LOCKED); break; case SO_BPF_EXTENSIONS: v.val = bpf_tell_extensions(); break; case SO_SELECT_ERR_QUEUE: v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); break; #ifdef CONFIG_NET_RX_BUSY_POLL case SO_BUSY_POLL: v.val = READ_ONCE(sk->sk_ll_usec); break; case SO_PREFER_BUSY_POLL: v.val = READ_ONCE(sk->sk_prefer_busy_poll); break; #endif case SO_MAX_PACING_RATE: /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { lv = sizeof(v.ulval); v.ulval = READ_ONCE(sk->sk_max_pacing_rate); } else { /* 32bit version */ v.val = min_t(unsigned long, ~0U, READ_ONCE(sk->sk_max_pacing_rate)); } break; case SO_INCOMING_CPU: v.val = READ_ONCE(sk->sk_incoming_cpu); break; case SO_MEMINFO: { u32 meminfo[SK_MEMINFO_VARS]; sk_get_meminfo(sk, meminfo); len = min_t(unsigned int, len, sizeof(meminfo)); if (copy_to_sockptr(optval, &meminfo, len)) return -EFAULT; goto lenout; } #ifdef CONFIG_NET_RX_BUSY_POLL case SO_INCOMING_NAPI_ID: v.val = READ_ONCE(sk->sk_napi_id); /* aggregate non-NAPI IDs down to 0 */ if (v.val < MIN_NAPI_ID) v.val = 0; break; #endif case SO_COOKIE: lv = sizeof(u64); if (len < lv) return -EINVAL; v.val64 = sock_gen_cookie(sk); break; case SO_ZEROCOPY: v.val = sock_flag(sk, SOCK_ZEROCOPY); break; case SO_TXTIME: lv = sizeof(v.txtime); v.txtime.clockid = sk->sk_clockid; v.txtime.flags |= sk->sk_txtime_deadline_mode ? SOF_TXTIME_DEADLINE_MODE : 0; v.txtime.flags |= sk->sk_txtime_report_errors ? SOF_TXTIME_REPORT_ERRORS : 0; break; case SO_BINDTOIFINDEX: v.val = READ_ONCE(sk->sk_bound_dev_if); break; case SO_NETNS_COOKIE: lv = sizeof(u64); if (len != lv) return -EINVAL; v.val64 = sock_net(sk)->net_cookie; break; case SO_BUF_LOCK: v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; break; case SO_RESERVE_MEM: v.val = READ_ONCE(sk->sk_reserved_mem); break; case SO_TXREHASH: /* Paired with WRITE_ONCE() in sk_setsockopt() */ v.val = READ_ONCE(sk->sk_txrehash); break; default: /* We implement the SO_SNDLOWAT etc to not be settable * (1003.1g 7). */ return -ENOPROTOOPT; } if (len > lv) len = lv; if (copy_to_sockptr(optval, &v, len)) return -EFAULT; lenout: if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; return 0; } /* * Initialize an sk_lock. * * (We also register the sk_lock with the lock validator.) */ static inline void sock_lock_init(struct sock *sk) { if (sk->sk_kern_sock) sock_lock_init_class_and_name( sk, af_family_kern_slock_key_strings[sk->sk_family], af_family_kern_slock_keys + sk->sk_family, af_family_kern_key_strings[sk->sk_family], af_family_kern_keys + sk->sk_family); else sock_lock_init_class_and_name( sk, af_family_slock_key_strings[sk->sk_family], af_family_slock_keys + sk->sk_family, af_family_key_strings[sk->sk_family], af_family_keys + sk->sk_family); } /* * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, * even temporarily, because of RCU lookups. sk_node should also be left as is. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end */ static void sock_copy(struct sock *nsk, const struct sock *osk) { const struct proto *prot = READ_ONCE(osk->sk_prot); #ifdef CONFIG_SECURITY_NETWORK void *sptr = nsk->sk_security; #endif /* If we move sk_tx_queue_mapping out of the private section, * we must check if sk_tx_queue_clear() is called after * sock_copy() in sk_clone_lock(). */ BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < offsetof(struct sock, sk_dontcopy_begin) || offsetof(struct sock, sk_tx_queue_mapping) >= offsetof(struct sock, sk_dontcopy_end)); memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, prot->obj_size - offsetof(struct sock, sk_dontcopy_end), /* alloc is larger than struct, see sk_prot_alloc() */); #ifdef CONFIG_SECURITY_NETWORK nsk->sk_security = sptr; security_sk_clone(osk, nsk); #endif } static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, int family) { struct sock *sk; struct kmem_cache *slab; slab = prot->slab; if (slab != NULL) { sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); if (!sk) return sk; if (want_init_on_alloc(priority)) sk_prot_clear_nulls(sk, prot->obj_size); } else sk = kmalloc(prot->obj_size, priority); if (sk != NULL) { if (security_sk_alloc(sk, family, priority)) goto out_free; if (!try_module_get(prot->owner)) goto out_free_sec; } return sk; out_free_sec: security_sk_free(sk); out_free: if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); return NULL; } static void sk_prot_free(struct proto *prot, struct sock *sk) { struct kmem_cache *slab; struct module *owner; owner = prot->owner; slab = prot->slab; cgroup_sk_free(&sk->sk_cgrp_data); mem_cgroup_sk_free(sk); security_sk_free(sk); if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); module_put(owner); } /** * sk_alloc - All socket objects are allocated here * @net: the applicable net namespace * @family: protocol family * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * @prot: struct proto associated with this new sock instance * @kern: is this to be a kernel socket? */ struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern) { struct sock *sk; sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); if (sk) { sk->sk_family = family; /* * See comment in struct sock definition to understand * why we need sk_prot_creator -acme */ sk->sk_prot = sk->sk_prot_creator = prot; sk->sk_kern_sock = kern; sock_lock_init(sk); sk->sk_net_refcnt = kern ? 0 : 1; if (likely(sk->sk_net_refcnt)) { get_net_track(net, &sk->ns_tracker, priority); sock_inuse_add(net, 1); } else { __netns_tracker_alloc(net, &sk->ns_tracker, false, priority); } sock_net_set(sk, net); refcount_set(&sk->sk_wmem_alloc, 1); mem_cgroup_sk_alloc(sk); cgroup_sk_alloc(&sk->sk_cgrp_data); sock_update_classid(&sk->sk_cgrp_data); sock_update_netprioidx(&sk->sk_cgrp_data); sk_tx_queue_clear(sk); } return sk; } EXPORT_SYMBOL(sk_alloc); /* Sockets having SOCK_RCU_FREE will call this function after one RCU * grace period. This is the case for UDP sockets and TCP listeners. */ static void __sk_destruct(struct rcu_head *head) { struct sock *sk = container_of(head, struct sock, sk_rcu); struct sk_filter *filter; if (sk->sk_destruct) sk->sk_destruct(sk); filter = rcu_dereference_check(sk->sk_filter, refcount_read(&sk->sk_wmem_alloc) == 0); if (filter) { sk_filter_uncharge(sk, filter); RCU_INIT_POINTER(sk->sk_filter, NULL); } sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); #ifdef CONFIG_BPF_SYSCALL bpf_sk_storage_free(sk); #endif if (atomic_read(&sk->sk_omem_alloc)) pr_debug("%s: optmem leakage (%d bytes) detected\n", __func__, atomic_read(&sk->sk_omem_alloc)); if (sk->sk_frag.page) { put_page(sk->sk_frag.page); sk->sk_frag.page = NULL; } /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ put_cred(sk->sk_peer_cred); put_pid(sk->sk_peer_pid); if (likely(sk->sk_net_refcnt)) put_net_track(sock_net(sk), &sk->ns_tracker); else __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); sk_prot_free(sk->sk_prot_creator, sk); } void sk_destruct(struct sock *sk) { bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); if (rcu_access_pointer(sk->sk_reuseport_cb)) { reuseport_detach_sock(sk); use_call_rcu = true; } if (use_call_rcu) call_rcu(&sk->sk_rcu, __sk_destruct); else __sk_destruct(&sk->sk_rcu); } static void __sk_free(struct sock *sk) { if (likely(sk->sk_net_refcnt)) sock_inuse_add(sock_net(sk), -1); if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) sock_diag_broadcast_destroy(sk); else sk_destruct(sk); } void sk_free(struct sock *sk) { /* * We subtract one from sk_wmem_alloc and can know if * some packets are still in some tx queue. * If not null, sock_wfree() will call __sk_free(sk) later */ if (refcount_dec_and_test(&sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sk_free); static void sk_init_common(struct sock *sk) { skb_queue_head_init(&sk->sk_receive_queue); skb_queue_head_init(&sk->sk_write_queue); skb_queue_head_init(&sk->sk_error_queue); rwlock_init(&sk->sk_callback_lock); lockdep_set_class_and_name(&sk->sk_receive_queue.lock, af_rlock_keys + sk->sk_family, af_family_rlock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_write_queue.lock, af_wlock_keys + sk->sk_family, af_family_wlock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_error_queue.lock, af_elock_keys + sk->sk_family, af_family_elock_key_strings[sk->sk_family]); if (sk->sk_kern_sock) lockdep_set_class_and_name(&sk->sk_callback_lock, af_kern_callback_keys + sk->sk_family, af_family_kern_clock_key_strings[sk->sk_family]); else lockdep_set_class_and_name(&sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); } /** * sk_clone_lock - clone a socket, and lock its clone * @sk: the socket to clone * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) */ struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) { struct proto *prot = READ_ONCE(sk->sk_prot); struct sk_filter *filter; bool is_charged = true; struct sock *newsk; newsk = sk_prot_alloc(prot, priority, sk->sk_family); if (!newsk) goto out; sock_copy(newsk, sk); newsk->sk_prot_creator = prot; /* SANITY */ if (likely(newsk->sk_net_refcnt)) { get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); sock_inuse_add(sock_net(newsk), 1); } else { /* Kernel sockets are not elevating the struct net refcount. * Instead, use a tracker to more easily detect if a layer * is not properly dismantling its kernel sockets at netns * destroy time. */ __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, false, priority); } sk_node_init(&newsk->sk_node); sock_lock_init(newsk); bh_lock_sock(newsk); newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; newsk->sk_backlog.len = 0; atomic_set(&newsk->sk_rmem_alloc, 0); /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ refcount_set(&newsk->sk_wmem_alloc, 1); atomic_set(&newsk->sk_omem_alloc, 0); sk_init_common(newsk); newsk->sk_dst_cache = NULL; newsk->sk_dst_pending_confirm = 0; newsk->sk_wmem_queued = 0; newsk->sk_forward_alloc = 0; newsk->sk_reserved_mem = 0; atomic_set(&newsk->sk_drops, 0); newsk->sk_send_head = NULL; newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; atomic_set(&newsk->sk_zckey, 0); sock_reset_flag(newsk, SOCK_DONE); /* sk->sk_memcg will be populated at accept() time */ newsk->sk_memcg = NULL; cgroup_sk_clone(&newsk->sk_cgrp_data); rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter != NULL) /* though it's an empty new sock, the charging may fail * if sysctl_optmem_max was changed between creation of * original socket and cloning */ is_charged = sk_filter_charge(newsk, filter); RCU_INIT_POINTER(newsk->sk_filter, filter); rcu_read_unlock(); if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { /* We need to make sure that we don't uncharge the new * socket if we couldn't charge it in the first place * as otherwise we uncharge the parent's filter. */ if (!is_charged) RCU_INIT_POINTER(newsk->sk_filter, NULL); sk_free_unlock_clone(newsk); newsk = NULL; goto out; } RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); if (bpf_sk_storage_clone(sk, newsk)) { sk_free_unlock_clone(newsk); newsk = NULL; goto out; } /* Clear sk_user_data if parent had the pointer tagged * as not suitable for copying when cloning. */ if (sk_user_data_is_nocopy(newsk)) newsk->sk_user_data = NULL; newsk->sk_err = 0; newsk->sk_err_soft = 0; newsk->sk_priority = 0; newsk->sk_incoming_cpu = raw_smp_processor_id(); /* Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.rst for details) */ smp_wmb(); refcount_set(&newsk->sk_refcnt, 2); sk_set_socket(newsk, NULL); sk_tx_queue_clear(newsk); RCU_INIT_POINTER(newsk->sk_wq, NULL); if (newsk->sk_prot->sockets_allocated) sk_sockets_allocated_inc(newsk); if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) net_enable_timestamp(); out: return newsk; } EXPORT_SYMBOL_GPL(sk_clone_lock); void sk_free_unlock_clone(struct sock *sk) { /* It is still raw copy of parent, so invalidate * destructor and make plain sk_free() */ sk->sk_destruct = NULL; bh_unlock_sock(sk); sk_free(sk); } EXPORT_SYMBOL_GPL(sk_free_unlock_clone); static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) { bool is_ipv6 = false; u32 max_size; #if IS_ENABLED(CONFIG_IPV6) is_ipv6 = (sk->sk_family == AF_INET6 && !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); #endif /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : READ_ONCE(dst->dev->gso_ipv4_max_size); if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) max_size = GSO_LEGACY_MAX_SIZE; return max_size - (MAX_TCP_HEADER + 1); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst) { u32 max_segs = 1; sk->sk_route_caps = dst->dev->features; if (sk_is_tcp(sk)) sk->sk_route_caps |= NETIF_F_GSO; if (sk->sk_route_caps & NETIF_F_GSO) sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; if (unlikely(sk->sk_gso_disabled)) sk->sk_route_caps &= ~NETIF_F_GSO_MASK; if (sk_can_gso(sk)) { if (dst->header_len && !xfrm_dst_offload_ok(dst)) { sk->sk_route_caps &= ~NETIF_F_GSO_MASK; } else { sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); } } sk->sk_gso_max_segs = max_segs; sk_dst_set(sk, dst); } EXPORT_SYMBOL_GPL(sk_setup_caps); /* * Simple resource managers for sockets. */ /* * Write buffer destructor automatically called from kfree_skb. */ void sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; bool free; if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { if (sock_flag(sk, SOCK_RCU_FREE) && sk->sk_write_space == sock_def_write_space) { rcu_read_lock(); free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); sock_def_write_space_wfree(sk); rcu_read_unlock(); if (unlikely(free)) __sk_free(sk); return; } /* * Keep a reference on sk_wmem_alloc, this will be released * after sk_write_space() call */ WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); sk->sk_write_space(sk); len = 1; } /* * if sk_wmem_alloc reaches 0, we must finish what sk_free() * could not do because of in-flight packets */ if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sock_wfree); /* This variant of sock_wfree() is used by TCP, * since it sets SOCK_USE_WRITE_QUEUE. */ void __sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) __sk_free(sk); } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); #ifdef CONFIG_INET if (unlikely(!sk_fullsock(sk))) return skb_set_owner_edemux(skb, sk); #endif skb->sk = sk; skb->destructor = sock_wfree; skb_set_hash_from_sk(skb, sk); /* * We used to take a refcount on sk, but following operation * is enough to guarantee sk_free() won't free this sock until * all in-flight packets are completed */ refcount_add(skb->truesize, &sk->sk_wmem_alloc); } EXPORT_SYMBOL(skb_set_owner_w); static bool can_skb_orphan_partial(const struct sk_buff *skb) { /* Drivers depend on in-order delivery for crypto offload, * partial orphan breaks out-of-order-OK logic. */ if (skb_is_decrypted(skb)) return false; return (skb->destructor == sock_wfree || (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); } /* This helper is used by netem, as it can hold packets in its * delay queue. We want to allow the owner socket to send more * packets, as if they were already TX completed by a typical driver. * But we also want to keep skb->sk set because some packet schedulers * rely on it (sch_fq for example). */ void skb_orphan_partial(struct sk_buff *skb) { if (skb_is_tcp_pure_ack(skb)) return; if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) return; skb_orphan(skb); } EXPORT_SYMBOL(skb_orphan_partial); /* * Read buffer destructor automatically called from kfree_skb. */ void sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; atomic_sub(len, &sk->sk_rmem_alloc); sk_mem_uncharge(sk, len); } EXPORT_SYMBOL(sock_rfree); /* * Buffer destructor for skbs that are not used directly in read or write * path, e.g. for error handler skbs. Automatically called from kfree_skb. */ void sock_efree(struct sk_buff *skb) { sock_put(skb->sk); } EXPORT_SYMBOL(sock_efree); /* Buffer destructor for prefetch/receive path where reference count may * not be held, e.g. for listen sockets. */ #ifdef CONFIG_INET void sock_pfree(struct sk_buff *skb) { struct sock *sk = skb->sk; if (!sk_is_refcounted(sk)) return; if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { inet_reqsk(sk)->rsk_listener = NULL; reqsk_free(inet_reqsk(sk)); return; } sock_gen_put(sk); } EXPORT_SYMBOL(sock_pfree); #endif /* CONFIG_INET */ kuid_t sock_i_uid(struct sock *sk) { kuid_t uid; read_lock_bh(&sk->sk_callback_lock); uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; read_unlock_bh(&sk->sk_callback_lock); return uid; } EXPORT_SYMBOL(sock_i_uid); unsigned long __sock_i_ino(struct sock *sk) { unsigned long ino; read_lock(&sk->sk_callback_lock); ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; read_unlock(&sk->sk_callback_lock); return ino; } EXPORT_SYMBOL(__sock_i_ino); unsigned long sock_i_ino(struct sock *sk) { unsigned long ino; local_bh_disable(); ino = __sock_i_ino(sk); local_bh_enable(); return ino; } EXPORT_SYMBOL(sock_i_ino); /* * Allocate a skb from the socket's send buffer. */ struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority) { if (force || refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { struct sk_buff *skb = alloc_skb(size, priority); if (skb) { skb_set_owner_w(skb, sk); return skb; } } return NULL; } EXPORT_SYMBOL(sock_wmalloc); static void sock_ofree(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_omem_alloc); } struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority) { struct sk_buff *skb; /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) return NULL; skb = alloc_skb(size, priority); if (!skb) return NULL; atomic_add(skb->truesize, &sk->sk_omem_alloc); skb->sk = sk; skb->destructor = sock_ofree; return skb; } /* * Allocate a memory block from the socket's option memory buffer. */ void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) { int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); if ((unsigned int)size <= optmem_max && atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { void *mem; /* First do the add, to avoid the race if kmalloc * might sleep. */ atomic_add(size, &sk->sk_omem_alloc); mem = kmalloc(size, priority); if (mem) return mem; atomic_sub(size, &sk->sk_omem_alloc); } return NULL; } EXPORT_SYMBOL(sock_kmalloc); /* Free an option memory block. Note, we actually want the inline * here as this allows gcc to detect the nullify and fold away the * condition entirely. */ static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, const bool nullify) { if (WARN_ON_ONCE(!mem)) return; if (nullify) kfree_sensitive(mem); else kfree(mem); atomic_sub(size, &sk->sk_omem_alloc); } void sock_kfree_s(struct sock *sk, void *mem, int size) { __sock_kfree_s(sk, mem, size, false); } EXPORT_SYMBOL(sock_kfree_s); void sock_kzfree_s(struct sock *sk, void *mem, int size) { __sock_kfree_s(sk, mem, size, true); } EXPORT_SYMBOL(sock_kzfree_s); /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. I think, these locks should be removed for datagram sockets. */ static long sock_wait_for_wmem(struct sock *sk, long timeo) { DEFINE_WAIT(wait); sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); for (;;) { if (!timeo) break; if (signal_pending(current)) break; set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) break; if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) break; if (READ_ONCE(sk->sk_err)) break; timeo = schedule_timeout(timeo); } finish_wait(sk_sleep(sk), &wait); return timeo; } /* * Generic send/receive buffer handlers */ struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order) { struct sk_buff *skb; long timeo; int err; timeo = sock_sndtimeo(sk, noblock); for (;;) { err = sock_error(sk); if (err != 0) goto failure; err = -EPIPE; if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) goto failure; if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) break; sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); err = -EAGAIN; if (!timeo) goto failure; if (signal_pending(current)) goto interrupted; timeo = sock_wait_for_wmem(sk, timeo); } skb = alloc_skb_with_frags(header_len, data_len, max_page_order, errcode, sk->sk_allocation); if (skb) skb_set_owner_w(skb, sk); return skb; interrupted: err = sock_intr_errno(timeo); failure: *errcode = err; return NULL; } EXPORT_SYMBOL(sock_alloc_send_pskb); int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, struct sockcm_cookie *sockc) { u32 tsflags; BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31)); switch (cmsg->cmsg_type) { case SO_MARK: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; sockc->mark = *(u32 *)CMSG_DATA(cmsg); break; case SO_TIMESTAMPING_OLD: case SO_TIMESTAMPING_NEW: if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; tsflags = *(u32 *)CMSG_DATA(cmsg); if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) return -EINVAL; sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; sockc->tsflags |= tsflags; break; case SCM_TXTIME: if (!sock_flag(sk, SOCK_TXTIME)) return -EINVAL; if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) return -EINVAL; sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); break; case SCM_TS_OPT_ID: if (sk_is_tcp(sk)) return -EINVAL; tsflags = READ_ONCE(sk->sk_tsflags); if (!(tsflags & SOF_TIMESTAMPING_OPT_ID)) return -EINVAL; if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg); sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID; break; /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ case SCM_RIGHTS: case SCM_CREDENTIALS: break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL(__sock_cmsg_send); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc) { struct cmsghdr *cmsg; int ret; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_SOCKET) continue; ret = __sock_cmsg_send(sk, cmsg, sockc); if (ret) return ret; } return 0; } EXPORT_SYMBOL(sock_cmsg_send); static void sk_enter_memory_pressure(struct sock *sk) { if (!sk->sk_prot->enter_memory_pressure) return; sk->sk_prot->enter_memory_pressure(sk); } static void sk_leave_memory_pressure(struct sock *sk) { if (sk->sk_prot->leave_memory_pressure) { INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, tcp_leave_memory_pressure, sk); } else { unsigned long *memory_pressure = sk->sk_prot->memory_pressure; if (memory_pressure && READ_ONCE(*memory_pressure)) WRITE_ONCE(*memory_pressure, 0); } } DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); /** * skb_page_frag_refill - check that a page_frag contains enough room * @sz: minimum size of the fragment we want to get * @pfrag: pointer to page_frag * @gfp: priority for memory allocation * * Note: While this allocator tries to use high order pages, there is * no guarantee that allocations succeed. Therefore, @sz MUST be * less or equal than PAGE_SIZE. */ bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) { if (pfrag->page) { if (page_ref_count(pfrag->page) == 1) { pfrag->offset = 0; return true; } if (pfrag->offset + sz <= pfrag->size) return true; put_page(pfrag->page); } pfrag->offset = 0; if (SKB_FRAG_PAGE_ORDER && !static_branch_unlikely(&net_high_order_alloc_disable_key)) { /* Avoid direct reclaim but allow kswapd to wake */ pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY, SKB_FRAG_PAGE_ORDER); if (likely(pfrag->page)) { pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; return true; } } pfrag->page = alloc_page(gfp); if (likely(pfrag->page)) { pfrag->size = PAGE_SIZE; return true; } return false; } EXPORT_SYMBOL(skb_page_frag_refill); bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) { if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) return true; sk_enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return false; } EXPORT_SYMBOL(sk_page_frag_refill); void __lock_sock(struct sock *sk) __releases(&sk->sk_lock.slock) __acquires(&sk->sk_lock.slock) { DEFINE_WAIT(wait); for (;;) { prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&sk->sk_lock.slock); schedule(); spin_lock_bh(&sk->sk_lock.slock); if (!sock_owned_by_user(sk)) break; } finish_wait(&sk->sk_lock.wq, &wait); } void __release_sock(struct sock *sk) __releases(&sk->sk_lock.slock) __acquires(&sk->sk_lock.slock) { struct sk_buff *skb, *next; while ((skb = sk->sk_backlog.head) != NULL) { sk->sk_backlog.head = sk->sk_backlog.tail = NULL; spin_unlock_bh(&sk->sk_lock.slock); do { next = skb->next; prefetch(next); DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); skb_mark_not_on_list(skb); sk_backlog_rcv(sk, skb); cond_resched(); skb = next; } while (skb != NULL); spin_lock_bh(&sk->sk_lock.slock); } /* * Doing the zeroing here guarantee we can not loop forever * while a wild producer attempts to flood us. */ sk->sk_backlog.len = 0; } void __sk_flush_backlog(struct sock *sk) { spin_lock_bh(&sk->sk_lock.slock); __release_sock(sk); if (sk->sk_prot->release_cb) INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, tcp_release_cb, sk); spin_unlock_bh(&sk->sk_lock.slock); } EXPORT_SYMBOL_GPL(__sk_flush_backlog); /** * sk_wait_data - wait for data to arrive at sk_receive_queue * @sk: sock to wait on * @timeo: for how long * @skb: last skb seen on sk_receive_queue * * Now socket state including sk->sk_err is changed only under lock, * hence we may omit checks after joining wait queue. * We check receive queue before schedule() only as optimization; * it is very likely that release_sock() added new data. */ int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int rc; add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); return rc; } EXPORT_SYMBOL(sk_wait_data); /** * __sk_mem_raise_allocated - increase memory_allocated * @sk: socket * @size: memory size to allocate * @amt: pages to allocate * @kind: allocation type * * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. * * Unlike the globally shared limits among the sockets under same protocol, * consuming the budget of a memcg won't have direct effect on other ones. * So be optimistic about memcg's tolerance, and leave the callers to decide * whether or not to raise allocated through sk_under_memory_pressure() or * its variants. */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) { struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; struct proto *prot = sk->sk_prot; bool charged = false; long allocated; sk_memory_allocated_add(sk, amt); allocated = sk_memory_allocated(sk); if (memcg) { if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) goto suppress_allocation; charged = true; } /* Under limit. */ if (allocated <= sk_prot_mem_limits(sk, 0)) { sk_leave_memory_pressure(sk); return 1; } /* Under pressure. */ if (allocated > sk_prot_mem_limits(sk, 1)) sk_enter_memory_pressure(sk); /* Over hard limit. */ if (allocated > sk_prot_mem_limits(sk, 2)) goto suppress_allocation; /* Guarantee minimum buffer size under pressure (either global * or memcg) to make sure features described in RFC 7323 (TCP * Extensions for High Performance) work properly. * * This rule does NOT stand when exceeds global or memcg's hard * limit, or else a DoS attack can be taken place by spawning * lots of sockets whose usage are under minimum buffer size. */ if (kind == SK_MEM_RECV) { if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) return 1; } else { /* SK_MEM_SEND */ int wmem0 = sk_get_wmem0(sk, prot); if (sk->sk_type == SOCK_STREAM) { if (sk->sk_wmem_queued < wmem0) return 1; } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { return 1; } } if (sk_has_memory_pressure(sk)) { u64 alloc; /* The following 'average' heuristic is within the * scope of global accounting, so it only makes * sense for global memory pressure. */ if (!sk_under_global_memory_pressure(sk)) return 1; /* Try to be fair among all the sockets under global * pressure by allowing the ones that below average * usage to raise. */ alloc = sk_sockets_allocated_read_positive(sk); if (sk_prot_mem_limits(sk, 2) > alloc * sk_mem_pages(sk->sk_wmem_queued + atomic_read(&sk->sk_rmem_alloc) + sk->sk_forward_alloc)) return 1; } suppress_allocation: if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { sk_stream_moderate_sndbuf(sk); /* Fail only if socket is _under_ its sndbuf. * In this case we cannot block, so that we have to fail. */ if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { /* Force charge with __GFP_NOFAIL */ if (memcg && !charged) { mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge() | __GFP_NOFAIL); } return 1; } } if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) trace_sock_exceed_buf_limit(sk, prot, allocated, kind); sk_memory_allocated_sub(sk, amt); if (charged) mem_cgroup_uncharge_skmem(memcg, amt); return 0; } /** * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated * @sk: socket * @size: memory size to allocate * @kind: allocation type * * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means * rmem allocation. This function assumes that protocols which have * memory_pressure use sk_wmem_queued as write buffer accounting. */ int __sk_mem_schedule(struct sock *sk, int size, int kind) { int ret, amt = sk_mem_pages(size); sk_forward_alloc_add(sk, amt << PAGE_SHIFT); ret = __sk_mem_raise_allocated(sk, size, amt, kind); if (!ret) sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); return ret; } EXPORT_SYMBOL(__sk_mem_schedule); /** * __sk_mem_reduce_allocated - reclaim memory_allocated * @sk: socket * @amount: number of quanta * * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc */ void __sk_mem_reduce_allocated(struct sock *sk, int amount) { sk_memory_allocated_sub(sk, amount); if (mem_cgroup_sockets_enabled && sk->sk_memcg) mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); if (sk_under_global_memory_pressure(sk) && (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) sk_leave_memory_pressure(sk); } /** * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated * @sk: socket * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) */ void __sk_mem_reclaim(struct sock *sk, int amount) { amount >>= PAGE_SHIFT; sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); __sk_mem_reduce_allocated(sk, amount); } EXPORT_SYMBOL(__sk_mem_reclaim); int sk_set_peek_off(struct sock *sk, int val) { WRITE_ONCE(sk->sk_peek_off, val); return 0; } EXPORT_SYMBOL_GPL(sk_set_peek_off); /* * Set of default routines for initialising struct proto_ops when * the protocol does not support a particular function. In certain * cases where it makes no sense for a protocol to have a "do nothing" * function, some default processing is provided. */ int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_bind); int sock_no_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_connect); int sock_no_socketpair(struct socket *sock1, struct socket *sock2) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_socketpair); int sock_no_accept(struct socket *sock, struct socket *newsock, struct proto_accept_arg *arg) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_accept); int sock_no_getname(struct socket *sock, struct sockaddr *saddr, int peer) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_getname); int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_ioctl); int sock_no_listen(struct socket *sock, int backlog) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_listen); int sock_no_shutdown(struct socket *sock, int how) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_shutdown); int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg_locked); int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_recvmsg); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { /* Mirror missing mmap method error code */ return -ENODEV; } EXPORT_SYMBOL(sock_no_mmap); /* * When a file is received (via SCM_RIGHTS, etc), we must bump the * various sock-based usage counts. */ void __receive_sock(struct file *file) { struct socket *sock; sock = sock_from_file(file); if (sock) { sock_update_netprioidx(&sock->sk->sk_cgrp_data); sock_update_classid(&sock->sk->sk_cgrp_data); } } /* * Default Socket Callbacks */ static void sock_def_wakeup(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); rcu_read_unlock(); } static void sock_def_error_report(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_poll(&wq->wait, EPOLLERR); sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR); rcu_read_unlock(); } void sock_def_readable(struct sock *sk) { struct socket_wq *wq; trace_sk_data_ready(sk); rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | EPOLLRDNORM | EPOLLRDBAND); sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); rcu_read_unlock(); } static void sock_def_write_space(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); /* Do not wake up a writer until he can make "significant" * progress. --DaveM */ if (sock_writeable(sk)) { wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); /* Should agree with poll, otherwise some programs break */ sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } /* An optimised version of sock_def_write_space(), should only be called * for SOCK_RCU_FREE sockets under RCU read section and after putting * ->sk_wmem_alloc. */ static void sock_def_write_space_wfree(struct sock *sk) { /* Do not wake up a writer until he can make "significant" * progress. --DaveM */ if (sock_writeable(sk)) { struct socket_wq *wq = rcu_dereference(sk->sk_wq); /* rely on refcount_sub from sock_wfree() */ smp_mb__after_atomic(); if (wq && waitqueue_active(&wq->wait)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); /* Should agree with poll, otherwise some programs break */ sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); } } static void sock_def_destruct(struct sock *sk) { } void sk_send_sigurg(struct sock *sk) { if (sk->sk_socket && sk->sk_socket->file) if (send_sigurg(sk->sk_socket->file)) sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); } EXPORT_SYMBOL(sk_send_sigurg); void sk_reset_timer(struct sock *sk, struct timer_list* timer, unsigned long expires) { if (!mod_timer(timer, expires)) sock_hold(sk); } EXPORT_SYMBOL(sk_reset_timer); void sk_stop_timer(struct sock *sk, struct timer_list* timer) { if (del_timer(timer)) __sock_put(sk); } EXPORT_SYMBOL(sk_stop_timer); void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) { if (del_timer_sync(timer)) __sock_put(sk); } EXPORT_SYMBOL(sk_stop_timer_sync); void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) { sk_init_common(sk); sk->sk_send_head = NULL; timer_setup(&sk->sk_timer, NULL, 0); sk->sk_allocation = GFP_KERNEL; sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); sk->sk_state = TCP_CLOSE; sk->sk_use_task_frag = true; sk_set_socket(sk, sock); sock_set_flag(sk, SOCK_ZAPPED); if (sock) { sk->sk_type = sock->type; RCU_INIT_POINTER(sk->sk_wq, &sock->wq); sock->sk = sk; } else { RCU_INIT_POINTER(sk->sk_wq, NULL); } sk->sk_uid = uid; sk->sk_state_change = sock_def_wakeup; sk->sk_data_ready = sock_def_readable; sk->sk_write_space = sock_def_write_space; sk->sk_error_report = sock_def_error_report; sk->sk_destruct = sock_def_destruct; sk->sk_frag.page = NULL; sk->sk_frag.offset = 0; sk->sk_peek_off = -1; sk->sk_peer_pid = NULL; sk->sk_peer_cred = NULL; spin_lock_init(&sk->sk_peer_lock); sk->sk_write_pending = 0; sk->sk_rcvlowat = 1; sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_stamp = SK_DEFAULT_STAMP; #if BITS_PER_LONG==32 seqlock_init(&sk->sk_stamp_seq); #endif atomic_set(&sk->sk_zckey, 0); #ifdef CONFIG_NET_RX_BUSY_POLL sk->sk_napi_id = 0; sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); #endif sk->sk_max_pacing_rate = ~0UL; sk->sk_pacing_rate = ~0UL; WRITE_ONCE(sk->sk_pacing_shift, 10); sk->sk_incoming_cpu = -1; sk_rx_queue_clear(sk); /* * Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.rst for details) */ smp_wmb(); refcount_set(&sk->sk_refcnt, 1); atomic_set(&sk->sk_drops, 0); } EXPORT_SYMBOL(sock_init_data_uid); void sock_init_data(struct socket *sock, struct sock *sk) { kuid_t uid = sock ? SOCK_INODE(sock)->i_uid : make_kuid(sock_net(sk)->user_ns, 0); sock_init_data_uid(sock, sk, uid); } EXPORT_SYMBOL(sock_init_data); void lock_sock_nested(struct sock *sk, int subclass) { /* The sk_lock has mutex_lock() semantics here. */ mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (sock_owned_by_user_nocheck(sk)) __lock_sock(sk); sk->sk_lock.owned = 1; spin_unlock_bh(&sk->sk_lock.slock); } EXPORT_SYMBOL(lock_sock_nested); void release_sock(struct sock *sk) { spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_backlog.tail) __release_sock(sk); if (sk->sk_prot->release_cb) INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, tcp_release_cb, sk); sock_release_ownership(sk); if (waitqueue_active(&sk->sk_lock.wq)) wake_up(&sk->sk_lock.wq); spin_unlock_bh(&sk->sk_lock.slock); } EXPORT_SYMBOL(release_sock); bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) { might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (!sock_owned_by_user_nocheck(sk)) { /* * Fast path return with bottom halves disabled and * sock::sk_lock.slock held. * * The 'mutex' is not contended and holding * sock::sk_lock.slock prevents all other lockers to * proceed so the corresponding unlock_sock_fast() can * avoid the slow path of release_sock() completely and * just release slock. * * From a semantical POV this is equivalent to 'acquiring' * the 'mutex', hence the corresponding lockdep * mutex_release() has to happen in the fast path of * unlock_sock_fast(). */ return false; } __lock_sock(sk); sk->sk_lock.owned = 1; __acquire(&sk->sk_lock.slock); spin_unlock_bh(&sk->sk_lock.slock); return true; } EXPORT_SYMBOL(__lock_sock_fast); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32) { struct sock *sk = sock->sk; struct timespec64 ts; sock_enable_timestamp(sk, SOCK_TIMESTAMP); ts = ktime_to_timespec64(sock_read_timestamp(sk)); if (ts.tv_sec == -1) return -ENOENT; if (ts.tv_sec == 0) { ktime_t kt = ktime_get_real(); sock_write_timestamp(sk, kt); ts = ktime_to_timespec64(kt); } if (timeval) ts.tv_nsec /= 1000; #ifdef CONFIG_COMPAT_32BIT_TIME if (time32) return put_old_timespec32(&ts, userstamp); #endif #ifdef CONFIG_SPARC64 /* beware of padding in sparc64 timeval */ if (timeval && !in_compat_syscall()) { struct __kernel_old_timeval __user tv = { .tv_sec = ts.tv_sec, .tv_usec = ts.tv_nsec, }; if (copy_to_user(userstamp, &tv, sizeof(tv))) return -EFAULT; return 0; } #endif return put_timespec64(&ts, userstamp); } EXPORT_SYMBOL(sock_gettstamp); void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) { if (!sock_flag(sk, flag)) { unsigned long previous_flags = sk->sk_flags; sock_set_flag(sk, flag); /* * we just set one of the two flags which require net * time stamping, but time stamping might have been on * already because of the other one */ if (sock_needs_netstamp(sk) && !(previous_flags & SK_FLAGS_TIMESTAMP)) net_enable_timestamp(); } } int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type) { struct sock_exterr_skb *serr; struct sk_buff *skb; int copied, err; err = -EAGAIN; skb = sock_dequeue_err_skb(sk); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free_skb; sock_recv_timestamp(msg, sk, skb); serr = SKB_EXT_ERR(skb); put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); msg->msg_flags |= MSG_ERRQUEUE; err = copied; out_free_skb: kfree_skb(skb); out: return err; } EXPORT_SYMBOL(sock_recv_errqueue); /* * Get a socket option on an socket. * * FIX: POSIX 1003.1g is very ambiguous here. It states that * asynchronous errors should be reported by getsockopt. We assume * this means if you specify SO_ERROR (otherwise what is the point of it). */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_getsockopt); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int addr_len = 0; int err; err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } EXPORT_SYMBOL(sock_common_recvmsg); /* * Set socket options on an inet socket. */ int sock_common_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_setsockopt); void sk_common_release(struct sock *sk) { if (sk->sk_prot->destroy) sk->sk_prot->destroy(sk); /* * Observation: when sk_common_release is called, processes have * no access to socket. But net still has. * Step one, detach it from networking: * * A. Remove from hash tables. */ sk->sk_prot->unhash(sk); /* * In this point socket cannot receive new packets, but it is possible * that some packets are in flight because some CPU runs receiver and * did hash table lookup before we unhashed socket. They will achieve * receive queue and will be purged by socket destructor. * * Also we still have packets pending on receive queue and probably, * our own packets waiting in device queues. sock_destroy will drain * receive queue, but transmitted packets will delay socket destruction * until the last reference will be released. */ sock_orphan(sk); xfrm_sk_free_policy(sk); sock_put(sk); } EXPORT_SYMBOL(sk_common_release); void sk_get_meminfo(const struct sock *sk, u32 *mem) { memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); } #ifdef CONFIG_PROC_FS static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); int sock_prot_inuse_get(struct net *net, struct proto *prot) { int cpu, idx = prot->inuse_idx; int res = 0; for_each_possible_cpu(cpu) res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; return res >= 0 ? res : 0; } EXPORT_SYMBOL_GPL(sock_prot_inuse_get); int sock_inuse_get(struct net *net) { int cpu, res = 0; for_each_possible_cpu(cpu) res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; return res; } EXPORT_SYMBOL_GPL(sock_inuse_get); static int __net_init sock_inuse_init_net(struct net *net) { net->core.prot_inuse = alloc_percpu(struct prot_inuse); if (net->core.prot_inuse == NULL) return -ENOMEM; return 0; } static void __net_exit sock_inuse_exit_net(struct net *net) { free_percpu(net->core.prot_inuse); } static struct pernet_operations net_inuse_ops = { .init = sock_inuse_init_net, .exit = sock_inuse_exit_net, }; static __init int net_inuse_init(void) { if (register_pernet_subsys(&net_inuse_ops)) panic("Cannot initialize net inuse counters"); return 0; } core_initcall(net_inuse_init); static int assign_proto_idx(struct proto *prot) { prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { pr_err("PROTO_INUSE_NR exhausted\n"); return -ENOSPC; } set_bit(prot->inuse_idx, proto_inuse_idx); return 0; } static void release_proto_idx(struct proto *prot) { if (prot->inuse_idx != PROTO_INUSE_NR - 1) clear_bit(prot->inuse_idx, proto_inuse_idx); } #else static inline int assign_proto_idx(struct proto *prot) { return 0; } static inline void release_proto_idx(struct proto *prot) { } #endif static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) { if (!twsk_prot) return; kfree(twsk_prot->twsk_slab_name); twsk_prot->twsk_slab_name = NULL; kmem_cache_destroy(twsk_prot->twsk_slab); twsk_prot->twsk_slab = NULL; } static int tw_prot_init(const struct proto *prot) { struct timewait_sock_ops *twsk_prot = prot->twsk_prot; if (!twsk_prot) return 0; twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); if (!twsk_prot->twsk_slab_name) return -ENOMEM; twsk_prot->twsk_slab = kmem_cache_create(twsk_prot->twsk_slab_name, twsk_prot->twsk_obj_size, 0, SLAB_ACCOUNT | prot->slab_flags, NULL); if (!twsk_prot->twsk_slab) { pr_crit("%s: Can't create timewait sock SLAB cache!\n", prot->name); return -ENOMEM; } return 0; } static void req_prot_cleanup(struct request_sock_ops *rsk_prot) { if (!rsk_prot) return; kfree(rsk_prot->slab_name); rsk_prot->slab_name = NULL; kmem_cache_destroy(rsk_prot->slab); rsk_prot->slab = NULL; } static int req_prot_init(const struct proto *prot) { struct request_sock_ops *rsk_prot = prot->rsk_prot; if (!rsk_prot) return 0; rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name); if (!rsk_prot->slab_name) return -ENOMEM; rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, rsk_prot->obj_size, 0, SLAB_ACCOUNT | prot->slab_flags, NULL); if (!rsk_prot->slab) { pr_crit("%s: Can't create request sock SLAB cache!\n", prot->name); return -ENOMEM; } return 0; } int proto_register(struct proto *prot, int alloc_slab) { int ret = -ENOBUFS; if (prot->memory_allocated && !prot->sysctl_mem) { pr_err("%s: missing sysctl_mem\n", prot->name); return -EINVAL; } if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); return -EINVAL; } if (alloc_slab) { prot->slab = kmem_cache_create_usercopy(prot->name, prot->obj_size, 0, SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | prot->slab_flags, prot->useroffset, prot->usersize, NULL); if (prot->slab == NULL) { pr_crit("%s: Can't create sock SLAB cache!\n", prot->name); goto out; } if (req_prot_init(prot)) goto out_free_request_sock_slab; if (tw_prot_init(prot)) goto out_free_timewait_sock_slab; } mutex_lock(&proto_list_mutex); ret = assign_proto_idx(prot); if (ret) { mutex_unlock(&proto_list_mutex); goto out_free_timewait_sock_slab; } list_add(&prot->node, &proto_list); mutex_unlock(&proto_list_mutex); return ret; out_free_timewait_sock_slab: if (alloc_slab) tw_prot_cleanup(prot->twsk_prot); out_free_request_sock_slab: if (alloc_slab) { req_prot_cleanup(prot->rsk_prot); kmem_cache_destroy(prot->slab); prot->slab = NULL; } out: return ret; } EXPORT_SYMBOL(proto_register); void proto_unregister(struct proto *prot) { mutex_lock(&proto_list_mutex); release_proto_idx(prot); list_del(&prot->node); mutex_unlock(&proto_list_mutex); kmem_cache_destroy(prot->slab); prot->slab = NULL; req_prot_cleanup(prot->rsk_prot); tw_prot_cleanup(prot->twsk_prot); } EXPORT_SYMBOL(proto_unregister); int sock_load_diag_module(int family, int protocol) { if (!protocol) { if (!sock_is_registered(family)) return -ENOENT; return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, NETLINK_SOCK_DIAG, family); } #ifdef CONFIG_INET if (family == AF_INET && protocol != IPPROTO_RAW && protocol < MAX_INET_PROTOS && !rcu_access_pointer(inet_protos[protocol])) return -ENOENT; #endif return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, NETLINK_SOCK_DIAG, family, protocol); } EXPORT_SYMBOL(sock_load_diag_module); #ifdef CONFIG_PROC_FS static void *proto_seq_start(struct seq_file *seq, loff_t *pos) __acquires(proto_list_mutex) { mutex_lock(&proto_list_mutex); return seq_list_start_head(&proto_list, *pos); } static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return seq_list_next(v, &proto_list, pos); } static void proto_seq_stop(struct seq_file *seq, void *v) __releases(proto_list_mutex) { mutex_unlock(&proto_list_mutex); } static char proto_method_implemented(const void *method) { return method == NULL ? 'n' : 'y'; } static long sock_prot_memory_allocated(struct proto *proto) { return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; } static const char *sock_prot_memory_pressure(struct proto *proto) { return proto->memory_pressure != NULL ? proto_memory_pressure(proto) ? "yes" : "no" : "NI"; } static void proto_seq_printf(struct seq_file *seq, struct proto *proto) { seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", proto->name, proto->obj_size, sock_prot_inuse_get(seq_file_net(seq), proto), sock_prot_memory_allocated(proto), sock_prot_memory_pressure(proto), proto->max_header, proto->slab == NULL ? "no" : "yes", module_name(proto->owner), proto_method_implemented(proto->close), proto_method_implemented(proto->connect), proto_method_implemented(proto->disconnect), proto_method_implemented(proto->accept), proto_method_implemented(proto->ioctl), proto_method_implemented(proto->init), proto_method_implemented(proto->destroy), proto_method_implemented(proto->shutdown), proto_method_implemented(proto->setsockopt), proto_method_implemented(proto->getsockopt), proto_method_implemented(proto->sendmsg), proto_method_implemented(proto->recvmsg), proto_method_implemented(proto->bind), proto_method_implemented(proto->backlog_rcv), proto_method_implemented(proto->hash), proto_method_implemented(proto->unhash), proto_method_implemented(proto->get_port), proto_method_implemented(proto->enter_memory_pressure)); } static int proto_seq_show(struct seq_file *seq, void *v) { if (v == &proto_list) seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", "protocol", "size", "sockets", "memory", "press", "maxhdr", "slab", "module", "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); else proto_seq_printf(seq, list_entry(v, struct proto, node)); return 0; } static const struct seq_operations proto_seq_ops = { .start = proto_seq_start, .next = proto_seq_next, .stop = proto_seq_stop, .show = proto_seq_show, }; static __net_init int proto_init_net(struct net *net) { if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, sizeof(struct seq_net_private))) return -ENOMEM; return 0; } static __net_exit void proto_exit_net(struct net *net) { remove_proc_entry("protocols", net->proc_net); } static __net_initdata struct pernet_operations proto_net_ops = { .init = proto_init_net, .exit = proto_exit_net, }; static int __init proto_init(void) { return register_pernet_subsys(&proto_net_ops); } subsys_initcall(proto_init); #endif /* PROC_FS */ #ifdef CONFIG_NET_RX_BUSY_POLL bool sk_busy_loop_end(void *p, unsigned long start_time) { struct sock *sk = p; if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) return true; if (sk_is_udp(sk) && !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) return true; return sk_busy_loop_timeout(sk, start_time); } EXPORT_SYMBOL(sk_busy_loop_end); #endif /* CONFIG_NET_RX_BUSY_POLL */ int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) { if (!sk->sk_prot->bind_add) return -EOPNOTSUPP; return sk->sk_prot->bind_add(sk, addr, addr_len); } EXPORT_SYMBOL(sock_bind_add); /* Copy 'size' bytes from userspace and return `size` back to userspace */ int sock_ioctl_inout(struct sock *sk, unsigned int cmd, void __user *arg, void *karg, size_t size) { int ret; if (copy_from_user(karg, arg, size)) return -EFAULT; ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); if (ret) return ret; if (copy_to_user(arg, karg, size)) return -EFAULT; return 0; } EXPORT_SYMBOL(sock_ioctl_inout); /* This is the most common ioctl prep function, where the result (4 bytes) is * copied back to userspace if the ioctl() returns successfully. No input is * copied from userspace as input argument. */ static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) { int ret, karg = 0; ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); if (ret) return ret; return put_user(karg, (int __user *)arg); } /* A wrapper around sock ioctls, which copies the data from userspace * (depending on the protocol/ioctl), and copies back the result to userspace. * The main motivation for this function is to pass kernel memory to the * protocol ioctl callbacks, instead of userspace memory. */ int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { int rc = 1; if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) rc = ipmr_sk_ioctl(sk, cmd, arg); else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) rc = ip6mr_sk_ioctl(sk, cmd, arg); else if (sk_is_phonet(sk)) rc = phonet_sk_ioctl(sk, cmd, arg); /* If ioctl was processed, returns its value */ if (rc <= 0) return rc; /* Otherwise call the default handler */ return sock_ioctl_out(sk, cmd, arg); } EXPORT_SYMBOL(sk_ioctl); static int __init sock_struct_check(void) { CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); return 0; } core_initcall(sock_struct_check); |
120 118 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Politecnico di Torino, Italy * TORSEC group -- https://security.polito.it * * Author: Roberto Sassu <roberto.sassu@polito.it> * * File: ima_template.c * Helpers to manage template descriptors. */ #include <linux/rculist.h> #include "ima.h" #include "ima_template_lib.h" enum header_fields { HDR_PCR, HDR_DIGEST, HDR_TEMPLATE_NAME, HDR_TEMPLATE_DATA, HDR__LAST }; static struct ima_template_desc builtin_templates[] = { {.name = IMA_TEMPLATE_IMA_NAME, .fmt = IMA_TEMPLATE_IMA_FMT}, {.name = "ima-ng", .fmt = "d-ng|n-ng"}, {.name = "ima-sig", .fmt = "d-ng|n-ng|sig"}, {.name = "ima-ngv2", .fmt = "d-ngv2|n-ng"}, {.name = "ima-sigv2", .fmt = "d-ngv2|n-ng|sig"}, {.name = "ima-buf", .fmt = "d-ng|n-ng|buf"}, {.name = "ima-modsig", .fmt = "d-ng|n-ng|sig|d-modsig|modsig"}, {.name = "evm-sig", .fmt = "d-ng|n-ng|evmsig|xattrnames|xattrlengths|xattrvalues|iuid|igid|imode"}, {.name = "", .fmt = ""}, /* placeholder for a custom format */ }; static LIST_HEAD(defined_templates); static DEFINE_SPINLOCK(template_list); static int template_setup_done; static const struct ima_template_field supported_fields[] = { {.field_id = "d", .field_init = ima_eventdigest_init, .field_show = ima_show_template_digest}, {.field_id = "n", .field_init = ima_eventname_init, .field_show = ima_show_template_string}, {.field_id = "d-ng", .field_init = ima_eventdigest_ng_init, .field_show = ima_show_template_digest_ng}, {.field_id = "d-ngv2", .field_init = ima_eventdigest_ngv2_init, .field_show = ima_show_template_digest_ngv2}, {.field_id = "n-ng", .field_init = ima_eventname_ng_init, .field_show = ima_show_template_string}, {.field_id = "sig", .field_init = ima_eventsig_init, .field_show = ima_show_template_sig}, {.field_id = "buf", .field_init = ima_eventbuf_init, .field_show = ima_show_template_buf}, {.field_id = "d-modsig", .field_init = ima_eventdigest_modsig_init, .field_show = ima_show_template_digest_ng}, {.field_id = "modsig", .field_init = ima_eventmodsig_init, .field_show = ima_show_template_sig}, {.field_id = "evmsig", .field_init = ima_eventevmsig_init, .field_show = ima_show_template_sig}, {.field_id = "iuid", .field_init = ima_eventinodeuid_init, .field_show = ima_show_template_uint}, {.field_id = "igid", .field_init = ima_eventinodegid_init, .field_show = ima_show_template_uint}, {.field_id = "imode", .field_init = ima_eventinodemode_init, .field_show = ima_show_template_uint}, {.field_id = "xattrnames", .field_init = ima_eventinodexattrnames_init, .field_show = ima_show_template_string}, {.field_id = "xattrlengths", .field_init = ima_eventinodexattrlengths_init, .field_show = ima_show_template_sig}, {.field_id = "xattrvalues", .field_init = ima_eventinodexattrvalues_init, .field_show = ima_show_template_sig}, }; /* * Used when restoring measurements carried over from a kexec. 'd' and 'n' don't * need to be accounted for since they shouldn't be defined in the same template * description as 'd-ng' and 'n-ng' respectively. */ #define MAX_TEMPLATE_NAME_LEN \ sizeof("d-ng|n-ng|evmsig|xattrnames|xattrlengths|xattrvalues|iuid|igid|imode") static struct ima_template_desc *ima_template; static struct ima_template_desc *ima_buf_template; /** * ima_template_has_modsig - Check whether template has modsig-related fields. * @ima_template: IMA template to check. * * Tells whether the given template has fields referencing a file's appended * signature. */ bool ima_template_has_modsig(const struct ima_template_desc *ima_template) { int i; for (i = 0; i < ima_template->num_fields; i++) if (!strcmp(ima_template->fields[i]->field_id, "modsig") || !strcmp(ima_template->fields[i]->field_id, "d-modsig")) return true; return false; } static int __init ima_template_setup(char *str) { struct ima_template_desc *template_desc; int template_len = strlen(str); if (template_setup_done) return 1; if (!ima_template) ima_init_template_list(); /* * Verify that a template with the supplied name exists. * If not, use CONFIG_IMA_DEFAULT_TEMPLATE. */ template_desc = lookup_template_desc(str); if (!template_desc) { pr_err("template %s not found, using %s\n", str, CONFIG_IMA_DEFAULT_TEMPLATE); return 1; } /* * Verify whether the current hash algorithm is supported * by the 'ima' template. */ if (template_len == 3 && strcmp(str, IMA_TEMPLATE_IMA_NAME) == 0 && ima_hash_algo != HASH_ALGO_SHA1 && ima_hash_algo != HASH_ALGO_MD5) { pr_err("template does not support hash alg\n"); return 1; } ima_template = template_desc; template_setup_done = 1; return 1; } __setup("ima_template=", ima_template_setup); static int __init ima_template_fmt_setup(char *str) { int num_templates = ARRAY_SIZE(builtin_templates); if (template_setup_done) return 1; if (template_desc_init_fields(str, NULL, NULL) < 0) { pr_err("format string '%s' not valid, using template %s\n", str, CONFIG_IMA_DEFAULT_TEMPLATE); return 1; } builtin_templates[num_templates - 1].fmt = str; ima_template = builtin_templates + num_templates - 1; template_setup_done = 1; return 1; } __setup("ima_template_fmt=", ima_template_fmt_setup); struct ima_template_desc *lookup_template_desc(const char *name) { struct ima_template_desc *template_desc; int found = 0; rcu_read_lock(); list_for_each_entry_rcu(template_desc, &defined_templates, list) { if ((strcmp(template_desc->name, name) == 0) || (strcmp(template_desc->fmt, name) == 0)) { found = 1; break; } } rcu_read_unlock(); return found ? template_desc : NULL; } static const struct ima_template_field * lookup_template_field(const char *field_id) { int i; for (i = 0; i < ARRAY_SIZE(supported_fields); i++) if (strncmp(supported_fields[i].field_id, field_id, IMA_TEMPLATE_FIELD_ID_MAX_LEN) == 0) return &supported_fields[i]; return NULL; } static int template_fmt_size(const char *template_fmt) { char c; int template_fmt_len = strlen(template_fmt); int i = 0, j = 0; while (i < template_fmt_len) { c = template_fmt[i]; if (c == '|') j++; i++; } return j + 1; } int template_desc_init_fields(const char *template_fmt, const struct ima_template_field ***fields, int *num_fields) { const char *template_fmt_ptr; const struct ima_template_field *found_fields[IMA_TEMPLATE_NUM_FIELDS_MAX]; int template_num_fields; int i, len; if (num_fields && *num_fields > 0) /* already initialized? */ return 0; template_num_fields = template_fmt_size(template_fmt); if (template_num_fields > IMA_TEMPLATE_NUM_FIELDS_MAX) { pr_err("format string '%s' contains too many fields\n", template_fmt); return -EINVAL; } for (i = 0, template_fmt_ptr = template_fmt; i < template_num_fields; i++, template_fmt_ptr += len + 1) { char tmp_field_id[IMA_TEMPLATE_FIELD_ID_MAX_LEN + 1]; len = strchrnul(template_fmt_ptr, '|') - template_fmt_ptr; if (len == 0 || len > IMA_TEMPLATE_FIELD_ID_MAX_LEN) { pr_err("Invalid field with length %d\n", len); return -EINVAL; } memcpy(tmp_field_id, template_fmt_ptr, len); tmp_field_id[len] = '\0'; found_fields[i] = lookup_template_field(tmp_field_id); if (!found_fields[i]) { pr_err("field '%s' not found\n", tmp_field_id); return -ENOENT; } } if (fields && num_fields) { *fields = kmalloc_array(i, sizeof(**fields), GFP_KERNEL); if (*fields == NULL) return -ENOMEM; memcpy(*fields, found_fields, i * sizeof(**fields)); *num_fields = i; } return 0; } void ima_init_template_list(void) { int i; if (!list_empty(&defined_templates)) return; spin_lock(&template_list); for (i = 0; i < ARRAY_SIZE(builtin_templates); i++) { list_add_tail_rcu(&builtin_templates[i].list, &defined_templates); } spin_unlock(&template_list); } struct ima_template_desc *ima_template_desc_current(void) { if (!ima_template) { ima_init_template_list(); ima_template = lookup_template_desc(CONFIG_IMA_DEFAULT_TEMPLATE); } return ima_template; } struct ima_template_desc *ima_template_desc_buf(void) { if (!ima_buf_template) { ima_init_template_list(); ima_buf_template = lookup_template_desc("ima-buf"); } return ima_buf_template; } int __init ima_init_template(void) { struct ima_template_desc *template = ima_template_desc_current(); int result; result = template_desc_init_fields(template->fmt, &(template->fields), &(template->num_fields)); if (result < 0) { pr_err("template %s init failed, result: %d\n", (strlen(template->name) ? template->name : template->fmt), result); return result; } template = ima_template_desc_buf(); if (!template) { pr_err("Failed to get ima-buf template\n"); return -EINVAL; } result = template_desc_init_fields(template->fmt, &(template->fields), &(template->num_fields)); if (result < 0) pr_err("template %s init failed, result: %d\n", (strlen(template->name) ? template->name : template->fmt), result); return result; } static struct ima_template_desc *restore_template_fmt(char *template_name) { struct ima_template_desc *template_desc = NULL; int ret; ret = template_desc_init_fields(template_name, NULL, NULL); if (ret < 0) { pr_err("attempting to initialize the template \"%s\" failed\n", template_name); goto out; } template_desc = kzalloc(sizeof(*template_desc), GFP_KERNEL); if (!template_desc) goto out; template_desc->name = ""; template_desc->fmt = kstrdup(template_name, GFP_KERNEL); if (!template_desc->fmt) { kfree(template_desc); template_desc = NULL; goto out; } spin_lock(&template_list); list_add_tail_rcu(&template_desc->list, &defined_templates); spin_unlock(&template_list); out: return template_desc; } static int ima_restore_template_data(struct ima_template_desc *template_desc, void *template_data, int template_data_size, struct ima_template_entry **entry) { struct tpm_digest *digests; int ret = 0; int i; *entry = kzalloc(struct_size(*entry, template_data, template_desc->num_fields), GFP_NOFS); if (!*entry) return -ENOMEM; digests = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots, sizeof(*digests), GFP_NOFS); if (!digests) { kfree(*entry); return -ENOMEM; } (*entry)->digests = digests; ret = ima_parse_buf(template_data, template_data + template_data_size, NULL, template_desc->num_fields, (*entry)->template_data, NULL, NULL, ENFORCE_FIELDS | ENFORCE_BUFEND, "template data"); if (ret < 0) { kfree((*entry)->digests); kfree(*entry); return ret; } (*entry)->template_desc = template_desc; for (i = 0; i < template_desc->num_fields; i++) { struct ima_field_data *field_data = &(*entry)->template_data[i]; u8 *data = field_data->data; (*entry)->template_data[i].data = kzalloc(field_data->len + 1, GFP_KERNEL); if (!(*entry)->template_data[i].data) { ret = -ENOMEM; break; } memcpy((*entry)->template_data[i].data, data, field_data->len); (*entry)->template_data_len += sizeof(field_data->len); (*entry)->template_data_len += field_data->len; } if (ret < 0) { ima_free_template_entry(*entry); *entry = NULL; } return ret; } /* Restore the serialized binary measurement list without extending PCRs. */ int ima_restore_measurement_list(loff_t size, void *buf) { char template_name[MAX_TEMPLATE_NAME_LEN]; unsigned char zero[TPM_DIGEST_SIZE] = { 0 }; struct ima_kexec_hdr *khdr = buf; struct ima_field_data hdr[HDR__LAST] = { [HDR_PCR] = {.len = sizeof(u32)}, [HDR_DIGEST] = {.len = TPM_DIGEST_SIZE}, }; void *bufp = buf + sizeof(*khdr); void *bufendp; struct ima_template_entry *entry; struct ima_template_desc *template_desc; DECLARE_BITMAP(hdr_mask, HDR__LAST); unsigned long count = 0; int ret = 0; if (!buf || size < sizeof(*khdr)) return 0; if (ima_canonical_fmt) { khdr->version = le16_to_cpu((__force __le16)khdr->version); khdr->count = le64_to_cpu((__force __le64)khdr->count); khdr->buffer_size = le64_to_cpu((__force __le64)khdr->buffer_size); } if (khdr->version != 1) { pr_err("attempting to restore a incompatible measurement list"); return -EINVAL; } if (khdr->count > ULONG_MAX - 1) { pr_err("attempting to restore too many measurements"); return -EINVAL; } bitmap_zero(hdr_mask, HDR__LAST); bitmap_set(hdr_mask, HDR_PCR, 1); bitmap_set(hdr_mask, HDR_DIGEST, 1); /* * ima kexec buffer prefix: version, buffer size, count * v1 format: pcr, digest, template-name-len, template-name, * template-data-size, template-data */ bufendp = buf + khdr->buffer_size; while ((bufp < bufendp) && (count++ < khdr->count)) { int enforce_mask = ENFORCE_FIELDS; enforce_mask |= (count == khdr->count) ? ENFORCE_BUFEND : 0; ret = ima_parse_buf(bufp, bufendp, &bufp, HDR__LAST, hdr, NULL, hdr_mask, enforce_mask, "entry header"); if (ret < 0) break; if (hdr[HDR_TEMPLATE_NAME].len >= MAX_TEMPLATE_NAME_LEN) { pr_err("attempting to restore a template name that is too long\n"); ret = -EINVAL; break; } /* template name is not null terminated */ memcpy(template_name, hdr[HDR_TEMPLATE_NAME].data, hdr[HDR_TEMPLATE_NAME].len); template_name[hdr[HDR_TEMPLATE_NAME].len] = 0; if (strcmp(template_name, "ima") == 0) { pr_err("attempting to restore an unsupported template \"%s\" failed\n", template_name); ret = -EINVAL; break; } template_desc = lookup_template_desc(template_name); if (!template_desc) { template_desc = restore_template_fmt(template_name); if (!template_desc) break; } /* * Only the running system's template format is initialized * on boot. As needed, initialize the other template formats. */ ret = template_desc_init_fields(template_desc->fmt, &(template_desc->fields), &(template_desc->num_fields)); if (ret < 0) { pr_err("attempting to restore the template fmt \"%s\" failed\n", template_desc->fmt); ret = -EINVAL; break; } ret = ima_restore_template_data(template_desc, hdr[HDR_TEMPLATE_DATA].data, hdr[HDR_TEMPLATE_DATA].len, &entry); if (ret < 0) break; if (memcmp(hdr[HDR_DIGEST].data, zero, sizeof(zero))) { ret = ima_calc_field_array_hash( &entry->template_data[0], entry); if (ret < 0) { pr_err("cannot calculate template digest\n"); ret = -EINVAL; break; } } entry->pcr = !ima_canonical_fmt ? *(u32 *)(hdr[HDR_PCR].data) : le32_to_cpu(*(__le32 *)(hdr[HDR_PCR].data)); ret = ima_restore_measurement_entry(entry); if (ret < 0) break; } return ret; } |
9 1 1 1 5 1 1 4 4 4 1 1 1 1 3 1 6 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_connmark.c netfilter connmark retriever action * skb mark is over-written * * Copyright (c) 2011 Felix Fietkau <nbd@openwrt.org> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/pkt_cls.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/act_api.h> #include <net/pkt_cls.h> #include <uapi/linux/tc_act/tc_connmark.h> #include <net/tc_act/tc_connmark.h> #include <net/tc_wrapper.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_zones.h> static struct tc_action_ops act_connmark_ops; TC_INDIRECT_SCOPE int tcf_connmark_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { const struct nf_conntrack_tuple_hash *thash; struct nf_conntrack_tuple tuple; enum ip_conntrack_info ctinfo; struct tcf_connmark_info *ca = to_connmark(a); struct tcf_connmark_parms *parms; struct nf_conntrack_zone zone; struct nf_conn *c; int proto; tcf_lastuse_update(&ca->tcf_tm); tcf_action_update_bstats(&ca->common, skb); parms = rcu_dereference_bh(ca->parms); switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): if (skb->len < sizeof(struct iphdr)) goto out; proto = NFPROTO_IPV4; break; case htons(ETH_P_IPV6): if (skb->len < sizeof(struct ipv6hdr)) goto out; proto = NFPROTO_IPV6; break; default: goto out; } c = nf_ct_get(skb, &ctinfo); if (c) { skb->mark = READ_ONCE(c->mark); goto count; } if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, parms->net, &tuple)) goto out; zone.id = parms->zone; zone.dir = NF_CT_DEFAULT_ZONE_DIR; thash = nf_conntrack_find_get(parms->net, &zone, &tuple); if (!thash) goto out; c = nf_ct_tuplehash_to_ctrack(thash); skb->mark = READ_ONCE(c->mark); nf_ct_put(c); count: /* using overlimits stats to count how many packets marked */ tcf_action_inc_overlimit_qstats(&ca->common); out: return READ_ONCE(ca->tcf_action); } static const struct nla_policy connmark_policy[TCA_CONNMARK_MAX + 1] = { [TCA_CONNMARK_PARMS] = { .len = sizeof(struct tc_connmark) }, }; static int tcf_connmark_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_connmark_ops.net_id); struct tcf_connmark_parms *nparms, *oparms; struct nlattr *tb[TCA_CONNMARK_MAX + 1]; bool bind = flags & TCA_ACT_FLAGS_BIND; struct tcf_chain *goto_ch = NULL; struct tcf_connmark_info *ci; struct tc_connmark *parm; int ret = 0, err; u32 index; if (!nla) return -EINVAL; ret = nla_parse_nested_deprecated(tb, TCA_CONNMARK_MAX, nla, connmark_policy, NULL); if (ret < 0) return ret; if (!tb[TCA_CONNMARK_PARMS]) return -EINVAL; nparms = kzalloc(sizeof(*nparms), GFP_KERNEL); if (!nparms) return -ENOMEM; parm = nla_data(tb[TCA_CONNMARK_PARMS]); index = parm->index; ret = tcf_idr_check_alloc(tn, &index, a, bind); if (!ret) { ret = tcf_idr_create_from_flags(tn, index, est, a, &act_connmark_ops, bind, flags); if (ret) { tcf_idr_cleanup(tn, index); err = ret; goto out_free; } ci = to_connmark(*a); nparms->net = net; nparms->zone = parm->zone; ret = ACT_P_CREATED; } else if (ret > 0) { ci = to_connmark(*a); if (bind) { err = ACT_P_BOUND; goto out_free; } if (!(flags & TCA_ACT_FLAGS_REPLACE)) { err = -EEXIST; goto release_idr; } nparms->net = rtnl_dereference(ci->parms)->net; nparms->zone = parm->zone; ret = 0; } else { err = ret; goto out_free; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; spin_lock_bh(&ci->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); oparms = rcu_replace_pointer(ci->parms, nparms, lockdep_is_held(&ci->tcf_lock)); spin_unlock_bh(&ci->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (oparms) kfree_rcu(oparms, rcu); return ret; release_idr: tcf_idr_release(*a, bind); out_free: kfree(nparms); return err; } static inline int tcf_connmark_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_connmark_info *ci = to_connmark(a); struct tc_connmark opt = { .index = ci->tcf_index, .refcnt = refcount_read(&ci->tcf_refcnt) - ref, .bindcnt = atomic_read(&ci->tcf_bindcnt) - bind, }; struct tcf_connmark_parms *parms; struct tcf_t t; spin_lock_bh(&ci->tcf_lock); parms = rcu_dereference_protected(ci->parms, lockdep_is_held(&ci->tcf_lock)); opt.action = ci->tcf_action; opt.zone = parms->zone; if (nla_put(skb, TCA_CONNMARK_PARMS, sizeof(opt), &opt)) goto nla_put_failure; tcf_tm_dump(&t, &ci->tcf_tm); if (nla_put_64bit(skb, TCA_CONNMARK_TM, sizeof(t), &t, TCA_CONNMARK_PAD)) goto nla_put_failure; spin_unlock_bh(&ci->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&ci->tcf_lock); nlmsg_trim(skb, b); return -1; } static void tcf_connmark_cleanup(struct tc_action *a) { struct tcf_connmark_info *ci = to_connmark(a); struct tcf_connmark_parms *parms; parms = rcu_dereference_protected(ci->parms, 1); if (parms) kfree_rcu(parms, rcu); } static struct tc_action_ops act_connmark_ops = { .kind = "connmark", .id = TCA_ID_CONNMARK, .owner = THIS_MODULE, .act = tcf_connmark_act, .dump = tcf_connmark_dump, .init = tcf_connmark_init, .cleanup = tcf_connmark_cleanup, .size = sizeof(struct tcf_connmark_info), }; MODULE_ALIAS_NET_ACT("connmark"); static __net_init int connmark_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_connmark_ops.net_id); return tc_action_net_init(net, tn, &act_connmark_ops); } static void __net_exit connmark_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_connmark_ops.net_id); } static struct pernet_operations connmark_net_ops = { .init = connmark_init_net, .exit_batch = connmark_exit_net, .id = &act_connmark_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init connmark_init_module(void) { return tcf_register_action(&act_connmark_ops, &connmark_net_ops); } static void __exit connmark_cleanup_module(void) { tcf_unregister_action(&act_connmark_ops, &connmark_net_ops); } module_init(connmark_init_module); module_exit(connmark_cleanup_module); MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); MODULE_DESCRIPTION("Connection tracking mark restoring"); MODULE_LICENSE("GPL"); |
134 132 104 15 93 4 125 1 6 1 1 1 2 134 129 129 125 134 3 133 133 134 4 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | // SPDX-License-Identifier: GPL-2.0 /* * XFRM compat layer * Author: Dmitry Safonov <dima@arista.com> * Based on code and translator idea by: Florian Westphal <fw@strlen.de> */ #include <linux/compat.h> #include <linux/nospec.h> #include <linux/xfrm.h> #include <net/xfrm.h> struct compat_xfrm_lifetime_cfg { compat_u64 soft_byte_limit, hard_byte_limit; compat_u64 soft_packet_limit, hard_packet_limit; compat_u64 soft_add_expires_seconds, hard_add_expires_seconds; compat_u64 soft_use_expires_seconds, hard_use_expires_seconds; }; /* same size on 32bit, but only 4 byte alignment required */ struct compat_xfrm_lifetime_cur { compat_u64 bytes, packets, add_time, use_time; }; /* same size on 32bit, but only 4 byte alignment required */ struct compat_xfrm_userpolicy_info { struct xfrm_selector sel; struct compat_xfrm_lifetime_cfg lft; struct compat_xfrm_lifetime_cur curlft; __u32 priority, index; u8 dir, action, flags, share; /* 4 bytes additional padding on 64bit */ }; struct compat_xfrm_usersa_info { struct xfrm_selector sel; struct xfrm_id id; xfrm_address_t saddr; struct compat_xfrm_lifetime_cfg lft; struct compat_xfrm_lifetime_cur curlft; struct xfrm_stats stats; __u32 seq, reqid; u16 family; u8 mode, replay_window, flags; /* 4 bytes additional padding on 64bit */ }; struct compat_xfrm_user_acquire { struct xfrm_id id; xfrm_address_t saddr; struct xfrm_selector sel; struct compat_xfrm_userpolicy_info policy; /* 4 bytes additional padding on 64bit */ __u32 aalgos, ealgos, calgos, seq; }; struct compat_xfrm_userspi_info { struct compat_xfrm_usersa_info info; /* 4 bytes additional padding on 64bit */ __u32 min, max; }; struct compat_xfrm_user_expire { struct compat_xfrm_usersa_info state; /* 8 bytes additional padding on 64bit */ u8 hard; }; struct compat_xfrm_user_polexpire { struct compat_xfrm_userpolicy_info pol; /* 8 bytes additional padding on 64bit */ u8 hard; }; #define XMSGSIZE(type) sizeof(struct type) static const int compat_msg_min[XFRM_NR_MSGTYPES] = { [XFRM_MSG_NEWSA - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_usersa_info), [XFRM_MSG_DELSA - XFRM_MSG_BASE] = XMSGSIZE(xfrm_usersa_id), [XFRM_MSG_GETSA - XFRM_MSG_BASE] = XMSGSIZE(xfrm_usersa_id), [XFRM_MSG_NEWPOLICY - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_userpolicy_info), [XFRM_MSG_DELPOLICY - XFRM_MSG_BASE] = XMSGSIZE(xfrm_userpolicy_id), [XFRM_MSG_GETPOLICY - XFRM_MSG_BASE] = XMSGSIZE(xfrm_userpolicy_id), [XFRM_MSG_ALLOCSPI - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_userspi_info), [XFRM_MSG_ACQUIRE - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_user_acquire), [XFRM_MSG_EXPIRE - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_user_expire), [XFRM_MSG_UPDPOLICY - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_userpolicy_info), [XFRM_MSG_UPDSA - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_usersa_info), [XFRM_MSG_POLEXPIRE - XFRM_MSG_BASE] = XMSGSIZE(compat_xfrm_user_polexpire), [XFRM_MSG_FLUSHSA - XFRM_MSG_BASE] = XMSGSIZE(xfrm_usersa_flush), [XFRM_MSG_FLUSHPOLICY - XFRM_MSG_BASE] = 0, [XFRM_MSG_NEWAE - XFRM_MSG_BASE] = XMSGSIZE(xfrm_aevent_id), [XFRM_MSG_GETAE - XFRM_MSG_BASE] = XMSGSIZE(xfrm_aevent_id), [XFRM_MSG_REPORT - XFRM_MSG_BASE] = XMSGSIZE(xfrm_user_report), [XFRM_MSG_MIGRATE - XFRM_MSG_BASE] = XMSGSIZE(xfrm_userpolicy_id), [XFRM_MSG_NEWSADINFO - XFRM_MSG_BASE] = sizeof(u32), [XFRM_MSG_GETSADINFO - XFRM_MSG_BASE] = sizeof(u32), [XFRM_MSG_NEWSPDINFO - XFRM_MSG_BASE] = sizeof(u32), [XFRM_MSG_GETSPDINFO - XFRM_MSG_BASE] = sizeof(u32), [XFRM_MSG_MAPPING - XFRM_MSG_BASE] = XMSGSIZE(xfrm_user_mapping) }; static const struct nla_policy compat_policy[XFRMA_MAX+1] = { [XFRMA_UNSPEC] = { .strict_start_type = XFRMA_SA_DIR }, [XFRMA_SA] = { .len = XMSGSIZE(compat_xfrm_usersa_info)}, [XFRMA_POLICY] = { .len = XMSGSIZE(compat_xfrm_userpolicy_info)}, [XFRMA_LASTUSED] = { .type = NLA_U64}, [XFRMA_ALG_AUTH_TRUNC] = { .len = sizeof(struct xfrm_algo_auth)}, [XFRMA_ALG_AEAD] = { .len = sizeof(struct xfrm_algo_aead) }, [XFRMA_ALG_AUTH] = { .len = sizeof(struct xfrm_algo) }, [XFRMA_ALG_CRYPT] = { .len = sizeof(struct xfrm_algo) }, [XFRMA_ALG_COMP] = { .len = sizeof(struct xfrm_algo) }, [XFRMA_ENCAP] = { .len = sizeof(struct xfrm_encap_tmpl) }, [XFRMA_TMPL] = { .len = sizeof(struct xfrm_user_tmpl) }, [XFRMA_SEC_CTX] = { .len = sizeof(struct xfrm_user_sec_ctx) }, [XFRMA_LTIME_VAL] = { .len = sizeof(struct xfrm_lifetime_cur) }, [XFRMA_REPLAY_VAL] = { .len = sizeof(struct xfrm_replay_state) }, [XFRMA_REPLAY_THRESH] = { .type = NLA_U32 }, [XFRMA_ETIMER_THRESH] = { .type = NLA_U32 }, [XFRMA_SRCADDR] = { .len = sizeof(xfrm_address_t) }, [XFRMA_COADDR] = { .len = sizeof(xfrm_address_t) }, [XFRMA_POLICY_TYPE] = { .len = sizeof(struct xfrm_userpolicy_type)}, [XFRMA_MIGRATE] = { .len = sizeof(struct xfrm_user_migrate) }, [XFRMA_KMADDRESS] = { .len = sizeof(struct xfrm_user_kmaddress) }, [XFRMA_MARK] = { .len = sizeof(struct xfrm_mark) }, [XFRMA_TFCPAD] = { .type = NLA_U32 }, [XFRMA_REPLAY_ESN_VAL] = { .len = sizeof(struct xfrm_replay_state_esn) }, [XFRMA_SA_EXTRA_FLAGS] = { .type = NLA_U32 }, [XFRMA_PROTO] = { .type = NLA_U8 }, [XFRMA_ADDRESS_FILTER] = { .len = sizeof(struct xfrm_address_filter) }, [XFRMA_OFFLOAD_DEV] = { .len = sizeof(struct xfrm_user_offload) }, [XFRMA_SET_MARK] = { .type = NLA_U32 }, [XFRMA_SET_MARK_MASK] = { .type = NLA_U32 }, [XFRMA_IF_ID] = { .type = NLA_U32 }, [XFRMA_MTIMER_THRESH] = { .type = NLA_U32 }, [XFRMA_SA_DIR] = NLA_POLICY_RANGE(NLA_U8, XFRM_SA_DIR_IN, XFRM_SA_DIR_OUT), [XFRMA_NAT_KEEPALIVE_INTERVAL] = { .type = NLA_U32 }, [XFRMA_SA_PCPU] = { .type = NLA_U32 }, }; static struct nlmsghdr *xfrm_nlmsg_put_compat(struct sk_buff *skb, const struct nlmsghdr *nlh_src, u16 type) { int payload = compat_msg_min[type]; int src_len = xfrm_msg_min[type]; struct nlmsghdr *nlh_dst; /* Compat messages are shorter or equal to native (+padding) */ if (WARN_ON_ONCE(src_len < payload)) return ERR_PTR(-EMSGSIZE); nlh_dst = nlmsg_put(skb, nlh_src->nlmsg_pid, nlh_src->nlmsg_seq, nlh_src->nlmsg_type, payload, nlh_src->nlmsg_flags); if (!nlh_dst) return ERR_PTR(-EMSGSIZE); memset(nlmsg_data(nlh_dst), 0, payload); switch (nlh_src->nlmsg_type) { /* Compat message has the same layout as native */ case XFRM_MSG_DELSA: case XFRM_MSG_DELPOLICY: case XFRM_MSG_FLUSHSA: case XFRM_MSG_FLUSHPOLICY: case XFRM_MSG_NEWAE: case XFRM_MSG_REPORT: case XFRM_MSG_MIGRATE: case XFRM_MSG_NEWSADINFO: case XFRM_MSG_NEWSPDINFO: case XFRM_MSG_MAPPING: WARN_ON_ONCE(src_len != payload); memcpy(nlmsg_data(nlh_dst), nlmsg_data(nlh_src), src_len); break; /* 4 byte alignment for trailing u64 on native, but not on compat */ case XFRM_MSG_NEWSA: case XFRM_MSG_NEWPOLICY: case XFRM_MSG_UPDSA: case XFRM_MSG_UPDPOLICY: WARN_ON_ONCE(src_len != payload + 4); memcpy(nlmsg_data(nlh_dst), nlmsg_data(nlh_src), payload); break; case XFRM_MSG_EXPIRE: { const struct xfrm_user_expire *src_ue = nlmsg_data(nlh_src); struct compat_xfrm_user_expire *dst_ue = nlmsg_data(nlh_dst); /* compat_xfrm_user_expire has 4-byte smaller state */ memcpy(dst_ue, src_ue, sizeof(dst_ue->state)); dst_ue->hard = src_ue->hard; break; } case XFRM_MSG_ACQUIRE: { const struct xfrm_user_acquire *src_ua = nlmsg_data(nlh_src); struct compat_xfrm_user_acquire *dst_ua = nlmsg_data(nlh_dst); memcpy(dst_ua, src_ua, offsetof(struct compat_xfrm_user_acquire, aalgos)); dst_ua->aalgos = src_ua->aalgos; dst_ua->ealgos = src_ua->ealgos; dst_ua->calgos = src_ua->calgos; dst_ua->seq = src_ua->seq; break; } case XFRM_MSG_POLEXPIRE: { const struct xfrm_user_polexpire *src_upe = nlmsg_data(nlh_src); struct compat_xfrm_user_polexpire *dst_upe = nlmsg_data(nlh_dst); /* compat_xfrm_user_polexpire has 4-byte smaller state */ memcpy(dst_upe, src_upe, sizeof(dst_upe->pol)); dst_upe->hard = src_upe->hard; break; } case XFRM_MSG_ALLOCSPI: { const struct xfrm_userspi_info *src_usi = nlmsg_data(nlh_src); struct compat_xfrm_userspi_info *dst_usi = nlmsg_data(nlh_dst); /* compat_xfrm_user_polexpire has 4-byte smaller state */ memcpy(dst_usi, src_usi, sizeof(src_usi->info)); dst_usi->min = src_usi->min; dst_usi->max = src_usi->max; break; } /* Not being sent by kernel */ case XFRM_MSG_GETSA: case XFRM_MSG_GETPOLICY: case XFRM_MSG_GETAE: case XFRM_MSG_GETSADINFO: case XFRM_MSG_GETSPDINFO: default: pr_warn_once("unsupported nlmsg_type %d\n", nlh_src->nlmsg_type); return ERR_PTR(-EOPNOTSUPP); } return nlh_dst; } static int xfrm_nla_cpy(struct sk_buff *dst, const struct nlattr *src, int len) { return nla_put(dst, src->nla_type, len, nla_data(src)); } static int xfrm_xlate64_attr(struct sk_buff *dst, const struct nlattr *src) { switch (src->nla_type) { case XFRMA_PAD: /* Ignore */ return 0; case XFRMA_UNSPEC: case XFRMA_ALG_AUTH: case XFRMA_ALG_CRYPT: case XFRMA_ALG_COMP: case XFRMA_ENCAP: case XFRMA_TMPL: return xfrm_nla_cpy(dst, src, nla_len(src)); case XFRMA_SA: return xfrm_nla_cpy(dst, src, XMSGSIZE(compat_xfrm_usersa_info)); case XFRMA_POLICY: return xfrm_nla_cpy(dst, src, XMSGSIZE(compat_xfrm_userpolicy_info)); case XFRMA_SEC_CTX: return xfrm_nla_cpy(dst, src, nla_len(src)); case XFRMA_LTIME_VAL: return nla_put_64bit(dst, src->nla_type, nla_len(src), nla_data(src), XFRMA_PAD); case XFRMA_REPLAY_VAL: case XFRMA_REPLAY_THRESH: case XFRMA_ETIMER_THRESH: case XFRMA_SRCADDR: case XFRMA_COADDR: return xfrm_nla_cpy(dst, src, nla_len(src)); case XFRMA_LASTUSED: return nla_put_64bit(dst, src->nla_type, nla_len(src), nla_data(src), XFRMA_PAD); case XFRMA_POLICY_TYPE: case XFRMA_MIGRATE: case XFRMA_ALG_AEAD: case XFRMA_KMADDRESS: case XFRMA_ALG_AUTH_TRUNC: case XFRMA_MARK: case XFRMA_TFCPAD: case XFRMA_REPLAY_ESN_VAL: case XFRMA_SA_EXTRA_FLAGS: case XFRMA_PROTO: case XFRMA_ADDRESS_FILTER: case XFRMA_OFFLOAD_DEV: case XFRMA_SET_MARK: case XFRMA_SET_MARK_MASK: case XFRMA_IF_ID: case XFRMA_MTIMER_THRESH: case XFRMA_SA_DIR: case XFRMA_NAT_KEEPALIVE_INTERVAL: case XFRMA_SA_PCPU: return xfrm_nla_cpy(dst, src, nla_len(src)); default: BUILD_BUG_ON(XFRMA_MAX != XFRMA_SA_PCPU); pr_warn_once("unsupported nla_type %d\n", src->nla_type); return -EOPNOTSUPP; } } /* Take kernel-built (64bit layout) and create 32bit layout for userspace */ static int xfrm_xlate64(struct sk_buff *dst, const struct nlmsghdr *nlh_src) { u16 type = nlh_src->nlmsg_type - XFRM_MSG_BASE; const struct nlattr *nla, *attrs; struct nlmsghdr *nlh_dst; int len, remaining; nlh_dst = xfrm_nlmsg_put_compat(dst, nlh_src, type); if (IS_ERR(nlh_dst)) return PTR_ERR(nlh_dst); attrs = nlmsg_attrdata(nlh_src, xfrm_msg_min[type]); len = nlmsg_attrlen(nlh_src, xfrm_msg_min[type]); nla_for_each_attr(nla, attrs, len, remaining) { int err; switch (nlh_src->nlmsg_type) { case XFRM_MSG_NEWSPDINFO: err = xfrm_nla_cpy(dst, nla, nla_len(nla)); break; default: err = xfrm_xlate64_attr(dst, nla); break; } if (err) return err; } nlmsg_end(dst, nlh_dst); return 0; } static int xfrm_alloc_compat(struct sk_buff *skb, const struct nlmsghdr *nlh_src) { u16 type = nlh_src->nlmsg_type - XFRM_MSG_BASE; struct sk_buff *new = NULL; int err; if (type >= ARRAY_SIZE(xfrm_msg_min)) { pr_warn_once("unsupported nlmsg_type %d\n", nlh_src->nlmsg_type); return -EOPNOTSUPP; } if (skb_shinfo(skb)->frag_list == NULL) { new = alloc_skb(skb->len + skb_tailroom(skb), GFP_ATOMIC); if (!new) return -ENOMEM; skb_shinfo(skb)->frag_list = new; } err = xfrm_xlate64(skb_shinfo(skb)->frag_list, nlh_src); if (err) { if (new) { kfree_skb(new); skb_shinfo(skb)->frag_list = NULL; } return err; } return 0; } /* Calculates len of translated 64-bit message. */ static size_t xfrm_user_rcv_calculate_len64(const struct nlmsghdr *src, struct nlattr *attrs[XFRMA_MAX + 1], int maxtype) { size_t len = nlmsg_len(src); switch (src->nlmsg_type) { case XFRM_MSG_NEWSA: case XFRM_MSG_NEWPOLICY: case XFRM_MSG_ALLOCSPI: case XFRM_MSG_ACQUIRE: case XFRM_MSG_UPDPOLICY: case XFRM_MSG_UPDSA: len += 4; break; case XFRM_MSG_EXPIRE: case XFRM_MSG_POLEXPIRE: len += 8; break; case XFRM_MSG_NEWSPDINFO: /* attirbutes are xfrm_spdattr_type_t, not xfrm_attr_type_t */ return len; default: break; } /* Unexpected for anything, but XFRM_MSG_NEWSPDINFO, please * correct both 64=>32-bit and 32=>64-bit translators to copy * new attributes. */ if (WARN_ON_ONCE(maxtype)) return len; if (attrs[XFRMA_SA]) len += 4; if (attrs[XFRMA_POLICY]) len += 4; /* XXX: some attrs may need to be realigned * if !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */ return len; } static int xfrm_attr_cpy32(void *dst, size_t *pos, const struct nlattr *src, size_t size, int copy_len, int payload) { struct nlmsghdr *nlmsg = dst; struct nlattr *nla; /* xfrm_user_rcv_msg_compat() relies on fact that 32-bit messages * have the same len or shorted than 64-bit ones. * 32-bit translation that is bigger than 64-bit original is unexpected. */ if (WARN_ON_ONCE(copy_len > payload)) copy_len = payload; if (size - *pos < nla_attr_size(payload)) return -ENOBUFS; nla = dst + *pos; memcpy(nla, src, nla_attr_size(copy_len)); nla->nla_len = nla_attr_size(payload); *pos += nla_attr_size(copy_len); nlmsg->nlmsg_len += nla->nla_len; memset(dst + *pos, 0, payload - copy_len); *pos += payload - copy_len; return 0; } static int xfrm_xlate32_attr(void *dst, const struct nlattr *nla, size_t *pos, size_t size, struct netlink_ext_ack *extack) { int type = nla_type(nla); u16 pol_len32, pol_len64; int err; if (type > XFRMA_MAX) { BUILD_BUG_ON(XFRMA_MAX != XFRMA_SA_PCPU); NL_SET_ERR_MSG(extack, "Bad attribute"); return -EOPNOTSUPP; } type = array_index_nospec(type, XFRMA_MAX + 1); if (nla_len(nla) < compat_policy[type].len) { NL_SET_ERR_MSG(extack, "Attribute bad length"); return -EOPNOTSUPP; } pol_len32 = compat_policy[type].len; pol_len64 = xfrma_policy[type].len; /* XFRMA_SA and XFRMA_POLICY - need to know how-to translate */ if (pol_len32 != pol_len64) { if (nla_len(nla) != compat_policy[type].len) { NL_SET_ERR_MSG(extack, "Attribute bad length"); return -EOPNOTSUPP; } err = xfrm_attr_cpy32(dst, pos, nla, size, pol_len32, pol_len64); if (err) return err; } return xfrm_attr_cpy32(dst, pos, nla, size, nla_len(nla), nla_len(nla)); } static int xfrm_xlate32(struct nlmsghdr *dst, const struct nlmsghdr *src, struct nlattr *attrs[XFRMA_MAX+1], size_t size, u8 type, int maxtype, struct netlink_ext_ack *extack) { size_t pos; int i; memcpy(dst, src, NLMSG_HDRLEN); dst->nlmsg_len = NLMSG_HDRLEN + xfrm_msg_min[type]; memset(nlmsg_data(dst), 0, xfrm_msg_min[type]); switch (src->nlmsg_type) { /* Compat message has the same layout as native */ case XFRM_MSG_DELSA: case XFRM_MSG_GETSA: case XFRM_MSG_DELPOLICY: case XFRM_MSG_GETPOLICY: case XFRM_MSG_FLUSHSA: case XFRM_MSG_FLUSHPOLICY: case XFRM_MSG_NEWAE: case XFRM_MSG_GETAE: case XFRM_MSG_REPORT: case XFRM_MSG_MIGRATE: case XFRM_MSG_NEWSADINFO: case XFRM_MSG_GETSADINFO: case XFRM_MSG_NEWSPDINFO: case XFRM_MSG_GETSPDINFO: case XFRM_MSG_MAPPING: memcpy(nlmsg_data(dst), nlmsg_data(src), compat_msg_min[type]); break; /* 4 byte alignment for trailing u64 on native, but not on compat */ case XFRM_MSG_NEWSA: case XFRM_MSG_NEWPOLICY: case XFRM_MSG_UPDSA: case XFRM_MSG_UPDPOLICY: memcpy(nlmsg_data(dst), nlmsg_data(src), compat_msg_min[type]); break; case XFRM_MSG_EXPIRE: { const struct compat_xfrm_user_expire *src_ue = nlmsg_data(src); struct xfrm_user_expire *dst_ue = nlmsg_data(dst); /* compat_xfrm_user_expire has 4-byte smaller state */ memcpy(dst_ue, src_ue, sizeof(src_ue->state)); dst_ue->hard = src_ue->hard; break; } case XFRM_MSG_ACQUIRE: { const struct compat_xfrm_user_acquire *src_ua = nlmsg_data(src); struct xfrm_user_acquire *dst_ua = nlmsg_data(dst); memcpy(dst_ua, src_ua, offsetof(struct compat_xfrm_user_acquire, aalgos)); dst_ua->aalgos = src_ua->aalgos; dst_ua->ealgos = src_ua->ealgos; dst_ua->calgos = src_ua->calgos; dst_ua->seq = src_ua->seq; break; } case XFRM_MSG_POLEXPIRE: { const struct compat_xfrm_user_polexpire *src_upe = nlmsg_data(src); struct xfrm_user_polexpire *dst_upe = nlmsg_data(dst); /* compat_xfrm_user_polexpire has 4-byte smaller state */ memcpy(dst_upe, src_upe, sizeof(src_upe->pol)); dst_upe->hard = src_upe->hard; break; } case XFRM_MSG_ALLOCSPI: { const struct compat_xfrm_userspi_info *src_usi = nlmsg_data(src); struct xfrm_userspi_info *dst_usi = nlmsg_data(dst); /* compat_xfrm_user_polexpire has 4-byte smaller state */ memcpy(dst_usi, src_usi, sizeof(src_usi->info)); dst_usi->min = src_usi->min; dst_usi->max = src_usi->max; break; } default: NL_SET_ERR_MSG(extack, "Unsupported message type"); return -EOPNOTSUPP; } pos = dst->nlmsg_len; if (maxtype) { /* attirbutes are xfrm_spdattr_type_t, not xfrm_attr_type_t */ WARN_ON_ONCE(src->nlmsg_type != XFRM_MSG_NEWSPDINFO); for (i = 1; i <= maxtype; i++) { int err; if (!attrs[i]) continue; /* just copy - no need for translation */ err = xfrm_attr_cpy32(dst, &pos, attrs[i], size, nla_len(attrs[i]), nla_len(attrs[i])); if (err) return err; } return 0; } for (i = 1; i < XFRMA_MAX + 1; i++) { int err; if (i == XFRMA_PAD) continue; if (!attrs[i]) continue; err = xfrm_xlate32_attr(dst, attrs[i], &pos, size, extack); if (err) return err; } return 0; } static struct nlmsghdr *xfrm_user_rcv_msg_compat(const struct nlmsghdr *h32, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { /* netlink_rcv_skb() checks if a message has full (struct nlmsghdr) */ u16 type = h32->nlmsg_type - XFRM_MSG_BASE; struct nlattr *attrs[XFRMA_MAX+1]; struct nlmsghdr *h64; size_t len; int err; BUILD_BUG_ON(ARRAY_SIZE(xfrm_msg_min) != ARRAY_SIZE(compat_msg_min)); if (type >= ARRAY_SIZE(xfrm_msg_min)) return ERR_PTR(-EINVAL); /* Don't call parse: the message might have only nlmsg header */ if ((h32->nlmsg_type == XFRM_MSG_GETSA || h32->nlmsg_type == XFRM_MSG_GETPOLICY) && (h32->nlmsg_flags & NLM_F_DUMP)) return NULL; err = nlmsg_parse_deprecated(h32, compat_msg_min[type], attrs, maxtype ? : XFRMA_MAX, policy ? : compat_policy, extack); if (err < 0) return ERR_PTR(err); len = xfrm_user_rcv_calculate_len64(h32, attrs, maxtype); /* The message doesn't need translation */ if (len == nlmsg_len(h32)) return NULL; len += NLMSG_HDRLEN; h64 = kvmalloc(len, GFP_KERNEL); if (!h64) return ERR_PTR(-ENOMEM); err = xfrm_xlate32(h64, h32, attrs, len, type, maxtype, extack); if (err < 0) { kvfree(h64); return ERR_PTR(err); } return h64; } static int xfrm_user_policy_compat(u8 **pdata32, int optlen) { struct compat_xfrm_userpolicy_info *p = (void *)*pdata32; u8 *src_templates, *dst_templates; u8 *data64; if (optlen < sizeof(*p)) return -EINVAL; data64 = kmalloc_track_caller(optlen + 4, GFP_USER | __GFP_NOWARN); if (!data64) return -ENOMEM; memcpy(data64, *pdata32, sizeof(*p)); memset(data64 + sizeof(*p), 0, 4); src_templates = *pdata32 + sizeof(*p); dst_templates = data64 + sizeof(*p) + 4; memcpy(dst_templates, src_templates, optlen - sizeof(*p)); kfree(*pdata32); *pdata32 = data64; return 0; } static struct xfrm_translator xfrm_translator = { .owner = THIS_MODULE, .alloc_compat = xfrm_alloc_compat, .rcv_msg_compat = xfrm_user_rcv_msg_compat, .xlate_user_policy_sockptr = xfrm_user_policy_compat, }; static int __init xfrm_compat_init(void) { return xfrm_register_translator(&xfrm_translator); } static void __exit xfrm_compat_exit(void) { xfrm_unregister_translator(&xfrm_translator); } module_init(xfrm_compat_init); module_exit(xfrm_compat_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Dmitry Safonov"); MODULE_DESCRIPTION("XFRM 32-bit compatibility layer"); |
1 1 29 27 12 16 2 14 6 4 2 1 5 43 1 2 29 39 1 4 3 35 88 1 89 10 1 11 7 3 114 1 24 99 12 89 1 10 1 10 1 8 3 3 8 3 8 8 9 9 4 1 1 2 140 11 251 260 4 1 3 1 1 3 1 6 1 3 47 47 47 133 25 7 15 3 109 147 112 97 2 11 7 111 111 40 92 87 114 146 122 121 117 2 13 7 134 133 4 1 3 1 110 2 108 110 108 1 107 110 89 10 80 80 60 11 46 46 43 5 46 46 63 52 17 10 10 44 1 16 50 8 1 16 47 3 46 5 47 47 2 2 2 1 46 5 41 57 147 148 3 3 3 146 147 147 146 121 2 119 1 120 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 | // SPDX-License-Identifier: GPL-2.0-or-later /* * af_alg: User-space algorithm interface * * This file provides the user-space API for algorithms. * * Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au> */ #include <linux/atomic.h> #include <crypto/if_alg.h> #include <linux/crypto.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/key.h> #include <linux/key-type.h> #include <linux/list.h> #include <linux/module.h> #include <linux/net.h> #include <linux/rwsem.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/security.h> #include <linux/string.h> #include <keys/user-type.h> #include <keys/trusted-type.h> #include <keys/encrypted-type.h> struct alg_type_list { const struct af_alg_type *type; struct list_head list; }; static struct proto alg_proto = { .name = "ALG", .owner = THIS_MODULE, .obj_size = sizeof(struct alg_sock), }; static LIST_HEAD(alg_types); static DECLARE_RWSEM(alg_types_sem); static const struct af_alg_type *alg_get_type(const char *name) { const struct af_alg_type *type = ERR_PTR(-ENOENT); struct alg_type_list *node; down_read(&alg_types_sem); list_for_each_entry(node, &alg_types, list) { if (strcmp(node->type->name, name)) continue; if (try_module_get(node->type->owner)) type = node->type; break; } up_read(&alg_types_sem); return type; } int af_alg_register_type(const struct af_alg_type *type) { struct alg_type_list *node; int err = -EEXIST; down_write(&alg_types_sem); list_for_each_entry(node, &alg_types, list) { if (!strcmp(node->type->name, type->name)) goto unlock; } node = kmalloc(sizeof(*node), GFP_KERNEL); err = -ENOMEM; if (!node) goto unlock; type->ops->owner = THIS_MODULE; if (type->ops_nokey) type->ops_nokey->owner = THIS_MODULE; node->type = type; list_add(&node->list, &alg_types); err = 0; unlock: up_write(&alg_types_sem); return err; } EXPORT_SYMBOL_GPL(af_alg_register_type); int af_alg_unregister_type(const struct af_alg_type *type) { struct alg_type_list *node; int err = -ENOENT; down_write(&alg_types_sem); list_for_each_entry(node, &alg_types, list) { if (strcmp(node->type->name, type->name)) continue; list_del(&node->list); kfree(node); err = 0; break; } up_write(&alg_types_sem); return err; } EXPORT_SYMBOL_GPL(af_alg_unregister_type); static void alg_do_release(const struct af_alg_type *type, void *private) { if (!type) return; type->release(private); module_put(type->owner); } int af_alg_release(struct socket *sock) { if (sock->sk) { sock_put(sock->sk); sock->sk = NULL; } return 0; } EXPORT_SYMBOL_GPL(af_alg_release); void af_alg_release_parent(struct sock *sk) { struct alg_sock *ask = alg_sk(sk); unsigned int nokey = atomic_read(&ask->nokey_refcnt); sk = ask->parent; ask = alg_sk(sk); if (nokey) atomic_dec(&ask->nokey_refcnt); if (atomic_dec_and_test(&ask->refcnt)) sock_put(sk); } EXPORT_SYMBOL_GPL(af_alg_release_parent); static int alg_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { const u32 allowed = CRYPTO_ALG_KERN_DRIVER_ONLY; struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); struct sockaddr_alg_new *sa = (void *)uaddr; const struct af_alg_type *type; void *private; int err; if (sock->state == SS_CONNECTED) return -EINVAL; BUILD_BUG_ON(offsetof(struct sockaddr_alg_new, salg_name) != offsetof(struct sockaddr_alg, salg_name)); BUILD_BUG_ON(offsetof(struct sockaddr_alg, salg_name) != sizeof(*sa)); if (addr_len < sizeof(*sa) + 1) return -EINVAL; /* If caller uses non-allowed flag, return error. */ if ((sa->salg_feat & ~allowed) || (sa->salg_mask & ~allowed)) return -EINVAL; sa->salg_type[sizeof(sa->salg_type) - 1] = 0; sa->salg_name[addr_len - sizeof(*sa) - 1] = 0; type = alg_get_type(sa->salg_type); if (PTR_ERR(type) == -ENOENT) { request_module("algif-%s", sa->salg_type); type = alg_get_type(sa->salg_type); } if (IS_ERR(type)) return PTR_ERR(type); private = type->bind(sa->salg_name, sa->salg_feat, sa->salg_mask); if (IS_ERR(private)) { module_put(type->owner); return PTR_ERR(private); } err = -EBUSY; lock_sock(sk); if (atomic_read(&ask->refcnt)) goto unlock; swap(ask->type, type); swap(ask->private, private); err = 0; unlock: release_sock(sk); alg_do_release(type, private); return err; } static int alg_setkey(struct sock *sk, sockptr_t ukey, unsigned int keylen) { struct alg_sock *ask = alg_sk(sk); const struct af_alg_type *type = ask->type; u8 *key; int err; key = sock_kmalloc(sk, keylen, GFP_KERNEL); if (!key) return -ENOMEM; err = -EFAULT; if (copy_from_sockptr(key, ukey, keylen)) goto out; err = type->setkey(ask->private, key, keylen); out: sock_kzfree_s(sk, key, keylen); return err; } #ifdef CONFIG_KEYS static const u8 *key_data_ptr_user(const struct key *key, unsigned int *datalen) { const struct user_key_payload *ukp; ukp = user_key_payload_locked(key); if (IS_ERR_OR_NULL(ukp)) return ERR_PTR(-EKEYREVOKED); *datalen = key->datalen; return ukp->data; } static const u8 *key_data_ptr_encrypted(const struct key *key, unsigned int *datalen) { const struct encrypted_key_payload *ekp; ekp = dereference_key_locked(key); if (IS_ERR_OR_NULL(ekp)) return ERR_PTR(-EKEYREVOKED); *datalen = ekp->decrypted_datalen; return ekp->decrypted_data; } static const u8 *key_data_ptr_trusted(const struct key *key, unsigned int *datalen) { const struct trusted_key_payload *tkp; tkp = dereference_key_locked(key); if (IS_ERR_OR_NULL(tkp)) return ERR_PTR(-EKEYREVOKED); *datalen = tkp->key_len; return tkp->key; } static struct key *lookup_key(key_serial_t serial) { key_ref_t key_ref; key_ref = lookup_user_key(serial, 0, KEY_NEED_SEARCH); if (IS_ERR(key_ref)) return ERR_CAST(key_ref); return key_ref_to_ptr(key_ref); } static int alg_setkey_by_key_serial(struct alg_sock *ask, sockptr_t optval, unsigned int optlen) { const struct af_alg_type *type = ask->type; u8 *key_data = NULL; unsigned int key_datalen; key_serial_t serial; struct key *key; const u8 *ret; int err; if (optlen != sizeof(serial)) return -EINVAL; if (copy_from_sockptr(&serial, optval, optlen)) return -EFAULT; key = lookup_key(serial); if (IS_ERR(key)) return PTR_ERR(key); down_read(&key->sem); ret = ERR_PTR(-ENOPROTOOPT); if (!strcmp(key->type->name, "user") || !strcmp(key->type->name, "logon")) { ret = key_data_ptr_user(key, &key_datalen); } else if (IS_REACHABLE(CONFIG_ENCRYPTED_KEYS) && !strcmp(key->type->name, "encrypted")) { ret = key_data_ptr_encrypted(key, &key_datalen); } else if (IS_REACHABLE(CONFIG_TRUSTED_KEYS) && !strcmp(key->type->name, "trusted")) { ret = key_data_ptr_trusted(key, &key_datalen); } if (IS_ERR(ret)) { up_read(&key->sem); key_put(key); return PTR_ERR(ret); } key_data = sock_kmalloc(&ask->sk, key_datalen, GFP_KERNEL); if (!key_data) { up_read(&key->sem); key_put(key); return -ENOMEM; } memcpy(key_data, ret, key_datalen); up_read(&key->sem); key_put(key); err = type->setkey(ask->private, key_data, key_datalen); sock_kzfree_s(&ask->sk, key_data, key_datalen); return err; } #else static inline int alg_setkey_by_key_serial(struct alg_sock *ask, sockptr_t optval, unsigned int optlen) { return -ENOPROTOOPT; } #endif static int alg_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); const struct af_alg_type *type; int err = -EBUSY; lock_sock(sk); if (atomic_read(&ask->refcnt) != atomic_read(&ask->nokey_refcnt)) goto unlock; type = ask->type; err = -ENOPROTOOPT; if (level != SOL_ALG || !type) goto unlock; switch (optname) { case ALG_SET_KEY: case ALG_SET_KEY_BY_KEY_SERIAL: if (sock->state == SS_CONNECTED) goto unlock; if (!type->setkey) goto unlock; if (optname == ALG_SET_KEY_BY_KEY_SERIAL) err = alg_setkey_by_key_serial(ask, optval, optlen); else err = alg_setkey(sk, optval, optlen); break; case ALG_SET_AEAD_AUTHSIZE: if (sock->state == SS_CONNECTED) goto unlock; if (!type->setauthsize) goto unlock; err = type->setauthsize(ask->private, optlen); break; case ALG_SET_DRBG_ENTROPY: if (sock->state == SS_CONNECTED) goto unlock; if (!type->setentropy) goto unlock; err = type->setentropy(ask->private, optval, optlen); } unlock: release_sock(sk); return err; } int af_alg_accept(struct sock *sk, struct socket *newsock, struct proto_accept_arg *arg) { struct alg_sock *ask = alg_sk(sk); const struct af_alg_type *type; struct sock *sk2; unsigned int nokey; int err; lock_sock(sk); type = ask->type; err = -EINVAL; if (!type) goto unlock; sk2 = sk_alloc(sock_net(sk), PF_ALG, GFP_KERNEL, &alg_proto, arg->kern); err = -ENOMEM; if (!sk2) goto unlock; sock_init_data(newsock, sk2); security_sock_graft(sk2, newsock); security_sk_clone(sk, sk2); /* * newsock->ops assigned here to allow type->accept call to override * them when required. */ newsock->ops = type->ops; err = type->accept(ask->private, sk2); nokey = err == -ENOKEY; if (nokey && type->accept_nokey) err = type->accept_nokey(ask->private, sk2); if (err) goto unlock; if (atomic_inc_return_relaxed(&ask->refcnt) == 1) sock_hold(sk); if (nokey) { atomic_inc(&ask->nokey_refcnt); atomic_set(&alg_sk(sk2)->nokey_refcnt, 1); } alg_sk(sk2)->parent = sk; alg_sk(sk2)->type = type; newsock->state = SS_CONNECTED; if (nokey) newsock->ops = type->ops_nokey; err = 0; unlock: release_sock(sk); return err; } EXPORT_SYMBOL_GPL(af_alg_accept); static int alg_accept(struct socket *sock, struct socket *newsock, struct proto_accept_arg *arg) { return af_alg_accept(sock->sk, newsock, arg); } static const struct proto_ops alg_proto_ops = { .family = PF_ALG, .owner = THIS_MODULE, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .getname = sock_no_getname, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .mmap = sock_no_mmap, .sendmsg = sock_no_sendmsg, .recvmsg = sock_no_recvmsg, .bind = alg_bind, .release = af_alg_release, .setsockopt = alg_setsockopt, .accept = alg_accept, }; static void alg_sock_destruct(struct sock *sk) { struct alg_sock *ask = alg_sk(sk); alg_do_release(ask->type, ask->private); } static int alg_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; int err; if (sock->type != SOCK_SEQPACKET) return -ESOCKTNOSUPPORT; if (protocol != 0) return -EPROTONOSUPPORT; err = -ENOMEM; sk = sk_alloc(net, PF_ALG, GFP_KERNEL, &alg_proto, kern); if (!sk) goto out; sock->ops = &alg_proto_ops; sock_init_data(sock, sk); sk->sk_destruct = alg_sock_destruct; return 0; out: return err; } static const struct net_proto_family alg_family = { .family = PF_ALG, .create = alg_create, .owner = THIS_MODULE, }; static void af_alg_link_sg(struct af_alg_sgl *sgl_prev, struct af_alg_sgl *sgl_new) { sg_unmark_end(sgl_prev->sgt.sgl + sgl_prev->sgt.nents - 1); sg_chain(sgl_prev->sgt.sgl, sgl_prev->sgt.nents + 1, sgl_new->sgt.sgl); } void af_alg_free_sg(struct af_alg_sgl *sgl) { int i; if (sgl->sgt.sgl) { if (sgl->need_unpin) for (i = 0; i < sgl->sgt.nents; i++) unpin_user_page(sg_page(&sgl->sgt.sgl[i])); if (sgl->sgt.sgl != sgl->sgl) kvfree(sgl->sgt.sgl); sgl->sgt.sgl = NULL; } } EXPORT_SYMBOL_GPL(af_alg_free_sg); static int af_alg_cmsg_send(struct msghdr *msg, struct af_alg_control *con) { struct cmsghdr *cmsg; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_ALG) continue; switch (cmsg->cmsg_type) { case ALG_SET_IV: if (cmsg->cmsg_len < CMSG_LEN(sizeof(*con->iv))) return -EINVAL; con->iv = (void *)CMSG_DATA(cmsg); if (cmsg->cmsg_len < CMSG_LEN(con->iv->ivlen + sizeof(*con->iv))) return -EINVAL; break; case ALG_SET_OP: if (cmsg->cmsg_len < CMSG_LEN(sizeof(u32))) return -EINVAL; con->op = *(u32 *)CMSG_DATA(cmsg); break; case ALG_SET_AEAD_ASSOCLEN: if (cmsg->cmsg_len < CMSG_LEN(sizeof(u32))) return -EINVAL; con->aead_assoclen = *(u32 *)CMSG_DATA(cmsg); break; default: return -EINVAL; } } return 0; } /** * af_alg_alloc_tsgl - allocate the TX SGL * * @sk: socket of connection to user space * Return: 0 upon success, < 0 upon error */ static int af_alg_alloc_tsgl(struct sock *sk) { struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; struct af_alg_tsgl *sgl; struct scatterlist *sg = NULL; sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list); if (!list_empty(&ctx->tsgl_list)) sg = sgl->sg; if (!sg || sgl->cur >= MAX_SGL_ENTS) { sgl = sock_kmalloc(sk, struct_size(sgl, sg, (MAX_SGL_ENTS + 1)), GFP_KERNEL); if (!sgl) return -ENOMEM; sg_init_table(sgl->sg, MAX_SGL_ENTS + 1); sgl->cur = 0; if (sg) sg_chain(sg, MAX_SGL_ENTS + 1, sgl->sg); list_add_tail(&sgl->list, &ctx->tsgl_list); } return 0; } /** * af_alg_count_tsgl - Count number of TX SG entries * * The counting starts from the beginning of the SGL to @bytes. If * an @offset is provided, the counting of the SG entries starts at the @offset. * * @sk: socket of connection to user space * @bytes: Count the number of SG entries holding given number of bytes. * @offset: Start the counting of SG entries from the given offset. * Return: Number of TX SG entries found given the constraints */ unsigned int af_alg_count_tsgl(struct sock *sk, size_t bytes, size_t offset) { const struct alg_sock *ask = alg_sk(sk); const struct af_alg_ctx *ctx = ask->private; const struct af_alg_tsgl *sgl; unsigned int i; unsigned int sgl_count = 0; if (!bytes) return 0; list_for_each_entry(sgl, &ctx->tsgl_list, list) { const struct scatterlist *sg = sgl->sg; for (i = 0; i < sgl->cur; i++) { size_t bytes_count; /* Skip offset */ if (offset >= sg[i].length) { offset -= sg[i].length; bytes -= sg[i].length; continue; } bytes_count = sg[i].length - offset; offset = 0; sgl_count++; /* If we have seen requested number of bytes, stop */ if (bytes_count >= bytes) return sgl_count; bytes -= bytes_count; } } return sgl_count; } EXPORT_SYMBOL_GPL(af_alg_count_tsgl); /** * af_alg_pull_tsgl - Release the specified buffers from TX SGL * * If @dst is non-null, reassign the pages to @dst. The caller must release * the pages. If @dst_offset is given only reassign the pages to @dst starting * at the @dst_offset (byte). The caller must ensure that @dst is large * enough (e.g. by using af_alg_count_tsgl with the same offset). * * @sk: socket of connection to user space * @used: Number of bytes to pull from TX SGL * @dst: If non-NULL, buffer is reassigned to dst SGL instead of releasing. The * caller must release the buffers in dst. * @dst_offset: Reassign the TX SGL from given offset. All buffers before * reaching the offset is released. */ void af_alg_pull_tsgl(struct sock *sk, size_t used, struct scatterlist *dst, size_t dst_offset) { struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; struct af_alg_tsgl *sgl; struct scatterlist *sg; unsigned int i, j = 0; while (!list_empty(&ctx->tsgl_list)) { sgl = list_first_entry(&ctx->tsgl_list, struct af_alg_tsgl, list); sg = sgl->sg; for (i = 0; i < sgl->cur; i++) { size_t plen = min_t(size_t, used, sg[i].length); struct page *page = sg_page(sg + i); if (!page) continue; /* * Assumption: caller created af_alg_count_tsgl(len) * SG entries in dst. */ if (dst) { if (dst_offset >= plen) { /* discard page before offset */ dst_offset -= plen; } else { /* reassign page to dst after offset */ get_page(page); sg_set_page(dst + j, page, plen - dst_offset, sg[i].offset + dst_offset); dst_offset = 0; j++; } } sg[i].length -= plen; sg[i].offset += plen; used -= plen; ctx->used -= plen; if (sg[i].length) return; put_page(page); sg_assign_page(sg + i, NULL); } list_del(&sgl->list); sock_kfree_s(sk, sgl, struct_size(sgl, sg, MAX_SGL_ENTS + 1)); } if (!ctx->used) ctx->merge = 0; ctx->init = ctx->more; } EXPORT_SYMBOL_GPL(af_alg_pull_tsgl); /** * af_alg_free_areq_sgls - Release TX and RX SGLs of the request * * @areq: Request holding the TX and RX SGL */ static void af_alg_free_areq_sgls(struct af_alg_async_req *areq) { struct sock *sk = areq->sk; struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; struct af_alg_rsgl *rsgl, *tmp; struct scatterlist *tsgl; struct scatterlist *sg; unsigned int i; list_for_each_entry_safe(rsgl, tmp, &areq->rsgl_list, list) { atomic_sub(rsgl->sg_num_bytes, &ctx->rcvused); af_alg_free_sg(&rsgl->sgl); list_del(&rsgl->list); if (rsgl != &areq->first_rsgl) sock_kfree_s(sk, rsgl, sizeof(*rsgl)); } tsgl = areq->tsgl; if (tsgl) { for_each_sg(tsgl, sg, areq->tsgl_entries, i) { if (!sg_page(sg)) continue; put_page(sg_page(sg)); } sock_kfree_s(sk, tsgl, areq->tsgl_entries * sizeof(*tsgl)); } } /** * af_alg_wait_for_wmem - wait for availability of writable memory * * @sk: socket of connection to user space * @flags: If MSG_DONTWAIT is set, then only report if function would sleep * Return: 0 when writable memory is available, < 0 upon error */ static int af_alg_wait_for_wmem(struct sock *sk, unsigned int flags) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int err = -ERESTARTSYS; long timeout; if (flags & MSG_DONTWAIT) return -EAGAIN; sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); add_wait_queue(sk_sleep(sk), &wait); for (;;) { if (signal_pending(current)) break; timeout = MAX_SCHEDULE_TIMEOUT; if (sk_wait_event(sk, &timeout, af_alg_writable(sk), &wait)) { err = 0; break; } } remove_wait_queue(sk_sleep(sk), &wait); return err; } /** * af_alg_wmem_wakeup - wakeup caller when writable memory is available * * @sk: socket of connection to user space */ void af_alg_wmem_wakeup(struct sock *sk) { struct socket_wq *wq; if (!af_alg_writable(sk)) return; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLRDNORM | EPOLLRDBAND); sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(af_alg_wmem_wakeup); /** * af_alg_wait_for_data - wait for availability of TX data * * @sk: socket of connection to user space * @flags: If MSG_DONTWAIT is set, then only report if function would sleep * @min: Set to minimum request size if partial requests are allowed. * Return: 0 when writable memory is available, < 0 upon error */ int af_alg_wait_for_data(struct sock *sk, unsigned flags, unsigned min) { DEFINE_WAIT_FUNC(wait, woken_wake_function); struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; long timeout; int err = -ERESTARTSYS; if (flags & MSG_DONTWAIT) return -EAGAIN; sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); add_wait_queue(sk_sleep(sk), &wait); for (;;) { if (signal_pending(current)) break; timeout = MAX_SCHEDULE_TIMEOUT; if (sk_wait_event(sk, &timeout, ctx->init && (!ctx->more || (min && ctx->used >= min)), &wait)) { err = 0; break; } } remove_wait_queue(sk_sleep(sk), &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); return err; } EXPORT_SYMBOL_GPL(af_alg_wait_for_data); /** * af_alg_data_wakeup - wakeup caller when new data can be sent to kernel * * @sk: socket of connection to user space */ static void af_alg_data_wakeup(struct sock *sk) { struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; struct socket_wq *wq; if (!ctx->used) return; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | EPOLLRDNORM | EPOLLRDBAND); sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); rcu_read_unlock(); } /** * af_alg_sendmsg - implementation of sendmsg system call handler * * The sendmsg system call handler obtains the user data and stores it * in ctx->tsgl_list. This implies allocation of the required numbers of * struct af_alg_tsgl. * * In addition, the ctx is filled with the information sent via CMSG. * * @sock: socket of connection to user space * @msg: message from user space * @size: size of message from user space * @ivsize: the size of the IV for the cipher operation to verify that the * user-space-provided IV has the right size * Return: the number of copied data upon success, < 0 upon error */ int af_alg_sendmsg(struct socket *sock, struct msghdr *msg, size_t size, unsigned int ivsize) { struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; struct af_alg_tsgl *sgl; struct af_alg_control con = {}; long copied = 0; bool enc = false; bool init = false; int err = 0; if (msg->msg_controllen) { err = af_alg_cmsg_send(msg, &con); if (err) return err; init = true; switch (con.op) { case ALG_OP_ENCRYPT: enc = true; break; case ALG_OP_DECRYPT: enc = false; break; default: return -EINVAL; } if (con.iv && con.iv->ivlen != ivsize) return -EINVAL; } lock_sock(sk); if (ctx->init && !ctx->more) { if (ctx->used) { err = -EINVAL; goto unlock; } pr_info_once( "%s sent an empty control message without MSG_MORE.\n", current->comm); } ctx->init = true; if (init) { ctx->enc = enc; if (con.iv) memcpy(ctx->iv, con.iv->iv, ivsize); ctx->aead_assoclen = con.aead_assoclen; } while (size) { struct scatterlist *sg; size_t len = size; ssize_t plen; /* use the existing memory in an allocated page */ if (ctx->merge && !(msg->msg_flags & MSG_SPLICE_PAGES)) { sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list); sg = sgl->sg + sgl->cur - 1; len = min_t(size_t, len, PAGE_SIZE - sg->offset - sg->length); err = memcpy_from_msg(page_address(sg_page(sg)) + sg->offset + sg->length, msg, len); if (err) goto unlock; sg->length += len; ctx->merge = (sg->offset + sg->length) & (PAGE_SIZE - 1); ctx->used += len; copied += len; size -= len; continue; } if (!af_alg_writable(sk)) { err = af_alg_wait_for_wmem(sk, msg->msg_flags); if (err) goto unlock; } /* allocate a new page */ len = min_t(unsigned long, len, af_alg_sndbuf(sk)); err = af_alg_alloc_tsgl(sk); if (err) goto unlock; sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list); sg = sgl->sg; if (sgl->cur) sg_unmark_end(sg + sgl->cur - 1); if (msg->msg_flags & MSG_SPLICE_PAGES) { struct sg_table sgtable = { .sgl = sg, .nents = sgl->cur, .orig_nents = sgl->cur, }; plen = extract_iter_to_sg(&msg->msg_iter, len, &sgtable, MAX_SGL_ENTS - sgl->cur, 0); if (plen < 0) { err = plen; goto unlock; } for (; sgl->cur < sgtable.nents; sgl->cur++) get_page(sg_page(&sg[sgl->cur])); len -= plen; ctx->used += plen; copied += plen; size -= plen; ctx->merge = 0; } else { do { struct page *pg; unsigned int i = sgl->cur; plen = min_t(size_t, len, PAGE_SIZE); pg = alloc_page(GFP_KERNEL); if (!pg) { err = -ENOMEM; goto unlock; } sg_assign_page(sg + i, pg); err = memcpy_from_msg( page_address(sg_page(sg + i)), msg, plen); if (err) { __free_page(sg_page(sg + i)); sg_assign_page(sg + i, NULL); goto unlock; } sg[i].length = plen; len -= plen; ctx->used += plen; copied += plen; size -= plen; sgl->cur++; } while (len && sgl->cur < MAX_SGL_ENTS); ctx->merge = plen & (PAGE_SIZE - 1); } if (!size) sg_mark_end(sg + sgl->cur - 1); } err = 0; ctx->more = msg->msg_flags & MSG_MORE; unlock: af_alg_data_wakeup(sk); release_sock(sk); return copied ?: err; } EXPORT_SYMBOL_GPL(af_alg_sendmsg); /** * af_alg_free_resources - release resources required for crypto request * @areq: Request holding the TX and RX SGL */ void af_alg_free_resources(struct af_alg_async_req *areq) { struct sock *sk = areq->sk; struct af_alg_ctx *ctx; af_alg_free_areq_sgls(areq); sock_kfree_s(sk, areq, areq->areqlen); ctx = alg_sk(sk)->private; ctx->inflight = false; } EXPORT_SYMBOL_GPL(af_alg_free_resources); /** * af_alg_async_cb - AIO callback handler * @data: async request completion data * @err: if non-zero, error result to be returned via ki_complete(); * otherwise return the AIO output length via ki_complete(). * * This handler cleans up the struct af_alg_async_req upon completion of the * AIO operation. * * The number of bytes to be generated with the AIO operation must be set * in areq->outlen before the AIO callback handler is invoked. */ void af_alg_async_cb(void *data, int err) { struct af_alg_async_req *areq = data; struct sock *sk = areq->sk; struct kiocb *iocb = areq->iocb; unsigned int resultlen; /* Buffer size written by crypto operation. */ resultlen = areq->outlen; af_alg_free_resources(areq); sock_put(sk); iocb->ki_complete(iocb, err ? err : (int)resultlen); } EXPORT_SYMBOL_GPL(af_alg_async_cb); /** * af_alg_poll - poll system call handler * @file: file pointer * @sock: socket to poll * @wait: poll_table */ __poll_t af_alg_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; __poll_t mask; sock_poll_wait(file, sock, wait); mask = 0; if (!ctx->more || ctx->used) mask |= EPOLLIN | EPOLLRDNORM; if (af_alg_writable(sk)) mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; return mask; } EXPORT_SYMBOL_GPL(af_alg_poll); /** * af_alg_alloc_areq - allocate struct af_alg_async_req * * @sk: socket of connection to user space * @areqlen: size of struct af_alg_async_req + crypto_*_reqsize * Return: allocated data structure or ERR_PTR upon error */ struct af_alg_async_req *af_alg_alloc_areq(struct sock *sk, unsigned int areqlen) { struct af_alg_ctx *ctx = alg_sk(sk)->private; struct af_alg_async_req *areq; /* Only one AIO request can be in flight. */ if (ctx->inflight) return ERR_PTR(-EBUSY); areq = sock_kmalloc(sk, areqlen, GFP_KERNEL); if (unlikely(!areq)) return ERR_PTR(-ENOMEM); ctx->inflight = true; areq->areqlen = areqlen; areq->sk = sk; areq->first_rsgl.sgl.sgt.sgl = areq->first_rsgl.sgl.sgl; areq->last_rsgl = NULL; INIT_LIST_HEAD(&areq->rsgl_list); areq->tsgl = NULL; areq->tsgl_entries = 0; return areq; } EXPORT_SYMBOL_GPL(af_alg_alloc_areq); /** * af_alg_get_rsgl - create the RX SGL for the output data from the crypto * operation * * @sk: socket of connection to user space * @msg: user space message * @flags: flags used to invoke recvmsg with * @areq: instance of the cryptographic request that will hold the RX SGL * @maxsize: maximum number of bytes to be pulled from user space * @outlen: number of bytes in the RX SGL * Return: 0 on success, < 0 upon error */ int af_alg_get_rsgl(struct sock *sk, struct msghdr *msg, int flags, struct af_alg_async_req *areq, size_t maxsize, size_t *outlen) { struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; size_t len = 0; while (maxsize > len && msg_data_left(msg)) { struct af_alg_rsgl *rsgl; ssize_t err; size_t seglen; /* limit the amount of readable buffers */ if (!af_alg_readable(sk)) break; seglen = min_t(size_t, (maxsize - len), msg_data_left(msg)); if (list_empty(&areq->rsgl_list)) { rsgl = &areq->first_rsgl; } else { rsgl = sock_kmalloc(sk, sizeof(*rsgl), GFP_KERNEL); if (unlikely(!rsgl)) return -ENOMEM; } rsgl->sgl.need_unpin = iov_iter_extract_will_pin(&msg->msg_iter); rsgl->sgl.sgt.sgl = rsgl->sgl.sgl; rsgl->sgl.sgt.nents = 0; rsgl->sgl.sgt.orig_nents = 0; list_add_tail(&rsgl->list, &areq->rsgl_list); sg_init_table(rsgl->sgl.sgt.sgl, ALG_MAX_PAGES); err = extract_iter_to_sg(&msg->msg_iter, seglen, &rsgl->sgl.sgt, ALG_MAX_PAGES, 0); if (err < 0) { rsgl->sg_num_bytes = 0; return err; } sg_mark_end(rsgl->sgl.sgt.sgl + rsgl->sgl.sgt.nents - 1); /* chain the new scatterlist with previous one */ if (areq->last_rsgl) af_alg_link_sg(&areq->last_rsgl->sgl, &rsgl->sgl); areq->last_rsgl = rsgl; len += err; atomic_add(err, &ctx->rcvused); rsgl->sg_num_bytes = err; } *outlen = len; return 0; } EXPORT_SYMBOL_GPL(af_alg_get_rsgl); static int __init af_alg_init(void) { int err = proto_register(&alg_proto, 0); if (err) goto out; err = sock_register(&alg_family); if (err != 0) goto out_unregister_proto; out: return err; out_unregister_proto: proto_unregister(&alg_proto); goto out; } static void __exit af_alg_exit(void) { sock_unregister(PF_ALG); proto_unregister(&alg_proto); } module_init(af_alg_init); module_exit(af_alg_exit); MODULE_DESCRIPTION("Crypto userspace interface"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(AF_ALG); |
2934 2934 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | // SPDX-License-Identifier: GPL-2.0-only /* * A generic implementation of binary search for the Linux kernel * * Copyright (C) 2008-2009 Ksplice, Inc. * Author: Tim Abbott <tabbott@ksplice.com> */ #include <linux/export.h> #include <linux/bsearch.h> #include <linux/kprobes.h> /* * bsearch - binary search an array of elements * @key: pointer to item being searched for * @base: pointer to first element to search * @num: number of elements * @size: size of each element * @cmp: pointer to comparison function * * This function does a binary search on the given array. The * contents of the array should already be in ascending sorted order * under the provided comparison function. * * Note that the key need not have the same type as the elements in * the array, e.g. key could be a string and the comparison function * could compare the string with the struct's name field. However, if * the key and elements in the array are of the same type, you can use * the same comparison function for both sort() and bsearch(). */ void *bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp) { return __inline_bsearch(key, base, num, size, cmp); } EXPORT_SYMBOL(bsearch); NOKPROBE_SYMBOL(bsearch); |
10 2 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/dccp/minisocks.c * * An implementation of the DCCP protocol * Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #include <linux/dccp.h> #include <linux/gfp.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/timer.h> #include <net/sock.h> #include <net/xfrm.h> #include <net/inet_timewait_sock.h> #include <net/rstreason.h> #include "ackvec.h" #include "ccid.h" #include "dccp.h" #include "feat.h" struct inet_timewait_death_row dccp_death_row = { .tw_refcount = REFCOUNT_INIT(1), .sysctl_max_tw_buckets = NR_FILE * 2, .hashinfo = &dccp_hashinfo, }; EXPORT_SYMBOL_GPL(dccp_death_row); void dccp_time_wait(struct sock *sk, int state, int timeo) { struct inet_timewait_sock *tw; tw = inet_twsk_alloc(sk, &dccp_death_row, state); if (tw != NULL) { const struct inet_connection_sock *icsk = inet_csk(sk); const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); #if IS_ENABLED(CONFIG_IPV6) if (tw->tw_family == PF_INET6) { tw->tw_v6_daddr = sk->sk_v6_daddr; tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr; tw->tw_ipv6only = sk->sk_ipv6only; } #endif /* Get the TIME_WAIT timeout firing. */ if (timeo < rto) timeo = rto; if (state == DCCP_TIME_WAIT) timeo = DCCP_TIMEWAIT_LEN; /* Linkage updates. * Note that access to tw after this point is illegal. */ inet_twsk_hashdance_schedule(tw, sk, &dccp_hashinfo, timeo); } else { /* Sorry, if we're out of memory, just CLOSE this * socket up. We've got bigger problems than * non-graceful socket closings. */ DCCP_WARN("time wait bucket table overflow\n"); } dccp_done(sk); } struct sock *dccp_create_openreq_child(const struct sock *sk, const struct request_sock *req, const struct sk_buff *skb) { /* * Step 3: Process LISTEN state * * (* Generate a new socket and switch to that socket *) * Set S := new socket for this port pair */ struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); if (newsk != NULL) { struct dccp_request_sock *dreq = dccp_rsk(req); struct inet_connection_sock *newicsk = inet_csk(newsk); struct dccp_sock *newdp = dccp_sk(newsk); newdp->dccps_role = DCCP_ROLE_SERVER; newdp->dccps_hc_rx_ackvec = NULL; newdp->dccps_service_list = NULL; newdp->dccps_hc_rx_ccid = NULL; newdp->dccps_hc_tx_ccid = NULL; newdp->dccps_service = dreq->dreq_service; newdp->dccps_timestamp_echo = dreq->dreq_timestamp_echo; newdp->dccps_timestamp_time = dreq->dreq_timestamp_time; newicsk->icsk_rto = DCCP_TIMEOUT_INIT; INIT_LIST_HEAD(&newdp->dccps_featneg); /* * Step 3: Process LISTEN state * * Choose S.ISS (initial seqno) or set from Init Cookies * Initialize S.GAR := S.ISS * Set S.ISR, S.GSR from packet (or Init Cookies) * * Setting AWL/AWH and SWL/SWH happens as part of the feature * activation below, as these windows all depend on the local * and remote Sequence Window feature values (7.5.2). */ newdp->dccps_iss = dreq->dreq_iss; newdp->dccps_gss = dreq->dreq_gss; newdp->dccps_gar = newdp->dccps_iss; newdp->dccps_isr = dreq->dreq_isr; newdp->dccps_gsr = dreq->dreq_gsr; /* * Activate features: initialise CCIDs, sequence windows etc. */ if (dccp_feat_activate_values(newsk, &dreq->dreq_featneg)) { sk_free_unlock_clone(newsk); return NULL; } dccp_init_xmit_timers(newsk); __DCCP_INC_STATS(DCCP_MIB_PASSIVEOPENS); } return newsk; } EXPORT_SYMBOL_GPL(dccp_create_openreq_child); /* * Process an incoming packet for RESPOND sockets represented * as an request_sock. */ struct sock *dccp_check_req(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { struct sock *child = NULL; struct dccp_request_sock *dreq = dccp_rsk(req); bool own_req; /* TCP/DCCP listeners became lockless. * DCCP stores complex state in its request_sock, so we need * a protection for them, now this code runs without being protected * by the parent (listener) lock. */ spin_lock_bh(&dreq->dreq_lock); /* Check for retransmitted REQUEST */ if (dccp_hdr(skb)->dccph_type == DCCP_PKT_REQUEST) { if (after48(DCCP_SKB_CB(skb)->dccpd_seq, dreq->dreq_gsr)) { dccp_pr_debug("Retransmitted REQUEST\n"); dreq->dreq_gsr = DCCP_SKB_CB(skb)->dccpd_seq; /* * Send another RESPONSE packet * To protect against Request floods, increment retrans * counter (backoff, monitored by dccp_response_timer). */ inet_rtx_syn_ack(sk, req); } /* Network Duplicate, discard packet */ goto out; } DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR; if (dccp_hdr(skb)->dccph_type != DCCP_PKT_ACK && dccp_hdr(skb)->dccph_type != DCCP_PKT_DATAACK) goto drop; /* Invalid ACK */ if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq, dreq->dreq_iss, dreq->dreq_gss)) { dccp_pr_debug("Invalid ACK number: ack_seq=%llu, " "dreq_iss=%llu, dreq_gss=%llu\n", (unsigned long long) DCCP_SKB_CB(skb)->dccpd_ack_seq, (unsigned long long) dreq->dreq_iss, (unsigned long long) dreq->dreq_gss); goto drop; } if (dccp_parse_options(sk, dreq, skb)) goto drop; child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, req, &own_req); if (child) { child = inet_csk_complete_hashdance(sk, child, req, own_req); goto out; } DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_TOO_BUSY; drop: if (dccp_hdr(skb)->dccph_type != DCCP_PKT_RESET) req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_NOT_SPECIFIED); inet_csk_reqsk_queue_drop(sk, req); out: spin_unlock_bh(&dreq->dreq_lock); return child; } EXPORT_SYMBOL_GPL(dccp_check_req); /* * Queue segment on the new socket if the new socket is active, * otherwise we just shortcircuit this and continue with * the new socket. */ int dccp_child_process(struct sock *parent, struct sock *child, struct sk_buff *skb) __releases(child) { int ret = 0; const int state = child->sk_state; if (!sock_owned_by_user(child)) { ret = dccp_rcv_state_process(child, skb, dccp_hdr(skb), skb->len); /* Wakeup parent, send SIGIO */ if (state == DCCP_RESPOND && child->sk_state != state) parent->sk_data_ready(parent); } else { /* Alas, it is possible again, because we do lookup * in main socket hash table and lock on listening * socket does not protect us more. */ __sk_add_backlog(child, skb); } bh_unlock_sock(child); sock_put(child); return ret; } EXPORT_SYMBOL_GPL(dccp_child_process); void dccp_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *rsk) { DCCP_BUG("DCCP-ACK packets are never sent in LISTEN/RESPOND state"); } EXPORT_SYMBOL_GPL(dccp_reqsk_send_ack); int dccp_reqsk_init(struct request_sock *req, struct dccp_sock const *dp, struct sk_buff const *skb) { struct dccp_request_sock *dreq = dccp_rsk(req); spin_lock_init(&dreq->dreq_lock); inet_rsk(req)->ir_rmt_port = dccp_hdr(skb)->dccph_sport; inet_rsk(req)->ir_num = ntohs(dccp_hdr(skb)->dccph_dport); inet_rsk(req)->acked = 0; dreq->dreq_timestamp_echo = 0; /* inherit feature negotiation options from listening socket */ return dccp_feat_clone_list(&dp->dccps_featneg, &dreq->dreq_featneg); } EXPORT_SYMBOL_GPL(dccp_reqsk_init); |
7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | /* * This file implement the Wireless Extensions proc API. * * Authors : Jean Tourrilhes - HPL - <jt@hpl.hp.com> * Copyright (c) 1997-2007 Jean Tourrilhes, All Rights Reserved. * * (As all part of the Linux kernel, this file is GPL) */ /* * The /proc/net/wireless file is a human readable user-space interface * exporting various wireless specific statistics from the wireless devices. * This is the most popular part of the Wireless Extensions ;-) * * This interface is a pure clone of /proc/net/dev (in net/core/dev.c). * The content of the file is basically the content of "struct iw_statistics". */ #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/wireless.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <net/iw_handler.h> #include <net/wext.h> static void wireless_seq_printf_stats(struct seq_file *seq, struct net_device *dev) { /* Get stats from the driver */ struct iw_statistics *stats = get_wireless_stats(dev); static struct iw_statistics nullstats = {}; /* show device if it's wireless regardless of current stats */ if (!stats) { #ifdef CONFIG_WIRELESS_EXT if (dev->wireless_handlers) stats = &nullstats; #endif #ifdef CONFIG_CFG80211 if (dev->ieee80211_ptr) stats = &nullstats; #endif } if (stats) { seq_printf(seq, "%6s: %04x %3d%c %3d%c %3d%c %6d %6d %6d " "%6d %6d %6d\n", dev->name, stats->status, stats->qual.qual, stats->qual.updated & IW_QUAL_QUAL_UPDATED ? '.' : ' ', ((__s32) stats->qual.level) - ((stats->qual.updated & IW_QUAL_DBM) ? 0x100 : 0), stats->qual.updated & IW_QUAL_LEVEL_UPDATED ? '.' : ' ', ((__s32) stats->qual.noise) - ((stats->qual.updated & IW_QUAL_DBM) ? 0x100 : 0), stats->qual.updated & IW_QUAL_NOISE_UPDATED ? '.' : ' ', stats->discard.nwid, stats->discard.code, stats->discard.fragment, stats->discard.retries, stats->discard.misc, stats->miss.beacon); if (stats != &nullstats) stats->qual.updated &= ~IW_QUAL_ALL_UPDATED; } } /* ---------------------------------------------------------------- */ /* * Print info for /proc/net/wireless (print all entries) */ static int wireless_dev_seq_show(struct seq_file *seq, void *v) { might_sleep(); if (v == SEQ_START_TOKEN) seq_printf(seq, "Inter-| sta-| Quality | Discarded " "packets | Missed | WE\n" " face | tus | link level noise | nwid " "crypt frag retry misc | beacon | %d\n", WIRELESS_EXT); else wireless_seq_printf_stats(seq, v); return 0; } static void *wireless_dev_seq_start(struct seq_file *seq, loff_t *pos) { struct net *net = seq_file_net(seq); loff_t off; struct net_device *dev; rtnl_lock(); if (!*pos) return SEQ_START_TOKEN; off = 1; for_each_netdev(net, dev) if (off++ == *pos) return dev; return NULL; } static void *wireless_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct net *net = seq_file_net(seq); ++*pos; return v == SEQ_START_TOKEN ? first_net_device(net) : next_net_device(v); } static void wireless_dev_seq_stop(struct seq_file *seq, void *v) { rtnl_unlock(); } static const struct seq_operations wireless_seq_ops = { .start = wireless_dev_seq_start, .next = wireless_dev_seq_next, .stop = wireless_dev_seq_stop, .show = wireless_dev_seq_show, }; int __net_init wext_proc_init(struct net *net) { /* Create /proc/net/wireless entry */ if (!proc_create_net("wireless", 0444, net->proc_net, &wireless_seq_ops, sizeof(struct seq_net_private))) return -ENOMEM; return 0; } void __net_exit wext_proc_exit(struct net *net) { remove_proc_entry("wireless", net->proc_net); } |
6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | /* * net/tipc/core.c: TIPC module code * * Copyright (c) 2003-2006, 2013, Ericsson AB * Copyright (c) 2005-2006, 2010-2013, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "name_table.h" #include "subscr.h" #include "bearer.h" #include "net.h" #include "socket.h" #include "bcast.h" #include "node.h" #include "crypto.h" #include <linux/module.h> /* configurable TIPC parameters */ unsigned int tipc_net_id __read_mostly; int sysctl_tipc_rmem[3] __read_mostly; /* min/default/max */ static int __net_init tipc_init_net(struct net *net) { struct tipc_net *tn = net_generic(net, tipc_net_id); int err; tn->net_id = 4711; tn->node_addr = 0; tn->trial_addr = 0; tn->addr_trial_end = 0; tn->capabilities = TIPC_NODE_CAPABILITIES; INIT_WORK(&tn->work, tipc_net_finalize_work); memset(tn->node_id, 0, sizeof(tn->node_id)); memset(tn->node_id_string, 0, sizeof(tn->node_id_string)); tn->mon_threshold = TIPC_DEF_MON_THRESHOLD; get_random_bytes(&tn->random, sizeof(int)); INIT_LIST_HEAD(&tn->node_list); spin_lock_init(&tn->node_list_lock); #ifdef CONFIG_TIPC_CRYPTO err = tipc_crypto_start(&tn->crypto_tx, net, NULL); if (err) goto out_crypto; #endif err = tipc_sk_rht_init(net); if (err) goto out_sk_rht; err = tipc_nametbl_init(net); if (err) goto out_nametbl; err = tipc_bcast_init(net); if (err) goto out_bclink; err = tipc_attach_loopback(net); if (err) goto out_bclink; return 0; out_bclink: tipc_nametbl_stop(net); out_nametbl: tipc_sk_rht_destroy(net); out_sk_rht: #ifdef CONFIG_TIPC_CRYPTO tipc_crypto_stop(&tn->crypto_tx); out_crypto: #endif return err; } static void __net_exit tipc_exit_net(struct net *net) { struct tipc_net *tn = tipc_net(net); tipc_detach_loopback(net); tipc_net_stop(net); /* Make sure the tipc_net_finalize_work() finished */ cancel_work_sync(&tn->work); tipc_bcast_stop(net); tipc_nametbl_stop(net); tipc_sk_rht_destroy(net); #ifdef CONFIG_TIPC_CRYPTO tipc_crypto_stop(&tipc_net(net)->crypto_tx); #endif while (atomic_read(&tn->wq_count)) cond_resched(); } static void __net_exit tipc_pernet_pre_exit(struct net *net) { tipc_node_pre_cleanup_net(net); } static struct pernet_operations tipc_pernet_pre_exit_ops = { .pre_exit = tipc_pernet_pre_exit, }; static struct pernet_operations tipc_net_ops = { .init = tipc_init_net, .exit = tipc_exit_net, .id = &tipc_net_id, .size = sizeof(struct tipc_net), }; static struct pernet_operations tipc_topsrv_net_ops = { .init = tipc_topsrv_init_net, .exit = tipc_topsrv_exit_net, }; static int __init tipc_init(void) { int err; pr_info("Activated (version " TIPC_MOD_VER ")\n"); sysctl_tipc_rmem[0] = RCVBUF_MIN; sysctl_tipc_rmem[1] = RCVBUF_DEF; sysctl_tipc_rmem[2] = RCVBUF_MAX; err = tipc_register_sysctl(); if (err) goto out_sysctl; err = register_pernet_device(&tipc_net_ops); if (err) goto out_pernet; err = tipc_socket_init(); if (err) goto out_socket; err = register_pernet_device(&tipc_topsrv_net_ops); if (err) goto out_pernet_topsrv; err = register_pernet_subsys(&tipc_pernet_pre_exit_ops); if (err) goto out_register_pernet_subsys; err = tipc_bearer_setup(); if (err) goto out_bearer; err = tipc_netlink_start(); if (err) goto out_netlink; err = tipc_netlink_compat_start(); if (err) goto out_netlink_compat; pr_info("Started in single node mode\n"); return 0; out_netlink_compat: tipc_netlink_stop(); out_netlink: tipc_bearer_cleanup(); out_bearer: unregister_pernet_subsys(&tipc_pernet_pre_exit_ops); out_register_pernet_subsys: unregister_pernet_device(&tipc_topsrv_net_ops); out_pernet_topsrv: tipc_socket_stop(); out_socket: unregister_pernet_device(&tipc_net_ops); out_pernet: tipc_unregister_sysctl(); out_sysctl: pr_err("Unable to start in single node mode\n"); return err; } static void __exit tipc_exit(void) { tipc_netlink_compat_stop(); tipc_netlink_stop(); tipc_bearer_cleanup(); unregister_pernet_subsys(&tipc_pernet_pre_exit_ops); unregister_pernet_device(&tipc_topsrv_net_ops); tipc_socket_stop(); unregister_pernet_device(&tipc_net_ops); tipc_unregister_sysctl(); pr_info("Deactivated\n"); } module_init(tipc_init); module_exit(tipc_exit); MODULE_DESCRIPTION("TIPC: Transparent Inter Process Communication"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(TIPC_MOD_VER); |
7 11 7 1 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel Network Address Lists * * This file contains network address list functions used to manage ordered * lists of network addresses for use by the NetLabel subsystem. The NetLabel * system manages static and dynamic label mappings for network protocols such * as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2008 */ #ifndef _NETLABEL_ADDRLIST_H #define _NETLABEL_ADDRLIST_H #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/in6.h> #include <linux/audit.h> /** * struct netlbl_af4list - NetLabel IPv4 address list * @addr: IPv4 address * @mask: IPv4 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af4list { __be32 addr; __be32 mask; u32 valid; struct list_head list; }; /** * struct netlbl_af6list - NetLabel IPv6 address list * @addr: IPv6 address * @mask: IPv6 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af6list { struct in6_addr addr; struct in6_addr mask; u32 valid; struct list_head list; }; #define __af4list_entry(ptr) container_of(ptr, struct netlbl_af4list, list) static inline struct netlbl_af4list *__af4list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af4list_entry(i); } return n; } static inline struct netlbl_af4list *__af4list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af4list_entry(i); } return n; } #define netlbl_af4list_foreach(iter, head) \ for (iter = __af4list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid(iter->list.next, head)) #define netlbl_af4list_foreach_rcu(iter, head) \ for (iter = __af4list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid_rcu(iter->list.next, head)) #define netlbl_af4list_foreach_safe(iter, tmp, head) \ for (iter = __af4list_valid((head)->next, head), \ tmp = __af4list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af4list_valid(iter->list.next, head)) int netlbl_af4list_add(struct netlbl_af4list *entry, struct list_head *head); struct netlbl_af4list *netlbl_af4list_remove(__be32 addr, __be32 mask, struct list_head *head); void netlbl_af4list_remove_entry(struct netlbl_af4list *entry); struct netlbl_af4list *netlbl_af4list_search(__be32 addr, struct list_head *head); struct netlbl_af4list *netlbl_af4list_search_exact(__be32 addr, __be32 mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask); #else static inline void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask) { } #endif #if IS_ENABLED(CONFIG_IPV6) #define __af6list_entry(ptr) container_of(ptr, struct netlbl_af6list, list) static inline struct netlbl_af6list *__af6list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af6list_entry(i); } return n; } static inline struct netlbl_af6list *__af6list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af6list_entry(i); } return n; } #define netlbl_af6list_foreach(iter, head) \ for (iter = __af6list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid(iter->list.next, head)) #define netlbl_af6list_foreach_rcu(iter, head) \ for (iter = __af6list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid_rcu(iter->list.next, head)) #define netlbl_af6list_foreach_safe(iter, tmp, head) \ for (iter = __af6list_valid((head)->next, head), \ tmp = __af6list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af6list_valid(iter->list.next, head)) int netlbl_af6list_add(struct netlbl_af6list *entry, struct list_head *head); struct netlbl_af6list *netlbl_af6list_remove(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); void netlbl_af6list_remove_entry(struct netlbl_af6list *entry); struct netlbl_af6list *netlbl_af6list_search(const struct in6_addr *addr, struct list_head *head); struct netlbl_af6list *netlbl_af6list_search_exact(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask); #else static inline void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask) { } #endif #endif /* IPV6 */ #endif |
1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #ifndef RXE_QUEUE_H #define RXE_QUEUE_H /* Implements a simple circular buffer that is shared between user * and the driver and can be resized. The requested element size is * rounded up to a power of 2 and the number of elements in the buffer * is also rounded up to a power of 2. Since the queue is empty when * the producer and consumer indices match the maximum capacity of the * queue is one less than the number of element slots. * * Notes: * - The driver indices are always masked off to q->index_mask * before storing so do not need to be checked on reads. * - The user whether user space or kernel is generally * not trusted so its parameters are masked to make sure * they do not access the queue out of bounds on reads. * - The driver indices for queues must not be written * by user so a local copy is used and a shared copy is * stored when the local copy is changed. * - By passing the type in the parameter list separate from q * the compiler can eliminate the switch statement when the * actual queue type is known when the function is called at * compile time. * - These queues are lock free. The user and driver must protect * changes to their end of the queues with locks if more than one * CPU can be accessing it at the same time. */ /** * enum queue_type - type of queue * @QUEUE_TYPE_TO_CLIENT: Queue is written by rxe driver and * read by client which may be a user space * application or a kernel ulp. * Used by rxe internals only. * @QUEUE_TYPE_FROM_CLIENT: Queue is written by client and * read by rxe driver. * Used by rxe internals only. * @QUEUE_TYPE_FROM_ULP: Queue is written by kernel ulp and * read by rxe driver. * Used by kernel verbs APIs only on * behalf of ulps. * @QUEUE_TYPE_TO_ULP: Queue is written by rxe driver and * read by kernel ulp. * Used by kernel verbs APIs only on * behalf of ulps. */ enum queue_type { QUEUE_TYPE_TO_CLIENT, QUEUE_TYPE_FROM_CLIENT, QUEUE_TYPE_FROM_ULP, QUEUE_TYPE_TO_ULP, }; struct rxe_queue_buf; struct rxe_queue { struct rxe_dev *rxe; struct rxe_queue_buf *buf; struct rxe_mmap_info *ip; size_t buf_size; size_t elem_size; unsigned int log2_elem_size; u32 index_mask; enum queue_type type; /* private copy of index for shared queues between * driver and clients. Driver reads and writes * this copy and then replicates to rxe_queue_buf * for read access by clients. */ u32 index; }; int do_mmap_info(struct rxe_dev *rxe, struct mminfo __user *outbuf, struct ib_udata *udata, struct rxe_queue_buf *buf, size_t buf_size, struct rxe_mmap_info **ip_p); void rxe_queue_reset(struct rxe_queue *q); struct rxe_queue *rxe_queue_init(struct rxe_dev *rxe, int *num_elem, unsigned int elem_size, enum queue_type type); int rxe_queue_resize(struct rxe_queue *q, unsigned int *num_elem_p, unsigned int elem_size, struct ib_udata *udata, struct mminfo __user *outbuf, spinlock_t *producer_lock, spinlock_t *consumer_lock); void rxe_queue_cleanup(struct rxe_queue *queue); static inline u32 queue_next_index(struct rxe_queue *q, int index) { return (index + 1) & q->index_mask; } static inline u32 queue_get_producer(const struct rxe_queue *q, enum queue_type type) { u32 prod; switch (type) { case QUEUE_TYPE_FROM_CLIENT: /* used by rxe, client owns the index */ prod = smp_load_acquire(&q->buf->producer_index); break; case QUEUE_TYPE_TO_CLIENT: /* used by rxe which owns the index */ prod = q->index; break; case QUEUE_TYPE_FROM_ULP: /* used by ulp which owns the index */ prod = q->buf->producer_index; break; case QUEUE_TYPE_TO_ULP: /* used by ulp, rxe owns the index */ prod = smp_load_acquire(&q->buf->producer_index); break; } return prod; } static inline u32 queue_get_consumer(const struct rxe_queue *q, enum queue_type type) { u32 cons; switch (type) { case QUEUE_TYPE_FROM_CLIENT: /* used by rxe which owns the index */ cons = q->index; break; case QUEUE_TYPE_TO_CLIENT: /* used by rxe, client owns the index */ cons = smp_load_acquire(&q->buf->consumer_index); break; case QUEUE_TYPE_FROM_ULP: /* used by ulp, rxe owns the index */ cons = smp_load_acquire(&q->buf->consumer_index); break; case QUEUE_TYPE_TO_ULP: /* used by ulp which owns the index */ cons = q->buf->consumer_index; break; } return cons; } static inline int queue_empty(struct rxe_queue *q, enum queue_type type) { u32 prod = queue_get_producer(q, type); u32 cons = queue_get_consumer(q, type); return ((prod - cons) & q->index_mask) == 0; } static inline int queue_full(struct rxe_queue *q, enum queue_type type) { u32 prod = queue_get_producer(q, type); u32 cons = queue_get_consumer(q, type); return ((prod + 1 - cons) & q->index_mask) == 0; } static inline u32 queue_count(const struct rxe_queue *q, enum queue_type type) { u32 prod = queue_get_producer(q, type); u32 cons = queue_get_consumer(q, type); return (prod - cons) & q->index_mask; } static inline void queue_advance_producer(struct rxe_queue *q, enum queue_type type) { u32 prod; switch (type) { case QUEUE_TYPE_FROM_CLIENT: /* used by rxe, client owns the index */ if (WARN_ON(1)) pr_warn("%s: attempt to advance client index\n", __func__); break; case QUEUE_TYPE_TO_CLIENT: /* used by rxe which owns the index */ prod = q->index; prod = (prod + 1) & q->index_mask; q->index = prod; /* release so client can read it safely */ smp_store_release(&q->buf->producer_index, prod); break; case QUEUE_TYPE_FROM_ULP: /* used by ulp which owns the index */ prod = q->buf->producer_index; prod = (prod + 1) & q->index_mask; /* release so rxe can read it safely */ smp_store_release(&q->buf->producer_index, prod); break; case QUEUE_TYPE_TO_ULP: /* used by ulp, rxe owns the index */ if (WARN_ON(1)) pr_warn("%s: attempt to advance driver index\n", __func__); break; } } static inline void queue_advance_consumer(struct rxe_queue *q, enum queue_type type) { u32 cons; switch (type) { case QUEUE_TYPE_FROM_CLIENT: /* used by rxe which owns the index */ cons = (q->index + 1) & q->index_mask; q->index = cons; /* release so client can read it safely */ smp_store_release(&q->buf->consumer_index, cons); break; case QUEUE_TYPE_TO_CLIENT: /* used by rxe, client owns the index */ if (WARN_ON(1)) pr_warn("%s: attempt to advance client index\n", __func__); break; case QUEUE_TYPE_FROM_ULP: /* used by ulp, rxe owns the index */ if (WARN_ON(1)) pr_warn("%s: attempt to advance driver index\n", __func__); break; case QUEUE_TYPE_TO_ULP: /* used by ulp which owns the index */ cons = q->buf->consumer_index; cons = (cons + 1) & q->index_mask; /* release so rxe can read it safely */ smp_store_release(&q->buf->consumer_index, cons); break; } } static inline void *queue_producer_addr(struct rxe_queue *q, enum queue_type type) { u32 prod = queue_get_producer(q, type); return q->buf->data + (prod << q->log2_elem_size); } static inline void *queue_consumer_addr(struct rxe_queue *q, enum queue_type type) { u32 cons = queue_get_consumer(q, type); return q->buf->data + (cons << q->log2_elem_size); } static inline void *queue_addr_from_index(struct rxe_queue *q, u32 index) { return q->buf->data + ((index & q->index_mask) << q->log2_elem_size); } static inline u32 queue_index_from_addr(const struct rxe_queue *q, const void *addr) { return (((u8 *)addr - q->buf->data) >> q->log2_elem_size) & q->index_mask; } static inline void *queue_head(struct rxe_queue *q, enum queue_type type) { return queue_empty(q, type) ? NULL : queue_consumer_addr(q, type); } #endif /* RXE_QUEUE_H */ |
18 18 7 1887 1891 1892 1903 3 218 218 67 1876 1894 64 212 140 145 143 1254 1266 60 77 15 16 15 10 10 8 8 1 1 1 1 2 2 7 1 6 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/user_namespace.h> #include <linux/proc_ns.h> #include <linux/highuid.h> #include <linux/cred.h> #include <linux/securebits.h> #include <linux/security.h> #include <linux/keyctl.h> #include <linux/key-type.h> #include <keys/user-type.h> #include <linux/seq_file.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/ctype.h> #include <linux/projid.h> #include <linux/fs_struct.h> #include <linux/bsearch.h> #include <linux/sort.h> static struct kmem_cache *user_ns_cachep __ro_after_init; static DEFINE_MUTEX(userns_state_mutex); static bool new_idmap_permitted(const struct file *file, struct user_namespace *ns, int cap_setid, struct uid_gid_map *map); static void free_user_ns(struct work_struct *work); static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) { return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); } static void dec_user_namespaces(struct ucounts *ucounts) { return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); } static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) { /* Start with the same capabilities as init but useless for doing * anything as the capabilities are bound to the new user namespace. */ cred->securebits = SECUREBITS_DEFAULT; cred->cap_inheritable = CAP_EMPTY_SET; cred->cap_permitted = CAP_FULL_SET; cred->cap_effective = CAP_FULL_SET; cred->cap_ambient = CAP_EMPTY_SET; cred->cap_bset = CAP_FULL_SET; #ifdef CONFIG_KEYS key_put(cred->request_key_auth); cred->request_key_auth = NULL; #endif /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ cred->user_ns = user_ns; } static unsigned long enforced_nproc_rlimit(void) { unsigned long limit = RLIM_INFINITY; /* Is RLIMIT_NPROC currently enforced? */ if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) || (current_user_ns() != &init_user_ns)) limit = rlimit(RLIMIT_NPROC); return limit; } /* * Create a new user namespace, deriving the creator from the user in the * passed credentials, and replacing that user with the new root user for the * new namespace. * * This is called by copy_creds(), which will finish setting the target task's * credentials. */ int create_user_ns(struct cred *new) { struct user_namespace *ns, *parent_ns = new->user_ns; kuid_t owner = new->euid; kgid_t group = new->egid; struct ucounts *ucounts; int ret, i; ret = -ENOSPC; if (parent_ns->level > 32) goto fail; ucounts = inc_user_namespaces(parent_ns, owner); if (!ucounts) goto fail; /* * Verify that we can not violate the policy of which files * may be accessed that is specified by the root directory, * by verifying that the root directory is at the root of the * mount namespace which allows all files to be accessed. */ ret = -EPERM; if (current_chrooted()) goto fail_dec; /* The creator needs a mapping in the parent user namespace * or else we won't be able to reasonably tell userspace who * created a user_namespace. */ ret = -EPERM; if (!kuid_has_mapping(parent_ns, owner) || !kgid_has_mapping(parent_ns, group)) goto fail_dec; ret = security_create_user_ns(new); if (ret < 0) goto fail_dec; ret = -ENOMEM; ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); if (!ns) goto fail_dec; ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP); ret = ns_alloc_inum(&ns->ns); if (ret) goto fail_free; ns->ns.ops = &userns_operations; refcount_set(&ns->ns.count, 1); /* Leave the new->user_ns reference with the new user namespace. */ ns->parent = parent_ns; ns->level = parent_ns->level + 1; ns->owner = owner; ns->group = group; INIT_WORK(&ns->work, free_user_ns); for (i = 0; i < UCOUNT_COUNTS; i++) { ns->ucount_max[i] = INT_MAX; } set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit()); set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE)); set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING)); set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK)); ns->ucounts = ucounts; /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ mutex_lock(&userns_state_mutex); ns->flags = parent_ns->flags; mutex_unlock(&userns_state_mutex); #ifdef CONFIG_KEYS INIT_LIST_HEAD(&ns->keyring_name_list); init_rwsem(&ns->keyring_sem); #endif ret = -ENOMEM; if (!setup_userns_sysctls(ns)) goto fail_keyring; set_cred_user_ns(new, ns); return 0; fail_keyring: #ifdef CONFIG_PERSISTENT_KEYRINGS key_put(ns->persistent_keyring_register); #endif ns_free_inum(&ns->ns); fail_free: kmem_cache_free(user_ns_cachep, ns); fail_dec: dec_user_namespaces(ucounts); fail: return ret; } int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) { struct cred *cred; int err = -ENOMEM; if (!(unshare_flags & CLONE_NEWUSER)) return 0; cred = prepare_creds(); if (cred) { err = create_user_ns(cred); if (err) put_cred(cred); else *new_cred = cred; } return err; } static void free_user_ns(struct work_struct *work) { struct user_namespace *parent, *ns = container_of(work, struct user_namespace, work); do { struct ucounts *ucounts = ns->ucounts; parent = ns->parent; if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(ns->gid_map.forward); kfree(ns->gid_map.reverse); } if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(ns->uid_map.forward); kfree(ns->uid_map.reverse); } if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(ns->projid_map.forward); kfree(ns->projid_map.reverse); } #if IS_ENABLED(CONFIG_BINFMT_MISC) kfree(ns->binfmt_misc); #endif retire_userns_sysctls(ns); key_free_user_ns(ns); ns_free_inum(&ns->ns); kmem_cache_free(user_ns_cachep, ns); dec_user_namespaces(ucounts); ns = parent; } while (refcount_dec_and_test(&parent->ns.count)); } void __put_user_ns(struct user_namespace *ns) { schedule_work(&ns->work); } EXPORT_SYMBOL(__put_user_ns); /* * struct idmap_key - holds the information necessary to find an idmapping in a * sorted idmap array. It is passed to cmp_map_id() as first argument. */ struct idmap_key { bool map_up; /* true -> id from kid; false -> kid from id */ u32 id; /* id to find */ u32 count; /* == 0 unless used with map_id_range_down() */ }; /* * cmp_map_id - Function to be passed to bsearch() to find the requested * idmapping. Expects struct idmap_key to be passed via @k. */ static int cmp_map_id(const void *k, const void *e) { u32 first, last, id2; const struct idmap_key *key = k; const struct uid_gid_extent *el = e; id2 = key->id + key->count - 1; /* handle map_id_{down,up}() */ if (key->map_up) first = el->lower_first; else first = el->first; last = first + el->count - 1; if (key->id >= first && key->id <= last && (id2 >= first && id2 <= last)) return 0; if (key->id < first || id2 < first) return -1; return 1; } /* * map_id_range_down_max - Find idmap via binary search in ordered idmap array. * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) { struct idmap_key key; key.map_up = false; key.count = count; key.id = id; return bsearch(&key, map->forward, extents, sizeof(struct uid_gid_extent), cmp_map_id); } /* * map_id_range_down_base - Find idmap via binary search in static extent array. * Can only be called if number of mappings is equal or less than * UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) { unsigned idx; u32 first, last, id2; id2 = id + count - 1; /* Find the matching extent */ for (idx = 0; idx < extents; idx++) { first = map->extent[idx].first; last = first + map->extent[idx].count - 1; if (id >= first && id <= last && (id2 >= first && id2 <= last)) return &map->extent[idx]; } return NULL; } static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) { struct uid_gid_extent *extent; unsigned extents = map->nr_extents; smp_rmb(); if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) extent = map_id_range_down_base(extents, map, id, count); else extent = map_id_range_down_max(extents, map, id, count); /* Map the id or note failure */ if (extent) id = (id - extent->first) + extent->lower_first; else id = (u32) -1; return id; } u32 map_id_down(struct uid_gid_map *map, u32 id) { return map_id_range_down(map, id, 1); } /* * map_id_up_base - Find idmap via binary search in static extent array. * Can only be called if number of mappings is equal or less than * UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) { unsigned idx; u32 first, last; /* Find the matching extent */ for (idx = 0; idx < extents; idx++) { first = map->extent[idx].lower_first; last = first + map->extent[idx].count - 1; if (id >= first && id <= last) return &map->extent[idx]; } return NULL; } /* * map_id_up_max - Find idmap via binary search in ordered idmap array. * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) { struct idmap_key key; key.map_up = true; key.count = 1; key.id = id; return bsearch(&key, map->reverse, extents, sizeof(struct uid_gid_extent), cmp_map_id); } u32 map_id_up(struct uid_gid_map *map, u32 id) { struct uid_gid_extent *extent; unsigned extents = map->nr_extents; smp_rmb(); if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) extent = map_id_up_base(extents, map, id); else extent = map_id_up_max(extents, map, id); /* Map the id or note failure */ if (extent) id = (id - extent->lower_first) + extent->first; else id = (u32) -1; return id; } /** * make_kuid - Map a user-namespace uid pair into a kuid. * @ns: User namespace that the uid is in * @uid: User identifier * * Maps a user-namespace uid pair into a kernel internal kuid, * and returns that kuid. * * When there is no mapping defined for the user-namespace uid * pair INVALID_UID is returned. Callers are expected to test * for and handle INVALID_UID being returned. INVALID_UID * may be tested for using uid_valid(). */ kuid_t make_kuid(struct user_namespace *ns, uid_t uid) { /* Map the uid to a global kernel uid */ return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); } EXPORT_SYMBOL(make_kuid); /** * from_kuid - Create a uid from a kuid user-namespace pair. * @targ: The user namespace we want a uid in. * @kuid: The kernel internal uid to start with. * * Map @kuid into the user-namespace specified by @targ and * return the resulting uid. * * There is always a mapping into the initial user_namespace. * * If @kuid has no mapping in @targ (uid_t)-1 is returned. */ uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) { /* Map the uid from a global kernel uid */ return map_id_up(&targ->uid_map, __kuid_val(kuid)); } EXPORT_SYMBOL(from_kuid); /** * from_kuid_munged - Create a uid from a kuid user-namespace pair. * @targ: The user namespace we want a uid in. * @kuid: The kernel internal uid to start with. * * Map @kuid into the user-namespace specified by @targ and * return the resulting uid. * * There is always a mapping into the initial user_namespace. * * Unlike from_kuid from_kuid_munged never fails and always * returns a valid uid. This makes from_kuid_munged appropriate * for use in syscalls like stat and getuid where failing the * system call and failing to provide a valid uid are not an * options. * * If @kuid has no mapping in @targ overflowuid is returned. */ uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) { uid_t uid; uid = from_kuid(targ, kuid); if (uid == (uid_t) -1) uid = overflowuid; return uid; } EXPORT_SYMBOL(from_kuid_munged); /** * make_kgid - Map a user-namespace gid pair into a kgid. * @ns: User namespace that the gid is in * @gid: group identifier * * Maps a user-namespace gid pair into a kernel internal kgid, * and returns that kgid. * * When there is no mapping defined for the user-namespace gid * pair INVALID_GID is returned. Callers are expected to test * for and handle INVALID_GID being returned. INVALID_GID may be * tested for using gid_valid(). */ kgid_t make_kgid(struct user_namespace *ns, gid_t gid) { /* Map the gid to a global kernel gid */ return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); } EXPORT_SYMBOL(make_kgid); /** * from_kgid - Create a gid from a kgid user-namespace pair. * @targ: The user namespace we want a gid in. * @kgid: The kernel internal gid to start with. * * Map @kgid into the user-namespace specified by @targ and * return the resulting gid. * * There is always a mapping into the initial user_namespace. * * If @kgid has no mapping in @targ (gid_t)-1 is returned. */ gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) { /* Map the gid from a global kernel gid */ return map_id_up(&targ->gid_map, __kgid_val(kgid)); } EXPORT_SYMBOL(from_kgid); /** * from_kgid_munged - Create a gid from a kgid user-namespace pair. * @targ: The user namespace we want a gid in. * @kgid: The kernel internal gid to start with. * * Map @kgid into the user-namespace specified by @targ and * return the resulting gid. * * There is always a mapping into the initial user_namespace. * * Unlike from_kgid from_kgid_munged never fails and always * returns a valid gid. This makes from_kgid_munged appropriate * for use in syscalls like stat and getgid where failing the * system call and failing to provide a valid gid are not options. * * If @kgid has no mapping in @targ overflowgid is returned. */ gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) { gid_t gid; gid = from_kgid(targ, kgid); if (gid == (gid_t) -1) gid = overflowgid; return gid; } EXPORT_SYMBOL(from_kgid_munged); /** * make_kprojid - Map a user-namespace projid pair into a kprojid. * @ns: User namespace that the projid is in * @projid: Project identifier * * Maps a user-namespace uid pair into a kernel internal kuid, * and returns that kuid. * * When there is no mapping defined for the user-namespace projid * pair INVALID_PROJID is returned. Callers are expected to test * for and handle INVALID_PROJID being returned. INVALID_PROJID * may be tested for using projid_valid(). */ kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) { /* Map the uid to a global kernel uid */ return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); } EXPORT_SYMBOL(make_kprojid); /** * from_kprojid - Create a projid from a kprojid user-namespace pair. * @targ: The user namespace we want a projid in. * @kprojid: The kernel internal project identifier to start with. * * Map @kprojid into the user-namespace specified by @targ and * return the resulting projid. * * There is always a mapping into the initial user_namespace. * * If @kprojid has no mapping in @targ (projid_t)-1 is returned. */ projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) { /* Map the uid from a global kernel uid */ return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); } EXPORT_SYMBOL(from_kprojid); /** * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. * @targ: The user namespace we want a projid in. * @kprojid: The kernel internal projid to start with. * * Map @kprojid into the user-namespace specified by @targ and * return the resulting projid. * * There is always a mapping into the initial user_namespace. * * Unlike from_kprojid from_kprojid_munged never fails and always * returns a valid projid. This makes from_kprojid_munged * appropriate for use in syscalls like stat and where * failing the system call and failing to provide a valid projid are * not an options. * * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. */ projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) { projid_t projid; projid = from_kprojid(targ, kprojid); if (projid == (projid_t) -1) projid = OVERFLOW_PROJID; return projid; } EXPORT_SYMBOL(from_kprojid_munged); static int uid_m_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; struct uid_gid_extent *extent = v; struct user_namespace *lower_ns; uid_t lower; lower_ns = seq_user_ns(seq); if ((lower_ns == ns) && lower_ns->parent) lower_ns = lower_ns->parent; lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); seq_printf(seq, "%10u %10u %10u\n", extent->first, lower, extent->count); return 0; } static int gid_m_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; struct uid_gid_extent *extent = v; struct user_namespace *lower_ns; gid_t lower; lower_ns = seq_user_ns(seq); if ((lower_ns == ns) && lower_ns->parent) lower_ns = lower_ns->parent; lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); seq_printf(seq, "%10u %10u %10u\n", extent->first, lower, extent->count); return 0; } static int projid_m_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; struct uid_gid_extent *extent = v; struct user_namespace *lower_ns; projid_t lower; lower_ns = seq_user_ns(seq); if ((lower_ns == ns) && lower_ns->parent) lower_ns = lower_ns->parent; lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); seq_printf(seq, "%10u %10u %10u\n", extent->first, lower, extent->count); return 0; } static void *m_start(struct seq_file *seq, loff_t *ppos, struct uid_gid_map *map) { loff_t pos = *ppos; unsigned extents = map->nr_extents; smp_rmb(); if (pos >= extents) return NULL; if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) return &map->extent[pos]; return &map->forward[pos]; } static void *uid_m_start(struct seq_file *seq, loff_t *ppos) { struct user_namespace *ns = seq->private; return m_start(seq, ppos, &ns->uid_map); } static void *gid_m_start(struct seq_file *seq, loff_t *ppos) { struct user_namespace *ns = seq->private; return m_start(seq, ppos, &ns->gid_map); } static void *projid_m_start(struct seq_file *seq, loff_t *ppos) { struct user_namespace *ns = seq->private; return m_start(seq, ppos, &ns->projid_map); } static void *m_next(struct seq_file *seq, void *v, loff_t *pos) { (*pos)++; return seq->op->start(seq, pos); } static void m_stop(struct seq_file *seq, void *v) { return; } const struct seq_operations proc_uid_seq_operations = { .start = uid_m_start, .stop = m_stop, .next = m_next, .show = uid_m_show, }; const struct seq_operations proc_gid_seq_operations = { .start = gid_m_start, .stop = m_stop, .next = m_next, .show = gid_m_show, }; const struct seq_operations proc_projid_seq_operations = { .start = projid_m_start, .stop = m_stop, .next = m_next, .show = projid_m_show, }; static bool mappings_overlap(struct uid_gid_map *new_map, struct uid_gid_extent *extent) { u32 upper_first, lower_first, upper_last, lower_last; unsigned idx; upper_first = extent->first; lower_first = extent->lower_first; upper_last = upper_first + extent->count - 1; lower_last = lower_first + extent->count - 1; for (idx = 0; idx < new_map->nr_extents; idx++) { u32 prev_upper_first, prev_lower_first; u32 prev_upper_last, prev_lower_last; struct uid_gid_extent *prev; if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) prev = &new_map->extent[idx]; else prev = &new_map->forward[idx]; prev_upper_first = prev->first; prev_lower_first = prev->lower_first; prev_upper_last = prev_upper_first + prev->count - 1; prev_lower_last = prev_lower_first + prev->count - 1; /* Does the upper range intersect a previous extent? */ if ((prev_upper_first <= upper_last) && (prev_upper_last >= upper_first)) return true; /* Does the lower range intersect a previous extent? */ if ((prev_lower_first <= lower_last) && (prev_lower_last >= lower_first)) return true; } return false; } /* * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. * Takes care to allocate a 4K block of memory if the number of mappings exceeds * UID_GID_MAP_MAX_BASE_EXTENTS. */ static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) { struct uid_gid_extent *dest; if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { struct uid_gid_extent *forward; /* Allocate memory for 340 mappings. */ forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, sizeof(struct uid_gid_extent), GFP_KERNEL); if (!forward) return -ENOMEM; /* Copy over memory. Only set up memory for the forward pointer. * Defer the memory setup for the reverse pointer. */ memcpy(forward, map->extent, map->nr_extents * sizeof(map->extent[0])); map->forward = forward; map->reverse = NULL; } if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) dest = &map->extent[map->nr_extents]; else dest = &map->forward[map->nr_extents]; *dest = *extent; map->nr_extents++; return 0; } /* cmp function to sort() forward mappings */ static int cmp_extents_forward(const void *a, const void *b) { const struct uid_gid_extent *e1 = a; const struct uid_gid_extent *e2 = b; if (e1->first < e2->first) return -1; if (e1->first > e2->first) return 1; return 0; } /* cmp function to sort() reverse mappings */ static int cmp_extents_reverse(const void *a, const void *b) { const struct uid_gid_extent *e1 = a; const struct uid_gid_extent *e2 = b; if (e1->lower_first < e2->lower_first) return -1; if (e1->lower_first > e2->lower_first) return 1; return 0; } /* * sort_idmaps - Sorts an array of idmap entries. * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. */ static int sort_idmaps(struct uid_gid_map *map) { if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) return 0; /* Sort forward array. */ sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), cmp_extents_forward, NULL); /* Only copy the memory from forward we actually need. */ map->reverse = kmemdup_array(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), GFP_KERNEL); if (!map->reverse) return -ENOMEM; /* Sort reverse array. */ sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), cmp_extents_reverse, NULL); return 0; } /** * verify_root_map() - check the uid 0 mapping * @file: idmapping file * @map_ns: user namespace of the target process * @new_map: requested idmap * * If a process requests mapping parent uid 0 into the new ns, verify that the * process writing the map had the CAP_SETFCAP capability as the target process * will be able to write fscaps that are valid in ancestor user namespaces. * * Return: true if the mapping is allowed, false if not. */ static bool verify_root_map(const struct file *file, struct user_namespace *map_ns, struct uid_gid_map *new_map) { int idx; const struct user_namespace *file_ns = file->f_cred->user_ns; struct uid_gid_extent *extent0 = NULL; for (idx = 0; idx < new_map->nr_extents; idx++) { if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) extent0 = &new_map->extent[idx]; else extent0 = &new_map->forward[idx]; if (extent0->lower_first == 0) break; extent0 = NULL; } if (!extent0) return true; if (map_ns == file_ns) { /* The process unshared its ns and is writing to its own * /proc/self/uid_map. User already has full capabilites in * the new namespace. Verify that the parent had CAP_SETFCAP * when it unshared. * */ if (!file_ns->parent_could_setfcap) return false; } else { /* Process p1 is writing to uid_map of p2, who is in a child * user namespace to p1's. Verify that the opener of the map * file has CAP_SETFCAP against the parent of the new map * namespace */ if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP)) return false; } return true; } static ssize_t map_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos, int cap_setid, struct uid_gid_map *map, struct uid_gid_map *parent_map) { struct seq_file *seq = file->private_data; struct user_namespace *map_ns = seq->private; struct uid_gid_map new_map; unsigned idx; struct uid_gid_extent extent; char *kbuf, *pos, *next_line; ssize_t ret; /* Only allow < page size writes at the beginning of the file */ if ((*ppos != 0) || (count >= PAGE_SIZE)) return -EINVAL; /* Slurp in the user data */ kbuf = memdup_user_nul(buf, count); if (IS_ERR(kbuf)) return PTR_ERR(kbuf); /* * The userns_state_mutex serializes all writes to any given map. * * Any map is only ever written once. * * An id map fits within 1 cache line on most architectures. * * On read nothing needs to be done unless you are on an * architecture with a crazy cache coherency model like alpha. * * There is a one time data dependency between reading the * count of the extents and the values of the extents. The * desired behavior is to see the values of the extents that * were written before the count of the extents. * * To achieve this smp_wmb() is used on guarantee the write * order and smp_rmb() is guaranteed that we don't have crazy * architectures returning stale data. */ mutex_lock(&userns_state_mutex); memset(&new_map, 0, sizeof(struct uid_gid_map)); ret = -EPERM; /* Only allow one successful write to the map */ if (map->nr_extents != 0) goto out; /* * Adjusting namespace settings requires capabilities on the target. */ if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN)) goto out; /* Parse the user data */ ret = -EINVAL; pos = kbuf; for (; pos; pos = next_line) { /* Find the end of line and ensure I don't look past it */ next_line = strchr(pos, '\n'); if (next_line) { *next_line = '\0'; next_line++; if (*next_line == '\0') next_line = NULL; } pos = skip_spaces(pos); extent.first = simple_strtoul(pos, &pos, 10); if (!isspace(*pos)) goto out; pos = skip_spaces(pos); extent.lower_first = simple_strtoul(pos, &pos, 10); if (!isspace(*pos)) goto out; pos = skip_spaces(pos); extent.count = simple_strtoul(pos, &pos, 10); if (*pos && !isspace(*pos)) goto out; /* Verify there is not trailing junk on the line */ pos = skip_spaces(pos); if (*pos != '\0') goto out; /* Verify we have been given valid starting values */ if ((extent.first == (u32) -1) || (extent.lower_first == (u32) -1)) goto out; /* Verify count is not zero and does not cause the * extent to wrap */ if ((extent.first + extent.count) <= extent.first) goto out; if ((extent.lower_first + extent.count) <= extent.lower_first) goto out; /* Do the ranges in extent overlap any previous extents? */ if (mappings_overlap(&new_map, &extent)) goto out; if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && (next_line != NULL)) goto out; ret = insert_extent(&new_map, &extent); if (ret < 0) goto out; ret = -EINVAL; } /* Be very certain the new map actually exists */ if (new_map.nr_extents == 0) goto out; ret = -EPERM; /* Validate the user is allowed to use user id's mapped to. */ if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map)) goto out; ret = -EPERM; /* Map the lower ids from the parent user namespace to the * kernel global id space. */ for (idx = 0; idx < new_map.nr_extents; idx++) { struct uid_gid_extent *e; u32 lower_first; if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) e = &new_map.extent[idx]; else e = &new_map.forward[idx]; lower_first = map_id_range_down(parent_map, e->lower_first, e->count); /* Fail if we can not map the specified extent to * the kernel global id space. */ if (lower_first == (u32) -1) goto out; e->lower_first = lower_first; } /* * If we want to use binary search for lookup, this clones the extent * array and sorts both copies. */ ret = sort_idmaps(&new_map); if (ret < 0) goto out; /* Install the map */ if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { memcpy(map->extent, new_map.extent, new_map.nr_extents * sizeof(new_map.extent[0])); } else { map->forward = new_map.forward; map->reverse = new_map.reverse; } smp_wmb(); map->nr_extents = new_map.nr_extents; *ppos = count; ret = count; out: if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(new_map.forward); kfree(new_map.reverse); map->forward = NULL; map->reverse = NULL; map->nr_extents = 0; } mutex_unlock(&userns_state_mutex); kfree(kbuf); return ret; } ssize_t proc_uid_map_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; struct user_namespace *seq_ns = seq_user_ns(seq); if (!ns->parent) return -EPERM; if ((seq_ns != ns) && (seq_ns != ns->parent)) return -EPERM; return map_write(file, buf, size, ppos, CAP_SETUID, &ns->uid_map, &ns->parent->uid_map); } ssize_t proc_gid_map_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; struct user_namespace *seq_ns = seq_user_ns(seq); if (!ns->parent) return -EPERM; if ((seq_ns != ns) && (seq_ns != ns->parent)) return -EPERM; return map_write(file, buf, size, ppos, CAP_SETGID, &ns->gid_map, &ns->parent->gid_map); } ssize_t proc_projid_map_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; struct user_namespace *seq_ns = seq_user_ns(seq); if (!ns->parent) return -EPERM; if ((seq_ns != ns) && (seq_ns != ns->parent)) return -EPERM; /* Anyone can set any valid project id no capability needed */ return map_write(file, buf, size, ppos, -1, &ns->projid_map, &ns->parent->projid_map); } static bool new_idmap_permitted(const struct file *file, struct user_namespace *ns, int cap_setid, struct uid_gid_map *new_map) { const struct cred *cred = file->f_cred; if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map)) return false; /* Don't allow mappings that would allow anything that wouldn't * be allowed without the establishment of unprivileged mappings. */ if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && uid_eq(ns->owner, cred->euid)) { u32 id = new_map->extent[0].lower_first; if (cap_setid == CAP_SETUID) { kuid_t uid = make_kuid(ns->parent, id); if (uid_eq(uid, cred->euid)) return true; } else if (cap_setid == CAP_SETGID) { kgid_t gid = make_kgid(ns->parent, id); if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && gid_eq(gid, cred->egid)) return true; } } /* Allow anyone to set a mapping that doesn't require privilege */ if (!cap_valid(cap_setid)) return true; /* Allow the specified ids if we have the appropriate capability * (CAP_SETUID or CAP_SETGID) over the parent user namespace. * And the opener of the id file also has the appropriate capability. */ if (ns_capable(ns->parent, cap_setid) && file_ns_capable(file, ns->parent, cap_setid)) return true; return false; } int proc_setgroups_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; unsigned long userns_flags = READ_ONCE(ns->flags); seq_printf(seq, "%s\n", (userns_flags & USERNS_SETGROUPS_ALLOWED) ? "allow" : "deny"); return 0; } ssize_t proc_setgroups_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; char kbuf[8], *pos; bool setgroups_allowed; ssize_t ret; /* Only allow a very narrow range of strings to be written */ ret = -EINVAL; if ((*ppos != 0) || (count >= sizeof(kbuf))) goto out; /* What was written? */ ret = -EFAULT; if (copy_from_user(kbuf, buf, count)) goto out; kbuf[count] = '\0'; pos = kbuf; /* What is being requested? */ ret = -EINVAL; if (strncmp(pos, "allow", 5) == 0) { pos += 5; setgroups_allowed = true; } else if (strncmp(pos, "deny", 4) == 0) { pos += 4; setgroups_allowed = false; } else goto out; /* Verify there is not trailing junk on the line */ pos = skip_spaces(pos); if (*pos != '\0') goto out; ret = -EPERM; mutex_lock(&userns_state_mutex); if (setgroups_allowed) { /* Enabling setgroups after setgroups has been disabled * is not allowed. */ if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) goto out_unlock; } else { /* Permanently disabling setgroups after setgroups has * been enabled by writing the gid_map is not allowed. */ if (ns->gid_map.nr_extents != 0) goto out_unlock; ns->flags &= ~USERNS_SETGROUPS_ALLOWED; } mutex_unlock(&userns_state_mutex); /* Report a successful write */ *ppos = count; ret = count; out: return ret; out_unlock: mutex_unlock(&userns_state_mutex); goto out; } bool userns_may_setgroups(const struct user_namespace *ns) { bool allowed; mutex_lock(&userns_state_mutex); /* It is not safe to use setgroups until a gid mapping in * the user namespace has been established. */ allowed = ns->gid_map.nr_extents != 0; /* Is setgroups allowed? */ allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); mutex_unlock(&userns_state_mutex); return allowed; } /* * Returns true if @child is the same namespace or a descendant of * @ancestor. */ bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child) { const struct user_namespace *ns; for (ns = child; ns->level > ancestor->level; ns = ns->parent) ; return (ns == ancestor); } bool current_in_userns(const struct user_namespace *target_ns) { return in_userns(target_ns, current_user_ns()); } EXPORT_SYMBOL(current_in_userns); static inline struct user_namespace *to_user_ns(struct ns_common *ns) { return container_of(ns, struct user_namespace, ns); } static struct ns_common *userns_get(struct task_struct *task) { struct user_namespace *user_ns; rcu_read_lock(); user_ns = get_user_ns(__task_cred(task)->user_ns); rcu_read_unlock(); return user_ns ? &user_ns->ns : NULL; } static void userns_put(struct ns_common *ns) { put_user_ns(to_user_ns(ns)); } static int userns_install(struct nsset *nsset, struct ns_common *ns) { struct user_namespace *user_ns = to_user_ns(ns); struct cred *cred; /* Don't allow gaining capabilities by reentering * the same user namespace. */ if (user_ns == current_user_ns()) return -EINVAL; /* Tasks that share a thread group must share a user namespace */ if (!thread_group_empty(current)) return -EINVAL; if (current->fs->users != 1) return -EINVAL; if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; cred = nsset_cred(nsset); if (!cred) return -EINVAL; put_user_ns(cred->user_ns); set_cred_user_ns(cred, get_user_ns(user_ns)); if (set_cred_ucounts(cred) < 0) return -EINVAL; return 0; } struct ns_common *ns_get_owner(struct ns_common *ns) { struct user_namespace *my_user_ns = current_user_ns(); struct user_namespace *owner, *p; /* See if the owner is in the current user namespace */ owner = p = ns->ops->owner(ns); for (;;) { if (!p) return ERR_PTR(-EPERM); if (p == my_user_ns) break; p = p->parent; } return &get_user_ns(owner)->ns; } static struct user_namespace *userns_owner(struct ns_common *ns) { return to_user_ns(ns)->parent; } const struct proc_ns_operations userns_operations = { .name = "user", .type = CLONE_NEWUSER, .get = userns_get, .put = userns_put, .install = userns_install, .owner = userns_owner, .get_parent = ns_get_owner, }; static __init int user_namespaces_init(void) { user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT); return 0; } subsys_initcall(user_namespaces_init); |
8 8 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Antonio Quartulli */ #include "bat_v_ogm.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/jiffies.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/minmax.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/types.h> #include <linux/workqueue.h> #include <uapi/linux/batadv_packet.h> #include "bat_algo.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "originator.h" #include "routing.h" #include "send.h" #include "translation-table.h" #include "tvlv.h" /** * batadv_v_ogm_orig_get() - retrieve and possibly create an originator node * @bat_priv: the bat priv with all the soft interface information * @addr: the address of the originator * * Return: the orig_node corresponding to the specified address. If such an * object does not exist, it is allocated here. In case of allocation failure * returns NULL. */ struct batadv_orig_node *batadv_v_ogm_orig_get(struct batadv_priv *bat_priv, const u8 *addr) { struct batadv_orig_node *orig_node; int hash_added; orig_node = batadv_orig_hash_find(bat_priv, addr); if (orig_node) return orig_node; orig_node = batadv_orig_node_new(bat_priv, addr); if (!orig_node) return NULL; kref_get(&orig_node->refcount); hash_added = batadv_hash_add(bat_priv->orig_hash, batadv_compare_orig, batadv_choose_orig, orig_node, &orig_node->hash_entry); if (hash_added != 0) { /* remove refcnt for newly created orig_node and hash entry */ batadv_orig_node_put(orig_node); batadv_orig_node_put(orig_node); orig_node = NULL; } return orig_node; } /** * batadv_v_ogm_start_queue_timer() - restart the OGM aggregation timer * @hard_iface: the interface to use to send the OGM */ static void batadv_v_ogm_start_queue_timer(struct batadv_hard_iface *hard_iface) { unsigned int msecs = BATADV_MAX_AGGREGATION_MS * 1000; /* msecs * [0.9, 1.1] */ msecs += get_random_u32_below(msecs / 5) - (msecs / 10); queue_delayed_work(batadv_event_workqueue, &hard_iface->bat_v.aggr_wq, msecs_to_jiffies(msecs / 1000)); } /** * batadv_v_ogm_start_timer() - restart the OGM sending timer * @bat_priv: the bat priv with all the soft interface information */ static void batadv_v_ogm_start_timer(struct batadv_priv *bat_priv) { unsigned long msecs; /* this function may be invoked in different contexts (ogm rescheduling * or hard_iface activation), but the work timer should not be reset */ if (delayed_work_pending(&bat_priv->bat_v.ogm_wq)) return; msecs = atomic_read(&bat_priv->orig_interval) - BATADV_JITTER; msecs += get_random_u32_below(2 * BATADV_JITTER); queue_delayed_work(batadv_event_workqueue, &bat_priv->bat_v.ogm_wq, msecs_to_jiffies(msecs)); } /** * batadv_v_ogm_send_to_if() - send a batman ogm using a given interface * @skb: the OGM to send * @hard_iface: the interface to use to send the OGM */ static void batadv_v_ogm_send_to_if(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); if (hard_iface->if_status != BATADV_IF_ACTIVE) { kfree_skb(skb); return; } batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_TX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_TX_BYTES, skb->len + ETH_HLEN); batadv_send_broadcast_skb(skb, hard_iface); } /** * batadv_v_ogm_len() - OGMv2 packet length * @skb: the OGM to check * * Return: Length of the given OGMv2 packet, including tvlv length, excluding * ethernet header length. */ static unsigned int batadv_v_ogm_len(struct sk_buff *skb) { struct batadv_ogm2_packet *ogm_packet; ogm_packet = (struct batadv_ogm2_packet *)skb->data; return BATADV_OGM2_HLEN + ntohs(ogm_packet->tvlv_len); } /** * batadv_v_ogm_queue_left() - check if given OGM still fits aggregation queue * @skb: the OGM to check * @hard_iface: the interface to use to send the OGM * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. * * Return: True, if the given OGMv2 packet still fits, false otherwise. */ static bool batadv_v_ogm_queue_left(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { unsigned int max = min_t(unsigned int, hard_iface->net_dev->mtu, BATADV_MAX_AGGREGATION_BYTES); unsigned int ogm_len = batadv_v_ogm_len(skb); lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); return hard_iface->bat_v.aggr_len + ogm_len <= max; } /** * batadv_v_ogm_aggr_list_free - free all elements in an aggregation queue * @hard_iface: the interface holding the aggregation queue * * Empties the OGMv2 aggregation queue and frees all the skbs it contains. * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. */ static void batadv_v_ogm_aggr_list_free(struct batadv_hard_iface *hard_iface) { lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); __skb_queue_purge(&hard_iface->bat_v.aggr_list); hard_iface->bat_v.aggr_len = 0; } /** * batadv_v_ogm_aggr_send() - flush & send aggregation queue * @hard_iface: the interface with the aggregation queue to flush * * Aggregates all OGMv2 packets currently in the aggregation queue into a * single OGMv2 packet and transmits this aggregate. * * The aggregation queue is empty after this call. * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. */ static void batadv_v_ogm_aggr_send(struct batadv_hard_iface *hard_iface) { unsigned int aggr_len = hard_iface->bat_v.aggr_len; struct sk_buff *skb_aggr; unsigned int ogm_len; struct sk_buff *skb; lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); if (!aggr_len) return; skb_aggr = dev_alloc_skb(aggr_len + ETH_HLEN + NET_IP_ALIGN); if (!skb_aggr) { batadv_v_ogm_aggr_list_free(hard_iface); return; } skb_reserve(skb_aggr, ETH_HLEN + NET_IP_ALIGN); skb_reset_network_header(skb_aggr); while ((skb = __skb_dequeue(&hard_iface->bat_v.aggr_list))) { hard_iface->bat_v.aggr_len -= batadv_v_ogm_len(skb); ogm_len = batadv_v_ogm_len(skb); skb_put_data(skb_aggr, skb->data, ogm_len); consume_skb(skb); } batadv_v_ogm_send_to_if(skb_aggr, hard_iface); } /** * batadv_v_ogm_queue_on_if() - queue a batman ogm on a given interface * @skb: the OGM to queue * @hard_iface: the interface to queue the OGM on */ static void batadv_v_ogm_queue_on_if(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); if (!atomic_read(&bat_priv->aggregated_ogms)) { batadv_v_ogm_send_to_if(skb, hard_iface); return; } spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); if (!batadv_v_ogm_queue_left(skb, hard_iface)) batadv_v_ogm_aggr_send(hard_iface); hard_iface->bat_v.aggr_len += batadv_v_ogm_len(skb); __skb_queue_tail(&hard_iface->bat_v.aggr_list, skb); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); } /** * batadv_v_ogm_send_softif() - periodic worker broadcasting the own OGM * @bat_priv: the bat priv with all the soft interface information */ static void batadv_v_ogm_send_softif(struct batadv_priv *bat_priv) { struct batadv_hard_iface *hard_iface; struct batadv_ogm2_packet *ogm_packet; struct sk_buff *skb, *skb_tmp; unsigned char *ogm_buff; int ogm_buff_len; u16 tvlv_len = 0; int ret; lockdep_assert_held(&bat_priv->bat_v.ogm_buff_mutex); if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_DEACTIVATING) goto out; ogm_buff = bat_priv->bat_v.ogm_buff; ogm_buff_len = bat_priv->bat_v.ogm_buff_len; /* tt changes have to be committed before the tvlv data is * appended as it may alter the tt tvlv container */ batadv_tt_local_commit_changes(bat_priv); tvlv_len = batadv_tvlv_container_ogm_append(bat_priv, &ogm_buff, &ogm_buff_len, BATADV_OGM2_HLEN); bat_priv->bat_v.ogm_buff = ogm_buff; bat_priv->bat_v.ogm_buff_len = ogm_buff_len; skb = netdev_alloc_skb_ip_align(NULL, ETH_HLEN + ogm_buff_len); if (!skb) goto reschedule; skb_reserve(skb, ETH_HLEN); skb_put_data(skb, ogm_buff, ogm_buff_len); ogm_packet = (struct batadv_ogm2_packet *)skb->data; ogm_packet->seqno = htonl(atomic_read(&bat_priv->bat_v.ogm_seqno)); atomic_inc(&bat_priv->bat_v.ogm_seqno); ogm_packet->tvlv_len = htons(tvlv_len); /* broadcast on every interface */ rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; ret = batadv_hardif_no_broadcast(hard_iface, NULL, NULL); if (ret) { char *type; switch (ret) { case BATADV_HARDIF_BCAST_NORECIPIENT: type = "no neighbor"; break; case BATADV_HARDIF_BCAST_DUPFWD: type = "single neighbor is source"; break; case BATADV_HARDIF_BCAST_DUPORIG: type = "single neighbor is originator"; break; default: type = "unknown"; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "OGM2 from ourselves on %s suppressed: %s\n", hard_iface->net_dev->name, type); batadv_hardif_put(hard_iface); continue; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Sending own OGM2 packet (originator %pM, seqno %u, throughput %u, TTL %d) on interface %s [%pM]\n", ogm_packet->orig, ntohl(ogm_packet->seqno), ntohl(ogm_packet->throughput), ogm_packet->ttl, hard_iface->net_dev->name, hard_iface->net_dev->dev_addr); /* this skb gets consumed by batadv_v_ogm_send_to_if() */ skb_tmp = skb_clone(skb, GFP_ATOMIC); if (!skb_tmp) { batadv_hardif_put(hard_iface); break; } batadv_v_ogm_queue_on_if(skb_tmp, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); consume_skb(skb); reschedule: batadv_v_ogm_start_timer(bat_priv); out: return; } /** * batadv_v_ogm_send() - periodic worker broadcasting the own OGM * @work: work queue item */ static void batadv_v_ogm_send(struct work_struct *work) { struct batadv_priv_bat_v *bat_v; struct batadv_priv *bat_priv; bat_v = container_of(work, struct batadv_priv_bat_v, ogm_wq.work); bat_priv = container_of(bat_v, struct batadv_priv, bat_v); mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); batadv_v_ogm_send_softif(bat_priv); mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } /** * batadv_v_ogm_aggr_work() - OGM queue periodic task per interface * @work: work queue item * * Emits aggregated OGM messages in regular intervals. */ void batadv_v_ogm_aggr_work(struct work_struct *work) { struct batadv_hard_iface_bat_v *batv; struct batadv_hard_iface *hard_iface; batv = container_of(work, struct batadv_hard_iface_bat_v, aggr_wq.work); hard_iface = container_of(batv, struct batadv_hard_iface, bat_v); spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_aggr_send(hard_iface); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_start_queue_timer(hard_iface); } /** * batadv_v_ogm_iface_enable() - prepare an interface for B.A.T.M.A.N. V * @hard_iface: the interface to prepare * * Takes care of scheduling its own OGM sending routine for this interface. * * Return: 0 on success or a negative error code otherwise */ int batadv_v_ogm_iface_enable(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); batadv_v_ogm_start_queue_timer(hard_iface); batadv_v_ogm_start_timer(bat_priv); return 0; } /** * batadv_v_ogm_iface_disable() - release OGM interface private resources * @hard_iface: interface for which the resources have to be released */ void batadv_v_ogm_iface_disable(struct batadv_hard_iface *hard_iface) { cancel_delayed_work_sync(&hard_iface->bat_v.aggr_wq); spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_aggr_list_free(hard_iface); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); } /** * batadv_v_ogm_primary_iface_set() - set a new primary interface * @primary_iface: the new primary interface */ void batadv_v_ogm_primary_iface_set(struct batadv_hard_iface *primary_iface) { struct batadv_priv *bat_priv = netdev_priv(primary_iface->soft_iface); struct batadv_ogm2_packet *ogm_packet; mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); if (!bat_priv->bat_v.ogm_buff) goto unlock; ogm_packet = (struct batadv_ogm2_packet *)bat_priv->bat_v.ogm_buff; ether_addr_copy(ogm_packet->orig, primary_iface->net_dev->dev_addr); unlock: mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } /** * batadv_v_forward_penalty() - apply a penalty to the throughput metric * forwarded with B.A.T.M.A.N. V OGMs * @bat_priv: the bat priv with all the soft interface information * @if_incoming: the interface where the OGM has been received * @if_outgoing: the interface where the OGM has to be forwarded to * @throughput: the current throughput * * Apply a penalty on the current throughput metric value based on the * characteristic of the interface where the OGM has been received. * * Initially the per hardif hop penalty is applied to the throughput. After * that the return value is then computed as follows: * - throughput * 50% if the incoming and outgoing interface are the * same WiFi interface and the throughput is above * 1MBit/s * - throughput if the outgoing interface is the default * interface (i.e. this OGM is processed for the * internal table and not forwarded) * - throughput * node hop penalty otherwise * * Return: the penalised throughput metric. */ static u32 batadv_v_forward_penalty(struct batadv_priv *bat_priv, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, u32 throughput) { int if_hop_penalty = atomic_read(&if_incoming->hop_penalty); int hop_penalty = atomic_read(&bat_priv->hop_penalty); int hop_penalty_max = BATADV_TQ_MAX_VALUE; /* Apply per hardif hop penalty */ throughput = throughput * (hop_penalty_max - if_hop_penalty) / hop_penalty_max; /* Don't apply hop penalty in default originator table. */ if (if_outgoing == BATADV_IF_DEFAULT) return throughput; /* Forwarding on the same WiFi interface cuts the throughput in half * due to the store & forward characteristics of WIFI. * Very low throughput values are the exception. */ if (throughput > 10 && if_incoming == if_outgoing && !(if_incoming->bat_v.flags & BATADV_FULL_DUPLEX)) return throughput / 2; /* hop penalty of 255 equals 100% */ return throughput * (hop_penalty_max - hop_penalty) / hop_penalty_max; } /** * batadv_v_ogm_forward() - check conditions and forward an OGM to the given * outgoing interface * @bat_priv: the bat priv with all the soft interface information * @ogm_received: previously received OGM to be forwarded * @orig_node: the originator which has been updated * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface on which this OGM was received on * @if_outgoing: the interface to which the OGM has to be forwarded to * * Forward an OGM to an interface after having altered the throughput metric and * the TTL value contained in it. The original OGM isn't modified. */ static void batadv_v_ogm_forward(struct batadv_priv *bat_priv, const struct batadv_ogm2_packet *ogm_received, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; struct batadv_orig_ifinfo *orig_ifinfo = NULL; struct batadv_neigh_node *router = NULL; struct batadv_ogm2_packet *ogm_forward; unsigned char *skb_buff; struct sk_buff *skb; size_t packet_len; u16 tvlv_len; /* only forward for specific interfaces, not for the default one. */ if (if_outgoing == BATADV_IF_DEFAULT) goto out; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out; /* acquire possibly updated router */ router = batadv_orig_router_get(orig_node, if_outgoing); /* strict rule: forward packets coming from the best next hop only */ if (neigh_node != router) goto out; /* don't forward the same seqno twice on one interface */ if (orig_ifinfo->last_seqno_forwarded == ntohl(ogm_received->seqno)) goto out; orig_ifinfo->last_seqno_forwarded = ntohl(ogm_received->seqno); if (ogm_received->ttl <= 1) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "ttl exceeded\n"); goto out; } neigh_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; tvlv_len = ntohs(ogm_received->tvlv_len); packet_len = BATADV_OGM2_HLEN + tvlv_len; skb = netdev_alloc_skb_ip_align(if_outgoing->net_dev, ETH_HLEN + packet_len); if (!skb) goto out; skb_reserve(skb, ETH_HLEN); skb_buff = skb_put_data(skb, ogm_received, packet_len); /* apply forward penalty */ ogm_forward = (struct batadv_ogm2_packet *)skb_buff; ogm_forward->throughput = htonl(neigh_ifinfo->bat_v.throughput); ogm_forward->ttl--; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding OGM2 packet on %s: throughput %u, ttl %u, received via %s\n", if_outgoing->net_dev->name, ntohl(ogm_forward->throughput), ogm_forward->ttl, if_incoming->net_dev->name); batadv_v_ogm_queue_on_if(skb, if_outgoing); out: batadv_orig_ifinfo_put(orig_ifinfo); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(neigh_ifinfo); } /** * batadv_v_ogm_metric_update() - update route metric based on OGM * @bat_priv: the bat priv with all the soft interface information * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered * * Return: * 1 if the OGM is new, * 0 if it is not new but valid, * <0 on error (e.g. old OGM) */ static int batadv_v_ogm_metric_update(struct batadv_priv *bat_priv, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; bool protection_started = false; int ret = -EINVAL; u32 path_throughput; s32 seq_diff; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out; seq_diff = ntohl(ogm2->seqno) - orig_ifinfo->last_real_seqno; if (!hlist_empty(&orig_node->neigh_list) && batadv_window_protected(bat_priv, seq_diff, BATADV_OGM_MAX_AGE, &orig_ifinfo->batman_seqno_reset, &protection_started)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: packet within window protection time from %pM\n", ogm2->orig); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Last reset: %ld, %ld\n", orig_ifinfo->batman_seqno_reset, jiffies); goto out; } /* drop packets with old seqnos, however accept the first packet after * a host has been rebooted. */ if (seq_diff < 0 && !protection_started) goto out; neigh_node->last_seen = jiffies; orig_node->last_seen = jiffies; orig_ifinfo->last_real_seqno = ntohl(ogm2->seqno); orig_ifinfo->last_ttl = ogm2->ttl; neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; path_throughput = batadv_v_forward_penalty(bat_priv, if_incoming, if_outgoing, ntohl(ogm2->throughput)); neigh_ifinfo->bat_v.throughput = path_throughput; neigh_ifinfo->bat_v.last_seqno = ntohl(ogm2->seqno); neigh_ifinfo->last_ttl = ogm2->ttl; if (seq_diff > 0 || protection_started) ret = 1; else ret = 0; out: batadv_orig_ifinfo_put(orig_ifinfo); batadv_neigh_ifinfo_put(neigh_ifinfo); return ret; } /** * batadv_v_ogm_route_update() - update routes based on OGM * @bat_priv: the bat priv with all the soft interface information * @ethhdr: the Ethernet header of the OGM2 * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered * * Return: true if the packet should be forwarded, false otherwise */ static bool batadv_v_ogm_route_update(struct batadv_priv *bat_priv, const struct ethhdr *ethhdr, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_node *router = NULL; struct batadv_orig_node *orig_neigh_node; struct batadv_neigh_node *orig_neigh_router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL, *neigh_ifinfo = NULL; u32 router_throughput, neigh_throughput; u32 router_last_seqno; u32 neigh_last_seqno; s32 neigh_seq_diff; bool forward = false; orig_neigh_node = batadv_v_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) goto out; orig_neigh_router = batadv_orig_router_get(orig_neigh_node, if_outgoing); /* drop packet if sender is not a direct neighbor and if we * don't route towards it */ router = batadv_orig_router_get(orig_node, if_outgoing); if (router && router->orig_node != orig_node && !orig_neigh_router) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out; } /* Mark the OGM to be considered for forwarding, and update routes * if needed. */ forward = true; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Searching and updating originator entry of received packet\n"); /* if this neighbor already is our next hop there is nothing * to change */ if (router == neigh_node) goto out; /* don't consider neighbours with worse throughput. * also switch route if this seqno is BATADV_V_MAX_ORIGDIFF newer than * the last received seqno from our best next hop. */ if (router) { router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); neigh_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); /* if these are not allocated, something is wrong. */ if (!router_ifinfo || !neigh_ifinfo) goto out; neigh_last_seqno = neigh_ifinfo->bat_v.last_seqno; router_last_seqno = router_ifinfo->bat_v.last_seqno; neigh_seq_diff = neigh_last_seqno - router_last_seqno; router_throughput = router_ifinfo->bat_v.throughput; neigh_throughput = neigh_ifinfo->bat_v.throughput; if (neigh_seq_diff < BATADV_OGM_MAX_ORIGDIFF && router_throughput >= neigh_throughput) goto out; } batadv_update_route(bat_priv, orig_node, if_outgoing, neigh_node); out: batadv_neigh_node_put(router); batadv_neigh_node_put(orig_neigh_router); batadv_orig_node_put(orig_neigh_node); batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_ifinfo_put(neigh_ifinfo); return forward; } /** * batadv_v_ogm_process_per_outif() - process a batman v OGM for an outgoing if * @bat_priv: the bat priv with all the soft interface information * @ethhdr: the Ethernet header of the OGM2 * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered */ static void batadv_v_ogm_process_per_outif(struct batadv_priv *bat_priv, const struct ethhdr *ethhdr, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { int seqno_age; bool forward; /* first, update the metric with according sanity checks */ seqno_age = batadv_v_ogm_metric_update(bat_priv, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); /* outdated sequence numbers are to be discarded */ if (seqno_age < 0) return; /* only unknown & newer OGMs contain TVLVs we are interested in */ if (seqno_age > 0 && if_outgoing == BATADV_IF_DEFAULT) batadv_tvlv_containers_process(bat_priv, BATADV_OGM2, orig_node, NULL, (unsigned char *)(ogm2 + 1), ntohs(ogm2->tvlv_len)); /* if the metric update went through, update routes if needed */ forward = batadv_v_ogm_route_update(bat_priv, ethhdr, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); /* if the routes have been processed correctly, check and forward */ if (forward) batadv_v_ogm_forward(bat_priv, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); } /** * batadv_v_ogm_aggr_packet() - checks if there is another OGM aggregated * @buff_pos: current position in the skb * @packet_len: total length of the skb * @ogm2_packet: potential OGM2 in buffer * * Return: true if there is enough space for another OGM, false otherwise. */ static bool batadv_v_ogm_aggr_packet(int buff_pos, int packet_len, const struct batadv_ogm2_packet *ogm2_packet) { int next_buff_pos = 0; /* check if there is enough space for the header */ next_buff_pos += buff_pos + sizeof(*ogm2_packet); if (next_buff_pos > packet_len) return false; /* check if there is enough space for the optional TVLV */ next_buff_pos += ntohs(ogm2_packet->tvlv_len); return (next_buff_pos <= packet_len) && (next_buff_pos <= BATADV_MAX_AGGREGATION_BYTES); } /** * batadv_v_ogm_process() - process an incoming batman v OGM * @skb: the skb containing the OGM * @ogm_offset: offset to the OGM which should be processed (for aggregates) * @if_incoming: the interface where this packet was received */ static void batadv_v_ogm_process(const struct sk_buff *skb, int ogm_offset, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct ethhdr *ethhdr; struct batadv_orig_node *orig_node = NULL; struct batadv_hardif_neigh_node *hardif_neigh = NULL; struct batadv_neigh_node *neigh_node = NULL; struct batadv_hard_iface *hard_iface; struct batadv_ogm2_packet *ogm_packet; u32 ogm_throughput, link_throughput, path_throughput; int ret; ethhdr = eth_hdr(skb); ogm_packet = (struct batadv_ogm2_packet *)(skb->data + ogm_offset); ogm_throughput = ntohl(ogm_packet->throughput); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Received OGM2 packet via NB: %pM, IF: %s [%pM] (from OG: %pM, seqno %u, throughput %u, TTL %u, V %u, tvlv_len %u)\n", ethhdr->h_source, if_incoming->net_dev->name, if_incoming->net_dev->dev_addr, ogm_packet->orig, ntohl(ogm_packet->seqno), ogm_throughput, ogm_packet->ttl, ogm_packet->version, ntohs(ogm_packet->tvlv_len)); if (batadv_is_my_mac(bat_priv, ogm_packet->orig)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet from ourself\n"); return; } /* If the throughput metric is 0, immediately drop the packet. No need * to create orig_node / neigh_node for an unusable route. */ if (ogm_throughput == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet with throughput metric of 0\n"); return; } /* require ELP packets be to received from this neighbor first */ hardif_neigh = batadv_hardif_neigh_get(if_incoming, ethhdr->h_source); if (!hardif_neigh) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out; } orig_node = batadv_v_ogm_orig_get(bat_priv, ogm_packet->orig); if (!orig_node) goto out; neigh_node = batadv_neigh_node_get_or_create(orig_node, if_incoming, ethhdr->h_source); if (!neigh_node) goto out; /* Update the received throughput metric to match the link * characteristic: * - If this OGM traveled one hop so far (emitted by single hop * neighbor) the path throughput metric equals the link throughput. * - For OGMs traversing more than hop the path throughput metric is * the smaller of the path throughput and the link throughput. */ link_throughput = ewma_throughput_read(&hardif_neigh->bat_v.throughput); path_throughput = min_t(u32, link_throughput, ogm_throughput); ogm_packet->throughput = htonl(path_throughput); batadv_v_ogm_process_per_outif(bat_priv, ethhdr, ogm_packet, orig_node, neigh_node, if_incoming, BATADV_IF_DEFAULT); rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; ret = batadv_hardif_no_broadcast(hard_iface, ogm_packet->orig, hardif_neigh->orig); if (ret) { char *type; switch (ret) { case BATADV_HARDIF_BCAST_NORECIPIENT: type = "no neighbor"; break; case BATADV_HARDIF_BCAST_DUPFWD: type = "single neighbor is source"; break; case BATADV_HARDIF_BCAST_DUPORIG: type = "single neighbor is originator"; break; default: type = "unknown"; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "OGM2 packet from %pM on %s suppressed: %s\n", ogm_packet->orig, hard_iface->net_dev->name, type); batadv_hardif_put(hard_iface); continue; } batadv_v_ogm_process_per_outif(bat_priv, ethhdr, ogm_packet, orig_node, neigh_node, if_incoming, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); out: batadv_orig_node_put(orig_node); batadv_neigh_node_put(neigh_node); batadv_hardif_neigh_put(hardif_neigh); } /** * batadv_v_ogm_packet_recv() - OGM2 receiving handler * @skb: the received OGM * @if_incoming: the interface where this OGM has been received * * Return: NET_RX_SUCCESS and consume the skb on success or returns NET_RX_DROP * (without freeing the skb) on failure */ int batadv_v_ogm_packet_recv(struct sk_buff *skb, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_ogm2_packet *ogm_packet; struct ethhdr *ethhdr; int ogm_offset; u8 *packet_pos; int ret = NET_RX_DROP; /* did we receive a OGM2 packet on an interface that does not have * B.A.T.M.A.N. V enabled ? */ if (strcmp(bat_priv->algo_ops->name, "BATMAN_V") != 0) goto free_skb; if (!batadv_check_management_packet(skb, if_incoming, BATADV_OGM2_HLEN)) goto free_skb; ethhdr = eth_hdr(skb); if (batadv_is_my_mac(bat_priv, ethhdr->h_source)) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_RX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_RX_BYTES, skb->len + ETH_HLEN); ogm_offset = 0; ogm_packet = (struct batadv_ogm2_packet *)skb->data; while (batadv_v_ogm_aggr_packet(ogm_offset, skb_headlen(skb), ogm_packet)) { batadv_v_ogm_process(skb, ogm_offset, if_incoming); ogm_offset += BATADV_OGM2_HLEN; ogm_offset += ntohs(ogm_packet->tvlv_len); packet_pos = skb->data + ogm_offset; ogm_packet = (struct batadv_ogm2_packet *)packet_pos; } ret = NET_RX_SUCCESS; free_skb: if (ret == NET_RX_SUCCESS) consume_skb(skb); else kfree_skb(skb); return ret; } /** * batadv_v_ogm_init() - initialise the OGM2 engine * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or a negative error code in case of failure */ int batadv_v_ogm_init(struct batadv_priv *bat_priv) { struct batadv_ogm2_packet *ogm_packet; unsigned char *ogm_buff; u32 random_seqno; bat_priv->bat_v.ogm_buff_len = BATADV_OGM2_HLEN; ogm_buff = kzalloc(bat_priv->bat_v.ogm_buff_len, GFP_ATOMIC); if (!ogm_buff) return -ENOMEM; bat_priv->bat_v.ogm_buff = ogm_buff; ogm_packet = (struct batadv_ogm2_packet *)ogm_buff; ogm_packet->packet_type = BATADV_OGM2; ogm_packet->version = BATADV_COMPAT_VERSION; ogm_packet->ttl = BATADV_TTL; ogm_packet->flags = BATADV_NO_FLAGS; ogm_packet->throughput = htonl(BATADV_THROUGHPUT_MAX_VALUE); /* randomize initial seqno to avoid collision */ get_random_bytes(&random_seqno, sizeof(random_seqno)); atomic_set(&bat_priv->bat_v.ogm_seqno, random_seqno); INIT_DELAYED_WORK(&bat_priv->bat_v.ogm_wq, batadv_v_ogm_send); mutex_init(&bat_priv->bat_v.ogm_buff_mutex); return 0; } /** * batadv_v_ogm_free() - free OGM private resources * @bat_priv: the bat priv with all the soft interface information */ void batadv_v_ogm_free(struct batadv_priv *bat_priv) { cancel_delayed_work_sync(&bat_priv->bat_v.ogm_wq); mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); kfree(bat_priv->bat_v.ogm_buff); bat_priv->bat_v.ogm_buff = NULL; bat_priv->bat_v.ogm_buff_len = 0; mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } |
7 5 2 2 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | // SPDX-License-Identifier: GPL-2.0 /* MPTCP socket monitoring support * * Copyright (c) 2019 Red Hat * * Author: Davide Caratti <dcaratti@redhat.com> */ #include <linux/kernel.h> #include <linux/net.h> #include <linux/inet_diag.h> #include <net/netlink.h> #include "protocol.h" static int subflow_get_info(struct sock *sk, struct sk_buff *skb) { struct mptcp_subflow_context *sf; struct nlattr *start; u32 flags = 0; bool slow; int err; if (inet_sk_state_load(sk) == TCP_LISTEN) return 0; start = nla_nest_start_noflag(skb, INET_ULP_INFO_MPTCP); if (!start) return -EMSGSIZE; slow = lock_sock_fast(sk); rcu_read_lock(); sf = rcu_dereference(inet_csk(sk)->icsk_ulp_data); if (!sf) { err = 0; goto nla_failure; } if (sf->mp_capable) flags |= MPTCP_SUBFLOW_FLAG_MCAP_REM; if (sf->request_mptcp) flags |= MPTCP_SUBFLOW_FLAG_MCAP_LOC; if (sf->mp_join) flags |= MPTCP_SUBFLOW_FLAG_JOIN_REM; if (sf->request_join) flags |= MPTCP_SUBFLOW_FLAG_JOIN_LOC; if (sf->backup) flags |= MPTCP_SUBFLOW_FLAG_BKUP_REM; if (sf->request_bkup) flags |= MPTCP_SUBFLOW_FLAG_BKUP_LOC; if (READ_ONCE(sf->fully_established)) flags |= MPTCP_SUBFLOW_FLAG_FULLY_ESTABLISHED; if (sf->conn_finished) flags |= MPTCP_SUBFLOW_FLAG_CONNECTED; if (sf->map_valid) flags |= MPTCP_SUBFLOW_FLAG_MAPVALID; if (nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_TOKEN_REM, sf->remote_token) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_TOKEN_LOC, sf->token) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_RELWRITE_SEQ, sf->rel_write_seq) || nla_put_u64_64bit(skb, MPTCP_SUBFLOW_ATTR_MAP_SEQ, sf->map_seq, MPTCP_SUBFLOW_ATTR_PAD) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_MAP_SFSEQ, sf->map_subflow_seq) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_SSN_OFFSET, sf->ssn_offset) || nla_put_u16(skb, MPTCP_SUBFLOW_ATTR_MAP_DATALEN, sf->map_data_len) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_FLAGS, flags) || nla_put_u8(skb, MPTCP_SUBFLOW_ATTR_ID_REM, sf->remote_id) || nla_put_u8(skb, MPTCP_SUBFLOW_ATTR_ID_LOC, subflow_get_local_id(sf))) { err = -EMSGSIZE; goto nla_failure; } rcu_read_unlock(); unlock_sock_fast(sk, slow); nla_nest_end(skb, start); return 0; nla_failure: rcu_read_unlock(); unlock_sock_fast(sk, slow); nla_nest_cancel(skb, start); return err; } static size_t subflow_get_info_size(const struct sock *sk) { size_t size = 0; size += nla_total_size(0) + /* INET_ULP_INFO_MPTCP */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_TOKEN_REM */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_TOKEN_LOC */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_RELWRITE_SEQ */ nla_total_size_64bit(8) + /* MPTCP_SUBFLOW_ATTR_MAP_SEQ */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_MAP_SFSEQ */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_SSN_OFFSET */ nla_total_size(2) + /* MPTCP_SUBFLOW_ATTR_MAP_DATALEN */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_FLAGS */ nla_total_size(1) + /* MPTCP_SUBFLOW_ATTR_ID_REM */ nla_total_size(1) + /* MPTCP_SUBFLOW_ATTR_ID_LOC */ 0; return size; } void mptcp_diag_subflow_init(struct tcp_ulp_ops *ops) { ops->get_info = subflow_get_info; ops->get_info_size = subflow_get_info_size; } |
2 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Glue Code for the AVX/AES-NI/GFNI assembler implementation of the ARIA Cipher * * Copyright (c) 2022 Taehee Yoo <ap420073@gmail.com> */ #include <crypto/algapi.h> #include <crypto/internal/simd.h> #include <crypto/aria.h> #include <linux/crypto.h> #include <linux/err.h> #include <linux/module.h> #include <linux/types.h> #include "ecb_cbc_helpers.h" #include "aria-avx.h" asmlinkage void aria_aesni_avx_encrypt_16way(const void *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(aria_aesni_avx_encrypt_16way); asmlinkage void aria_aesni_avx_decrypt_16way(const void *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(aria_aesni_avx_decrypt_16way); asmlinkage void aria_aesni_avx_ctr_crypt_16way(const void *ctx, u8 *dst, const u8 *src, u8 *keystream, u8 *iv); EXPORT_SYMBOL_GPL(aria_aesni_avx_ctr_crypt_16way); #ifdef CONFIG_AS_GFNI asmlinkage void aria_aesni_avx_gfni_encrypt_16way(const void *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(aria_aesni_avx_gfni_encrypt_16way); asmlinkage void aria_aesni_avx_gfni_decrypt_16way(const void *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(aria_aesni_avx_gfni_decrypt_16way); asmlinkage void aria_aesni_avx_gfni_ctr_crypt_16way(const void *ctx, u8 *dst, const u8 *src, u8 *keystream, u8 *iv); EXPORT_SYMBOL_GPL(aria_aesni_avx_gfni_ctr_crypt_16way); #endif /* CONFIG_AS_GFNI */ static struct aria_avx_ops aria_ops; struct aria_avx_request_ctx { u8 keystream[ARIA_AESNI_PARALLEL_BLOCK_SIZE]; }; static int ecb_do_encrypt(struct skcipher_request *req, const u32 *rkey) { ECB_WALK_START(req, ARIA_BLOCK_SIZE, ARIA_AESNI_PARALLEL_BLOCKS); ECB_BLOCK(ARIA_AESNI_PARALLEL_BLOCKS, aria_ops.aria_encrypt_16way); ECB_BLOCK(1, aria_encrypt); ECB_WALK_END(); } static int ecb_do_decrypt(struct skcipher_request *req, const u32 *rkey) { ECB_WALK_START(req, ARIA_BLOCK_SIZE, ARIA_AESNI_PARALLEL_BLOCKS); ECB_BLOCK(ARIA_AESNI_PARALLEL_BLOCKS, aria_ops.aria_decrypt_16way); ECB_BLOCK(1, aria_decrypt); ECB_WALK_END(); } static int aria_avx_ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aria_ctx *ctx = crypto_skcipher_ctx(tfm); return ecb_do_encrypt(req, ctx->enc_key[0]); } static int aria_avx_ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aria_ctx *ctx = crypto_skcipher_ctx(tfm); return ecb_do_decrypt(req, ctx->dec_key[0]); } static int aria_avx_set_key(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return aria_set_key(&tfm->base, key, keylen); } static int aria_avx_ctr_encrypt(struct skcipher_request *req) { struct aria_avx_request_ctx *req_ctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aria_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; while (nbytes >= ARIA_AESNI_PARALLEL_BLOCK_SIZE) { kernel_fpu_begin(); aria_ops.aria_ctr_crypt_16way(ctx, dst, src, &req_ctx->keystream[0], walk.iv); kernel_fpu_end(); dst += ARIA_AESNI_PARALLEL_BLOCK_SIZE; src += ARIA_AESNI_PARALLEL_BLOCK_SIZE; nbytes -= ARIA_AESNI_PARALLEL_BLOCK_SIZE; } while (nbytes >= ARIA_BLOCK_SIZE) { memcpy(&req_ctx->keystream[0], walk.iv, ARIA_BLOCK_SIZE); crypto_inc(walk.iv, ARIA_BLOCK_SIZE); aria_encrypt(ctx, &req_ctx->keystream[0], &req_ctx->keystream[0]); crypto_xor_cpy(dst, src, &req_ctx->keystream[0], ARIA_BLOCK_SIZE); dst += ARIA_BLOCK_SIZE; src += ARIA_BLOCK_SIZE; nbytes -= ARIA_BLOCK_SIZE; } if (walk.nbytes == walk.total && nbytes > 0) { memcpy(&req_ctx->keystream[0], walk.iv, ARIA_BLOCK_SIZE); crypto_inc(walk.iv, ARIA_BLOCK_SIZE); aria_encrypt(ctx, &req_ctx->keystream[0], &req_ctx->keystream[0]); crypto_xor_cpy(dst, src, &req_ctx->keystream[0], nbytes); dst += nbytes; src += nbytes; nbytes = 0; } err = skcipher_walk_done(&walk, nbytes); } return err; } static int aria_avx_init_tfm(struct crypto_skcipher *tfm) { crypto_skcipher_set_reqsize(tfm, sizeof(struct aria_avx_request_ctx)); return 0; } static struct skcipher_alg aria_algs[] = { { .base.cra_name = "__ecb(aria)", .base.cra_driver_name = "__ecb-aria-avx", .base.cra_priority = 400, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = ARIA_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aria_ctx), .base.cra_module = THIS_MODULE, .min_keysize = ARIA_MIN_KEY_SIZE, .max_keysize = ARIA_MAX_KEY_SIZE, .setkey = aria_avx_set_key, .encrypt = aria_avx_ecb_encrypt, .decrypt = aria_avx_ecb_decrypt, }, { .base.cra_name = "__ctr(aria)", .base.cra_driver_name = "__ctr-aria-avx", .base.cra_priority = 400, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aria_ctx), .base.cra_module = THIS_MODULE, .min_keysize = ARIA_MIN_KEY_SIZE, .max_keysize = ARIA_MAX_KEY_SIZE, .ivsize = ARIA_BLOCK_SIZE, .chunksize = ARIA_BLOCK_SIZE, .walksize = 16 * ARIA_BLOCK_SIZE, .setkey = aria_avx_set_key, .encrypt = aria_avx_ctr_encrypt, .decrypt = aria_avx_ctr_encrypt, .init = aria_avx_init_tfm, } }; static struct simd_skcipher_alg *aria_simd_algs[ARRAY_SIZE(aria_algs)]; static int __init aria_avx_init(void) { const char *feature_name; if (!boot_cpu_has(X86_FEATURE_AVX) || !boot_cpu_has(X86_FEATURE_AES) || !boot_cpu_has(X86_FEATURE_OSXSAVE)) { pr_info("AVX or AES-NI instructions are not detected.\n"); return -ENODEV; } if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, &feature_name)) { pr_info("CPU feature '%s' is not supported.\n", feature_name); return -ENODEV; } if (boot_cpu_has(X86_FEATURE_GFNI) && IS_ENABLED(CONFIG_AS_GFNI)) { aria_ops.aria_encrypt_16way = aria_aesni_avx_gfni_encrypt_16way; aria_ops.aria_decrypt_16way = aria_aesni_avx_gfni_decrypt_16way; aria_ops.aria_ctr_crypt_16way = aria_aesni_avx_gfni_ctr_crypt_16way; } else { aria_ops.aria_encrypt_16way = aria_aesni_avx_encrypt_16way; aria_ops.aria_decrypt_16way = aria_aesni_avx_decrypt_16way; aria_ops.aria_ctr_crypt_16way = aria_aesni_avx_ctr_crypt_16way; } return simd_register_skciphers_compat(aria_algs, ARRAY_SIZE(aria_algs), aria_simd_algs); } static void __exit aria_avx_exit(void) { simd_unregister_skciphers(aria_algs, ARRAY_SIZE(aria_algs), aria_simd_algs); } module_init(aria_avx_init); module_exit(aria_avx_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Taehee Yoo <ap420073@gmail.com>"); MODULE_DESCRIPTION("ARIA Cipher Algorithm, AVX/AES-NI/GFNI optimized"); MODULE_ALIAS_CRYPTO("aria"); MODULE_ALIAS_CRYPTO("aria-aesni-avx"); |
13 4 9 7 3 6 17 17 17 17 17 16 1 13 2 10 15 15 15 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS An implementation of the IP virtual server support for the * LINUX operating system. IPVS is now implemented as a module * over the Netfilter framework. IPVS can be used to build a * high-performance and highly available server based on a * cluster of servers. * * Authors: Wensong Zhang <wensong@linuxvirtualserver.org> * Peter Kese <peter.kese@ijs.si> * * Changes: */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <asm/string.h> #include <linux/kmod.h> #include <linux/sysctl.h> #include <net/ip_vs.h> EXPORT_SYMBOL(ip_vs_scheduler_err); /* * IPVS scheduler list */ static LIST_HEAD(ip_vs_schedulers); /* semaphore for schedulers */ static DEFINE_MUTEX(ip_vs_sched_mutex); /* * Bind a service with a scheduler */ int ip_vs_bind_scheduler(struct ip_vs_service *svc, struct ip_vs_scheduler *scheduler) { int ret; if (scheduler->init_service) { ret = scheduler->init_service(svc); if (ret) { pr_err("%s(): init error\n", __func__); return ret; } } rcu_assign_pointer(svc->scheduler, scheduler); return 0; } /* * Unbind a service with its scheduler */ void ip_vs_unbind_scheduler(struct ip_vs_service *svc, struct ip_vs_scheduler *sched) { struct ip_vs_scheduler *cur_sched; cur_sched = rcu_dereference_protected(svc->scheduler, 1); /* This check proves that old 'sched' was installed */ if (!cur_sched) return; if (sched->done_service) sched->done_service(svc); /* svc->scheduler can be set to NULL only by caller */ } /* * Get scheduler in the scheduler list by name */ static struct ip_vs_scheduler *ip_vs_sched_getbyname(const char *sched_name) { struct ip_vs_scheduler *sched; IP_VS_DBG(2, "%s(): sched_name \"%s\"\n", __func__, sched_name); mutex_lock(&ip_vs_sched_mutex); list_for_each_entry(sched, &ip_vs_schedulers, n_list) { /* * Test and get the modules atomically */ if (sched->module && !try_module_get(sched->module)) { /* * This scheduler is just deleted */ continue; } if (strcmp(sched_name, sched->name)==0) { /* HIT */ mutex_unlock(&ip_vs_sched_mutex); return sched; } module_put(sched->module); } mutex_unlock(&ip_vs_sched_mutex); return NULL; } /* * Lookup scheduler and try to load it if it doesn't exist */ struct ip_vs_scheduler *ip_vs_scheduler_get(const char *sched_name) { struct ip_vs_scheduler *sched; /* * Search for the scheduler by sched_name */ sched = ip_vs_sched_getbyname(sched_name); /* * If scheduler not found, load the module and search again */ if (sched == NULL) { request_module("ip_vs_%s", sched_name); sched = ip_vs_sched_getbyname(sched_name); } return sched; } void ip_vs_scheduler_put(struct ip_vs_scheduler *scheduler) { if (scheduler) module_put(scheduler->module); } /* * Common error output helper for schedulers */ void ip_vs_scheduler_err(struct ip_vs_service *svc, const char *msg) { struct ip_vs_scheduler *sched = rcu_dereference(svc->scheduler); char *sched_name = sched ? sched->name : "none"; if (svc->fwmark) { IP_VS_ERR_RL("%s: FWM %u 0x%08X - %s\n", sched_name, svc->fwmark, svc->fwmark, msg); #ifdef CONFIG_IP_VS_IPV6 } else if (svc->af == AF_INET6) { IP_VS_ERR_RL("%s: %s [%pI6c]:%d - %s\n", sched_name, ip_vs_proto_name(svc->protocol), &svc->addr.in6, ntohs(svc->port), msg); #endif } else { IP_VS_ERR_RL("%s: %s %pI4:%d - %s\n", sched_name, ip_vs_proto_name(svc->protocol), &svc->addr.ip, ntohs(svc->port), msg); } } /* * Register a scheduler in the scheduler list */ int register_ip_vs_scheduler(struct ip_vs_scheduler *scheduler) { struct ip_vs_scheduler *sched; if (!scheduler) { pr_err("%s(): NULL arg\n", __func__); return -EINVAL; } if (!scheduler->name) { pr_err("%s(): NULL scheduler_name\n", __func__); return -EINVAL; } /* increase the module use count */ if (!ip_vs_use_count_inc()) return -ENOENT; mutex_lock(&ip_vs_sched_mutex); if (!list_empty(&scheduler->n_list)) { mutex_unlock(&ip_vs_sched_mutex); ip_vs_use_count_dec(); pr_err("%s(): [%s] scheduler already linked\n", __func__, scheduler->name); return -EINVAL; } /* * Make sure that the scheduler with this name doesn't exist * in the scheduler list. */ list_for_each_entry(sched, &ip_vs_schedulers, n_list) { if (strcmp(scheduler->name, sched->name) == 0) { mutex_unlock(&ip_vs_sched_mutex); ip_vs_use_count_dec(); pr_err("%s(): [%s] scheduler already existed " "in the system\n", __func__, scheduler->name); return -EINVAL; } } /* * Add it into the d-linked scheduler list */ list_add(&scheduler->n_list, &ip_vs_schedulers); mutex_unlock(&ip_vs_sched_mutex); pr_info("[%s] scheduler registered.\n", scheduler->name); return 0; } /* * Unregister a scheduler from the scheduler list */ int unregister_ip_vs_scheduler(struct ip_vs_scheduler *scheduler) { if (!scheduler) { pr_err("%s(): NULL arg\n", __func__); return -EINVAL; } mutex_lock(&ip_vs_sched_mutex); if (list_empty(&scheduler->n_list)) { mutex_unlock(&ip_vs_sched_mutex); pr_err("%s(): [%s] scheduler is not in the list. failed\n", __func__, scheduler->name); return -EINVAL; } /* * Remove it from the d-linked scheduler list */ list_del(&scheduler->n_list); mutex_unlock(&ip_vs_sched_mutex); /* decrease the module use count */ ip_vs_use_count_dec(); pr_info("[%s] scheduler unregistered.\n", scheduler->name); return 0; } |
1 3 14 9 3 2 3 6 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IP Payload Compression Protocol (IPComp) - RFC3173. * * Copyright (c) 2003 James Morris <jmorris@intercode.com.au> * * Todo: * - Tunable compression parameters. * - Compression stats. * - Adaptive compression. */ #include <linux/module.h> #include <linux/err.h> #include <linux/rtnetlink.h> #include <net/ip.h> #include <net/xfrm.h> #include <net/icmp.h> #include <net/ipcomp.h> #include <net/protocol.h> #include <net/sock.h> static int ipcomp4_err(struct sk_buff *skb, u32 info) { struct net *net = dev_net(skb->dev); __be32 spi; const struct iphdr *iph = (const struct iphdr *)skb->data; struct ip_comp_hdr *ipch = (struct ip_comp_hdr *)(skb->data+(iph->ihl<<2)); struct xfrm_state *x; switch (icmp_hdr(skb)->type) { case ICMP_DEST_UNREACH: if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED) return 0; break; case ICMP_REDIRECT: break; default: return 0; } spi = htonl(ntohs(ipch->cpi)); x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, spi, IPPROTO_COMP, AF_INET); if (!x) return 0; if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH) ipv4_update_pmtu(skb, net, info, 0, IPPROTO_COMP); else ipv4_redirect(skb, net, 0, IPPROTO_COMP); xfrm_state_put(x); return 0; } /* We always hold one tunnel user reference to indicate a tunnel */ static struct xfrm_state *ipcomp_tunnel_create(struct xfrm_state *x) { struct net *net = xs_net(x); struct xfrm_state *t; t = xfrm_state_alloc(net); if (!t) goto out; t->id.proto = IPPROTO_IPIP; t->id.spi = x->props.saddr.a4; t->id.daddr.a4 = x->id.daddr.a4; memcpy(&t->sel, &x->sel, sizeof(t->sel)); t->props.family = AF_INET; t->props.mode = x->props.mode; t->props.saddr.a4 = x->props.saddr.a4; t->props.flags = x->props.flags; t->props.extra_flags = x->props.extra_flags; memcpy(&t->mark, &x->mark, sizeof(t->mark)); t->if_id = x->if_id; if (xfrm_init_state(t)) goto error; atomic_set(&t->tunnel_users, 1); out: return t; error: t->km.state = XFRM_STATE_DEAD; xfrm_state_put(t); t = NULL; goto out; } /* * Must be protected by xfrm_cfg_mutex. State and tunnel user references are * always incremented on success. */ static int ipcomp_tunnel_attach(struct xfrm_state *x) { struct net *net = xs_net(x); int err = 0; struct xfrm_state *t; u32 mark = x->mark.v & x->mark.m; t = xfrm_state_lookup(net, mark, (xfrm_address_t *)&x->id.daddr.a4, x->props.saddr.a4, IPPROTO_IPIP, AF_INET); if (!t) { t = ipcomp_tunnel_create(x); if (!t) { err = -EINVAL; goto out; } xfrm_state_insert(t); xfrm_state_hold(t); } x->tunnel = t; atomic_inc(&t->tunnel_users); out: return err; } static int ipcomp4_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { int err = -EINVAL; x->props.header_len = 0; switch (x->props.mode) { case XFRM_MODE_TRANSPORT: break; case XFRM_MODE_TUNNEL: x->props.header_len += sizeof(struct iphdr); break; default: NL_SET_ERR_MSG(extack, "Unsupported XFRM mode for IPcomp"); goto out; } err = ipcomp_init_state(x, extack); if (err) goto out; if (x->props.mode == XFRM_MODE_TUNNEL) { err = ipcomp_tunnel_attach(x); if (err) { NL_SET_ERR_MSG(extack, "Kernel error: failed to initialize the associated state"); goto out; } } err = 0; out: return err; } static int ipcomp4_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type ipcomp_type = { .owner = THIS_MODULE, .proto = IPPROTO_COMP, .init_state = ipcomp4_init_state, .destructor = ipcomp_destroy, .input = ipcomp_input, .output = ipcomp_output }; static struct xfrm4_protocol ipcomp4_protocol = { .handler = xfrm4_rcv, .input_handler = xfrm_input, .cb_handler = ipcomp4_rcv_cb, .err_handler = ipcomp4_err, .priority = 0, }; static int __init ipcomp4_init(void) { if (xfrm_register_type(&ipcomp_type, AF_INET) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm4_protocol_register(&ipcomp4_protocol, IPPROTO_COMP) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&ipcomp_type, AF_INET); return -EAGAIN; } return 0; } static void __exit ipcomp4_fini(void) { if (xfrm4_protocol_deregister(&ipcomp4_protocol, IPPROTO_COMP) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&ipcomp_type, AF_INET); } module_init(ipcomp4_init); module_exit(ipcomp4_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IP Payload Compression Protocol (IPComp/IPv4) - RFC3173"); MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>"); MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_COMP); |
1 1 1 1 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | // SPDX-License-Identifier: GPL-2.0-or-later /* * em_canid.c Ematch rule to match CAN frames according to their CAN IDs * * Idea: Oliver Hartkopp <oliver.hartkopp@volkswagen.de> * Copyright: (c) 2011 Czech Technical University in Prague * (c) 2011 Volkswagen Group Research * Authors: Michal Sojka <sojkam1@fel.cvut.cz> * Pavel Pisa <pisa@cmp.felk.cvut.cz> * Rostislav Lisovy <lisovy@gmail.cz> * Funded by: Volkswagen Group Research */ #include <linux/slab.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/skbuff.h> #include <net/pkt_cls.h> #include <linux/can.h> #define EM_CAN_RULES_MAX 500 struct canid_match { /* For each SFF CAN ID (11 bit) there is one record in this bitfield */ DECLARE_BITMAP(match_sff, (1 << CAN_SFF_ID_BITS)); int rules_count; int sff_rules_count; int eff_rules_count; /* * Raw rules copied from netlink message; Used for sending * information to userspace (when 'tc filter show' is invoked) * AND when matching EFF frames */ struct can_filter rules_raw[]; }; /** * em_canid_get_id() - Extracts Can ID out of the sk_buff structure. * @skb: buffer to extract Can ID from */ static canid_t em_canid_get_id(struct sk_buff *skb) { /* CAN ID is stored within the data field */ struct can_frame *cf = (struct can_frame *)skb->data; return cf->can_id; } static void em_canid_sff_match_add(struct canid_match *cm, u32 can_id, u32 can_mask) { int i; /* * Limit can_mask and can_id to SFF range to * protect against write after end of array */ can_mask &= CAN_SFF_MASK; can_id &= can_mask; /* Single frame */ if (can_mask == CAN_SFF_MASK) { set_bit(can_id, cm->match_sff); return; } /* All frames */ if (can_mask == 0) { bitmap_fill(cm->match_sff, (1 << CAN_SFF_ID_BITS)); return; } /* * Individual frame filter. * Add record (set bit to 1) for each ID that * conforms particular rule */ for (i = 0; i < (1 << CAN_SFF_ID_BITS); i++) { if ((i & can_mask) == can_id) set_bit(i, cm->match_sff); } } static inline struct canid_match *em_canid_priv(struct tcf_ematch *m) { return (struct canid_match *)m->data; } static int em_canid_match(struct sk_buff *skb, struct tcf_ematch *m, struct tcf_pkt_info *info) { struct canid_match *cm = em_canid_priv(m); canid_t can_id; int match = 0; int i; const struct can_filter *lp; can_id = em_canid_get_id(skb); if (can_id & CAN_EFF_FLAG) { for (i = 0, lp = cm->rules_raw; i < cm->eff_rules_count; i++, lp++) { if (!(((lp->can_id ^ can_id) & lp->can_mask))) { match = 1; break; } } } else { /* SFF */ can_id &= CAN_SFF_MASK; match = (test_bit(can_id, cm->match_sff) ? 1 : 0); } return match; } static int em_canid_change(struct net *net, void *data, int len, struct tcf_ematch *m) { struct can_filter *conf = data; /* Array with rules */ struct canid_match *cm; int i; if (!len) return -EINVAL; if (len % sizeof(struct can_filter)) return -EINVAL; if (len > sizeof(struct can_filter) * EM_CAN_RULES_MAX) return -EINVAL; cm = kzalloc(sizeof(struct canid_match) + len, GFP_KERNEL); if (!cm) return -ENOMEM; cm->rules_count = len / sizeof(struct can_filter); /* * We need two for() loops for copying rules into two contiguous * areas in rules_raw to process all eff rules with a simple loop. * NB: The configuration interface supports sff and eff rules. * We do not support filters here that match for the same can_id * provided in a SFF and EFF frame (e.g. 0x123 / 0x80000123). * For this (unusual case) two filters have to be specified. The * SFF/EFF separation is done with the CAN_EFF_FLAG in the can_id. */ /* Fill rules_raw with EFF rules first */ for (i = 0; i < cm->rules_count; i++) { if (conf[i].can_id & CAN_EFF_FLAG) { memcpy(cm->rules_raw + cm->eff_rules_count, &conf[i], sizeof(struct can_filter)); cm->eff_rules_count++; } } /* append SFF frame rules */ for (i = 0; i < cm->rules_count; i++) { if (!(conf[i].can_id & CAN_EFF_FLAG)) { memcpy(cm->rules_raw + cm->eff_rules_count + cm->sff_rules_count, &conf[i], sizeof(struct can_filter)); cm->sff_rules_count++; em_canid_sff_match_add(cm, conf[i].can_id, conf[i].can_mask); } } m->datalen = sizeof(struct canid_match) + len; m->data = (unsigned long)cm; return 0; } static void em_canid_destroy(struct tcf_ematch *m) { struct canid_match *cm = em_canid_priv(m); kfree(cm); } static int em_canid_dump(struct sk_buff *skb, struct tcf_ematch *m) { struct canid_match *cm = em_canid_priv(m); /* * When configuring this ematch 'rules_count' is set not to exceed * 'rules_raw' array size */ if (nla_put_nohdr(skb, sizeof(struct can_filter) * cm->rules_count, &cm->rules_raw) < 0) return -EMSGSIZE; return 0; } static struct tcf_ematch_ops em_canid_ops = { .kind = TCF_EM_CANID, .change = em_canid_change, .match = em_canid_match, .destroy = em_canid_destroy, .dump = em_canid_dump, .owner = THIS_MODULE, .link = LIST_HEAD_INIT(em_canid_ops.link) }; static int __init init_em_canid(void) { return tcf_em_register(&em_canid_ops); } static void __exit exit_em_canid(void) { tcf_em_unregister(&em_canid_ops); } MODULE_DESCRIPTION("ematch classifier to match CAN IDs embedded in skb CAN frames"); MODULE_LICENSE("GPL"); module_init(init_em_canid); module_exit(exit_em_canid); MODULE_ALIAS_TCF_EMATCH(TCF_EM_CANID); |
36 8 2 36 8 8 8 8 8 36 36 35 35 35 35 31 6 4 2 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 | // SPDX-License-Identifier: GPL-2.0-only /* File: fs/xattr.c Extended attribute handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (C) 2001 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com> Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #include <linux/fs.h> #include <linux/filelock.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/xattr.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/export.h> #include <linux/fsnotify.h> #include <linux/audit.h> #include <linux/vmalloc.h> #include <linux/posix_acl_xattr.h> #include <linux/uaccess.h> #include "internal.h" static const char * strcmp_prefix(const char *a, const char *a_prefix) { while (*a_prefix && *a == *a_prefix) { a++; a_prefix++; } return *a_prefix ? NULL : a; } /* * In order to implement different sets of xattr operations for each xattr * prefix, a filesystem should create a null-terminated array of struct * xattr_handler (one for each prefix) and hang a pointer to it off of the * s_xattr field of the superblock. */ #define for_each_xattr_handler(handlers, handler) \ if (handlers) \ for ((handler) = *(handlers)++; \ (handler) != NULL; \ (handler) = *(handlers)++) /* * Find the xattr_handler with the matching prefix. */ static const struct xattr_handler * xattr_resolve_name(struct inode *inode, const char **name) { const struct xattr_handler * const *handlers = inode->i_sb->s_xattr; const struct xattr_handler *handler; if (!(inode->i_opflags & IOP_XATTR)) { if (unlikely(is_bad_inode(inode))) return ERR_PTR(-EIO); return ERR_PTR(-EOPNOTSUPP); } for_each_xattr_handler(handlers, handler) { const char *n; n = strcmp_prefix(*name, xattr_prefix(handler)); if (n) { if (!handler->prefix ^ !*n) { if (*n) continue; return ERR_PTR(-EINVAL); } *name = n; return handler; } } return ERR_PTR(-EOPNOTSUPP); } /** * may_write_xattr - check whether inode allows writing xattr * @idmap: idmap of the mount the inode was found from * @inode: the inode on which to set an xattr * * Check whether the inode allows writing xattrs. Specifically, we can never * set or remove an extended attribute on a read-only filesystem or on an * immutable / append-only inode. * * We also need to ensure that the inode has a mapping in the mount to * not risk writing back invalid i_{g,u}id values. * * Return: On success zero is returned. On error a negative errno is returned. */ int may_write_xattr(struct mnt_idmap *idmap, struct inode *inode) { if (IS_IMMUTABLE(inode)) return -EPERM; if (IS_APPEND(inode)) return -EPERM; if (HAS_UNMAPPED_ID(idmap, inode)) return -EPERM; return 0; } /* * Check permissions for extended attribute access. This is a bit complicated * because different namespaces have very different rules. */ static int xattr_permission(struct mnt_idmap *idmap, struct inode *inode, const char *name, int mask) { if (mask & MAY_WRITE) { int ret; ret = may_write_xattr(idmap, inode); if (ret) return ret; } /* * No restriction for security.* and system.* from the VFS. Decision * on these is left to the underlying filesystem / security module. */ if (!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN) || !strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) return 0; /* * The trusted.* namespace can only be accessed by privileged users. */ if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN)) { if (!capable(CAP_SYS_ADMIN)) return (mask & MAY_WRITE) ? -EPERM : -ENODATA; return 0; } /* * In the user.* namespace, only regular files and directories can have * extended attributes. For sticky directories, only the owner and * privileged users can write attributes. */ if (!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) { if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) return (mask & MAY_WRITE) ? -EPERM : -ENODATA; if (S_ISDIR(inode->i_mode) && (inode->i_mode & S_ISVTX) && (mask & MAY_WRITE) && !inode_owner_or_capable(idmap, inode)) return -EPERM; } return inode_permission(idmap, inode, mask); } /* * Look for any handler that deals with the specified namespace. */ int xattr_supports_user_prefix(struct inode *inode) { const struct xattr_handler * const *handlers = inode->i_sb->s_xattr; const struct xattr_handler *handler; if (!(inode->i_opflags & IOP_XATTR)) { if (unlikely(is_bad_inode(inode))) return -EIO; return -EOPNOTSUPP; } for_each_xattr_handler(handlers, handler) { if (!strncmp(xattr_prefix(handler), XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) return 0; } return -EOPNOTSUPP; } EXPORT_SYMBOL(xattr_supports_user_prefix); int __vfs_setxattr(struct mnt_idmap *idmap, struct dentry *dentry, struct inode *inode, const char *name, const void *value, size_t size, int flags) { const struct xattr_handler *handler; if (is_posix_acl_xattr(name)) return -EOPNOTSUPP; handler = xattr_resolve_name(inode, &name); if (IS_ERR(handler)) return PTR_ERR(handler); if (!handler->set) return -EOPNOTSUPP; if (size == 0) value = ""; /* empty EA, do not remove */ return handler->set(handler, idmap, dentry, inode, name, value, size, flags); } EXPORT_SYMBOL(__vfs_setxattr); /** * __vfs_setxattr_noperm - perform setxattr operation without performing * permission checks. * * @idmap: idmap of the mount the inode was found from * @dentry: object to perform setxattr on * @name: xattr name to set * @value: value to set @name to * @size: size of @value * @flags: flags to pass into filesystem operations * * returns the result of the internal setxattr or setsecurity operations. * * This function requires the caller to lock the inode's i_mutex before it * is executed. It also assumes that the caller will make the appropriate * permission checks. */ int __vfs_setxattr_noperm(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode = dentry->d_inode; int error = -EAGAIN; int issec = !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN); if (issec) inode->i_flags &= ~S_NOSEC; if (inode->i_opflags & IOP_XATTR) { error = __vfs_setxattr(idmap, dentry, inode, name, value, size, flags); if (!error) { fsnotify_xattr(dentry); security_inode_post_setxattr(dentry, name, value, size, flags); } } else { if (unlikely(is_bad_inode(inode))) return -EIO; } if (error == -EAGAIN) { error = -EOPNOTSUPP; if (issec) { const char *suffix = name + XATTR_SECURITY_PREFIX_LEN; error = security_inode_setsecurity(inode, suffix, value, size, flags); if (!error) fsnotify_xattr(dentry); } } return error; } /** * __vfs_setxattr_locked - set an extended attribute while holding the inode * lock * * @idmap: idmap of the mount of the target inode * @dentry: object to perform setxattr on * @name: xattr name to set * @value: value to set @name to * @size: size of @value * @flags: flags to pass into filesystem operations * @delegated_inode: on return, will contain an inode pointer that * a delegation was broken on, NULL if none. */ int __vfs_setxattr_locked(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, const void *value, size_t size, int flags, struct inode **delegated_inode) { struct inode *inode = dentry->d_inode; int error; error = xattr_permission(idmap, inode, name, MAY_WRITE); if (error) return error; error = security_inode_setxattr(idmap, dentry, name, value, size, flags); if (error) goto out; error = try_break_deleg(inode, delegated_inode); if (error) goto out; error = __vfs_setxattr_noperm(idmap, dentry, name, value, size, flags); out: return error; } EXPORT_SYMBOL_GPL(__vfs_setxattr_locked); int vfs_setxattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode = dentry->d_inode; struct inode *delegated_inode = NULL; const void *orig_value = value; int error; if (size && strcmp(name, XATTR_NAME_CAPS) == 0) { error = cap_convert_nscap(idmap, dentry, &value, size); if (error < 0) return error; size = error; } retry_deleg: inode_lock(inode); error = __vfs_setxattr_locked(idmap, dentry, name, value, size, flags, &delegated_inode); inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } if (value != orig_value) kfree(value); return error; } EXPORT_SYMBOL_GPL(vfs_setxattr); static ssize_t xattr_getsecurity(struct mnt_idmap *idmap, struct inode *inode, const char *name, void *value, size_t size) { void *buffer = NULL; ssize_t len; if (!value || !size) { len = security_inode_getsecurity(idmap, inode, name, &buffer, false); goto out_noalloc; } len = security_inode_getsecurity(idmap, inode, name, &buffer, true); if (len < 0) return len; if (size < len) { len = -ERANGE; goto out; } memcpy(value, buffer, len); out: kfree(buffer); out_noalloc: return len; } /* * vfs_getxattr_alloc - allocate memory, if necessary, before calling getxattr * * Allocate memory, if not already allocated, or re-allocate correct size, * before retrieving the extended attribute. The xattr value buffer should * always be freed by the caller, even on error. * * Returns the result of alloc, if failed, or the getxattr operation. */ int vfs_getxattr_alloc(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, char **xattr_value, size_t xattr_size, gfp_t flags) { const struct xattr_handler *handler; struct inode *inode = dentry->d_inode; char *value = *xattr_value; int error; error = xattr_permission(idmap, inode, name, MAY_READ); if (error) return error; handler = xattr_resolve_name(inode, &name); if (IS_ERR(handler)) return PTR_ERR(handler); if (!handler->get) return -EOPNOTSUPP; error = handler->get(handler, dentry, inode, name, NULL, 0); if (error < 0) return error; if (!value || (error > xattr_size)) { value = krealloc(*xattr_value, error + 1, flags); if (!value) return -ENOMEM; memset(value, 0, error + 1); } error = handler->get(handler, dentry, inode, name, value, error); *xattr_value = value; return error; } ssize_t __vfs_getxattr(struct dentry *dentry, struct inode *inode, const char *name, void *value, size_t size) { const struct xattr_handler *handler; if (is_posix_acl_xattr(name)) return -EOPNOTSUPP; handler = xattr_resolve_name(inode, &name); if (IS_ERR(handler)) return PTR_ERR(handler); if (!handler->get) return -EOPNOTSUPP; return handler->get(handler, dentry, inode, name, value, size); } EXPORT_SYMBOL(__vfs_getxattr); ssize_t vfs_getxattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, void *value, size_t size) { struct inode *inode = dentry->d_inode; int error; error = xattr_permission(idmap, inode, name, MAY_READ); if (error) return error; error = security_inode_getxattr(dentry, name); if (error) return error; if (!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN)) { const char *suffix = name + XATTR_SECURITY_PREFIX_LEN; int ret = xattr_getsecurity(idmap, inode, suffix, value, size); /* * Only overwrite the return value if a security module * is actually active. */ if (ret == -EOPNOTSUPP) goto nolsm; return ret; } nolsm: return __vfs_getxattr(dentry, inode, name, value, size); } EXPORT_SYMBOL_GPL(vfs_getxattr); /** * vfs_listxattr - retrieve \0 separated list of xattr names * @dentry: the dentry from whose inode the xattr names are retrieved * @list: buffer to store xattr names into * @size: size of the buffer * * This function returns the names of all xattrs associated with the * inode of @dentry. * * Note, for legacy reasons the vfs_listxattr() function lists POSIX * ACLs as well. Since POSIX ACLs are decoupled from IOP_XATTR the * vfs_listxattr() function doesn't check for this flag since a * filesystem could implement POSIX ACLs without implementing any other * xattrs. * * However, since all codepaths that remove IOP_XATTR also assign of * inode operations that either don't implement or implement a stub * ->listxattr() operation. * * Return: On success, the size of the buffer that was used. On error a * negative error code. */ ssize_t vfs_listxattr(struct dentry *dentry, char *list, size_t size) { struct inode *inode = d_inode(dentry); ssize_t error; error = security_inode_listxattr(dentry); if (error) return error; if (inode->i_op->listxattr) { error = inode->i_op->listxattr(dentry, list, size); } else { error = security_inode_listsecurity(inode, list, size); if (size && error > size) error = -ERANGE; } return error; } EXPORT_SYMBOL_GPL(vfs_listxattr); int __vfs_removexattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *name) { struct inode *inode = d_inode(dentry); const struct xattr_handler *handler; if (is_posix_acl_xattr(name)) return -EOPNOTSUPP; handler = xattr_resolve_name(inode, &name); if (IS_ERR(handler)) return PTR_ERR(handler); if (!handler->set) return -EOPNOTSUPP; return handler->set(handler, idmap, dentry, inode, name, NULL, 0, XATTR_REPLACE); } EXPORT_SYMBOL(__vfs_removexattr); /** * __vfs_removexattr_locked - set an extended attribute while holding the inode * lock * * @idmap: idmap of the mount of the target inode * @dentry: object to perform setxattr on * @name: name of xattr to remove * @delegated_inode: on return, will contain an inode pointer that * a delegation was broken on, NULL if none. */ int __vfs_removexattr_locked(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, struct inode **delegated_inode) { struct inode *inode = dentry->d_inode; int error; error = xattr_permission(idmap, inode, name, MAY_WRITE); if (error) return error; error = security_inode_removexattr(idmap, dentry, name); if (error) goto out; error = try_break_deleg(inode, delegated_inode); if (error) goto out; error = __vfs_removexattr(idmap, dentry, name); if (error) return error; fsnotify_xattr(dentry); security_inode_post_removexattr(dentry, name); out: return error; } EXPORT_SYMBOL_GPL(__vfs_removexattr_locked); int vfs_removexattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *name) { struct inode *inode = dentry->d_inode; struct inode *delegated_inode = NULL; int error; retry_deleg: inode_lock(inode); error = __vfs_removexattr_locked(idmap, dentry, name, &delegated_inode); inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } return error; } EXPORT_SYMBOL_GPL(vfs_removexattr); int import_xattr_name(struct xattr_name *kname, const char __user *name) { int error = strncpy_from_user(kname->name, name, sizeof(kname->name)); if (error == 0 || error == sizeof(kname->name)) return -ERANGE; if (error < 0) return error; return 0; } /* * Extended attribute SET operations */ int setxattr_copy(const char __user *name, struct kernel_xattr_ctx *ctx) { int error; if (ctx->flags & ~(XATTR_CREATE|XATTR_REPLACE)) return -EINVAL; error = import_xattr_name(ctx->kname, name); if (error) return error; if (ctx->size) { if (ctx->size > XATTR_SIZE_MAX) return -E2BIG; ctx->kvalue = vmemdup_user(ctx->cvalue, ctx->size); if (IS_ERR(ctx->kvalue)) { error = PTR_ERR(ctx->kvalue); ctx->kvalue = NULL; } } return error; } static int do_setxattr(struct mnt_idmap *idmap, struct dentry *dentry, struct kernel_xattr_ctx *ctx) { if (is_posix_acl_xattr(ctx->kname->name)) return do_set_acl(idmap, dentry, ctx->kname->name, ctx->kvalue, ctx->size); return vfs_setxattr(idmap, dentry, ctx->kname->name, ctx->kvalue, ctx->size, ctx->flags); } int file_setxattr(struct file *f, struct kernel_xattr_ctx *ctx) { int error = mnt_want_write_file(f); if (!error) { audit_file(f); error = do_setxattr(file_mnt_idmap(f), f->f_path.dentry, ctx); mnt_drop_write_file(f); } return error; } /* unconditionally consumes filename */ int filename_setxattr(int dfd, struct filename *filename, unsigned int lookup_flags, struct kernel_xattr_ctx *ctx) { struct path path; int error; retry: error = filename_lookup(dfd, filename, lookup_flags, &path, NULL); if (error) goto out; error = mnt_want_write(path.mnt); if (!error) { error = do_setxattr(mnt_idmap(path.mnt), path.dentry, ctx); mnt_drop_write(path.mnt); } path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: putname(filename); return error; } static int path_setxattrat(int dfd, const char __user *pathname, unsigned int at_flags, const char __user *name, const void __user *value, size_t size, int flags) { struct xattr_name kname; struct kernel_xattr_ctx ctx = { .cvalue = value, .kvalue = NULL, .size = size, .kname = &kname, .flags = flags, }; struct filename *filename; unsigned int lookup_flags = 0; int error; if ((at_flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) return -EINVAL; if (!(at_flags & AT_SYMLINK_NOFOLLOW)) lookup_flags = LOOKUP_FOLLOW; error = setxattr_copy(name, &ctx); if (error) return error; filename = getname_maybe_null(pathname, at_flags); if (!filename) { CLASS(fd, f)(dfd); if (fd_empty(f)) error = -EBADF; else error = file_setxattr(fd_file(f), &ctx); } else { error = filename_setxattr(dfd, filename, lookup_flags, &ctx); } kvfree(ctx.kvalue); return error; } SYSCALL_DEFINE6(setxattrat, int, dfd, const char __user *, pathname, unsigned int, at_flags, const char __user *, name, const struct xattr_args __user *, uargs, size_t, usize) { struct xattr_args args = {}; int error; BUILD_BUG_ON(sizeof(struct xattr_args) < XATTR_ARGS_SIZE_VER0); BUILD_BUG_ON(sizeof(struct xattr_args) != XATTR_ARGS_SIZE_LATEST); if (unlikely(usize < XATTR_ARGS_SIZE_VER0)) return -EINVAL; if (usize > PAGE_SIZE) return -E2BIG; error = copy_struct_from_user(&args, sizeof(args), uargs, usize); if (error) return error; return path_setxattrat(dfd, pathname, at_flags, name, u64_to_user_ptr(args.value), args.size, args.flags); } SYSCALL_DEFINE5(setxattr, const char __user *, pathname, const char __user *, name, const void __user *, value, size_t, size, int, flags) { return path_setxattrat(AT_FDCWD, pathname, 0, name, value, size, flags); } SYSCALL_DEFINE5(lsetxattr, const char __user *, pathname, const char __user *, name, const void __user *, value, size_t, size, int, flags) { return path_setxattrat(AT_FDCWD, pathname, AT_SYMLINK_NOFOLLOW, name, value, size, flags); } SYSCALL_DEFINE5(fsetxattr, int, fd, const char __user *, name, const void __user *,value, size_t, size, int, flags) { return path_setxattrat(fd, NULL, AT_EMPTY_PATH, name, value, size, flags); } /* * Extended attribute GET operations */ static ssize_t do_getxattr(struct mnt_idmap *idmap, struct dentry *d, struct kernel_xattr_ctx *ctx) { ssize_t error; char *kname = ctx->kname->name; void *kvalue = NULL; if (ctx->size) { if (ctx->size > XATTR_SIZE_MAX) ctx->size = XATTR_SIZE_MAX; kvalue = kvzalloc(ctx->size, GFP_KERNEL); if (!kvalue) return -ENOMEM; } if (is_posix_acl_xattr(kname)) error = do_get_acl(idmap, d, kname, kvalue, ctx->size); else error = vfs_getxattr(idmap, d, kname, kvalue, ctx->size); if (error > 0) { if (ctx->size && copy_to_user(ctx->value, kvalue, error)) error = -EFAULT; } else if (error == -ERANGE && ctx->size >= XATTR_SIZE_MAX) { /* The file system tried to returned a value bigger than XATTR_SIZE_MAX bytes. Not possible. */ error = -E2BIG; } kvfree(kvalue); return error; } ssize_t file_getxattr(struct file *f, struct kernel_xattr_ctx *ctx) { audit_file(f); return do_getxattr(file_mnt_idmap(f), f->f_path.dentry, ctx); } /* unconditionally consumes filename */ ssize_t filename_getxattr(int dfd, struct filename *filename, unsigned int lookup_flags, struct kernel_xattr_ctx *ctx) { struct path path; ssize_t error; retry: error = filename_lookup(dfd, filename, lookup_flags, &path, NULL); if (error) goto out; error = do_getxattr(mnt_idmap(path.mnt), path.dentry, ctx); path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: putname(filename); return error; } static ssize_t path_getxattrat(int dfd, const char __user *pathname, unsigned int at_flags, const char __user *name, void __user *value, size_t size) { struct xattr_name kname; struct kernel_xattr_ctx ctx = { .value = value, .size = size, .kname = &kname, .flags = 0, }; struct filename *filename; ssize_t error; if ((at_flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) return -EINVAL; error = import_xattr_name(&kname, name); if (error) return error; filename = getname_maybe_null(pathname, at_flags); if (!filename) { CLASS(fd, f)(dfd); if (fd_empty(f)) return -EBADF; return file_getxattr(fd_file(f), &ctx); } else { int lookup_flags = 0; if (!(at_flags & AT_SYMLINK_NOFOLLOW)) lookup_flags = LOOKUP_FOLLOW; return filename_getxattr(dfd, filename, lookup_flags, &ctx); } } SYSCALL_DEFINE6(getxattrat, int, dfd, const char __user *, pathname, unsigned int, at_flags, const char __user *, name, struct xattr_args __user *, uargs, size_t, usize) { struct xattr_args args = {}; int error; BUILD_BUG_ON(sizeof(struct xattr_args) < XATTR_ARGS_SIZE_VER0); BUILD_BUG_ON(sizeof(struct xattr_args) != XATTR_ARGS_SIZE_LATEST); if (unlikely(usize < XATTR_ARGS_SIZE_VER0)) return -EINVAL; if (usize > PAGE_SIZE) return -E2BIG; error = copy_struct_from_user(&args, sizeof(args), uargs, usize); if (error) return error; if (args.flags != 0) return -EINVAL; return path_getxattrat(dfd, pathname, at_flags, name, u64_to_user_ptr(args.value), args.size); } SYSCALL_DEFINE4(getxattr, const char __user *, pathname, const char __user *, name, void __user *, value, size_t, size) { return path_getxattrat(AT_FDCWD, pathname, 0, name, value, size); } SYSCALL_DEFINE4(lgetxattr, const char __user *, pathname, const char __user *, name, void __user *, value, size_t, size) { return path_getxattrat(AT_FDCWD, pathname, AT_SYMLINK_NOFOLLOW, name, value, size); } SYSCALL_DEFINE4(fgetxattr, int, fd, const char __user *, name, void __user *, value, size_t, size) { return path_getxattrat(fd, NULL, AT_EMPTY_PATH, name, value, size); } /* * Extended attribute LIST operations */ static ssize_t listxattr(struct dentry *d, char __user *list, size_t size) { ssize_t error; char *klist = NULL; if (size) { if (size > XATTR_LIST_MAX) size = XATTR_LIST_MAX; klist = kvmalloc(size, GFP_KERNEL); if (!klist) return -ENOMEM; } error = vfs_listxattr(d, klist, size); if (error > 0) { if (size && copy_to_user(list, klist, error)) error = -EFAULT; } else if (error == -ERANGE && size >= XATTR_LIST_MAX) { /* The file system tried to returned a list bigger than XATTR_LIST_MAX bytes. Not possible. */ error = -E2BIG; } kvfree(klist); return error; } static ssize_t file_listxattr(struct file *f, char __user *list, size_t size) { audit_file(f); return listxattr(f->f_path.dentry, list, size); } /* unconditionally consumes filename */ static ssize_t filename_listxattr(int dfd, struct filename *filename, unsigned int lookup_flags, char __user *list, size_t size) { struct path path; ssize_t error; retry: error = filename_lookup(dfd, filename, lookup_flags, &path, NULL); if (error) goto out; error = listxattr(path.dentry, list, size); path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: putname(filename); return error; } static ssize_t path_listxattrat(int dfd, const char __user *pathname, unsigned int at_flags, char __user *list, size_t size) { struct filename *filename; int lookup_flags; if ((at_flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) return -EINVAL; filename = getname_maybe_null(pathname, at_flags); if (!filename) { CLASS(fd, f)(dfd); if (fd_empty(f)) return -EBADF; return file_listxattr(fd_file(f), list, size); } lookup_flags = (at_flags & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW; return filename_listxattr(dfd, filename, lookup_flags, list, size); } SYSCALL_DEFINE5(listxattrat, int, dfd, const char __user *, pathname, unsigned int, at_flags, char __user *, list, size_t, size) { return path_listxattrat(dfd, pathname, at_flags, list, size); } SYSCALL_DEFINE3(listxattr, const char __user *, pathname, char __user *, list, size_t, size) { return path_listxattrat(AT_FDCWD, pathname, 0, list, size); } SYSCALL_DEFINE3(llistxattr, const char __user *, pathname, char __user *, list, size_t, size) { return path_listxattrat(AT_FDCWD, pathname, AT_SYMLINK_NOFOLLOW, list, size); } SYSCALL_DEFINE3(flistxattr, int, fd, char __user *, list, size_t, size) { return path_listxattrat(fd, NULL, AT_EMPTY_PATH, list, size); } /* * Extended attribute REMOVE operations */ static long removexattr(struct mnt_idmap *idmap, struct dentry *d, const char *name) { if (is_posix_acl_xattr(name)) return vfs_remove_acl(idmap, d, name); return vfs_removexattr(idmap, d, name); } static int file_removexattr(struct file *f, struct xattr_name *kname) { int error = mnt_want_write_file(f); if (!error) { audit_file(f); error = removexattr(file_mnt_idmap(f), f->f_path.dentry, kname->name); mnt_drop_write_file(f); } return error; } /* unconditionally consumes filename */ static int filename_removexattr(int dfd, struct filename *filename, unsigned int lookup_flags, struct xattr_name *kname) { struct path path; int error; retry: error = filename_lookup(dfd, filename, lookup_flags, &path, NULL); if (error) goto out; error = mnt_want_write(path.mnt); if (!error) { error = removexattr(mnt_idmap(path.mnt), path.dentry, kname->name); mnt_drop_write(path.mnt); } path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: putname(filename); return error; } static int path_removexattrat(int dfd, const char __user *pathname, unsigned int at_flags, const char __user *name) { struct xattr_name kname; struct filename *filename; unsigned int lookup_flags; int error; if ((at_flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) return -EINVAL; error = import_xattr_name(&kname, name); if (error) return error; filename = getname_maybe_null(pathname, at_flags); if (!filename) { CLASS(fd, f)(dfd); if (fd_empty(f)) return -EBADF; return file_removexattr(fd_file(f), &kname); } lookup_flags = (at_flags & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW; return filename_removexattr(dfd, filename, lookup_flags, &kname); } SYSCALL_DEFINE4(removexattrat, int, dfd, const char __user *, pathname, unsigned int, at_flags, const char __user *, name) { return path_removexattrat(dfd, pathname, at_flags, name); } SYSCALL_DEFINE2(removexattr, const char __user *, pathname, const char __user *, name) { return path_removexattrat(AT_FDCWD, pathname, 0, name); } SYSCALL_DEFINE2(lremovexattr, const char __user *, pathname, const char __user *, name) { return path_removexattrat(AT_FDCWD, pathname, AT_SYMLINK_NOFOLLOW, name); } SYSCALL_DEFINE2(fremovexattr, int, fd, const char __user *, name) { return path_removexattrat(fd, NULL, AT_EMPTY_PATH, name); } int xattr_list_one(char **buffer, ssize_t *remaining_size, const char *name) { size_t len; len = strlen(name) + 1; if (*buffer) { if (*remaining_size < len) return -ERANGE; memcpy(*buffer, name, len); *buffer += len; } *remaining_size -= len; return 0; } /** * generic_listxattr - run through a dentry's xattr list() operations * @dentry: dentry to list the xattrs * @buffer: result buffer * @buffer_size: size of @buffer * * Combine the results of the list() operation from every xattr_handler in the * xattr_handler stack. * * Note that this will not include the entries for POSIX ACLs. */ ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) { const struct xattr_handler *handler, * const *handlers = dentry->d_sb->s_xattr; ssize_t remaining_size = buffer_size; for_each_xattr_handler(handlers, handler) { int err; if (!handler->name || (handler->list && !handler->list(dentry))) continue; err = xattr_list_one(&buffer, &remaining_size, handler->name); if (err) return err; } return buffer_size - remaining_size; } EXPORT_SYMBOL(generic_listxattr); /** * xattr_full_name - Compute full attribute name from suffix * * @handler: handler of the xattr_handler operation * @name: name passed to the xattr_handler operation * * The get and set xattr handler operations are called with the remainder of * the attribute name after skipping the handler's prefix: for example, "foo" * is passed to the get operation of a handler with prefix "user." to get * attribute "user.foo". The full name is still "there" in the name though. * * Note: the list xattr handler operation when called from the vfs is passed a * NULL name; some file systems use this operation internally, with varying * semantics. */ const char *xattr_full_name(const struct xattr_handler *handler, const char *name) { size_t prefix_len = strlen(xattr_prefix(handler)); return name - prefix_len; } EXPORT_SYMBOL(xattr_full_name); /** * simple_xattr_space - estimate the memory used by a simple xattr * @name: the full name of the xattr * @size: the size of its value * * This takes no account of how much larger the two slab objects actually are: * that would depend on the slab implementation, when what is required is a * deterministic number, which grows with name length and size and quantity. * * Return: The approximate number of bytes of memory used by such an xattr. */ size_t simple_xattr_space(const char *name, size_t size) { /* * Use "40" instead of sizeof(struct simple_xattr), to return the * same result on 32-bit and 64-bit, and even if simple_xattr grows. */ return 40 + size + strlen(name); } /** * simple_xattr_free - free an xattr object * @xattr: the xattr object * * Free the xattr object. Can handle @xattr being NULL. */ void simple_xattr_free(struct simple_xattr *xattr) { if (xattr) kfree(xattr->name); kvfree(xattr); } /** * simple_xattr_alloc - allocate new xattr object * @value: value of the xattr object * @size: size of @value * * Allocate a new xattr object and initialize respective members. The caller is * responsible for handling the name of the xattr. * * Return: On success a new xattr object is returned. On failure NULL is * returned. */ struct simple_xattr *simple_xattr_alloc(const void *value, size_t size) { struct simple_xattr *new_xattr; size_t len; /* wrap around? */ len = sizeof(*new_xattr) + size; if (len < sizeof(*new_xattr)) return NULL; new_xattr = kvmalloc(len, GFP_KERNEL_ACCOUNT); if (!new_xattr) return NULL; new_xattr->size = size; memcpy(new_xattr->value, value, size); return new_xattr; } /** * rbtree_simple_xattr_cmp - compare xattr name with current rbtree xattr entry * @key: xattr name * @node: current node * * Compare the xattr name with the xattr name attached to @node in the rbtree. * * Return: Negative value if continuing left, positive if continuing right, 0 * if the xattr attached to @node matches @key. */ static int rbtree_simple_xattr_cmp(const void *key, const struct rb_node *node) { const char *xattr_name = key; const struct simple_xattr *xattr; xattr = rb_entry(node, struct simple_xattr, rb_node); return strcmp(xattr->name, xattr_name); } /** * rbtree_simple_xattr_node_cmp - compare two xattr rbtree nodes * @new_node: new node * @node: current node * * Compare the xattr attached to @new_node with the xattr attached to @node. * * Return: Negative value if continuing left, positive if continuing right, 0 * if the xattr attached to @new_node matches the xattr attached to @node. */ static int rbtree_simple_xattr_node_cmp(struct rb_node *new_node, const struct rb_node *node) { struct simple_xattr *xattr; xattr = rb_entry(new_node, struct simple_xattr, rb_node); return rbtree_simple_xattr_cmp(xattr->name, node); } /** * simple_xattr_get - get an xattr object * @xattrs: the header of the xattr object * @name: the name of the xattr to retrieve * @buffer: the buffer to store the value into * @size: the size of @buffer * * Try to find and retrieve the xattr object associated with @name. * If @buffer is provided store the value of @xattr in @buffer * otherwise just return the length. The size of @buffer is limited * to XATTR_SIZE_MAX which currently is 65536. * * Return: On success the length of the xattr value is returned. On error a * negative error code is returned. */ int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size) { struct simple_xattr *xattr = NULL; struct rb_node *rbp; int ret = -ENODATA; read_lock(&xattrs->lock); rbp = rb_find(name, &xattrs->rb_root, rbtree_simple_xattr_cmp); if (rbp) { xattr = rb_entry(rbp, struct simple_xattr, rb_node); ret = xattr->size; if (buffer) { if (size < xattr->size) ret = -ERANGE; else memcpy(buffer, xattr->value, xattr->size); } } read_unlock(&xattrs->lock); return ret; } /** * simple_xattr_set - set an xattr object * @xattrs: the header of the xattr object * @name: the name of the xattr to retrieve * @value: the value to store along the xattr * @size: the size of @value * @flags: the flags determining how to set the xattr * * Set a new xattr object. * If @value is passed a new xattr object will be allocated. If XATTR_REPLACE * is specified in @flags a matching xattr object for @name must already exist. * If it does it will be replaced with the new xattr object. If it doesn't we * fail. If XATTR_CREATE is specified and a matching xattr does already exist * we fail. If it doesn't we create a new xattr. If @flags is zero we simply * insert the new xattr replacing any existing one. * * If @value is empty and a matching xattr object is found we delete it if * XATTR_REPLACE is specified in @flags or @flags is zero. * * If @value is empty and no matching xattr object for @name is found we do * nothing if XATTR_CREATE is specified in @flags or @flags is zero. For * XATTR_REPLACE we fail as mentioned above. * * Return: On success, the removed or replaced xattr is returned, to be freed * by the caller; or NULL if none. On failure a negative error code is returned. */ struct simple_xattr *simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags) { struct simple_xattr *old_xattr = NULL, *new_xattr = NULL; struct rb_node *parent = NULL, **rbp; int err = 0, ret; /* value == NULL means remove */ if (value) { new_xattr = simple_xattr_alloc(value, size); if (!new_xattr) return ERR_PTR(-ENOMEM); new_xattr->name = kstrdup(name, GFP_KERNEL_ACCOUNT); if (!new_xattr->name) { simple_xattr_free(new_xattr); return ERR_PTR(-ENOMEM); } } write_lock(&xattrs->lock); rbp = &xattrs->rb_root.rb_node; while (*rbp) { parent = *rbp; ret = rbtree_simple_xattr_cmp(name, *rbp); if (ret < 0) rbp = &(*rbp)->rb_left; else if (ret > 0) rbp = &(*rbp)->rb_right; else old_xattr = rb_entry(*rbp, struct simple_xattr, rb_node); if (old_xattr) break; } if (old_xattr) { /* Fail if XATTR_CREATE is requested and the xattr exists. */ if (flags & XATTR_CREATE) { err = -EEXIST; goto out_unlock; } if (new_xattr) rb_replace_node(&old_xattr->rb_node, &new_xattr->rb_node, &xattrs->rb_root); else rb_erase(&old_xattr->rb_node, &xattrs->rb_root); } else { /* Fail if XATTR_REPLACE is requested but no xattr is found. */ if (flags & XATTR_REPLACE) { err = -ENODATA; goto out_unlock; } /* * If XATTR_CREATE or no flags are specified together with a * new value simply insert it. */ if (new_xattr) { rb_link_node(&new_xattr->rb_node, parent, rbp); rb_insert_color(&new_xattr->rb_node, &xattrs->rb_root); } /* * If XATTR_CREATE or no flags are specified and neither an * old or new xattr exist then we don't need to do anything. */ } out_unlock: write_unlock(&xattrs->lock); if (!err) return old_xattr; simple_xattr_free(new_xattr); return ERR_PTR(err); } static bool xattr_is_trusted(const char *name) { return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); } /** * simple_xattr_list - list all xattr objects * @inode: inode from which to get the xattrs * @xattrs: the header of the xattr object * @buffer: the buffer to store all xattrs into * @size: the size of @buffer * * List all xattrs associated with @inode. If @buffer is NULL we returned * the required size of the buffer. If @buffer is provided we store the * xattrs value into it provided it is big enough. * * Note, the number of xattr names that can be listed with listxattr(2) is * limited to XATTR_LIST_MAX aka 65536 bytes. If a larger buffer is passed * then vfs_listxattr() caps it to XATTR_LIST_MAX and if more xattr names * are found it will return -E2BIG. * * Return: On success the required size or the size of the copied xattrs is * returned. On error a negative error code is returned. */ ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size) { bool trusted = ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN); struct simple_xattr *xattr; struct rb_node *rbp; ssize_t remaining_size = size; int err = 0; err = posix_acl_listxattr(inode, &buffer, &remaining_size); if (err) return err; read_lock(&xattrs->lock); for (rbp = rb_first(&xattrs->rb_root); rbp; rbp = rb_next(rbp)) { xattr = rb_entry(rbp, struct simple_xattr, rb_node); /* skip "trusted." attributes for unprivileged callers */ if (!trusted && xattr_is_trusted(xattr->name)) continue; err = xattr_list_one(&buffer, &remaining_size, xattr->name); if (err) break; } read_unlock(&xattrs->lock); return err ? err : size - remaining_size; } /** * rbtree_simple_xattr_less - compare two xattr rbtree nodes * @new_node: new node * @node: current node * * Compare the xattr attached to @new_node with the xattr attached to @node. * Note that this function technically tolerates duplicate entries. * * Return: True if insertion point in the rbtree is found. */ static bool rbtree_simple_xattr_less(struct rb_node *new_node, const struct rb_node *node) { return rbtree_simple_xattr_node_cmp(new_node, node) < 0; } /** * simple_xattr_add - add xattr objects * @xattrs: the header of the xattr object * @new_xattr: the xattr object to add * * Add an xattr object to @xattrs. This assumes no replacement or removal * of matching xattrs is wanted. Should only be called during inode * initialization when a few distinct initial xattrs are supposed to be set. */ void simple_xattr_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr) { write_lock(&xattrs->lock); rb_add(&new_xattr->rb_node, &xattrs->rb_root, rbtree_simple_xattr_less); write_unlock(&xattrs->lock); } /** * simple_xattrs_init - initialize new xattr header * @xattrs: header to initialize * * Initialize relevant fields of a an xattr header. */ void simple_xattrs_init(struct simple_xattrs *xattrs) { xattrs->rb_root = RB_ROOT; rwlock_init(&xattrs->lock); } /** * simple_xattrs_free - free xattrs * @xattrs: xattr header whose xattrs to destroy * @freed_space: approximate number of bytes of memory freed from @xattrs * * Destroy all xattrs in @xattr. When this is called no one can hold a * reference to any of the xattrs anymore. */ void simple_xattrs_free(struct simple_xattrs *xattrs, size_t *freed_space) { struct rb_node *rbp; if (freed_space) *freed_space = 0; rbp = rb_first(&xattrs->rb_root); while (rbp) { struct simple_xattr *xattr; struct rb_node *rbp_next; rbp_next = rb_next(rbp); xattr = rb_entry(rbp, struct simple_xattr, rb_node); rb_erase(&xattr->rb_node, &xattrs->rb_root); if (freed_space) *freed_space += simple_xattr_space(xattr->name, xattr->size); simple_xattr_free(xattr); rbp = rbp_next; } } |
8 114 3 115 7 3 6 107 9 101 2 3 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright 2023 NXP Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #include <linux/poll.h> #include <net/sock.h> #include <linux/seq_file.h> #define BT_SUBSYS_VERSION 2 #define BT_SUBSYS_REVISION 22 #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif /* Bluetooth versions */ #define BLUETOOTH_VER_1_1 1 #define BLUETOOTH_VER_1_2 2 #define BLUETOOTH_VER_2_0 3 #define BLUETOOTH_VER_2_1 4 #define BLUETOOTH_VER_4_0 6 /* Reserv for core and drivers use */ #define BT_SKB_RESERVE 8 #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define BTPROTO_ISO 8 #define BTPROTO_LAST BTPROTO_ISO #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #define BT_SECURITY 4 struct bt_security { __u8 level; __u8 key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_SECURITY_FIPS 4 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { __u8 force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { __u16 setting; }; #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 #define BT_VOICE_TRANSPARENT_16BIT 0x0063 #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_PHY 14 #define BT_PHY_BR_1M_1SLOT 0x00000001 #define BT_PHY_BR_1M_3SLOT 0x00000002 #define BT_PHY_BR_1M_5SLOT 0x00000004 #define BT_PHY_EDR_2M_1SLOT 0x00000008 #define BT_PHY_EDR_2M_3SLOT 0x00000010 #define BT_PHY_EDR_2M_5SLOT 0x00000020 #define BT_PHY_EDR_3M_1SLOT 0x00000040 #define BT_PHY_EDR_3M_3SLOT 0x00000080 #define BT_PHY_EDR_3M_5SLOT 0x00000100 #define BT_PHY_LE_1M_TX 0x00000200 #define BT_PHY_LE_1M_RX 0x00000400 #define BT_PHY_LE_2M_TX 0x00000800 #define BT_PHY_LE_2M_RX 0x00001000 #define BT_PHY_LE_CODED_TX 0x00002000 #define BT_PHY_LE_CODED_RX 0x00004000 #define BT_MODE 15 #define BT_MODE_BASIC 0x00 #define BT_MODE_ERTM 0x01 #define BT_MODE_STREAMING 0x02 #define BT_MODE_LE_FLOWCTL 0x03 #define BT_MODE_EXT_FLOWCTL 0x04 #define BT_PKT_STATUS 16 #define BT_SCM_PKT_STATUS 0x03 #define BT_ISO_QOS 17 #define BT_ISO_QOS_CIG_UNSET 0xff #define BT_ISO_QOS_CIS_UNSET 0xff #define BT_ISO_QOS_BIG_UNSET 0xff #define BT_ISO_QOS_BIS_UNSET 0xff #define BT_ISO_SYNC_TIMEOUT 0x07d0 /* 20 secs */ struct bt_iso_io_qos { __u32 interval; __u16 latency; __u16 sdu; __u8 phy; __u8 rtn; }; struct bt_iso_ucast_qos { __u8 cig; __u8 cis; __u8 sca; __u8 packing; __u8 framing; struct bt_iso_io_qos in; struct bt_iso_io_qos out; }; struct bt_iso_bcast_qos { __u8 big; __u8 bis; __u8 sync_factor; __u8 packing; __u8 framing; struct bt_iso_io_qos in; struct bt_iso_io_qos out; __u8 encryption; __u8 bcode[16]; __u8 options; __u16 skip; __u16 sync_timeout; __u8 sync_cte_type; __u8 mse; __u16 timeout; }; struct bt_iso_qos { union { struct bt_iso_ucast_qos ucast; struct bt_iso_bcast_qos bcast; }; }; #define BT_ISO_PHY_1M 0x01 #define BT_ISO_PHY_2M 0x02 #define BT_ISO_PHY_CODED 0x04 #define BT_ISO_PHY_ANY (BT_ISO_PHY_1M | BT_ISO_PHY_2M | \ BT_ISO_PHY_CODED) #define BT_CODEC 19 struct bt_codec_caps { __u8 len; __u8 data[]; } __packed; struct bt_codec { __u8 id; __u16 cid; __u16 vid; __u8 data_path; __u8 num_caps; } __packed; struct bt_codecs { __u8 num_codecs; struct bt_codec codecs[]; } __packed; #define BT_CODEC_CVSD 0x02 #define BT_CODEC_TRANSPARENT 0x03 #define BT_CODEC_MSBC 0x05 #define BT_ISO_BASE 20 __printf(1, 2) void bt_info(const char *fmt, ...); __printf(1, 2) void bt_warn(const char *fmt, ...); __printf(1, 2) void bt_err(const char *fmt, ...); #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) void bt_dbg_set(bool enable); bool bt_dbg_get(void); __printf(1, 2) void bt_dbg(const char *fmt, ...); #endif __printf(1, 2) void bt_warn_ratelimited(const char *fmt, ...); __printf(1, 2) void bt_err_ratelimited(const char *fmt, ...); #define BT_INFO(fmt, ...) bt_info(fmt "\n", ##__VA_ARGS__) #define BT_WARN(fmt, ...) bt_warn(fmt "\n", ##__VA_ARGS__) #define BT_ERR(fmt, ...) bt_err(fmt "\n", ##__VA_ARGS__) #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) #define BT_DBG(fmt, ...) bt_dbg(fmt "\n", ##__VA_ARGS__) #else #define BT_DBG(fmt, ...) pr_debug(fmt "\n", ##__VA_ARGS__) #endif #define bt_dev_name(hdev) ((hdev) ? (hdev)->name : "null") #define bt_dev_info(hdev, fmt, ...) \ BT_INFO("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_warn(hdev, fmt, ...) \ BT_WARN("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_err(hdev, fmt, ...) \ BT_ERR("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_dbg(hdev, fmt, ...) \ BT_DBG("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_warn_ratelimited(hdev, fmt, ...) \ bt_warn_ratelimited("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_err_ratelimited(hdev, fmt, ...) \ bt_err_ratelimited("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) /* Connection and socket states */ enum bt_sock_state { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* If unused will be removed by compiler */ static inline const char *state_to_string(int state) { switch (state) { case BT_CONNECTED: return "BT_CONNECTED"; case BT_OPEN: return "BT_OPEN"; case BT_BOUND: return "BT_BOUND"; case BT_LISTEN: return "BT_LISTEN"; case BT_CONNECT: return "BT_CONNECT"; case BT_CONNECT2: return "BT_CONNECT2"; case BT_CONFIG: return "BT_CONFIG"; case BT_DISCONN: return "BT_DISCONN"; case BT_CLOSED: return "BT_CLOSED"; } return "invalid state"; } /* BD Address */ typedef struct { __u8 b[6]; } __packed bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 static inline bool bdaddr_type_is_valid(u8 type) { switch (type) { case BDADDR_BREDR: case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } static inline bool bdaddr_type_is_le(u8 type) { switch (type) { case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_NONE (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); /* Common socket structures and functions */ #define bt_sk(__sk) ((struct bt_sock *) __sk) struct bt_sock { struct sock sk; struct list_head accept_q; struct sock *parent; unsigned long flags; void (*skb_msg_name)(struct sk_buff *, void *, int *); void (*skb_put_cmsg)(struct sk_buff *, struct msghdr *, struct sock *); }; enum { BT_SK_DEFER_SETUP, BT_SK_SUSPEND, BT_SK_PKT_STATUS }; struct bt_sock_list { struct hlist_head head; rwlock_t lock; #ifdef CONFIG_PROC_FS int (* custom_seq_show)(struct seq_file *, void *); #endif }; int bt_sock_register(int proto, const struct net_proto_family *ops); void bt_sock_unregister(int proto); void bt_sock_link(struct bt_sock_list *l, struct sock *s); void bt_sock_unlink(struct bt_sock_list *l, struct sock *s); bool bt_sock_linked(struct bt_sock_list *l, struct sock *s); struct sock *bt_sock_alloc(struct net *net, struct socket *sock, struct proto *prot, int proto, gfp_t prio, int kern); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo); int bt_sock_wait_ready(struct sock *sk, unsigned int msg_flags); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh); void bt_accept_unlink(struct sock *sk); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock); /* Skb helpers */ struct l2cap_ctrl { u8 sframe:1, poll:1, final:1, fcs:1, sar:2, super:2; u16 reqseq; u16 txseq; u8 retries; __le16 psm; bdaddr_t bdaddr; struct l2cap_chan *chan; }; struct hci_dev; typedef void (*hci_req_complete_t)(struct hci_dev *hdev, u8 status, u16 opcode); typedef void (*hci_req_complete_skb_t)(struct hci_dev *hdev, u8 status, u16 opcode, struct sk_buff *skb); void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, hci_req_complete_t *req_complete, hci_req_complete_skb_t *req_complete_skb); #define HCI_REQ_START BIT(0) #define HCI_REQ_SKB BIT(1) struct hci_ctrl { struct sock *sk; u16 opcode; u8 req_flags; u8 req_event; union { hci_req_complete_t req_complete; hci_req_complete_skb_t req_complete_skb; }; }; struct mgmt_ctrl { struct hci_dev *hdev; u16 opcode; }; struct bt_skb_cb { u8 pkt_type; u8 force_active; u16 expect; u8 incoming:1; u8 pkt_status:2; union { struct l2cap_ctrl l2cap; struct hci_ctrl hci; struct mgmt_ctrl mgmt; struct scm_creds creds; }; }; #define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb)) #define hci_skb_pkt_type(skb) bt_cb((skb))->pkt_type #define hci_skb_pkt_status(skb) bt_cb((skb))->pkt_status #define hci_skb_expect(skb) bt_cb((skb))->expect #define hci_skb_opcode(skb) bt_cb((skb))->hci.opcode #define hci_skb_event(skb) bt_cb((skb))->hci.req_event #define hci_skb_sk(skb) bt_cb((skb))->hci.sk static inline struct sk_buff *bt_skb_alloc(unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + BT_SKB_RESERVE, how); if (skb) skb_reserve(skb, BT_SKB_RESERVE); return skb; } static inline struct sk_buff *bt_skb_send_alloc(struct sock *sk, unsigned long len, int nb, int *err) { struct sk_buff *skb; skb = sock_alloc_send_skb(sk, len + BT_SKB_RESERVE, nb, err); if (skb) skb_reserve(skb, BT_SKB_RESERVE); if (!skb && *err) return NULL; *err = sock_error(sk); if (*err) goto out; if (sk->sk_shutdown) { *err = -ECONNRESET; goto out; } return skb; out: kfree_skb(skb); return NULL; } /* Shall not be called with lock_sock held */ static inline struct sk_buff *bt_skb_sendmsg(struct sock *sk, struct msghdr *msg, size_t len, size_t mtu, size_t headroom, size_t tailroom) { struct sk_buff *skb; size_t size = min_t(size_t, len, mtu); int err; skb = bt_skb_send_alloc(sk, size + headroom + tailroom, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) return ERR_PTR(err); skb_reserve(skb, headroom); skb_tailroom_reserve(skb, mtu, tailroom); if (!copy_from_iter_full(skb_put(skb, size), size, &msg->msg_iter)) { kfree_skb(skb); return ERR_PTR(-EFAULT); } skb->priority = READ_ONCE(sk->sk_priority); return skb; } /* Similar to bt_skb_sendmsg but can split the msg into multiple fragments * accourding to the MTU. */ static inline struct sk_buff *bt_skb_sendmmsg(struct sock *sk, struct msghdr *msg, size_t len, size_t mtu, size_t headroom, size_t tailroom) { struct sk_buff *skb, **frag; skb = bt_skb_sendmsg(sk, msg, len, mtu, headroom, tailroom); if (IS_ERR(skb)) return skb; len -= skb->len; if (!len) return skb; /* Add remaining data over MTU as continuation fragments */ frag = &skb_shinfo(skb)->frag_list; while (len) { struct sk_buff *tmp; tmp = bt_skb_sendmsg(sk, msg, len, mtu, headroom, tailroom); if (IS_ERR(tmp)) { return skb; } len -= tmp->len; *frag = tmp; frag = &(*frag)->next; } return skb; } int bt_to_errno(u16 code); __u8 bt_status(int err); void hci_sock_set_flag(struct sock *sk, int nr); void hci_sock_clear_flag(struct sock *sk, int nr); int hci_sock_test_flag(struct sock *sk, int nr); unsigned short hci_sock_get_channel(struct sock *sk); u32 hci_sock_get_cookie(struct sock *sk); int hci_sock_init(void); void hci_sock_cleanup(void); int bt_sysfs_init(void); void bt_sysfs_cleanup(void); int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)); void bt_procfs_cleanup(struct net *net, const char *name); extern struct dentry *bt_debugfs; int l2cap_init(void); void l2cap_exit(void); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_init(void); void sco_exit(void); #else static inline int sco_init(void) { return 0; } static inline void sco_exit(void) { } #endif #if IS_ENABLED(CONFIG_BT_LE) int iso_init(void); int iso_exit(void); bool iso_enabled(void); #else static inline int iso_init(void) { return 0; } static inline int iso_exit(void) { return 0; } static inline bool iso_enabled(void) { return false; } #endif int mgmt_init(void); void mgmt_exit(void); void mgmt_cleanup(struct sock *sk); void bt_sock_reclassify_lock(struct sock *sk, int proto); #endif /* __BLUETOOTH_H */ |
87 87 1 2 1 3 18 1 102 33 4 1 2 1 3 8 7 8 9 1 8 6 1 8 6 1 2 7 28 16 1 4 4 2 1 1 2 2 1 1 1 59 60 60 59 1 60 49 14 27 39 17 60 4 61 61 61 4 1 7 7 1 1 1 4 2 2 4 148 46 27 17 54 37 12 68 2 51 3 2 1 2 2 13 62 53 96 64 69 49 22 1 65 58 6 2 8 56 121 5 5 4 3 103 18 41 85 42 88 88 40 29 50 15 17 55 3 56 56 2 38 47 35 48 47 25 48 42 5 42 44 44 43 1 44 44 12 44 3 3 3 2 2 1 1 3 3 1 3 3 31 50 30 1 22 19 16 18 26 1 5 21 8 37 62 3 35 35 67 2 68 1 116 5 2 1 1 1 1 4 3 1 3 52 16 3 4 5 49 20 18 29 54 23 25 10 22 21 2 7 1 2 4 4 1 2 1 1 3 3 1 2 1 1 1 10 31 31 4 2 2 2 5 1 1 5 3 5 5 3 6 5 3 2 1 1 1 1 2 3 1 1 1 6 4 2 1 3 2 2 4 4 6 1 2 2 2 27 27 1 1 6 17 9 1 2 3 1 5 4 1 1 5 5 4 2 2 6 6 2 1 4 23 22 19 2 1 1 3 20 23 23 1 2 25 24 26 56 2 51 2 53 10 1 34 36 36 1 1 29 27 4 1 30 12 1 1 3 11 1 10 12 1 12 18 4 1 1 1 20 20 1 1 20 21 1 1 21 13 1 1 15 1 4 23 29 5 4 51 1 49 1 1 39 1 12 12 1 1 173 173 127 3 102 31 74 175 27 24 1 23 22 22 1 1 1 1 1 1 1 55 10 50 42 6 5 1 5 3 54 54 52 1 1 51 1 1 51 50 48 47 47 20 201 201 200 201 68 6 52 16 4 52 8 44 14 68 66 64 2 67 67 68 67 18 18 6 1 1 4 1 1 1 1 6 6 5 4 5 1 4 1 4 1 4 2 1 2 13 2 10 14 11 9 6 6 5 1 4 2 1 1 1 1 1 1 11 9 2 1 11 11 2 10 10 2 4 1 1 1 1 161 1 20 1 19 1 7 1 7 6 4 3 122 2 2 2 2 1 1 1 3 27 1 4 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 6 3 2 1 1 4 5 1 4 2 1 1 2 2 2 1 1 6 3 1 1 1 2 425 264 161 15 3 38 30 16 1 16 1 16 1 16 16 16 15 1 16 16 16 16 2 2 2 2 103 107 1 3 2 2 2 2 1 1 1 2 2 2 1 1 1 2 4 1 1 2 3 1 8 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 28 1 2 1 1 1 27 18 9 4 16 7 17 27 1 40 39 185 77 107 4 4 7 4 4 2 1 1 2 2 107 109 3 104 100 3 60 61 61 61 59 2 4 4 1 3 4 1 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 | // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche, <flla@stud.uni-sb.de> * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> * Linus Torvalds, <torvalds@cs.helsinki.fi> * Alan Cox, <gw4pts@gw4pts.ampr.org> * Matthew Dillon, <dillon@apollo.west.oic.com> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Jorge Cwik, <jorge@laser.satlink.net> * * Fixes: * Alan Cox : Numerous verify_area() calls * Alan Cox : Set the ACK bit on a reset * Alan Cox : Stopped it crashing if it closed while * sk->inuse=1 and was trying to connect * (tcp_err()). * Alan Cox : All icmp error handling was broken * pointers passed where wrong and the * socket was looked up backwards. Nobody * tested any icmp error code obviously. * Alan Cox : tcp_err() now handled properly. It * wakes people on errors. poll * behaves and the icmp error race * has gone by moving it into sock.c * Alan Cox : tcp_send_reset() fixed to work for * everything not just packets for * unknown sockets. * Alan Cox : tcp option processing. * Alan Cox : Reset tweaked (still not 100%) [Had * syn rule wrong] * Herp Rosmanith : More reset fixes * Alan Cox : No longer acks invalid rst frames. * Acking any kind of RST is right out. * Alan Cox : Sets an ignore me flag on an rst * receive otherwise odd bits of prattle * escape still * Alan Cox : Fixed another acking RST frame bug. * Should stop LAN workplace lockups. * Alan Cox : Some tidyups using the new skb list * facilities * Alan Cox : sk->keepopen now seems to work * Alan Cox : Pulls options out correctly on accepts * Alan Cox : Fixed assorted sk->rqueue->next errors * Alan Cox : PSH doesn't end a TCP read. Switched a * bit to skb ops. * Alan Cox : Tidied tcp_data to avoid a potential * nasty. * Alan Cox : Added some better commenting, as the * tcp is hard to follow * Alan Cox : Removed incorrect check for 20 * psh * Michael O'Reilly : ack < copied bug fix. * Johannes Stille : Misc tcp fixes (not all in yet). * Alan Cox : FIN with no memory -> CRASH * Alan Cox : Added socket option proto entries. * Also added awareness of them to accept. * Alan Cox : Added TCP options (SOL_TCP) * Alan Cox : Switched wakeup calls to callbacks, * so the kernel can layer network * sockets. * Alan Cox : Use ip_tos/ip_ttl settings. * Alan Cox : Handle FIN (more) properly (we hope). * Alan Cox : RST frames sent on unsynchronised * state ack error. * Alan Cox : Put in missing check for SYN bit. * Alan Cox : Added tcp_select_window() aka NET2E * window non shrink trick. * Alan Cox : Added a couple of small NET2E timer * fixes * Charles Hedrick : TCP fixes * Toomas Tamm : TCP window fixes * Alan Cox : Small URG fix to rlogin ^C ack fight * Charles Hedrick : Rewrote most of it to actually work * Linus : Rewrote tcp_read() and URG handling * completely * Gerhard Koerting: Fixed some missing timer handling * Matthew Dillon : Reworked TCP machine states as per RFC * Gerhard Koerting: PC/TCP workarounds * Adam Caldwell : Assorted timer/timing errors * Matthew Dillon : Fixed another RST bug * Alan Cox : Move to kernel side addressing changes. * Alan Cox : Beginning work on TCP fastpathing * (not yet usable) * Arnt Gulbrandsen: Turbocharged tcp_check() routine. * Alan Cox : TCP fast path debugging * Alan Cox : Window clamping * Michael Riepe : Bug in tcp_check() * Matt Dillon : More TCP improvements and RST bug fixes * Matt Dillon : Yet more small nasties remove from the * TCP code (Be very nice to this man if * tcp finally works 100%) 8) * Alan Cox : BSD accept semantics. * Alan Cox : Reset on closedown bug. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). * Michael Pall : Handle poll() after URG properly in * all cases. * Michael Pall : Undo the last fix in tcp_read_urg() * (multi URG PUSH broke rlogin). * Michael Pall : Fix the multi URG PUSH problem in * tcp_readable(), poll() after URG * works now. * Michael Pall : recv(...,MSG_OOB) never blocks in the * BSD api. * Alan Cox : Changed the semantics of sk->socket to * fix a race and a signal problem with * accept() and async I/O. * Alan Cox : Relaxed the rules on tcp_sendto(). * Yury Shevchuk : Really fixed accept() blocking problem. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for * clients/servers which listen in on * fixed ports. * Alan Cox : Cleaned the above up and shrank it to * a sensible code size. * Alan Cox : Self connect lockup fix. * Alan Cox : No connect to multicast. * Ross Biro : Close unaccepted children on master * socket close. * Alan Cox : Reset tracing code. * Alan Cox : Spurious resets on shutdown. * Alan Cox : Giant 15 minute/60 second timer error * Alan Cox : Small whoops in polling before an * accept. * Alan Cox : Kept the state trace facility since * it's handy for debugging. * Alan Cox : More reset handler fixes. * Alan Cox : Started rewriting the code based on * the RFC's for other useful protocol * references see: Comer, KA9Q NOS, and * for a reference on the difference * between specifications and how BSD * works see the 4.4lite source. * A.N.Kuznetsov : Don't time wait on completion of tidy * close. * Linus Torvalds : Fin/Shutdown & copied_seq changes. * Linus Torvalds : Fixed BSD port reuse to work first syn * Alan Cox : Reimplemented timers as per the RFC * and using multiple timers for sanity. * Alan Cox : Small bug fixes, and a lot of new * comments. * Alan Cox : Fixed dual reader crash by locking * the buffers (much like datagram.c) * Alan Cox : Fixed stuck sockets in probe. A probe * now gets fed up of retrying without * (even a no space) answer. * Alan Cox : Extracted closing code better * Alan Cox : Fixed the closing state machine to * resemble the RFC. * Alan Cox : More 'per spec' fixes. * Jorge Cwik : Even faster checksumming. * Alan Cox : tcp_data() doesn't ack illegal PSH * only frames. At least one pc tcp stack * generates them. * Alan Cox : Cache last socket. * Alan Cox : Per route irtt. * Matt Day : poll()->select() match BSD precisely on error * Alan Cox : New buffers * Marc Tamsky : Various sk->prot->retransmits and * sk->retransmits misupdating fixed. * Fixed tcp_write_timeout: stuck close, * and TCP syn retries gets used now. * Mark Yarvis : In tcp_read_wakeup(), don't send an * ack if state is TCP_CLOSED. * Alan Cox : Look up device on a retransmit - routes may * change. Doesn't yet cope with MSS shrink right * but it's a start! * Marc Tamsky : Closing in closing fixes. * Mike Shaver : RFC1122 verifications. * Alan Cox : rcv_saddr errors. * Alan Cox : Block double connect(). * Alan Cox : Small hooks for enSKIP. * Alexey Kuznetsov: Path MTU discovery. * Alan Cox : Support soft errors. * Alan Cox : Fix MTU discovery pathological case * when the remote claims no mtu! * Marc Tamsky : TCP_CLOSE fix. * Colin (G3TNE) : Send a reset on syn ack replies in * window but wrong (fixes NT lpd problems) * Pedro Roque : Better TCP window handling, delayed ack. * Joerg Reuter : No modification of locked buffers in * tcp_do_retransmit() * Eric Schenk : Changed receiver side silly window * avoidance algorithm to BSD style * algorithm. This doubles throughput * against machines running Solaris, * and seems to result in general * improvement. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD * Willy Konynenberg : Transparent proxying support. * Mike McLagan : Routing by source * Keith Owens : Do proper merging with partial SKB's in * tcp_do_sendmsg to avoid burstiness. * Eric Schenk : Fix fast close down bug with * shutdown() followed by close(). * Andi Kleen : Make poll agree with SIGIO * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and * lingertime == 0 (RFC 793 ABORT Call) * Hirokazu Takahashi : Use copy_from_user() instead of * csum_and_copy_from_user() if possible. * * Description of States: * * TCP_SYN_SENT sent a connection request, waiting for ack * * TCP_SYN_RECV received a connection request, sent ack, * waiting for final ack in three-way handshake. * * TCP_ESTABLISHED connection established * * TCP_FIN_WAIT1 our side has shutdown, waiting to complete * transmission of remaining buffered data * * TCP_FIN_WAIT2 all buffered data sent, waiting for remote * to shutdown * * TCP_CLOSING both sides have shutdown but we still have * data we have to finish sending * * TCP_TIME_WAIT timeout to catch resent junk before entering * closed, can only be entered from FIN_WAIT2 * or CLOSING. Required because the other end * may not have gotten our last ACK causing it * to retransmit the data packet (which we ignore) * * TCP_CLOSE_WAIT remote side has shutdown and is waiting for * us to finish writing our data and to shutdown * (we have to close() to move on to LAST_ACK) * * TCP_LAST_ACK out side has shutdown after remote has * shutdown. There may still be data in our * buffer that we have to finish sending * * TCP_CLOSE socket is finished */ #define pr_fmt(fmt) "TCP: " fmt #include <crypto/hash.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/poll.h> #include <linux/inet_diag.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/skbuff.h> #include <linux/scatterlist.h> #include <linux/splice.h> #include <linux/net.h> #include <linux/socket.h> #include <linux/random.h> #include <linux/memblock.h> #include <linux/highmem.h> #include <linux/cache.h> #include <linux/err.h> #include <linux/time.h> #include <linux/slab.h> #include <linux/errqueue.h> #include <linux/static_key.h> #include <linux/btf.h> #include <net/icmp.h> #include <net/inet_common.h> #include <net/tcp.h> #include <net/mptcp.h> #include <net/proto_memory.h> #include <net/xfrm.h> #include <net/ip.h> #include <net/sock.h> #include <net/rstreason.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <net/busy_poll.h> #include <net/hotdata.h> #include <trace/events/tcp.h> #include <net/rps.h> #include "../core/devmem.h" /* Track pending CMSGs. */ enum { TCP_CMSG_INQ = 1, TCP_CMSG_TS = 2 }; DEFINE_PER_CPU(unsigned int, tcp_orphan_count); EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); DEFINE_PER_CPU(u32, tcp_tw_isn); EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); long sysctl_tcp_mem[3] __read_mostly; EXPORT_SYMBOL(sysctl_tcp_mem); atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ EXPORT_SYMBOL(tcp_memory_allocated); DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); #if IS_ENABLED(CONFIG_SMC) DEFINE_STATIC_KEY_FALSE(tcp_have_smc); EXPORT_SYMBOL(tcp_have_smc); #endif /* * Current number of TCP sockets. */ struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; EXPORT_SYMBOL(tcp_sockets_allocated); /* * TCP splice context */ struct tcp_splice_state { struct pipe_inode_info *pipe; size_t len; unsigned int flags; }; /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long tcp_memory_pressure __read_mostly; EXPORT_SYMBOL_GPL(tcp_memory_pressure); void tcp_enter_memory_pressure(struct sock *sk) { unsigned long val; if (READ_ONCE(tcp_memory_pressure)) return; val = jiffies; if (!val) val--; if (!cmpxchg(&tcp_memory_pressure, 0, val)) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); } EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); void tcp_leave_memory_pressure(struct sock *sk) { unsigned long val; if (!READ_ONCE(tcp_memory_pressure)) return; val = xchg(&tcp_memory_pressure, 0); if (val) NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, jiffies_to_msecs(jiffies - val)); } EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); /* Convert seconds to retransmits based on initial and max timeout */ static u8 secs_to_retrans(int seconds, int timeout, int rto_max) { u8 res = 0; if (seconds > 0) { int period = timeout; res = 1; while (seconds > period && res < 255) { res++; timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return res; } /* Convert retransmits to seconds based on initial and max timeout */ static int retrans_to_secs(u8 retrans, int timeout, int rto_max) { int period = 0; if (retrans > 0) { period = timeout; while (--retrans) { timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return period; } static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) { u32 rate = READ_ONCE(tp->rate_delivered); u32 intv = READ_ONCE(tp->rate_interval_us); u64 rate64 = 0; if (rate && intv) { rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; do_div(rate64, intv); } return rate64; } /* Address-family independent initialization for a tcp_sock. * * NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ void tcp_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int rto_min_us; tp->out_of_order_queue = RB_ROOT; sk->tcp_rtx_queue = RB_ROOT; tcp_init_xmit_timers(sk); INIT_LIST_HEAD(&tp->tsq_node); INIT_LIST_HEAD(&tp->tsorted_sent_queue); icsk->icsk_rto = TCP_TIMEOUT_INIT; rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); icsk->icsk_delack_max = TCP_DELACK_MAX; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); /* So many TCP implementations out there (incorrectly) count the * initial SYN frame in their delayed-ACK and congestion control * algorithms that we must have the following bandaid to talk * efficiently to them. -DaveM */ tcp_snd_cwnd_set(tp, TCP_INIT_CWND); /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; tp->rate_app_limited = 1; /* See draft-stevens-tcpca-spec-01 for discussion of the * initialization of these values. */ tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd_clamp = ~0; tp->mss_cache = TCP_MSS_DEFAULT; tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); tcp_assign_congestion_control(sk); tp->tsoffset = 0; tp->rack.reo_wnd_steps = 1; sk->sk_write_space = sk_stream_write_space; sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); icsk->icsk_sync_mss = tcp_sync_mss; WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); tcp_scaling_ratio_init(sk); set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); sk_sockets_allocated_inc(sk); xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); } EXPORT_SYMBOL(tcp_init_sock); static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) { struct sk_buff *skb = tcp_write_queue_tail(sk); u32 tsflags = sockc->tsflags; if (tsflags && skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); if (tsflags & SOF_TIMESTAMPING_TX_ACK) tcb->txstamp_ack = 1; if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; } } static bool tcp_stream_is_readable(struct sock *sk, int target) { if (tcp_epollin_ready(sk, target)) return true; return sk_is_readable(sk); } /* * Wait for a TCP event. * * Note that we don't need to lock the socket, as the upper poll layers * take care of normal races (between the test and the event) and we don't * go look at any of the socket buffers directly. */ __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) { __poll_t mask; struct sock *sk = sock->sk; const struct tcp_sock *tp = tcp_sk(sk); u8 shutdown; int state; sock_poll_wait(file, sock, wait); state = inet_sk_state_load(sk); if (state == TCP_LISTEN) return inet_csk_listen_poll(sk); /* Socket is not locked. We are protected from async events * by poll logic and correct handling of state changes * made by other threads is impossible in any case. */ mask = 0; /* * EPOLLHUP is certainly not done right. But poll() doesn't * have a notion of HUP in just one direction, and for a * socket the read side is more interesting. * * Some poll() documentation says that EPOLLHUP is incompatible * with the EPOLLOUT/POLLWR flags, so somebody should check this * all. But careful, it tends to be safer to return too many * bits than too few, and you can easily break real applications * if you don't tell them that something has hung up! * * Check-me. * * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and * our fs/select.c). It means that after we received EOF, * poll always returns immediately, making impossible poll() on write() * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP * if and only if shutdown has been made in both directions. * Actually, it is interesting to look how Solaris and DUX * solve this dilemma. I would prefer, if EPOLLHUP were maskable, * then we could set it on SND_SHUTDOWN. BTW examples given * in Stevens' books assume exactly this behaviour, it explains * why EPOLLHUP is incompatible with EPOLLOUT. --ANK * * NOTE. Check for TCP_CLOSE is added. The goal is to prevent * blocking on fresh not-connected or disconnected socket. --ANK */ shutdown = READ_ONCE(sk->sk_shutdown); if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) mask |= EPOLLHUP; if (shutdown & RCV_SHUTDOWN) mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; /* Connected or passive Fast Open socket? */ if (state != TCP_SYN_SENT && (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { int target = sock_rcvlowat(sk, 0, INT_MAX); u16 urg_data = READ_ONCE(tp->urg_data); if (unlikely(urg_data) && READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && !sock_flag(sk, SOCK_URGINLINE)) target++; if (tcp_stream_is_readable(sk, target)) mask |= EPOLLIN | EPOLLRDNORM; if (!(shutdown & SEND_SHUTDOWN)) { if (__sk_stream_is_writeable(sk, 1)) { mask |= EPOLLOUT | EPOLLWRNORM; } else { /* send SIGIO later */ sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); /* Race breaker. If space is freed after * wspace test but before the flags are set, * IO signal will be lost. Memory barrier * pairs with the input side. */ smp_mb__after_atomic(); if (__sk_stream_is_writeable(sk, 1)) mask |= EPOLLOUT | EPOLLWRNORM; } } else mask |= EPOLLOUT | EPOLLWRNORM; if (urg_data & TCP_URG_VALID) mask |= EPOLLPRI; } else if (state == TCP_SYN_SENT && inet_test_bit(DEFER_CONNECT, sk)) { /* Active TCP fastopen socket with defer_connect * Return EPOLLOUT so application can call write() * in order for kernel to generate SYN+data */ mask |= EPOLLOUT | EPOLLWRNORM; } /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ smp_rmb(); if (READ_ONCE(sk->sk_err) || !skb_queue_empty_lockless(&sk->sk_error_queue)) mask |= EPOLLERR; return mask; } EXPORT_SYMBOL(tcp_poll); int tcp_ioctl(struct sock *sk, int cmd, int *karg) { struct tcp_sock *tp = tcp_sk(sk); int answ; bool slow; switch (cmd) { case SIOCINQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; slow = lock_sock_fast(sk); answ = tcp_inq(sk); unlock_sock_fast(sk, slow); break; case SIOCATMARK: answ = READ_ONCE(tp->urg_data) && READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); break; case SIOCOUTQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - tp->snd_una; break; case SIOCOUTQNSD: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); break; default: return -ENOIOCTLCMD; } *karg = answ; return 0; } EXPORT_SYMBOL(tcp_ioctl); void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) { TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; tp->pushed_seq = tp->write_seq; } static inline bool forced_push(const struct tcp_sock *tp) { return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); } void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); tcb->seq = tcb->end_seq = tp->write_seq; tcb->tcp_flags = TCPHDR_ACK; __skb_header_release(skb); tcp_add_write_queue_tail(sk, skb); sk_wmem_queued_add(sk, skb->truesize); sk_mem_charge(sk, skb->truesize); if (tp->nonagle & TCP_NAGLE_PUSH) tp->nonagle &= ~TCP_NAGLE_PUSH; tcp_slow_start_after_idle_check(sk); } static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) { if (flags & MSG_OOB) tp->snd_up = tp->write_seq; } /* If a not yet filled skb is pushed, do not send it if * we have data packets in Qdisc or NIC queues : * Because TX completion will happen shortly, it gives a chance * to coalesce future sendmsg() payload into this skb, without * need for a timer, and with no latency trade off. * As packets containing data payload have a bigger truesize * than pure acks (dataless) packets, the last checks prevent * autocorking if we only have an ACK in Qdisc/NIC queues, * or if TX completion was delayed after we processed ACK packet. */ static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, int size_goal) { return skb->len < size_goal && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && !tcp_rtx_queue_empty(sk) && refcount_read(&sk->sk_wmem_alloc) > skb->truesize && tcp_skb_can_collapse_to(skb); } void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; skb = tcp_write_queue_tail(sk); if (!skb) return; if (!(flags & MSG_MORE) || forced_push(tp)) tcp_mark_push(tp, skb); tcp_mark_urg(tp, flags); if (tcp_should_autocork(sk, skb, size_goal)) { /* avoid atomic op if TSQ_THROTTLED bit is already set */ if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); smp_mb__after_atomic(); } /* It is possible TX completion already happened * before we set TSQ_THROTTLED. */ if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) return; } if (flags & MSG_MORE) nonagle = TCP_NAGLE_CORK; __tcp_push_pending_frames(sk, mss_now, nonagle); } static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct tcp_splice_state *tss = rd_desc->arg.data; int ret; ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, min(rd_desc->count, len), tss->flags); if (ret > 0) rd_desc->count -= ret; return ret; } static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) { /* Store TCP splice context information in read_descriptor_t. */ read_descriptor_t rd_desc = { .arg.data = tss, .count = tss->len, }; return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); } /** * tcp_splice_read - splice data from TCP socket to a pipe * @sock: socket to splice from * @ppos: position (not valid) * @pipe: pipe to splice to * @len: number of bytes to splice * @flags: splice modifier flags * * Description: * Will read pages from given socket and fill them into a pipe. * **/ ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct tcp_splice_state tss = { .pipe = pipe, .len = len, .flags = flags, }; long timeo; ssize_t spliced; int ret; sock_rps_record_flow(sk); /* * We can't seek on a socket input */ if (unlikely(*ppos)) return -ESPIPE; ret = spliced = 0; lock_sock(sk); timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); while (tss.len) { ret = __tcp_splice_read(sk, &tss); if (ret < 0) break; else if (!ret) { if (spliced) break; if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { ret = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* * This occurs when user tries to read * from never connected socket. */ ret = -ENOTCONN; break; } if (!timeo) { ret = -EAGAIN; break; } /* if __tcp_splice_read() got nothing while we have * an skb in receive queue, we do not want to loop. * This might happen with URG data. */ if (!skb_queue_empty(&sk->sk_receive_queue)) break; ret = sk_wait_data(sk, &timeo, NULL); if (ret < 0) break; if (signal_pending(current)) { ret = sock_intr_errno(timeo); break; } continue; } tss.len -= ret; spliced += ret; if (!tss.len || !timeo) break; release_sock(sk); lock_sock(sk); if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } release_sock(sk); if (spliced) return spliced; return ret; } EXPORT_SYMBOL(tcp_splice_read); struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, bool force_schedule) { struct sk_buff *skb; skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); if (likely(skb)) { bool mem_scheduled; skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); if (force_schedule) { mem_scheduled = true; sk_forced_mem_schedule(sk, skb->truesize); } else { mem_scheduled = sk_wmem_schedule(sk, skb->truesize); } if (likely(mem_scheduled)) { skb_reserve(skb, MAX_TCP_HEADER); skb->ip_summed = CHECKSUM_PARTIAL; INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); return skb; } __kfree_skb(skb); } else { sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); } return NULL; } static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed) { struct tcp_sock *tp = tcp_sk(sk); u32 new_size_goal, size_goal; if (!large_allowed) return mss_now; /* Note : tcp_tso_autosize() will eventually split this later */ new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); /* We try hard to avoid divides here */ size_goal = tp->gso_segs * mss_now; if (unlikely(new_size_goal < size_goal || new_size_goal >= size_goal + mss_now)) { tp->gso_segs = min_t(u16, new_size_goal / mss_now, sk->sk_gso_max_segs); size_goal = tp->gso_segs * mss_now; } return max(size_goal, mss_now); } int tcp_send_mss(struct sock *sk, int *size_goal, int flags) { int mss_now; mss_now = tcp_current_mss(sk); *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); return mss_now; } /* In some cases, sendmsg() could have added an skb to the write queue, * but failed adding payload on it. We need to remove it to consume less * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger * epoll() users. Another reason is that tcp_write_xmit() does not like * finding an empty skb in the write queue. */ void tcp_remove_empty_skb(struct sock *sk) { struct sk_buff *skb = tcp_write_queue_tail(sk); if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { tcp_unlink_write_queue(skb, sk); if (tcp_write_queue_empty(sk)) tcp_chrono_stop(sk, TCP_CHRONO_BUSY); tcp_wmem_free_skb(sk, skb); } } /* skb changing from pure zc to mixed, must charge zc */ static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) { if (unlikely(skb_zcopy_pure(skb))) { u32 extra = skb->truesize - SKB_TRUESIZE(skb_end_offset(skb)); if (!sk_wmem_schedule(sk, extra)) return -ENOMEM; sk_mem_charge(sk, extra); skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; } return 0; } int tcp_wmem_schedule(struct sock *sk, int copy) { int left; if (likely(sk_wmem_schedule(sk, copy))) return copy; /* We could be in trouble if we have nothing queued. * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] * to guarantee some progress. */ left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; if (left > 0) sk_forced_mem_schedule(sk, min(left, copy)); return min(copy, sk->sk_forward_alloc); } void tcp_free_fastopen_req(struct tcp_sock *tp) { if (tp->fastopen_req) { kfree(tp->fastopen_req); tp->fastopen_req = NULL; } } int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, size_t size, struct ubuf_info *uarg) { struct tcp_sock *tp = tcp_sk(sk); struct inet_sock *inet = inet_sk(sk); struct sockaddr *uaddr = msg->msg_name; int err, flags; if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & TFO_CLIENT_ENABLE) || (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && uaddr->sa_family == AF_UNSPEC)) return -EOPNOTSUPP; if (tp->fastopen_req) return -EALREADY; /* Another Fast Open is in progress */ tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), sk->sk_allocation); if (unlikely(!tp->fastopen_req)) return -ENOBUFS; tp->fastopen_req->data = msg; tp->fastopen_req->size = size; tp->fastopen_req->uarg = uarg; if (inet_test_bit(DEFER_CONNECT, sk)) { err = tcp_connect(sk); /* Same failure procedure as in tcp_v4/6_connect */ if (err) { tcp_set_state(sk, TCP_CLOSE); inet->inet_dport = 0; sk->sk_route_caps = 0; } } flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; err = __inet_stream_connect(sk->sk_socket, uaddr, msg->msg_namelen, flags, 1); /* fastopen_req could already be freed in __inet_stream_connect * if the connection times out or gets rst */ if (tp->fastopen_req) { *copied = tp->fastopen_req->copied; tcp_free_fastopen_req(tp); inet_clear_bit(DEFER_CONNECT, sk); } return err; } int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) { struct tcp_sock *tp = tcp_sk(sk); struct ubuf_info *uarg = NULL; struct sk_buff *skb; struct sockcm_cookie sockc; int flags, err, copied = 0; int mss_now = 0, size_goal, copied_syn = 0; int process_backlog = 0; int zc = 0; long timeo; flags = msg->msg_flags; if ((flags & MSG_ZEROCOPY) && size) { if (msg->msg_ubuf) { uarg = msg->msg_ubuf; if (sk->sk_route_caps & NETIF_F_SG) zc = MSG_ZEROCOPY; } else if (sock_flag(sk, SOCK_ZEROCOPY)) { skb = tcp_write_queue_tail(sk); uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); if (!uarg) { err = -ENOBUFS; goto out_err; } if (sk->sk_route_caps & NETIF_F_SG) zc = MSG_ZEROCOPY; else uarg_to_msgzc(uarg)->zerocopy = 0; } } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { if (sk->sk_route_caps & NETIF_F_SG) zc = MSG_SPLICE_PAGES; } if (unlikely(flags & MSG_FASTOPEN || inet_test_bit(DEFER_CONNECT, sk)) && !tp->repair) { err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); if (err == -EINPROGRESS && copied_syn > 0) goto out; else if (err) goto out_err; } timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); tcp_rate_check_app_limited(sk); /* is sending application-limited? */ /* Wait for a connection to finish. One exception is TCP Fast Open * (passive side) where data is allowed to be sent before a connection * is fully established. */ if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) { err = sk_stream_wait_connect(sk, &timeo); if (err != 0) goto do_error; } if (unlikely(tp->repair)) { if (tp->repair_queue == TCP_RECV_QUEUE) { copied = tcp_send_rcvq(sk, msg, size); goto out_nopush; } err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out_err; /* 'common' sending to sendq */ } sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) { err = -EINVAL; goto out_err; } } /* This should be in poll */ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* Ok commence sending. */ copied = 0; restart: mss_now = tcp_send_mss(sk, &size_goal, flags); err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto do_error; while (msg_data_left(msg)) { ssize_t copy = 0; skb = tcp_write_queue_tail(sk); if (skb) copy = size_goal - skb->len; if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { bool first_skb; new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_space; if (unlikely(process_backlog >= 16)) { process_backlog = 0; if (sk_flush_backlog(sk)) goto restart; } first_skb = tcp_rtx_and_write_queues_empty(sk); skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, first_skb); if (!skb) goto wait_for_space; process_backlog++; #ifdef CONFIG_SKB_DECRYPTED skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); #endif tcp_skb_entail(sk, skb); copy = size_goal; /* All packets are restored as if they have * already been sent. skb_mstamp_ns isn't set to * avoid wrong rtt estimation. */ if (tp->repair) TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; } /* Try to append data to the end of skb. */ if (copy > msg_data_left(msg)) copy = msg_data_left(msg); if (zc == 0) { bool merge = true; int i = skb_shinfo(skb)->nr_frags; struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) goto wait_for_space; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { tcp_mark_push(tp, skb); goto new_segment; } merge = false; } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { if (tcp_downgrade_zcopy_pure(sk, skb)) goto wait_for_space; skb_zcopy_downgrade_managed(skb); } copy = tcp_wmem_schedule(sk, copy); if (!copy) goto wait_for_space; err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, pfrag->page, pfrag->offset, copy); if (err) goto do_error; /* Update the skb. */ if (merge) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, copy); page_ref_inc(pfrag->page); } pfrag->offset += copy; } else if (zc == MSG_ZEROCOPY) { /* First append to a fragless skb builds initial * pure zerocopy skb */ if (!skb->len) skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; if (!skb_zcopy_pure(skb)) { copy = tcp_wmem_schedule(sk, copy); if (!copy) goto wait_for_space; } err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); if (err == -EMSGSIZE || err == -EEXIST) { tcp_mark_push(tp, skb); goto new_segment; } if (err < 0) goto do_error; copy = err; } else if (zc == MSG_SPLICE_PAGES) { /* Splice in data if we can; copy if we can't. */ if (tcp_downgrade_zcopy_pure(sk, skb)) goto wait_for_space; copy = tcp_wmem_schedule(sk, copy); if (!copy) goto wait_for_space; err = skb_splice_from_iter(skb, &msg->msg_iter, copy, sk->sk_allocation); if (err < 0) { if (err == -EMSGSIZE) { tcp_mark_push(tp, skb); goto new_segment; } goto do_error; } copy = err; if (!(flags & MSG_NO_SHARED_FRAGS)) skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); } if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; WRITE_ONCE(tp->write_seq, tp->write_seq + copy); TCP_SKB_CB(skb)->end_seq += copy; tcp_skb_pcount_set(skb, 0); copied += copy; if (!msg_data_left(msg)) { if (unlikely(flags & MSG_EOR)) TCP_SKB_CB(skb)->eor = 1; goto out; } if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_space: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); tcp_remove_empty_skb(sk); if (copied) tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH, size_goal); err = sk_stream_wait_memory(sk, &timeo); if (err != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied) { tcp_tx_timestamp(sk, &sockc); tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); } out_nopush: /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ if (uarg && !msg->msg_ubuf) net_zcopy_put(uarg); return copied + copied_syn; do_error: tcp_remove_empty_skb(sk); if (copied + copied_syn) goto out; out_err: /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ if (uarg && !msg->msg_ubuf) net_zcopy_put_abort(uarg, true); err = sk_stream_error(sk, flags, err); /* make sure we wake any epoll edge trigger waiter */ if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { sk->sk_write_space(sk); tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } return err; } EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { int ret; lock_sock(sk); ret = tcp_sendmsg_locked(sk, msg, size); release_sock(sk); return ret; } EXPORT_SYMBOL(tcp_sendmsg); void tcp_splice_eof(struct socket *sock) { struct sock *sk = sock->sk; struct tcp_sock *tp = tcp_sk(sk); int mss_now, size_goal; if (!tcp_write_queue_tail(sk)) return; lock_sock(sk); mss_now = tcp_send_mss(sk, &size_goal, 0); tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); release_sock(sk); } EXPORT_SYMBOL_GPL(tcp_splice_eof); /* * Handle reading urgent data. BSD has very simple semantics for * this, no blocking and very strange errors 8) */ static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) { struct tcp_sock *tp = tcp_sk(sk); /* No URG data to read. */ if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || tp->urg_data == TCP_URG_READ) return -EINVAL; /* Yes this is right ! */ if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) return -ENOTCONN; if (tp->urg_data & TCP_URG_VALID) { int err = 0; char c = tp->urg_data; if (!(flags & MSG_PEEK)) WRITE_ONCE(tp->urg_data, TCP_URG_READ); /* Read urgent data. */ msg->msg_flags |= MSG_OOB; if (len > 0) { if (!(flags & MSG_TRUNC)) err = memcpy_to_msg(msg, &c, 1); len = 1; } else msg->msg_flags |= MSG_TRUNC; return err ? -EFAULT : len; } if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) return 0; /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and * the available implementations agree in this case: * this call should never block, independent of the * blocking state of the socket. * Mike <pall@rz.uni-karlsruhe.de> */ return -EAGAIN; } static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) { struct sk_buff *skb; int copied = 0, err = 0; skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) return err; copied += skb->len; } skb_queue_walk(&sk->sk_write_queue, skb) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) break; copied += skb->len; } return err ?: copied; } /* Clean up the receive buffer for full frames taken by the user, * then send an ACK if necessary. COPIED is the number of bytes * tcp_recvmsg has given to the user so far, it speeds up the * calculation of whether or not we must ACK for the sake of * a window update. */ void __tcp_cleanup_rbuf(struct sock *sk, int copied) { struct tcp_sock *tp = tcp_sk(sk); bool time_to_ack = false; if (inet_csk_ack_scheduled(sk)) { const struct inet_connection_sock *icsk = inet_csk(sk); if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || /* * If this read emptied read buffer, we send ACK, if * connection is not bidirectional, user drained * receive buffer and there was a small segment * in queue. */ (copied > 0 && ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && !inet_csk_in_pingpong_mode(sk))) && !atomic_read(&sk->sk_rmem_alloc))) time_to_ack = true; } /* We send an ACK if we can now advertise a non-zero window * which has been raised "significantly". * * Even if window raised up to infinity, do not send window open ACK * in states, where we will not receive more. It is useless. */ if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { __u32 rcv_window_now = tcp_receive_window(tp); /* Optimize, __tcp_select_window() is not cheap. */ if (2*rcv_window_now <= tp->window_clamp) { __u32 new_window = __tcp_select_window(sk); /* Send ACK now, if this read freed lots of space * in our buffer. Certainly, new_window is new window. * We can advertise it now, if it is not less than current one. * "Lots" means "at least twice" here. */ if (new_window && new_window >= 2 * rcv_window_now) time_to_ack = true; } } if (time_to_ack) tcp_send_ack(sk); } void tcp_cleanup_rbuf(struct sock *sk, int copied) { struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); struct tcp_sock *tp = tcp_sk(sk); WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); __tcp_cleanup_rbuf(sk, copied); } static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); if (likely(skb->destructor == sock_rfree)) { sock_rfree(skb); skb->destructor = NULL; skb->sk = NULL; return skb_attempt_defer_free(skb); } __kfree_skb(skb); } struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) { struct sk_buff *skb; u32 offset; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { offset = seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { *off = offset; return skb; } /* This looks weird, but this can happen if TCP collapsing * splitted a fat GRO packet, while we released socket lock * in skb_splice_bits() */ tcp_eat_recv_skb(sk, skb); } return NULL; } EXPORT_SYMBOL(tcp_recv_skb); /* * This routine provides an alternative to tcp_recvmsg() for routines * that would like to handle copying from skbuffs directly in 'sendfile' * fashion. * Note: * - It is assumed that the socket was locked by the caller. * - The routine does not block. * - At present, there is no support for reading OOB data * or for 'peeking' the socket using this routine * (although both would be easy to implement). */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor) { struct sk_buff *skb; struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; u32 offset; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { if (offset < skb->len) { int used; size_t len; len = skb->len - offset; /* Stop reading if we hit a patch of urgent data */ if (unlikely(tp->urg_data)) { u32 urg_offset = tp->urg_seq - seq; if (urg_offset < len) len = urg_offset; if (!len) break; } used = recv_actor(desc, skb, offset, len); if (used <= 0) { if (!copied) copied = used; break; } if (WARN_ON_ONCE(used > len)) used = len; seq += used; copied += used; offset += used; /* If recv_actor drops the lock (e.g. TCP splice * receive) the skb pointer might be invalid when * getting here: tcp_collapse might have deleted it * while aggregating skbs from the socket queue. */ skb = tcp_recv_skb(sk, seq - 1, &offset); if (!skb) break; /* TCP coalescing might have appended data to the skb. * Try to splice more frags */ if (offset + 1 != skb->len) continue; } if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { tcp_eat_recv_skb(sk, skb); ++seq; break; } tcp_eat_recv_skb(sk, skb); if (!desc->count) break; WRITE_ONCE(tp->copied_seq, seq); } WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (copied > 0) { tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, copied); } return copied; } EXPORT_SYMBOL(tcp_read_sock); int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) { struct sk_buff *skb; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { u8 tcp_flags; int used; __skb_unlink(skb, &sk->sk_receive_queue); WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); tcp_flags = TCP_SKB_CB(skb)->tcp_flags; used = recv_actor(sk, skb); if (used < 0) { if (!copied) copied = used; break; } copied += used; if (tcp_flags & TCPHDR_FIN) break; } return copied; } EXPORT_SYMBOL(tcp_read_skb); void tcp_read_done(struct sock *sk, size_t len) { struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; struct sk_buff *skb; size_t left; u32 offset; if (sk->sk_state == TCP_LISTEN) return; left = len; while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { int used; used = min_t(size_t, skb->len - offset, left); seq += used; left -= used; if (skb->len > offset + used) break; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { tcp_eat_recv_skb(sk, skb); ++seq; break; } tcp_eat_recv_skb(sk, skb); } WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (left != len) tcp_cleanup_rbuf(sk, len - left); } EXPORT_SYMBOL(tcp_read_done); int tcp_peek_len(struct socket *sock) { return tcp_inq(sock->sk); } EXPORT_SYMBOL(tcp_peek_len); /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ int tcp_set_rcvlowat(struct sock *sk, int val) { int space, cap; if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) cap = sk->sk_rcvbuf >> 1; else cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; val = min(val, cap); WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); /* Check if we need to signal EPOLLIN right now */ tcp_data_ready(sk); if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) return 0; space = tcp_space_from_win(sk, val); if (space > sk->sk_rcvbuf) { WRITE_ONCE(sk->sk_rcvbuf, space); WRITE_ONCE(tcp_sk(sk)->window_clamp, val); } return 0; } EXPORT_SYMBOL(tcp_set_rcvlowat); void tcp_update_recv_tstamps(struct sk_buff *skb, struct scm_timestamping_internal *tss) { if (skb->tstamp) tss->ts[0] = ktime_to_timespec64(skb->tstamp); else tss->ts[0] = (struct timespec64) {0}; if (skb_hwtstamps(skb)->hwtstamp) tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); else tss->ts[2] = (struct timespec64) {0}; } #ifdef CONFIG_MMU static const struct vm_operations_struct tcp_vm_ops = { }; int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { if (vma->vm_flags & (VM_WRITE | VM_EXEC)) return -EPERM; vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ vm_flags_set(vma, VM_MIXEDMAP); vma->vm_ops = &tcp_vm_ops; return 0; } EXPORT_SYMBOL(tcp_mmap); static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, u32 *offset_frag) { skb_frag_t *frag; if (unlikely(offset_skb >= skb->len)) return NULL; offset_skb -= skb_headlen(skb); if ((int)offset_skb < 0 || skb_has_frag_list(skb)) return NULL; frag = skb_shinfo(skb)->frags; while (offset_skb) { if (skb_frag_size(frag) > offset_skb) { *offset_frag = offset_skb; return frag; } offset_skb -= skb_frag_size(frag); ++frag; } *offset_frag = 0; return frag; } static bool can_map_frag(const skb_frag_t *frag) { struct page *page; if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) return false; page = skb_frag_page(frag); if (PageCompound(page) || page->mapping) return false; return true; } static int find_next_mappable_frag(const skb_frag_t *frag, int remaining_in_skb) { int offset = 0; if (likely(can_map_frag(frag))) return 0; while (offset < remaining_in_skb && !can_map_frag(frag)) { offset += skb_frag_size(frag); ++frag; } return offset; } static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 offset) { u32 frag_offset, partial_frag_remainder = 0; int mappable_offset; skb_frag_t *frag; /* worst case: skip to next skb. try to improve on this case below */ zc->recv_skip_hint = skb->len - offset; /* Find the frag containing this offset (and how far into that frag) */ frag = skb_advance_to_frag(skb, offset, &frag_offset); if (!frag) return; if (frag_offset) { struct skb_shared_info *info = skb_shinfo(skb); /* We read part of the last frag, must recvmsg() rest of skb. */ if (frag == &info->frags[info->nr_frags - 1]) return; /* Else, we must at least read the remainder in this frag. */ partial_frag_remainder = skb_frag_size(frag) - frag_offset; zc->recv_skip_hint -= partial_frag_remainder; ++frag; } /* partial_frag_remainder: If part way through a frag, must read rest. * mappable_offset: Bytes till next mappable frag, *not* counting bytes * in partial_frag_remainder. */ mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); zc->recv_skip_hint = mappable_offset + partial_frag_remainder; } static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, int flags, struct scm_timestamping_internal *tss, int *cmsg_flags); static int receive_fallback_to_copy(struct sock *sk, struct tcp_zerocopy_receive *zc, int inq, struct scm_timestamping_internal *tss) { unsigned long copy_address = (unsigned long)zc->copybuf_address; struct msghdr msg = {}; int err; zc->length = 0; zc->recv_skip_hint = 0; if (copy_address != zc->copybuf_address) return -EINVAL; err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, &msg.msg_iter); if (err) return err; err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, tss, &zc->msg_flags); if (err < 0) return err; zc->copybuf_len = err; if (likely(zc->copybuf_len)) { struct sk_buff *skb; u32 offset; skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); if (skb) tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); } return 0; } static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 copylen, u32 *offset, u32 *seq) { unsigned long copy_address = (unsigned long)zc->copybuf_address; struct msghdr msg = {}; int err; if (copy_address != zc->copybuf_address) return -EINVAL; err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, &msg.msg_iter); if (err) return err; err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); if (err) return err; zc->recv_skip_hint -= copylen; *offset += copylen; *seq += copylen; return (__s32)copylen; } static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, struct sock *sk, struct sk_buff *skb, u32 *seq, s32 copybuf_len, struct scm_timestamping_internal *tss) { u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); if (!copylen) return 0; /* skb is null if inq < PAGE_SIZE. */ if (skb) { offset = *seq - TCP_SKB_CB(skb)->seq; } else { skb = tcp_recv_skb(sk, *seq, &offset); if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, tss); zc->msg_flags |= TCP_CMSG_TS; } } zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, seq); return zc->copybuf_len < 0 ? 0 : copylen; } static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, struct page **pending_pages, unsigned long pages_remaining, unsigned long *address, u32 *length, u32 *seq, struct tcp_zerocopy_receive *zc, u32 total_bytes_to_map, int err) { /* At least one page did not map. Try zapping if we skipped earlier. */ if (err == -EBUSY && zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { u32 maybe_zap_len; maybe_zap_len = total_bytes_to_map - /* All bytes to map */ *length + /* Mapped or pending */ (pages_remaining * PAGE_SIZE); /* Failed map. */ zap_page_range_single(vma, *address, maybe_zap_len, NULL); err = 0; } if (!err) { unsigned long leftover_pages = pages_remaining; int bytes_mapped; /* We called zap_page_range_single, try to reinsert. */ err = vm_insert_pages(vma, *address, pending_pages, &pages_remaining); bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); *seq += bytes_mapped; *address += bytes_mapped; } if (err) { /* Either we were unable to zap, OR we zapped, retried an * insert, and still had an issue. Either ways, pages_remaining * is the number of pages we were unable to map, and we unroll * some state we speculatively touched before. */ const int bytes_not_mapped = PAGE_SIZE * pages_remaining; *length -= bytes_not_mapped; zc->recv_skip_hint += bytes_not_mapped; } return err; } static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, struct page **pages, unsigned int pages_to_map, unsigned long *address, u32 *length, u32 *seq, struct tcp_zerocopy_receive *zc, u32 total_bytes_to_map) { unsigned long pages_remaining = pages_to_map; unsigned int pages_mapped; unsigned int bytes_mapped; int err; err = vm_insert_pages(vma, *address, pages, &pages_remaining); pages_mapped = pages_to_map - (unsigned int)pages_remaining; bytes_mapped = PAGE_SIZE * pages_mapped; /* Even if vm_insert_pages fails, it may have partially succeeded in * mapping (some but not all of the pages). */ *seq += bytes_mapped; *address += bytes_mapped; if (likely(!err)) return 0; /* Error: maybe zap and retry + rollback state for failed inserts. */ return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, pages_remaining, address, length, seq, zc, total_bytes_to_map, err); } #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) static void tcp_zc_finalize_rx_tstamp(struct sock *sk, struct tcp_zerocopy_receive *zc, struct scm_timestamping_internal *tss) { unsigned long msg_control_addr; struct msghdr cmsg_dummy; msg_control_addr = (unsigned long)zc->msg_control; cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; cmsg_dummy.msg_controllen = (__kernel_size_t)zc->msg_controllen; cmsg_dummy.msg_flags = in_compat_syscall() ? MSG_CMSG_COMPAT : 0; cmsg_dummy.msg_control_is_user = true; zc->msg_flags = 0; if (zc->msg_control == msg_control_addr && zc->msg_controllen == cmsg_dummy.msg_controllen) { tcp_recv_timestamp(&cmsg_dummy, sk, tss); zc->msg_control = (__u64) ((uintptr_t)cmsg_dummy.msg_control_user); zc->msg_controllen = (__u64)cmsg_dummy.msg_controllen; zc->msg_flags = (__u32)cmsg_dummy.msg_flags; } } static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, unsigned long address, bool *mmap_locked) { struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); if (vma) { if (vma->vm_ops != &tcp_vm_ops) { vma_end_read(vma); return NULL; } *mmap_locked = false; return vma; } mmap_read_lock(mm); vma = vma_lookup(mm, address); if (!vma || vma->vm_ops != &tcp_vm_ops) { mmap_read_unlock(mm); return NULL; } *mmap_locked = true; return vma; } #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 static int tcp_zerocopy_receive(struct sock *sk, struct tcp_zerocopy_receive *zc, struct scm_timestamping_internal *tss) { u32 length = 0, offset, vma_len, avail_len, copylen = 0; unsigned long address = (unsigned long)zc->address; struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; s32 copybuf_len = zc->copybuf_len; struct tcp_sock *tp = tcp_sk(sk); const skb_frag_t *frags = NULL; unsigned int pages_to_map = 0; struct vm_area_struct *vma; struct sk_buff *skb = NULL; u32 seq = tp->copied_seq; u32 total_bytes_to_map; int inq = tcp_inq(sk); bool mmap_locked; int ret; zc->copybuf_len = 0; zc->msg_flags = 0; if (address & (PAGE_SIZE - 1) || address != zc->address) return -EINVAL; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; sock_rps_record_flow(sk); if (inq && inq <= copybuf_len) return receive_fallback_to_copy(sk, zc, inq, tss); if (inq < PAGE_SIZE) { zc->length = 0; zc->recv_skip_hint = inq; if (!inq && sock_flag(sk, SOCK_DONE)) return -EIO; return 0; } vma = find_tcp_vma(current->mm, address, &mmap_locked); if (!vma) return -EINVAL; vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); avail_len = min_t(u32, vma_len, inq); total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); if (total_bytes_to_map) { if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) zap_page_range_single(vma, address, total_bytes_to_map, NULL); zc->length = total_bytes_to_map; zc->recv_skip_hint = 0; } else { zc->length = avail_len; zc->recv_skip_hint = avail_len; } ret = 0; while (length + PAGE_SIZE <= zc->length) { int mappable_offset; struct page *page; if (zc->recv_skip_hint < PAGE_SIZE) { u32 offset_frag; if (skb) { if (zc->recv_skip_hint > 0) break; skb = skb->next; offset = seq - TCP_SKB_CB(skb)->seq; } else { skb = tcp_recv_skb(sk, seq, &offset); } if (!skb_frags_readable(skb)) break; if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, tss); zc->msg_flags |= TCP_CMSG_TS; } zc->recv_skip_hint = skb->len - offset; frags = skb_advance_to_frag(skb, offset, &offset_frag); if (!frags || offset_frag) break; } mappable_offset = find_next_mappable_frag(frags, zc->recv_skip_hint); if (mappable_offset) { zc->recv_skip_hint = mappable_offset; break; } page = skb_frag_page(frags); if (WARN_ON_ONCE(!page)) break; prefetchw(page); pages[pages_to_map++] = page; length += PAGE_SIZE; zc->recv_skip_hint -= PAGE_SIZE; frags++; if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || zc->recv_skip_hint < PAGE_SIZE) { /* Either full batch, or we're about to go to next skb * (and we cannot unroll failed ops across skbs). */ ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, &address, &length, &seq, zc, total_bytes_to_map); if (ret) goto out; pages_to_map = 0; } } if (pages_to_map) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, &address, &length, &seq, zc, total_bytes_to_map); } out: if (mmap_locked) mmap_read_unlock(current->mm); else vma_end_read(vma); /* Try to copy straggler data. */ if (!ret) copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); if (length + copylen) { WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, length + copylen); ret = 0; if (length == zc->length) zc->recv_skip_hint = 0; } else { if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) ret = -EIO; } zc->length = length; return ret; } #endif /* Similar to __sock_recv_timestamp, but does not require an skb */ void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, struct scm_timestamping_internal *tss) { int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); u32 tsflags = READ_ONCE(sk->sk_tsflags); bool has_timestamping = false; if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { if (sock_flag(sk, SOCK_RCVTSTAMP)) { if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_timespec kts = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(kts), &kts); } else { struct __kernel_old_timespec ts_old = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts_old), &ts_old); } } else { if (new_tstamp) { struct __kernel_sock_timeval stv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(stv), &stv); } else { struct __kernel_old_timeval tv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } } if (tsflags & SOF_TIMESTAMPING_SOFTWARE && (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) has_timestamping = true; else tss->ts[0] = (struct timespec64) {0}; } if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) has_timestamping = true; else tss->ts[2] = (struct timespec64) {0}; } if (has_timestamping) { tss->ts[1] = (struct timespec64) {0}; if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, tss); else put_cmsg_scm_timestamping(msg, tss); } } static int tcp_inq_hint(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); u32 copied_seq = READ_ONCE(tp->copied_seq); u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); int inq; inq = rcv_nxt - copied_seq; if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { lock_sock(sk); inq = tp->rcv_nxt - tp->copied_seq; release_sock(sk); } /* After receiving a FIN, tell the user-space to continue reading * by returning a non-zero inq. */ if (inq == 0 && sock_flag(sk, SOCK_DONE)) inq = 1; return inq; } /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ struct tcp_xa_pool { u8 max; /* max <= MAX_SKB_FRAGS */ u8 idx; /* idx <= max */ __u32 tokens[MAX_SKB_FRAGS]; netmem_ref netmems[MAX_SKB_FRAGS]; }; static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) { int i; /* Commit part that has been copied to user space. */ for (i = 0; i < p->idx; i++) __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, (__force void *)p->netmems[i], GFP_KERNEL); /* Rollback what has been pre-allocated and is no longer needed. */ for (; i < p->max; i++) __xa_erase(&sk->sk_user_frags, p->tokens[i]); p->max = 0; p->idx = 0; } static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) { if (!p->max) return; xa_lock_bh(&sk->sk_user_frags); tcp_xa_pool_commit_locked(sk, p); xa_unlock_bh(&sk->sk_user_frags); } static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, unsigned int max_frags) { int err, k; if (p->idx < p->max) return 0; xa_lock_bh(&sk->sk_user_frags); tcp_xa_pool_commit_locked(sk, p); for (k = 0; k < max_frags; k++) { err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); if (err) break; } xa_unlock_bh(&sk->sk_user_frags); p->max = k; p->idx = 0; return k ? 0 : err; } /* On error, returns the -errno. On success, returns number of bytes sent to the * user. May not consume all of @remaining_len. */ static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, unsigned int offset, struct msghdr *msg, int remaining_len) { struct dmabuf_cmsg dmabuf_cmsg = { 0 }; struct tcp_xa_pool tcp_xa_pool; unsigned int start; int i, copy, n; int sent = 0; int err = 0; tcp_xa_pool.max = 0; tcp_xa_pool.idx = 0; do { start = skb_headlen(skb); if (skb_frags_readable(skb)) { err = -ENODEV; goto out; } /* Copy header. */ copy = start - offset; if (copy > 0) { copy = min(copy, remaining_len); n = copy_to_iter(skb->data + offset, copy, &msg->msg_iter); if (n != copy) { err = -EFAULT; goto out; } offset += copy; remaining_len -= copy; /* First a dmabuf_cmsg for # bytes copied to user * buffer. */ memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); dmabuf_cmsg.frag_size = copy; err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR, sizeof(dmabuf_cmsg), &dmabuf_cmsg); if (err || msg->msg_flags & MSG_CTRUNC) { msg->msg_flags &= ~MSG_CTRUNC; if (!err) err = -ETOOSMALL; goto out; } sent += copy; if (remaining_len == 0) goto out; } /* after that, send information of dmabuf pages through a * sequence of cmsg */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; struct net_iov *niov; u64 frag_offset; int end; /* !skb_frags_readable() should indicate that ALL the * frags in this skb are dmabuf net_iovs. We're checking * for that flag above, but also check individual frags * here. If the tcp stack is not setting * skb_frags_readable() correctly, we still don't want * to crash here. */ if (!skb_frag_net_iov(frag)) { net_err_ratelimited("Found non-dmabuf skb with net_iov"); err = -ENODEV; goto out; } niov = skb_frag_net_iov(frag); end = start + skb_frag_size(frag); copy = end - offset; if (copy > 0) { copy = min(copy, remaining_len); frag_offset = net_iov_virtual_addr(niov) + skb_frag_off(frag) + offset - start; dmabuf_cmsg.frag_offset = frag_offset; dmabuf_cmsg.frag_size = copy; err = tcp_xa_pool_refill(sk, &tcp_xa_pool, skb_shinfo(skb)->nr_frags - i); if (err) goto out; /* Will perform the exchange later */ dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov); offset += copy; remaining_len -= copy; err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_DMABUF, sizeof(dmabuf_cmsg), &dmabuf_cmsg); if (err || msg->msg_flags & MSG_CTRUNC) { msg->msg_flags &= ~MSG_CTRUNC; if (!err) err = -ETOOSMALL; goto out; } atomic_long_inc(&niov->pp_ref_count); tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); sent += copy; if (remaining_len == 0) goto out; } start = end; } tcp_xa_pool_commit(sk, &tcp_xa_pool); if (!remaining_len) goto out; /* if remaining_len is not satisfied yet, we need to go to the * next frag in the frag_list to satisfy remaining_len. */ skb = skb_shinfo(skb)->frag_list ?: skb->next; offset = offset - start; } while (skb); if (remaining_len) { err = -EFAULT; goto out; } out: tcp_xa_pool_commit(sk, &tcp_xa_pool); if (!sent) sent = err; return sent; } /* * This routine copies from a sock struct into the user buffer. * * Technical note: in 2.3 we work on _locked_ socket, so that * tricks with *seq access order and skb->users are not required. * Probably, code can be easily improved even more. */ static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, int flags, struct scm_timestamping_internal *tss, int *cmsg_flags) { struct tcp_sock *tp = tcp_sk(sk); int last_copied_dmabuf = -1; /* uninitialized */ int copied = 0; u32 peek_seq; u32 *seq; unsigned long used; int err; int target; /* Read at least this many bytes */ long timeo; struct sk_buff *skb, *last; u32 peek_offset = 0; u32 urg_hole = 0; err = -ENOTCONN; if (sk->sk_state == TCP_LISTEN) goto out; if (tp->recvmsg_inq) { *cmsg_flags = TCP_CMSG_INQ; msg->msg_get_inq = 1; } timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); /* Urgent data needs to be handled specially. */ if (flags & MSG_OOB) goto recv_urg; if (unlikely(tp->repair)) { err = -EPERM; if (!(flags & MSG_PEEK)) goto out; if (tp->repair_queue == TCP_SEND_QUEUE) goto recv_sndq; err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out; /* 'common' recv queue MSG_PEEK-ing */ } seq = &tp->copied_seq; if (flags & MSG_PEEK) { peek_offset = max(sk_peek_offset(sk, flags), 0); peek_seq = tp->copied_seq + peek_offset; seq = &peek_seq; } target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); do { u32 offset; /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { if (copied) break; if (signal_pending(current)) { copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; break; } } /* Next get a buffer. */ last = skb_peek_tail(&sk->sk_receive_queue); skb_queue_walk(&sk->sk_receive_queue, skb) { last = skb; /* Now that we have two receive queues this * shouldn't happen. */ if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags)) break; offset = *seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len) goto found_ok_skb; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; WARN(!(flags & MSG_PEEK), "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); } /* Well, if we have backlog, try to process it now yet. */ if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) break; if (copied) { if (!timeo || sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } else { if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { copied = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* This occurs when user tries to read * from never connected socket. */ copied = -ENOTCONN; break; } if (!timeo) { copied = -EAGAIN; break; } if (signal_pending(current)) { copied = sock_intr_errno(timeo); break; } } if (copied >= target) { /* Do not sleep, just process backlog. */ __sk_flush_backlog(sk); } else { tcp_cleanup_rbuf(sk, copied); err = sk_wait_data(sk, &timeo, last); if (err < 0) { err = copied ? : err; goto out; } } if ((flags & MSG_PEEK) && (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", current->comm, task_pid_nr(current)); peek_seq = tp->copied_seq + peek_offset; } continue; found_ok_skb: /* Ok so how much can we use? */ used = skb->len - offset; if (len < used) used = len; /* Do we have urgent data here? */ if (unlikely(tp->urg_data)) { u32 urg_offset = tp->urg_seq - *seq; if (urg_offset < used) { if (!urg_offset) { if (!sock_flag(sk, SOCK_URGINLINE)) { WRITE_ONCE(*seq, *seq + 1); urg_hole++; offset++; used--; if (!used) goto skip_copy; } } else used = urg_offset; } } if (!(flags & MSG_TRUNC)) { if (last_copied_dmabuf != -1 && last_copied_dmabuf != !skb_frags_readable(skb)) break; if (skb_frags_readable(skb)) { err = skb_copy_datagram_msg(skb, offset, msg, used); if (err) { /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } } else { if (!(flags & MSG_SOCK_DEVMEM)) { /* dmabuf skbs can only be received * with the MSG_SOCK_DEVMEM flag. */ if (!copied) copied = -EFAULT; break; } err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, used); if (err <= 0) { if (!copied) copied = -EFAULT; break; } used = err; } } last_copied_dmabuf = !skb_frags_readable(skb); WRITE_ONCE(*seq, *seq + used); copied += used; len -= used; if (flags & MSG_PEEK) sk_peek_offset_fwd(sk, used); else sk_peek_offset_bwd(sk, used); tcp_rcv_space_adjust(sk); skip_copy: if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { WRITE_ONCE(tp->urg_data, 0); tcp_fast_path_check(sk); } if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, tss); *cmsg_flags |= TCP_CMSG_TS; } if (used + offset < skb->len) continue; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; if (!(flags & MSG_PEEK)) tcp_eat_recv_skb(sk, skb); continue; found_fin_ok: /* Process the FIN. */ WRITE_ONCE(*seq, *seq + 1); if (!(flags & MSG_PEEK)) tcp_eat_recv_skb(sk, skb); break; } while (len > 0); /* According to UNIX98, msg_name/msg_namelen are ignored * on connected socket. I was just happy when found this 8) --ANK */ /* Clean up data we have read: This will do ACK frames. */ tcp_cleanup_rbuf(sk, copied); return copied; out: return err; recv_urg: err = tcp_recv_urg(sk, msg, len, flags); goto out; recv_sndq: err = tcp_peek_sndq(sk, msg, len); goto out; } int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { int cmsg_flags = 0, ret; struct scm_timestamping_internal tss; if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && sk->sk_state == TCP_ESTABLISHED) sk_busy_loop(sk, flags & MSG_DONTWAIT); lock_sock(sk); ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); release_sock(sk); if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { if (cmsg_flags & TCP_CMSG_TS) tcp_recv_timestamp(msg, sk, &tss); if (msg->msg_get_inq) { msg->msg_inq = tcp_inq_hint(sk); if (cmsg_flags & TCP_CMSG_INQ) put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(msg->msg_inq), &msg->msg_inq); } } return ret; } EXPORT_SYMBOL(tcp_recvmsg); void tcp_set_state(struct sock *sk, int state) { int oldstate = sk->sk_state; /* We defined a new enum for TCP states that are exported in BPF * so as not force the internal TCP states to be frozen. The * following checks will detect if an internal state value ever * differs from the BPF value. If this ever happens, then we will * need to remap the internal value to the BPF value before calling * tcp_call_bpf_2arg. */ BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); /* bpf uapi header bpf.h defines an anonymous enum with values * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. * But clang built vmlinux does not have this enum in DWARF * since clang removes the above code before generating IR/debuginfo. * Let us explicitly emit the type debuginfo to ensure the * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF * regardless of which compiler is used. */ BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); switch (state) { case TCP_ESTABLISHED: if (oldstate != TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); break; case TCP_CLOSE_WAIT: if (oldstate == TCP_SYN_RECV) TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); break; case TCP_CLOSE: if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); sk->sk_prot->unhash(sk); if (inet_csk(sk)->icsk_bind_hash && !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) inet_put_port(sk); fallthrough; default: if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); } /* Change state AFTER socket is unhashed to avoid closed * socket sitting in hash tables. */ inet_sk_state_store(sk, state); } EXPORT_SYMBOL_GPL(tcp_set_state); /* * State processing on a close. This implements the state shift for * sending our FIN frame. Note that we only send a FIN for some * states. A shutdown() may have already sent the FIN, or we may be * closed. */ static const unsigned char new_state[16] = { /* current state: new state: action: */ [0 /* (Invalid) */] = TCP_CLOSE, [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_SYN_SENT] = TCP_CLOSE, [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, [TCP_TIME_WAIT] = TCP_CLOSE, [TCP_CLOSE] = TCP_CLOSE, [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, [TCP_LAST_ACK] = TCP_LAST_ACK, [TCP_LISTEN] = TCP_CLOSE, [TCP_CLOSING] = TCP_CLOSING, [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ }; static int tcp_close_state(struct sock *sk) { int next = (int)new_state[sk->sk_state]; int ns = next & TCP_STATE_MASK; tcp_set_state(sk, ns); return next & TCP_ACTION_FIN; } /* * Shutdown the sending side of a connection. Much like close except * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). */ void tcp_shutdown(struct sock *sk, int how) { /* We need to grab some memory, and put together a FIN, * and then put it into the queue to be sent. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. */ if (!(how & SEND_SHUTDOWN)) return; /* If we've already sent a FIN, or it's a closed state, skip this. */ if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_CLOSE_WAIT)) { /* Clear out any half completed packets. FIN if needed. */ if (tcp_close_state(sk)) tcp_send_fin(sk); } } EXPORT_SYMBOL(tcp_shutdown); int tcp_orphan_count_sum(void) { int i, total = 0; for_each_possible_cpu(i) total += per_cpu(tcp_orphan_count, i); return max(total, 0); } static int tcp_orphan_cache; static struct timer_list tcp_orphan_timer; #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) static void tcp_orphan_update(struct timer_list *unused) { WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); } static bool tcp_too_many_orphans(int shift) { return READ_ONCE(tcp_orphan_cache) << shift > READ_ONCE(sysctl_tcp_max_orphans); } static bool tcp_out_of_memory(const struct sock *sk) { if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) return true; return false; } bool tcp_check_oom(const struct sock *sk, int shift) { bool too_many_orphans, out_of_socket_memory; too_many_orphans = tcp_too_many_orphans(shift); out_of_socket_memory = tcp_out_of_memory(sk); if (too_many_orphans) net_info_ratelimited("too many orphaned sockets\n"); if (out_of_socket_memory) net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); return too_many_orphans || out_of_socket_memory; } void __tcp_close(struct sock *sk, long timeout) { struct sk_buff *skb; int data_was_unread = 0; int state; WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); /* Special case. */ inet_csk_listen_stop(sk); goto adjudge_to_death; } /* We need to flush the recv. buffs. We do this only on the * descriptor close, not protocol-sourced closes, because the * reader process may not have drained the data yet! */ while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) len--; data_was_unread += len; __kfree_skb(skb); } /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ if (sk->sk_state == TCP_CLOSE) goto adjudge_to_death; /* As outlined in RFC 2525, section 2.17, we send a RST here because * data was lost. To witness the awful effects of the old behavior of * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk * GET in an FTP client, suspend the process, wait for the client to * advertise a zero window, then kill -9 the FTP client, wheee... * Note: timeout is always zero in such a case. */ if (unlikely(tcp_sk(sk)->repair)) { sk->sk_prot->disconnect(sk, 0); } else if (data_was_unread) { /* Unread data was tossed, zap the connection. */ NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, sk->sk_allocation, SK_RST_REASON_TCP_ABORT_ON_CLOSE); } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { /* Check zero linger _after_ checking for unread data. */ sk->sk_prot->disconnect(sk, 0); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); } else if (tcp_close_state(sk)) { /* We FIN if the application ate all the data before * zapping the connection. */ /* RED-PEN. Formally speaking, we have broken TCP state * machine. State transitions: * * TCP_ESTABLISHED -> TCP_FIN_WAIT1 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) * TCP_CLOSE_WAIT -> TCP_LAST_ACK * * are legal only when FIN has been sent (i.e. in window), * rather than queued out of window. Purists blame. * * F.e. "RFC state" is ESTABLISHED, * if Linux state is FIN-WAIT-1, but FIN is still not sent. * * The visible declinations are that sometimes * we enter time-wait state, when it is not required really * (harmless), do not send active resets, when they are * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when * they look as CLOSING or LAST_ACK for Linux) * Probably, I missed some more holelets. * --ANK * XXX (TFO) - To start off we don't support SYN+ACK+FIN * in a single packet! (May consider it later but will * probably need API support or TCP_CORK SYN-ACK until * data is written and socket is closed.) */ tcp_send_fin(sk); } sk_stream_wait_close(sk, timeout); adjudge_to_death: state = sk->sk_state; sock_hold(sk); sock_orphan(sk); local_bh_disable(); bh_lock_sock(sk); /* remove backlog if any, without releasing ownership. */ __release_sock(sk); this_cpu_inc(tcp_orphan_count); /* Have we already been destroyed by a softirq or backlog? */ if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) goto out; /* This is a (useful) BSD violating of the RFC. There is a * problem with TCP as specified in that the other end could * keep a socket open forever with no application left this end. * We use a 1 minute timeout (about the same as BSD) then kill * our end. If they send after that then tough - BUT: long enough * that we won't make the old 4*rto = almost no time - whoops * reset mistake. * * Nope, it was not mistake. It is really desired behaviour * f.e. on http servers, when such sockets are useless, but * consume significant resources. Let's do it with special * linger2 option. --ANK */ if (sk->sk_state == TCP_FIN_WAIT2) { struct tcp_sock *tp = tcp_sk(sk); if (READ_ONCE(tp->linger2) < 0) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC, SK_RST_REASON_TCP_ABORT_ON_LINGER); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONLINGER); } else { const int tmo = tcp_fin_time(sk); if (tmo > TCP_TIMEWAIT_LEN) { inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); } else { tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); goto out; } } } if (sk->sk_state != TCP_CLOSE) { if (tcp_check_oom(sk, 0)) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC, SK_RST_REASON_TCP_ABORT_ON_MEMORY); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY); } else if (!check_net(sock_net(sk))) { /* Not possible to send reset; just close */ tcp_set_state(sk, TCP_CLOSE); } } if (sk->sk_state == TCP_CLOSE) { struct request_sock *req; req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, lockdep_sock_is_held(sk)); /* We could get here with a non-NULL req if the socket is * aborted (e.g., closed with unread data) before 3WHS * finishes. */ if (req) reqsk_fastopen_remove(sk, req, false); inet_csk_destroy_sock(sk); } /* Otherwise, socket is reprieved until protocol close. */ out: bh_unlock_sock(sk); local_bh_enable(); } void tcp_close(struct sock *sk, long timeout) { lock_sock(sk); __tcp_close(sk, timeout); release_sock(sk); if (!sk->sk_net_refcnt) inet_csk_clear_xmit_timers_sync(sk); sock_put(sk); } EXPORT_SYMBOL(tcp_close); /* These states need RST on ABORT according to RFC793 */ static inline bool tcp_need_reset(int state) { return (1 << state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_SYN_RECV); } static void tcp_rtx_queue_purge(struct sock *sk) { struct rb_node *p = rb_first(&sk->tcp_rtx_queue); tcp_sk(sk)->highest_sack = NULL; while (p) { struct sk_buff *skb = rb_to_skb(p); p = rb_next(p); /* Since we are deleting whole queue, no need to * list_del(&skb->tcp_tsorted_anchor) */ tcp_rtx_queue_unlink(skb, sk); tcp_wmem_free_skb(sk, skb); } } void tcp_write_queue_purge(struct sock *sk) { struct sk_buff *skb; tcp_chrono_stop(sk, TCP_CHRONO_BUSY); while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { tcp_skb_tsorted_anchor_cleanup(skb); tcp_wmem_free_skb(sk, skb); } tcp_rtx_queue_purge(sk); INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); tcp_clear_all_retrans_hints(tcp_sk(sk)); tcp_sk(sk)->packets_out = 0; inet_csk(sk)->icsk_backoff = 0; } int tcp_disconnect(struct sock *sk, int flags) { struct inet_sock *inet = inet_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int old_state = sk->sk_state; u32 seq; if (old_state != TCP_CLOSE) tcp_set_state(sk, TCP_CLOSE); /* ABORT function of RFC793 */ if (old_state == TCP_LISTEN) { inet_csk_listen_stop(sk); } else if (unlikely(tp->repair)) { WRITE_ONCE(sk->sk_err, ECONNABORTED); } else if (tcp_need_reset(old_state)) { tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); WRITE_ONCE(sk->sk_err, ECONNRESET); } else if (tp->snd_nxt != tp->write_seq && (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { /* The last check adjusts for discrepancy of Linux wrt. RFC * states */ tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); WRITE_ONCE(sk->sk_err, ECONNRESET); } else if (old_state == TCP_SYN_SENT) WRITE_ONCE(sk->sk_err, ECONNRESET); tcp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); WRITE_ONCE(tp->urg_data, 0); sk_set_peek_off(sk, -1); tcp_write_queue_purge(sk); tcp_fastopen_active_disable_ofo_check(sk); skb_rbtree_purge(&tp->out_of_order_queue); inet->inet_dport = 0; inet_bhash2_reset_saddr(sk); WRITE_ONCE(sk->sk_shutdown, 0); sock_reset_flag(sk, SOCK_DONE); tp->srtt_us = 0; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); tp->rcv_rtt_last_tsecr = 0; seq = tp->write_seq + tp->max_window + 2; if (!seq) seq = 1; WRITE_ONCE(tp->write_seq, seq); icsk->icsk_backoff = 0; icsk->icsk_probes_out = 0; icsk->icsk_probes_tstamp = 0; icsk->icsk_rto = TCP_TIMEOUT_INIT; icsk->icsk_rto_min = TCP_RTO_MIN; icsk->icsk_delack_max = TCP_DELACK_MAX; tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tcp_snd_cwnd_set(tp, TCP_INIT_CWND); tp->snd_cwnd_cnt = 0; tp->is_cwnd_limited = 0; tp->max_packets_out = 0; tp->window_clamp = 0; tp->delivered = 0; tp->delivered_ce = 0; if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) icsk->icsk_ca_ops->release(sk); memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); icsk->icsk_ca_initialized = 0; tcp_set_ca_state(sk, TCP_CA_Open); tp->is_sack_reneg = 0; tcp_clear_retrans(tp); tp->total_retrans = 0; inet_csk_delack_init(sk); /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 * issue in __tcp_select_window() */ icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); __sk_dst_reset(sk); dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); tcp_saved_syn_free(tp); tp->compressed_ack = 0; tp->segs_in = 0; tp->segs_out = 0; tp->bytes_sent = 0; tp->bytes_acked = 0; tp->bytes_received = 0; tp->bytes_retrans = 0; tp->data_segs_in = 0; tp->data_segs_out = 0; tp->duplicate_sack[0].start_seq = 0; tp->duplicate_sack[0].end_seq = 0; tp->dsack_dups = 0; tp->reord_seen = 0; tp->retrans_out = 0; tp->sacked_out = 0; tp->tlp_high_seq = 0; tp->last_oow_ack_time = 0; tp->plb_rehash = 0; /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; tp->rate_app_limited = 1; tp->rack.mstamp = 0; tp->rack.advanced = 0; tp->rack.reo_wnd_steps = 1; tp->rack.last_delivered = 0; tp->rack.reo_wnd_persist = 0; tp->rack.dsack_seen = 0; tp->syn_data_acked = 0; tp->rx_opt.saw_tstamp = 0; tp->rx_opt.dsack = 0; tp->rx_opt.num_sacks = 0; tp->rcv_ooopack = 0; /* Clean up fastopen related fields */ tcp_free_fastopen_req(tp); inet_clear_bit(DEFER_CONNECT, sk); tp->fastopen_client_fail = 0; WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); if (sk->sk_frag.page) { put_page(sk->sk_frag.page); sk->sk_frag.page = NULL; sk->sk_frag.offset = 0; } sk_error_report(sk); return 0; } EXPORT_SYMBOL(tcp_disconnect); static inline bool tcp_can_repair_sock(const struct sock *sk) { return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && (sk->sk_state != TCP_LISTEN); } static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) { struct tcp_repair_window opt; if (!tp->repair) return -EPERM; if (len != sizeof(opt)) return -EINVAL; if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) return -EFAULT; if (opt.max_window < opt.snd_wnd) return -EINVAL; if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) return -EINVAL; if (after(opt.rcv_wup, tp->rcv_nxt)) return -EINVAL; tp->snd_wl1 = opt.snd_wl1; tp->snd_wnd = opt.snd_wnd; tp->max_window = opt.max_window; tp->rcv_wnd = opt.rcv_wnd; tp->rcv_wup = opt.rcv_wup; return 0; } static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, unsigned int len) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_repair_opt opt; size_t offset = 0; while (len >= sizeof(opt)) { if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) return -EFAULT; offset += sizeof(opt); len -= sizeof(opt); switch (opt.opt_code) { case TCPOPT_MSS: tp->rx_opt.mss_clamp = opt.opt_val; tcp_mtup_init(sk); break; case TCPOPT_WINDOW: { u16 snd_wscale = opt.opt_val & 0xFFFF; u16 rcv_wscale = opt.opt_val >> 16; if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) return -EFBIG; tp->rx_opt.snd_wscale = snd_wscale; tp->rx_opt.rcv_wscale = rcv_wscale; tp->rx_opt.wscale_ok = 1; } break; case TCPOPT_SACK_PERM: if (opt.opt_val != 0) return -EINVAL; tp->rx_opt.sack_ok |= TCP_SACK_SEEN; break; case TCPOPT_TIMESTAMP: if (opt.opt_val != 0) return -EINVAL; tp->rx_opt.tstamp_ok = 1; break; } } return 0; } DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); EXPORT_SYMBOL(tcp_tx_delay_enabled); static void tcp_enable_tx_delay(void) { if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { static int __tcp_tx_delay_enabled = 0; if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { static_branch_enable(&tcp_tx_delay_enabled); pr_info("TCP_TX_DELAY enabled\n"); } } } /* When set indicates to always queue non-full frames. Later the user clears * this option and we transmit any pending partial frames in the queue. This is * meant to be used alongside sendfile() to get properly filled frames when the * user (for example) must write out headers with a write() call first and then * use sendfile to send out the data parts. * * TCP_CORK can be set together with TCP_NODELAY and it is stronger than * TCP_NODELAY. */ void __tcp_sock_set_cork(struct sock *sk, bool on) { struct tcp_sock *tp = tcp_sk(sk); if (on) { tp->nonagle |= TCP_NAGLE_CORK; } else { tp->nonagle &= ~TCP_NAGLE_CORK; if (tp->nonagle & TCP_NAGLE_OFF) tp->nonagle |= TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } } void tcp_sock_set_cork(struct sock *sk, bool on) { lock_sock(sk); __tcp_sock_set_cork(sk, on); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_cork); /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is * remembered, but it is not activated until cork is cleared. * * However, when TCP_NODELAY is set we make an explicit push, which overrides * even TCP_CORK for currently queued segments. */ void __tcp_sock_set_nodelay(struct sock *sk, bool on) { if (on) { tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } else { tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; } } void tcp_sock_set_nodelay(struct sock *sk) { lock_sock(sk); __tcp_sock_set_nodelay(sk, true); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_nodelay); static void __tcp_sock_set_quickack(struct sock *sk, int val) { if (!val) { inet_csk_enter_pingpong_mode(sk); return; } inet_csk_exit_pingpong_mode(sk); if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && inet_csk_ack_scheduled(sk)) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; tcp_cleanup_rbuf(sk, 1); if (!(val & 1)) inet_csk_enter_pingpong_mode(sk); } } void tcp_sock_set_quickack(struct sock *sk, int val) { lock_sock(sk); __tcp_sock_set_quickack(sk, val); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_quickack); int tcp_sock_set_syncnt(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_SYNCNT) return -EINVAL; WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); return 0; } EXPORT_SYMBOL(tcp_sock_set_syncnt); int tcp_sock_set_user_timeout(struct sock *sk, int val) { /* Cap the max time in ms TCP will retry or probe the window * before giving up and aborting (ETIMEDOUT) a connection. */ if (val < 0) return -EINVAL; WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); return 0; } EXPORT_SYMBOL(tcp_sock_set_user_timeout); int tcp_sock_set_keepidle_locked(struct sock *sk, int val) { struct tcp_sock *tp = tcp_sk(sk); if (val < 1 || val > MAX_TCP_KEEPIDLE) return -EINVAL; /* Paired with WRITE_ONCE() in keepalive_time_when() */ WRITE_ONCE(tp->keepalive_time, val * HZ); if (sock_flag(sk, SOCK_KEEPOPEN) && !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { u32 elapsed = keepalive_time_elapsed(tp); if (tp->keepalive_time > elapsed) elapsed = tp->keepalive_time - elapsed; else elapsed = 0; inet_csk_reset_keepalive_timer(sk, elapsed); } return 0; } int tcp_sock_set_keepidle(struct sock *sk, int val) { int err; lock_sock(sk); err = tcp_sock_set_keepidle_locked(sk, val); release_sock(sk); return err; } EXPORT_SYMBOL(tcp_sock_set_keepidle); int tcp_sock_set_keepintvl(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_KEEPINTVL) return -EINVAL; WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); return 0; } EXPORT_SYMBOL(tcp_sock_set_keepintvl); int tcp_sock_set_keepcnt(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_KEEPCNT) return -EINVAL; /* Paired with READ_ONCE() in keepalive_probes() */ WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); return 0; } EXPORT_SYMBOL(tcp_sock_set_keepcnt); int tcp_set_window_clamp(struct sock *sk, int val) { struct tcp_sock *tp = tcp_sk(sk); if (!val) { if (sk->sk_state != TCP_CLOSE) return -EINVAL; WRITE_ONCE(tp->window_clamp, 0); } else { u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? SOCK_MIN_RCVBUF / 2 : val; if (new_window_clamp == old_window_clamp) return 0; WRITE_ONCE(tp->window_clamp, new_window_clamp); if (new_window_clamp < old_window_clamp) { /* need to apply the reserved mem provisioning only * when shrinking the window clamp */ __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); } else { new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); } } return 0; } /* * Socket option code for TCP. */ int do_tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct net *net = sock_net(sk); int val; int err = 0; /* These are data/string values, all the others are ints */ switch (optname) { case TCP_CONGESTION: { char name[TCP_CA_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_sockptr(name, optval, min_t(long, TCP_CA_NAME_MAX-1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; sockopt_lock_sock(sk); err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)); sockopt_release_sock(sk); return err; } case TCP_ULP: { char name[TCP_ULP_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_sockptr(name, optval, min_t(long, TCP_ULP_NAME_MAX - 1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; sockopt_lock_sock(sk); err = tcp_set_ulp(sk, name); sockopt_release_sock(sk); return err; } case TCP_FASTOPEN_KEY: { __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; __u8 *backup_key = NULL; /* Allow a backup key as well to facilitate key rotation * First key is the active one. */ if (optlen != TCP_FASTOPEN_KEY_LENGTH && optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) return -EINVAL; if (copy_from_sockptr(key, optval, optlen)) return -EFAULT; if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) backup_key = key + TCP_FASTOPEN_KEY_LENGTH; return tcp_fastopen_reset_cipher(net, sk, key, backup_key); } default: /* fallthru */ break; } if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; /* Handle options that can be set without locking the socket. */ switch (optname) { case TCP_SYNCNT: return tcp_sock_set_syncnt(sk, val); case TCP_USER_TIMEOUT: return tcp_sock_set_user_timeout(sk, val); case TCP_KEEPINTVL: return tcp_sock_set_keepintvl(sk, val); case TCP_KEEPCNT: return tcp_sock_set_keepcnt(sk, val); case TCP_LINGER2: if (val < 0) WRITE_ONCE(tp->linger2, -1); else if (val > TCP_FIN_TIMEOUT_MAX / HZ) WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); else WRITE_ONCE(tp->linger2, val * HZ); return 0; case TCP_DEFER_ACCEPT: /* Translate value in seconds to number of retransmits */ WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ)); return 0; } sockopt_lock_sock(sk); switch (optname) { case TCP_MAXSEG: /* Values greater than interface MTU won't take effect. However * at the point when this call is done we typically don't yet * know which interface is going to be used */ if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { err = -EINVAL; break; } tp->rx_opt.user_mss = val; break; case TCP_NODELAY: __tcp_sock_set_nodelay(sk, val); break; case TCP_THIN_LINEAR_TIMEOUTS: if (val < 0 || val > 1) err = -EINVAL; else tp->thin_lto = val; break; case TCP_THIN_DUPACK: if (val < 0 || val > 1) err = -EINVAL; break; case TCP_REPAIR: if (!tcp_can_repair_sock(sk)) err = -EPERM; else if (val == TCP_REPAIR_ON) { tp->repair = 1; sk->sk_reuse = SK_FORCE_REUSE; tp->repair_queue = TCP_NO_QUEUE; } else if (val == TCP_REPAIR_OFF) { tp->repair = 0; sk->sk_reuse = SK_NO_REUSE; tcp_send_window_probe(sk); } else if (val == TCP_REPAIR_OFF_NO_WP) { tp->repair = 0; sk->sk_reuse = SK_NO_REUSE; } else err = -EINVAL; break; case TCP_REPAIR_QUEUE: if (!tp->repair) err = -EPERM; else if ((unsigned int)val < TCP_QUEUES_NR) tp->repair_queue = val; else err = -EINVAL; break; case TCP_QUEUE_SEQ: if (sk->sk_state != TCP_CLOSE) { err = -EPERM; } else if (tp->repair_queue == TCP_SEND_QUEUE) { if (!tcp_rtx_queue_empty(sk)) err = -EPERM; else WRITE_ONCE(tp->write_seq, val); } else if (tp->repair_queue == TCP_RECV_QUEUE) { if (tp->rcv_nxt != tp->copied_seq) { err = -EPERM; } else { WRITE_ONCE(tp->rcv_nxt, val); WRITE_ONCE(tp->copied_seq, val); } } else { err = -EINVAL; } break; case TCP_REPAIR_OPTIONS: if (!tp->repair) err = -EINVAL; else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) err = tcp_repair_options_est(sk, optval, optlen); else err = -EPERM; break; case TCP_CORK: __tcp_sock_set_cork(sk, val); break; case TCP_KEEPIDLE: err = tcp_sock_set_keepidle_locked(sk, val); break; case TCP_SAVE_SYN: /* 0: disable, 1: enable, 2: start from ether_header */ if (val < 0 || val > 2) err = -EINVAL; else tp->save_syn = val; break; case TCP_WINDOW_CLAMP: err = tcp_set_window_clamp(sk, val); break; case TCP_QUICKACK: __tcp_sock_set_quickack(sk, val); break; case TCP_AO_REPAIR: if (!tcp_can_repair_sock(sk)) { err = -EPERM; break; } err = tcp_ao_set_repair(sk, optval, optlen); break; #ifdef CONFIG_TCP_AO case TCP_AO_ADD_KEY: case TCP_AO_DEL_KEY: case TCP_AO_INFO: { /* If this is the first TCP-AO setsockopt() on the socket, * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR * in any state. */ if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) goto ao_parse; if (rcu_dereference_protected(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk))) goto ao_parse; if (tp->repair) goto ao_parse; err = -EISCONN; break; ao_parse: err = tp->af_specific->ao_parse(sk, optname, optval, optlen); break; } #endif #ifdef CONFIG_TCP_MD5SIG case TCP_MD5SIG: case TCP_MD5SIG_EXT: err = tp->af_specific->md5_parse(sk, optname, optval, optlen); break; #endif case TCP_FASTOPEN: if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { tcp_fastopen_init_key_once(net); fastopen_queue_tune(sk, val); } else { err = -EINVAL; } break; case TCP_FASTOPEN_CONNECT: if (val > 1 || val < 0) { err = -EINVAL; } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & TFO_CLIENT_ENABLE) { if (sk->sk_state == TCP_CLOSE) tp->fastopen_connect = val; else err = -EINVAL; } else { err = -EOPNOTSUPP; } break; case TCP_FASTOPEN_NO_COOKIE: if (val > 1 || val < 0) err = -EINVAL; else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) err = -EINVAL; else tp->fastopen_no_cookie = val; break; case TCP_TIMESTAMP: if (!tp->repair) { err = -EPERM; break; } /* val is an opaque field, * and low order bit contains usec_ts enable bit. * Its a best effort, and we do not care if user makes an error. */ tp->tcp_usec_ts = val & 1; WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); break; case TCP_REPAIR_WINDOW: err = tcp_repair_set_window(tp, optval, optlen); break; case TCP_NOTSENT_LOWAT: WRITE_ONCE(tp->notsent_lowat, val); sk->sk_write_space(sk); break; case TCP_INQ: if (val > 1 || val < 0) err = -EINVAL; else tp->recvmsg_inq = val; break; case TCP_TX_DELAY: if (val) tcp_enable_tx_delay(); WRITE_ONCE(tp->tcp_tx_delay, val); break; default: err = -ENOPROTOOPT; break; } sockopt_release_sock(sk); return err; } int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { const struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, optval, optlen); return do_tcp_setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(tcp_setsockopt); static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, struct tcp_info *info) { u64 stats[__TCP_CHRONO_MAX], total = 0; enum tcp_chrono i; for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { stats[i] = tp->chrono_stat[i - 1]; if (i == tp->chrono_type) stats[i] += tcp_jiffies32 - tp->chrono_start; stats[i] *= USEC_PER_SEC / HZ; total += stats[i]; } info->tcpi_busy_time = total; info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; } /* Return information about state of tcp endpoint in API format. */ void tcp_get_info(struct sock *sk, struct tcp_info *info) { const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ const struct inet_connection_sock *icsk = inet_csk(sk); unsigned long rate; u32 now; u64 rate64; bool slow; memset(info, 0, sizeof(*info)); if (sk->sk_type != SOCK_STREAM) return; info->tcpi_state = inet_sk_state_load(sk); /* Report meaningful fields for all TCP states, including listeners */ rate = READ_ONCE(sk->sk_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; info->tcpi_pacing_rate = rate64; rate = READ_ONCE(sk->sk_max_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; info->tcpi_max_pacing_rate = rate64; info->tcpi_reordering = tp->reordering; info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); if (info->tcpi_state == TCP_LISTEN) { /* listeners aliased fields : * tcpi_unacked -> Number of children ready for accept() * tcpi_sacked -> max backlog */ info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); return; } slow = lock_sock_fast(sk); info->tcpi_ca_state = icsk->icsk_ca_state; info->tcpi_retransmits = icsk->icsk_retransmits; info->tcpi_probes = icsk->icsk_probes_out; info->tcpi_backoff = icsk->icsk_backoff; if (tp->rx_opt.tstamp_ok) info->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tcp_is_sack(tp)) info->tcpi_options |= TCPI_OPT_SACK; if (tp->rx_opt.wscale_ok) { info->tcpi_options |= TCPI_OPT_WSCALE; info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; } if (tp->ecn_flags & TCP_ECN_OK) info->tcpi_options |= TCPI_OPT_ECN; if (tp->ecn_flags & TCP_ECN_SEEN) info->tcpi_options |= TCPI_OPT_ECN_SEEN; if (tp->syn_data_acked) info->tcpi_options |= TCPI_OPT_SYN_DATA; if (tp->tcp_usec_ts) info->tcpi_options |= TCPI_OPT_USEC_TS; info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, tcp_delack_max(sk))); info->tcpi_snd_mss = tp->mss_cache; info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; info->tcpi_unacked = tp->packets_out; info->tcpi_sacked = tp->sacked_out; info->tcpi_lost = tp->lost_out; info->tcpi_retrans = tp->retrans_out; now = tcp_jiffies32; info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); info->tcpi_pmtu = icsk->icsk_pmtu_cookie; info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; info->tcpi_rtt = tp->srtt_us >> 3; info->tcpi_rttvar = tp->mdev_us >> 2; info->tcpi_snd_ssthresh = tp->snd_ssthresh; info->tcpi_advmss = tp->advmss; info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; info->tcpi_rcv_space = tp->rcvq_space.space; info->tcpi_total_retrans = tp->total_retrans; info->tcpi_bytes_acked = tp->bytes_acked; info->tcpi_bytes_received = tp->bytes_received; info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); tcp_get_info_chrono_stats(tp, info); info->tcpi_segs_out = tp->segs_out; /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ info->tcpi_segs_in = READ_ONCE(tp->segs_in); info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); info->tcpi_min_rtt = tcp_min_rtt(tp); info->tcpi_data_segs_out = tp->data_segs_out; info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; rate64 = tcp_compute_delivery_rate(tp); if (rate64) info->tcpi_delivery_rate = rate64; info->tcpi_delivered = tp->delivered; info->tcpi_delivered_ce = tp->delivered_ce; info->tcpi_bytes_sent = tp->bytes_sent; info->tcpi_bytes_retrans = tp->bytes_retrans; info->tcpi_dsack_dups = tp->dsack_dups; info->tcpi_reord_seen = tp->reord_seen; info->tcpi_rcv_ooopack = tp->rcv_ooopack; info->tcpi_snd_wnd = tp->snd_wnd; info->tcpi_rcv_wnd = tp->rcv_wnd; info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; info->tcpi_total_rto = tp->total_rto; info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; info->tcpi_total_rto_time = tp->total_rto_time; if (tp->rto_stamp) info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; unlock_sock_fast(sk, slow); } EXPORT_SYMBOL_GPL(tcp_get_info); static size_t tcp_opt_stats_get_size(void) { return nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 0; } /* Returns TTL or hop limit of an incoming packet from skb. */ static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) return ip_hdr(skb)->ttl; else if (skb->protocol == htons(ETH_P_IPV6)) return ipv6_hdr(skb)->hop_limit; else return 0; } struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb, const struct sk_buff *ack_skb) { const struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *stats; struct tcp_info info; unsigned long rate; u64 rate64; stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); if (!stats) return NULL; tcp_get_info_chrono_stats(tp, &info); nla_put_u64_64bit(stats, TCP_NLA_BUSY, info.tcpi_busy_time, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, info.tcpi_rwnd_limited, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, info.tcpi_sndbuf_limited, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, tp->data_segs_out, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, tp->total_retrans, TCP_NLA_PAD); rate = READ_ONCE(sk->sk_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); rate64 = tcp_compute_delivery_rate(tp); nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, TCP_NLA_PAD); nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, max_t(int, 0, tp->write_seq - tp->snd_nxt)); nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, TCP_NLA_PAD); if (ack_skb) nla_put_u8(stats, TCP_NLA_TTL, tcp_skb_ttl_or_hop_limit(ack_skb)); nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); return stats; } int do_tcp_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); int val, len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len < 0) return -EINVAL; len = min_t(unsigned int, len, sizeof(int)); switch (optname) { case TCP_MAXSEG: val = tp->mss_cache; if (tp->rx_opt.user_mss && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) val = tp->rx_opt.user_mss; if (tp->repair) val = tp->rx_opt.mss_clamp; break; case TCP_NODELAY: val = !!(tp->nonagle&TCP_NAGLE_OFF); break; case TCP_CORK: val = !!(tp->nonagle&TCP_NAGLE_CORK); break; case TCP_KEEPIDLE: val = keepalive_time_when(tp) / HZ; break; case TCP_KEEPINTVL: val = keepalive_intvl_when(tp) / HZ; break; case TCP_KEEPCNT: val = keepalive_probes(tp); break; case TCP_SYNCNT: val = READ_ONCE(icsk->icsk_syn_retries) ? : READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); break; case TCP_LINGER2: val = READ_ONCE(tp->linger2); if (val >= 0) val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; break; case TCP_DEFER_ACCEPT: val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); break; case TCP_WINDOW_CLAMP: val = READ_ONCE(tp->window_clamp); break; case TCP_INFO: { struct tcp_info info; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; tcp_get_info(sk, &info); len = min_t(unsigned int, len, sizeof(info)); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &info, len)) return -EFAULT; return 0; } case TCP_CC_INFO: { const struct tcp_congestion_ops *ca_ops; union tcp_cc_info info; size_t sz = 0; int attr; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; ca_ops = icsk->icsk_ca_ops; if (ca_ops && ca_ops->get_info) sz = ca_ops->get_info(sk, ~0U, &attr, &info); len = min_t(unsigned int, len, sz); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &info, len)) return -EFAULT; return 0; } case TCP_QUICKACK: val = !inet_csk_in_pingpong_mode(sk); break; case TCP_CONGESTION: if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; len = min_t(unsigned int, len, TCP_CA_NAME_MAX); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) return -EFAULT; return 0; case TCP_ULP: if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); if (!icsk->icsk_ulp_ops) { len = 0; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; return 0; } if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) return -EFAULT; return 0; case TCP_FASTOPEN_KEY: { u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; unsigned int key_len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; key_len = tcp_fastopen_get_cipher(net, icsk, key) * TCP_FASTOPEN_KEY_LENGTH; len = min_t(unsigned int, len, key_len); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, key, len)) return -EFAULT; return 0; } case TCP_THIN_LINEAR_TIMEOUTS: val = tp->thin_lto; break; case TCP_THIN_DUPACK: val = 0; break; case TCP_REPAIR: val = tp->repair; break; case TCP_REPAIR_QUEUE: if (tp->repair) val = tp->repair_queue; else return -EINVAL; break; case TCP_REPAIR_WINDOW: { struct tcp_repair_window opt; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len != sizeof(opt)) return -EINVAL; if (!tp->repair) return -EPERM; opt.snd_wl1 = tp->snd_wl1; opt.snd_wnd = tp->snd_wnd; opt.max_window = tp->max_window; opt.rcv_wnd = tp->rcv_wnd; opt.rcv_wup = tp->rcv_wup; if (copy_to_sockptr(optval, &opt, len)) return -EFAULT; return 0; } case TCP_QUEUE_SEQ: if (tp->repair_queue == TCP_SEND_QUEUE) val = tp->write_seq; else if (tp->repair_queue == TCP_RECV_QUEUE) val = tp->rcv_nxt; else return -EINVAL; break; case TCP_USER_TIMEOUT: val = READ_ONCE(icsk->icsk_user_timeout); break; case TCP_FASTOPEN: val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); break; case TCP_FASTOPEN_CONNECT: val = tp->fastopen_connect; break; case TCP_FASTOPEN_NO_COOKIE: val = tp->fastopen_no_cookie; break; case TCP_TX_DELAY: val = READ_ONCE(tp->tcp_tx_delay); break; case TCP_TIMESTAMP: val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); if (tp->tcp_usec_ts) val |= 1; else val &= ~1; break; case TCP_NOTSENT_LOWAT: val = READ_ONCE(tp->notsent_lowat); break; case TCP_INQ: val = tp->recvmsg_inq; break; case TCP_SAVE_SYN: val = tp->save_syn; break; case TCP_SAVED_SYN: { if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; sockopt_lock_sock(sk); if (tp->saved_syn) { if (len < tcp_saved_syn_len(tp->saved_syn)) { len = tcp_saved_syn_len(tp->saved_syn); if (copy_to_sockptr(optlen, &len, sizeof(int))) { sockopt_release_sock(sk); return -EFAULT; } sockopt_release_sock(sk); return -EINVAL; } len = tcp_saved_syn_len(tp->saved_syn); if (copy_to_sockptr(optlen, &len, sizeof(int))) { sockopt_release_sock(sk); return -EFAULT; } if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { sockopt_release_sock(sk); return -EFAULT; } tcp_saved_syn_free(tp); sockopt_release_sock(sk); } else { sockopt_release_sock(sk); len = 0; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; } return 0; } #ifdef CONFIG_MMU case TCP_ZEROCOPY_RECEIVE: { struct scm_timestamping_internal tss; struct tcp_zerocopy_receive zc = {}; int err; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len < 0 || len < offsetofend(struct tcp_zerocopy_receive, length)) return -EINVAL; if (unlikely(len > sizeof(zc))) { err = check_zeroed_sockptr(optval, sizeof(zc), len - sizeof(zc)); if (err < 1) return err == 0 ? -EINVAL : err; len = sizeof(zc); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; } if (copy_from_sockptr(&zc, optval, len)) return -EFAULT; if (zc.reserved) return -EINVAL; if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) return -EINVAL; sockopt_lock_sock(sk); err = tcp_zerocopy_receive(sk, &zc, &tss); err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, &zc, &len, err); sockopt_release_sock(sk); if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) goto zerocopy_rcv_cmsg; switch (len) { case offsetofend(struct tcp_zerocopy_receive, msg_flags): goto zerocopy_rcv_cmsg; case offsetofend(struct tcp_zerocopy_receive, msg_controllen): case offsetofend(struct tcp_zerocopy_receive, msg_control): case offsetofend(struct tcp_zerocopy_receive, flags): case offsetofend(struct tcp_zerocopy_receive, copybuf_len): case offsetofend(struct tcp_zerocopy_receive, copybuf_address): case offsetofend(struct tcp_zerocopy_receive, err): goto zerocopy_rcv_sk_err; case offsetofend(struct tcp_zerocopy_receive, inq): goto zerocopy_rcv_inq; case offsetofend(struct tcp_zerocopy_receive, length): default: goto zerocopy_rcv_out; } zerocopy_rcv_cmsg: if (zc.msg_flags & TCP_CMSG_TS) tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); else zc.msg_flags = 0; zerocopy_rcv_sk_err: if (!err) zc.err = sock_error(sk); zerocopy_rcv_inq: zc.inq = tcp_inq_hint(sk); zerocopy_rcv_out: if (!err && copy_to_sockptr(optval, &zc, len)) err = -EFAULT; return err; } #endif case TCP_AO_REPAIR: if (!tcp_can_repair_sock(sk)) return -EPERM; return tcp_ao_get_repair(sk, optval, optlen); case TCP_AO_GET_KEYS: case TCP_AO_INFO: { int err; sockopt_lock_sock(sk); if (optname == TCP_AO_GET_KEYS) err = tcp_ao_get_mkts(sk, optval, optlen); else err = tcp_ao_get_sock_info(sk, optval, optlen); sockopt_release_sock(sk); return err; } case TCP_IS_MPTCP: val = 0; break; default: return -ENOPROTOOPT; } if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, len)) return -EFAULT; return 0; } bool tcp_bpf_bypass_getsockopt(int level, int optname) { /* TCP do_tcp_getsockopt has optimized getsockopt implementation * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. */ if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) return true; return false; } EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, optval, optlen); return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); } EXPORT_SYMBOL(tcp_getsockopt); #ifdef CONFIG_TCP_MD5SIG int tcp_md5_sigpool_id = -1; EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); int tcp_md5_alloc_sigpool(void) { size_t scratch_size; int ret; scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); ret = tcp_sigpool_alloc_ahash("md5", scratch_size); if (ret >= 0) { /* As long as any md5 sigpool was allocated, the return * id would stay the same. Re-write the id only for the case * when previously all MD5 keys were deleted and this call * allocates the first MD5 key, which may return a different * sigpool id than was used previously. */ WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ return 0; } return ret; } void tcp_md5_release_sigpool(void) { tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); } void tcp_md5_add_sigpool(void) { tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); } int tcp_md5_hash_key(struct tcp_sigpool *hp, const struct tcp_md5sig_key *key) { u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ struct scatterlist sg; sg_init_one(&sg, key->key, keylen); ahash_request_set_crypt(hp->req, &sg, NULL, keylen); /* We use data_race() because tcp_md5_do_add() might change * key->key under us */ return data_race(crypto_ahash_update(hp->req)); } EXPORT_SYMBOL(tcp_md5_hash_key); /* Called with rcu_read_lock() */ static enum skb_drop_reason tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, const void *saddr, const void *daddr, int family, int l3index, const __u8 *hash_location) { /* This gets called for each TCP segment that has TCP-MD5 option. * We have 3 drop cases: * o No MD5 hash and one expected. * o MD5 hash and we're not expecting one. * o MD5 hash and its wrong. */ const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; u8 newhash[16]; int genhash; key = tcp_md5_do_lookup(sk, l3index, saddr, family); if (!key && hash_location) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); trace_tcp_hash_md5_unexpected(sk, skb); return SKB_DROP_REASON_TCP_MD5UNEXPECTED; } /* Check the signature. * To support dual stack listeners, we need to handle * IPv4-mapped case. */ if (family == AF_INET) genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); else genhash = tp->af_specific->calc_md5_hash(newhash, key, NULL, skb); if (genhash || memcmp(hash_location, newhash, 16) != 0) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); trace_tcp_hash_md5_mismatch(sk, skb); return SKB_DROP_REASON_TCP_MD5FAILURE; } return SKB_NOT_DROPPED_YET; } #else static inline enum skb_drop_reason tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, const void *saddr, const void *daddr, int family, int l3index, const __u8 *hash_location) { return SKB_NOT_DROPPED_YET; } #endif /* Called with rcu_read_lock() */ enum skb_drop_reason tcp_inbound_hash(struct sock *sk, const struct request_sock *req, const struct sk_buff *skb, const void *saddr, const void *daddr, int family, int dif, int sdif) { const struct tcphdr *th = tcp_hdr(skb); const struct tcp_ao_hdr *aoh; const __u8 *md5_location; int l3index; /* Invalid option or two times meet any of auth options */ if (tcp_parse_auth_options(th, &md5_location, &aoh)) { trace_tcp_hash_bad_header(sk, skb); return SKB_DROP_REASON_TCP_AUTH_HDR; } if (req) { if (tcp_rsk_used_ao(req) != !!aoh) { u8 keyid, rnext, maclen; if (aoh) { keyid = aoh->keyid; rnext = aoh->rnext_keyid; maclen = tcp_ao_hdr_maclen(aoh); } else { keyid = rnext = maclen = 0; } NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); return SKB_DROP_REASON_TCP_AOFAILURE; } } /* sdif set, means packet ingressed via a device * in an L3 domain and dif is set to the l3mdev */ l3index = sdif ? dif : 0; /* Fast path: unsigned segments */ if (likely(!md5_location && !aoh)) { /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid * for the remote peer. On TCP-AO established connection * the last key is impossible to remove, so there's * always at least one current_key. */ if (tcp_ao_required(sk, saddr, family, l3index, true)) { trace_tcp_hash_ao_required(sk, skb); return SKB_DROP_REASON_TCP_AONOTFOUND; } if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); trace_tcp_hash_md5_required(sk, skb); return SKB_DROP_REASON_TCP_MD5NOTFOUND; } return SKB_NOT_DROPPED_YET; } if (aoh) return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, l3index, md5_location); } EXPORT_SYMBOL_GPL(tcp_inbound_hash); void tcp_done(struct sock *sk) { struct request_sock *req; /* We might be called with a new socket, after * inet_csk_prepare_forced_close() has been called * so we can not use lockdep_sock_is_held(sk) */ req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); tcp_set_state(sk, TCP_CLOSE); tcp_clear_xmit_timers(sk); if (req) reqsk_fastopen_remove(sk, req, false); WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); else inet_csk_destroy_sock(sk); } EXPORT_SYMBOL_GPL(tcp_done); int tcp_abort(struct sock *sk, int err) { int state = inet_sk_state_load(sk); if (state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); local_bh_disable(); inet_csk_reqsk_queue_drop(req->rsk_listener, req); local_bh_enable(); return 0; } if (state == TCP_TIME_WAIT) { struct inet_timewait_sock *tw = inet_twsk(sk); refcount_inc(&tw->tw_refcnt); local_bh_disable(); inet_twsk_deschedule_put(tw); local_bh_enable(); return 0; } /* BPF context ensures sock locking. */ if (!has_current_bpf_ctx()) /* Don't race with userspace socket closes such as tcp_close. */ lock_sock(sk); /* Avoid closing the same socket twice. */ if (sk->sk_state == TCP_CLOSE) { if (!has_current_bpf_ctx()) release_sock(sk); return -ENOENT; } if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); inet_csk_listen_stop(sk); } /* Don't race with BH socket closes such as inet_csk_listen_stop. */ local_bh_disable(); bh_lock_sock(sk); if (tcp_need_reset(sk->sk_state)) tcp_send_active_reset(sk, GFP_ATOMIC, SK_RST_REASON_TCP_STATE); tcp_done_with_error(sk, err); bh_unlock_sock(sk); local_bh_enable(); if (!has_current_bpf_ctx()) release_sock(sk); return 0; } EXPORT_SYMBOL_GPL(tcp_abort); extern struct tcp_congestion_ops tcp_reno; static __initdata unsigned long thash_entries; static int __init set_thash_entries(char *str) { ssize_t ret; if (!str) return 0; ret = kstrtoul(str, 0, &thash_entries); if (ret) return 0; return 1; } __setup("thash_entries=", set_thash_entries); static void __init tcp_init_mem(void) { unsigned long limit = nr_free_buffer_pages() / 16; limit = max(limit, 128UL); sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ sysctl_tcp_mem[1] = limit; /* 6.25 % */ sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ } static void __init tcp_struct_check(void) { /* TX read-mostly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); /* TXRX read-mostly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); /* RX read-mostly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); /* TX read-write hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); /* TXRX read-write hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); /* 32bit arches with 8byte alignment on u64 fields might need padding * before tcp_clock_cache. */ CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); /* RX read-write hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); } void __init tcp_init(void) { int max_rshare, max_wshare, cnt; unsigned long limit; unsigned int i; BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof_field(struct sk_buff, cb)); tcp_struct_check(); percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", thash_entries, 21, /* one slot per 2 MB*/ 0, 64 * 1024); tcp_hashinfo.bind_bucket_cachep = kmem_cache_create("tcp_bind_bucket", sizeof(struct inet_bind_bucket), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); tcp_hashinfo.bind2_bucket_cachep = kmem_cache_create("tcp_bind2_bucket", sizeof(struct inet_bind2_bucket), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); /* Size and allocate the main established and bind bucket * hash tables. * * The methodology is similar to that of the buffer cache. */ tcp_hashinfo.ehash = alloc_large_system_hash("TCP established", sizeof(struct inet_ehash_bucket), thash_entries, 17, /* one slot per 128 KB of memory */ 0, NULL, &tcp_hashinfo.ehash_mask, 0, thash_entries ? 0 : 512 * 1024); for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); if (inet_ehash_locks_alloc(&tcp_hashinfo)) panic("TCP: failed to alloc ehash_locks"); tcp_hashinfo.bhash = alloc_large_system_hash("TCP bind", 2 * sizeof(struct inet_bind_hashbucket), tcp_hashinfo.ehash_mask + 1, 17, /* one slot per 128 KB of memory */ 0, &tcp_hashinfo.bhash_size, NULL, 0, 64 * 1024); tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; for (i = 0; i < tcp_hashinfo.bhash_size; i++) { spin_lock_init(&tcp_hashinfo.bhash[i].lock); INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); spin_lock_init(&tcp_hashinfo.bhash2[i].lock); INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); } tcp_hashinfo.pernet = false; cnt = tcp_hashinfo.ehash_mask + 1; sysctl_tcp_max_orphans = cnt / 2; tcp_init_mem(); /* Set per-socket limits to no more than 1/128 the pressure threshold */ limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); max_wshare = min(4UL*1024*1024, limit); max_rshare = min(6UL*1024*1024, limit); init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; init_net.ipv4.sysctl_tcp_rmem[1] = 131072; init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); pr_info("Hash tables configured (established %u bind %u)\n", tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); tcp_v4_init(); tcp_metrics_init(); BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); tcp_tasklet_init(); mptcp_init(); } |
1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | // SPDX-License-Identifier: GPL-2.0-only #include "netlink.h" #include "common.h" #include "bitset.h" struct eee_req_info { struct ethnl_req_info base; }; struct eee_reply_data { struct ethnl_reply_data base; struct ethtool_keee eee; }; #define EEE_REPDATA(__reply_base) \ container_of(__reply_base, struct eee_reply_data, base) const struct nla_policy ethnl_eee_get_policy[] = { [ETHTOOL_A_EEE_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), }; static int eee_prepare_data(const struct ethnl_req_info *req_base, struct ethnl_reply_data *reply_base, const struct genl_info *info) { struct eee_reply_data *data = EEE_REPDATA(reply_base); struct net_device *dev = reply_base->dev; struct ethtool_keee *eee = &data->eee; int ret; if (!dev->ethtool_ops->get_eee) return -EOPNOTSUPP; ret = ethnl_ops_begin(dev); if (ret < 0) return ret; ret = dev->ethtool_ops->get_eee(dev, eee); ethnl_ops_complete(dev); return ret; } static int eee_reply_size(const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct eee_reply_data *data = EEE_REPDATA(reply_base); const struct ethtool_keee *eee = &data->eee; int len = 0; int ret; /* MODES_OURS */ ret = ethnl_bitset_size(eee->advertised, eee->supported, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; len += ret; /* MODES_PEERS */ ret = ethnl_bitset_size(eee->lp_advertised, NULL, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; len += ret; len += nla_total_size(sizeof(u8)) + /* _EEE_ACTIVE */ nla_total_size(sizeof(u8)) + /* _EEE_ENABLED */ nla_total_size(sizeof(u8)) + /* _EEE_TX_LPI_ENABLED */ nla_total_size(sizeof(u32)); /* _EEE_TX_LPI_TIMER */ return len; } static int eee_fill_reply(struct sk_buff *skb, const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct eee_reply_data *data = EEE_REPDATA(reply_base); const struct ethtool_keee *eee = &data->eee; int ret; ret = ethnl_put_bitset(skb, ETHTOOL_A_EEE_MODES_OURS, eee->advertised, eee->supported, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; ret = ethnl_put_bitset(skb, ETHTOOL_A_EEE_MODES_PEER, eee->lp_advertised, NULL, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; if (nla_put_u8(skb, ETHTOOL_A_EEE_ACTIVE, eee->eee_active) || nla_put_u8(skb, ETHTOOL_A_EEE_ENABLED, eee->eee_enabled) || nla_put_u8(skb, ETHTOOL_A_EEE_TX_LPI_ENABLED, eee->tx_lpi_enabled) || nla_put_u32(skb, ETHTOOL_A_EEE_TX_LPI_TIMER, eee->tx_lpi_timer)) return -EMSGSIZE; return 0; } /* EEE_SET */ const struct nla_policy ethnl_eee_set_policy[] = { [ETHTOOL_A_EEE_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), [ETHTOOL_A_EEE_MODES_OURS] = { .type = NLA_NESTED }, [ETHTOOL_A_EEE_ENABLED] = { .type = NLA_U8 }, [ETHTOOL_A_EEE_TX_LPI_ENABLED] = { .type = NLA_U8 }, [ETHTOOL_A_EEE_TX_LPI_TIMER] = { .type = NLA_U32 }, }; static int ethnl_set_eee_validate(struct ethnl_req_info *req_info, struct genl_info *info) { const struct ethtool_ops *ops = req_info->dev->ethtool_ops; return ops->get_eee && ops->set_eee ? 1 : -EOPNOTSUPP; } static int ethnl_set_eee(struct ethnl_req_info *req_info, struct genl_info *info) { struct net_device *dev = req_info->dev; struct nlattr **tb = info->attrs; struct ethtool_keee eee = {}; bool mod = false; int ret; ret = dev->ethtool_ops->get_eee(dev, &eee); if (ret < 0) return ret; ret = ethnl_update_bitset(eee.advertised, __ETHTOOL_LINK_MODE_MASK_NBITS, tb[ETHTOOL_A_EEE_MODES_OURS], link_mode_names, info->extack, &mod); if (ret < 0) return ret; ethnl_update_bool(&eee.eee_enabled, tb[ETHTOOL_A_EEE_ENABLED], &mod); ethnl_update_bool(&eee.tx_lpi_enabled, tb[ETHTOOL_A_EEE_TX_LPI_ENABLED], &mod); ethnl_update_u32(&eee.tx_lpi_timer, tb[ETHTOOL_A_EEE_TX_LPI_TIMER], &mod); if (!mod) return 0; ret = dev->ethtool_ops->set_eee(dev, &eee); return ret < 0 ? ret : 1; } const struct ethnl_request_ops ethnl_eee_request_ops = { .request_cmd = ETHTOOL_MSG_EEE_GET, .reply_cmd = ETHTOOL_MSG_EEE_GET_REPLY, .hdr_attr = ETHTOOL_A_EEE_HEADER, .req_info_size = sizeof(struct eee_req_info), .reply_data_size = sizeof(struct eee_reply_data), .prepare_data = eee_prepare_data, .reply_size = eee_reply_size, .fill_reply = eee_fill_reply, .set_validate = ethnl_set_eee_validate, .set = ethnl_set_eee, .set_ntf_cmd = ETHTOOL_MSG_EEE_NTF, }; |
21 2 21 21 2 2 1 1 1 1 8 1 1 3 4 1 1 2 1 2 2 1 1 4 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | /* * net/tipc/net.c: TIPC network routing code * * Copyright (c) 1995-2006, 2014, Ericsson AB * Copyright (c) 2005, 2010-2011, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "net.h" #include "name_distr.h" #include "subscr.h" #include "socket.h" #include "node.h" #include "bcast.h" #include "link.h" #include "netlink.h" #include "monitor.h" /* * The TIPC locking policy is designed to ensure a very fine locking * granularity, permitting complete parallel access to individual * port and node/link instances. The code consists of four major * locking domains, each protected with their own disjunct set of locks. * * 1: The bearer level. * RTNL lock is used to serialize the process of configuring bearer * on update side, and RCU lock is applied on read side to make * bearer instance valid on both paths of message transmission and * reception. * * 2: The node and link level. * All node instances are saved into two tipc_node_list and node_htable * lists. The two lists are protected by node_list_lock on write side, * and they are guarded with RCU lock on read side. Especially node * instance is destroyed only when TIPC module is removed, and we can * confirm that there has no any user who is accessing the node at the * moment. Therefore, Except for iterating the two lists within RCU * protection, it's no needed to hold RCU that we access node instance * in other places. * * In addition, all members in node structure including link instances * are protected by node spin lock. * * 3: The transport level of the protocol. * This consists of the structures port, (and its user level * representations, such as user_port and tipc_sock), reference and * tipc_user (port.c, reg.c, socket.c). * * This layer has four different locks: * - The tipc_port spin_lock. This is protecting each port instance * from parallel data access and removal. Since we can not place * this lock in the port itself, it has been placed in the * corresponding reference table entry, which has the same life * cycle as the module. This entry is difficult to access from * outside the TIPC core, however, so a pointer to the lock has * been added in the port instance, -to be used for unlocking * only. * - A read/write lock to protect the reference table itself (teg.c). * (Nobody is using read-only access to this, so it can just as * well be changed to a spin_lock) * - A spin lock to protect the registry of kernel/driver users (reg.c) * - A global spin_lock (tipc_port_lock), which only task is to ensure * consistency where more than one port is involved in an operation, * i.e., when a port is part of a linked list of ports. * There are two such lists; 'port_list', which is used for management, * and 'wait_list', which is used to queue ports during congestion. * * 4: The name table (name_table.c, name_distr.c, subscription.c) * - There is one big read/write-lock (tipc_nametbl_lock) protecting the * overall name table structure. Nothing must be added/removed to * this structure without holding write access to it. * - There is one local spin_lock per sub_sequence, which can be seen * as a sub-domain to the tipc_nametbl_lock domain. It is used only * for translation operations, and is needed because a translation * steps the root of the 'publication' linked list between each lookup. * This is always used within the scope of a tipc_nametbl_lock(read). * - A local spin_lock protecting the queue of subscriber events. */ static void tipc_net_finalize(struct net *net, u32 addr); int tipc_net_init(struct net *net, u8 *node_id, u32 addr) { if (tipc_own_id(net)) { pr_info("Cannot configure node identity twice\n"); return -1; } pr_info("Started in network mode\n"); if (node_id) tipc_set_node_id(net, node_id); if (addr) tipc_net_finalize(net, addr); return 0; } static void tipc_net_finalize(struct net *net, u32 addr) { struct tipc_net *tn = tipc_net(net); struct tipc_socket_addr sk = {0, addr}; struct tipc_uaddr ua; tipc_uaddr(&ua, TIPC_SERVICE_RANGE, TIPC_CLUSTER_SCOPE, TIPC_NODE_STATE, addr, addr); if (cmpxchg(&tn->node_addr, 0, addr)) return; tipc_set_node_addr(net, addr); tipc_named_reinit(net); tipc_sk_reinit(net); tipc_mon_reinit_self(net); tipc_nametbl_publish(net, &ua, &sk, addr); } void tipc_net_finalize_work(struct work_struct *work) { struct tipc_net *tn = container_of(work, struct tipc_net, work); tipc_net_finalize(tipc_link_net(tn->bcl), tn->trial_addr); } void tipc_net_stop(struct net *net) { if (!tipc_own_id(net)) return; rtnl_lock(); tipc_bearer_stop(net); tipc_node_stop(net); rtnl_unlock(); pr_info("Left network mode\n"); } static int __tipc_nl_add_net(struct net *net, struct tipc_nl_msg *msg) { struct tipc_net *tn = net_generic(net, tipc_net_id); u64 *w0 = (u64 *)&tn->node_id[0]; u64 *w1 = (u64 *)&tn->node_id[8]; struct nlattr *attrs; void *hdr; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_NET_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_NET); if (!attrs) goto msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_NET_ID, tn->net_id)) goto attr_msg_full; if (nla_put_u64_64bit(msg->skb, TIPC_NLA_NET_NODEID, *w0, 0)) goto attr_msg_full; if (nla_put_u64_64bit(msg->skb, TIPC_NLA_NET_NODEID_W1, *w1, 0)) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } int tipc_nl_net_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); int err; int done = cb->args[0]; struct tipc_nl_msg msg; if (done) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; err = __tipc_nl_add_net(net, &msg); if (err) goto out; done = 1; out: cb->args[0] = done; return skb->len; } int __tipc_nl_net_set(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attrs[TIPC_NLA_NET_MAX + 1]; struct net *net = sock_net(skb->sk); struct tipc_net *tn = tipc_net(net); int err; if (!info->attrs[TIPC_NLA_NET]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_NET_MAX, info->attrs[TIPC_NLA_NET], tipc_nl_net_policy, info->extack); if (err) return err; /* Can't change net id once TIPC has joined a network */ if (tipc_own_addr(net)) return -EPERM; if (attrs[TIPC_NLA_NET_ID]) { u32 val; val = nla_get_u32(attrs[TIPC_NLA_NET_ID]); if (val < 1 || val > 9999) return -EINVAL; tn->net_id = val; } if (attrs[TIPC_NLA_NET_ADDR]) { u32 addr; addr = nla_get_u32(attrs[TIPC_NLA_NET_ADDR]); if (!addr) return -EINVAL; tn->legacy_addr_format = true; tipc_net_init(net, NULL, addr); } if (attrs[TIPC_NLA_NET_NODEID]) { u8 node_id[NODE_ID_LEN]; u64 *w0 = (u64 *)&node_id[0]; u64 *w1 = (u64 *)&node_id[8]; if (!attrs[TIPC_NLA_NET_NODEID_W1]) return -EINVAL; *w0 = nla_get_u64(attrs[TIPC_NLA_NET_NODEID]); *w1 = nla_get_u64(attrs[TIPC_NLA_NET_NODEID_W1]); tipc_net_init(net, node_id, 0); } return 0; } int tipc_nl_net_set(struct sk_buff *skb, struct genl_info *info) { int err; rtnl_lock(); err = __tipc_nl_net_set(skb, info); rtnl_unlock(); return err; } static int __tipc_nl_addr_legacy_get(struct net *net, struct tipc_nl_msg *msg) { struct tipc_net *tn = tipc_net(net); struct nlattr *attrs; void *hdr; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, 0, TIPC_NL_ADDR_LEGACY_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start(msg->skb, TIPC_NLA_NET); if (!attrs) goto msg_full; if (tn->legacy_addr_format) if (nla_put_flag(msg->skb, TIPC_NLA_NET_ADDR_LEGACY)) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } int tipc_nl_net_addr_legacy_get(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_nl_msg msg; struct sk_buff *rep; int err; rep = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!rep) return -ENOMEM; msg.skb = rep; msg.portid = info->snd_portid; msg.seq = info->snd_seq; err = __tipc_nl_addr_legacy_get(net, &msg); if (err) { nlmsg_free(msg.skb); return err; } return genlmsg_reply(msg.skb, info); } |
21 17 5 7 1 6 25 20 25 16 18 17 81 5 5 5 5 5 5 1 1 26 26 55 17 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Software async crypto daemon. * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> * * Added AEAD support to cryptd. * Authors: Tadeusz Struk (tadeusz.struk@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. */ #include <crypto/internal/hash.h> #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include <crypto/cryptd.h> #include <linux/refcount.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/workqueue.h> static unsigned int cryptd_max_cpu_qlen = 1000; module_param(cryptd_max_cpu_qlen, uint, 0); MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth"); static struct workqueue_struct *cryptd_wq; struct cryptd_cpu_queue { struct crypto_queue queue; struct work_struct work; }; struct cryptd_queue { /* * Protected by disabling BH to allow enqueueing from softinterrupt and * dequeuing from kworker (cryptd_queue_worker()). */ struct cryptd_cpu_queue __percpu *cpu_queue; }; struct cryptd_instance_ctx { struct crypto_spawn spawn; struct cryptd_queue *queue; }; struct skcipherd_instance_ctx { struct crypto_skcipher_spawn spawn; struct cryptd_queue *queue; }; struct hashd_instance_ctx { struct crypto_shash_spawn spawn; struct cryptd_queue *queue; }; struct aead_instance_ctx { struct crypto_aead_spawn aead_spawn; struct cryptd_queue *queue; }; struct cryptd_skcipher_ctx { refcount_t refcnt; struct crypto_skcipher *child; }; struct cryptd_skcipher_request_ctx { struct skcipher_request req; }; struct cryptd_hash_ctx { refcount_t refcnt; struct crypto_shash *child; }; struct cryptd_hash_request_ctx { crypto_completion_t complete; void *data; struct shash_desc desc; }; struct cryptd_aead_ctx { refcount_t refcnt; struct crypto_aead *child; }; struct cryptd_aead_request_ctx { struct aead_request req; }; static void cryptd_queue_worker(struct work_struct *work); static int cryptd_init_queue(struct cryptd_queue *queue, unsigned int max_cpu_qlen) { int cpu; struct cryptd_cpu_queue *cpu_queue; queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); if (!queue->cpu_queue) return -ENOMEM; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); INIT_WORK(&cpu_queue->work, cryptd_queue_worker); } pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen); return 0; } static void cryptd_fini_queue(struct cryptd_queue *queue) { int cpu; struct cryptd_cpu_queue *cpu_queue; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); BUG_ON(cpu_queue->queue.qlen); } free_percpu(queue->cpu_queue); } static int cryptd_enqueue_request(struct cryptd_queue *queue, struct crypto_async_request *request) { int err; struct cryptd_cpu_queue *cpu_queue; refcount_t *refcnt; local_bh_disable(); cpu_queue = this_cpu_ptr(queue->cpu_queue); err = crypto_enqueue_request(&cpu_queue->queue, request); refcnt = crypto_tfm_ctx(request->tfm); if (err == -ENOSPC) goto out; queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work); if (!refcount_read(refcnt)) goto out; refcount_inc(refcnt); out: local_bh_enable(); return err; } /* Called in workqueue context, do one real cryption work (via * req->complete) and reschedule itself if there are more work to * do. */ static void cryptd_queue_worker(struct work_struct *work) { struct cryptd_cpu_queue *cpu_queue; struct crypto_async_request *req, *backlog; cpu_queue = container_of(work, struct cryptd_cpu_queue, work); /* * Only handle one request at a time to avoid hogging crypto workqueue. */ local_bh_disable(); backlog = crypto_get_backlog(&cpu_queue->queue); req = crypto_dequeue_request(&cpu_queue->queue); local_bh_enable(); if (!req) return; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); crypto_request_complete(req, 0); if (cpu_queue->queue.qlen) queue_work(cryptd_wq, &cpu_queue->work); } static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); return ictx->queue; } static void cryptd_type_and_mask(struct crypto_attr_type *algt, u32 *type, u32 *mask) { /* * cryptd is allowed to wrap internal algorithms, but in that case the * resulting cryptd instance will be marked as internal as well. */ *type = algt->type & CRYPTO_ALG_INTERNAL; *mask = algt->mask & CRYPTO_ALG_INTERNAL; /* No point in cryptd wrapping an algorithm that's already async. */ *mask |= CRYPTO_ALG_ASYNC; *mask |= crypto_algt_inherited_mask(algt); } static int cryptd_init_instance(struct crypto_instance *inst, struct crypto_alg *alg) { if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) return -ENAMETOOLONG; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); inst->alg.cra_priority = alg->cra_priority + 50; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; return 0; } static int cryptd_skcipher_setkey(struct crypto_skcipher *parent, const u8 *key, unsigned int keylen) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent); struct crypto_skcipher *child = ctx->child; crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); return crypto_skcipher_setkey(child, key, keylen); } static struct skcipher_request *cryptd_skcipher_prepare( struct skcipher_request *req, int err) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct skcipher_request *subreq = &rctx->req; struct cryptd_skcipher_ctx *ctx; struct crypto_skcipher *child; req->base.complete = subreq->base.complete; req->base.data = subreq->base.data; if (unlikely(err == -EINPROGRESS)) return NULL; ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); child = ctx->child; skcipher_request_set_tfm(subreq, child); skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); return subreq; } static void cryptd_skcipher_complete(struct skcipher_request *req, int err, crypto_completion_t complete) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_request *subreq = &rctx->req; int refcnt = refcount_read(&ctx->refcnt); local_bh_disable(); skcipher_request_complete(req, err); local_bh_enable(); if (unlikely(err == -EINPROGRESS)) { subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = complete; req->base.data = req; } else if (refcnt && refcount_dec_and_test(&ctx->refcnt)) crypto_free_skcipher(tfm); } static void cryptd_skcipher_encrypt(void *data, int err) { struct skcipher_request *req = data; struct skcipher_request *subreq; subreq = cryptd_skcipher_prepare(req, err); if (likely(subreq)) err = crypto_skcipher_encrypt(subreq); cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt); } static void cryptd_skcipher_decrypt(void *data, int err) { struct skcipher_request *req = data; struct skcipher_request *subreq; subreq = cryptd_skcipher_prepare(req, err); if (likely(subreq)) err = crypto_skcipher_decrypt(subreq); cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt); } static int cryptd_skcipher_enqueue(struct skcipher_request *req, crypto_completion_t compl) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_request *subreq = &rctx->req; struct cryptd_queue *queue; queue = cryptd_get_queue(crypto_skcipher_tfm(tfm)); subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = compl; req->base.data = req; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req) { return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt); } static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req) { return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt); } static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst); struct crypto_skcipher_spawn *spawn = &ictx->spawn; struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *cipher; cipher = crypto_spawn_skcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; crypto_skcipher_set_reqsize( tfm, sizeof(struct cryptd_skcipher_request_ctx) + crypto_skcipher_reqsize(cipher)); return 0; } static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(ctx->child); } static void cryptd_skcipher_free(struct skcipher_instance *inst) { struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst); crypto_drop_skcipher(&ctx->spawn); kfree(inst); } static int cryptd_create_skcipher(struct crypto_template *tmpl, struct rtattr **tb, struct crypto_attr_type *algt, struct cryptd_queue *queue) { struct skcipherd_instance_ctx *ctx; struct skcipher_instance *inst; struct skcipher_alg_common *alg; u32 type; u32 mask; int err; cryptd_type_and_mask(algt, &type, &mask); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = skcipher_instance_ctx(inst); ctx->queue = queue; err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst), crypto_attr_alg_name(tb[1]), type, mask); if (err) goto err_free_inst; alg = crypto_spawn_skcipher_alg_common(&ctx->spawn); err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base); if (err) goto err_free_inst; inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC | (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); inst->alg.ivsize = alg->ivsize; inst->alg.chunksize = alg->chunksize; inst->alg.min_keysize = alg->min_keysize; inst->alg.max_keysize = alg->max_keysize; inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx); inst->alg.init = cryptd_skcipher_init_tfm; inst->alg.exit = cryptd_skcipher_exit_tfm; inst->alg.setkey = cryptd_skcipher_setkey; inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue; inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue; inst->free = cryptd_skcipher_free; err = skcipher_register_instance(tmpl, inst); if (err) { err_free_inst: cryptd_skcipher_free(inst); } return err; } static int cryptd_hash_init_tfm(struct crypto_ahash *tfm) { struct ahash_instance *inst = ahash_alg_instance(tfm); struct hashd_instance_ctx *ictx = ahash_instance_ctx(inst); struct crypto_shash_spawn *spawn = &ictx->spawn; struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *hash; hash = crypto_spawn_shash(spawn); if (IS_ERR(hash)) return PTR_ERR(hash); ctx->child = hash; crypto_ahash_set_reqsize(tfm, sizeof(struct cryptd_hash_request_ctx) + crypto_shash_descsize(hash)); return 0; } static int cryptd_hash_clone_tfm(struct crypto_ahash *ntfm, struct crypto_ahash *tfm) { struct cryptd_hash_ctx *nctx = crypto_ahash_ctx(ntfm); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *hash; hash = crypto_clone_shash(ctx->child); if (IS_ERR(hash)) return PTR_ERR(hash); nctx->child = hash; return 0; } static void cryptd_hash_exit_tfm(struct crypto_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); crypto_free_shash(ctx->child); } static int cryptd_hash_setkey(struct crypto_ahash *parent, const u8 *key, unsigned int keylen) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); struct crypto_shash *child = ctx->child; crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & CRYPTO_TFM_REQ_MASK); return crypto_shash_setkey(child, key, keylen); } static int cryptd_hash_enqueue(struct ahash_request *req, crypto_completion_t compl) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_ahash_tfm(tfm)); rctx->complete = req->base.complete; rctx->data = req->base.data; req->base.complete = compl; req->base.data = req; return cryptd_enqueue_request(queue, &req->base); } static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req, int err) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); req->base.complete = rctx->complete; req->base.data = rctx->data; if (unlikely(err == -EINPROGRESS)) return NULL; return &rctx->desc; } static void cryptd_hash_complete(struct ahash_request *req, int err, crypto_completion_t complete) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); int refcnt = refcount_read(&ctx->refcnt); local_bh_disable(); ahash_request_complete(req, err); local_bh_enable(); if (err == -EINPROGRESS) { req->base.complete = complete; req->base.data = req; } else if (refcnt && refcount_dec_and_test(&ctx->refcnt)) crypto_free_ahash(tfm); } static void cryptd_hash_init(void *data, int err) { struct ahash_request *req = data; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *child = ctx->child; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (unlikely(!desc)) goto out; desc->tfm = child; err = crypto_shash_init(desc); out: cryptd_hash_complete(req, err, cryptd_hash_init); } static int cryptd_hash_init_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_init); } static void cryptd_hash_update(void *data, int err) { struct ahash_request *req = data; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (likely(desc)) err = shash_ahash_update(req, desc); cryptd_hash_complete(req, err, cryptd_hash_update); } static int cryptd_hash_update_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_update); } static void cryptd_hash_final(void *data, int err) { struct ahash_request *req = data; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (likely(desc)) err = crypto_shash_final(desc, req->result); cryptd_hash_complete(req, err, cryptd_hash_final); } static int cryptd_hash_final_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_final); } static void cryptd_hash_finup(void *data, int err) { struct ahash_request *req = data; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (likely(desc)) err = shash_ahash_finup(req, desc); cryptd_hash_complete(req, err, cryptd_hash_finup); } static int cryptd_hash_finup_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_finup); } static void cryptd_hash_digest(void *data, int err) { struct ahash_request *req = data; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *child = ctx->child; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (unlikely(!desc)) goto out; desc->tfm = child; err = shash_ahash_digest(req, desc); out: cryptd_hash_complete(req, err, cryptd_hash_digest); } static int cryptd_hash_digest_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_digest); } static int cryptd_hash_export(struct ahash_request *req, void *out) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return crypto_shash_export(&rctx->desc, out); } static int cryptd_hash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct shash_desc *desc = cryptd_shash_desc(req); desc->tfm = ctx->child; return crypto_shash_import(desc, in); } static void cryptd_hash_free(struct ahash_instance *inst) { struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst); crypto_drop_shash(&ctx->spawn); kfree(inst); } static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, struct crypto_attr_type *algt, struct cryptd_queue *queue) { struct hashd_instance_ctx *ctx; struct ahash_instance *inst; struct shash_alg *alg; u32 type; u32 mask; int err; cryptd_type_and_mask(algt, &type, &mask); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = ahash_instance_ctx(inst); ctx->queue = queue; err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst), crypto_attr_alg_name(tb[1]), type, mask); if (err) goto err_free_inst; alg = crypto_spawn_shash_alg(&ctx->spawn); err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base); if (err) goto err_free_inst; inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC | (alg->base.cra_flags & (CRYPTO_ALG_INTERNAL| CRYPTO_ALG_OPTIONAL_KEY)); inst->alg.halg.digestsize = alg->digestsize; inst->alg.halg.statesize = alg->statesize; inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx); inst->alg.init_tfm = cryptd_hash_init_tfm; inst->alg.clone_tfm = cryptd_hash_clone_tfm; inst->alg.exit_tfm = cryptd_hash_exit_tfm; inst->alg.init = cryptd_hash_init_enqueue; inst->alg.update = cryptd_hash_update_enqueue; inst->alg.final = cryptd_hash_final_enqueue; inst->alg.finup = cryptd_hash_finup_enqueue; inst->alg.export = cryptd_hash_export; inst->alg.import = cryptd_hash_import; if (crypto_shash_alg_has_setkey(alg)) inst->alg.setkey = cryptd_hash_setkey; inst->alg.digest = cryptd_hash_digest_enqueue; inst->free = cryptd_hash_free; err = ahash_register_instance(tmpl, inst); if (err) { err_free_inst: cryptd_hash_free(inst); } return err; } static int cryptd_aead_setkey(struct crypto_aead *parent, const u8 *key, unsigned int keylen) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; return crypto_aead_setkey(child, key, keylen); } static int cryptd_aead_setauthsize(struct crypto_aead *parent, unsigned int authsize) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; return crypto_aead_setauthsize(child, authsize); } static void cryptd_aead_crypt(struct aead_request *req, struct crypto_aead *child, int err, int (*crypt)(struct aead_request *req), crypto_completion_t compl) { struct cryptd_aead_request_ctx *rctx; struct aead_request *subreq; struct cryptd_aead_ctx *ctx; struct crypto_aead *tfm; int refcnt; rctx = aead_request_ctx(req); subreq = &rctx->req; req->base.complete = subreq->base.complete; req->base.data = subreq->base.data; tfm = crypto_aead_reqtfm(req); if (unlikely(err == -EINPROGRESS)) goto out; aead_request_set_tfm(subreq, child); aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); err = crypt(subreq); out: ctx = crypto_aead_ctx(tfm); refcnt = refcount_read(&ctx->refcnt); local_bh_disable(); aead_request_complete(req, err); local_bh_enable(); if (err == -EINPROGRESS) { subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = compl; req->base.data = req; } else if (refcnt && refcount_dec_and_test(&ctx->refcnt)) crypto_free_aead(tfm); } static void cryptd_aead_encrypt(void *data, int err) { struct aead_request *req = data; struct cryptd_aead_ctx *ctx; struct crypto_aead *child; ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); child = ctx->child; cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt, cryptd_aead_encrypt); } static void cryptd_aead_decrypt(void *data, int err) { struct aead_request *req = data; struct cryptd_aead_ctx *ctx; struct crypto_aead *child; ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); child = ctx->child; cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt, cryptd_aead_decrypt); } static int cryptd_aead_enqueue(struct aead_request *req, crypto_completion_t compl) { struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm)); struct aead_request *subreq = &rctx->req; subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = compl; req->base.data = req; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_aead_encrypt_enqueue(struct aead_request *req) { return cryptd_aead_enqueue(req, cryptd_aead_encrypt ); } static int cryptd_aead_decrypt_enqueue(struct aead_request *req) { return cryptd_aead_enqueue(req, cryptd_aead_decrypt ); } static int cryptd_aead_init_tfm(struct crypto_aead *tfm) { struct aead_instance *inst = aead_alg_instance(tfm); struct aead_instance_ctx *ictx = aead_instance_ctx(inst); struct crypto_aead_spawn *spawn = &ictx->aead_spawn; struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_aead *cipher; cipher = crypto_spawn_aead(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; crypto_aead_set_reqsize( tfm, sizeof(struct cryptd_aead_request_ctx) + crypto_aead_reqsize(cipher)); return 0; } static void cryptd_aead_exit_tfm(struct crypto_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_aead(ctx->child); } static void cryptd_aead_free(struct aead_instance *inst) { struct aead_instance_ctx *ctx = aead_instance_ctx(inst); crypto_drop_aead(&ctx->aead_spawn); kfree(inst); } static int cryptd_create_aead(struct crypto_template *tmpl, struct rtattr **tb, struct crypto_attr_type *algt, struct cryptd_queue *queue) { struct aead_instance_ctx *ctx; struct aead_instance *inst; struct aead_alg *alg; u32 type; u32 mask; int err; cryptd_type_and_mask(algt, &type, &mask); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = aead_instance_ctx(inst); ctx->queue = queue; err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst), crypto_attr_alg_name(tb[1]), type, mask); if (err) goto err_free_inst; alg = crypto_spawn_aead_alg(&ctx->aead_spawn); err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base); if (err) goto err_free_inst; inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC | (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx); inst->alg.ivsize = crypto_aead_alg_ivsize(alg); inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg); inst->alg.init = cryptd_aead_init_tfm; inst->alg.exit = cryptd_aead_exit_tfm; inst->alg.setkey = cryptd_aead_setkey; inst->alg.setauthsize = cryptd_aead_setauthsize; inst->alg.encrypt = cryptd_aead_encrypt_enqueue; inst->alg.decrypt = cryptd_aead_decrypt_enqueue; inst->free = cryptd_aead_free; err = aead_register_instance(tmpl, inst); if (err) { err_free_inst: cryptd_aead_free(inst); } return err; } static struct cryptd_queue queue; static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_LSKCIPHER: return cryptd_create_skcipher(tmpl, tb, algt, &queue); case CRYPTO_ALG_TYPE_HASH: return cryptd_create_hash(tmpl, tb, algt, &queue); case CRYPTO_ALG_TYPE_AEAD: return cryptd_create_aead(tmpl, tb, algt, &queue); } return -EINVAL; } static struct crypto_template cryptd_tmpl = { .name = "cryptd", .create = cryptd_create, .module = THIS_MODULE, }; struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_skcipher_ctx *ctx; struct crypto_skcipher *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_skcipher(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_skcipher_ctx(tfm); refcount_set(&ctx->refcnt, 1); return container_of(tfm, struct cryptd_skcipher, base); } EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher); struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_skcipher_child); bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); return refcount_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_skcipher_queued); void cryptd_free_skcipher(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); if (refcount_dec_and_test(&ctx->refcnt)) crypto_free_skcipher(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_skcipher); struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_hash_ctx *ctx; struct crypto_ahash *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_ahash(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_ahash_ctx(tfm); refcount_set(&ctx->refcnt, 1); return __cryptd_ahash_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_ahash); struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_ahash_child); struct shash_desc *cryptd_shash_desc(struct ahash_request *req) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return &rctx->desc; } EXPORT_SYMBOL_GPL(cryptd_shash_desc); bool cryptd_ahash_queued(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return refcount_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_ahash_queued); void cryptd_free_ahash(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); if (refcount_dec_and_test(&ctx->refcnt)) crypto_free_ahash(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_ahash); struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_aead_ctx *ctx; struct crypto_aead *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_aead(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_aead(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_aead_ctx(tfm); refcount_set(&ctx->refcnt, 1); return __cryptd_aead_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_aead); struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx; ctx = crypto_aead_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_aead_child); bool cryptd_aead_queued(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); return refcount_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_aead_queued); void cryptd_free_aead(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); if (refcount_dec_and_test(&ctx->refcnt)) crypto_free_aead(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_aead); static int __init cryptd_init(void) { int err; cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE, 1); if (!cryptd_wq) return -ENOMEM; err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen); if (err) goto err_destroy_wq; err = crypto_register_template(&cryptd_tmpl); if (err) goto err_fini_queue; return 0; err_fini_queue: cryptd_fini_queue(&queue); err_destroy_wq: destroy_workqueue(cryptd_wq); return err; } static void __exit cryptd_exit(void) { destroy_workqueue(cryptd_wq); cryptd_fini_queue(&queue); crypto_unregister_template(&cryptd_tmpl); } subsys_initcall(cryptd_init); module_exit(cryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async crypto daemon"); MODULE_ALIAS_CRYPTO("cryptd"); |
10 10 10 18 18 2 65 4 1 59 1 1 1 42 1 18 1 44 3 1 14 17 56 1 5 3 3 1 5 49 49 21 10 42 47 1 5 2 43 1 47 1 1 1 54 55 54 53 54 54 54 54 54 54 41 51 64 64 15 1 13 1 5 7 8 2 2 1 2 1 1 5 5 4 5 45 11 53 1 1 2 55 56 56 19 19 19 19 19 16 1 19 19 18 1 18 1 19 19 14 5 13 6 6 6 17 2 19 19 6 2 7 28 28 3 21 22 3 19 20 4 4 1 13 3 2 1 1 6 10 4 4 4 13 17 20 2 2 2 64 60 26 4 22 20 1 103 101 1 10 10 10 6 6 6 97 64 5 33 5 93 5 6 1 1 1 98 98 112 113 3 110 108 107 104 93 70 1 13 1 12 10 11 1 68 6 4 65 64 1 2 1 22 50 9 114 6 111 109 1 109 98 14 61 63 56 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 | // SPDX-License-Identifier: GPL-2.0-or-later /* * TCP over IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Based on: * linux/net/ipv4/tcp.c * linux/net/ipv4/tcp_input.c * linux/net/ipv4/tcp_output.c * * Fixes: * Hideaki YOSHIFUJI : sin6_scope_id support * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind * a single port at the same time. * YOSHIFUJI Hideaki @USAGI: convert /proc/net/tcp6 to seq_file. */ #include <linux/bottom_half.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/jiffies.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/init.h> #include <linux/jhash.h> #include <linux/ipsec.h> #include <linux/times.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/random.h> #include <linux/indirect_call_wrapper.h> #include <net/tcp.h> #include <net/ndisc.h> #include <net/inet6_hashtables.h> #include <net/inet6_connection_sock.h> #include <net/ipv6.h> #include <net/transp_v6.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/ip6_checksum.h> #include <net/inet_ecn.h> #include <net/protocol.h> #include <net/xfrm.h> #include <net/snmp.h> #include <net/dsfield.h> #include <net/timewait_sock.h> #include <net/inet_common.h> #include <net/secure_seq.h> #include <net/hotdata.h> #include <net/busy_poll.h> #include <net/rstreason.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <crypto/hash.h> #include <linux/scatterlist.h> #include <trace/events/tcp.h> static void tcp_v6_send_reset(const struct sock *sk, struct sk_buff *skb, enum sk_rst_reason reason); static void tcp_v6_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *req); INDIRECT_CALLABLE_SCOPE int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb); static const struct inet_connection_sock_af_ops ipv6_mapped; const struct inet_connection_sock_af_ops ipv6_specific; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) static const struct tcp_sock_af_ops tcp_sock_ipv6_specific; static const struct tcp_sock_af_ops tcp_sock_ipv6_mapped_specific; #endif /* Helper returning the inet6 address from a given tcp socket. * It can be used in TCP stack instead of inet6_sk(sk). * This avoids a dereference and allow compiler optimizations. * It is a specialized version of inet6_sk_generic(). */ #define tcp_inet6_sk(sk) (&container_of_const(tcp_sk(sk), \ struct tcp6_sock, tcp)->inet6) static void inet6_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); if (dst && dst_hold_safe(dst)) { rcu_assign_pointer(sk->sk_rx_dst, dst); sk->sk_rx_dst_ifindex = skb->skb_iif; sk->sk_rx_dst_cookie = rt6_get_cookie(dst_rt6_info(dst)); } } static u32 tcp_v6_init_seq(const struct sk_buff *skb) { return secure_tcpv6_seq(ipv6_hdr(skb)->daddr.s6_addr32, ipv6_hdr(skb)->saddr.s6_addr32, tcp_hdr(skb)->dest, tcp_hdr(skb)->source); } static u32 tcp_v6_init_ts_off(const struct net *net, const struct sk_buff *skb) { return secure_tcpv6_ts_off(net, ipv6_hdr(skb)->daddr.s6_addr32, ipv6_hdr(skb)->saddr.s6_addr32); } static int tcp_v6_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from tcp_v6_connect() and intended to * prevent BPF program called below from accessing bytes that are out * of the bound specified by user in addr_len. */ if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; sock_owned_by_me(sk); return BPF_CGROUP_RUN_PROG_INET6_CONNECT(sk, uaddr, &addr_len); } static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in6 *usin = (struct sockaddr_in6 *) uaddr; struct inet_connection_sock *icsk = inet_csk(sk); struct in6_addr *saddr = NULL, *final_p, final; struct inet_timewait_death_row *tcp_death_row; struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct inet_sock *inet = inet_sk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); struct ipv6_txoptions *opt; struct dst_entry *dst; struct flowi6 fl6; int addr_type; int err; if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (usin->sin6_family != AF_INET6) return -EAFNOSUPPORT; memset(&fl6, 0, sizeof(fl6)); if (inet6_test_bit(SNDFLOW, sk)) { fl6.flowlabel = usin->sin6_flowinfo&IPV6_FLOWINFO_MASK; IP6_ECN_flow_init(fl6.flowlabel); if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) { struct ip6_flowlabel *flowlabel; flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; fl6_sock_release(flowlabel); } } /* * connect() to INADDR_ANY means loopback (BSD'ism). */ if (ipv6_addr_any(&usin->sin6_addr)) { if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) ipv6_addr_set_v4mapped(htonl(INADDR_LOOPBACK), &usin->sin6_addr); else usin->sin6_addr = in6addr_loopback; } addr_type = ipv6_addr_type(&usin->sin6_addr); if (addr_type & IPV6_ADDR_MULTICAST) return -ENETUNREACH; if (addr_type&IPV6_ADDR_LINKLOCAL) { if (addr_len >= sizeof(struct sockaddr_in6) && usin->sin6_scope_id) { /* If interface is set while binding, indices * must coincide. */ if (!sk_dev_equal_l3scope(sk, usin->sin6_scope_id)) return -EINVAL; sk->sk_bound_dev_if = usin->sin6_scope_id; } /* Connect to link-local address requires an interface */ if (!sk->sk_bound_dev_if) return -EINVAL; } if (tp->rx_opt.ts_recent_stamp && !ipv6_addr_equal(&sk->sk_v6_daddr, &usin->sin6_addr)) { tp->rx_opt.ts_recent = 0; tp->rx_opt.ts_recent_stamp = 0; WRITE_ONCE(tp->write_seq, 0); } sk->sk_v6_daddr = usin->sin6_addr; np->flow_label = fl6.flowlabel; /* * TCP over IPv4 */ if (addr_type & IPV6_ADDR_MAPPED) { u32 exthdrlen = icsk->icsk_ext_hdr_len; struct sockaddr_in sin; if (ipv6_only_sock(sk)) return -ENETUNREACH; sin.sin_family = AF_INET; sin.sin_port = usin->sin6_port; sin.sin_addr.s_addr = usin->sin6_addr.s6_addr32[3]; /* Paired with READ_ONCE() in tcp_(get|set)sockopt() */ WRITE_ONCE(icsk->icsk_af_ops, &ipv6_mapped); if (sk_is_mptcp(sk)) mptcpv6_handle_mapped(sk, true); sk->sk_backlog_rcv = tcp_v4_do_rcv; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) tp->af_specific = &tcp_sock_ipv6_mapped_specific; #endif err = tcp_v4_connect(sk, (struct sockaddr *)&sin, sizeof(sin)); if (err) { icsk->icsk_ext_hdr_len = exthdrlen; /* Paired with READ_ONCE() in tcp_(get|set)sockopt() */ WRITE_ONCE(icsk->icsk_af_ops, &ipv6_specific); if (sk_is_mptcp(sk)) mptcpv6_handle_mapped(sk, false); sk->sk_backlog_rcv = tcp_v6_do_rcv; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) tp->af_specific = &tcp_sock_ipv6_specific; #endif goto failure; } np->saddr = sk->sk_v6_rcv_saddr; return err; } if (!ipv6_addr_any(&sk->sk_v6_rcv_saddr)) saddr = &sk->sk_v6_rcv_saddr; fl6.flowi6_proto = IPPROTO_TCP; fl6.daddr = sk->sk_v6_daddr; fl6.saddr = saddr ? *saddr : np->saddr; fl6.flowlabel = ip6_make_flowinfo(np->tclass, np->flow_label); fl6.flowi6_oif = sk->sk_bound_dev_if; fl6.flowi6_mark = sk->sk_mark; fl6.fl6_dport = usin->sin6_port; fl6.fl6_sport = inet->inet_sport; fl6.flowi6_uid = sk->sk_uid; opt = rcu_dereference_protected(np->opt, lockdep_sock_is_held(sk)); final_p = fl6_update_dst(&fl6, opt, &final); security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6)); dst = ip6_dst_lookup_flow(net, sk, &fl6, final_p); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto failure; } tp->tcp_usec_ts = dst_tcp_usec_ts(dst); tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; if (!saddr) { saddr = &fl6.saddr; err = inet_bhash2_update_saddr(sk, saddr, AF_INET6); if (err) goto failure; } /* set the source address */ np->saddr = *saddr; inet->inet_rcv_saddr = LOOPBACK4_IPV6; sk->sk_gso_type = SKB_GSO_TCPV6; ip6_dst_store(sk, dst, NULL, NULL); icsk->icsk_ext_hdr_len = 0; if (opt) icsk->icsk_ext_hdr_len = opt->opt_flen + opt->opt_nflen; tp->rx_opt.mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - sizeof(struct ipv6hdr); inet->inet_dport = usin->sin6_port; tcp_set_state(sk, TCP_SYN_SENT); err = inet6_hash_connect(tcp_death_row, sk); if (err) goto late_failure; sk_set_txhash(sk); if (likely(!tp->repair)) { if (!tp->write_seq) WRITE_ONCE(tp->write_seq, secure_tcpv6_seq(np->saddr.s6_addr32, sk->sk_v6_daddr.s6_addr32, inet->inet_sport, inet->inet_dport)); tp->tsoffset = secure_tcpv6_ts_off(net, np->saddr.s6_addr32, sk->sk_v6_daddr.s6_addr32); } if (tcp_fastopen_defer_connect(sk, &err)) return err; if (err) goto late_failure; err = tcp_connect(sk); if (err) goto late_failure; return 0; late_failure: tcp_set_state(sk, TCP_CLOSE); inet_bhash2_reset_saddr(sk); failure: inet->inet_dport = 0; sk->sk_route_caps = 0; return err; } static void tcp_v6_mtu_reduced(struct sock *sk) { struct dst_entry *dst; u32 mtu; if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) return; mtu = READ_ONCE(tcp_sk(sk)->mtu_info); /* Drop requests trying to increase our current mss. * Check done in __ip6_rt_update_pmtu() is too late. */ if (tcp_mtu_to_mss(sk, mtu) >= tcp_sk(sk)->mss_cache) return; dst = inet6_csk_update_pmtu(sk, mtu); if (!dst) return; if (inet_csk(sk)->icsk_pmtu_cookie > dst_mtu(dst)) { tcp_sync_mss(sk, dst_mtu(dst)); tcp_simple_retransmit(sk); } } static int tcp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { const struct ipv6hdr *hdr = (const struct ipv6hdr *)skb->data; const struct tcphdr *th = (struct tcphdr *)(skb->data+offset); struct net *net = dev_net(skb->dev); struct request_sock *fastopen; struct ipv6_pinfo *np; struct tcp_sock *tp; __u32 seq, snd_una; struct sock *sk; bool fatal; int err; sk = __inet6_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, &hdr->daddr, th->dest, &hdr->saddr, ntohs(th->source), skb->dev->ifindex, inet6_sdif(skb)); if (!sk) { __ICMP6_INC_STATS(net, __in6_dev_get(skb->dev), ICMP6_MIB_INERRORS); return -ENOENT; } if (sk->sk_state == TCP_TIME_WAIT) { /* To increase the counter of ignored icmps for TCP-AO */ tcp_ao_ignore_icmp(sk, AF_INET6, type, code); inet_twsk_put(inet_twsk(sk)); return 0; } seq = ntohl(th->seq); fatal = icmpv6_err_convert(type, code, &err); if (sk->sk_state == TCP_NEW_SYN_RECV) { tcp_req_err(sk, seq, fatal); return 0; } if (tcp_ao_ignore_icmp(sk, AF_INET6, type, code)) { sock_put(sk); return 0; } bh_lock_sock(sk); if (sock_owned_by_user(sk) && type != ICMPV6_PKT_TOOBIG) __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); if (sk->sk_state == TCP_CLOSE) goto out; if (static_branch_unlikely(&ip6_min_hopcount)) { /* min_hopcount can be changed concurrently from do_ipv6_setsockopt() */ if (ipv6_hdr(skb)->hop_limit < READ_ONCE(tcp_inet6_sk(sk)->min_hopcount)) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); goto out; } } tp = tcp_sk(sk); /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ fastopen = rcu_dereference(tp->fastopen_rsk); snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; if (sk->sk_state != TCP_LISTEN && !between(seq, snd_una, tp->snd_nxt)) { __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); goto out; } np = tcp_inet6_sk(sk); if (type == NDISC_REDIRECT) { if (!sock_owned_by_user(sk)) { struct dst_entry *dst = __sk_dst_check(sk, np->dst_cookie); if (dst) dst->ops->redirect(dst, sk, skb); } goto out; } if (type == ICMPV6_PKT_TOOBIG) { u32 mtu = ntohl(info); /* We are not interested in TCP_LISTEN and open_requests * (SYN-ACKs send out by Linux are always <576bytes so * they should go through unfragmented). */ if (sk->sk_state == TCP_LISTEN) goto out; if (!ip6_sk_accept_pmtu(sk)) goto out; if (mtu < IPV6_MIN_MTU) goto out; WRITE_ONCE(tp->mtu_info, mtu); if (!sock_owned_by_user(sk)) tcp_v6_mtu_reduced(sk); else if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) sock_hold(sk); goto out; } /* Might be for an request_sock */ switch (sk->sk_state) { case TCP_SYN_SENT: case TCP_SYN_RECV: /* Only in fast or simultaneous open. If a fast open socket is * already accepted it is treated as a connected one below. */ if (fastopen && !fastopen->sk) break; ipv6_icmp_error(sk, skb, err, th->dest, ntohl(info), (u8 *)th); if (!sock_owned_by_user(sk)) tcp_done_with_error(sk, err); else WRITE_ONCE(sk->sk_err_soft, err); goto out; case TCP_LISTEN: break; default: /* check if this ICMP message allows revert of backoff. * (see RFC 6069) */ if (!fastopen && type == ICMPV6_DEST_UNREACH && code == ICMPV6_NOROUTE) tcp_ld_RTO_revert(sk, seq); } if (!sock_owned_by_user(sk) && inet6_test_bit(RECVERR6, sk)) { WRITE_ONCE(sk->sk_err, err); sk_error_report(sk); } else { WRITE_ONCE(sk->sk_err_soft, err); } out: bh_unlock_sock(sk); sock_put(sk); return 0; } static int tcp_v6_send_synack(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb) { struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct ipv6_txoptions *opt; struct flowi6 *fl6 = &fl->u.ip6; struct sk_buff *skb; int err = -ENOMEM; u8 tclass; /* First, grab a route. */ if (!dst && (dst = inet6_csk_route_req(sk, fl6, req, IPPROTO_TCP)) == NULL) goto done; skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); if (skb) { __tcp_v6_send_check(skb, &ireq->ir_v6_loc_addr, &ireq->ir_v6_rmt_addr); fl6->daddr = ireq->ir_v6_rmt_addr; if (inet6_test_bit(REPFLOW, sk) && ireq->pktopts) fl6->flowlabel = ip6_flowlabel(ipv6_hdr(ireq->pktopts)); tclass = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ? (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | (np->tclass & INET_ECN_MASK) : np->tclass; if (!INET_ECN_is_capable(tclass) && tcp_bpf_ca_needs_ecn((struct sock *)req)) tclass |= INET_ECN_ECT_0; rcu_read_lock(); opt = ireq->ipv6_opt; if (!opt) opt = rcu_dereference(np->opt); err = ip6_xmit(sk, skb, fl6, skb->mark ? : READ_ONCE(sk->sk_mark), opt, tclass, READ_ONCE(sk->sk_priority)); rcu_read_unlock(); err = net_xmit_eval(err); } done: return err; } static void tcp_v6_reqsk_destructor(struct request_sock *req) { kfree(inet_rsk(req)->ipv6_opt); consume_skb(inet_rsk(req)->pktopts); } #ifdef CONFIG_TCP_MD5SIG static struct tcp_md5sig_key *tcp_v6_md5_do_lookup(const struct sock *sk, const struct in6_addr *addr, int l3index) { return tcp_md5_do_lookup(sk, l3index, (union tcp_md5_addr *)addr, AF_INET6); } static struct tcp_md5sig_key *tcp_v6_md5_lookup(const struct sock *sk, const struct sock *addr_sk) { int l3index; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), addr_sk->sk_bound_dev_if); return tcp_v6_md5_do_lookup(sk, &addr_sk->sk_v6_daddr, l3index); } static int tcp_v6_parse_md5_keys(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct tcp_md5sig cmd; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd.tcpm_addr; union tcp_ao_addr *addr; int l3index = 0; u8 prefixlen; bool l3flag; u8 flags; if (optlen < sizeof(cmd)) return -EINVAL; if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) return -EFAULT; if (sin6->sin6_family != AF_INET6) return -EINVAL; flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; if (optname == TCP_MD5SIG_EXT && cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { prefixlen = cmd.tcpm_prefixlen; if (prefixlen > 128 || (ipv6_addr_v4mapped(&sin6->sin6_addr) && prefixlen > 32)) return -EINVAL; } else { prefixlen = ipv6_addr_v4mapped(&sin6->sin6_addr) ? 32 : 128; } if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); if (dev && netif_is_l3_master(dev)) l3index = dev->ifindex; rcu_read_unlock(); /* ok to reference set/not set outside of rcu; * right now device MUST be an L3 master */ if (!dev || !l3index) return -EINVAL; } if (!cmd.tcpm_keylen) { if (ipv6_addr_v4mapped(&sin6->sin6_addr)) return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin6->sin6_addr.s6_addr32[3], AF_INET, prefixlen, l3index, flags); return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin6->sin6_addr, AF_INET6, prefixlen, l3index, flags); } if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) return -EINVAL; if (ipv6_addr_v4mapped(&sin6->sin6_addr)) { addr = (union tcp_md5_addr *)&sin6->sin6_addr.s6_addr32[3]; /* Don't allow keys for peers that have a matching TCP-AO key. * See the comment in tcp_ao_add_cmd() */ if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false)) return -EKEYREJECTED; return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, cmd.tcpm_key, cmd.tcpm_keylen); } addr = (union tcp_md5_addr *)&sin6->sin6_addr; /* Don't allow keys for peers that have a matching TCP-AO key. * See the comment in tcp_ao_add_cmd() */ if (tcp_ao_required(sk, addr, AF_INET6, l3flag ? l3index : -1, false)) return -EKEYREJECTED; return tcp_md5_do_add(sk, addr, AF_INET6, prefixlen, l3index, flags, cmd.tcpm_key, cmd.tcpm_keylen); } static int tcp_v6_md5_hash_headers(struct tcp_sigpool *hp, const struct in6_addr *daddr, const struct in6_addr *saddr, const struct tcphdr *th, int nbytes) { struct tcp6_pseudohdr *bp; struct scatterlist sg; struct tcphdr *_th; bp = hp->scratch; /* 1. TCP pseudo-header (RFC2460) */ bp->saddr = *saddr; bp->daddr = *daddr; bp->protocol = cpu_to_be32(IPPROTO_TCP); bp->len = cpu_to_be32(nbytes); _th = (struct tcphdr *)(bp + 1); memcpy(_th, th, sizeof(*th)); _th->check = 0; sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp) + sizeof(*th)); return crypto_ahash_update(hp->req); } static int tcp_v6_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, const struct in6_addr *daddr, struct in6_addr *saddr, const struct tcphdr *th) { struct tcp_sigpool hp; if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) goto clear_hash_nostart; if (crypto_ahash_init(hp.req)) goto clear_hash; if (tcp_v6_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(&hp, key)) goto clear_hash; ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); if (crypto_ahash_final(hp.req)) goto clear_hash; tcp_sigpool_end(&hp); return 0; clear_hash: tcp_sigpool_end(&hp); clear_hash_nostart: memset(md5_hash, 0, 16); return 1; } static int tcp_v6_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb) { const struct tcphdr *th = tcp_hdr(skb); const struct in6_addr *saddr, *daddr; struct tcp_sigpool hp; if (sk) { /* valid for establish/request sockets */ saddr = &sk->sk_v6_rcv_saddr; daddr = &sk->sk_v6_daddr; } else { const struct ipv6hdr *ip6h = ipv6_hdr(skb); saddr = &ip6h->saddr; daddr = &ip6h->daddr; } if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) goto clear_hash_nostart; if (crypto_ahash_init(hp.req)) goto clear_hash; if (tcp_v6_md5_hash_headers(&hp, daddr, saddr, th, skb->len)) goto clear_hash; if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(&hp, key)) goto clear_hash; ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); if (crypto_ahash_final(hp.req)) goto clear_hash; tcp_sigpool_end(&hp); return 0; clear_hash: tcp_sigpool_end(&hp); clear_hash_nostart: memset(md5_hash, 0, 16); return 1; } #endif static void tcp_v6_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb, u32 tw_isn) { bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = tcp_inet6_sk(sk_listener); ireq->ir_v6_rmt_addr = ipv6_hdr(skb)->saddr; ireq->ir_v6_loc_addr = ipv6_hdr(skb)->daddr; /* So that link locals have meaning */ if ((!sk_listener->sk_bound_dev_if || l3_slave) && ipv6_addr_type(&ireq->ir_v6_rmt_addr) & IPV6_ADDR_LINKLOCAL) ireq->ir_iif = tcp_v6_iif(skb); if (!tw_isn && (ipv6_opt_accepted(sk_listener, skb, &TCP_SKB_CB(skb)->header.h6) || np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo || np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim || inet6_test_bit(REPFLOW, sk_listener))) { refcount_inc(&skb->users); ireq->pktopts = skb; } } static struct dst_entry *tcp_v6_route_req(const struct sock *sk, struct sk_buff *skb, struct flowi *fl, struct request_sock *req, u32 tw_isn) { tcp_v6_init_req(req, sk, skb, tw_isn); if (security_inet_conn_request(sk, skb, req)) return NULL; return inet6_csk_route_req(sk, &fl->u.ip6, req, IPPROTO_TCP); } struct request_sock_ops tcp6_request_sock_ops __read_mostly = { .family = AF_INET6, .obj_size = sizeof(struct tcp6_request_sock), .rtx_syn_ack = tcp_rtx_synack, .send_ack = tcp_v6_reqsk_send_ack, .destructor = tcp_v6_reqsk_destructor, .send_reset = tcp_v6_send_reset, .syn_ack_timeout = tcp_syn_ack_timeout, }; const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops = { .mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - sizeof(struct ipv6hdr), #ifdef CONFIG_TCP_MD5SIG .req_md5_lookup = tcp_v6_md5_lookup, .calc_md5_hash = tcp_v6_md5_hash_skb, #endif #ifdef CONFIG_TCP_AO .ao_lookup = tcp_v6_ao_lookup_rsk, .ao_calc_key = tcp_v6_ao_calc_key_rsk, .ao_synack_hash = tcp_v6_ao_synack_hash, #endif #ifdef CONFIG_SYN_COOKIES .cookie_init_seq = cookie_v6_init_sequence, #endif .route_req = tcp_v6_route_req, .init_seq = tcp_v6_init_seq, .init_ts_off = tcp_v6_init_ts_off, .send_synack = tcp_v6_send_synack, }; static void tcp_v6_send_response(const struct sock *sk, struct sk_buff *skb, u32 seq, u32 ack, u32 win, u32 tsval, u32 tsecr, int oif, int rst, u8 tclass, __be32 label, u32 priority, u32 txhash, struct tcp_key *key) { const struct tcphdr *th = tcp_hdr(skb); struct tcphdr *t1; struct sk_buff *buff; struct flowi6 fl6; struct net *net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); struct sock *ctl_sk = net->ipv6.tcp_sk; unsigned int tot_len = sizeof(struct tcphdr); __be32 mrst = 0, *topt; struct dst_entry *dst; __u32 mark = 0; if (tsecr) tot_len += TCPOLEN_TSTAMP_ALIGNED; if (tcp_key_is_md5(key)) tot_len += TCPOLEN_MD5SIG_ALIGNED; if (tcp_key_is_ao(key)) tot_len += tcp_ao_len_aligned(key->ao_key); #ifdef CONFIG_MPTCP if (rst && !tcp_key_is_md5(key)) { mrst = mptcp_reset_option(skb); if (mrst) tot_len += sizeof(__be32); } #endif buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); if (!buff) return; skb_reserve(buff, MAX_TCP_HEADER); t1 = skb_push(buff, tot_len); skb_reset_transport_header(buff); /* Swap the send and the receive. */ memset(t1, 0, sizeof(*t1)); t1->dest = th->source; t1->source = th->dest; t1->doff = tot_len / 4; t1->seq = htonl(seq); t1->ack_seq = htonl(ack); t1->ack = !rst || !th->ack; t1->rst = rst; t1->window = htons(win); topt = (__be32 *)(t1 + 1); if (tsecr) { *topt++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); *topt++ = htonl(tsval); *topt++ = htonl(tsecr); } if (mrst) *topt++ = mrst; #ifdef CONFIG_TCP_MD5SIG if (tcp_key_is_md5(key)) { *topt++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); tcp_v6_md5_hash_hdr((__u8 *)topt, key->md5_key, &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, t1); } #endif #ifdef CONFIG_TCP_AO if (tcp_key_is_ao(key)) { *topt++ = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key->ao_key) << 16) | (key->ao_key->sndid << 8) | (key->rcv_next)); tcp_ao_hash_hdr(AF_INET6, (char *)topt, key->ao_key, key->traffic_key, (union tcp_ao_addr *)&ipv6_hdr(skb)->saddr, (union tcp_ao_addr *)&ipv6_hdr(skb)->daddr, t1, key->sne); } #endif memset(&fl6, 0, sizeof(fl6)); fl6.daddr = ipv6_hdr(skb)->saddr; fl6.saddr = ipv6_hdr(skb)->daddr; fl6.flowlabel = label; buff->ip_summed = CHECKSUM_PARTIAL; __tcp_v6_send_check(buff, &fl6.saddr, &fl6.daddr); fl6.flowi6_proto = IPPROTO_TCP; if (rt6_need_strict(&fl6.daddr) && !oif) fl6.flowi6_oif = tcp_v6_iif(skb); else { if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) oif = skb->skb_iif; fl6.flowi6_oif = oif; } if (sk) { /* unconstify the socket only to attach it to buff with care. */ skb_set_owner_edemux(buff, (struct sock *)sk); if (sk->sk_state == TCP_TIME_WAIT) mark = inet_twsk(sk)->tw_mark; else mark = READ_ONCE(sk->sk_mark); skb_set_delivery_time(buff, tcp_transmit_time(sk), SKB_CLOCK_MONOTONIC); } if (txhash) { /* autoflowlabel/skb_get_hash_flowi6 rely on buff->hash */ skb_set_hash(buff, txhash, PKT_HASH_TYPE_L4); } fl6.flowi6_mark = IP6_REPLY_MARK(net, skb->mark) ?: mark; fl6.fl6_dport = t1->dest; fl6.fl6_sport = t1->source; fl6.flowi6_uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); security_skb_classify_flow(skb, flowi6_to_flowi_common(&fl6)); /* Pass a socket to ip6_dst_lookup either it is for RST * Underlying function will use this to retrieve the network * namespace */ if (sk && sk->sk_state != TCP_TIME_WAIT) dst = ip6_dst_lookup_flow(net, sk, &fl6, NULL); /*sk's xfrm_policy can be referred*/ else dst = ip6_dst_lookup_flow(net, ctl_sk, &fl6, NULL); if (!IS_ERR(dst)) { skb_dst_set(buff, dst); ip6_xmit(ctl_sk, buff, &fl6, fl6.flowi6_mark, NULL, tclass & ~INET_ECN_MASK, priority); TCP_INC_STATS(net, TCP_MIB_OUTSEGS); if (rst) TCP_INC_STATS(net, TCP_MIB_OUTRSTS); return; } kfree_skb(buff); } static void tcp_v6_send_reset(const struct sock *sk, struct sk_buff *skb, enum sk_rst_reason reason) { const struct tcphdr *th = tcp_hdr(skb); struct ipv6hdr *ipv6h = ipv6_hdr(skb); const __u8 *md5_hash_location = NULL; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) bool allocated_traffic_key = false; #endif const struct tcp_ao_hdr *aoh; struct tcp_key key = {}; u32 seq = 0, ack_seq = 0; __be32 label = 0; u32 priority = 0; struct net *net; u32 txhash = 0; int oif = 0; #ifdef CONFIG_TCP_MD5SIG unsigned char newhash[16]; int genhash; struct sock *sk1 = NULL; #endif if (th->rst) return; /* If sk not NULL, it means we did a successful lookup and incoming * route had to be correct. prequeue might have dropped our dst. */ if (!sk && !ipv6_unicast_destination(skb)) return; net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); /* Invalid TCP option size or twice included auth */ if (tcp_parse_auth_options(th, &md5_hash_location, &aoh)) return; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) rcu_read_lock(); #endif #ifdef CONFIG_TCP_MD5SIG if (sk && sk_fullsock(sk)) { int l3index; /* sdif set, means packet ingressed via a device * in an L3 domain and inet_iif is set to it. */ l3index = tcp_v6_sdif(skb) ? tcp_v6_iif_l3_slave(skb) : 0; key.md5_key = tcp_v6_md5_do_lookup(sk, &ipv6h->saddr, l3index); if (key.md5_key) key.type = TCP_KEY_MD5; } else if (md5_hash_location) { int dif = tcp_v6_iif_l3_slave(skb); int sdif = tcp_v6_sdif(skb); int l3index; /* * active side is lost. Try to find listening socket through * source port, and then find md5 key through listening socket. * we are not loose security here: * Incoming packet is checked with md5 hash with finding key, * no RST generated if md5 hash doesn't match. */ sk1 = inet6_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, NULL, 0, &ipv6h->saddr, th->source, &ipv6h->daddr, ntohs(th->source), dif, sdif); if (!sk1) goto out; /* sdif set, means packet ingressed via a device * in an L3 domain and dif is set to it. */ l3index = tcp_v6_sdif(skb) ? dif : 0; key.md5_key = tcp_v6_md5_do_lookup(sk1, &ipv6h->saddr, l3index); if (!key.md5_key) goto out; key.type = TCP_KEY_MD5; genhash = tcp_v6_md5_hash_skb(newhash, key.md5_key, NULL, skb); if (genhash || memcmp(md5_hash_location, newhash, 16) != 0) goto out; } #endif if (th->ack) seq = ntohl(th->ack_seq); else ack_seq = ntohl(th->seq) + th->syn + th->fin + skb->len - (th->doff << 2); #ifdef CONFIG_TCP_AO if (aoh) { int l3index; l3index = tcp_v6_sdif(skb) ? tcp_v6_iif_l3_slave(skb) : 0; if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, seq, &key.ao_key, &key.traffic_key, &allocated_traffic_key, &key.rcv_next, &key.sne)) goto out; key.type = TCP_KEY_AO; } #endif if (sk) { oif = sk->sk_bound_dev_if; if (sk_fullsock(sk)) { if (inet6_test_bit(REPFLOW, sk)) label = ip6_flowlabel(ipv6h); priority = READ_ONCE(sk->sk_priority); txhash = sk->sk_txhash; } if (sk->sk_state == TCP_TIME_WAIT) { label = cpu_to_be32(inet_twsk(sk)->tw_flowlabel); priority = inet_twsk(sk)->tw_priority; txhash = inet_twsk(sk)->tw_txhash; } } else { if (net->ipv6.sysctl.flowlabel_reflect & FLOWLABEL_REFLECT_TCP_RESET) label = ip6_flowlabel(ipv6h); } trace_tcp_send_reset(sk, skb, reason); tcp_v6_send_response(sk, skb, seq, ack_seq, 0, 0, 0, oif, 1, ipv6_get_dsfield(ipv6h), label, priority, txhash, &key); #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) out: if (allocated_traffic_key) kfree(key.traffic_key); rcu_read_unlock(); #endif } static void tcp_v6_send_ack(const struct sock *sk, struct sk_buff *skb, u32 seq, u32 ack, u32 win, u32 tsval, u32 tsecr, int oif, struct tcp_key *key, u8 tclass, __be32 label, u32 priority, u32 txhash) { tcp_v6_send_response(sk, skb, seq, ack, win, tsval, tsecr, oif, 0, tclass, label, priority, txhash, key); } static void tcp_v6_timewait_ack(struct sock *sk, struct sk_buff *skb) { struct inet_timewait_sock *tw = inet_twsk(sk); struct tcp_timewait_sock *tcptw = tcp_twsk(sk); struct tcp_key key = {}; #ifdef CONFIG_TCP_AO struct tcp_ao_info *ao_info; if (static_branch_unlikely(&tcp_ao_needed.key)) { /* FIXME: the segment to-be-acked is not verified yet */ ao_info = rcu_dereference(tcptw->ao_info); if (ao_info) { const struct tcp_ao_hdr *aoh; /* Invalid TCP option size or twice included auth */ if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) goto out; if (aoh) key.ao_key = tcp_ao_established_key(sk, ao_info, aoh->rnext_keyid, -1); } } if (key.ao_key) { struct tcp_ao_key *rnext_key; key.traffic_key = snd_other_key(key.ao_key); /* rcv_next switches to our rcv_next */ rnext_key = READ_ONCE(ao_info->rnext_key); key.rcv_next = rnext_key->rcvid; key.sne = READ_ONCE(ao_info->snd_sne); key.type = TCP_KEY_AO; #else if (0) { #endif #ifdef CONFIG_TCP_MD5SIG } else if (static_branch_unlikely(&tcp_md5_needed.key)) { key.md5_key = tcp_twsk_md5_key(tcptw); if (key.md5_key) key.type = TCP_KEY_MD5; #endif } tcp_v6_send_ack(sk, skb, tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt), tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcp_tw_tsval(tcptw), READ_ONCE(tcptw->tw_ts_recent), tw->tw_bound_dev_if, &key, tw->tw_tclass, cpu_to_be32(tw->tw_flowlabel), tw->tw_priority, tw->tw_txhash); #ifdef CONFIG_TCP_AO out: #endif inet_twsk_put(tw); } static void tcp_v6_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *req) { struct tcp_key key = {}; #ifdef CONFIG_TCP_AO if (static_branch_unlikely(&tcp_ao_needed.key) && tcp_rsk_used_ao(req)) { const struct in6_addr *addr = &ipv6_hdr(skb)->saddr; const struct tcp_ao_hdr *aoh; int l3index; l3index = tcp_v6_sdif(skb) ? tcp_v6_iif_l3_slave(skb) : 0; /* Invalid TCP option size or twice included auth */ if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) return; if (!aoh) return; key.ao_key = tcp_ao_do_lookup(sk, l3index, (union tcp_ao_addr *)addr, AF_INET6, aoh->rnext_keyid, -1); if (unlikely(!key.ao_key)) { /* Send ACK with any matching MKT for the peer */ key.ao_key = tcp_ao_do_lookup(sk, l3index, (union tcp_ao_addr *)addr, AF_INET6, -1, -1); /* Matching key disappeared (user removed the key?) * let the handshake timeout. */ if (!key.ao_key) { net_info_ratelimited("TCP-AO key for (%pI6, %d)->(%pI6, %d) suddenly disappeared, won't ACK new connection\n", addr, ntohs(tcp_hdr(skb)->source), &ipv6_hdr(skb)->daddr, ntohs(tcp_hdr(skb)->dest)); return; } } key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC); if (!key.traffic_key) return; key.type = TCP_KEY_AO; key.rcv_next = aoh->keyid; tcp_v6_ao_calc_key_rsk(key.ao_key, key.traffic_key, req); #else if (0) { #endif #ifdef CONFIG_TCP_MD5SIG } else if (static_branch_unlikely(&tcp_md5_needed.key)) { int l3index = tcp_v6_sdif(skb) ? tcp_v6_iif_l3_slave(skb) : 0; key.md5_key = tcp_v6_md5_do_lookup(sk, &ipv6_hdr(skb)->saddr, l3index); if (key.md5_key) key.type = TCP_KEY_MD5; #endif } /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV * sk->sk_state == TCP_SYN_RECV -> for Fast Open. */ tcp_v6_send_ack(sk, skb, (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, tcp_rsk(req)->rcv_nxt, tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale, tcp_rsk_tsval(tcp_rsk(req)), READ_ONCE(req->ts_recent), sk->sk_bound_dev_if, &key, ipv6_get_dsfield(ipv6_hdr(skb)), 0, READ_ONCE(sk->sk_priority), READ_ONCE(tcp_rsk(req)->txhash)); if (tcp_key_is_ao(&key)) kfree(key.traffic_key); } static struct sock *tcp_v6_cookie_check(struct sock *sk, struct sk_buff *skb) { #ifdef CONFIG_SYN_COOKIES const struct tcphdr *th = tcp_hdr(skb); if (!th->syn) sk = cookie_v6_check(sk, skb); #endif return sk; } u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, struct tcphdr *th, u32 *cookie) { u16 mss = 0; #ifdef CONFIG_SYN_COOKIES mss = tcp_get_syncookie_mss(&tcp6_request_sock_ops, &tcp_request_sock_ipv6_ops, sk, th); if (mss) { *cookie = __cookie_v6_init_sequence(iph, th, &mss); tcp_synq_overflow(sk); } #endif return mss; } static int tcp_v6_conn_request(struct sock *sk, struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) return tcp_v4_conn_request(sk, skb); if (!ipv6_unicast_destination(skb)) goto drop; if (ipv6_addr_v4mapped(&ipv6_hdr(skb)->saddr)) { __IP6_INC_STATS(sock_net(sk), NULL, IPSTATS_MIB_INHDRERRORS); return 0; } return tcp_conn_request(&tcp6_request_sock_ops, &tcp_request_sock_ipv6_ops, sk, skb); drop: tcp_listendrop(sk); return 0; /* don't send reset */ } static void tcp_v6_restore_cb(struct sk_buff *skb) { /* We need to move header back to the beginning if xfrm6_policy_check() * and tcp_v6_fill_cb() are going to be called again. * ip6_datagram_recv_specific_ctl() also expects IP6CB to be there. */ memmove(IP6CB(skb), &TCP_SKB_CB(skb)->header.h6, sizeof(struct inet6_skb_parm)); } static struct sock *tcp_v6_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct inet_request_sock *ireq; struct ipv6_pinfo *newnp; const struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct ipv6_txoptions *opt; struct inet_sock *newinet; bool found_dup_sk = false; struct tcp_sock *newtp; struct sock *newsk; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *key; int l3index; #endif struct flowi6 fl6; if (skb->protocol == htons(ETH_P_IP)) { /* * v6 mapped */ newsk = tcp_v4_syn_recv_sock(sk, skb, req, dst, req_unhash, own_req); if (!newsk) return NULL; inet_sk(newsk)->pinet6 = tcp_inet6_sk(newsk); newnp = tcp_inet6_sk(newsk); newtp = tcp_sk(newsk); memcpy(newnp, np, sizeof(struct ipv6_pinfo)); newnp->saddr = newsk->sk_v6_rcv_saddr; inet_csk(newsk)->icsk_af_ops = &ipv6_mapped; if (sk_is_mptcp(newsk)) mptcpv6_handle_mapped(newsk, true); newsk->sk_backlog_rcv = tcp_v4_do_rcv; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) newtp->af_specific = &tcp_sock_ipv6_mapped_specific; #endif newnp->ipv6_mc_list = NULL; newnp->ipv6_ac_list = NULL; newnp->ipv6_fl_list = NULL; newnp->pktoptions = NULL; newnp->opt = NULL; newnp->mcast_oif = inet_iif(skb); newnp->mcast_hops = ip_hdr(skb)->ttl; newnp->rcv_flowinfo = 0; if (inet6_test_bit(REPFLOW, sk)) newnp->flow_label = 0; /* * No need to charge this sock to the relevant IPv6 refcnt debug socks count * here, tcp_create_openreq_child now does this for us, see the comment in * that function for the gory details. -acme */ /* It is tricky place. Until this moment IPv4 tcp worked with IPv6 icsk.icsk_af_ops. Sync it now. */ tcp_sync_mss(newsk, inet_csk(newsk)->icsk_pmtu_cookie); return newsk; } ireq = inet_rsk(req); if (sk_acceptq_is_full(sk)) goto out_overflow; if (!dst) { dst = inet6_csk_route_req(sk, &fl6, req, IPPROTO_TCP); if (!dst) goto out; } newsk = tcp_create_openreq_child(sk, req, skb); if (!newsk) goto out_nonewsk; /* * No need to charge this sock to the relevant IPv6 refcnt debug socks * count here, tcp_create_openreq_child now does this for us, see the * comment in that function for the gory details. -acme */ newsk->sk_gso_type = SKB_GSO_TCPV6; inet6_sk_rx_dst_set(newsk, skb); inet_sk(newsk)->pinet6 = tcp_inet6_sk(newsk); newtp = tcp_sk(newsk); newinet = inet_sk(newsk); newnp = tcp_inet6_sk(newsk); memcpy(newnp, np, sizeof(struct ipv6_pinfo)); ip6_dst_store(newsk, dst, NULL, NULL); newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr; newnp->saddr = ireq->ir_v6_loc_addr; newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr; newsk->sk_bound_dev_if = ireq->ir_iif; /* Now IPv6 options... First: no IPv4 options. */ newinet->inet_opt = NULL; newnp->ipv6_mc_list = NULL; newnp->ipv6_ac_list = NULL; newnp->ipv6_fl_list = NULL; /* Clone RX bits */ newnp->rxopt.all = np->rxopt.all; newnp->pktoptions = NULL; newnp->opt = NULL; newnp->mcast_oif = tcp_v6_iif(skb); newnp->mcast_hops = ipv6_hdr(skb)->hop_limit; newnp->rcv_flowinfo = ip6_flowinfo(ipv6_hdr(skb)); if (inet6_test_bit(REPFLOW, sk)) newnp->flow_label = ip6_flowlabel(ipv6_hdr(skb)); /* Set ToS of the new socket based upon the value of incoming SYN. * ECT bits are set later in tcp_init_transfer(). */ if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) newnp->tclass = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; /* Clone native IPv6 options from listening socket (if any) Yes, keeping reference count would be much more clever, but we make one more one thing there: reattach optmem to newsk. */ opt = ireq->ipv6_opt; if (!opt) opt = rcu_dereference(np->opt); if (opt) { opt = ipv6_dup_options(newsk, opt); RCU_INIT_POINTER(newnp->opt, opt); } inet_csk(newsk)->icsk_ext_hdr_len = 0; if (opt) inet_csk(newsk)->icsk_ext_hdr_len = opt->opt_nflen + opt->opt_flen; tcp_ca_openreq_child(newsk, dst); tcp_sync_mss(newsk, dst_mtu(dst)); newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); tcp_initialize_rcv_mss(newsk); newinet->inet_daddr = newinet->inet_saddr = LOOPBACK4_IPV6; newinet->inet_rcv_saddr = LOOPBACK4_IPV6; #ifdef CONFIG_TCP_MD5SIG l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); if (!tcp_rsk_used_ao(req)) { /* Copy over the MD5 key from the original socket */ key = tcp_v6_md5_do_lookup(sk, &newsk->sk_v6_daddr, l3index); if (key) { const union tcp_md5_addr *addr; addr = (union tcp_md5_addr *)&newsk->sk_v6_daddr; if (tcp_md5_key_copy(newsk, addr, AF_INET6, 128, l3index, key)) { inet_csk_prepare_forced_close(newsk); tcp_done(newsk); goto out; } } } #endif #ifdef CONFIG_TCP_AO /* Copy over tcp_ao_info if any */ if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET6)) goto out; /* OOM */ #endif if (__inet_inherit_port(sk, newsk) < 0) { inet_csk_prepare_forced_close(newsk); tcp_done(newsk); goto out; } *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), &found_dup_sk); if (*own_req) { tcp_move_syn(newtp, req); /* Clone pktoptions received with SYN, if we own the req */ if (ireq->pktopts) { newnp->pktoptions = skb_clone_and_charge_r(ireq->pktopts, newsk); consume_skb(ireq->pktopts); ireq->pktopts = NULL; if (newnp->pktoptions) tcp_v6_restore_cb(newnp->pktoptions); } } else { if (!req_unhash && found_dup_sk) { /* This code path should only be executed in the * syncookie case only */ bh_unlock_sock(newsk); sock_put(newsk); newsk = NULL; } } return newsk; out_overflow: __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); out_nonewsk: dst_release(dst); out: tcp_listendrop(sk); return NULL; } INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, u32)); /* The socket must have it's spinlock held when we get * here, unless it is a TCP_LISTEN socket. * * We have a potential double-lock case here, so even when * doing backlog processing we use the BH locking scheme. * This is because we cannot sleep with the original spinlock * held. */ INDIRECT_CALLABLE_SCOPE int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb) { struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct sk_buff *opt_skb = NULL; enum skb_drop_reason reason; struct tcp_sock *tp; /* Imagine: socket is IPv6. IPv4 packet arrives, goes to IPv4 receive handler and backlogged. From backlog it always goes here. Kerboom... Fortunately, tcp_rcv_established and rcv_established handle them correctly, but it is not case with tcp_v6_hnd_req and tcp_v6_send_reset(). --ANK */ if (skb->protocol == htons(ETH_P_IP)) return tcp_v4_do_rcv(sk, skb); /* * socket locking is here for SMP purposes as backlog rcv * is currently called with bh processing disabled. */ /* Do Stevens' IPV6_PKTOPTIONS. Yes, guys, it is the only place in our code, where we may make it not affecting IPv4. The rest of code is protocol independent, and I do not like idea to uglify IPv4. Actually, all the idea behind IPV6_PKTOPTIONS looks not very well thought. For now we latch options, received in the last packet, enqueued by tcp. Feel free to propose better solution. --ANK (980728) */ if (np->rxopt.all && sk->sk_state != TCP_LISTEN) opt_skb = skb_clone_and_charge_r(skb, sk); if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ struct dst_entry *dst; dst = rcu_dereference_protected(sk->sk_rx_dst, lockdep_sock_is_held(sk)); sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); if (dst) { if (sk->sk_rx_dst_ifindex != skb->skb_iif || INDIRECT_CALL_1(dst->ops->check, ip6_dst_check, dst, sk->sk_rx_dst_cookie) == NULL) { RCU_INIT_POINTER(sk->sk_rx_dst, NULL); dst_release(dst); } } tcp_rcv_established(sk, skb); if (opt_skb) goto ipv6_pktoptions; return 0; } if (tcp_checksum_complete(skb)) goto csum_err; if (sk->sk_state == TCP_LISTEN) { struct sock *nsk = tcp_v6_cookie_check(sk, skb); if (nsk != sk) { if (nsk) { reason = tcp_child_process(sk, nsk, skb); if (reason) goto reset; } return 0; } } else sock_rps_save_rxhash(sk, skb); reason = tcp_rcv_state_process(sk, skb); if (reason) goto reset; if (opt_skb) goto ipv6_pktoptions; return 0; reset: tcp_v6_send_reset(sk, skb, sk_rst_convert_drop_reason(reason)); discard: if (opt_skb) __kfree_skb(opt_skb); sk_skb_reason_drop(sk, skb, reason); return 0; csum_err: reason = SKB_DROP_REASON_TCP_CSUM; trace_tcp_bad_csum(skb); TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); goto discard; ipv6_pktoptions: /* Do you ask, what is it? 1. skb was enqueued by tcp. 2. skb is added to tail of read queue, rather than out of order. 3. socket is not in passive state. 4. Finally, it really contains options, which user wants to receive. */ tp = tcp_sk(sk); if (TCP_SKB_CB(opt_skb)->end_seq == tp->rcv_nxt && !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { if (np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo) WRITE_ONCE(np->mcast_oif, tcp_v6_iif(opt_skb)); if (np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim) WRITE_ONCE(np->mcast_hops, ipv6_hdr(opt_skb)->hop_limit); if (np->rxopt.bits.rxflow || np->rxopt.bits.rxtclass) np->rcv_flowinfo = ip6_flowinfo(ipv6_hdr(opt_skb)); if (inet6_test_bit(REPFLOW, sk)) np->flow_label = ip6_flowlabel(ipv6_hdr(opt_skb)); if (ipv6_opt_accepted(sk, opt_skb, &TCP_SKB_CB(opt_skb)->header.h6)) { tcp_v6_restore_cb(opt_skb); opt_skb = xchg(&np->pktoptions, opt_skb); } else { __kfree_skb(opt_skb); opt_skb = xchg(&np->pktoptions, NULL); } } consume_skb(opt_skb); return 0; } static void tcp_v6_fill_cb(struct sk_buff *skb, const struct ipv6hdr *hdr, const struct tcphdr *th) { /* This is tricky: we move IP6CB at its correct location into * TCP_SKB_CB(). It must be done after xfrm6_policy_check(), because * _decode_session6() uses IP6CB(). * barrier() makes sure compiler won't play aliasing games. */ memmove(&TCP_SKB_CB(skb)->header.h6, IP6CB(skb), sizeof(struct inet6_skb_parm)); barrier(); TCP_SKB_CB(skb)->seq = ntohl(th->seq); TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + skb->len - th->doff*4); TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); TCP_SKB_CB(skb)->ip_dsfield = ipv6_get_dsfield(hdr); TCP_SKB_CB(skb)->sacked = 0; TCP_SKB_CB(skb)->has_rxtstamp = skb->tstamp || skb_hwtstamps(skb)->hwtstamp; } INDIRECT_CALLABLE_SCOPE int tcp_v6_rcv(struct sk_buff *skb) { enum skb_drop_reason drop_reason; int sdif = inet6_sdif(skb); int dif = inet6_iif(skb); const struct tcphdr *th; const struct ipv6hdr *hdr; struct sock *sk = NULL; bool refcounted; int ret; u32 isn; struct net *net = dev_net(skb->dev); drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; if (skb->pkt_type != PACKET_HOST) goto discard_it; /* * Count it even if it's bad. */ __TCP_INC_STATS(net, TCP_MIB_INSEGS); if (!pskb_may_pull(skb, sizeof(struct tcphdr))) goto discard_it; th = (const struct tcphdr *)skb->data; if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; goto bad_packet; } if (!pskb_may_pull(skb, th->doff*4)) goto discard_it; if (skb_checksum_init(skb, IPPROTO_TCP, ip6_compute_pseudo)) goto csum_error; th = (const struct tcphdr *)skb->data; hdr = ipv6_hdr(skb); lookup: sk = __inet6_lookup_skb(net->ipv4.tcp_death_row.hashinfo, skb, __tcp_hdrlen(th), th->source, th->dest, inet6_iif(skb), sdif, &refcounted); if (!sk) goto no_tcp_socket; if (sk->sk_state == TCP_TIME_WAIT) goto do_time_wait; if (sk->sk_state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); bool req_stolen = false; struct sock *nsk; sk = req->rsk_listener; if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) drop_reason = SKB_DROP_REASON_XFRM_POLICY; else drop_reason = tcp_inbound_hash(sk, req, skb, &hdr->saddr, &hdr->daddr, AF_INET6, dif, sdif); if (drop_reason) { sk_drops_add(sk, skb); reqsk_put(req); goto discard_it; } if (tcp_checksum_complete(skb)) { reqsk_put(req); goto csum_error; } if (unlikely(sk->sk_state != TCP_LISTEN)) { nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); if (!nsk) { inet_csk_reqsk_queue_drop_and_put(sk, req); goto lookup; } sk = nsk; /* reuseport_migrate_sock() has already held one sk_refcnt * before returning. */ } else { sock_hold(sk); } refcounted = true; nsk = NULL; if (!tcp_filter(sk, skb)) { th = (const struct tcphdr *)skb->data; hdr = ipv6_hdr(skb); tcp_v6_fill_cb(skb, hdr, th); nsk = tcp_check_req(sk, skb, req, false, &req_stolen); } else { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; } if (!nsk) { reqsk_put(req); if (req_stolen) { /* Another cpu got exclusive access to req * and created a full blown socket. * Try to feed this packet to this socket * instead of discarding it. */ tcp_v6_restore_cb(skb); sock_put(sk); goto lookup; } goto discard_and_relse; } nf_reset_ct(skb); if (nsk == sk) { reqsk_put(req); tcp_v6_restore_cb(skb); } else { drop_reason = tcp_child_process(sk, nsk, skb); if (drop_reason) { enum sk_rst_reason rst_reason; rst_reason = sk_rst_convert_drop_reason(drop_reason); tcp_v6_send_reset(nsk, skb, rst_reason); goto discard_and_relse; } sock_put(sk); return 0; } } process: if (static_branch_unlikely(&ip6_min_hopcount)) { /* min_hopcount can be changed concurrently from do_ipv6_setsockopt() */ if (unlikely(hdr->hop_limit < READ_ONCE(tcp_inet6_sk(sk)->min_hopcount))) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); drop_reason = SKB_DROP_REASON_TCP_MINTTL; goto discard_and_relse; } } if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; goto discard_and_relse; } drop_reason = tcp_inbound_hash(sk, NULL, skb, &hdr->saddr, &hdr->daddr, AF_INET6, dif, sdif); if (drop_reason) goto discard_and_relse; nf_reset_ct(skb); if (tcp_filter(sk, skb)) { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; goto discard_and_relse; } th = (const struct tcphdr *)skb->data; hdr = ipv6_hdr(skb); tcp_v6_fill_cb(skb, hdr, th); skb->dev = NULL; if (sk->sk_state == TCP_LISTEN) { ret = tcp_v6_do_rcv(sk, skb); goto put_and_return; } sk_incoming_cpu_update(sk); bh_lock_sock_nested(sk); tcp_segs_in(tcp_sk(sk), skb); ret = 0; if (!sock_owned_by_user(sk)) { ret = tcp_v6_do_rcv(sk, skb); } else { if (tcp_add_backlog(sk, skb, &drop_reason)) goto discard_and_relse; } bh_unlock_sock(sk); put_and_return: if (refcounted) sock_put(sk); return ret ? -1 : 0; no_tcp_socket: drop_reason = SKB_DROP_REASON_NO_SOCKET; if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) goto discard_it; tcp_v6_fill_cb(skb, hdr, th); if (tcp_checksum_complete(skb)) { csum_error: drop_reason = SKB_DROP_REASON_TCP_CSUM; trace_tcp_bad_csum(skb); __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); bad_packet: __TCP_INC_STATS(net, TCP_MIB_INERRS); } else { tcp_v6_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason)); } discard_it: SKB_DR_OR(drop_reason, NOT_SPECIFIED); sk_skb_reason_drop(sk, skb, drop_reason); return 0; discard_and_relse: sk_drops_add(sk, skb); if (refcounted) sock_put(sk); goto discard_it; do_time_wait: if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; inet_twsk_put(inet_twsk(sk)); goto discard_it; } tcp_v6_fill_cb(skb, hdr, th); if (tcp_checksum_complete(skb)) { inet_twsk_put(inet_twsk(sk)); goto csum_error; } switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) { case TCP_TW_SYN: { struct sock *sk2; sk2 = inet6_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, skb, __tcp_hdrlen(th), &ipv6_hdr(skb)->saddr, th->source, &ipv6_hdr(skb)->daddr, ntohs(th->dest), tcp_v6_iif_l3_slave(skb), sdif); if (sk2) { struct inet_timewait_sock *tw = inet_twsk(sk); inet_twsk_deschedule_put(tw); sk = sk2; tcp_v6_restore_cb(skb); refcounted = false; __this_cpu_write(tcp_tw_isn, isn); goto process; } } /* to ACK */ fallthrough; case TCP_TW_ACK: tcp_v6_timewait_ack(sk, skb); break; case TCP_TW_RST: tcp_v6_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET); inet_twsk_deschedule_put(inet_twsk(sk)); goto discard_it; case TCP_TW_SUCCESS: ; } goto discard_it; } void tcp_v6_early_demux(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); const struct ipv6hdr *hdr; const struct tcphdr *th; struct sock *sk; if (skb->pkt_type != PACKET_HOST) return; if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) return; hdr = ipv6_hdr(skb); th = tcp_hdr(skb); if (th->doff < sizeof(struct tcphdr) / 4) return; /* Note : We use inet6_iif() here, not tcp_v6_iif() */ sk = __inet6_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, &hdr->saddr, th->source, &hdr->daddr, ntohs(th->dest), inet6_iif(skb), inet6_sdif(skb)); if (sk) { skb->sk = sk; skb->destructor = sock_edemux; if (sk_fullsock(sk)) { struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); if (dst) dst = dst_check(dst, sk->sk_rx_dst_cookie); if (dst && sk->sk_rx_dst_ifindex == skb->skb_iif) skb_dst_set_noref(skb, dst); } } } static struct timewait_sock_ops tcp6_timewait_sock_ops = { .twsk_obj_size = sizeof(struct tcp6_timewait_sock), .twsk_destructor = tcp_twsk_destructor, }; INDIRECT_CALLABLE_SCOPE void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb) { __tcp_v6_send_check(skb, &sk->sk_v6_rcv_saddr, &sk->sk_v6_daddr); } const struct inet_connection_sock_af_ops ipv6_specific = { .queue_xmit = inet6_csk_xmit, .send_check = tcp_v6_send_check, .rebuild_header = inet6_sk_rebuild_header, .sk_rx_dst_set = inet6_sk_rx_dst_set, .conn_request = tcp_v6_conn_request, .syn_recv_sock = tcp_v6_syn_recv_sock, .net_header_len = sizeof(struct ipv6hdr), .setsockopt = ipv6_setsockopt, .getsockopt = ipv6_getsockopt, .addr2sockaddr = inet6_csk_addr2sockaddr, .sockaddr_len = sizeof(struct sockaddr_in6), .mtu_reduced = tcp_v6_mtu_reduced, }; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) static const struct tcp_sock_af_ops tcp_sock_ipv6_specific = { #ifdef CONFIG_TCP_MD5SIG .md5_lookup = tcp_v6_md5_lookup, .calc_md5_hash = tcp_v6_md5_hash_skb, .md5_parse = tcp_v6_parse_md5_keys, #endif #ifdef CONFIG_TCP_AO .ao_lookup = tcp_v6_ao_lookup, .calc_ao_hash = tcp_v6_ao_hash_skb, .ao_parse = tcp_v6_parse_ao, .ao_calc_key_sk = tcp_v6_ao_calc_key_sk, #endif }; #endif /* * TCP over IPv4 via INET6 API */ static const struct inet_connection_sock_af_ops ipv6_mapped = { .queue_xmit = ip_queue_xmit, .send_check = tcp_v4_send_check, .rebuild_header = inet_sk_rebuild_header, .sk_rx_dst_set = inet_sk_rx_dst_set, .conn_request = tcp_v6_conn_request, .syn_recv_sock = tcp_v6_syn_recv_sock, .net_header_len = sizeof(struct iphdr), .setsockopt = ipv6_setsockopt, .getsockopt = ipv6_getsockopt, .addr2sockaddr = inet6_csk_addr2sockaddr, .sockaddr_len = sizeof(struct sockaddr_in6), .mtu_reduced = tcp_v4_mtu_reduced, }; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) static const struct tcp_sock_af_ops tcp_sock_ipv6_mapped_specific = { #ifdef CONFIG_TCP_MD5SIG .md5_lookup = tcp_v4_md5_lookup, .calc_md5_hash = tcp_v4_md5_hash_skb, .md5_parse = tcp_v6_parse_md5_keys, #endif #ifdef CONFIG_TCP_AO .ao_lookup = tcp_v6_ao_lookup, .calc_ao_hash = tcp_v4_ao_hash_skb, .ao_parse = tcp_v6_parse_ao, .ao_calc_key_sk = tcp_v4_ao_calc_key_sk, #endif }; #endif /* NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ static int tcp_v6_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); tcp_init_sock(sk); icsk->icsk_af_ops = &ipv6_specific; #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) tcp_sk(sk)->af_specific = &tcp_sock_ipv6_specific; #endif return 0; } #ifdef CONFIG_PROC_FS /* Proc filesystem TCPv6 sock list dumping. */ static void get_openreq6(struct seq_file *seq, const struct request_sock *req, int i) { long ttd = req->rsk_timer.expires - jiffies; const struct in6_addr *src = &inet_rsk(req)->ir_v6_loc_addr; const struct in6_addr *dest = &inet_rsk(req)->ir_v6_rmt_addr; if (ttd < 0) ttd = 0; seq_printf(seq, "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5u %8d %d %d %pK\n", i, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], inet_rsk(req)->ir_num, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], ntohs(inet_rsk(req)->ir_rmt_port), TCP_SYN_RECV, 0, 0, /* could print option size, but that is af dependent. */ 1, /* timers active (only the expire timer) */ jiffies_to_clock_t(ttd), req->num_timeout, from_kuid_munged(seq_user_ns(seq), sock_i_uid(req->rsk_listener)), 0, /* non standard timer */ 0, /* open_requests have no inode */ 0, req); } static void get_tcp6_sock(struct seq_file *seq, struct sock *sp, int i) { const struct in6_addr *dest, *src; __u16 destp, srcp; int timer_active; unsigned long timer_expires; const struct inet_sock *inet = inet_sk(sp); const struct tcp_sock *tp = tcp_sk(sp); const struct inet_connection_sock *icsk = inet_csk(sp); const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; u8 icsk_pending; int rx_queue; int state; dest = &sp->sk_v6_daddr; src = &sp->sk_v6_rcv_saddr; destp = ntohs(inet->inet_dport); srcp = ntohs(inet->inet_sport); icsk_pending = smp_load_acquire(&icsk->icsk_pending); if (icsk_pending == ICSK_TIME_RETRANS || icsk_pending == ICSK_TIME_REO_TIMEOUT || icsk_pending == ICSK_TIME_LOSS_PROBE) { timer_active = 1; timer_expires = icsk->icsk_timeout; } else if (icsk_pending == ICSK_TIME_PROBE0) { timer_active = 4; timer_expires = icsk->icsk_timeout; } else if (timer_pending(&sp->sk_timer)) { timer_active = 2; timer_expires = sp->sk_timer.expires; } else { timer_active = 0; timer_expires = jiffies; } state = inet_sk_state_load(sp); if (state == TCP_LISTEN) rx_queue = READ_ONCE(sp->sk_ack_backlog); else /* Because we don't lock the socket, * we might find a transient negative value. */ rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq), 0); seq_printf(seq, "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %lu %lu %u %u %d\n", i, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], srcp, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], destp, state, READ_ONCE(tp->write_seq) - tp->snd_una, rx_queue, timer_active, jiffies_delta_to_clock_t(timer_expires - jiffies), icsk->icsk_retransmits, from_kuid_munged(seq_user_ns(seq), sock_i_uid(sp)), icsk->icsk_probes_out, sock_i_ino(sp), refcount_read(&sp->sk_refcnt), sp, jiffies_to_clock_t(icsk->icsk_rto), jiffies_to_clock_t(icsk->icsk_ack.ato), (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sp), tcp_snd_cwnd(tp), state == TCP_LISTEN ? fastopenq->max_qlen : (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh) ); } static void get_timewait6_sock(struct seq_file *seq, struct inet_timewait_sock *tw, int i) { long delta = tw->tw_timer.expires - jiffies; const struct in6_addr *dest, *src; __u16 destp, srcp; dest = &tw->tw_v6_daddr; src = &tw->tw_v6_rcv_saddr; destp = ntohs(tw->tw_dport); srcp = ntohs(tw->tw_sport); seq_printf(seq, "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK\n", i, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], srcp, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], destp, READ_ONCE(tw->tw_substate), 0, 0, 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, refcount_read(&tw->tw_refcnt), tw); } static int tcp6_seq_show(struct seq_file *seq, void *v) { struct tcp_iter_state *st; struct sock *sk = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, " sl " "local_address " "remote_address " "st tx_queue rx_queue tr tm->when retrnsmt" " uid timeout inode\n"); goto out; } st = seq->private; if (sk->sk_state == TCP_TIME_WAIT) get_timewait6_sock(seq, v, st->num); else if (sk->sk_state == TCP_NEW_SYN_RECV) get_openreq6(seq, v, st->num); else get_tcp6_sock(seq, v, st->num); out: return 0; } static const struct seq_operations tcp6_seq_ops = { .show = tcp6_seq_show, .start = tcp_seq_start, .next = tcp_seq_next, .stop = tcp_seq_stop, }; static struct tcp_seq_afinfo tcp6_seq_afinfo = { .family = AF_INET6, }; int __net_init tcp6_proc_init(struct net *net) { if (!proc_create_net_data("tcp6", 0444, net->proc_net, &tcp6_seq_ops, sizeof(struct tcp_iter_state), &tcp6_seq_afinfo)) return -ENOMEM; return 0; } void tcp6_proc_exit(struct net *net) { remove_proc_entry("tcp6", net->proc_net); } #endif struct proto tcpv6_prot = { .name = "TCPv6", .owner = THIS_MODULE, .close = tcp_close, .pre_connect = tcp_v6_pre_connect, .connect = tcp_v6_connect, .disconnect = tcp_disconnect, .accept = inet_csk_accept, .ioctl = tcp_ioctl, .init = tcp_v6_init_sock, .destroy = tcp_v4_destroy_sock, .shutdown = tcp_shutdown, .setsockopt = tcp_setsockopt, .getsockopt = tcp_getsockopt, .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, .keepalive = tcp_set_keepalive, .recvmsg = tcp_recvmsg, .sendmsg = tcp_sendmsg, .splice_eof = tcp_splice_eof, .backlog_rcv = tcp_v6_do_rcv, .release_cb = tcp_release_cb, .hash = inet6_hash, .unhash = inet_unhash, .get_port = inet_csk_get_port, .put_port = inet_put_port, #ifdef CONFIG_BPF_SYSCALL .psock_update_sk_prot = tcp_bpf_update_proto, #endif .enter_memory_pressure = tcp_enter_memory_pressure, .leave_memory_pressure = tcp_leave_memory_pressure, .stream_memory_free = tcp_stream_memory_free, .sockets_allocated = &tcp_sockets_allocated, .memory_allocated = &tcp_memory_allocated, .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, .memory_pressure = &tcp_memory_pressure, .orphan_count = &tcp_orphan_count, .sysctl_mem = sysctl_tcp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), .max_header = MAX_TCP_HEADER, .obj_size = sizeof(struct tcp6_sock), .ipv6_pinfo_offset = offsetof(struct tcp6_sock, inet6), .slab_flags = SLAB_TYPESAFE_BY_RCU, .twsk_prot = &tcp6_timewait_sock_ops, .rsk_prot = &tcp6_request_sock_ops, .h.hashinfo = NULL, .no_autobind = true, .diag_destroy = tcp_abort, }; EXPORT_SYMBOL_GPL(tcpv6_prot); static struct inet_protosw tcpv6_protosw = { .type = SOCK_STREAM, .protocol = IPPROTO_TCP, .prot = &tcpv6_prot, .ops = &inet6_stream_ops, .flags = INET_PROTOSW_PERMANENT | INET_PROTOSW_ICSK, }; static int __net_init tcpv6_net_init(struct net *net) { int res; res = inet_ctl_sock_create(&net->ipv6.tcp_sk, PF_INET6, SOCK_RAW, IPPROTO_TCP, net); if (!res) net->ipv6.tcp_sk->sk_clockid = CLOCK_MONOTONIC; return res; } static void __net_exit tcpv6_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.tcp_sk); } static struct pernet_operations tcpv6_net_ops = { .init = tcpv6_net_init, .exit = tcpv6_net_exit, }; int __init tcpv6_init(void) { int ret; net_hotdata.tcpv6_protocol = (struct inet6_protocol) { .handler = tcp_v6_rcv, .err_handler = tcp_v6_err, .flags = INET6_PROTO_NOPOLICY | INET6_PROTO_FINAL, }; ret = inet6_add_protocol(&net_hotdata.tcpv6_protocol, IPPROTO_TCP); if (ret) goto out; /* register inet6 protocol */ ret = inet6_register_protosw(&tcpv6_protosw); if (ret) goto out_tcpv6_protocol; ret = register_pernet_subsys(&tcpv6_net_ops); if (ret) goto out_tcpv6_protosw; ret = mptcpv6_init(); if (ret) goto out_tcpv6_pernet_subsys; out: return ret; out_tcpv6_pernet_subsys: unregister_pernet_subsys(&tcpv6_net_ops); out_tcpv6_protosw: inet6_unregister_protosw(&tcpv6_protosw); out_tcpv6_protocol: inet6_del_protocol(&net_hotdata.tcpv6_protocol, IPPROTO_TCP); goto out; } void tcpv6_exit(void) { unregister_pernet_subsys(&tcpv6_net_ops); inet6_unregister_protosw(&tcpv6_protosw); inet6_del_protocol(&net_hotdata.tcpv6_protocol, IPPROTO_TCP); } |
9 1 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * File: af_phonet.h * * Phonet sockets kernel definitions * * Copyright (C) 2008 Nokia Corporation. */ #ifndef AF_PHONET_H #define AF_PHONET_H #include <linux/phonet.h> #include <linux/skbuff.h> #include <net/sock.h> /* * The lower layers may not require more space, ever. Make sure it's * enough. */ #define MAX_PHONET_HEADER (8 + MAX_HEADER) /* * Every Phonet* socket has this structure first in its * protocol-specific structure under name c. */ struct pn_sock { struct sock sk; u16 sobject; u16 dobject; u8 resource; }; static inline struct pn_sock *pn_sk(struct sock *sk) { return (struct pn_sock *)sk; } extern const struct proto_ops phonet_dgram_ops; void pn_sock_init(void); struct sock *pn_find_sock_by_sa(struct net *net, const struct sockaddr_pn *sa); void pn_deliver_sock_broadcast(struct net *net, struct sk_buff *skb); void phonet_get_local_port_range(int *min, int *max); int pn_sock_hash(struct sock *sk); void pn_sock_unhash(struct sock *sk); int pn_sock_get_port(struct sock *sk, unsigned short sport); struct sock *pn_find_sock_by_res(struct net *net, u8 res); int pn_sock_bind_res(struct sock *sock, u8 res); int pn_sock_unbind_res(struct sock *sk, u8 res); void pn_sock_unbind_all_res(struct sock *sk); int pn_skb_send(struct sock *sk, struct sk_buff *skb, const struct sockaddr_pn *target); static inline struct phonethdr *pn_hdr(struct sk_buff *skb) { return (struct phonethdr *)skb_network_header(skb); } static inline struct phonetmsg *pn_msg(struct sk_buff *skb) { return (struct phonetmsg *)skb_transport_header(skb); } /* * Get the other party's sockaddr from received skb. The skb begins * with a Phonet header. */ static inline void pn_skb_get_src_sockaddr(struct sk_buff *skb, struct sockaddr_pn *sa) { struct phonethdr *ph = pn_hdr(skb); u16 obj = pn_object(ph->pn_sdev, ph->pn_sobj); sa->spn_family = AF_PHONET; pn_sockaddr_set_object(sa, obj); pn_sockaddr_set_resource(sa, ph->pn_res); memset(sa->spn_zero, 0, sizeof(sa->spn_zero)); } static inline void pn_skb_get_dst_sockaddr(struct sk_buff *skb, struct sockaddr_pn *sa) { struct phonethdr *ph = pn_hdr(skb); u16 obj = pn_object(ph->pn_rdev, ph->pn_robj); sa->spn_family = AF_PHONET; pn_sockaddr_set_object(sa, obj); pn_sockaddr_set_resource(sa, ph->pn_res); memset(sa->spn_zero, 0, sizeof(sa->spn_zero)); } /* Protocols in Phonet protocol family. */ struct phonet_protocol { const struct proto_ops *ops; struct proto *prot; int sock_type; }; int phonet_proto_register(unsigned int protocol, const struct phonet_protocol *pp); void phonet_proto_unregister(unsigned int protocol, const struct phonet_protocol *pp); int phonet_sysctl_init(void); void phonet_sysctl_exit(void); int isi_register(void); void isi_unregister(void); static inline bool sk_is_phonet(struct sock *sk) { return sk->sk_family == PF_PHONET; } static inline int phonet_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { int karg; switch (cmd) { case SIOCPNADDRESOURCE: case SIOCPNDELRESOURCE: if (get_user(karg, (int __user *)arg)) return -EFAULT; return sk->sk_prot->ioctl(sk, cmd, &karg); } /* A positive return value means that the ioctl was not processed */ return 1; } #endif |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | // SPDX-License-Identifier: GPL-2.0 /* * Power trace points * * Copyright (C) 2009 Ming Lei <ming.lei@canonical.com> */ #include <linux/string.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/usb.h> #define CREATE_TRACE_POINTS #include <trace/events/rpm.h> EXPORT_TRACEPOINT_SYMBOL_GPL(rpm_return_int); EXPORT_TRACEPOINT_SYMBOL_GPL(rpm_idle); EXPORT_TRACEPOINT_SYMBOL_GPL(rpm_suspend); EXPORT_TRACEPOINT_SYMBOL_GPL(rpm_resume); |
3087 3106 2 2 2 7 7793 7577 7581 7585 7596 7595 7781 7793 7591 7624 7578 8530 8539 1879 7788 8533 8316 2 10 10 256 112 1 259 8234 8218 8223 8574 8574 113 113 2 8 3 3 72 1996 6185 8335 8386 7472 8327 8316 2 8323 8326 21 21 21 21 20 7425 7412 7472 2 7433 87 82 81 84 3 26 62 76 77 72 1 1 70 1 1 70 71 1 70 88 1 87 23 65 8 80 3 2 28 62 6 81 85 1 1 87 87 85 7415 7407 7407 473 7418 72 6841 2223 6905 1253 1242 4709 4709 50 17 49 4 6 15 24 5 21 2 1 1 1 1 21 1 1 6 14 13 4 15 17 3 5 13 8 13 2 7 10 15 2 17 14 14 5 8 1 1 1 1 4 1 1 3 4 1 3 3 96 2 8329 1 8320 8213 119 6334 7 6 6 6 1 1 1 1 6367 641 6340 6334 8794 8792 8724 1214 318 8369 8316 8272 8331 8359 8330 8372 5 7 6328 1094 1097 1099 1097 1092 204 9 206 1 1337 208 1153 1 207 1 110 144 144 206 207 1 205 1 207 9 207 1921 1915 1746 1918 5 1855 203 9 625 8 8 8 21 1 20 11 10 2 7 3 5 5 2 1 1 1 6 15 1 1 1 3 2 1 2 1 1 8328 1 167 8379 5 1 1 178 8191 7422 1213 1 8323 8285 49 8291 260 1 42 256 2 215 101 123 256 1 258 1 250 7 127 189 7 259 259 7 7 7 7 2610 6582 6577 2 5 2 2 3 6 1 5 6 1 2 3 2 3 4 1 5 642 646 642 3 918 779 188 7 1 766 183 765 920 921 916 927 877 33 907 2 387 643 1 640 332 311 829 826 1 385 389 767 51 51 5973 571 5599 567 5621 5595 5975 3 7343 7329 158 117 59 7311 1610 5450 1504 1210 421 1204 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 | // SPDX-License-Identifier: GPL-2.0-or-later /* * NETLINK Kernel-user communication protocol. * * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * Patrick McHardy <kaber@trash.net> * * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith * added netlink_proto_exit * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> * use nlk_sk, as sk->protinfo is on a diet 8) * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> * - inc module use count of module that owns * the kernel socket in case userspace opens * socket of same protocol * - remove all module support, since netlink is * mandatory if CONFIG_NET=y these days */ #include <linux/module.h> #include <linux/bpf.h> #include <linux/capability.h> #include <linux/kernel.h> #include <linux/filter.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/un.h> #include <linux/fcntl.h> #include <linux/termios.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/notifier.h> #include <linux/security.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/random.h> #include <linux/bitops.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/audit.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <linux/if_arp.h> #include <linux/rhashtable.h> #include <asm/cacheflush.h> #include <linux/hash.h> #include <linux/net_namespace.h> #include <linux/nospec.h> #include <linux/btf_ids.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/sock.h> #include <net/scm.h> #include <net/netlink.h> #define CREATE_TRACE_POINTS #include <trace/events/netlink.h> #include "af_netlink.h" #include "genetlink.h" struct listeners { struct rcu_head rcu; unsigned long masks[]; }; /* state bits */ #define NETLINK_S_CONGESTED 0x0 static inline int netlink_is_kernel(struct sock *sk) { return nlk_test_bit(KERNEL_SOCKET, sk); } struct netlink_table *nl_table __read_mostly; EXPORT_SYMBOL_GPL(nl_table); static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { "nlk_cb_mutex-ROUTE", "nlk_cb_mutex-1", "nlk_cb_mutex-USERSOCK", "nlk_cb_mutex-FIREWALL", "nlk_cb_mutex-SOCK_DIAG", "nlk_cb_mutex-NFLOG", "nlk_cb_mutex-XFRM", "nlk_cb_mutex-SELINUX", "nlk_cb_mutex-ISCSI", "nlk_cb_mutex-AUDIT", "nlk_cb_mutex-FIB_LOOKUP", "nlk_cb_mutex-CONNECTOR", "nlk_cb_mutex-NETFILTER", "nlk_cb_mutex-IP6_FW", "nlk_cb_mutex-DNRTMSG", "nlk_cb_mutex-KOBJECT_UEVENT", "nlk_cb_mutex-GENERIC", "nlk_cb_mutex-17", "nlk_cb_mutex-SCSITRANSPORT", "nlk_cb_mutex-ECRYPTFS", "nlk_cb_mutex-RDMA", "nlk_cb_mutex-CRYPTO", "nlk_cb_mutex-SMC", "nlk_cb_mutex-23", "nlk_cb_mutex-24", "nlk_cb_mutex-25", "nlk_cb_mutex-26", "nlk_cb_mutex-27", "nlk_cb_mutex-28", "nlk_cb_mutex-29", "nlk_cb_mutex-30", "nlk_cb_mutex-31", "nlk_cb_mutex-MAX_LINKS" }; static int netlink_dump(struct sock *sk, bool lock_taken); /* nl_table locking explained: * Lookup and traversal are protected with an RCU read-side lock. Insertion * and removal are protected with per bucket lock while using RCU list * modification primitives and may run in parallel to RCU protected lookups. * Destruction of the Netlink socket may only occur *after* nl_table_lock has * been acquired * either during or after the socket has been removed from * the list and after an RCU grace period. */ DEFINE_RWLOCK(nl_table_lock); EXPORT_SYMBOL_GPL(nl_table_lock); static atomic_t nl_table_users = ATOMIC_INIT(0); #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); static BLOCKING_NOTIFIER_HEAD(netlink_chain); static const struct rhashtable_params netlink_rhashtable_params; void do_trace_netlink_extack(const char *msg) { trace_netlink_extack(msg); } EXPORT_SYMBOL(do_trace_netlink_extack); static inline u32 netlink_group_mask(u32 group) { if (group > 32) return 0; return group ? 1 << (group - 1) : 0; } static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, gfp_t gfp_mask) { unsigned int len = skb->len; struct sk_buff *new; new = alloc_skb(len, gfp_mask); if (new == NULL) return NULL; NETLINK_CB(new).portid = NETLINK_CB(skb).portid; NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; NETLINK_CB(new).creds = NETLINK_CB(skb).creds; skb_put_data(new, skb->data, len); return new; } static unsigned int netlink_tap_net_id; struct netlink_tap_net { struct list_head netlink_tap_all; struct mutex netlink_tap_lock; }; int netlink_add_tap(struct netlink_tap *nt) { struct net *net = dev_net(nt->dev); struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); if (unlikely(nt->dev->type != ARPHRD_NETLINK)) return -EINVAL; mutex_lock(&nn->netlink_tap_lock); list_add_rcu(&nt->list, &nn->netlink_tap_all); mutex_unlock(&nn->netlink_tap_lock); __module_get(nt->module); return 0; } EXPORT_SYMBOL_GPL(netlink_add_tap); static int __netlink_remove_tap(struct netlink_tap *nt) { struct net *net = dev_net(nt->dev); struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); bool found = false; struct netlink_tap *tmp; mutex_lock(&nn->netlink_tap_lock); list_for_each_entry(tmp, &nn->netlink_tap_all, list) { if (nt == tmp) { list_del_rcu(&nt->list); found = true; goto out; } } pr_warn("__netlink_remove_tap: %p not found\n", nt); out: mutex_unlock(&nn->netlink_tap_lock); if (found) module_put(nt->module); return found ? 0 : -ENODEV; } int netlink_remove_tap(struct netlink_tap *nt) { int ret; ret = __netlink_remove_tap(nt); synchronize_net(); return ret; } EXPORT_SYMBOL_GPL(netlink_remove_tap); static __net_init int netlink_tap_init_net(struct net *net) { struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); INIT_LIST_HEAD(&nn->netlink_tap_all); mutex_init(&nn->netlink_tap_lock); return 0; } static struct pernet_operations netlink_tap_net_ops = { .init = netlink_tap_init_net, .id = &netlink_tap_net_id, .size = sizeof(struct netlink_tap_net), }; static bool netlink_filter_tap(const struct sk_buff *skb) { struct sock *sk = skb->sk; /* We take the more conservative approach and * whitelist socket protocols that may pass. */ switch (sk->sk_protocol) { case NETLINK_ROUTE: case NETLINK_USERSOCK: case NETLINK_SOCK_DIAG: case NETLINK_NFLOG: case NETLINK_XFRM: case NETLINK_FIB_LOOKUP: case NETLINK_NETFILTER: case NETLINK_GENERIC: return true; } return false; } static int __netlink_deliver_tap_skb(struct sk_buff *skb, struct net_device *dev) { struct sk_buff *nskb; struct sock *sk = skb->sk; int ret = -ENOMEM; if (!net_eq(dev_net(dev), sock_net(sk))) return 0; dev_hold(dev); if (is_vmalloc_addr(skb->head)) nskb = netlink_to_full_skb(skb, GFP_ATOMIC); else nskb = skb_clone(skb, GFP_ATOMIC); if (nskb) { nskb->dev = dev; nskb->protocol = htons((u16) sk->sk_protocol); nskb->pkt_type = netlink_is_kernel(sk) ? PACKET_KERNEL : PACKET_USER; skb_reset_network_header(nskb); ret = dev_queue_xmit(nskb); if (unlikely(ret > 0)) ret = net_xmit_errno(ret); } dev_put(dev); return ret; } static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) { int ret; struct netlink_tap *tmp; if (!netlink_filter_tap(skb)) return; list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { ret = __netlink_deliver_tap_skb(skb, tmp->dev); if (unlikely(ret)) break; } } static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) { struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); rcu_read_lock(); if (unlikely(!list_empty(&nn->netlink_tap_all))) __netlink_deliver_tap(skb, nn); rcu_read_unlock(); } static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, struct sk_buff *skb) { if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) netlink_deliver_tap(sock_net(dst), skb); } static void netlink_overrun(struct sock *sk) { if (!nlk_test_bit(RECV_NO_ENOBUFS, sk)) { if (!test_and_set_bit(NETLINK_S_CONGESTED, &nlk_sk(sk)->state)) { WRITE_ONCE(sk->sk_err, ENOBUFS); sk_error_report(sk); } } atomic_inc(&sk->sk_drops); } static void netlink_rcv_wake(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); if (skb_queue_empty_lockless(&sk->sk_receive_queue)) clear_bit(NETLINK_S_CONGESTED, &nlk->state); if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) wake_up_interruptible(&nlk->wait); } static void netlink_skb_destructor(struct sk_buff *skb) { if (is_vmalloc_addr(skb->head)) { if (!skb->cloned || !atomic_dec_return(&(skb_shinfo(skb)->dataref))) vfree_atomic(skb->head); skb->head = NULL; } if (skb->sk != NULL) sock_rfree(skb); } static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { WARN_ON(skb->sk != NULL); skb->sk = sk; skb->destructor = netlink_skb_destructor; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static void netlink_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); if (!sock_flag(sk, SOCK_DEAD)) { printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); return; } WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); WARN_ON(nlk_sk(sk)->groups); } /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on * SMP. Look, when several writers sleep and reader wakes them up, all but one * immediately hit write lock and grab all the cpus. Exclusive sleep solves * this, _but_ remember, it adds useless work on UP machines. */ void netlink_table_grab(void) __acquires(nl_table_lock) { might_sleep(); write_lock_irq(&nl_table_lock); if (atomic_read(&nl_table_users)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(&nl_table_wait, &wait); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&nl_table_users) == 0) break; write_unlock_irq(&nl_table_lock); schedule(); write_lock_irq(&nl_table_lock); } __set_current_state(TASK_RUNNING); remove_wait_queue(&nl_table_wait, &wait); } } void netlink_table_ungrab(void) __releases(nl_table_lock) { write_unlock_irq(&nl_table_lock); wake_up(&nl_table_wait); } static inline void netlink_lock_table(void) { unsigned long flags; /* read_lock() synchronizes us to netlink_table_grab */ read_lock_irqsave(&nl_table_lock, flags); atomic_inc(&nl_table_users); read_unlock_irqrestore(&nl_table_lock, flags); } static inline void netlink_unlock_table(void) { if (atomic_dec_and_test(&nl_table_users)) wake_up(&nl_table_wait); } struct netlink_compare_arg { possible_net_t pnet; u32 portid; }; /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ #define netlink_compare_arg_len \ (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) static inline int netlink_compare(struct rhashtable_compare_arg *arg, const void *ptr) { const struct netlink_compare_arg *x = arg->key; const struct netlink_sock *nlk = ptr; return nlk->portid != x->portid || !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); } static void netlink_compare_arg_init(struct netlink_compare_arg *arg, struct net *net, u32 portid) { memset(arg, 0, sizeof(*arg)); write_pnet(&arg->pnet, net); arg->portid = portid; } static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, struct net *net) { struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, net, portid); return rhashtable_lookup_fast(&table->hash, &arg, netlink_rhashtable_params); } static int __netlink_insert(struct netlink_table *table, struct sock *sk) { struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); return rhashtable_lookup_insert_key(&table->hash, &arg, &nlk_sk(sk)->node, netlink_rhashtable_params); } static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) { struct netlink_table *table = &nl_table[protocol]; struct sock *sk; rcu_read_lock(); sk = __netlink_lookup(table, portid, net); if (sk) sock_hold(sk); rcu_read_unlock(); return sk; } static const struct proto_ops netlink_ops; static void netlink_update_listeners(struct sock *sk) { struct netlink_table *tbl = &nl_table[sk->sk_protocol]; unsigned long mask; unsigned int i; struct listeners *listeners; listeners = nl_deref_protected(tbl->listeners); if (!listeners) return; for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { mask = 0; sk_for_each_bound(sk, &tbl->mc_list) { if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) mask |= nlk_sk(sk)->groups[i]; } listeners->masks[i] = mask; } /* this function is only called with the netlink table "grabbed", which * makes sure updates are visible before bind or setsockopt return. */ } static int netlink_insert(struct sock *sk, u32 portid) { struct netlink_table *table = &nl_table[sk->sk_protocol]; int err; lock_sock(sk); err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; if (nlk_sk(sk)->bound) goto err; /* portid can be read locklessly from netlink_getname(). */ WRITE_ONCE(nlk_sk(sk)->portid, portid); sock_hold(sk); err = __netlink_insert(table, sk); if (err) { /* In case the hashtable backend returns with -EBUSY * from here, it must not escape to the caller. */ if (unlikely(err == -EBUSY)) err = -EOVERFLOW; if (err == -EEXIST) err = -EADDRINUSE; sock_put(sk); goto err; } /* We need to ensure that the socket is hashed and visible. */ smp_wmb(); /* Paired with lockless reads from netlink_bind(), * netlink_connect() and netlink_sendmsg(). */ WRITE_ONCE(nlk_sk(sk)->bound, portid); err: release_sock(sk); return err; } static void netlink_remove(struct sock *sk) { struct netlink_table *table; table = &nl_table[sk->sk_protocol]; if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, netlink_rhashtable_params)) { WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } netlink_table_grab(); if (nlk_sk(sk)->subscriptions) { __sk_del_bind_node(sk); netlink_update_listeners(sk); } if (sk->sk_protocol == NETLINK_GENERIC) atomic_inc(&genl_sk_destructing_cnt); netlink_table_ungrab(); } static struct proto netlink_proto = { .name = "NETLINK", .owner = THIS_MODULE, .obj_size = sizeof(struct netlink_sock), }; static int __netlink_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct netlink_sock *nlk; sock->ops = &netlink_ops; sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); nlk = nlk_sk(sk); mutex_init(&nlk->nl_cb_mutex); lockdep_set_class_and_name(&nlk->nl_cb_mutex, nlk_cb_mutex_keys + protocol, nlk_cb_mutex_key_strings[protocol]); init_waitqueue_head(&nlk->wait); sk->sk_destruct = netlink_sock_destruct; sk->sk_protocol = protocol; return 0; } static int netlink_create(struct net *net, struct socket *sock, int protocol, int kern) { struct module *module = NULL; struct netlink_sock *nlk; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); void (*release)(struct sock *sock, unsigned long *groups); int err = 0; sock->state = SS_UNCONNECTED; if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; if (protocol < 0 || protocol >= MAX_LINKS) return -EPROTONOSUPPORT; protocol = array_index_nospec(protocol, MAX_LINKS); netlink_lock_table(); #ifdef CONFIG_MODULES if (!nl_table[protocol].registered) { netlink_unlock_table(); request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); netlink_lock_table(); } #endif if (nl_table[protocol].registered && try_module_get(nl_table[protocol].module)) module = nl_table[protocol].module; else err = -EPROTONOSUPPORT; bind = nl_table[protocol].bind; unbind = nl_table[protocol].unbind; release = nl_table[protocol].release; netlink_unlock_table(); if (err < 0) goto out; err = __netlink_create(net, sock, protocol, kern); if (err < 0) goto out_module; sock_prot_inuse_add(net, &netlink_proto, 1); nlk = nlk_sk(sock->sk); nlk->module = module; nlk->netlink_bind = bind; nlk->netlink_unbind = unbind; nlk->netlink_release = release; out: return err; out_module: module_put(module); goto out; } static void deferred_put_nlk_sk(struct rcu_head *head) { struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); struct sock *sk = &nlk->sk; kfree(nlk->groups); nlk->groups = NULL; if (!refcount_dec_and_test(&sk->sk_refcnt)) return; sk_free(sk); } static int netlink_release(struct socket *sock) { struct sock *sk = sock->sk; struct netlink_sock *nlk; if (!sk) return 0; netlink_remove(sk); sock_orphan(sk); nlk = nlk_sk(sk); /* * OK. Socket is unlinked, any packets that arrive now * will be purged. */ if (nlk->netlink_release) nlk->netlink_release(sk, nlk->groups); /* must not acquire netlink_table_lock in any way again before unbind * and notifying genetlink is done as otherwise it might deadlock */ if (nlk->netlink_unbind) { int i; for (i = 0; i < nlk->ngroups; i++) if (test_bit(i, nlk->groups)) nlk->netlink_unbind(sock_net(sk), i + 1); } if (sk->sk_protocol == NETLINK_GENERIC && atomic_dec_return(&genl_sk_destructing_cnt) == 0) wake_up(&genl_sk_destructing_waitq); sock->sk = NULL; wake_up_interruptible_all(&nlk->wait); skb_queue_purge(&sk->sk_write_queue); if (nlk->portid && nlk->bound) { struct netlink_notify n = { .net = sock_net(sk), .protocol = sk->sk_protocol, .portid = nlk->portid, }; blocking_notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n); } /* Terminate any outstanding dump */ if (nlk->cb_running) { if (nlk->cb.done) nlk->cb.done(&nlk->cb); module_put(nlk->cb.module); kfree_skb(nlk->cb.skb); } module_put(nlk->module); if (netlink_is_kernel(sk)) { netlink_table_grab(); BUG_ON(nl_table[sk->sk_protocol].registered == 0); if (--nl_table[sk->sk_protocol].registered == 0) { struct listeners *old; old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); kfree_rcu(old, rcu); nl_table[sk->sk_protocol].module = NULL; nl_table[sk->sk_protocol].bind = NULL; nl_table[sk->sk_protocol].unbind = NULL; nl_table[sk->sk_protocol].flags = 0; nl_table[sk->sk_protocol].registered = 0; } netlink_table_ungrab(); } sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); /* Because struct net might disappear soon, do not keep a pointer. */ if (!sk->sk_net_refcnt && sock_net(sk) != &init_net) { __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); /* Because of deferred_put_nlk_sk and use of work queue, * it is possible netns will be freed before this socket. */ sock_net_set(sk, &init_net); __netns_tracker_alloc(&init_net, &sk->ns_tracker, false, GFP_KERNEL); } call_rcu(&nlk->rcu, deferred_put_nlk_sk); return 0; } static int netlink_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct netlink_table *table = &nl_table[sk->sk_protocol]; s32 portid = task_tgid_vnr(current); int err; s32 rover = -4096; bool ok; retry: cond_resched(); rcu_read_lock(); ok = !__netlink_lookup(table, portid, net); rcu_read_unlock(); if (!ok) { /* Bind collision, search negative portid values. */ if (rover == -4096) /* rover will be in range [S32_MIN, -4097] */ rover = S32_MIN + get_random_u32_below(-4096 - S32_MIN); else if (rover >= -4096) rover = -4097; portid = rover--; goto retry; } err = netlink_insert(sk, portid); if (err == -EADDRINUSE) goto retry; /* If 2 threads race to autobind, that is fine. */ if (err == -EBUSY) err = 0; return err; } /** * __netlink_ns_capable - General netlink message capability test * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in the user namespace @user_ns. */ bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *user_ns, int cap) { return ((nsp->flags & NETLINK_SKB_DST) || file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && ns_capable(user_ns, cap); } EXPORT_SYMBOL(__netlink_ns_capable); /** * netlink_ns_capable - General netlink message capability test * @skb: socket buffer holding a netlink command from userspace * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in the user namespace @user_ns. */ bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *user_ns, int cap) { return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); } EXPORT_SYMBOL(netlink_ns_capable); /** * netlink_capable - Netlink global message capability test * @skb: socket buffer holding a netlink command from userspace * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in all user namespaces. */ bool netlink_capable(const struct sk_buff *skb, int cap) { return netlink_ns_capable(skb, &init_user_ns, cap); } EXPORT_SYMBOL(netlink_capable); /** * netlink_net_capable - Netlink network namespace message capability test * @skb: socket buffer holding a netlink command from userspace * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap over the network namespace of * the socket we received the message from. */ bool netlink_net_capable(const struct sk_buff *skb, int cap) { return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); } EXPORT_SYMBOL(netlink_net_capable); static inline int netlink_allowed(const struct socket *sock, unsigned int flag) { return (nl_table[sock->sk->sk_protocol].flags & flag) || ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); } static void netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) { struct netlink_sock *nlk = nlk_sk(sk); if (nlk->subscriptions && !subscriptions) __sk_del_bind_node(sk); else if (!nlk->subscriptions && subscriptions) sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); nlk->subscriptions = subscriptions; } static int netlink_realloc_groups(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); unsigned int groups; unsigned long *new_groups; int err = 0; netlink_table_grab(); groups = nl_table[sk->sk_protocol].groups; if (!nl_table[sk->sk_protocol].registered) { err = -ENOENT; goto out_unlock; } if (nlk->ngroups >= groups) goto out_unlock; new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); if (new_groups == NULL) { err = -ENOMEM; goto out_unlock; } memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); nlk->groups = new_groups; nlk->ngroups = groups; out_unlock: netlink_table_ungrab(); return err; } static void netlink_undo_bind(int group, long unsigned int groups, struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); int undo; if (!nlk->netlink_unbind) return; for (undo = 0; undo < group; undo++) if (test_bit(undo, &groups)) nlk->netlink_unbind(sock_net(sk), undo + 1); } static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; int err = 0; unsigned long groups; bool bound; if (addr_len < sizeof(struct sockaddr_nl)) return -EINVAL; if (nladdr->nl_family != AF_NETLINK) return -EINVAL; groups = nladdr->nl_groups; /* Only superuser is allowed to listen multicasts */ if (groups) { if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) return -EPERM; err = netlink_realloc_groups(sk); if (err) return err; } if (nlk->ngroups < BITS_PER_LONG) groups &= (1UL << nlk->ngroups) - 1; /* Paired with WRITE_ONCE() in netlink_insert() */ bound = READ_ONCE(nlk->bound); if (bound) { /* Ensure nlk->portid is up-to-date. */ smp_rmb(); if (nladdr->nl_pid != nlk->portid) return -EINVAL; } if (nlk->netlink_bind && groups) { int group; /* nl_groups is a u32, so cap the maximum groups we can bind */ for (group = 0; group < BITS_PER_TYPE(u32); group++) { if (!test_bit(group, &groups)) continue; err = nlk->netlink_bind(net, group + 1); if (!err) continue; netlink_undo_bind(group, groups, sk); return err; } } /* No need for barriers here as we return to user-space without * using any of the bound attributes. */ netlink_lock_table(); if (!bound) { err = nladdr->nl_pid ? netlink_insert(sk, nladdr->nl_pid) : netlink_autobind(sock); if (err) { netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); goto unlock; } } if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) goto unlock; netlink_unlock_table(); netlink_table_grab(); netlink_update_subscriptions(sk, nlk->subscriptions + hweight32(groups) - hweight32(nlk->groups[0])); nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; netlink_update_listeners(sk); netlink_table_ungrab(); return 0; unlock: netlink_unlock_table(); return err; } static int netlink_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { int err = 0; struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; if (alen < sizeof(addr->sa_family)) return -EINVAL; if (addr->sa_family == AF_UNSPEC) { /* paired with READ_ONCE() in netlink_getsockbyportid() */ WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); /* dst_portid and dst_group can be read locklessly */ WRITE_ONCE(nlk->dst_portid, 0); WRITE_ONCE(nlk->dst_group, 0); return 0; } if (addr->sa_family != AF_NETLINK) return -EINVAL; if (alen < sizeof(struct sockaddr_nl)) return -EINVAL; if ((nladdr->nl_groups || nladdr->nl_pid) && !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) return -EPERM; /* No need for barriers here as we return to user-space without * using any of the bound attributes. * Paired with WRITE_ONCE() in netlink_insert(). */ if (!READ_ONCE(nlk->bound)) err = netlink_autobind(sock); if (err == 0) { /* paired with READ_ONCE() in netlink_getsockbyportid() */ WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); /* dst_portid and dst_group can be read locklessly */ WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); } return err; } static int netlink_getname(struct socket *sock, struct sockaddr *addr, int peer) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); nladdr->nl_family = AF_NETLINK; nladdr->nl_pad = 0; if (peer) { /* Paired with WRITE_ONCE() in netlink_connect() */ nladdr->nl_pid = READ_ONCE(nlk->dst_portid); nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); } else { /* Paired with WRITE_ONCE() in netlink_insert() */ nladdr->nl_pid = READ_ONCE(nlk->portid); netlink_lock_table(); nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; netlink_unlock_table(); } return sizeof(*nladdr); } static int netlink_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { /* try to hand this ioctl down to the NIC drivers. */ return -ENOIOCTLCMD; } static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) { struct sock *sock; struct netlink_sock *nlk; sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); if (!sock) return ERR_PTR(-ECONNREFUSED); /* Don't bother queuing skb if kernel socket has no input function */ nlk = nlk_sk(sock); /* dst_portid and sk_state can be changed in netlink_connect() */ if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { sock_put(sock); return ERR_PTR(-ECONNREFUSED); } return sock; } struct sock *netlink_getsockbyfd(int fd) { CLASS(fd, f)(fd); struct inode *inode; struct sock *sock; if (fd_empty(f)) return ERR_PTR(-EBADF); inode = file_inode(fd_file(f)); if (!S_ISSOCK(inode->i_mode)) return ERR_PTR(-ENOTSOCK); sock = SOCKET_I(inode)->sk; if (sock->sk_family != AF_NETLINK) return ERR_PTR(-EINVAL); sock_hold(sock); return sock; } struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) { size_t head_size = SKB_HEAD_ALIGN(size); struct sk_buff *skb; void *data; if (head_size <= PAGE_SIZE || broadcast) return alloc_skb(size, GFP_KERNEL); data = kvmalloc(head_size, GFP_KERNEL); if (!data) return NULL; skb = __build_skb(data, head_size); if (!skb) kvfree(data); else if (is_vmalloc_addr(data)) skb->destructor = netlink_skb_destructor; return skb; } /* * Attach a skb to a netlink socket. * The caller must hold a reference to the destination socket. On error, the * reference is dropped. The skb is not send to the destination, just all * all error checks are performed and memory in the queue is reserved. * Return values: * < 0: error. skb freed, reference to sock dropped. * 0: continue * 1: repeat lookup - reference dropped while waiting for socket memory. */ int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk) { struct netlink_sock *nlk; nlk = nlk_sk(sk); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(NETLINK_S_CONGESTED, &nlk->state))) { DECLARE_WAITQUEUE(wait, current); if (!*timeo) { if (!ssk || netlink_is_kernel(ssk)) netlink_overrun(sk); sock_put(sk); kfree_skb(skb); return -EAGAIN; } __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&nlk->wait, &wait); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(NETLINK_S_CONGESTED, &nlk->state)) && !sock_flag(sk, SOCK_DEAD)) *timeo = schedule_timeout(*timeo); __set_current_state(TASK_RUNNING); remove_wait_queue(&nlk->wait, &wait); sock_put(sk); if (signal_pending(current)) { kfree_skb(skb); return sock_intr_errno(*timeo); } return 1; } netlink_skb_set_owner_r(skb, sk); return 0; } static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) { int len = skb->len; netlink_deliver_tap(sock_net(sk), skb); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk); return len; } int netlink_sendskb(struct sock *sk, struct sk_buff *skb) { int len = __netlink_sendskb(sk, skb); sock_put(sk); return len; } void netlink_detachskb(struct sock *sk, struct sk_buff *skb) { kfree_skb(skb); sock_put(sk); } static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) { int delta; WARN_ON(skb->sk != NULL); delta = skb->end - skb->tail; if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) return skb; if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, allocation); if (!nskb) return skb; consume_skb(skb); skb = nskb; } pskb_expand_head(skb, 0, -delta, (allocation & ~__GFP_DIRECT_RECLAIM) | __GFP_NOWARN | __GFP_NORETRY); return skb; } static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, struct sock *ssk) { int ret; struct netlink_sock *nlk = nlk_sk(sk); ret = -ECONNREFUSED; if (nlk->netlink_rcv != NULL) { ret = skb->len; netlink_skb_set_owner_r(skb, sk); NETLINK_CB(skb).sk = ssk; netlink_deliver_tap_kernel(sk, ssk, skb); nlk->netlink_rcv(skb); consume_skb(skb); } else { kfree_skb(skb); } sock_put(sk); return ret; } int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 portid, int nonblock) { struct sock *sk; int err; long timeo; skb = netlink_trim(skb, gfp_any()); timeo = sock_sndtimeo(ssk, nonblock); retry: sk = netlink_getsockbyportid(ssk, portid); if (IS_ERR(sk)) { kfree_skb(skb); return PTR_ERR(sk); } if (netlink_is_kernel(sk)) return netlink_unicast_kernel(sk, skb, ssk); if (sk_filter(sk, skb)) { err = skb->len; kfree_skb(skb); sock_put(sk); return err; } err = netlink_attachskb(sk, skb, &timeo, ssk); if (err == 1) goto retry; if (err) return err; return netlink_sendskb(sk, skb); } EXPORT_SYMBOL(netlink_unicast); int netlink_has_listeners(struct sock *sk, unsigned int group) { int res = 0; struct listeners *listeners; BUG_ON(!netlink_is_kernel(sk)); rcu_read_lock(); listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) res = test_bit(group - 1, listeners->masks); rcu_read_unlock(); return res; } EXPORT_SYMBOL_GPL(netlink_has_listeners); bool netlink_strict_get_check(struct sk_buff *skb) { return nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); } EXPORT_SYMBOL_GPL(netlink_strict_get_check); static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) { struct netlink_sock *nlk = nlk_sk(sk); if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { netlink_skb_set_owner_r(skb, sk); __netlink_sendskb(sk, skb); return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); } return -1; } struct netlink_broadcast_data { struct sock *exclude_sk; struct net *net; u32 portid; u32 group; int failure; int delivery_failure; int congested; int delivered; gfp_t allocation; struct sk_buff *skb, *skb2; int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); void *tx_data; }; static void do_one_broadcast(struct sock *sk, struct netlink_broadcast_data *p) { struct netlink_sock *nlk = nlk_sk(sk); int val; if (p->exclude_sk == sk) return; if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || !test_bit(p->group - 1, nlk->groups)) return; if (!net_eq(sock_net(sk), p->net)) { if (!nlk_test_bit(LISTEN_ALL_NSID, sk)) return; if (!peernet_has_id(sock_net(sk), p->net)) return; if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, CAP_NET_BROADCAST)) return; } if (p->failure) { netlink_overrun(sk); return; } sock_hold(sk); if (p->skb2 == NULL) { if (skb_shared(p->skb)) { p->skb2 = skb_clone(p->skb, p->allocation); } else { p->skb2 = skb_get(p->skb); /* * skb ownership may have been set when * delivered to a previous socket. */ skb_orphan(p->skb2); } } if (p->skb2 == NULL) { netlink_overrun(sk); /* Clone failed. Notify ALL listeners. */ p->failure = 1; if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) p->delivery_failure = 1; goto out; } if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { kfree_skb(p->skb2); p->skb2 = NULL; goto out; } if (sk_filter(sk, p->skb2)) { kfree_skb(p->skb2); p->skb2 = NULL; goto out; } NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) NETLINK_CB(p->skb2).nsid_is_set = true; val = netlink_broadcast_deliver(sk, p->skb2); if (val < 0) { netlink_overrun(sk); if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) p->delivery_failure = 1; } else { p->congested |= val; p->delivered = 1; p->skb2 = NULL; } out: sock_put(sk); } int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, u32 group, gfp_t allocation, netlink_filter_fn filter, void *filter_data) { struct net *net = sock_net(ssk); struct netlink_broadcast_data info; struct sock *sk; skb = netlink_trim(skb, allocation); info.exclude_sk = ssk; info.net = net; info.portid = portid; info.group = group; info.failure = 0; info.delivery_failure = 0; info.congested = 0; info.delivered = 0; info.allocation = allocation; info.skb = skb; info.skb2 = NULL; info.tx_filter = filter; info.tx_data = filter_data; /* While we sleep in clone, do not allow to change socket list */ netlink_lock_table(); sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) do_one_broadcast(sk, &info); consume_skb(skb); netlink_unlock_table(); if (info.delivery_failure) { kfree_skb(info.skb2); return -ENOBUFS; } consume_skb(info.skb2); if (info.delivered) { if (info.congested && gfpflags_allow_blocking(allocation)) yield(); return 0; } return -ESRCH; } EXPORT_SYMBOL(netlink_broadcast_filtered); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, u32 group, gfp_t allocation) { return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, NULL, NULL); } EXPORT_SYMBOL(netlink_broadcast); struct netlink_set_err_data { struct sock *exclude_sk; u32 portid; u32 group; int code; }; static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) { struct netlink_sock *nlk = nlk_sk(sk); int ret = 0; if (sk == p->exclude_sk) goto out; if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) goto out; if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || !test_bit(p->group - 1, nlk->groups)) goto out; if (p->code == ENOBUFS && nlk_test_bit(RECV_NO_ENOBUFS, sk)) { ret = 1; goto out; } WRITE_ONCE(sk->sk_err, p->code); sk_error_report(sk); out: return ret; } /** * netlink_set_err - report error to broadcast listeners * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() * @portid: the PORTID of a process that we want to skip (if any) * @group: the broadcast group that will notice the error * @code: error code, must be negative (as usual in kernelspace) * * This function returns the number of broadcast listeners that have set the * NETLINK_NO_ENOBUFS socket option. */ int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) { struct netlink_set_err_data info; unsigned long flags; struct sock *sk; int ret = 0; info.exclude_sk = ssk; info.portid = portid; info.group = group; /* sk->sk_err wants a positive error value */ info.code = -code; read_lock_irqsave(&nl_table_lock, flags); sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) ret += do_one_set_err(sk, &info); read_unlock_irqrestore(&nl_table_lock, flags); return ret; } EXPORT_SYMBOL(netlink_set_err); /* must be called with netlink table grabbed */ static void netlink_update_socket_mc(struct netlink_sock *nlk, unsigned int group, int is_new) { int old, new = !!is_new, subscriptions; old = test_bit(group - 1, nlk->groups); subscriptions = nlk->subscriptions - old + new; __assign_bit(group - 1, nlk->groups, new); netlink_update_subscriptions(&nlk->sk, subscriptions); netlink_update_listeners(&nlk->sk); } static int netlink_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); unsigned int val = 0; int nr = -1; if (level != SOL_NETLINK) return -ENOPROTOOPT; if (optlen >= sizeof(int) && copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (optname) { case NETLINK_PKTINFO: nr = NETLINK_F_RECV_PKTINFO; break; case NETLINK_ADD_MEMBERSHIP: case NETLINK_DROP_MEMBERSHIP: { int err; if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) return -EPERM; err = netlink_realloc_groups(sk); if (err) return err; if (!val || val - 1 >= nlk->ngroups) return -EINVAL; if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { err = nlk->netlink_bind(sock_net(sk), val); if (err) return err; } netlink_table_grab(); netlink_update_socket_mc(nlk, val, optname == NETLINK_ADD_MEMBERSHIP); netlink_table_ungrab(); if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) nlk->netlink_unbind(sock_net(sk), val); break; } case NETLINK_BROADCAST_ERROR: nr = NETLINK_F_BROADCAST_SEND_ERROR; break; case NETLINK_NO_ENOBUFS: assign_bit(NETLINK_F_RECV_NO_ENOBUFS, &nlk->flags, val); if (val) { clear_bit(NETLINK_S_CONGESTED, &nlk->state); wake_up_interruptible(&nlk->wait); } break; case NETLINK_LISTEN_ALL_NSID: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) return -EPERM; nr = NETLINK_F_LISTEN_ALL_NSID; break; case NETLINK_CAP_ACK: nr = NETLINK_F_CAP_ACK; break; case NETLINK_EXT_ACK: nr = NETLINK_F_EXT_ACK; break; case NETLINK_GET_STRICT_CHK: nr = NETLINK_F_STRICT_CHK; break; default: return -ENOPROTOOPT; } if (nr >= 0) assign_bit(nr, &nlk->flags, val); return 0; } static int netlink_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); unsigned int flag; int len, val; if (level != SOL_NETLINK) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case NETLINK_PKTINFO: flag = NETLINK_F_RECV_PKTINFO; break; case NETLINK_BROADCAST_ERROR: flag = NETLINK_F_BROADCAST_SEND_ERROR; break; case NETLINK_NO_ENOBUFS: flag = NETLINK_F_RECV_NO_ENOBUFS; break; case NETLINK_LIST_MEMBERSHIPS: { int pos, idx, shift, err = 0; netlink_lock_table(); for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { if (len - pos < sizeof(u32)) break; idx = pos / sizeof(unsigned long); shift = (pos % sizeof(unsigned long)) * 8; if (put_user((u32)(nlk->groups[idx] >> shift), (u32 __user *)(optval + pos))) { err = -EFAULT; break; } } if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) err = -EFAULT; netlink_unlock_table(); return err; } case NETLINK_LISTEN_ALL_NSID: flag = NETLINK_F_LISTEN_ALL_NSID; break; case NETLINK_CAP_ACK: flag = NETLINK_F_CAP_ACK; break; case NETLINK_EXT_ACK: flag = NETLINK_F_EXT_ACK; break; case NETLINK_GET_STRICT_CHK: flag = NETLINK_F_STRICT_CHK; break; default: return -ENOPROTOOPT; } if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = test_bit(flag, &nlk->flags); if (put_user(len, optlen) || copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct nl_pktinfo info; info.group = NETLINK_CB(skb).dst_group; put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); } static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { if (!NETLINK_CB(skb).nsid_is_set) return; put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), &NETLINK_CB(skb).nsid); } static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); u32 dst_portid; u32 dst_group; struct sk_buff *skb; int err; struct scm_cookie scm; u32 netlink_skb_flags = 0; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (len == 0) { pr_warn_once("Zero length message leads to an empty skb\n"); return -ENODATA; } err = scm_send(sock, msg, &scm, true); if (err < 0) return err; if (msg->msg_namelen) { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_nl)) goto out; if (addr->nl_family != AF_NETLINK) goto out; dst_portid = addr->nl_pid; dst_group = ffs(addr->nl_groups); err = -EPERM; if ((dst_group || dst_portid) && !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) goto out; netlink_skb_flags |= NETLINK_SKB_DST; } else { /* Paired with WRITE_ONCE() in netlink_connect() */ dst_portid = READ_ONCE(nlk->dst_portid); dst_group = READ_ONCE(nlk->dst_group); } /* Paired with WRITE_ONCE() in netlink_insert() */ if (!READ_ONCE(nlk->bound)) { err = netlink_autobind(sock); if (err) goto out; } else { /* Ensure nlk is hashed and visible. */ smp_rmb(); } err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = netlink_alloc_large_skb(len, dst_group); if (skb == NULL) goto out; NETLINK_CB(skb).portid = nlk->portid; NETLINK_CB(skb).dst_group = dst_group; NETLINK_CB(skb).creds = scm.creds; NETLINK_CB(skb).flags = netlink_skb_flags; err = -EFAULT; if (memcpy_from_msg(skb_put(skb, len), msg, len)) { kfree_skb(skb); goto out; } err = security_netlink_send(sk, skb); if (err) { kfree_skb(skb); goto out; } if (dst_group) { refcount_inc(&skb->users); netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); } err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); out: scm_destroy(&scm); return err; } static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct scm_cookie scm; struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); size_t copied, max_recvmsg_len; struct sk_buff *skb, *data_skb; int err, ret; if (flags & MSG_OOB) return -EOPNOTSUPP; copied = 0; skb = skb_recv_datagram(sk, flags, &err); if (skb == NULL) goto out; data_skb = skb; #ifdef CONFIG_COMPAT_NETLINK_MESSAGES if (unlikely(skb_shinfo(skb)->frag_list)) { /* * If this skb has a frag_list, then here that means that we * will have to use the frag_list skb's data for compat tasks * and the regular skb's data for normal (non-compat) tasks. * * If we need to send the compat skb, assign it to the * 'data_skb' variable so that it will be used below for data * copying. We keep 'skb' for everything else, including * freeing both later. */ if (flags & MSG_CMSG_COMPAT) data_skb = skb_shinfo(skb)->frag_list; } #endif /* Record the max length of recvmsg() calls for future allocations */ max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); max_recvmsg_len = min_t(size_t, max_recvmsg_len, SKB_WITH_OVERHEAD(32768)); WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); copied = data_skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(data_skb, 0, msg, copied); if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); addr->nl_family = AF_NETLINK; addr->nl_pad = 0; addr->nl_pid = NETLINK_CB(skb).portid; addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); msg->msg_namelen = sizeof(*addr); } if (nlk_test_bit(RECV_PKTINFO, sk)) netlink_cmsg_recv_pktinfo(msg, skb); if (nlk_test_bit(LISTEN_ALL_NSID, sk)) netlink_cmsg_listen_all_nsid(sk, msg, skb); memset(&scm, 0, sizeof(scm)); scm.creds = *NETLINK_CREDS(skb); if (flags & MSG_TRUNC) copied = data_skb->len; skb_free_datagram(sk, skb); if (READ_ONCE(nlk->cb_running) && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { ret = netlink_dump(sk, false); if (ret) { WRITE_ONCE(sk->sk_err, -ret); sk_error_report(sk); } } scm_recv(sock, msg, &scm, flags); out: netlink_rcv_wake(sk); return err ? : copied; } static void netlink_data_ready(struct sock *sk) { BUG(); } /* * We export these functions to other modules. They provide a * complete set of kernel non-blocking support for message * queueing. */ struct sock * __netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg) { struct socket *sock; struct sock *sk; struct netlink_sock *nlk; struct listeners *listeners = NULL; unsigned int groups; BUG_ON(!nl_table); if (unit < 0 || unit >= MAX_LINKS) return NULL; if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) return NULL; if (__netlink_create(net, sock, unit, 1) < 0) goto out_sock_release_nosk; sk = sock->sk; if (!cfg || cfg->groups < 32) groups = 32; else groups = cfg->groups; listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); if (!listeners) goto out_sock_release; sk->sk_data_ready = netlink_data_ready; if (cfg && cfg->input) nlk_sk(sk)->netlink_rcv = cfg->input; if (netlink_insert(sk, 0)) goto out_sock_release; nlk = nlk_sk(sk); set_bit(NETLINK_F_KERNEL_SOCKET, &nlk->flags); netlink_table_grab(); if (!nl_table[unit].registered) { nl_table[unit].groups = groups; rcu_assign_pointer(nl_table[unit].listeners, listeners); nl_table[unit].module = module; if (cfg) { nl_table[unit].bind = cfg->bind; nl_table[unit].unbind = cfg->unbind; nl_table[unit].release = cfg->release; nl_table[unit].flags = cfg->flags; } nl_table[unit].registered = 1; } else { kfree(listeners); nl_table[unit].registered++; } netlink_table_ungrab(); return sk; out_sock_release: kfree(listeners); netlink_kernel_release(sk); return NULL; out_sock_release_nosk: sock_release(sock); return NULL; } EXPORT_SYMBOL(__netlink_kernel_create); void netlink_kernel_release(struct sock *sk) { if (sk == NULL || sk->sk_socket == NULL) return; sock_release(sk->sk_socket); } EXPORT_SYMBOL(netlink_kernel_release); int __netlink_change_ngroups(struct sock *sk, unsigned int groups) { struct listeners *new, *old; struct netlink_table *tbl = &nl_table[sk->sk_protocol]; if (groups < 32) groups = 32; if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); if (!new) return -ENOMEM; old = nl_deref_protected(tbl->listeners); memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); rcu_assign_pointer(tbl->listeners, new); kfree_rcu(old, rcu); } tbl->groups = groups; return 0; } /** * netlink_change_ngroups - change number of multicast groups * * This changes the number of multicast groups that are available * on a certain netlink family. Note that it is not possible to * change the number of groups to below 32. Also note that it does * not implicitly call netlink_clear_multicast_users() when the * number of groups is reduced. * * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). * @groups: The new number of groups. */ int netlink_change_ngroups(struct sock *sk, unsigned int groups) { int err; netlink_table_grab(); err = __netlink_change_ngroups(sk, groups); netlink_table_ungrab(); return err; } void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) { struct sock *sk; struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; struct hlist_node *tmp; sk_for_each_bound_safe(sk, tmp, &tbl->mc_list) netlink_update_socket_mc(nlk_sk(sk), group, 0); } struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) { struct nlmsghdr *nlh; int size = nlmsg_msg_size(len); nlh = skb_put(skb, NLMSG_ALIGN(size)); nlh->nlmsg_type = type; nlh->nlmsg_len = size; nlh->nlmsg_flags = flags; nlh->nlmsg_pid = portid; nlh->nlmsg_seq = seq; if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); return nlh; } EXPORT_SYMBOL(__nlmsg_put); static size_t netlink_ack_tlv_len(struct netlink_sock *nlk, int err, const struct netlink_ext_ack *extack) { size_t tlvlen; if (!extack || !test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) return 0; tlvlen = 0; if (extack->_msg) tlvlen += nla_total_size(strlen(extack->_msg) + 1); if (extack->cookie_len) tlvlen += nla_total_size(extack->cookie_len); /* Following attributes are only reported as error (not warning) */ if (!err) return tlvlen; if (extack->bad_attr) tlvlen += nla_total_size(sizeof(u32)); if (extack->policy) tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); if (extack->miss_type) tlvlen += nla_total_size(sizeof(u32)); if (extack->miss_nest) tlvlen += nla_total_size(sizeof(u32)); return tlvlen; } static bool nlmsg_check_in_payload(const struct nlmsghdr *nlh, const void *addr) { return !WARN_ON(addr < nlmsg_data(nlh) || addr - (const void *) nlh >= nlh->nlmsg_len); } static void netlink_ack_tlv_fill(struct sk_buff *skb, const struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack) { if (extack->_msg) WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); if (extack->cookie_len) WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, extack->cookie_len, extack->cookie)); if (!err) return; if (extack->bad_attr && nlmsg_check_in_payload(nlh, extack->bad_attr)) WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, (u8 *)extack->bad_attr - (const u8 *)nlh)); if (extack->policy) netlink_policy_dump_write_attr(skb, extack->policy, NLMSGERR_ATTR_POLICY); if (extack->miss_type) WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_TYPE, extack->miss_type)); if (extack->miss_nest && nlmsg_check_in_payload(nlh, extack->miss_nest)) WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_NEST, (u8 *)extack->miss_nest - (const u8 *)nlh)); } /* * It looks a bit ugly. * It would be better to create kernel thread. */ static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, struct netlink_callback *cb, struct netlink_ext_ack *extack) { struct nlmsghdr *nlh; size_t extack_len; nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), NLM_F_MULTI | cb->answer_flags); if (WARN_ON(!nlh)) return -ENOBUFS; nl_dump_check_consistent(cb, nlh); memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); extack_len = netlink_ack_tlv_len(nlk, nlk->dump_done_errno, extack); if (extack_len) { nlh->nlmsg_flags |= NLM_F_ACK_TLVS; if (skb_tailroom(skb) >= extack_len) { netlink_ack_tlv_fill(skb, cb->nlh, nlk->dump_done_errno, extack); nlmsg_end(skb, nlh); } } return 0; } static int netlink_dump(struct sock *sk, bool lock_taken) { struct netlink_sock *nlk = nlk_sk(sk); struct netlink_ext_ack extack = {}; struct netlink_callback *cb; struct sk_buff *skb = NULL; size_t max_recvmsg_len; struct module *module; int err = -ENOBUFS; int alloc_min_size; int alloc_size; if (!lock_taken) mutex_lock(&nlk->nl_cb_mutex); if (!nlk->cb_running) { err = -EINVAL; goto errout_skb; } if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) goto errout_skb; /* NLMSG_GOODSIZE is small to avoid high order allocations being * required, but it makes sense to _attempt_ a 32KiB allocation * to reduce number of system calls on dump operations, if user * ever provided a big enough buffer. */ cb = &nlk->cb; alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); if (alloc_min_size < max_recvmsg_len) { alloc_size = max_recvmsg_len; skb = alloc_skb(alloc_size, (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | __GFP_NOWARN | __GFP_NORETRY); } if (!skb) { alloc_size = alloc_min_size; skb = alloc_skb(alloc_size, GFP_KERNEL); } if (!skb) goto errout_skb; /* Trim skb to allocated size. User is expected to provide buffer as * large as max(min_dump_alloc, 32KiB (max_recvmsg_len capped at * netlink_recvmsg())). dump will pack as many smaller messages as * could fit within the allocated skb. skb is typically allocated * with larger space than required (could be as much as near 2x the * requested size with align to next power of 2 approach). Allowing * dump to use the excess space makes it difficult for a user to have a * reasonable static buffer based on the expected largest dump of a * single netdev. The outcome is MSG_TRUNC error. */ skb_reserve(skb, skb_tailroom(skb) - alloc_size); /* Make sure malicious BPF programs can not read unitialized memory * from skb->head -> skb->data */ skb_reset_network_header(skb); skb_reset_mac_header(skb); netlink_skb_set_owner_r(skb, sk); if (nlk->dump_done_errno > 0) { cb->extack = &extack; nlk->dump_done_errno = cb->dump(skb, cb); /* EMSGSIZE plus something already in the skb means * that there's more to dump but current skb has filled up. * If the callback really wants to return EMSGSIZE to user space * it needs to do so again, on the next cb->dump() call, * without putting data in the skb. */ if (nlk->dump_done_errno == -EMSGSIZE && skb->len) nlk->dump_done_errno = skb->len; cb->extack = NULL; } if (nlk->dump_done_errno > 0 || skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { mutex_unlock(&nlk->nl_cb_mutex); if (sk_filter(sk, skb)) kfree_skb(skb); else __netlink_sendskb(sk, skb); return 0; } if (netlink_dump_done(nlk, skb, cb, &extack)) goto errout_skb; #ifdef CONFIG_COMPAT_NETLINK_MESSAGES /* frag_list skb's data is used for compat tasks * and the regular skb's data for normal (non-compat) tasks. * See netlink_recvmsg(). */ if (unlikely(skb_shinfo(skb)->frag_list)) { if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) goto errout_skb; } #endif if (sk_filter(sk, skb)) kfree_skb(skb); else __netlink_sendskb(sk, skb); if (cb->done) cb->done(cb); WRITE_ONCE(nlk->cb_running, false); module = cb->module; skb = cb->skb; mutex_unlock(&nlk->nl_cb_mutex); module_put(module); consume_skb(skb); return 0; errout_skb: mutex_unlock(&nlk->nl_cb_mutex); kfree_skb(skb); return err; } int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { struct netlink_callback *cb; struct netlink_sock *nlk; struct sock *sk; int ret; refcount_inc(&skb->users); sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); if (sk == NULL) { ret = -ECONNREFUSED; goto error_free; } nlk = nlk_sk(sk); mutex_lock(&nlk->nl_cb_mutex); /* A dump is in progress... */ if (nlk->cb_running) { ret = -EBUSY; goto error_unlock; } /* add reference of module which cb->dump belongs to */ if (!try_module_get(control->module)) { ret = -EPROTONOSUPPORT; goto error_unlock; } cb = &nlk->cb; memset(cb, 0, sizeof(*cb)); cb->dump = control->dump; cb->done = control->done; cb->nlh = nlh; cb->data = control->data; cb->module = control->module; cb->min_dump_alloc = control->min_dump_alloc; cb->flags = control->flags; cb->skb = skb; cb->strict_check = nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); if (control->start) { cb->extack = control->extack; ret = control->start(cb); cb->extack = NULL; if (ret) goto error_put; } WRITE_ONCE(nlk->cb_running, true); nlk->dump_done_errno = INT_MAX; ret = netlink_dump(sk, true); sock_put(sk); if (ret) return ret; /* We successfully started a dump, by returning -EINTR we * signal not to send ACK even if it was requested. */ return -EINTR; error_put: module_put(control->module); error_unlock: sock_put(sk); mutex_unlock(&nlk->nl_cb_mutex); error_free: kfree_skb(skb); return ret; } EXPORT_SYMBOL(__netlink_dump_start); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack) { struct sk_buff *skb; struct nlmsghdr *rep; struct nlmsgerr *errmsg; size_t payload = sizeof(*errmsg); struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); unsigned int flags = 0; size_t tlvlen; /* Error messages get the original request appened, unless the user * requests to cap the error message, and get extra error data if * requested. */ if (err && !test_bit(NETLINK_F_CAP_ACK, &nlk->flags)) payload += nlmsg_len(nlh); else flags |= NLM_F_CAPPED; tlvlen = netlink_ack_tlv_len(nlk, err, extack); if (tlvlen) flags |= NLM_F_ACK_TLVS; skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); if (!skb) goto err_skb; rep = nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, NLMSG_ERROR, sizeof(*errmsg), flags); if (!rep) goto err_bad_put; errmsg = nlmsg_data(rep); errmsg->error = err; errmsg->msg = *nlh; if (!(flags & NLM_F_CAPPED)) { if (!nlmsg_append(skb, nlmsg_len(nlh))) goto err_bad_put; memcpy(nlmsg_data(&errmsg->msg), nlmsg_data(nlh), nlmsg_len(nlh)); } if (tlvlen) netlink_ack_tlv_fill(skb, nlh, err, extack); nlmsg_end(skb, rep); nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); return; err_bad_put: nlmsg_free(skb); err_skb: WRITE_ONCE(NETLINK_CB(in_skb).sk->sk_err, ENOBUFS); sk_error_report(NETLINK_CB(in_skb).sk); } EXPORT_SYMBOL(netlink_ack); int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *)) { struct netlink_ext_ack extack; struct nlmsghdr *nlh; int err; while (skb->len >= nlmsg_total_size(0)) { int msglen; memset(&extack, 0, sizeof(extack)); nlh = nlmsg_hdr(skb); err = 0; if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) return 0; /* Only requests are handled by the kernel */ if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) goto ack; /* Skip control messages */ if (nlh->nlmsg_type < NLMSG_MIN_TYPE) goto ack; err = cb(skb, nlh, &extack); if (err == -EINTR) goto skip; ack: if (nlh->nlmsg_flags & NLM_F_ACK || err) netlink_ack(skb, nlh, err, &extack); skip: msglen = NLMSG_ALIGN(nlh->nlmsg_len); if (msglen > skb->len) msglen = skb->len; skb_pull(skb, msglen); } return 0; } EXPORT_SYMBOL(netlink_rcv_skb); /** * nlmsg_notify - send a notification netlink message * @sk: netlink socket to use * @skb: notification message * @portid: destination netlink portid for reports or 0 * @group: destination multicast group or 0 * @report: 1 to report back, 0 to disable * @flags: allocation flags */ int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, int report, gfp_t flags) { int err = 0; if (group) { int exclude_portid = 0; if (report) { refcount_inc(&skb->users); exclude_portid = portid; } /* errors reported via destination sk->sk_err, but propagate * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); if (err == -ESRCH) err = 0; } if (report) { int err2; err2 = nlmsg_unicast(sk, skb, portid); if (!err) err = err2; } return err; } EXPORT_SYMBOL(nlmsg_notify); #ifdef CONFIG_PROC_FS struct nl_seq_iter { struct seq_net_private p; struct rhashtable_iter hti; int link; }; static void netlink_walk_start(struct nl_seq_iter *iter) { rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); rhashtable_walk_start(&iter->hti); } static void netlink_walk_stop(struct nl_seq_iter *iter) { rhashtable_walk_stop(&iter->hti); rhashtable_walk_exit(&iter->hti); } static void *__netlink_seq_next(struct seq_file *seq) { struct nl_seq_iter *iter = seq->private; struct netlink_sock *nlk; do { for (;;) { nlk = rhashtable_walk_next(&iter->hti); if (IS_ERR(nlk)) { if (PTR_ERR(nlk) == -EAGAIN) continue; return nlk; } if (nlk) break; netlink_walk_stop(iter); if (++iter->link >= MAX_LINKS) return NULL; netlink_walk_start(iter); } } while (sock_net(&nlk->sk) != seq_file_net(seq)); return nlk; } static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) __acquires(RCU) { struct nl_seq_iter *iter = seq->private; void *obj = SEQ_START_TOKEN; loff_t pos; iter->link = 0; netlink_walk_start(iter); for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) obj = __netlink_seq_next(seq); return obj; } static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return __netlink_seq_next(seq); } static void netlink_native_seq_stop(struct seq_file *seq, void *v) { struct nl_seq_iter *iter = seq->private; if (iter->link >= MAX_LINKS) return; netlink_walk_stop(iter); } static int netlink_native_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "sk Eth Pid Groups " "Rmem Wmem Dump Locks Drops Inode\n"); } else { struct sock *s = v; struct netlink_sock *nlk = nlk_sk(s); seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", s, s->sk_protocol, nlk->portid, nlk->groups ? (u32)nlk->groups[0] : 0, sk_rmem_alloc_get(s), sk_wmem_alloc_get(s), READ_ONCE(nlk->cb_running), refcount_read(&s->sk_refcnt), atomic_read(&s->sk_drops), sock_i_ino(s) ); } return 0; } #ifdef CONFIG_BPF_SYSCALL struct bpf_iter__netlink { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct netlink_sock *, sk); }; DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) static int netlink_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, void *v) { struct bpf_iter__netlink ctx; meta->seq_num--; /* skip SEQ_START_TOKEN */ ctx.meta = meta; ctx.sk = nlk_sk((struct sock *)v); return bpf_iter_run_prog(prog, &ctx); } static int netlink_seq_show(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; meta.seq = seq; prog = bpf_iter_get_info(&meta, false); if (!prog) return netlink_native_seq_show(seq, v); if (v != SEQ_START_TOKEN) return netlink_prog_seq_show(prog, &meta, v); return 0; } static void netlink_seq_stop(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; if (!v) { meta.seq = seq; prog = bpf_iter_get_info(&meta, true); if (prog) (void)netlink_prog_seq_show(prog, &meta, v); } netlink_native_seq_stop(seq, v); } #else static int netlink_seq_show(struct seq_file *seq, void *v) { return netlink_native_seq_show(seq, v); } static void netlink_seq_stop(struct seq_file *seq, void *v) { netlink_native_seq_stop(seq, v); } #endif static const struct seq_operations netlink_seq_ops = { .start = netlink_seq_start, .next = netlink_seq_next, .stop = netlink_seq_stop, .show = netlink_seq_show, }; #endif int netlink_register_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&netlink_chain, nb); } EXPORT_SYMBOL(netlink_register_notifier); int netlink_unregister_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&netlink_chain, nb); } EXPORT_SYMBOL(netlink_unregister_notifier); static const struct proto_ops netlink_ops = { .family = PF_NETLINK, .owner = THIS_MODULE, .release = netlink_release, .bind = netlink_bind, .connect = netlink_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = netlink_getname, .poll = datagram_poll, .ioctl = netlink_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = netlink_setsockopt, .getsockopt = netlink_getsockopt, .sendmsg = netlink_sendmsg, .recvmsg = netlink_recvmsg, .mmap = sock_no_mmap, }; static const struct net_proto_family netlink_family_ops = { .family = PF_NETLINK, .create = netlink_create, .owner = THIS_MODULE, /* for consistency 8) */ }; static int __net_init netlink_net_init(struct net *net) { #ifdef CONFIG_PROC_FS if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, sizeof(struct nl_seq_iter))) return -ENOMEM; #endif return 0; } static void __net_exit netlink_net_exit(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("netlink", net->proc_net); #endif } static void __init netlink_add_usersock_entry(void) { struct listeners *listeners; int groups = 32; listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); if (!listeners) panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); netlink_table_grab(); nl_table[NETLINK_USERSOCK].groups = groups; rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); nl_table[NETLINK_USERSOCK].module = THIS_MODULE; nl_table[NETLINK_USERSOCK].registered = 1; nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; netlink_table_ungrab(); } static struct pernet_operations __net_initdata netlink_net_ops = { .init = netlink_net_init, .exit = netlink_net_exit, }; static inline u32 netlink_hash(const void *data, u32 len, u32 seed) { const struct netlink_sock *nlk = data; struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); } static const struct rhashtable_params netlink_rhashtable_params = { .head_offset = offsetof(struct netlink_sock, node), .key_len = netlink_compare_arg_len, .obj_hashfn = netlink_hash, .obj_cmpfn = netlink_compare, .automatic_shrinking = true, }; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) BTF_ID_LIST(btf_netlink_sock_id) BTF_ID(struct, netlink_sock) static const struct bpf_iter_seq_info netlink_seq_info = { .seq_ops = &netlink_seq_ops, .init_seq_private = bpf_iter_init_seq_net, .fini_seq_private = bpf_iter_fini_seq_net, .seq_priv_size = sizeof(struct nl_seq_iter), }; static struct bpf_iter_reg netlink_reg_info = { .target = "netlink", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__netlink, sk), PTR_TO_BTF_ID_OR_NULL }, }, .seq_info = &netlink_seq_info, }; static int __init bpf_iter_register(void) { netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; return bpf_iter_reg_target(&netlink_reg_info); } #endif static int __init netlink_proto_init(void) { int i; int err = proto_register(&netlink_proto, 0); if (err != 0) goto out; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) err = bpf_iter_register(); if (err) goto out; #endif BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); if (!nl_table) goto panic; for (i = 0; i < MAX_LINKS; i++) { if (rhashtable_init(&nl_table[i].hash, &netlink_rhashtable_params) < 0) goto panic; } netlink_add_usersock_entry(); sock_register(&netlink_family_ops); register_pernet_subsys(&netlink_net_ops); register_pernet_subsys(&netlink_tap_net_ops); /* The netlink device handler may be needed early. */ rtnetlink_init(); out: return err; panic: panic("netlink_init: Cannot allocate nl_table\n"); } core_initcall(netlink_proto_init); |
6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 | // SPDX-License-Identifier: GPL-2.0-or-later /* AFS cell and server record management * * Copyright (C) 2002, 2017 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/slab.h> #include <linux/key.h> #include <linux/ctype.h> #include <linux/dns_resolver.h> #include <linux/sched.h> #include <linux/inet.h> #include <linux/namei.h> #include <keys/rxrpc-type.h> #include "internal.h" static unsigned __read_mostly afs_cell_gc_delay = 10; static unsigned __read_mostly afs_cell_min_ttl = 10 * 60; static unsigned __read_mostly afs_cell_max_ttl = 24 * 60 * 60; static atomic_t cell_debug_id; static void afs_queue_cell_manager(struct afs_net *); static void afs_manage_cell_work(struct work_struct *); static void afs_dec_cells_outstanding(struct afs_net *net) { if (atomic_dec_and_test(&net->cells_outstanding)) wake_up_var(&net->cells_outstanding); } /* * Set the cell timer to fire after a given delay, assuming it's not already * set for an earlier time. */ static void afs_set_cell_timer(struct afs_net *net, time64_t delay) { if (net->live) { atomic_inc(&net->cells_outstanding); if (timer_reduce(&net->cells_timer, jiffies + delay * HZ)) afs_dec_cells_outstanding(net); } else { afs_queue_cell_manager(net); } } /* * Look up and get an activation reference on a cell record. The caller must * hold net->cells_lock at least read-locked. */ static struct afs_cell *afs_find_cell_locked(struct afs_net *net, const char *name, unsigned int namesz, enum afs_cell_trace reason) { struct afs_cell *cell = NULL; struct rb_node *p; int n; _enter("%*.*s", namesz, namesz, name); if (name && namesz == 0) return ERR_PTR(-EINVAL); if (namesz > AFS_MAXCELLNAME) return ERR_PTR(-ENAMETOOLONG); if (!name) { cell = net->ws_cell; if (!cell) return ERR_PTR(-EDESTADDRREQ); goto found; } p = net->cells.rb_node; while (p) { cell = rb_entry(p, struct afs_cell, net_node); n = strncasecmp(cell->name, name, min_t(size_t, cell->name_len, namesz)); if (n == 0) n = cell->name_len - namesz; if (n < 0) p = p->rb_left; else if (n > 0) p = p->rb_right; else goto found; } return ERR_PTR(-ENOENT); found: return afs_use_cell(cell, reason); } /* * Look up and get an activation reference on a cell record. */ struct afs_cell *afs_find_cell(struct afs_net *net, const char *name, unsigned int namesz, enum afs_cell_trace reason) { struct afs_cell *cell; down_read(&net->cells_lock); cell = afs_find_cell_locked(net, name, namesz, reason); up_read(&net->cells_lock); return cell; } /* * Set up a cell record and fill in its name, VL server address list and * allocate an anonymous key */ static struct afs_cell *afs_alloc_cell(struct afs_net *net, const char *name, unsigned int namelen, const char *addresses) { struct afs_vlserver_list *vllist; struct afs_cell *cell; int i, ret; ASSERT(name); if (namelen == 0) return ERR_PTR(-EINVAL); if (namelen > AFS_MAXCELLNAME) { _leave(" = -ENAMETOOLONG"); return ERR_PTR(-ENAMETOOLONG); } /* Prohibit cell names that contain unprintable chars, '/' and '@' or * that begin with a dot. This also precludes "@cell". */ if (name[0] == '.') return ERR_PTR(-EINVAL); for (i = 0; i < namelen; i++) { char ch = name[i]; if (!isprint(ch) || ch == '/' || ch == '@') return ERR_PTR(-EINVAL); } _enter("%*.*s,%s", namelen, namelen, name, addresses); cell = kzalloc(sizeof(struct afs_cell), GFP_KERNEL); if (!cell) { _leave(" = -ENOMEM"); return ERR_PTR(-ENOMEM); } cell->name = kmalloc(namelen + 1, GFP_KERNEL); if (!cell->name) { kfree(cell); return ERR_PTR(-ENOMEM); } cell->net = net; cell->name_len = namelen; for (i = 0; i < namelen; i++) cell->name[i] = tolower(name[i]); cell->name[i] = 0; refcount_set(&cell->ref, 1); atomic_set(&cell->active, 0); INIT_WORK(&cell->manager, afs_manage_cell_work); init_rwsem(&cell->vs_lock); cell->volumes = RB_ROOT; INIT_HLIST_HEAD(&cell->proc_volumes); seqlock_init(&cell->volume_lock); cell->fs_servers = RB_ROOT; seqlock_init(&cell->fs_lock); rwlock_init(&cell->vl_servers_lock); cell->flags = (1 << AFS_CELL_FL_CHECK_ALIAS); /* Provide a VL server list, filling it in if we were given a list of * addresses to use. */ if (addresses) { vllist = afs_parse_text_addrs(net, addresses, strlen(addresses), ':', VL_SERVICE, AFS_VL_PORT); if (IS_ERR(vllist)) { ret = PTR_ERR(vllist); goto parse_failed; } vllist->source = DNS_RECORD_FROM_CONFIG; vllist->status = DNS_LOOKUP_NOT_DONE; cell->dns_expiry = TIME64_MAX; } else { ret = -ENOMEM; vllist = afs_alloc_vlserver_list(0); if (!vllist) goto error; vllist->source = DNS_RECORD_UNAVAILABLE; vllist->status = DNS_LOOKUP_NOT_DONE; cell->dns_expiry = ktime_get_real_seconds(); } rcu_assign_pointer(cell->vl_servers, vllist); cell->dns_source = vllist->source; cell->dns_status = vllist->status; smp_store_release(&cell->dns_lookup_count, 1); /* vs source/status */ atomic_inc(&net->cells_outstanding); cell->debug_id = atomic_inc_return(&cell_debug_id); trace_afs_cell(cell->debug_id, 1, 0, afs_cell_trace_alloc); _leave(" = %p", cell); return cell; parse_failed: if (ret == -EINVAL) printk(KERN_ERR "kAFS: bad VL server IP address\n"); error: kfree(cell->name); kfree(cell); _leave(" = %d", ret); return ERR_PTR(ret); } /* * afs_lookup_cell - Look up or create a cell record. * @net: The network namespace * @name: The name of the cell. * @namesz: The strlen of the cell name. * @vllist: A colon/comma separated list of numeric IP addresses or NULL. * @excl: T if an error should be given if the cell name already exists. * * Look up a cell record by name and query the DNS for VL server addresses if * needed. Note that that actual DNS query is punted off to the manager thread * so that this function can return immediately if interrupted whilst allowing * cell records to be shared even if not yet fully constructed. */ struct afs_cell *afs_lookup_cell(struct afs_net *net, const char *name, unsigned int namesz, const char *vllist, bool excl) { struct afs_cell *cell, *candidate, *cursor; struct rb_node *parent, **pp; enum afs_cell_state state; int ret, n; _enter("%s,%s", name, vllist); if (!excl) { cell = afs_find_cell(net, name, namesz, afs_cell_trace_use_lookup); if (!IS_ERR(cell)) goto wait_for_cell; } /* Assume we're probably going to create a cell and preallocate and * mostly set up a candidate record. We can then use this to stash the * name, the net namespace and VL server addresses. * * We also want to do this before we hold any locks as it may involve * upcalling to userspace to make DNS queries. */ candidate = afs_alloc_cell(net, name, namesz, vllist); if (IS_ERR(candidate)) { _leave(" = %ld", PTR_ERR(candidate)); return candidate; } /* Find the insertion point and check to see if someone else added a * cell whilst we were allocating. */ down_write(&net->cells_lock); pp = &net->cells.rb_node; parent = NULL; while (*pp) { parent = *pp; cursor = rb_entry(parent, struct afs_cell, net_node); n = strncasecmp(cursor->name, name, min_t(size_t, cursor->name_len, namesz)); if (n == 0) n = cursor->name_len - namesz; if (n < 0) pp = &(*pp)->rb_left; else if (n > 0) pp = &(*pp)->rb_right; else goto cell_already_exists; } cell = candidate; candidate = NULL; atomic_set(&cell->active, 2); trace_afs_cell(cell->debug_id, refcount_read(&cell->ref), 2, afs_cell_trace_insert); rb_link_node_rcu(&cell->net_node, parent, pp); rb_insert_color(&cell->net_node, &net->cells); up_write(&net->cells_lock); afs_queue_cell(cell, afs_cell_trace_get_queue_new); wait_for_cell: trace_afs_cell(cell->debug_id, refcount_read(&cell->ref), atomic_read(&cell->active), afs_cell_trace_wait); _debug("wait_for_cell"); wait_var_event(&cell->state, ({ state = smp_load_acquire(&cell->state); /* vs error */ state == AFS_CELL_ACTIVE || state == AFS_CELL_REMOVED; })); /* Check the state obtained from the wait check. */ if (state == AFS_CELL_REMOVED) { ret = cell->error; goto error; } _leave(" = %p [cell]", cell); return cell; cell_already_exists: _debug("cell exists"); cell = cursor; if (excl) { ret = -EEXIST; } else { afs_use_cell(cursor, afs_cell_trace_use_lookup); ret = 0; } up_write(&net->cells_lock); if (candidate) afs_put_cell(candidate, afs_cell_trace_put_candidate); if (ret == 0) goto wait_for_cell; goto error_noput; error: afs_unuse_cell(net, cell, afs_cell_trace_unuse_lookup); error_noput: _leave(" = %d [error]", ret); return ERR_PTR(ret); } /* * set the root cell information * - can be called with a module parameter string * - can be called from a write to /proc/fs/afs/rootcell */ int afs_cell_init(struct afs_net *net, const char *rootcell) { struct afs_cell *old_root, *new_root; const char *cp, *vllist; size_t len; _enter(""); if (!rootcell) { /* module is loaded with no parameters, or built statically. * - in the future we might initialize cell DB here. */ _leave(" = 0 [no root]"); return 0; } cp = strchr(rootcell, ':'); if (!cp) { _debug("kAFS: no VL server IP addresses specified"); vllist = NULL; len = strlen(rootcell); } else { vllist = cp + 1; len = cp - rootcell; } /* allocate a cell record for the root cell */ new_root = afs_lookup_cell(net, rootcell, len, vllist, false); if (IS_ERR(new_root)) { _leave(" = %ld", PTR_ERR(new_root)); return PTR_ERR(new_root); } if (!test_and_set_bit(AFS_CELL_FL_NO_GC, &new_root->flags)) afs_use_cell(new_root, afs_cell_trace_use_pin); /* install the new cell */ down_write(&net->cells_lock); afs_see_cell(new_root, afs_cell_trace_see_ws); old_root = net->ws_cell; net->ws_cell = new_root; up_write(&net->cells_lock); afs_unuse_cell(net, old_root, afs_cell_trace_unuse_ws); _leave(" = 0"); return 0; } /* * Update a cell's VL server address list from the DNS. */ static int afs_update_cell(struct afs_cell *cell) { struct afs_vlserver_list *vllist, *old = NULL, *p; unsigned int min_ttl = READ_ONCE(afs_cell_min_ttl); unsigned int max_ttl = READ_ONCE(afs_cell_max_ttl); time64_t now, expiry = 0; int ret = 0; _enter("%s", cell->name); vllist = afs_dns_query(cell, &expiry); if (IS_ERR(vllist)) { ret = PTR_ERR(vllist); _debug("%s: fail %d", cell->name, ret); if (ret == -ENOMEM) goto out_wake; vllist = afs_alloc_vlserver_list(0); if (!vllist) { if (ret >= 0) ret = -ENOMEM; goto out_wake; } switch (ret) { case -ENODATA: case -EDESTADDRREQ: vllist->status = DNS_LOOKUP_GOT_NOT_FOUND; break; case -EAGAIN: case -ECONNREFUSED: vllist->status = DNS_LOOKUP_GOT_TEMP_FAILURE; break; default: vllist->status = DNS_LOOKUP_GOT_LOCAL_FAILURE; break; } } _debug("%s: got list %d %d", cell->name, vllist->source, vllist->status); cell->dns_status = vllist->status; now = ktime_get_real_seconds(); if (min_ttl > max_ttl) max_ttl = min_ttl; if (expiry < now + min_ttl) expiry = now + min_ttl; else if (expiry > now + max_ttl) expiry = now + max_ttl; _debug("%s: status %d", cell->name, vllist->status); if (vllist->source == DNS_RECORD_UNAVAILABLE) { switch (vllist->status) { case DNS_LOOKUP_GOT_NOT_FOUND: /* The DNS said that the cell does not exist or there * weren't any addresses to be had. */ cell->dns_expiry = expiry; break; case DNS_LOOKUP_BAD: case DNS_LOOKUP_GOT_LOCAL_FAILURE: case DNS_LOOKUP_GOT_TEMP_FAILURE: case DNS_LOOKUP_GOT_NS_FAILURE: default: cell->dns_expiry = now + 10; break; } } else { cell->dns_expiry = expiry; } /* Replace the VL server list if the new record has servers or the old * record doesn't. */ write_lock(&cell->vl_servers_lock); p = rcu_dereference_protected(cell->vl_servers, true); if (vllist->nr_servers > 0 || p->nr_servers == 0) { rcu_assign_pointer(cell->vl_servers, vllist); cell->dns_source = vllist->source; old = p; } write_unlock(&cell->vl_servers_lock); afs_put_vlserverlist(cell->net, old); out_wake: smp_store_release(&cell->dns_lookup_count, cell->dns_lookup_count + 1); /* vs source/status */ wake_up_var(&cell->dns_lookup_count); _leave(" = %d", ret); return ret; } /* * Destroy a cell record */ static void afs_cell_destroy(struct rcu_head *rcu) { struct afs_cell *cell = container_of(rcu, struct afs_cell, rcu); struct afs_net *net = cell->net; int r; _enter("%p{%s}", cell, cell->name); r = refcount_read(&cell->ref); ASSERTCMP(r, ==, 0); trace_afs_cell(cell->debug_id, r, atomic_read(&cell->active), afs_cell_trace_free); afs_put_vlserverlist(net, rcu_access_pointer(cell->vl_servers)); afs_unuse_cell(net, cell->alias_of, afs_cell_trace_unuse_alias); key_put(cell->anonymous_key); kfree(cell->name); kfree(cell); afs_dec_cells_outstanding(net); _leave(" [destroyed]"); } /* * Queue the cell manager. */ static void afs_queue_cell_manager(struct afs_net *net) { int outstanding = atomic_inc_return(&net->cells_outstanding); _enter("%d", outstanding); if (!queue_work(afs_wq, &net->cells_manager)) afs_dec_cells_outstanding(net); } /* * Cell management timer. We have an increment on cells_outstanding that we * need to pass along to the work item. */ void afs_cells_timer(struct timer_list *timer) { struct afs_net *net = container_of(timer, struct afs_net, cells_timer); _enter(""); if (!queue_work(afs_wq, &net->cells_manager)) afs_dec_cells_outstanding(net); } /* * Get a reference on a cell record. */ struct afs_cell *afs_get_cell(struct afs_cell *cell, enum afs_cell_trace reason) { int r; __refcount_inc(&cell->ref, &r); trace_afs_cell(cell->debug_id, r + 1, atomic_read(&cell->active), reason); return cell; } /* * Drop a reference on a cell record. */ void afs_put_cell(struct afs_cell *cell, enum afs_cell_trace reason) { if (cell) { unsigned int debug_id = cell->debug_id; unsigned int a; bool zero; int r; a = atomic_read(&cell->active); zero = __refcount_dec_and_test(&cell->ref, &r); trace_afs_cell(debug_id, r - 1, a, reason); if (zero) { a = atomic_read(&cell->active); WARN(a != 0, "Cell active count %u > 0\n", a); call_rcu(&cell->rcu, afs_cell_destroy); } } } /* * Note a cell becoming more active. */ struct afs_cell *afs_use_cell(struct afs_cell *cell, enum afs_cell_trace reason) { int r, a; r = refcount_read(&cell->ref); WARN_ON(r == 0); a = atomic_inc_return(&cell->active); trace_afs_cell(cell->debug_id, r, a, reason); return cell; } /* * Record a cell becoming less active. When the active counter reaches 1, it * is scheduled for destruction, but may get reactivated. */ void afs_unuse_cell(struct afs_net *net, struct afs_cell *cell, enum afs_cell_trace reason) { unsigned int debug_id; time64_t now, expire_delay; int r, a; if (!cell) return; _enter("%s", cell->name); now = ktime_get_real_seconds(); cell->last_inactive = now; expire_delay = 0; if (cell->vl_servers->nr_servers) expire_delay = afs_cell_gc_delay; debug_id = cell->debug_id; r = refcount_read(&cell->ref); a = atomic_dec_return(&cell->active); trace_afs_cell(debug_id, r, a, reason); WARN_ON(a == 0); if (a == 1) /* 'cell' may now be garbage collected. */ afs_set_cell_timer(net, expire_delay); } /* * Note that a cell has been seen. */ void afs_see_cell(struct afs_cell *cell, enum afs_cell_trace reason) { int r, a; r = refcount_read(&cell->ref); a = atomic_read(&cell->active); trace_afs_cell(cell->debug_id, r, a, reason); } /* * Queue a cell for management, giving the workqueue a ref to hold. */ void afs_queue_cell(struct afs_cell *cell, enum afs_cell_trace reason) { afs_get_cell(cell, reason); if (!queue_work(afs_wq, &cell->manager)) afs_put_cell(cell, afs_cell_trace_put_queue_fail); } /* * Allocate a key to use as a placeholder for anonymous user security. */ static int afs_alloc_anon_key(struct afs_cell *cell) { struct key *key; char keyname[4 + AFS_MAXCELLNAME + 1], *cp, *dp; /* Create a key to represent an anonymous user. */ memcpy(keyname, "afs@", 4); dp = keyname + 4; cp = cell->name; do { *dp++ = tolower(*cp); } while (*cp++); key = rxrpc_get_null_key(keyname); if (IS_ERR(key)) return PTR_ERR(key); cell->anonymous_key = key; _debug("anon key %p{%x}", cell->anonymous_key, key_serial(cell->anonymous_key)); return 0; } /* * Activate a cell. */ static int afs_activate_cell(struct afs_net *net, struct afs_cell *cell) { struct hlist_node **p; struct afs_cell *pcell; int ret; if (!cell->anonymous_key) { ret = afs_alloc_anon_key(cell); if (ret < 0) return ret; } ret = afs_proc_cell_setup(cell); if (ret < 0) return ret; mutex_lock(&net->proc_cells_lock); for (p = &net->proc_cells.first; *p; p = &(*p)->next) { pcell = hlist_entry(*p, struct afs_cell, proc_link); if (strcmp(cell->name, pcell->name) < 0) break; } cell->proc_link.pprev = p; cell->proc_link.next = *p; rcu_assign_pointer(*p, &cell->proc_link.next); if (cell->proc_link.next) cell->proc_link.next->pprev = &cell->proc_link.next; afs_dynroot_mkdir(net, cell); mutex_unlock(&net->proc_cells_lock); return 0; } /* * Deactivate a cell. */ static void afs_deactivate_cell(struct afs_net *net, struct afs_cell *cell) { _enter("%s", cell->name); afs_proc_cell_remove(cell); mutex_lock(&net->proc_cells_lock); hlist_del_rcu(&cell->proc_link); afs_dynroot_rmdir(net, cell); mutex_unlock(&net->proc_cells_lock); _leave(""); } /* * Manage a cell record, initialising and destroying it, maintaining its DNS * records. */ static void afs_manage_cell(struct afs_cell *cell) { struct afs_net *net = cell->net; int ret, active; _enter("%s", cell->name); again: _debug("state %u", cell->state); switch (cell->state) { case AFS_CELL_INACTIVE: case AFS_CELL_FAILED: down_write(&net->cells_lock); active = 1; if (atomic_try_cmpxchg_relaxed(&cell->active, &active, 0)) { rb_erase(&cell->net_node, &net->cells); trace_afs_cell(cell->debug_id, refcount_read(&cell->ref), 0, afs_cell_trace_unuse_delete); smp_store_release(&cell->state, AFS_CELL_REMOVED); } up_write(&net->cells_lock); if (cell->state == AFS_CELL_REMOVED) { wake_up_var(&cell->state); goto final_destruction; } if (cell->state == AFS_CELL_FAILED) goto done; smp_store_release(&cell->state, AFS_CELL_UNSET); wake_up_var(&cell->state); goto again; case AFS_CELL_UNSET: smp_store_release(&cell->state, AFS_CELL_ACTIVATING); wake_up_var(&cell->state); goto again; case AFS_CELL_ACTIVATING: ret = afs_activate_cell(net, cell); if (ret < 0) goto activation_failed; smp_store_release(&cell->state, AFS_CELL_ACTIVE); wake_up_var(&cell->state); goto again; case AFS_CELL_ACTIVE: if (atomic_read(&cell->active) > 1) { if (test_and_clear_bit(AFS_CELL_FL_DO_LOOKUP, &cell->flags)) { ret = afs_update_cell(cell); if (ret < 0) cell->error = ret; } goto done; } smp_store_release(&cell->state, AFS_CELL_DEACTIVATING); wake_up_var(&cell->state); goto again; case AFS_CELL_DEACTIVATING: if (atomic_read(&cell->active) > 1) goto reverse_deactivation; afs_deactivate_cell(net, cell); smp_store_release(&cell->state, AFS_CELL_INACTIVE); wake_up_var(&cell->state); goto again; case AFS_CELL_REMOVED: goto done; default: break; } _debug("bad state %u", cell->state); BUG(); /* Unhandled state */ activation_failed: cell->error = ret; afs_deactivate_cell(net, cell); smp_store_release(&cell->state, AFS_CELL_FAILED); /* vs error */ wake_up_var(&cell->state); goto again; reverse_deactivation: smp_store_release(&cell->state, AFS_CELL_ACTIVE); wake_up_var(&cell->state); _leave(" [deact->act]"); return; done: _leave(" [done %u]", cell->state); return; final_destruction: /* The root volume is pinning the cell */ afs_put_volume(cell->root_volume, afs_volume_trace_put_cell_root); cell->root_volume = NULL; afs_put_cell(cell, afs_cell_trace_put_destroy); } static void afs_manage_cell_work(struct work_struct *work) { struct afs_cell *cell = container_of(work, struct afs_cell, manager); afs_manage_cell(cell); afs_put_cell(cell, afs_cell_trace_put_queue_work); } /* * Manage the records of cells known to a network namespace. This includes * updating the DNS records and garbage collecting unused cells that were * automatically added. * * Note that constructed cell records may only be removed from net->cells by * this work item, so it is safe for this work item to stash a cursor pointing * into the tree and then return to caller (provided it skips cells that are * still under construction). * * Note also that we were given an increment on net->cells_outstanding by * whoever queued us that we need to deal with before returning. */ void afs_manage_cells(struct work_struct *work) { struct afs_net *net = container_of(work, struct afs_net, cells_manager); struct rb_node *cursor; time64_t now = ktime_get_real_seconds(), next_manage = TIME64_MAX; bool purging = !net->live; _enter(""); /* Trawl the cell database looking for cells that have expired from * lack of use and cells whose DNS results have expired and dispatch * their managers. */ down_read(&net->cells_lock); for (cursor = rb_first(&net->cells); cursor; cursor = rb_next(cursor)) { struct afs_cell *cell = rb_entry(cursor, struct afs_cell, net_node); unsigned active; bool sched_cell = false; active = atomic_read(&cell->active); trace_afs_cell(cell->debug_id, refcount_read(&cell->ref), active, afs_cell_trace_manage); ASSERTCMP(active, >=, 1); if (purging) { if (test_and_clear_bit(AFS_CELL_FL_NO_GC, &cell->flags)) { active = atomic_dec_return(&cell->active); trace_afs_cell(cell->debug_id, refcount_read(&cell->ref), active, afs_cell_trace_unuse_pin); } } if (active == 1) { struct afs_vlserver_list *vllist; time64_t expire_at = cell->last_inactive; read_lock(&cell->vl_servers_lock); vllist = rcu_dereference_protected( cell->vl_servers, lockdep_is_held(&cell->vl_servers_lock)); if (vllist->nr_servers > 0) expire_at += afs_cell_gc_delay; read_unlock(&cell->vl_servers_lock); if (purging || expire_at <= now) sched_cell = true; else if (expire_at < next_manage) next_manage = expire_at; } if (!purging) { if (test_bit(AFS_CELL_FL_DO_LOOKUP, &cell->flags)) sched_cell = true; } if (sched_cell) afs_queue_cell(cell, afs_cell_trace_get_queue_manage); } up_read(&net->cells_lock); /* Update the timer on the way out. We have to pass an increment on * cells_outstanding in the namespace that we are in to the timer or * the work scheduler. */ if (!purging && next_manage < TIME64_MAX) { now = ktime_get_real_seconds(); if (next_manage - now <= 0) { if (queue_work(afs_wq, &net->cells_manager)) atomic_inc(&net->cells_outstanding); } else { afs_set_cell_timer(net, next_manage - now); } } afs_dec_cells_outstanding(net); _leave(" [%d]", atomic_read(&net->cells_outstanding)); } /* * Purge in-memory cell database. */ void afs_cell_purge(struct afs_net *net) { struct afs_cell *ws; _enter(""); down_write(&net->cells_lock); ws = net->ws_cell; net->ws_cell = NULL; up_write(&net->cells_lock); afs_unuse_cell(net, ws, afs_cell_trace_unuse_ws); _debug("del timer"); if (del_timer_sync(&net->cells_timer)) atomic_dec(&net->cells_outstanding); _debug("kick mgr"); afs_queue_cell_manager(net); _debug("wait"); wait_var_event(&net->cells_outstanding, !atomic_read(&net->cells_outstanding)); _leave(""); } |
86 1962 2039 2025 2030 214 1966 51 52 2048 1901 1916 41 40 41 40 41 39 18 41 1 41 40 1 103 41 39 179 178 179 85 72 31 9 97 1 2036 2048 2038 2029 1898 1901 11 1903 22 2016 1900 2038 2030 1536 1343 2050 21 2034 2031 2051 177 2150 2166 1 1873 432 433 1076 1083 1076 1079 1037 1275 2159 1876 1582 55 54 4 4 4 4 4 1 1 4 4 1 5 1 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner * * High-resolution kernel timers * * In contrast to the low-resolution timeout API, aka timer wheel, * hrtimers provide finer resolution and accuracy depending on system * configuration and capabilities. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * Based on the original timer wheel code * * Help, testing, suggestions, bugfixes, improvements were * provided by: * * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel * et. al. */ #include <linux/cpu.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/hrtimer.h> #include <linux/notifier.h> #include <linux/syscalls.h> #include <linux/interrupt.h> #include <linux/tick.h> #include <linux/err.h> #include <linux/debugobjects.h> #include <linux/sched/signal.h> #include <linux/sched/sysctl.h> #include <linux/sched/rt.h> #include <linux/sched/deadline.h> #include <linux/sched/nohz.h> #include <linux/sched/debug.h> #include <linux/sched/isolation.h> #include <linux/timer.h> #include <linux/freezer.h> #include <linux/compat.h> #include <linux/uaccess.h> #include <trace/events/timer.h> #include "tick-internal.h" /* * Masks for selecting the soft and hard context timers from * cpu_base->active */ #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) /* * The timer bases: * * There are more clockids than hrtimer bases. Thus, we index * into the timer bases by the hrtimer_base_type enum. When trying * to reach a base using a clockid, hrtimer_clockid_to_base() * is used to convert from clockid to the proper hrtimer_base_type. */ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = { .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), .clock_base = { { .index = HRTIMER_BASE_MONOTONIC, .clockid = CLOCK_MONOTONIC, .get_time = &ktime_get, }, { .index = HRTIMER_BASE_REALTIME, .clockid = CLOCK_REALTIME, .get_time = &ktime_get_real, }, { .index = HRTIMER_BASE_BOOTTIME, .clockid = CLOCK_BOOTTIME, .get_time = &ktime_get_boottime, }, { .index = HRTIMER_BASE_TAI, .clockid = CLOCK_TAI, .get_time = &ktime_get_clocktai, }, { .index = HRTIMER_BASE_MONOTONIC_SOFT, .clockid = CLOCK_MONOTONIC, .get_time = &ktime_get, }, { .index = HRTIMER_BASE_REALTIME_SOFT, .clockid = CLOCK_REALTIME, .get_time = &ktime_get_real, }, { .index = HRTIMER_BASE_BOOTTIME_SOFT, .clockid = CLOCK_BOOTTIME, .get_time = &ktime_get_boottime, }, { .index = HRTIMER_BASE_TAI_SOFT, .clockid = CLOCK_TAI, .get_time = &ktime_get_clocktai, }, } }; static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { /* Make sure we catch unsupported clockids */ [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, [CLOCK_TAI] = HRTIMER_BASE_TAI, }; /* * Functions and macros which are different for UP/SMP systems are kept in a * single place */ #ifdef CONFIG_SMP /* * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() * such that hrtimer_callback_running() can unconditionally dereference * timer->base->cpu_base */ static struct hrtimer_cpu_base migration_cpu_base = { .clock_base = { { .cpu_base = &migration_cpu_base, .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, &migration_cpu_base.lock), }, }, }; #define migration_base migration_cpu_base.clock_base[0] static inline bool is_migration_base(struct hrtimer_clock_base *base) { return base == &migration_base; } /* * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock * means that all timers which are tied to this base via timer->base are * locked, and the base itself is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found on the lists/queues. * * When the timer's base is locked, and the timer removed from list, it is * possible to set timer->base = &migration_base and drop the lock: the timer * remains locked. */ static struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) __acquires(&timer->base->lock) { struct hrtimer_clock_base *base; for (;;) { base = READ_ONCE(timer->base); if (likely(base != &migration_base)) { raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); if (likely(base == timer->base)) return base; /* The timer has migrated to another CPU: */ raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); } cpu_relax(); } } /* * We do not migrate the timer when it is expiring before the next * event on the target cpu. When high resolution is enabled, we cannot * reprogram the target cpu hardware and we would cause it to fire * late. To keep it simple, we handle the high resolution enabled and * disabled case similar. * * Called with cpu_base->lock of target cpu held. */ static int hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) { ktime_t expires; expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); return expires < new_base->cpu_base->expires_next; } static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned) { #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) if (static_branch_likely(&timers_migration_enabled) && !pinned) return &per_cpu(hrtimer_bases, get_nohz_timer_target()); #endif return base; } /* * We switch the timer base to a power-optimized selected CPU target, * if: * - NO_HZ_COMMON is enabled * - timer migration is enabled * - the timer callback is not running * - the timer is not the first expiring timer on the new target * * If one of the above requirements is not fulfilled we move the timer * to the current CPU or leave it on the previously assigned CPU if * the timer callback is currently running. */ static inline struct hrtimer_clock_base * switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, int pinned) { struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; struct hrtimer_clock_base *new_base; int basenum = base->index; this_cpu_base = this_cpu_ptr(&hrtimer_bases); new_cpu_base = get_target_base(this_cpu_base, pinned); again: new_base = &new_cpu_base->clock_base[basenum]; if (base != new_base) { /* * We are trying to move timer to new_base. * However we can't change timer's base while it is running, * so we keep it on the same CPU. No hassle vs. reprogramming * the event source in the high resolution case. The softirq * code will take care of this when the timer function has * completed. There is no conflict as we hold the lock until * the timer is enqueued. */ if (unlikely(hrtimer_callback_running(timer))) return base; /* See the comment in lock_hrtimer_base() */ WRITE_ONCE(timer->base, &migration_base); raw_spin_unlock(&base->cpu_base->lock); raw_spin_lock(&new_base->cpu_base->lock); if (new_cpu_base != this_cpu_base && hrtimer_check_target(timer, new_base)) { raw_spin_unlock(&new_base->cpu_base->lock); raw_spin_lock(&base->cpu_base->lock); new_cpu_base = this_cpu_base; WRITE_ONCE(timer->base, base); goto again; } WRITE_ONCE(timer->base, new_base); } else { if (new_cpu_base != this_cpu_base && hrtimer_check_target(timer, new_base)) { new_cpu_base = this_cpu_base; goto again; } } return new_base; } #else /* CONFIG_SMP */ static inline bool is_migration_base(struct hrtimer_clock_base *base) { return false; } static inline struct hrtimer_clock_base * lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) __acquires(&timer->base->cpu_base->lock) { struct hrtimer_clock_base *base = timer->base; raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); return base; } # define switch_hrtimer_base(t, b, p) (b) #endif /* !CONFIG_SMP */ /* * Functions for the union type storage format of ktime_t which are * too large for inlining: */ #if BITS_PER_LONG < 64 /* * Divide a ktime value by a nanosecond value */ s64 __ktime_divns(const ktime_t kt, s64 div) { int sft = 0; s64 dclc; u64 tmp; dclc = ktime_to_ns(kt); tmp = dclc < 0 ? -dclc : dclc; /* Make sure the divisor is less than 2^32: */ while (div >> 32) { sft++; div >>= 1; } tmp >>= sft; do_div(tmp, (u32) div); return dclc < 0 ? -tmp : tmp; } EXPORT_SYMBOL_GPL(__ktime_divns); #endif /* BITS_PER_LONG >= 64 */ /* * Add two ktime values and do a safety check for overflow: */ ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) { ktime_t res = ktime_add_unsafe(lhs, rhs); /* * We use KTIME_SEC_MAX here, the maximum timeout which we can * return to user space in a timespec: */ if (res < 0 || res < lhs || res < rhs) res = ktime_set(KTIME_SEC_MAX, 0); return res; } EXPORT_SYMBOL_GPL(ktime_add_safe); #ifdef CONFIG_DEBUG_OBJECTS_TIMERS static const struct debug_obj_descr hrtimer_debug_descr; static void *hrtimer_debug_hint(void *addr) { return ((struct hrtimer *) addr)->function; } /* * fixup_init is called when: * - an active object is initialized */ static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) { struct hrtimer *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: hrtimer_cancel(timer); debug_object_init(timer, &hrtimer_debug_descr); return true; default: return false; } } /* * fixup_activate is called when: * - an active object is activated * - an unknown non-static object is activated */ static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) { switch (state) { case ODEBUG_STATE_ACTIVE: WARN_ON(1); fallthrough; default: return false; } } /* * fixup_free is called when: * - an active object is freed */ static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) { struct hrtimer *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: hrtimer_cancel(timer); debug_object_free(timer, &hrtimer_debug_descr); return true; default: return false; } } static const struct debug_obj_descr hrtimer_debug_descr = { .name = "hrtimer", .debug_hint = hrtimer_debug_hint, .fixup_init = hrtimer_fixup_init, .fixup_activate = hrtimer_fixup_activate, .fixup_free = hrtimer_fixup_free, }; static inline void debug_hrtimer_init(struct hrtimer *timer) { debug_object_init(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { debug_object_init_on_stack(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_activate(struct hrtimer *timer, enum hrtimer_mode mode) { debug_object_activate(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { debug_object_deactivate(timer, &hrtimer_debug_descr); } void destroy_hrtimer_on_stack(struct hrtimer *timer) { debug_object_free(timer, &hrtimer_debug_descr); } EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); #else static inline void debug_hrtimer_init(struct hrtimer *timer) { } static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { } static inline void debug_hrtimer_activate(struct hrtimer *timer, enum hrtimer_mode mode) { } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } #endif static inline void debug_init(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) { debug_hrtimer_init(timer); trace_hrtimer_init(timer, clockid, mode); } static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) { debug_hrtimer_init_on_stack(timer); trace_hrtimer_init(timer, clockid, mode); } static inline void debug_activate(struct hrtimer *timer, enum hrtimer_mode mode) { debug_hrtimer_activate(timer, mode); trace_hrtimer_start(timer, mode); } static inline void debug_deactivate(struct hrtimer *timer) { debug_hrtimer_deactivate(timer); trace_hrtimer_cancel(timer); } static struct hrtimer_clock_base * __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) { unsigned int idx; if (!*active) return NULL; idx = __ffs(*active); *active &= ~(1U << idx); return &cpu_base->clock_base[idx]; } #define for_each_active_base(base, cpu_base, active) \ while ((base = __next_base((cpu_base), &(active)))) static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, const struct hrtimer *exclude, unsigned int active, ktime_t expires_next) { struct hrtimer_clock_base *base; ktime_t expires; for_each_active_base(base, cpu_base, active) { struct timerqueue_node *next; struct hrtimer *timer; next = timerqueue_getnext(&base->active); timer = container_of(next, struct hrtimer, node); if (timer == exclude) { /* Get to the next timer in the queue. */ next = timerqueue_iterate_next(next); if (!next) continue; timer = container_of(next, struct hrtimer, node); } expires = ktime_sub(hrtimer_get_expires(timer), base->offset); if (expires < expires_next) { expires_next = expires; /* Skip cpu_base update if a timer is being excluded. */ if (exclude) continue; if (timer->is_soft) cpu_base->softirq_next_timer = timer; else cpu_base->next_timer = timer; } } /* * clock_was_set() might have changed base->offset of any of * the clock bases so the result might be negative. Fix it up * to prevent a false positive in clockevents_program_event(). */ if (expires_next < 0) expires_next = 0; return expires_next; } /* * Recomputes cpu_base::*next_timer and returns the earliest expires_next * but does not set cpu_base::*expires_next, that is done by * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating * cpu_base::*expires_next right away, reprogramming logic would no longer * work. * * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, * those timers will get run whenever the softirq gets handled, at the end of * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. * * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. * * @active_mask must be one of: * - HRTIMER_ACTIVE_ALL, * - HRTIMER_ACTIVE_SOFT, or * - HRTIMER_ACTIVE_HARD. */ static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) { unsigned int active; struct hrtimer *next_timer = NULL; ktime_t expires_next = KTIME_MAX; if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; cpu_base->softirq_next_timer = NULL; expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, KTIME_MAX); next_timer = cpu_base->softirq_next_timer; } if (active_mask & HRTIMER_ACTIVE_HARD) { active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; cpu_base->next_timer = next_timer; expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, expires_next); } return expires_next; } static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) { ktime_t expires_next, soft = KTIME_MAX; /* * If the soft interrupt has already been activated, ignore the * soft bases. They will be handled in the already raised soft * interrupt. */ if (!cpu_base->softirq_activated) { soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); /* * Update the soft expiry time. clock_settime() might have * affected it. */ cpu_base->softirq_expires_next = soft; } expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); /* * If a softirq timer is expiring first, update cpu_base->next_timer * and program the hardware with the soft expiry time. */ if (expires_next > soft) { cpu_base->next_timer = cpu_base->softirq_next_timer; expires_next = soft; } return expires_next; } static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) { ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, offs_real, offs_boot, offs_tai); base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; return now; } /* * Is the high resolution mode active ? */ static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) { return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? cpu_base->hres_active : 0; } static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, struct hrtimer *next_timer, ktime_t expires_next) { cpu_base->expires_next = expires_next; /* * If hres is not active, hardware does not have to be * reprogrammed yet. * * If a hang was detected in the last timer interrupt then we * leave the hang delay active in the hardware. We want the * system to make progress. That also prevents the following * scenario: * T1 expires 50ms from now * T2 expires 5s from now * * T1 is removed, so this code is called and would reprogram * the hardware to 5s from now. Any hrtimer_start after that * will not reprogram the hardware due to hang_detected being * set. So we'd effectively block all timers until the T2 event * fires. */ if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) return; tick_program_event(expires_next, 1); } /* * Reprogram the event source with checking both queues for the * next event * Called with interrupts disabled and base->lock held */ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) { ktime_t expires_next; expires_next = hrtimer_update_next_event(cpu_base); if (skip_equal && expires_next == cpu_base->expires_next) return; __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); } /* High resolution timer related functions */ #ifdef CONFIG_HIGH_RES_TIMERS /* * High resolution timer enabled ? */ static bool hrtimer_hres_enabled __read_mostly = true; unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; EXPORT_SYMBOL_GPL(hrtimer_resolution); /* * Enable / Disable high resolution mode */ static int __init setup_hrtimer_hres(char *str) { return (kstrtobool(str, &hrtimer_hres_enabled) == 0); } __setup("highres=", setup_hrtimer_hres); /* * hrtimer_high_res_enabled - query, if the highres mode is enabled */ static inline int hrtimer_is_hres_enabled(void) { return hrtimer_hres_enabled; } static void retrigger_next_event(void *arg); /* * Switch to high resolution mode */ static void hrtimer_switch_to_hres(void) { struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); if (tick_init_highres()) { pr_warn("Could not switch to high resolution mode on CPU %u\n", base->cpu); return; } base->hres_active = 1; hrtimer_resolution = HIGH_RES_NSEC; tick_setup_sched_timer(true); /* "Retrigger" the interrupt to get things going */ retrigger_next_event(NULL); } #else static inline int hrtimer_is_hres_enabled(void) { return 0; } static inline void hrtimer_switch_to_hres(void) { } #endif /* CONFIG_HIGH_RES_TIMERS */ /* * Retrigger next event is called after clock was set with interrupts * disabled through an SMP function call or directly from low level * resume code. * * This is only invoked when: * - CONFIG_HIGH_RES_TIMERS is enabled. * - CONFIG_NOHZ_COMMON is enabled * * For the other cases this function is empty and because the call sites * are optimized out it vanishes as well, i.e. no need for lots of * #ifdeffery. */ static void retrigger_next_event(void *arg) { struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); /* * When high resolution mode or nohz is active, then the offsets of * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the * next tick will take care of that. * * If high resolution mode is active then the next expiring timer * must be reevaluated and the clock event device reprogrammed if * necessary. * * In the NOHZ case the update of the offset and the reevaluation * of the next expiring timer is enough. The return from the SMP * function call will take care of the reprogramming in case the * CPU was in a NOHZ idle sleep. */ if (!hrtimer_hres_active(base) && !tick_nohz_active) return; raw_spin_lock(&base->lock); hrtimer_update_base(base); if (hrtimer_hres_active(base)) hrtimer_force_reprogram(base, 0); else hrtimer_update_next_event(base); raw_spin_unlock(&base->lock); } /* * When a timer is enqueued and expires earlier than the already enqueued * timers, we have to check, whether it expires earlier than the timer for * which the clock event device was armed. * * Called with interrupts disabled and base->cpu_base.lock held */ static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) { struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); struct hrtimer_clock_base *base = timer->base; ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); /* * CLOCK_REALTIME timer might be requested with an absolute * expiry time which is less than base->offset. Set it to 0. */ if (expires < 0) expires = 0; if (timer->is_soft) { /* * soft hrtimer could be started on a remote CPU. In this * case softirq_expires_next needs to be updated on the * remote CPU. The soft hrtimer will not expire before the * first hard hrtimer on the remote CPU - * hrtimer_check_target() prevents this case. */ struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; if (timer_cpu_base->softirq_activated) return; if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) return; timer_cpu_base->softirq_next_timer = timer; timer_cpu_base->softirq_expires_next = expires; if (!ktime_before(expires, timer_cpu_base->expires_next) || !reprogram) return; } /* * If the timer is not on the current cpu, we cannot reprogram * the other cpus clock event device. */ if (base->cpu_base != cpu_base) return; if (expires >= cpu_base->expires_next) return; /* * If the hrtimer interrupt is running, then it will reevaluate the * clock bases and reprogram the clock event device. */ if (cpu_base->in_hrtirq) return; cpu_base->next_timer = timer; __hrtimer_reprogram(cpu_base, timer, expires); } static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, unsigned int active) { struct hrtimer_clock_base *base; unsigned int seq; ktime_t expires; /* * Update the base offsets unconditionally so the following * checks whether the SMP function call is required works. * * The update is safe even when the remote CPU is in the hrtimer * interrupt or the hrtimer soft interrupt and expiring affected * bases. Either it will see the update before handling a base or * it will see it when it finishes the processing and reevaluates * the next expiring timer. */ seq = cpu_base->clock_was_set_seq; hrtimer_update_base(cpu_base); /* * If the sequence did not change over the update then the * remote CPU already handled it. */ if (seq == cpu_base->clock_was_set_seq) return false; /* * If the remote CPU is currently handling an hrtimer interrupt, it * will reevaluate the first expiring timer of all clock bases * before reprogramming. Nothing to do here. */ if (cpu_base->in_hrtirq) return false; /* * Walk the affected clock bases and check whether the first expiring * timer in a clock base is moving ahead of the first expiring timer of * @cpu_base. If so, the IPI must be invoked because per CPU clock * event devices cannot be remotely reprogrammed. */ active &= cpu_base->active_bases; for_each_active_base(base, cpu_base, active) { struct timerqueue_node *next; next = timerqueue_getnext(&base->active); expires = ktime_sub(next->expires, base->offset); if (expires < cpu_base->expires_next) return true; /* Extra check for softirq clock bases */ if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) continue; if (cpu_base->softirq_activated) continue; if (expires < cpu_base->softirq_expires_next) return true; } return false; } /* * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and * CLOCK_BOOTTIME (for late sleep time injection). * * This requires to update the offsets for these clocks * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this * also requires to eventually reprogram the per CPU clock event devices * when the change moves an affected timer ahead of the first expiring * timer on that CPU. Obviously remote per CPU clock event devices cannot * be reprogrammed. The other reason why an IPI has to be sent is when the * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets * in the tick, which obviously might be stopped, so this has to bring out * the remote CPU which might sleep in idle to get this sorted. */ void clock_was_set(unsigned int bases) { struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); cpumask_var_t mask; int cpu; if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) goto out_timerfd; if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { on_each_cpu(retrigger_next_event, NULL, 1); goto out_timerfd; } /* Avoid interrupting CPUs if possible */ cpus_read_lock(); for_each_online_cpu(cpu) { unsigned long flags; cpu_base = &per_cpu(hrtimer_bases, cpu); raw_spin_lock_irqsave(&cpu_base->lock, flags); if (update_needs_ipi(cpu_base, bases)) cpumask_set_cpu(cpu, mask); raw_spin_unlock_irqrestore(&cpu_base->lock, flags); } preempt_disable(); smp_call_function_many(mask, retrigger_next_event, NULL, 1); preempt_enable(); cpus_read_unlock(); free_cpumask_var(mask); out_timerfd: timerfd_clock_was_set(); } static void clock_was_set_work(struct work_struct *work) { clock_was_set(CLOCK_SET_WALL); } static DECLARE_WORK(hrtimer_work, clock_was_set_work); /* * Called from timekeeping code to reprogram the hrtimer interrupt device * on all cpus and to notify timerfd. */ void clock_was_set_delayed(void) { schedule_work(&hrtimer_work); } /* * Called during resume either directly from via timekeeping_resume() * or in the case of s2idle from tick_unfreeze() to ensure that the * hrtimers are up to date. */ void hrtimers_resume_local(void) { lockdep_assert_irqs_disabled(); /* Retrigger on the local CPU */ retrigger_next_event(NULL); } /* * Counterpart to lock_hrtimer_base above: */ static inline void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) __releases(&timer->base->cpu_base->lock) { raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); } /** * hrtimer_forward() - forward the timer expiry * @timer: hrtimer to forward * @now: forward past this time * @interval: the interval to forward * * Forward the timer expiry so it will expire in the future. * * .. note:: * This only updates the timer expiry value and does not requeue the timer. * * There is also a variant of the function hrtimer_forward_now(). * * Context: Can be safely called from the callback function of @timer. If called * from other contexts @timer must neither be enqueued nor running the * callback and the caller needs to take care of serialization. * * Return: The number of overruns are returned. */ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) { u64 orun = 1; ktime_t delta; delta = ktime_sub(now, hrtimer_get_expires(timer)); if (delta < 0) return 0; if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) return 0; if (interval < hrtimer_resolution) interval = hrtimer_resolution; if (unlikely(delta >= interval)) { s64 incr = ktime_to_ns(interval); orun = ktime_divns(delta, incr); hrtimer_add_expires_ns(timer, incr * orun); if (hrtimer_get_expires_tv64(timer) > now) return orun; /* * This (and the ktime_add() below) is the * correction for exact: */ orun++; } hrtimer_add_expires(timer, interval); return orun; } EXPORT_SYMBOL_GPL(hrtimer_forward); /* * enqueue_hrtimer - internal function to (re)start a timer * * The timer is inserted in expiry order. Insertion into the * red black tree is O(log(n)). Must hold the base lock. * * Returns 1 when the new timer is the leftmost timer in the tree. */ static int enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, enum hrtimer_mode mode) { debug_activate(timer, mode); WARN_ON_ONCE(!base->cpu_base->online); base->cpu_base->active_bases |= 1 << base->index; /* Pairs with the lockless read in hrtimer_is_queued() */ WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); return timerqueue_add(&base->active, &timer->node); } /* * __remove_hrtimer - internal function to remove a timer * * Caller must hold the base lock. * * High resolution timer mode reprograms the clock event device when the * timer is the one which expires next. The caller can disable this by setting * reprogram to zero. This is useful, when the context does a reprogramming * anyway (e.g. timer interrupt) */ static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, u8 newstate, int reprogram) { struct hrtimer_cpu_base *cpu_base = base->cpu_base; u8 state = timer->state; /* Pairs with the lockless read in hrtimer_is_queued() */ WRITE_ONCE(timer->state, newstate); if (!(state & HRTIMER_STATE_ENQUEUED)) return; if (!timerqueue_del(&base->active, &timer->node)) cpu_base->active_bases &= ~(1 << base->index); /* * Note: If reprogram is false we do not update * cpu_base->next_timer. This happens when we remove the first * timer on a remote cpu. No harm as we never dereference * cpu_base->next_timer. So the worst thing what can happen is * an superfluous call to hrtimer_force_reprogram() on the * remote cpu later on if the same timer gets enqueued again. */ if (reprogram && timer == cpu_base->next_timer) hrtimer_force_reprogram(cpu_base, 1); } /* * remove hrtimer, called with base lock held */ static inline int remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart, bool keep_local) { u8 state = timer->state; if (state & HRTIMER_STATE_ENQUEUED) { bool reprogram; /* * Remove the timer and force reprogramming when high * resolution mode is active and the timer is on the current * CPU. If we remove a timer on another CPU, reprogramming is * skipped. The interrupt event on this CPU is fired and * reprogramming happens in the interrupt handler. This is a * rare case and less expensive than a smp call. */ debug_deactivate(timer); reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); /* * If the timer is not restarted then reprogramming is * required if the timer is local. If it is local and about * to be restarted, avoid programming it twice (on removal * and a moment later when it's requeued). */ if (!restart) state = HRTIMER_STATE_INACTIVE; else reprogram &= !keep_local; __remove_hrtimer(timer, base, state, reprogram); return 1; } return 0; } static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { #ifdef CONFIG_TIME_LOW_RES /* * CONFIG_TIME_LOW_RES indicates that the system has no way to return * granular time values. For relative timers we add hrtimer_resolution * (i.e. one jiffy) to prevent short timeouts. */ timer->is_rel = mode & HRTIMER_MODE_REL; if (timer->is_rel) tim = ktime_add_safe(tim, hrtimer_resolution); #endif return tim; } static void hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) { ktime_t expires; /* * Find the next SOFT expiration. */ expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); /* * reprogramming needs to be triggered, even if the next soft * hrtimer expires at the same time than the next hard * hrtimer. cpu_base->softirq_expires_next needs to be updated! */ if (expires == KTIME_MAX) return; /* * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() * cpu_base->*expires_next is only set by hrtimer_reprogram() */ hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); } static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, u64 delta_ns, const enum hrtimer_mode mode, struct hrtimer_clock_base *base) { struct hrtimer_clock_base *new_base; bool force_local, first; /* * If the timer is on the local cpu base and is the first expiring * timer then this might end up reprogramming the hardware twice * (on removal and on enqueue). To avoid that by prevent the * reprogram on removal, keep the timer local to the current CPU * and enforce reprogramming after it is queued no matter whether * it is the new first expiring timer again or not. */ force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); force_local &= base->cpu_base->next_timer == timer; /* * Remove an active timer from the queue. In case it is not queued * on the current CPU, make sure that remove_hrtimer() updates the * remote data correctly. * * If it's on the current CPU and the first expiring timer, then * skip reprogramming, keep the timer local and enforce * reprogramming later if it was the first expiring timer. This * avoids programming the underlying clock event twice (once at * removal and once after enqueue). */ remove_hrtimer(timer, base, true, force_local); if (mode & HRTIMER_MODE_REL) tim = ktime_add_safe(tim, base->get_time()); tim = hrtimer_update_lowres(timer, tim, mode); hrtimer_set_expires_range_ns(timer, tim, delta_ns); /* Switch the timer base, if necessary: */ if (!force_local) { new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); } else { new_base = base; } first = enqueue_hrtimer(timer, new_base, mode); if (!force_local) return first; /* * Timer was forced to stay on the current CPU to avoid * reprogramming on removal and enqueue. Force reprogram the * hardware by evaluating the new first expiring timer. */ hrtimer_force_reprogram(new_base->cpu_base, 1); return 0; } /** * hrtimer_start_range_ns - (re)start an hrtimer * @timer: the timer to be added * @tim: expiry time * @delta_ns: "slack" range for the timer * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); * softirq based mode is considered for debug purpose only! */ void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, u64 delta_ns, const enum hrtimer_mode mode) { struct hrtimer_clock_base *base; unsigned long flags; if (WARN_ON_ONCE(!timer->function)) return; /* * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard * expiry mode because unmarked timers are moved to softirq expiry. */ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); else WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); base = lock_hrtimer_base(timer, &flags); if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) hrtimer_reprogram(timer, true); unlock_hrtimer_base(timer, &flags); } EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); /** * hrtimer_try_to_cancel - try to deactivate a timer * @timer: hrtimer to stop * * Returns: * * * 0 when the timer was not active * * 1 when the timer was active * * -1 when the timer is currently executing the callback function and * cannot be stopped */ int hrtimer_try_to_cancel(struct hrtimer *timer) { struct hrtimer_clock_base *base; unsigned long flags; int ret = -1; /* * Check lockless first. If the timer is not active (neither * enqueued nor running the callback, nothing to do here. The * base lock does not serialize against a concurrent enqueue, * so we can avoid taking it. */ if (!hrtimer_active(timer)) return 0; base = lock_hrtimer_base(timer, &flags); if (!hrtimer_callback_running(timer)) ret = remove_hrtimer(timer, base, false, false); unlock_hrtimer_base(timer, &flags); return ret; } EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); #ifdef CONFIG_PREEMPT_RT static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { spin_lock_init(&base->softirq_expiry_lock); } static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) __acquires(&base->softirq_expiry_lock) { spin_lock(&base->softirq_expiry_lock); } static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) __releases(&base->softirq_expiry_lock) { spin_unlock(&base->softirq_expiry_lock); } /* * The counterpart to hrtimer_cancel_wait_running(). * * If there is a waiter for cpu_base->expiry_lock, then it was waiting for * the timer callback to finish. Drop expiry_lock and reacquire it. That * allows the waiter to acquire the lock and make progress. */ static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, unsigned long flags) { if (atomic_read(&cpu_base->timer_waiters)) { raw_spin_unlock_irqrestore(&cpu_base->lock, flags); spin_unlock(&cpu_base->softirq_expiry_lock); spin_lock(&cpu_base->softirq_expiry_lock); raw_spin_lock_irq(&cpu_base->lock); } } /* * This function is called on PREEMPT_RT kernels when the fast path * deletion of a timer failed because the timer callback function was * running. * * This prevents priority inversion: if the soft irq thread is preempted * in the middle of a timer callback, then calling del_timer_sync() can * lead to two issues: * * - If the caller is on a remote CPU then it has to spin wait for the timer * handler to complete. This can result in unbound priority inversion. * * - If the caller originates from the task which preempted the timer * handler on the same CPU, then spin waiting for the timer handler to * complete is never going to end. */ void hrtimer_cancel_wait_running(const struct hrtimer *timer) { /* Lockless read. Prevent the compiler from reloading it below */ struct hrtimer_clock_base *base = READ_ONCE(timer->base); /* * Just relax if the timer expires in hard interrupt context or if * it is currently on the migration base. */ if (!timer->is_soft || is_migration_base(base)) { cpu_relax(); return; } /* * Mark the base as contended and grab the expiry lock, which is * held by the softirq across the timer callback. Drop the lock * immediately so the softirq can expire the next timer. In theory * the timer could already be running again, but that's more than * unlikely and just causes another wait loop. */ atomic_inc(&base->cpu_base->timer_waiters); spin_lock_bh(&base->cpu_base->softirq_expiry_lock); atomic_dec(&base->cpu_base->timer_waiters); spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); } #else static inline void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } static inline void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } static inline void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, unsigned long flags) { } #endif /** * hrtimer_cancel - cancel a timer and wait for the handler to finish. * @timer: the timer to be cancelled * * Returns: * 0 when the timer was not active * 1 when the timer was active */ int hrtimer_cancel(struct hrtimer *timer) { int ret; do { ret = hrtimer_try_to_cancel(timer); if (ret < 0) hrtimer_cancel_wait_running(timer); } while (ret < 0); return ret; } EXPORT_SYMBOL_GPL(hrtimer_cancel); /** * __hrtimer_get_remaining - get remaining time for the timer * @timer: the timer to read * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y */ ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) { unsigned long flags; ktime_t rem; lock_hrtimer_base(timer, &flags); if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) rem = hrtimer_expires_remaining_adjusted(timer); else rem = hrtimer_expires_remaining(timer); unlock_hrtimer_base(timer, &flags); return rem; } EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); #ifdef CONFIG_NO_HZ_COMMON /** * hrtimer_get_next_event - get the time until next expiry event * * Returns the next expiry time or KTIME_MAX if no timer is pending. */ u64 hrtimer_get_next_event(void) { struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); u64 expires = KTIME_MAX; unsigned long flags; raw_spin_lock_irqsave(&cpu_base->lock, flags); if (!hrtimer_hres_active(cpu_base)) expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); raw_spin_unlock_irqrestore(&cpu_base->lock, flags); return expires; } /** * hrtimer_next_event_without - time until next expiry event w/o one timer * @exclude: timer to exclude * * Returns the next expiry time over all timers except for the @exclude one or * KTIME_MAX if none of them is pending. */ u64 hrtimer_next_event_without(const struct hrtimer *exclude) { struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); u64 expires = KTIME_MAX; unsigned long flags; raw_spin_lock_irqsave(&cpu_base->lock, flags); if (hrtimer_hres_active(cpu_base)) { unsigned int active; if (!cpu_base->softirq_activated) { active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; expires = __hrtimer_next_event_base(cpu_base, exclude, active, KTIME_MAX); } active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; expires = __hrtimer_next_event_base(cpu_base, exclude, active, expires); } raw_spin_unlock_irqrestore(&cpu_base->lock, flags); return expires; } #endif static inline int hrtimer_clockid_to_base(clockid_t clock_id) { if (likely(clock_id < MAX_CLOCKS)) { int base = hrtimer_clock_to_base_table[clock_id]; if (likely(base != HRTIMER_MAX_CLOCK_BASES)) return base; } WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); return HRTIMER_BASE_MONOTONIC; } static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused) { return HRTIMER_NORESTART; } static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { bool softtimer = !!(mode & HRTIMER_MODE_SOFT); struct hrtimer_cpu_base *cpu_base; int base; /* * On PREEMPT_RT enabled kernels hrtimers which are not explicitly * marked for hard interrupt expiry mode are moved into soft * interrupt context for latency reasons and because the callbacks * can invoke functions which might sleep on RT, e.g. spin_lock(). */ if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) softtimer = true; memset(timer, 0, sizeof(struct hrtimer)); cpu_base = raw_cpu_ptr(&hrtimer_bases); /* * POSIX magic: Relative CLOCK_REALTIME timers are not affected by * clock modifications, so they needs to become CLOCK_MONOTONIC to * ensure POSIX compliance. */ if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) clock_id = CLOCK_MONOTONIC; base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; base += hrtimer_clockid_to_base(clock_id); timer->is_soft = softtimer; timer->is_hard = !!(mode & HRTIMER_MODE_HARD); timer->base = &cpu_base->clock_base[base]; timerqueue_init(&timer->node); } static void __hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), clockid_t clock_id, enum hrtimer_mode mode) { __hrtimer_init(timer, clock_id, mode); if (WARN_ON_ONCE(!function)) timer->function = hrtimer_dummy_timeout; else timer->function = function; } /** * hrtimer_init - initialize a timer to the given clock * @timer: the timer to be initialized * @clock_id: the clock to be used * @mode: The modes which are relevant for initialization: * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, * HRTIMER_MODE_REL_SOFT * * The PINNED variants of the above can be handed in, * but the PINNED bit is ignored as pinning happens * when the hrtimer is started */ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { debug_init(timer, clock_id, mode); __hrtimer_init(timer, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_init); /** * hrtimer_setup - initialize a timer to the given clock * @timer: the timer to be initialized * @function: the callback function * @clock_id: the clock to be used * @mode: The modes which are relevant for initialization: * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, * HRTIMER_MODE_REL_SOFT * * The PINNED variants of the above can be handed in, * but the PINNED bit is ignored as pinning happens * when the hrtimer is started */ void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), clockid_t clock_id, enum hrtimer_mode mode) { debug_init(timer, clock_id, mode); __hrtimer_setup(timer, function, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_setup); /** * hrtimer_setup_on_stack - initialize a timer on stack memory * @timer: The timer to be initialized * @function: the callback function * @clock_id: The clock to be used * @mode: The timer mode * * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack * memory. */ void hrtimer_setup_on_stack(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), clockid_t clock_id, enum hrtimer_mode mode) { debug_init_on_stack(timer, clock_id, mode); __hrtimer_setup(timer, function, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack); /* * A timer is active, when it is enqueued into the rbtree or the * callback function is running or it's in the state of being migrated * to another cpu. * * It is important for this function to not return a false negative. */ bool hrtimer_active(const struct hrtimer *timer) { struct hrtimer_clock_base *base; unsigned int seq; do { base = READ_ONCE(timer->base); seq = raw_read_seqcount_begin(&base->seq); if (timer->state != HRTIMER_STATE_INACTIVE || base->running == timer) return true; } while (read_seqcount_retry(&base->seq, seq) || base != READ_ONCE(timer->base)); return false; } EXPORT_SYMBOL_GPL(hrtimer_active); /* * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 * distinct sections: * * - queued: the timer is queued * - callback: the timer is being ran * - post: the timer is inactive or (re)queued * * On the read side we ensure we observe timer->state and cpu_base->running * from the same section, if anything changed while we looked at it, we retry. * This includes timer->base changing because sequence numbers alone are * insufficient for that. * * The sequence numbers are required because otherwise we could still observe * a false negative if the read side got smeared over multiple consecutive * __run_hrtimer() invocations. */ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, struct hrtimer_clock_base *base, struct hrtimer *timer, ktime_t *now, unsigned long flags) __must_hold(&cpu_base->lock) { enum hrtimer_restart (*fn)(struct hrtimer *); bool expires_in_hardirq; int restart; lockdep_assert_held(&cpu_base->lock); debug_deactivate(timer); base->running = timer; /* * Separate the ->running assignment from the ->state assignment. * * As with a regular write barrier, this ensures the read side in * hrtimer_active() cannot observe base->running == NULL && * timer->state == INACTIVE. */ raw_write_seqcount_barrier(&base->seq); __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); fn = timer->function; /* * Clear the 'is relative' flag for the TIME_LOW_RES case. If the * timer is restarted with a period then it becomes an absolute * timer. If its not restarted it does not matter. */ if (IS_ENABLED(CONFIG_TIME_LOW_RES)) timer->is_rel = false; /* * The timer is marked as running in the CPU base, so it is * protected against migration to a different CPU even if the lock * is dropped. */ raw_spin_unlock_irqrestore(&cpu_base->lock, flags); trace_hrtimer_expire_entry(timer, now); expires_in_hardirq = lockdep_hrtimer_enter(timer); restart = fn(timer); lockdep_hrtimer_exit(expires_in_hardirq); trace_hrtimer_expire_exit(timer); raw_spin_lock_irq(&cpu_base->lock); /* * Note: We clear the running state after enqueue_hrtimer and * we do not reprogram the event hardware. Happens either in * hrtimer_start_range_ns() or in hrtimer_interrupt() * * Note: Because we dropped the cpu_base->lock above, * hrtimer_start_range_ns() can have popped in and enqueued the timer * for us already. */ if (restart != HRTIMER_NORESTART && !(timer->state & HRTIMER_STATE_ENQUEUED)) enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); /* * Separate the ->running assignment from the ->state assignment. * * As with a regular write barrier, this ensures the read side in * hrtimer_active() cannot observe base->running.timer == NULL && * timer->state == INACTIVE. */ raw_write_seqcount_barrier(&base->seq); WARN_ON_ONCE(base->running != timer); base->running = NULL; } static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, unsigned long flags, unsigned int active_mask) { struct hrtimer_clock_base *base; unsigned int active = cpu_base->active_bases & active_mask; for_each_active_base(base, cpu_base, active) { struct timerqueue_node *node; ktime_t basenow; basenow = ktime_add(now, base->offset); while ((node = timerqueue_getnext(&base->active))) { struct hrtimer *timer; timer = container_of(node, struct hrtimer, node); /* * The immediate goal for using the softexpires is * minimizing wakeups, not running timers at the * earliest interrupt after their soft expiration. * This allows us to avoid using a Priority Search * Tree, which can answer a stabbing query for * overlapping intervals and instead use the simple * BST we already have. * We don't add extra wakeups by delaying timers that * are right-of a not yet expired timer, because that * timer will have to trigger a wakeup anyway. */ if (basenow < hrtimer_get_softexpires_tv64(timer)) break; __run_hrtimer(cpu_base, base, timer, &basenow, flags); if (active_mask == HRTIMER_ACTIVE_SOFT) hrtimer_sync_wait_running(cpu_base, flags); } } } static __latent_entropy void hrtimer_run_softirq(void) { struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); unsigned long flags; ktime_t now; hrtimer_cpu_base_lock_expiry(cpu_base); raw_spin_lock_irqsave(&cpu_base->lock, flags); now = hrtimer_update_base(cpu_base); __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); cpu_base->softirq_activated = 0; hrtimer_update_softirq_timer(cpu_base, true); raw_spin_unlock_irqrestore(&cpu_base->lock, flags); hrtimer_cpu_base_unlock_expiry(cpu_base); } #ifdef CONFIG_HIGH_RES_TIMERS /* * High resolution timer interrupt * Called with interrupts disabled */ void hrtimer_interrupt(struct clock_event_device *dev) { struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); ktime_t expires_next, now, entry_time, delta; unsigned long flags; int retries = 0; BUG_ON(!cpu_base->hres_active); cpu_base->nr_events++; dev->next_event = KTIME_MAX; raw_spin_lock_irqsave(&cpu_base->lock, flags); entry_time = now = hrtimer_update_base(cpu_base); retry: cpu_base->in_hrtirq = 1; /* * We set expires_next to KTIME_MAX here with cpu_base->lock * held to prevent that a timer is enqueued in our queue via * the migration code. This does not affect enqueueing of * timers which run their callback and need to be requeued on * this CPU. */ cpu_base->expires_next = KTIME_MAX; if (!ktime_before(now, cpu_base->softirq_expires_next)) { cpu_base->softirq_expires_next = KTIME_MAX; cpu_base->softirq_activated = 1; raise_timer_softirq(HRTIMER_SOFTIRQ); } __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); /* Reevaluate the clock bases for the [soft] next expiry */ expires_next = hrtimer_update_next_event(cpu_base); /* * Store the new expiry value so the migration code can verify * against it. */ cpu_base->expires_next = expires_next; cpu_base->in_hrtirq = 0; raw_spin_unlock_irqrestore(&cpu_base->lock, flags); /* Reprogramming necessary ? */ if (!tick_program_event(expires_next, 0)) { cpu_base->hang_detected = 0; return; } /* * The next timer was already expired due to: * - tracing * - long lasting callbacks * - being scheduled away when running in a VM * * We need to prevent that we loop forever in the hrtimer * interrupt routine. We give it 3 attempts to avoid * overreacting on some spurious event. * * Acquire base lock for updating the offsets and retrieving * the current time. */ raw_spin_lock_irqsave(&cpu_base->lock, flags); now = hrtimer_update_base(cpu_base); cpu_base->nr_retries++; if (++retries < 3) goto retry; /* * Give the system a chance to do something else than looping * here. We stored the entry time, so we know exactly how long * we spent here. We schedule the next event this amount of * time away. */ cpu_base->nr_hangs++; cpu_base->hang_detected = 1; raw_spin_unlock_irqrestore(&cpu_base->lock, flags); delta = ktime_sub(now, entry_time); if ((unsigned int)delta > cpu_base->max_hang_time) cpu_base->max_hang_time = (unsigned int) delta; /* * Limit it to a sensible value as we enforce a longer * delay. Give the CPU at least 100ms to catch up. */ if (delta > 100 * NSEC_PER_MSEC) expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); else expires_next = ktime_add(now, delta); tick_program_event(expires_next, 1); pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); } #endif /* !CONFIG_HIGH_RES_TIMERS */ /* * Called from run_local_timers in hardirq context every jiffy */ void hrtimer_run_queues(void) { struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); unsigned long flags; ktime_t now; if (hrtimer_hres_active(cpu_base)) return; /* * This _is_ ugly: We have to check periodically, whether we * can switch to highres and / or nohz mode. The clocksource * switch happens with xtime_lock held. Notification from * there only sets the check bit in the tick_oneshot code, * otherwise we might deadlock vs. xtime_lock. */ if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { hrtimer_switch_to_hres(); return; } raw_spin_lock_irqsave(&cpu_base->lock, flags); now = hrtimer_update_base(cpu_base); if (!ktime_before(now, cpu_base->softirq_expires_next)) { cpu_base->softirq_expires_next = KTIME_MAX; cpu_base->softirq_activated = 1; raise_timer_softirq(HRTIMER_SOFTIRQ); } __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); raw_spin_unlock_irqrestore(&cpu_base->lock, flags); } /* * Sleep related functions: */ static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) { struct hrtimer_sleeper *t = container_of(timer, struct hrtimer_sleeper, timer); struct task_struct *task = t->task; t->task = NULL; if (task) wake_up_process(task); return HRTIMER_NORESTART; } /** * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer * @sl: sleeper to be started * @mode: timer mode abs/rel * * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) */ void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, enum hrtimer_mode mode) { /* * Make the enqueue delivery mode check work on RT. If the sleeper * was initialized for hard interrupt delivery, force the mode bit. * This is a special case for hrtimer_sleepers because * __hrtimer_init_sleeper() determines the delivery mode on RT so the * fiddling with this decision is avoided at the call sites. */ if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) mode |= HRTIMER_MODE_HARD; hrtimer_start_expires(&sl->timer, mode); } EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode) { /* * On PREEMPT_RT enabled kernels hrtimers which are not explicitly * marked for hard interrupt expiry mode are moved into soft * interrupt context either for latency reasons or because the * hrtimer callback takes regular spinlocks or invokes other * functions which are not suitable for hard interrupt context on * PREEMPT_RT. * * The hrtimer_sleeper callback is RT compatible in hard interrupt * context, but there is a latency concern: Untrusted userspace can * spawn many threads which arm timers for the same expiry time on * the same CPU. That causes a latency spike due to the wakeup of * a gazillion threads. * * OTOH, privileged real-time user space applications rely on the * low latency of hard interrupt wakeups. If the current task is in * a real-time scheduling class, mark the mode for hard interrupt * expiry. */ if (IS_ENABLED(CONFIG_PREEMPT_RT)) { if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT)) mode |= HRTIMER_MODE_HARD; } __hrtimer_init(&sl->timer, clock_id, mode); sl->timer.function = hrtimer_wakeup; sl->task = current; } /** * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory * @sl: sleeper to be initialized * @clock_id: the clock to be used * @mode: timer mode abs/rel */ void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode) { debug_init_on_stack(&sl->timer, clock_id, mode); __hrtimer_init_sleeper(sl, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack); int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) { switch(restart->nanosleep.type) { #ifdef CONFIG_COMPAT_32BIT_TIME case TT_COMPAT: if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) return -EFAULT; break; #endif case TT_NATIVE: if (put_timespec64(ts, restart->nanosleep.rmtp)) return -EFAULT; break; default: BUG(); } return -ERESTART_RESTARTBLOCK; } static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) { struct restart_block *restart; do { set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); hrtimer_sleeper_start_expires(t, mode); if (likely(t->task)) schedule(); hrtimer_cancel(&t->timer); mode = HRTIMER_MODE_ABS; } while (t->task && !signal_pending(current)); __set_current_state(TASK_RUNNING); if (!t->task) return 0; restart = ¤t->restart_block; if (restart->nanosleep.type != TT_NONE) { ktime_t rem = hrtimer_expires_remaining(&t->timer); struct timespec64 rmt; if (rem <= 0) return 0; rmt = ktime_to_timespec64(rem); return nanosleep_copyout(restart, &rmt); } return -ERESTART_RESTARTBLOCK; } static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) { struct hrtimer_sleeper t; int ret; hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS); hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); ret = do_nanosleep(&t, HRTIMER_MODE_ABS); destroy_hrtimer_on_stack(&t.timer); return ret; } long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, const clockid_t clockid) { struct restart_block *restart; struct hrtimer_sleeper t; int ret = 0; hrtimer_setup_sleeper_on_stack(&t, clockid, mode); hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns); ret = do_nanosleep(&t, mode); if (ret != -ERESTART_RESTARTBLOCK) goto out; /* Absolute timers do not update the rmtp value and restart: */ if (mode == HRTIMER_MODE_ABS) { ret = -ERESTARTNOHAND; goto out; } restart = ¤t->restart_block; restart->nanosleep.clockid = t.timer.base->clockid; restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); set_restart_fn(restart, hrtimer_nanosleep_restart); out: destroy_hrtimer_on_stack(&t.timer); return ret; } #ifdef CONFIG_64BIT SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, struct __kernel_timespec __user *, rmtp) { struct timespec64 tu; if (get_timespec64(&tu, rqtp)) return -EFAULT; if (!timespec64_valid(&tu)) return -EINVAL; current->restart_block.fn = do_no_restart_syscall; current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; current->restart_block.nanosleep.rmtp = rmtp; return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, CLOCK_MONOTONIC); } #endif #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, struct old_timespec32 __user *, rmtp) { struct timespec64 tu; if (get_old_timespec32(&tu, rqtp)) return -EFAULT; if (!timespec64_valid(&tu)) return -EINVAL; current->restart_block.fn = do_no_restart_syscall; current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; current->restart_block.nanosleep.compat_rmtp = rmtp; return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, CLOCK_MONOTONIC); } #endif /* * Functions related to boot-time initialization: */ int hrtimers_prepare_cpu(unsigned int cpu) { struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); int i; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; clock_b->cpu_base = cpu_base; seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); timerqueue_init_head(&clock_b->active); } cpu_base->cpu = cpu; cpu_base->active_bases = 0; cpu_base->hres_active = 0; cpu_base->hang_detected = 0; cpu_base->next_timer = NULL; cpu_base->softirq_next_timer = NULL; cpu_base->expires_next = KTIME_MAX; cpu_base->softirq_expires_next = KTIME_MAX; cpu_base->online = 1; hrtimer_cpu_base_init_expiry_lock(cpu_base); return 0; } #ifdef CONFIG_HOTPLUG_CPU static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, struct hrtimer_clock_base *new_base) { struct hrtimer *timer; struct timerqueue_node *node; while ((node = timerqueue_getnext(&old_base->active))) { timer = container_of(node, struct hrtimer, node); BUG_ON(hrtimer_callback_running(timer)); debug_deactivate(timer); /* * Mark it as ENQUEUED not INACTIVE otherwise the * timer could be seen as !active and just vanish away * under us on another CPU */ __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); timer->base = new_base; /* * Enqueue the timers on the new cpu. This does not * reprogram the event device in case the timer * expires before the earliest on this CPU, but we run * hrtimer_interrupt after we migrated everything to * sort out already expired timers and reprogram the * event device. */ enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); } } int hrtimers_cpu_dying(unsigned int dying_cpu) { int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); struct hrtimer_cpu_base *old_base, *new_base; old_base = this_cpu_ptr(&hrtimer_bases); new_base = &per_cpu(hrtimer_bases, ncpu); /* * The caller is globally serialized and nobody else * takes two locks at once, deadlock is not possible. */ raw_spin_lock(&old_base->lock); raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { migrate_hrtimer_list(&old_base->clock_base[i], &new_base->clock_base[i]); } /* * The migration might have changed the first expiring softirq * timer on this CPU. Update it. */ __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); /* Tell the other CPU to retrigger the next event */ smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); raw_spin_unlock(&new_base->lock); old_base->online = 0; raw_spin_unlock(&old_base->lock); return 0; } #endif /* CONFIG_HOTPLUG_CPU */ void __init hrtimers_init(void) { hrtimers_prepare_cpu(smp_processor_id()); open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); } |
978 977 976 115 114 115 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> * Copyright (C) 2002 Andi Kleen * * This handles calls from both 32bit and 64bit mode. * * Lock order: * context.ldt_usr_sem * mmap_lock * context.lock */ #include <linux/errno.h> #include <linux/gfp.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/syscalls.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/uaccess.h> #include <asm/ldt.h> #include <asm/tlb.h> #include <asm/desc.h> #include <asm/mmu_context.h> #include <asm/pgtable_areas.h> #include <xen/xen.h> /* This is a multiple of PAGE_SIZE. */ #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) static inline void *ldt_slot_va(int slot) { return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); } void load_mm_ldt(struct mm_struct *mm) { struct ldt_struct *ldt; /* READ_ONCE synchronizes with smp_store_release */ ldt = READ_ONCE(mm->context.ldt); /* * Any change to mm->context.ldt is followed by an IPI to all * CPUs with the mm active. The LDT will not be freed until * after the IPI is handled by all such CPUs. This means that * if the ldt_struct changes before we return, the values we see * will be safe, and the new values will be loaded before we run * any user code. * * NB: don't try to convert this to use RCU without extreme care. * We would still need IRQs off, because we don't want to change * the local LDT after an IPI loaded a newer value than the one * that we can see. */ if (unlikely(ldt)) { if (static_cpu_has(X86_FEATURE_PTI)) { if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { /* * Whoops -- either the new LDT isn't mapped * (if slot == -1) or is mapped into a bogus * slot (if slot > 1). */ clear_LDT(); return; } /* * If page table isolation is enabled, ldt->entries * will not be mapped in the userspace pagetables. * Tell the CPU to access the LDT through the alias * at ldt_slot_va(ldt->slot). */ set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); } else { set_ldt(ldt->entries, ldt->nr_entries); } } else { clear_LDT(); } } void switch_ldt(struct mm_struct *prev, struct mm_struct *next) { /* * Load the LDT if either the old or new mm had an LDT. * * An mm will never go from having an LDT to not having an LDT. Two * mms never share an LDT, so we don't gain anything by checking to * see whether the LDT changed. There's also no guarantee that * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, * then prev->context.ldt will also be non-NULL. * * If we really cared, we could optimize the case where prev == next * and we're exiting lazy mode. Most of the time, if this happens, * we don't actually need to reload LDTR, but modify_ldt() is mostly * used by legacy code and emulators where we don't need this level of * performance. * * This uses | instead of || because it generates better code. */ if (unlikely((unsigned long)prev->context.ldt | (unsigned long)next->context.ldt)) load_mm_ldt(next); DEBUG_LOCKS_WARN_ON(preemptible()); } static void refresh_ldt_segments(void) { #ifdef CONFIG_X86_64 unsigned short sel; /* * Make sure that the cached DS and ES descriptors match the updated * LDT. */ savesegment(ds, sel); if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) loadsegment(ds, sel); savesegment(es, sel); if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) loadsegment(es, sel); #endif } /* context.lock is held by the task which issued the smp function call */ static void flush_ldt(void *__mm) { struct mm_struct *mm = __mm; if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) return; load_mm_ldt(mm); refresh_ldt_segments(); } /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) { struct ldt_struct *new_ldt; unsigned int alloc_size; if (num_entries > LDT_ENTRIES) return NULL; new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL_ACCOUNT); if (!new_ldt) return NULL; BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); alloc_size = num_entries * LDT_ENTRY_SIZE; /* * Xen is very picky: it requires a page-aligned LDT that has no * trailing nonzero bytes in any page that contains LDT descriptors. * Keep it simple: zero the whole allocation and never allocate less * than PAGE_SIZE. */ if (alloc_size > PAGE_SIZE) new_ldt->entries = __vmalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); else new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); if (!new_ldt->entries) { kfree(new_ldt); return NULL; } /* The new LDT isn't aliased for PTI yet. */ new_ldt->slot = -1; new_ldt->nr_entries = num_entries; return new_ldt; } #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION static void do_sanity_check(struct mm_struct *mm, bool had_kernel_mapping, bool had_user_mapping) { if (mm->context.ldt) { /* * We already had an LDT. The top-level entry should already * have been allocated and synchronized with the usermode * tables. */ WARN_ON(!had_kernel_mapping); if (boot_cpu_has(X86_FEATURE_PTI)) WARN_ON(!had_user_mapping); } else { /* * This is the first time we're mapping an LDT for this process. * Sync the pgd to the usermode tables. */ WARN_ON(had_kernel_mapping); if (boot_cpu_has(X86_FEATURE_PTI)) WARN_ON(had_user_mapping); } } #ifdef CONFIG_X86_PAE static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va) { p4d_t *p4d; pud_t *pud; if (pgd->pgd == 0) return NULL; p4d = p4d_offset(pgd, va); if (p4d_none(*p4d)) return NULL; pud = pud_offset(p4d, va); if (pud_none(*pud)) return NULL; return pmd_offset(pud, va); } static void map_ldt_struct_to_user(struct mm_struct *mm) { pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); pmd_t *k_pmd, *u_pmd; k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) set_pmd(u_pmd, *k_pmd); } static void sanity_check_ldt_mapping(struct mm_struct *mm) { pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); bool had_kernel, had_user; pmd_t *k_pmd, *u_pmd; k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); had_kernel = (k_pmd->pmd != 0); had_user = (u_pmd->pmd != 0); do_sanity_check(mm, had_kernel, had_user); } #else /* !CONFIG_X86_PAE */ static void map_ldt_struct_to_user(struct mm_struct *mm) { pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) set_pgd(kernel_to_user_pgdp(pgd), *pgd); } static void sanity_check_ldt_mapping(struct mm_struct *mm) { pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); bool had_kernel = (pgd->pgd != 0); bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0); do_sanity_check(mm, had_kernel, had_user); } #endif /* CONFIG_X86_PAE */ /* * If PTI is enabled, this maps the LDT into the kernelmode and * usermode tables for the given mm. */ static int map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) { unsigned long va; bool is_vmalloc; spinlock_t *ptl; int i, nr_pages; if (!boot_cpu_has(X86_FEATURE_PTI)) return 0; /* * Any given ldt_struct should have map_ldt_struct() called at most * once. */ WARN_ON(ldt->slot != -1); /* Check if the current mappings are sane */ sanity_check_ldt_mapping(mm); is_vmalloc = is_vmalloc_addr(ldt->entries); nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); for (i = 0; i < nr_pages; i++) { unsigned long offset = i << PAGE_SHIFT; const void *src = (char *)ldt->entries + offset; unsigned long pfn; pgprot_t pte_prot; pte_t pte, *ptep; va = (unsigned long)ldt_slot_va(slot) + offset; pfn = is_vmalloc ? vmalloc_to_pfn(src) : page_to_pfn(virt_to_page(src)); /* * Treat the PTI LDT range as a *userspace* range. * get_locked_pte() will allocate all needed pagetables * and account for them in this mm. */ ptep = get_locked_pte(mm, va, &ptl); if (!ptep) return -ENOMEM; /* * Map it RO so the easy to find address is not a primary * target via some kernel interface which misses a * permission check. */ pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); /* Filter out unsuppored __PAGE_KERNEL* bits: */ pgprot_val(pte_prot) &= __supported_pte_mask; pte = pfn_pte(pfn, pte_prot); set_pte_at(mm, va, ptep, pte); pte_unmap_unlock(ptep, ptl); } /* Propagate LDT mapping to the user page-table */ map_ldt_struct_to_user(mm); ldt->slot = slot; return 0; } static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) { unsigned long va; int i, nr_pages; if (!ldt) return; /* LDT map/unmap is only required for PTI */ if (!boot_cpu_has(X86_FEATURE_PTI)) return; nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); for (i = 0; i < nr_pages; i++) { unsigned long offset = i << PAGE_SHIFT; spinlock_t *ptl; pte_t *ptep; va = (unsigned long)ldt_slot_va(ldt->slot) + offset; ptep = get_locked_pte(mm, va, &ptl); if (!WARN_ON_ONCE(!ptep)) { pte_clear(mm, va, ptep); pte_unmap_unlock(ptep, ptl); } } va = (unsigned long)ldt_slot_va(ldt->slot); flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false); } #else /* !CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ static int map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) { return 0; } static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) { } #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ static void free_ldt_pgtables(struct mm_struct *mm) { #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION struct mmu_gather tlb; unsigned long start = LDT_BASE_ADDR; unsigned long end = LDT_END_ADDR; if (!boot_cpu_has(X86_FEATURE_PTI)) return; /* * Although free_pgd_range() is intended for freeing user * page-tables, it also works out for kernel mappings on x86. * We use tlb_gather_mmu_fullmm() to avoid confusing the * range-tracking logic in __tlb_adjust_range(). */ tlb_gather_mmu_fullmm(&tlb, mm); free_pgd_range(&tlb, start, end, start, end); tlb_finish_mmu(&tlb); #endif } /* After calling this, the LDT is immutable. */ static void finalize_ldt_struct(struct ldt_struct *ldt) { paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); } static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) { mutex_lock(&mm->context.lock); /* Synchronizes with READ_ONCE in load_mm_ldt. */ smp_store_release(&mm->context.ldt, ldt); /* Activate the LDT for all CPUs using currents mm. */ on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); mutex_unlock(&mm->context.lock); } static void free_ldt_struct(struct ldt_struct *ldt) { if (likely(!ldt)) return; paravirt_free_ldt(ldt->entries, ldt->nr_entries); if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) vfree_atomic(ldt->entries); else free_page((unsigned long)ldt->entries); kfree(ldt); } /* * Called on fork from arch_dup_mmap(). Just copy the current LDT state, * the new task is not running, so nothing can be installed. */ int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) { struct ldt_struct *new_ldt; int retval = 0; if (!old_mm) return 0; mutex_lock(&old_mm->context.lock); if (!old_mm->context.ldt) goto out_unlock; new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); if (!new_ldt) { retval = -ENOMEM; goto out_unlock; } memcpy(new_ldt->entries, old_mm->context.ldt->entries, new_ldt->nr_entries * LDT_ENTRY_SIZE); finalize_ldt_struct(new_ldt); retval = map_ldt_struct(mm, new_ldt, 0); if (retval) { free_ldt_pgtables(mm); free_ldt_struct(new_ldt); goto out_unlock; } mm->context.ldt = new_ldt; out_unlock: mutex_unlock(&old_mm->context.lock); return retval; } /* * No need to lock the MM as we are the last user * * 64bit: Don't touch the LDT register - we're already in the next thread. */ void destroy_context_ldt(struct mm_struct *mm) { free_ldt_struct(mm->context.ldt); mm->context.ldt = NULL; } void ldt_arch_exit_mmap(struct mm_struct *mm) { free_ldt_pgtables(mm); } static int read_ldt(void __user *ptr, unsigned long bytecount) { struct mm_struct *mm = current->mm; unsigned long entries_size; int retval; down_read(&mm->context.ldt_usr_sem); if (!mm->context.ldt) { retval = 0; goto out_unlock; } if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; if (entries_size > bytecount) entries_size = bytecount; if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { retval = -EFAULT; goto out_unlock; } if (entries_size != bytecount) { /* Zero-fill the rest and pretend we read bytecount bytes. */ if (clear_user(ptr + entries_size, bytecount - entries_size)) { retval = -EFAULT; goto out_unlock; } } retval = bytecount; out_unlock: up_read(&mm->context.ldt_usr_sem); return retval; } static int read_default_ldt(void __user *ptr, unsigned long bytecount) { /* CHECKME: Can we use _one_ random number ? */ #ifdef CONFIG_X86_32 unsigned long size = 5 * sizeof(struct desc_struct); #else unsigned long size = 128; #endif if (bytecount > size) bytecount = size; if (clear_user(ptr, bytecount)) return -EFAULT; return bytecount; } static bool allow_16bit_segments(void) { if (!IS_ENABLED(CONFIG_X86_16BIT)) return false; #ifdef CONFIG_XEN_PV /* * Xen PV does not implement ESPFIX64, which means that 16-bit * segments will not work correctly. Until either Xen PV implements * ESPFIX64 and can signal this fact to the guest or unless someone * provides compelling evidence that allowing broken 16-bit segments * is worthwhile, disallow 16-bit segments under Xen PV. */ if (xen_pv_domain()) { pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n"); return false; } #endif return true; } static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) { struct mm_struct *mm = current->mm; struct ldt_struct *new_ldt, *old_ldt; unsigned int old_nr_entries, new_nr_entries; struct user_desc ldt_info; struct desc_struct ldt; int error; error = -EINVAL; if (bytecount != sizeof(ldt_info)) goto out; error = -EFAULT; if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) goto out; error = -EINVAL; if (ldt_info.entry_number >= LDT_ENTRIES) goto out; if (ldt_info.contents == 3) { if (oldmode) goto out; if (ldt_info.seg_not_present == 0) goto out; } if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || LDT_empty(&ldt_info)) { /* The user wants to clear the entry. */ memset(&ldt, 0, sizeof(ldt)); } else { if (!ldt_info.seg_32bit && !allow_16bit_segments()) { error = -EINVAL; goto out; } fill_ldt(&ldt, &ldt_info); if (oldmode) ldt.avl = 0; } if (down_write_killable(&mm->context.ldt_usr_sem)) return -EINTR; old_ldt = mm->context.ldt; old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); error = -ENOMEM; new_ldt = alloc_ldt_struct(new_nr_entries); if (!new_ldt) goto out_unlock; if (old_ldt) memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); new_ldt->entries[ldt_info.entry_number] = ldt; finalize_ldt_struct(new_ldt); /* * If we are using PTI, map the new LDT into the userspace pagetables. * If there is already an LDT, use the other slot so that other CPUs * will continue to use the old LDT until install_ldt() switches * them over to the new LDT. */ error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); if (error) { /* * This only can fail for the first LDT setup. If an LDT is * already installed then the PTE page is already * populated. Mop up a half populated page table. */ if (!WARN_ON_ONCE(old_ldt)) free_ldt_pgtables(mm); free_ldt_struct(new_ldt); goto out_unlock; } install_ldt(mm, new_ldt); unmap_ldt_struct(mm, old_ldt); free_ldt_struct(old_ldt); error = 0; out_unlock: up_write(&mm->context.ldt_usr_sem); out: return error; } SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , unsigned long , bytecount) { int ret = -ENOSYS; switch (func) { case 0: ret = read_ldt(ptr, bytecount); break; case 1: ret = write_ldt(ptr, bytecount, 1); break; case 2: ret = read_default_ldt(ptr, bytecount); break; case 0x11: ret = write_ldt(ptr, bytecount, 0); break; } /* * The SYSCALL_DEFINE() macros give us an 'unsigned long' * return type, but the ABI for sys_modify_ldt() expects * 'int'. This cast gives us an int-sized value in %rax * for the return code. The 'unsigned' is necessary so * the compiler does not try to sign-extend the negative * return codes into the high half of the register when * taking the value from int->long. */ return (unsigned int)ret; } |
7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 | // SPDX-License-Identifier: GPL-2.0 /* Bareudp: UDP tunnel encasulation for different Payload types like * MPLS, NSH, IP, etc. * Copyright (c) 2019 Nokia, Inc. * Authors: Martin Varghese, <martin.varghese@nokia.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/etherdevice.h> #include <linux/hash.h> #include <net/dst_metadata.h> #include <net/gro_cells.h> #include <net/rtnetlink.h> #include <net/protocol.h> #include <net/ip6_tunnel.h> #include <net/ip_tunnels.h> #include <net/udp_tunnel.h> #include <net/bareudp.h> #define BAREUDP_BASE_HLEN sizeof(struct udphdr) #define BAREUDP_IPV4_HLEN (sizeof(struct iphdr) + \ sizeof(struct udphdr)) #define BAREUDP_IPV6_HLEN (sizeof(struct ipv6hdr) + \ sizeof(struct udphdr)) static bool log_ecn_error = true; module_param(log_ecn_error, bool, 0644); MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN"); /* per-network namespace private data for this module */ static unsigned int bareudp_net_id; struct bareudp_net { struct list_head bareudp_list; }; struct bareudp_conf { __be16 ethertype; __be16 port; u16 sport_min; bool multi_proto_mode; }; /* Pseudo network device */ struct bareudp_dev { struct net *net; /* netns for packet i/o */ struct net_device *dev; /* netdev for bareudp tunnel */ __be16 ethertype; __be16 port; u16 sport_min; bool multi_proto_mode; struct socket __rcu *sock; struct list_head next; /* bareudp node on namespace list */ struct gro_cells gro_cells; }; static int bareudp_udp_encap_recv(struct sock *sk, struct sk_buff *skb) { struct metadata_dst *tun_dst = NULL; IP_TUNNEL_DECLARE_FLAGS(key) = { }; struct bareudp_dev *bareudp; unsigned short family; unsigned int len; __be16 proto; void *oiph; int err; int nh; bareudp = rcu_dereference_sk_user_data(sk); if (!bareudp) goto drop; if (skb->protocol == htons(ETH_P_IP)) family = AF_INET; else family = AF_INET6; if (bareudp->ethertype == htons(ETH_P_IP)) { __u8 ipversion; if (skb_copy_bits(skb, BAREUDP_BASE_HLEN, &ipversion, sizeof(ipversion))) { dev_core_stats_rx_dropped_inc(bareudp->dev); goto drop; } ipversion >>= 4; if (ipversion == 4) { proto = htons(ETH_P_IP); } else if (ipversion == 6 && bareudp->multi_proto_mode) { proto = htons(ETH_P_IPV6); } else { dev_core_stats_rx_dropped_inc(bareudp->dev); goto drop; } } else if (bareudp->ethertype == htons(ETH_P_MPLS_UC)) { struct iphdr *tunnel_hdr; tunnel_hdr = (struct iphdr *)skb_network_header(skb); if (tunnel_hdr->version == 4) { if (!ipv4_is_multicast(tunnel_hdr->daddr)) { proto = bareudp->ethertype; } else if (bareudp->multi_proto_mode && ipv4_is_multicast(tunnel_hdr->daddr)) { proto = htons(ETH_P_MPLS_MC); } else { dev_core_stats_rx_dropped_inc(bareudp->dev); goto drop; } } else { int addr_type; struct ipv6hdr *tunnel_hdr_v6; tunnel_hdr_v6 = (struct ipv6hdr *)skb_network_header(skb); addr_type = ipv6_addr_type((struct in6_addr *)&tunnel_hdr_v6->daddr); if (!(addr_type & IPV6_ADDR_MULTICAST)) { proto = bareudp->ethertype; } else if (bareudp->multi_proto_mode && (addr_type & IPV6_ADDR_MULTICAST)) { proto = htons(ETH_P_MPLS_MC); } else { dev_core_stats_rx_dropped_inc(bareudp->dev); goto drop; } } } else { proto = bareudp->ethertype; } if (iptunnel_pull_header(skb, BAREUDP_BASE_HLEN, proto, !net_eq(bareudp->net, dev_net(bareudp->dev)))) { dev_core_stats_rx_dropped_inc(bareudp->dev); goto drop; } __set_bit(IP_TUNNEL_KEY_BIT, key); tun_dst = udp_tun_rx_dst(skb, family, key, 0, 0); if (!tun_dst) { dev_core_stats_rx_dropped_inc(bareudp->dev); goto drop; } skb_dst_set(skb, &tun_dst->dst); skb->dev = bareudp->dev; skb_reset_mac_header(skb); /* Save offset of outer header relative to skb->head, * because we are going to reset the network header to the inner header * and might change skb->head. */ nh = skb_network_header(skb) - skb->head; skb_reset_network_header(skb); if (!pskb_inet_may_pull(skb)) { DEV_STATS_INC(bareudp->dev, rx_length_errors); DEV_STATS_INC(bareudp->dev, rx_errors); goto drop; } /* Get the outer header. */ oiph = skb->head + nh; if (!ipv6_mod_enabled() || family == AF_INET) err = IP_ECN_decapsulate(oiph, skb); else err = IP6_ECN_decapsulate(oiph, skb); if (unlikely(err)) { if (log_ecn_error) { if (!ipv6_mod_enabled() || family == AF_INET) net_info_ratelimited("non-ECT from %pI4 " "with TOS=%#x\n", &((struct iphdr *)oiph)->saddr, ((struct iphdr *)oiph)->tos); else net_info_ratelimited("non-ECT from %pI6\n", &((struct ipv6hdr *)oiph)->saddr); } if (err > 1) { DEV_STATS_INC(bareudp->dev, rx_frame_errors); DEV_STATS_INC(bareudp->dev, rx_errors); goto drop; } } len = skb->len; err = gro_cells_receive(&bareudp->gro_cells, skb); if (likely(err == NET_RX_SUCCESS)) dev_sw_netstats_rx_add(bareudp->dev, len); return 0; drop: /* Consume bad packet */ kfree_skb(skb); return 0; } static int bareudp_err_lookup(struct sock *sk, struct sk_buff *skb) { return 0; } static int bareudp_init(struct net_device *dev) { struct bareudp_dev *bareudp = netdev_priv(dev); int err; err = gro_cells_init(&bareudp->gro_cells, dev); if (err) return err; return 0; } static void bareudp_uninit(struct net_device *dev) { struct bareudp_dev *bareudp = netdev_priv(dev); gro_cells_destroy(&bareudp->gro_cells); } static struct socket *bareudp_create_sock(struct net *net, __be16 port) { struct udp_port_cfg udp_conf; struct socket *sock; int err; memset(&udp_conf, 0, sizeof(udp_conf)); if (ipv6_mod_enabled()) udp_conf.family = AF_INET6; else udp_conf.family = AF_INET; udp_conf.local_udp_port = port; /* Open UDP socket */ err = udp_sock_create(net, &udp_conf, &sock); if (err < 0) return ERR_PTR(err); udp_allow_gso(sock->sk); return sock; } /* Create new listen socket if needed */ static int bareudp_socket_create(struct bareudp_dev *bareudp, __be16 port) { struct udp_tunnel_sock_cfg tunnel_cfg; struct socket *sock; sock = bareudp_create_sock(bareudp->net, port); if (IS_ERR(sock)) return PTR_ERR(sock); /* Mark socket as an encapsulation socket */ memset(&tunnel_cfg, 0, sizeof(tunnel_cfg)); tunnel_cfg.sk_user_data = bareudp; tunnel_cfg.encap_type = 1; tunnel_cfg.encap_rcv = bareudp_udp_encap_recv; tunnel_cfg.encap_err_lookup = bareudp_err_lookup; tunnel_cfg.encap_destroy = NULL; setup_udp_tunnel_sock(bareudp->net, sock, &tunnel_cfg); rcu_assign_pointer(bareudp->sock, sock); return 0; } static int bareudp_open(struct net_device *dev) { struct bareudp_dev *bareudp = netdev_priv(dev); int ret = 0; ret = bareudp_socket_create(bareudp, bareudp->port); return ret; } static void bareudp_sock_release(struct bareudp_dev *bareudp) { struct socket *sock; sock = bareudp->sock; rcu_assign_pointer(bareudp->sock, NULL); synchronize_net(); udp_tunnel_sock_release(sock); } static int bareudp_stop(struct net_device *dev) { struct bareudp_dev *bareudp = netdev_priv(dev); bareudp_sock_release(bareudp); return 0; } static int bareudp_xmit_skb(struct sk_buff *skb, struct net_device *dev, struct bareudp_dev *bareudp, const struct ip_tunnel_info *info) { bool udp_sum = test_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags); bool xnet = !net_eq(bareudp->net, dev_net(bareudp->dev)); bool use_cache = ip_tunnel_dst_cache_usable(skb, info); struct socket *sock = rcu_dereference(bareudp->sock); const struct ip_tunnel_key *key = &info->key; struct rtable *rt; __be16 sport, df; int min_headroom; __u8 tos, ttl; __be32 saddr; int err; if (skb_vlan_inet_prepare(skb, skb->protocol != htons(ETH_P_TEB))) return -EINVAL; if (!sock) return -ESHUTDOWN; sport = udp_flow_src_port(bareudp->net, skb, bareudp->sport_min, USHRT_MAX, true); rt = udp_tunnel_dst_lookup(skb, dev, bareudp->net, 0, &saddr, &info->key, sport, bareudp->port, key->tos, use_cache ? (struct dst_cache *)&info->dst_cache : NULL); if (IS_ERR(rt)) return PTR_ERR(rt); skb_tunnel_check_pmtu(skb, &rt->dst, BAREUDP_IPV4_HLEN + info->options_len, false); tos = ip_tunnel_ecn_encap(key->tos, ip_hdr(skb), skb); ttl = key->ttl; df = test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, key->tun_flags) ? htons(IP_DF) : 0; skb_scrub_packet(skb, xnet); err = -ENOSPC; if (!skb_pull(skb, skb_network_offset(skb))) goto free_dst; min_headroom = LL_RESERVED_SPACE(rt->dst.dev) + rt->dst.header_len + BAREUDP_BASE_HLEN + info->options_len + sizeof(struct iphdr); err = skb_cow_head(skb, min_headroom); if (unlikely(err)) goto free_dst; err = udp_tunnel_handle_offloads(skb, udp_sum); if (err) goto free_dst; skb_set_inner_protocol(skb, bareudp->ethertype); udp_tunnel_xmit_skb(rt, sock->sk, skb, saddr, info->key.u.ipv4.dst, tos, ttl, df, sport, bareudp->port, !net_eq(bareudp->net, dev_net(bareudp->dev)), !test_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags)); return 0; free_dst: dst_release(&rt->dst); return err; } static int bareudp6_xmit_skb(struct sk_buff *skb, struct net_device *dev, struct bareudp_dev *bareudp, const struct ip_tunnel_info *info) { bool udp_sum = test_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags); bool xnet = !net_eq(bareudp->net, dev_net(bareudp->dev)); bool use_cache = ip_tunnel_dst_cache_usable(skb, info); struct socket *sock = rcu_dereference(bareudp->sock); const struct ip_tunnel_key *key = &info->key; struct dst_entry *dst = NULL; struct in6_addr saddr, daddr; int min_headroom; __u8 prio, ttl; __be16 sport; int err; if (skb_vlan_inet_prepare(skb, skb->protocol != htons(ETH_P_TEB))) return -EINVAL; if (!sock) return -ESHUTDOWN; sport = udp_flow_src_port(bareudp->net, skb, bareudp->sport_min, USHRT_MAX, true); dst = udp_tunnel6_dst_lookup(skb, dev, bareudp->net, sock, 0, &saddr, key, sport, bareudp->port, key->tos, use_cache ? (struct dst_cache *) &info->dst_cache : NULL); if (IS_ERR(dst)) return PTR_ERR(dst); skb_tunnel_check_pmtu(skb, dst, BAREUDP_IPV6_HLEN + info->options_len, false); prio = ip_tunnel_ecn_encap(key->tos, ip_hdr(skb), skb); ttl = key->ttl; skb_scrub_packet(skb, xnet); err = -ENOSPC; if (!skb_pull(skb, skb_network_offset(skb))) goto free_dst; min_headroom = LL_RESERVED_SPACE(dst->dev) + dst->header_len + BAREUDP_BASE_HLEN + info->options_len + sizeof(struct ipv6hdr); err = skb_cow_head(skb, min_headroom); if (unlikely(err)) goto free_dst; err = udp_tunnel_handle_offloads(skb, udp_sum); if (err) goto free_dst; daddr = info->key.u.ipv6.dst; udp_tunnel6_xmit_skb(dst, sock->sk, skb, dev, &saddr, &daddr, prio, ttl, info->key.label, sport, bareudp->port, !test_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags)); return 0; free_dst: dst_release(dst); return err; } static bool bareudp_proto_valid(struct bareudp_dev *bareudp, __be16 proto) { if (bareudp->ethertype == proto) return true; if (!bareudp->multi_proto_mode) return false; if (bareudp->ethertype == htons(ETH_P_MPLS_UC) && proto == htons(ETH_P_MPLS_MC)) return true; if (bareudp->ethertype == htons(ETH_P_IP) && proto == htons(ETH_P_IPV6)) return true; return false; } static netdev_tx_t bareudp_xmit(struct sk_buff *skb, struct net_device *dev) { struct bareudp_dev *bareudp = netdev_priv(dev); struct ip_tunnel_info *info = NULL; int err; if (!bareudp_proto_valid(bareudp, skb->protocol)) { err = -EINVAL; goto tx_error; } info = skb_tunnel_info(skb); if (unlikely(!info || !(info->mode & IP_TUNNEL_INFO_TX))) { err = -EINVAL; goto tx_error; } rcu_read_lock(); if (ipv6_mod_enabled() && info->mode & IP_TUNNEL_INFO_IPV6) err = bareudp6_xmit_skb(skb, dev, bareudp, info); else err = bareudp_xmit_skb(skb, dev, bareudp, info); rcu_read_unlock(); if (likely(!err)) return NETDEV_TX_OK; tx_error: dev_kfree_skb(skb); if (err == -ELOOP) DEV_STATS_INC(dev, collisions); else if (err == -ENETUNREACH) DEV_STATS_INC(dev, tx_carrier_errors); DEV_STATS_INC(dev, tx_errors); return NETDEV_TX_OK; } static int bareudp_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) { struct ip_tunnel_info *info = skb_tunnel_info(skb); struct bareudp_dev *bareudp = netdev_priv(dev); bool use_cache; __be16 sport; use_cache = ip_tunnel_dst_cache_usable(skb, info); sport = udp_flow_src_port(bareudp->net, skb, bareudp->sport_min, USHRT_MAX, true); if (!ipv6_mod_enabled() || ip_tunnel_info_af(info) == AF_INET) { struct rtable *rt; __be32 saddr; rt = udp_tunnel_dst_lookup(skb, dev, bareudp->net, 0, &saddr, &info->key, sport, bareudp->port, info->key.tos, use_cache ? &info->dst_cache : NULL); if (IS_ERR(rt)) return PTR_ERR(rt); ip_rt_put(rt); info->key.u.ipv4.src = saddr; } else if (ip_tunnel_info_af(info) == AF_INET6) { struct dst_entry *dst; struct in6_addr saddr; struct socket *sock = rcu_dereference(bareudp->sock); dst = udp_tunnel6_dst_lookup(skb, dev, bareudp->net, sock, 0, &saddr, &info->key, sport, bareudp->port, info->key.tos, use_cache ? &info->dst_cache : NULL); if (IS_ERR(dst)) return PTR_ERR(dst); dst_release(dst); info->key.u.ipv6.src = saddr; } else { return -EINVAL; } info->key.tp_src = sport; info->key.tp_dst = bareudp->port; return 0; } static const struct net_device_ops bareudp_netdev_ops = { .ndo_init = bareudp_init, .ndo_uninit = bareudp_uninit, .ndo_open = bareudp_open, .ndo_stop = bareudp_stop, .ndo_start_xmit = bareudp_xmit, .ndo_fill_metadata_dst = bareudp_fill_metadata_dst, }; static const struct nla_policy bareudp_policy[IFLA_BAREUDP_MAX + 1] = { [IFLA_BAREUDP_PORT] = { .type = NLA_U16 }, [IFLA_BAREUDP_ETHERTYPE] = { .type = NLA_U16 }, [IFLA_BAREUDP_SRCPORT_MIN] = { .type = NLA_U16 }, [IFLA_BAREUDP_MULTIPROTO_MODE] = { .type = NLA_FLAG }, }; /* Info for udev, that this is a virtual tunnel endpoint */ static const struct device_type bareudp_type = { .name = "bareudp", }; /* Initialize the device structure. */ static void bareudp_setup(struct net_device *dev) { dev->netdev_ops = &bareudp_netdev_ops; dev->needs_free_netdev = true; SET_NETDEV_DEVTYPE(dev, &bareudp_type); dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_FRAGLIST; dev->features |= NETIF_F_RXCSUM; dev->features |= NETIF_F_GSO_SOFTWARE; dev->hw_features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_FRAGLIST; dev->hw_features |= NETIF_F_RXCSUM; dev->hw_features |= NETIF_F_GSO_SOFTWARE; dev->hard_header_len = 0; dev->addr_len = 0; dev->mtu = ETH_DATA_LEN; dev->min_mtu = IPV4_MIN_MTU; dev->max_mtu = IP_MAX_MTU - BAREUDP_BASE_HLEN; dev->type = ARPHRD_NONE; netif_keep_dst(dev); dev->priv_flags |= IFF_NO_QUEUE; dev->lltx = true; dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; } static int bareudp_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (!data) { NL_SET_ERR_MSG(extack, "Not enough attributes provided to perform the operation"); return -EINVAL; } return 0; } static int bareudp2info(struct nlattr *data[], struct bareudp_conf *conf, struct netlink_ext_ack *extack) { memset(conf, 0, sizeof(*conf)); if (!data[IFLA_BAREUDP_PORT]) { NL_SET_ERR_MSG(extack, "port not specified"); return -EINVAL; } if (!data[IFLA_BAREUDP_ETHERTYPE]) { NL_SET_ERR_MSG(extack, "ethertype not specified"); return -EINVAL; } conf->port = nla_get_u16(data[IFLA_BAREUDP_PORT]); conf->ethertype = nla_get_u16(data[IFLA_BAREUDP_ETHERTYPE]); if (data[IFLA_BAREUDP_SRCPORT_MIN]) conf->sport_min = nla_get_u16(data[IFLA_BAREUDP_SRCPORT_MIN]); if (data[IFLA_BAREUDP_MULTIPROTO_MODE]) conf->multi_proto_mode = true; return 0; } static struct bareudp_dev *bareudp_find_dev(struct bareudp_net *bn, const struct bareudp_conf *conf) { struct bareudp_dev *bareudp, *t = NULL; list_for_each_entry(bareudp, &bn->bareudp_list, next) { if (conf->port == bareudp->port) t = bareudp; } return t; } static int bareudp_configure(struct net *net, struct net_device *dev, struct bareudp_conf *conf, struct netlink_ext_ack *extack) { struct bareudp_net *bn = net_generic(net, bareudp_net_id); struct bareudp_dev *t, *bareudp = netdev_priv(dev); int err; bareudp->net = net; bareudp->dev = dev; t = bareudp_find_dev(bn, conf); if (t) { NL_SET_ERR_MSG(extack, "Another bareudp device using the same port already exists"); return -EBUSY; } if (conf->multi_proto_mode && (conf->ethertype != htons(ETH_P_MPLS_UC) && conf->ethertype != htons(ETH_P_IP))) { NL_SET_ERR_MSG(extack, "Cannot set multiproto mode for this ethertype (only IPv4 and unicast MPLS are supported)"); return -EINVAL; } bareudp->port = conf->port; bareudp->ethertype = conf->ethertype; bareudp->sport_min = conf->sport_min; bareudp->multi_proto_mode = conf->multi_proto_mode; err = register_netdevice(dev); if (err) return err; list_add(&bareudp->next, &bn->bareudp_list); return 0; } static int bareudp_link_config(struct net_device *dev, struct nlattr *tb[]) { int err; if (tb[IFLA_MTU]) { err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU])); if (err) return err; } return 0; } static void bareudp_dellink(struct net_device *dev, struct list_head *head) { struct bareudp_dev *bareudp = netdev_priv(dev); list_del(&bareudp->next); unregister_netdevice_queue(dev, head); } static int bareudp_newlink(struct net *net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct bareudp_conf conf; int err; err = bareudp2info(data, &conf, extack); if (err) return err; err = bareudp_configure(net, dev, &conf, extack); if (err) return err; err = bareudp_link_config(dev, tb); if (err) goto err_unconfig; return 0; err_unconfig: bareudp_dellink(dev, NULL); return err; } static size_t bareudp_get_size(const struct net_device *dev) { return nla_total_size(sizeof(__be16)) + /* IFLA_BAREUDP_PORT */ nla_total_size(sizeof(__be16)) + /* IFLA_BAREUDP_ETHERTYPE */ nla_total_size(sizeof(__u16)) + /* IFLA_BAREUDP_SRCPORT_MIN */ nla_total_size(0) + /* IFLA_BAREUDP_MULTIPROTO_MODE */ 0; } static int bareudp_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct bareudp_dev *bareudp = netdev_priv(dev); if (nla_put_be16(skb, IFLA_BAREUDP_PORT, bareudp->port)) goto nla_put_failure; if (nla_put_be16(skb, IFLA_BAREUDP_ETHERTYPE, bareudp->ethertype)) goto nla_put_failure; if (nla_put_u16(skb, IFLA_BAREUDP_SRCPORT_MIN, bareudp->sport_min)) goto nla_put_failure; if (bareudp->multi_proto_mode && nla_put_flag(skb, IFLA_BAREUDP_MULTIPROTO_MODE)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static struct rtnl_link_ops bareudp_link_ops __read_mostly = { .kind = "bareudp", .maxtype = IFLA_BAREUDP_MAX, .policy = bareudp_policy, .priv_size = sizeof(struct bareudp_dev), .setup = bareudp_setup, .validate = bareudp_validate, .newlink = bareudp_newlink, .dellink = bareudp_dellink, .get_size = bareudp_get_size, .fill_info = bareudp_fill_info, }; static __net_init int bareudp_init_net(struct net *net) { struct bareudp_net *bn = net_generic(net, bareudp_net_id); INIT_LIST_HEAD(&bn->bareudp_list); return 0; } static void bareudp_destroy_tunnels(struct net *net, struct list_head *head) { struct bareudp_net *bn = net_generic(net, bareudp_net_id); struct bareudp_dev *bareudp, *next; list_for_each_entry_safe(bareudp, next, &bn->bareudp_list, next) unregister_netdevice_queue(bareudp->dev, head); } static void __net_exit bareudp_exit_batch_rtnl(struct list_head *net_list, struct list_head *dev_kill_list) { struct net *net; list_for_each_entry(net, net_list, exit_list) bareudp_destroy_tunnels(net, dev_kill_list); } static struct pernet_operations bareudp_net_ops = { .init = bareudp_init_net, .exit_batch_rtnl = bareudp_exit_batch_rtnl, .id = &bareudp_net_id, .size = sizeof(struct bareudp_net), }; static int __init bareudp_init_module(void) { int rc; rc = register_pernet_subsys(&bareudp_net_ops); if (rc) goto out1; rc = rtnl_link_register(&bareudp_link_ops); if (rc) goto out2; return 0; out2: unregister_pernet_subsys(&bareudp_net_ops); out1: return rc; } late_initcall(bareudp_init_module); static void __exit bareudp_cleanup_module(void) { rtnl_link_unregister(&bareudp_link_ops); unregister_pernet_subsys(&bareudp_net_ops); } module_exit(bareudp_cleanup_module); MODULE_ALIAS_RTNL_LINK("bareudp"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Martin Varghese <martin.varghese@nokia.com>"); MODULE_DESCRIPTION("Interface driver for UDP encapsulated traffic"); |
1893 724 35 36 3 3 3 1 2 462 57 24 723 4 28 28 8 11 19 723 419 416 407 81 1201 722 23 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | // SPDX-License-Identifier: GPL-2.0-only /* tnum: tracked (or tristate) numbers * * A tnum tracks knowledge about the bits of a value. Each bit can be either * known (0 or 1), or unknown (x). Arithmetic operations on tnums will * propagate the unknown bits such that the tnum result represents all the * possible results for possible values of the operands. */ #include <linux/kernel.h> #include <linux/tnum.h> #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m} /* A completely unknown value */ const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; struct tnum tnum_const(u64 value) { return TNUM(value, 0); } struct tnum tnum_range(u64 min, u64 max) { u64 chi = min ^ max, delta; u8 bits = fls64(chi); /* special case, needed because 1ULL << 64 is undefined */ if (bits > 63) return tnum_unknown; /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7. * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return * constant min (since min == max). */ delta = (1ULL << bits) - 1; return TNUM(min & ~delta, delta); } struct tnum tnum_lshift(struct tnum a, u8 shift) { return TNUM(a.value << shift, a.mask << shift); } struct tnum tnum_rshift(struct tnum a, u8 shift) { return TNUM(a.value >> shift, a.mask >> shift); } struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness) { /* if a.value is negative, arithmetic shifting by minimum shift * will have larger negative offset compared to more shifting. * If a.value is nonnegative, arithmetic shifting by minimum shift * will have larger positive offset compare to more shifting. */ if (insn_bitness == 32) return TNUM((u32)(((s32)a.value) >> min_shift), (u32)(((s32)a.mask) >> min_shift)); else return TNUM((s64)a.value >> min_shift, (s64)a.mask >> min_shift); } struct tnum tnum_add(struct tnum a, struct tnum b) { u64 sm, sv, sigma, chi, mu; sm = a.mask + b.mask; sv = a.value + b.value; sigma = sm + sv; chi = sigma ^ sv; mu = chi | a.mask | b.mask; return TNUM(sv & ~mu, mu); } struct tnum tnum_sub(struct tnum a, struct tnum b) { u64 dv, alpha, beta, chi, mu; dv = a.value - b.value; alpha = dv + a.mask; beta = dv - b.mask; chi = alpha ^ beta; mu = chi | a.mask | b.mask; return TNUM(dv & ~mu, mu); } struct tnum tnum_and(struct tnum a, struct tnum b) { u64 alpha, beta, v; alpha = a.value | a.mask; beta = b.value | b.mask; v = a.value & b.value; return TNUM(v, alpha & beta & ~v); } struct tnum tnum_or(struct tnum a, struct tnum b) { u64 v, mu; v = a.value | b.value; mu = a.mask | b.mask; return TNUM(v, mu & ~v); } struct tnum tnum_xor(struct tnum a, struct tnum b) { u64 v, mu; v = a.value ^ b.value; mu = a.mask | b.mask; return TNUM(v & ~mu, mu); } /* Generate partial products by multiplying each bit in the multiplier (tnum a) * with the multiplicand (tnum b), and add the partial products after * appropriately bit-shifting them. Instead of directly performing tnum addition * on the generated partial products, equivalenty, decompose each partial * product into two tnums, consisting of the value-sum (acc_v) and the * mask-sum (acc_m) and then perform tnum addition on them. The following paper * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398. */ struct tnum tnum_mul(struct tnum a, struct tnum b) { u64 acc_v = a.value * b.value; struct tnum acc_m = TNUM(0, 0); while (a.value || a.mask) { /* LSB of tnum a is a certain 1 */ if (a.value & 1) acc_m = tnum_add(acc_m, TNUM(0, b.mask)); /* LSB of tnum a is uncertain */ else if (a.mask & 1) acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask)); /* Note: no case for LSB is certain 0 */ a = tnum_rshift(a, 1); b = tnum_lshift(b, 1); } return tnum_add(TNUM(acc_v, 0), acc_m); } /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has * a 'known 0' - this will return a 'known 1' for that bit. */ struct tnum tnum_intersect(struct tnum a, struct tnum b) { u64 v, mu; v = a.value | b.value; mu = a.mask & b.mask; return TNUM(v & ~mu, mu); } struct tnum tnum_cast(struct tnum a, u8 size) { a.value &= (1ULL << (size * 8)) - 1; a.mask &= (1ULL << (size * 8)) - 1; return a; } bool tnum_is_aligned(struct tnum a, u64 size) { if (!size) return true; return !((a.value | a.mask) & (size - 1)); } bool tnum_in(struct tnum a, struct tnum b) { if (b.mask & ~a.mask) return false; b.value &= ~a.mask; return a.value == b.value; } int tnum_sbin(char *str, size_t size, struct tnum a) { size_t n; for (n = 64; n; n--) { if (n < size) { if (a.mask & 1) str[n - 1] = 'x'; else if (a.value & 1) str[n - 1] = '1'; else str[n - 1] = '0'; } a.mask >>= 1; a.value >>= 1; } str[min(size - 1, (size_t)64)] = 0; return 64; } struct tnum tnum_subreg(struct tnum a) { return tnum_cast(a, 4); } struct tnum tnum_clear_subreg(struct tnum a) { return tnum_lshift(tnum_rshift(a, 32), 32); } struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg) { return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg)); } struct tnum tnum_const_subreg(struct tnum a, u32 value) { return tnum_with_subreg(a, tnum_const(value)); } |
2270 2282 1 2298 2271 2273 2269 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/common.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/security.h> #include <linux/string_helpers.h> #include "common.h" /* String table for operation mode. */ const char * const tomoyo_mode[TOMOYO_CONFIG_MAX_MODE] = { [TOMOYO_CONFIG_DISABLED] = "disabled", [TOMOYO_CONFIG_LEARNING] = "learning", [TOMOYO_CONFIG_PERMISSIVE] = "permissive", [TOMOYO_CONFIG_ENFORCING] = "enforcing" }; /* String table for /sys/kernel/security/tomoyo/profile */ const char * const tomoyo_mac_keywords[TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX] = { /* CONFIG::file group */ [TOMOYO_MAC_FILE_EXECUTE] = "execute", [TOMOYO_MAC_FILE_OPEN] = "open", [TOMOYO_MAC_FILE_CREATE] = "create", [TOMOYO_MAC_FILE_UNLINK] = "unlink", [TOMOYO_MAC_FILE_GETATTR] = "getattr", [TOMOYO_MAC_FILE_MKDIR] = "mkdir", [TOMOYO_MAC_FILE_RMDIR] = "rmdir", [TOMOYO_MAC_FILE_MKFIFO] = "mkfifo", [TOMOYO_MAC_FILE_MKSOCK] = "mksock", [TOMOYO_MAC_FILE_TRUNCATE] = "truncate", [TOMOYO_MAC_FILE_SYMLINK] = "symlink", [TOMOYO_MAC_FILE_MKBLOCK] = "mkblock", [TOMOYO_MAC_FILE_MKCHAR] = "mkchar", [TOMOYO_MAC_FILE_LINK] = "link", [TOMOYO_MAC_FILE_RENAME] = "rename", [TOMOYO_MAC_FILE_CHMOD] = "chmod", [TOMOYO_MAC_FILE_CHOWN] = "chown", [TOMOYO_MAC_FILE_CHGRP] = "chgrp", [TOMOYO_MAC_FILE_IOCTL] = "ioctl", [TOMOYO_MAC_FILE_CHROOT] = "chroot", [TOMOYO_MAC_FILE_MOUNT] = "mount", [TOMOYO_MAC_FILE_UMOUNT] = "unmount", [TOMOYO_MAC_FILE_PIVOT_ROOT] = "pivot_root", /* CONFIG::network group */ [TOMOYO_MAC_NETWORK_INET_STREAM_BIND] = "inet_stream_bind", [TOMOYO_MAC_NETWORK_INET_STREAM_LISTEN] = "inet_stream_listen", [TOMOYO_MAC_NETWORK_INET_STREAM_CONNECT] = "inet_stream_connect", [TOMOYO_MAC_NETWORK_INET_DGRAM_BIND] = "inet_dgram_bind", [TOMOYO_MAC_NETWORK_INET_DGRAM_SEND] = "inet_dgram_send", [TOMOYO_MAC_NETWORK_INET_RAW_BIND] = "inet_raw_bind", [TOMOYO_MAC_NETWORK_INET_RAW_SEND] = "inet_raw_send", [TOMOYO_MAC_NETWORK_UNIX_STREAM_BIND] = "unix_stream_bind", [TOMOYO_MAC_NETWORK_UNIX_STREAM_LISTEN] = "unix_stream_listen", [TOMOYO_MAC_NETWORK_UNIX_STREAM_CONNECT] = "unix_stream_connect", [TOMOYO_MAC_NETWORK_UNIX_DGRAM_BIND] = "unix_dgram_bind", [TOMOYO_MAC_NETWORK_UNIX_DGRAM_SEND] = "unix_dgram_send", [TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_BIND] = "unix_seqpacket_bind", [TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_LISTEN] = "unix_seqpacket_listen", [TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_CONNECT] = "unix_seqpacket_connect", /* CONFIG::misc group */ [TOMOYO_MAC_ENVIRON] = "env", /* CONFIG group */ [TOMOYO_MAX_MAC_INDEX + TOMOYO_MAC_CATEGORY_FILE] = "file", [TOMOYO_MAX_MAC_INDEX + TOMOYO_MAC_CATEGORY_NETWORK] = "network", [TOMOYO_MAX_MAC_INDEX + TOMOYO_MAC_CATEGORY_MISC] = "misc", }; /* String table for conditions. */ const char * const tomoyo_condition_keyword[TOMOYO_MAX_CONDITION_KEYWORD] = { [TOMOYO_TASK_UID] = "task.uid", [TOMOYO_TASK_EUID] = "task.euid", [TOMOYO_TASK_SUID] = "task.suid", [TOMOYO_TASK_FSUID] = "task.fsuid", [TOMOYO_TASK_GID] = "task.gid", [TOMOYO_TASK_EGID] = "task.egid", [TOMOYO_TASK_SGID] = "task.sgid", [TOMOYO_TASK_FSGID] = "task.fsgid", [TOMOYO_TASK_PID] = "task.pid", [TOMOYO_TASK_PPID] = "task.ppid", [TOMOYO_EXEC_ARGC] = "exec.argc", [TOMOYO_EXEC_ENVC] = "exec.envc", [TOMOYO_TYPE_IS_SOCKET] = "socket", [TOMOYO_TYPE_IS_SYMLINK] = "symlink", [TOMOYO_TYPE_IS_FILE] = "file", [TOMOYO_TYPE_IS_BLOCK_DEV] = "block", [TOMOYO_TYPE_IS_DIRECTORY] = "directory", [TOMOYO_TYPE_IS_CHAR_DEV] = "char", [TOMOYO_TYPE_IS_FIFO] = "fifo", [TOMOYO_MODE_SETUID] = "setuid", [TOMOYO_MODE_SETGID] = "setgid", [TOMOYO_MODE_STICKY] = "sticky", [TOMOYO_MODE_OWNER_READ] = "owner_read", [TOMOYO_MODE_OWNER_WRITE] = "owner_write", [TOMOYO_MODE_OWNER_EXECUTE] = "owner_execute", [TOMOYO_MODE_GROUP_READ] = "group_read", [TOMOYO_MODE_GROUP_WRITE] = "group_write", [TOMOYO_MODE_GROUP_EXECUTE] = "group_execute", [TOMOYO_MODE_OTHERS_READ] = "others_read", [TOMOYO_MODE_OTHERS_WRITE] = "others_write", [TOMOYO_MODE_OTHERS_EXECUTE] = "others_execute", [TOMOYO_EXEC_REALPATH] = "exec.realpath", [TOMOYO_SYMLINK_TARGET] = "symlink.target", [TOMOYO_PATH1_UID] = "path1.uid", [TOMOYO_PATH1_GID] = "path1.gid", [TOMOYO_PATH1_INO] = "path1.ino", [TOMOYO_PATH1_MAJOR] = "path1.major", [TOMOYO_PATH1_MINOR] = "path1.minor", [TOMOYO_PATH1_PERM] = "path1.perm", [TOMOYO_PATH1_TYPE] = "path1.type", [TOMOYO_PATH1_DEV_MAJOR] = "path1.dev_major", [TOMOYO_PATH1_DEV_MINOR] = "path1.dev_minor", [TOMOYO_PATH2_UID] = "path2.uid", [TOMOYO_PATH2_GID] = "path2.gid", [TOMOYO_PATH2_INO] = "path2.ino", [TOMOYO_PATH2_MAJOR] = "path2.major", [TOMOYO_PATH2_MINOR] = "path2.minor", [TOMOYO_PATH2_PERM] = "path2.perm", [TOMOYO_PATH2_TYPE] = "path2.type", [TOMOYO_PATH2_DEV_MAJOR] = "path2.dev_major", [TOMOYO_PATH2_DEV_MINOR] = "path2.dev_minor", [TOMOYO_PATH1_PARENT_UID] = "path1.parent.uid", [TOMOYO_PATH1_PARENT_GID] = "path1.parent.gid", [TOMOYO_PATH1_PARENT_INO] = "path1.parent.ino", [TOMOYO_PATH1_PARENT_PERM] = "path1.parent.perm", [TOMOYO_PATH2_PARENT_UID] = "path2.parent.uid", [TOMOYO_PATH2_PARENT_GID] = "path2.parent.gid", [TOMOYO_PATH2_PARENT_INO] = "path2.parent.ino", [TOMOYO_PATH2_PARENT_PERM] = "path2.parent.perm", }; /* String table for PREFERENCE keyword. */ static const char * const tomoyo_pref_keywords[TOMOYO_MAX_PREF] = { [TOMOYO_PREF_MAX_AUDIT_LOG] = "max_audit_log", [TOMOYO_PREF_MAX_LEARNING_ENTRY] = "max_learning_entry", }; /* String table for path operation. */ const char * const tomoyo_path_keyword[TOMOYO_MAX_PATH_OPERATION] = { [TOMOYO_TYPE_EXECUTE] = "execute", [TOMOYO_TYPE_READ] = "read", [TOMOYO_TYPE_WRITE] = "write", [TOMOYO_TYPE_APPEND] = "append", [TOMOYO_TYPE_UNLINK] = "unlink", [TOMOYO_TYPE_GETATTR] = "getattr", [TOMOYO_TYPE_RMDIR] = "rmdir", [TOMOYO_TYPE_TRUNCATE] = "truncate", [TOMOYO_TYPE_SYMLINK] = "symlink", [TOMOYO_TYPE_CHROOT] = "chroot", [TOMOYO_TYPE_UMOUNT] = "unmount", }; /* String table for socket's operation. */ const char * const tomoyo_socket_keyword[TOMOYO_MAX_NETWORK_OPERATION] = { [TOMOYO_NETWORK_BIND] = "bind", [TOMOYO_NETWORK_LISTEN] = "listen", [TOMOYO_NETWORK_CONNECT] = "connect", [TOMOYO_NETWORK_SEND] = "send", }; /* String table for categories. */ static const char * const tomoyo_category_keywords [TOMOYO_MAX_MAC_CATEGORY_INDEX] = { [TOMOYO_MAC_CATEGORY_FILE] = "file", [TOMOYO_MAC_CATEGORY_NETWORK] = "network", [TOMOYO_MAC_CATEGORY_MISC] = "misc", }; /* Permit policy management by non-root user? */ static bool tomoyo_manage_by_non_root; /* Utility functions. */ /** * tomoyo_addprintf - strncat()-like-snprintf(). * * @buffer: Buffer to write to. Must be '\0'-terminated. * @len: Size of @buffer. * @fmt: The printf()'s format string, followed by parameters. * * Returns nothing. */ __printf(3, 4) static void tomoyo_addprintf(char *buffer, int len, const char *fmt, ...) { va_list args; const int pos = strlen(buffer); va_start(args, fmt); vsnprintf(buffer + pos, len - pos - 1, fmt, args); va_end(args); } /** * tomoyo_flush - Flush queued string to userspace's buffer. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns true if all data was flushed, false otherwise. */ static bool tomoyo_flush(struct tomoyo_io_buffer *head) { while (head->r.w_pos) { const char *w = head->r.w[0]; size_t len = strlen(w); if (len) { if (len > head->read_user_buf_avail) len = head->read_user_buf_avail; if (!len) return false; if (copy_to_user(head->read_user_buf, w, len)) return false; head->read_user_buf_avail -= len; head->read_user_buf += len; w += len; } head->r.w[0] = w; if (*w) return false; /* Add '\0' for audit logs and query. */ if (head->poll) { if (!head->read_user_buf_avail || copy_to_user(head->read_user_buf, "", 1)) return false; head->read_user_buf_avail--; head->read_user_buf++; } head->r.w_pos--; for (len = 0; len < head->r.w_pos; len++) head->r.w[len] = head->r.w[len + 1]; } head->r.avail = 0; return true; } /** * tomoyo_set_string - Queue string to "struct tomoyo_io_buffer" structure. * * @head: Pointer to "struct tomoyo_io_buffer". * @string: String to print. * * Note that @string has to be kept valid until @head is kfree()d. * This means that char[] allocated on stack memory cannot be passed to * this function. Use tomoyo_io_printf() for char[] allocated on stack memory. */ static void tomoyo_set_string(struct tomoyo_io_buffer *head, const char *string) { if (head->r.w_pos < TOMOYO_MAX_IO_READ_QUEUE) { head->r.w[head->r.w_pos++] = string; tomoyo_flush(head); } else WARN_ON(1); } static void tomoyo_io_printf(struct tomoyo_io_buffer *head, const char *fmt, ...) __printf(2, 3); /** * tomoyo_io_printf - printf() to "struct tomoyo_io_buffer" structure. * * @head: Pointer to "struct tomoyo_io_buffer". * @fmt: The printf()'s format string, followed by parameters. */ static void tomoyo_io_printf(struct tomoyo_io_buffer *head, const char *fmt, ...) { va_list args; size_t len; size_t pos = head->r.avail; int size = head->readbuf_size - pos; if (size <= 0) return; va_start(args, fmt); len = vsnprintf(head->read_buf + pos, size, fmt, args) + 1; va_end(args); if (pos + len >= head->readbuf_size) { WARN_ON(1); return; } head->r.avail += len; tomoyo_set_string(head, head->read_buf + pos); } /** * tomoyo_set_space - Put a space to "struct tomoyo_io_buffer" structure. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static void tomoyo_set_space(struct tomoyo_io_buffer *head) { tomoyo_set_string(head, " "); } /** * tomoyo_set_lf - Put a line feed to "struct tomoyo_io_buffer" structure. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static bool tomoyo_set_lf(struct tomoyo_io_buffer *head) { tomoyo_set_string(head, "\n"); return !head->r.w_pos; } /** * tomoyo_set_slash - Put a shash to "struct tomoyo_io_buffer" structure. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static void tomoyo_set_slash(struct tomoyo_io_buffer *head) { tomoyo_set_string(head, "/"); } /* List of namespaces. */ LIST_HEAD(tomoyo_namespace_list); /* True if namespace other than tomoyo_kernel_namespace is defined. */ static bool tomoyo_namespace_enabled; /** * tomoyo_init_policy_namespace - Initialize namespace. * * @ns: Pointer to "struct tomoyo_policy_namespace". * * Returns nothing. */ void tomoyo_init_policy_namespace(struct tomoyo_policy_namespace *ns) { unsigned int idx; for (idx = 0; idx < TOMOYO_MAX_ACL_GROUPS; idx++) INIT_LIST_HEAD(&ns->acl_group[idx]); for (idx = 0; idx < TOMOYO_MAX_GROUP; idx++) INIT_LIST_HEAD(&ns->group_list[idx]); for (idx = 0; idx < TOMOYO_MAX_POLICY; idx++) INIT_LIST_HEAD(&ns->policy_list[idx]); ns->profile_version = 20150505; tomoyo_namespace_enabled = !list_empty(&tomoyo_namespace_list); list_add_tail_rcu(&ns->namespace_list, &tomoyo_namespace_list); } /** * tomoyo_print_namespace - Print namespace header. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static void tomoyo_print_namespace(struct tomoyo_io_buffer *head) { if (!tomoyo_namespace_enabled) return; tomoyo_set_string(head, container_of(head->r.ns, struct tomoyo_policy_namespace, namespace_list)->name); tomoyo_set_space(head); } /** * tomoyo_print_name_union - Print a tomoyo_name_union. * * @head: Pointer to "struct tomoyo_io_buffer". * @ptr: Pointer to "struct tomoyo_name_union". */ static void tomoyo_print_name_union(struct tomoyo_io_buffer *head, const struct tomoyo_name_union *ptr) { tomoyo_set_space(head); if (ptr->group) { tomoyo_set_string(head, "@"); tomoyo_set_string(head, ptr->group->group_name->name); } else { tomoyo_set_string(head, ptr->filename->name); } } /** * tomoyo_print_name_union_quoted - Print a tomoyo_name_union with a quote. * * @head: Pointer to "struct tomoyo_io_buffer". * @ptr: Pointer to "struct tomoyo_name_union". * * Returns nothing. */ static void tomoyo_print_name_union_quoted(struct tomoyo_io_buffer *head, const struct tomoyo_name_union *ptr) { if (ptr->group) { tomoyo_set_string(head, "@"); tomoyo_set_string(head, ptr->group->group_name->name); } else { tomoyo_set_string(head, "\""); tomoyo_set_string(head, ptr->filename->name); tomoyo_set_string(head, "\""); } } /** * tomoyo_print_number_union_nospace - Print a tomoyo_number_union without a space. * * @head: Pointer to "struct tomoyo_io_buffer". * @ptr: Pointer to "struct tomoyo_number_union". * * Returns nothing. */ static void tomoyo_print_number_union_nospace (struct tomoyo_io_buffer *head, const struct tomoyo_number_union *ptr) { if (ptr->group) { tomoyo_set_string(head, "@"); tomoyo_set_string(head, ptr->group->group_name->name); } else { int i; unsigned long min = ptr->values[0]; const unsigned long max = ptr->values[1]; u8 min_type = ptr->value_type[0]; const u8 max_type = ptr->value_type[1]; char buffer[128]; buffer[0] = '\0'; for (i = 0; i < 2; i++) { switch (min_type) { case TOMOYO_VALUE_TYPE_HEXADECIMAL: tomoyo_addprintf(buffer, sizeof(buffer), "0x%lX", min); break; case TOMOYO_VALUE_TYPE_OCTAL: tomoyo_addprintf(buffer, sizeof(buffer), "0%lo", min); break; default: tomoyo_addprintf(buffer, sizeof(buffer), "%lu", min); break; } if (min == max && min_type == max_type) break; tomoyo_addprintf(buffer, sizeof(buffer), "-"); min_type = max_type; min = max; } tomoyo_io_printf(head, "%s", buffer); } } /** * tomoyo_print_number_union - Print a tomoyo_number_union. * * @head: Pointer to "struct tomoyo_io_buffer". * @ptr: Pointer to "struct tomoyo_number_union". * * Returns nothing. */ static void tomoyo_print_number_union(struct tomoyo_io_buffer *head, const struct tomoyo_number_union *ptr) { tomoyo_set_space(head); tomoyo_print_number_union_nospace(head, ptr); } /** * tomoyo_assign_profile - Create a new profile. * * @ns: Pointer to "struct tomoyo_policy_namespace". * @profile: Profile number to create. * * Returns pointer to "struct tomoyo_profile" on success, NULL otherwise. */ static struct tomoyo_profile *tomoyo_assign_profile (struct tomoyo_policy_namespace *ns, const unsigned int profile) { struct tomoyo_profile *ptr; struct tomoyo_profile *entry; if (profile >= TOMOYO_MAX_PROFILES) return NULL; ptr = ns->profile_ptr[profile]; if (ptr) return ptr; entry = kzalloc(sizeof(*entry), GFP_NOFS | __GFP_NOWARN); if (mutex_lock_interruptible(&tomoyo_policy_lock)) goto out; ptr = ns->profile_ptr[profile]; if (!ptr && tomoyo_memory_ok(entry)) { ptr = entry; ptr->default_config = TOMOYO_CONFIG_DISABLED | TOMOYO_CONFIG_WANT_GRANT_LOG | TOMOYO_CONFIG_WANT_REJECT_LOG; memset(ptr->config, TOMOYO_CONFIG_USE_DEFAULT, sizeof(ptr->config)); ptr->pref[TOMOYO_PREF_MAX_AUDIT_LOG] = CONFIG_SECURITY_TOMOYO_MAX_AUDIT_LOG; ptr->pref[TOMOYO_PREF_MAX_LEARNING_ENTRY] = CONFIG_SECURITY_TOMOYO_MAX_ACCEPT_ENTRY; mb(); /* Avoid out-of-order execution. */ ns->profile_ptr[profile] = ptr; entry = NULL; } mutex_unlock(&tomoyo_policy_lock); out: kfree(entry); return ptr; } /** * tomoyo_profile - Find a profile. * * @ns: Pointer to "struct tomoyo_policy_namespace". * @profile: Profile number to find. * * Returns pointer to "struct tomoyo_profile". */ struct tomoyo_profile *tomoyo_profile(const struct tomoyo_policy_namespace *ns, const u8 profile) { static struct tomoyo_profile tomoyo_null_profile; struct tomoyo_profile *ptr = ns->profile_ptr[profile]; if (!ptr) ptr = &tomoyo_null_profile; return ptr; } /** * tomoyo_find_yesno - Find values for specified keyword. * * @string: String to check. * @find: Name of keyword. * * Returns 1 if "@find=yes" was found, 0 if "@find=no" was found, -1 otherwise. */ static s8 tomoyo_find_yesno(const char *string, const char *find) { const char *cp = strstr(string, find); if (cp) { cp += strlen(find); if (!strncmp(cp, "=yes", 4)) return 1; else if (!strncmp(cp, "=no", 3)) return 0; } return -1; } /** * tomoyo_set_uint - Set value for specified preference. * * @i: Pointer to "unsigned int". * @string: String to check. * @find: Name of keyword. * * Returns nothing. */ static void tomoyo_set_uint(unsigned int *i, const char *string, const char *find) { const char *cp = strstr(string, find); if (cp) sscanf(cp + strlen(find), "=%u", i); } /** * tomoyo_set_mode - Set mode for specified profile. * * @name: Name of functionality. * @value: Mode for @name. * @profile: Pointer to "struct tomoyo_profile". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_set_mode(char *name, const char *value, struct tomoyo_profile *profile) { u8 i; u8 config; if (!strcmp(name, "CONFIG")) { i = TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX; config = profile->default_config; } else if (tomoyo_str_starts(&name, "CONFIG::")) { config = 0; for (i = 0; i < TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX; i++) { int len = 0; if (i < TOMOYO_MAX_MAC_INDEX) { const u8 c = tomoyo_index2category[i]; const char *category = tomoyo_category_keywords[c]; len = strlen(category); if (strncmp(name, category, len) || name[len++] != ':' || name[len++] != ':') continue; } if (strcmp(name + len, tomoyo_mac_keywords[i])) continue; config = profile->config[i]; break; } if (i == TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX) return -EINVAL; } else { return -EINVAL; } if (strstr(value, "use_default")) { config = TOMOYO_CONFIG_USE_DEFAULT; } else { u8 mode; for (mode = 0; mode < 4; mode++) if (strstr(value, tomoyo_mode[mode])) /* * Update lower 3 bits in order to distinguish * 'config' from 'TOMOYO_CONFIG_USE_DEFAULT'. */ config = (config & ~7) | mode; if (config != TOMOYO_CONFIG_USE_DEFAULT) { switch (tomoyo_find_yesno(value, "grant_log")) { case 1: config |= TOMOYO_CONFIG_WANT_GRANT_LOG; break; case 0: config &= ~TOMOYO_CONFIG_WANT_GRANT_LOG; break; } switch (tomoyo_find_yesno(value, "reject_log")) { case 1: config |= TOMOYO_CONFIG_WANT_REJECT_LOG; break; case 0: config &= ~TOMOYO_CONFIG_WANT_REJECT_LOG; break; } } } if (i < TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX) profile->config[i] = config; else if (config != TOMOYO_CONFIG_USE_DEFAULT) profile->default_config = config; return 0; } /** * tomoyo_write_profile - Write profile table. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_write_profile(struct tomoyo_io_buffer *head) { char *data = head->write_buf; unsigned int i; char *cp; struct tomoyo_profile *profile; if (sscanf(data, "PROFILE_VERSION=%u", &head->w.ns->profile_version) == 1) return 0; i = simple_strtoul(data, &cp, 10); if (*cp != '-') return -EINVAL; data = cp + 1; profile = tomoyo_assign_profile(head->w.ns, i); if (!profile) return -EINVAL; cp = strchr(data, '='); if (!cp) return -EINVAL; *cp++ = '\0'; if (!strcmp(data, "COMMENT")) { static DEFINE_SPINLOCK(lock); const struct tomoyo_path_info *new_comment = tomoyo_get_name(cp); const struct tomoyo_path_info *old_comment; if (!new_comment) return -ENOMEM; spin_lock(&lock); old_comment = profile->comment; profile->comment = new_comment; spin_unlock(&lock); tomoyo_put_name(old_comment); return 0; } if (!strcmp(data, "PREFERENCE")) { for (i = 0; i < TOMOYO_MAX_PREF; i++) tomoyo_set_uint(&profile->pref[i], cp, tomoyo_pref_keywords[i]); return 0; } return tomoyo_set_mode(data, cp, profile); } /** * tomoyo_print_config - Print mode for specified functionality. * * @head: Pointer to "struct tomoyo_io_buffer". * @config: Mode for that functionality. * * Returns nothing. * * Caller prints functionality's name. */ static void tomoyo_print_config(struct tomoyo_io_buffer *head, const u8 config) { tomoyo_io_printf(head, "={ mode=%s grant_log=%s reject_log=%s }\n", tomoyo_mode[config & 3], str_yes_no(config & TOMOYO_CONFIG_WANT_GRANT_LOG), str_yes_no(config & TOMOYO_CONFIG_WANT_REJECT_LOG)); } /** * tomoyo_read_profile - Read profile table. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static void tomoyo_read_profile(struct tomoyo_io_buffer *head) { u8 index; struct tomoyo_policy_namespace *ns = container_of(head->r.ns, typeof(*ns), namespace_list); const struct tomoyo_profile *profile; if (head->r.eof) return; next: index = head->r.index; profile = ns->profile_ptr[index]; switch (head->r.step) { case 0: tomoyo_print_namespace(head); tomoyo_io_printf(head, "PROFILE_VERSION=%u\n", ns->profile_version); head->r.step++; break; case 1: for ( ; head->r.index < TOMOYO_MAX_PROFILES; head->r.index++) if (ns->profile_ptr[head->r.index]) break; if (head->r.index == TOMOYO_MAX_PROFILES) { head->r.eof = true; return; } head->r.step++; break; case 2: { u8 i; const struct tomoyo_path_info *comment = profile->comment; tomoyo_print_namespace(head); tomoyo_io_printf(head, "%u-COMMENT=", index); tomoyo_set_string(head, comment ? comment->name : ""); tomoyo_set_lf(head); tomoyo_print_namespace(head); tomoyo_io_printf(head, "%u-PREFERENCE={ ", index); for (i = 0; i < TOMOYO_MAX_PREF; i++) tomoyo_io_printf(head, "%s=%u ", tomoyo_pref_keywords[i], profile->pref[i]); tomoyo_set_string(head, "}\n"); head->r.step++; } break; case 3: { tomoyo_print_namespace(head); tomoyo_io_printf(head, "%u-%s", index, "CONFIG"); tomoyo_print_config(head, profile->default_config); head->r.bit = 0; head->r.step++; } break; case 4: for ( ; head->r.bit < TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX; head->r.bit++) { const u8 i = head->r.bit; const u8 config = profile->config[i]; if (config == TOMOYO_CONFIG_USE_DEFAULT) continue; tomoyo_print_namespace(head); if (i < TOMOYO_MAX_MAC_INDEX) tomoyo_io_printf(head, "%u-CONFIG::%s::%s", index, tomoyo_category_keywords [tomoyo_index2category[i]], tomoyo_mac_keywords[i]); else tomoyo_io_printf(head, "%u-CONFIG::%s", index, tomoyo_mac_keywords[i]); tomoyo_print_config(head, config); head->r.bit++; break; } if (head->r.bit == TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX) { head->r.index++; head->r.step = 1; } break; } if (tomoyo_flush(head)) goto next; } /** * tomoyo_same_manager - Check for duplicated "struct tomoyo_manager" entry. * * @a: Pointer to "struct tomoyo_acl_head". * @b: Pointer to "struct tomoyo_acl_head". * * Returns true if @a == @b, false otherwise. */ static bool tomoyo_same_manager(const struct tomoyo_acl_head *a, const struct tomoyo_acl_head *b) { return container_of(a, struct tomoyo_manager, head)->manager == container_of(b, struct tomoyo_manager, head)->manager; } /** * tomoyo_update_manager_entry - Add a manager entry. * * @manager: The path to manager or the domainnamme. * @is_delete: True if it is a delete request. * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_update_manager_entry(const char *manager, const bool is_delete) { struct tomoyo_manager e = { }; struct tomoyo_acl_param param = { /* .ns = &tomoyo_kernel_namespace, */ .is_delete = is_delete, .list = &tomoyo_kernel_namespace.policy_list[TOMOYO_ID_MANAGER], }; int error = is_delete ? -ENOENT : -ENOMEM; if (!tomoyo_correct_domain(manager) && !tomoyo_correct_word(manager)) return -EINVAL; e.manager = tomoyo_get_name(manager); if (e.manager) { error = tomoyo_update_policy(&e.head, sizeof(e), ¶m, tomoyo_same_manager); tomoyo_put_name(e.manager); } return error; } /** * tomoyo_write_manager - Write manager policy. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_write_manager(struct tomoyo_io_buffer *head) { char *data = head->write_buf; if (!strcmp(data, "manage_by_non_root")) { tomoyo_manage_by_non_root = !head->w.is_delete; return 0; } return tomoyo_update_manager_entry(data, head->w.is_delete); } /** * tomoyo_read_manager - Read manager policy. * * @head: Pointer to "struct tomoyo_io_buffer". * * Caller holds tomoyo_read_lock(). */ static void tomoyo_read_manager(struct tomoyo_io_buffer *head) { if (head->r.eof) return; list_for_each_cookie(head->r.acl, &tomoyo_kernel_namespace.policy_list[TOMOYO_ID_MANAGER]) { struct tomoyo_manager *ptr = list_entry(head->r.acl, typeof(*ptr), head.list); if (ptr->head.is_deleted) continue; if (!tomoyo_flush(head)) return; tomoyo_set_string(head, ptr->manager->name); tomoyo_set_lf(head); } head->r.eof = true; } /** * tomoyo_manager - Check whether the current process is a policy manager. * * Returns true if the current process is permitted to modify policy * via /sys/kernel/security/tomoyo/ interface. * * Caller holds tomoyo_read_lock(). */ static bool tomoyo_manager(void) { struct tomoyo_manager *ptr; const char *exe; const struct task_struct *task = current; const struct tomoyo_path_info *domainname = tomoyo_domain()->domainname; bool found = IS_ENABLED(CONFIG_SECURITY_TOMOYO_INSECURE_BUILTIN_SETTING); if (!tomoyo_policy_loaded) return true; if (!tomoyo_manage_by_non_root && (!uid_eq(task->cred->uid, GLOBAL_ROOT_UID) || !uid_eq(task->cred->euid, GLOBAL_ROOT_UID))) return false; exe = tomoyo_get_exe(); if (!exe) return false; list_for_each_entry_rcu(ptr, &tomoyo_kernel_namespace.policy_list[TOMOYO_ID_MANAGER], head.list, srcu_read_lock_held(&tomoyo_ss)) { if (!ptr->head.is_deleted && (!tomoyo_pathcmp(domainname, ptr->manager) || !strcmp(exe, ptr->manager->name))) { found = true; break; } } if (!found) { /* Reduce error messages. */ static pid_t last_pid; const pid_t pid = current->pid; if (last_pid != pid) { pr_warn("%s ( %s ) is not permitted to update policies.\n", domainname->name, exe); last_pid = pid; } } kfree(exe); return found; } static struct tomoyo_domain_info *tomoyo_find_domain_by_qid (unsigned int serial); /** * tomoyo_select_domain - Parse select command. * * @head: Pointer to "struct tomoyo_io_buffer". * @data: String to parse. * * Returns true on success, false otherwise. * * Caller holds tomoyo_read_lock(). */ static bool tomoyo_select_domain(struct tomoyo_io_buffer *head, const char *data) { unsigned int pid; struct tomoyo_domain_info *domain = NULL; bool global_pid = false; if (strncmp(data, "select ", 7)) return false; data += 7; if (sscanf(data, "pid=%u", &pid) == 1 || (global_pid = true, sscanf(data, "global-pid=%u", &pid) == 1)) { struct task_struct *p; rcu_read_lock(); if (global_pid) p = find_task_by_pid_ns(pid, &init_pid_ns); else p = find_task_by_vpid(pid); if (p) domain = tomoyo_task(p)->domain_info; rcu_read_unlock(); } else if (!strncmp(data, "domain=", 7)) { if (tomoyo_domain_def(data + 7)) domain = tomoyo_find_domain(data + 7); } else if (sscanf(data, "Q=%u", &pid) == 1) { domain = tomoyo_find_domain_by_qid(pid); } else return false; head->w.domain = domain; /* Accessing read_buf is safe because head->io_sem is held. */ if (!head->read_buf) return true; /* Do nothing if open(O_WRONLY). */ memset(&head->r, 0, sizeof(head->r)); head->r.print_this_domain_only = true; if (domain) head->r.domain = &domain->list; else head->r.eof = true; tomoyo_io_printf(head, "# select %s\n", data); if (domain && domain->is_deleted) tomoyo_io_printf(head, "# This is a deleted domain.\n"); return true; } /** * tomoyo_same_task_acl - Check for duplicated "struct tomoyo_task_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b, false otherwise. */ static bool tomoyo_same_task_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_task_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_task_acl *p2 = container_of(b, typeof(*p2), head); return p1->domainname == p2->domainname; } /** * tomoyo_write_task - Update task related list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_write_task(struct tomoyo_acl_param *param) { int error = -EINVAL; if (tomoyo_str_starts(¶m->data, "manual_domain_transition ")) { struct tomoyo_task_acl e = { .head.type = TOMOYO_TYPE_MANUAL_TASK_ACL, .domainname = tomoyo_get_domainname(param), }; if (e.domainname) error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_task_acl, NULL); tomoyo_put_name(e.domainname); } return error; } /** * tomoyo_delete_domain - Delete a domain. * * @domainname: The name of domain. * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_delete_domain(char *domainname) { struct tomoyo_domain_info *domain; struct tomoyo_path_info name; name.name = domainname; tomoyo_fill_path_info(&name); if (mutex_lock_interruptible(&tomoyo_policy_lock)) return -EINTR; /* Is there an active domain? */ list_for_each_entry_rcu(domain, &tomoyo_domain_list, list, srcu_read_lock_held(&tomoyo_ss)) { /* Never delete tomoyo_kernel_domain */ if (domain == &tomoyo_kernel_domain) continue; if (domain->is_deleted || tomoyo_pathcmp(domain->domainname, &name)) continue; domain->is_deleted = true; break; } mutex_unlock(&tomoyo_policy_lock); return 0; } /** * tomoyo_write_domain2 - Write domain policy. * * @ns: Pointer to "struct tomoyo_policy_namespace". * @list: Pointer to "struct list_head". * @data: Policy to be interpreted. * @is_delete: True if it is a delete request. * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_write_domain2(struct tomoyo_policy_namespace *ns, struct list_head *list, char *data, const bool is_delete) { struct tomoyo_acl_param param = { .ns = ns, .list = list, .data = data, .is_delete = is_delete, }; static const struct { const char *keyword; int (*write)(struct tomoyo_acl_param *param); } tomoyo_callback[5] = { { "file ", tomoyo_write_file }, { "network inet ", tomoyo_write_inet_network }, { "network unix ", tomoyo_write_unix_network }, { "misc ", tomoyo_write_misc }, { "task ", tomoyo_write_task }, }; u8 i; for (i = 0; i < ARRAY_SIZE(tomoyo_callback); i++) { if (!tomoyo_str_starts(¶m.data, tomoyo_callback[i].keyword)) continue; return tomoyo_callback[i].write(¶m); } return -EINVAL; } /* String table for domain flags. */ const char * const tomoyo_dif[TOMOYO_MAX_DOMAIN_INFO_FLAGS] = { [TOMOYO_DIF_QUOTA_WARNED] = "quota_exceeded\n", [TOMOYO_DIF_TRANSITION_FAILED] = "transition_failed\n", }; /** * tomoyo_write_domain - Write domain policy. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_write_domain(struct tomoyo_io_buffer *head) { char *data = head->write_buf; struct tomoyo_policy_namespace *ns; struct tomoyo_domain_info *domain = head->w.domain; const bool is_delete = head->w.is_delete; bool is_select = !is_delete && tomoyo_str_starts(&data, "select "); unsigned int idx; if (*data == '<') { int ret = 0; domain = NULL; if (is_delete) ret = tomoyo_delete_domain(data); else if (is_select) domain = tomoyo_find_domain(data); else domain = tomoyo_assign_domain(data, false); head->w.domain = domain; return ret; } if (!domain) return -EINVAL; ns = domain->ns; if (sscanf(data, "use_profile %u", &idx) == 1 && idx < TOMOYO_MAX_PROFILES) { if (!tomoyo_policy_loaded || ns->profile_ptr[idx]) if (!is_delete) domain->profile = (u8) idx; return 0; } if (sscanf(data, "use_group %u\n", &idx) == 1 && idx < TOMOYO_MAX_ACL_GROUPS) { if (!is_delete) set_bit(idx, domain->group); else clear_bit(idx, domain->group); return 0; } for (idx = 0; idx < TOMOYO_MAX_DOMAIN_INFO_FLAGS; idx++) { const char *cp = tomoyo_dif[idx]; if (strncmp(data, cp, strlen(cp) - 1)) continue; domain->flags[idx] = !is_delete; return 0; } return tomoyo_write_domain2(ns, &domain->acl_info_list, data, is_delete); } /** * tomoyo_print_condition - Print condition part. * * @head: Pointer to "struct tomoyo_io_buffer". * @cond: Pointer to "struct tomoyo_condition". * * Returns true on success, false otherwise. */ static bool tomoyo_print_condition(struct tomoyo_io_buffer *head, const struct tomoyo_condition *cond) { switch (head->r.cond_step) { case 0: head->r.cond_index = 0; head->r.cond_step++; if (cond->transit) { tomoyo_set_space(head); tomoyo_set_string(head, cond->transit->name); } fallthrough; case 1: { const u16 condc = cond->condc; const struct tomoyo_condition_element *condp = (typeof(condp)) (cond + 1); const struct tomoyo_number_union *numbers_p = (typeof(numbers_p)) (condp + condc); const struct tomoyo_name_union *names_p = (typeof(names_p)) (numbers_p + cond->numbers_count); const struct tomoyo_argv *argv = (typeof(argv)) (names_p + cond->names_count); const struct tomoyo_envp *envp = (typeof(envp)) (argv + cond->argc); u16 skip; for (skip = 0; skip < head->r.cond_index; skip++) { const u8 left = condp->left; const u8 right = condp->right; condp++; switch (left) { case TOMOYO_ARGV_ENTRY: argv++; continue; case TOMOYO_ENVP_ENTRY: envp++; continue; case TOMOYO_NUMBER_UNION: numbers_p++; break; } switch (right) { case TOMOYO_NAME_UNION: names_p++; break; case TOMOYO_NUMBER_UNION: numbers_p++; break; } } while (head->r.cond_index < condc) { const u8 match = condp->equals; const u8 left = condp->left; const u8 right = condp->right; if (!tomoyo_flush(head)) return false; condp++; head->r.cond_index++; tomoyo_set_space(head); switch (left) { case TOMOYO_ARGV_ENTRY: tomoyo_io_printf(head, "exec.argv[%lu]%s=\"", argv->index, argv->is_not ? "!" : ""); tomoyo_set_string(head, argv->value->name); tomoyo_set_string(head, "\""); argv++; continue; case TOMOYO_ENVP_ENTRY: tomoyo_set_string(head, "exec.envp[\""); tomoyo_set_string(head, envp->name->name); tomoyo_io_printf(head, "\"]%s=", envp->is_not ? "!" : ""); if (envp->value) { tomoyo_set_string(head, "\""); tomoyo_set_string(head, envp->value->name); tomoyo_set_string(head, "\""); } else { tomoyo_set_string(head, "NULL"); } envp++; continue; case TOMOYO_NUMBER_UNION: tomoyo_print_number_union_nospace (head, numbers_p++); break; default: tomoyo_set_string(head, tomoyo_condition_keyword[left]); break; } tomoyo_set_string(head, match ? "=" : "!="); switch (right) { case TOMOYO_NAME_UNION: tomoyo_print_name_union_quoted (head, names_p++); break; case TOMOYO_NUMBER_UNION: tomoyo_print_number_union_nospace (head, numbers_p++); break; default: tomoyo_set_string(head, tomoyo_condition_keyword[right]); break; } } } head->r.cond_step++; fallthrough; case 2: if (!tomoyo_flush(head)) break; head->r.cond_step++; fallthrough; case 3: if (cond->grant_log != TOMOYO_GRANTLOG_AUTO) tomoyo_io_printf(head, " grant_log=%s", str_yes_no(cond->grant_log == TOMOYO_GRANTLOG_YES)); tomoyo_set_lf(head); return true; } return false; } /** * tomoyo_set_group - Print "acl_group " header keyword and category name. * * @head: Pointer to "struct tomoyo_io_buffer". * @category: Category name. * * Returns nothing. */ static void tomoyo_set_group(struct tomoyo_io_buffer *head, const char *category) { if (head->type == TOMOYO_EXCEPTIONPOLICY) { tomoyo_print_namespace(head); tomoyo_io_printf(head, "acl_group %u ", head->r.acl_group_index); } tomoyo_set_string(head, category); } /** * tomoyo_print_entry - Print an ACL entry. * * @head: Pointer to "struct tomoyo_io_buffer". * @acl: Pointer to an ACL entry. * * Returns true on success, false otherwise. */ static bool tomoyo_print_entry(struct tomoyo_io_buffer *head, struct tomoyo_acl_info *acl) { const u8 acl_type = acl->type; bool first = true; u8 bit; if (head->r.print_cond_part) goto print_cond_part; if (acl->is_deleted) return true; if (!tomoyo_flush(head)) return false; else if (acl_type == TOMOYO_TYPE_PATH_ACL) { struct tomoyo_path_acl *ptr = container_of(acl, typeof(*ptr), head); const u16 perm = ptr->perm; for (bit = 0; bit < TOMOYO_MAX_PATH_OPERATION; bit++) { if (!(perm & (1 << bit))) continue; if (head->r.print_transition_related_only && bit != TOMOYO_TYPE_EXECUTE) continue; if (first) { tomoyo_set_group(head, "file "); first = false; } else { tomoyo_set_slash(head); } tomoyo_set_string(head, tomoyo_path_keyword[bit]); } if (first) return true; tomoyo_print_name_union(head, &ptr->name); } else if (acl_type == TOMOYO_TYPE_MANUAL_TASK_ACL) { struct tomoyo_task_acl *ptr = container_of(acl, typeof(*ptr), head); tomoyo_set_group(head, "task "); tomoyo_set_string(head, "manual_domain_transition "); tomoyo_set_string(head, ptr->domainname->name); } else if (head->r.print_transition_related_only) { return true; } else if (acl_type == TOMOYO_TYPE_PATH2_ACL) { struct tomoyo_path2_acl *ptr = container_of(acl, typeof(*ptr), head); const u8 perm = ptr->perm; for (bit = 0; bit < TOMOYO_MAX_PATH2_OPERATION; bit++) { if (!(perm & (1 << bit))) continue; if (first) { tomoyo_set_group(head, "file "); first = false; } else { tomoyo_set_slash(head); } tomoyo_set_string(head, tomoyo_mac_keywords [tomoyo_pp2mac[bit]]); } if (first) return true; tomoyo_print_name_union(head, &ptr->name1); tomoyo_print_name_union(head, &ptr->name2); } else if (acl_type == TOMOYO_TYPE_PATH_NUMBER_ACL) { struct tomoyo_path_number_acl *ptr = container_of(acl, typeof(*ptr), head); const u8 perm = ptr->perm; for (bit = 0; bit < TOMOYO_MAX_PATH_NUMBER_OPERATION; bit++) { if (!(perm & (1 << bit))) continue; if (first) { tomoyo_set_group(head, "file "); first = false; } else { tomoyo_set_slash(head); } tomoyo_set_string(head, tomoyo_mac_keywords [tomoyo_pn2mac[bit]]); } if (first) return true; tomoyo_print_name_union(head, &ptr->name); tomoyo_print_number_union(head, &ptr->number); } else if (acl_type == TOMOYO_TYPE_MKDEV_ACL) { struct tomoyo_mkdev_acl *ptr = container_of(acl, typeof(*ptr), head); const u8 perm = ptr->perm; for (bit = 0; bit < TOMOYO_MAX_MKDEV_OPERATION; bit++) { if (!(perm & (1 << bit))) continue; if (first) { tomoyo_set_group(head, "file "); first = false; } else { tomoyo_set_slash(head); } tomoyo_set_string(head, tomoyo_mac_keywords [tomoyo_pnnn2mac[bit]]); } if (first) return true; tomoyo_print_name_union(head, &ptr->name); tomoyo_print_number_union(head, &ptr->mode); tomoyo_print_number_union(head, &ptr->major); tomoyo_print_number_union(head, &ptr->minor); } else if (acl_type == TOMOYO_TYPE_INET_ACL) { struct tomoyo_inet_acl *ptr = container_of(acl, typeof(*ptr), head); const u8 perm = ptr->perm; for (bit = 0; bit < TOMOYO_MAX_NETWORK_OPERATION; bit++) { if (!(perm & (1 << bit))) continue; if (first) { tomoyo_set_group(head, "network inet "); tomoyo_set_string(head, tomoyo_proto_keyword [ptr->protocol]); tomoyo_set_space(head); first = false; } else { tomoyo_set_slash(head); } tomoyo_set_string(head, tomoyo_socket_keyword[bit]); } if (first) return true; tomoyo_set_space(head); if (ptr->address.group) { tomoyo_set_string(head, "@"); tomoyo_set_string(head, ptr->address.group->group_name ->name); } else { char buf[128]; tomoyo_print_ip(buf, sizeof(buf), &ptr->address); tomoyo_io_printf(head, "%s", buf); } tomoyo_print_number_union(head, &ptr->port); } else if (acl_type == TOMOYO_TYPE_UNIX_ACL) { struct tomoyo_unix_acl *ptr = container_of(acl, typeof(*ptr), head); const u8 perm = ptr->perm; for (bit = 0; bit < TOMOYO_MAX_NETWORK_OPERATION; bit++) { if (!(perm & (1 << bit))) continue; if (first) { tomoyo_set_group(head, "network unix "); tomoyo_set_string(head, tomoyo_proto_keyword [ptr->protocol]); tomoyo_set_space(head); first = false; } else { tomoyo_set_slash(head); } tomoyo_set_string(head, tomoyo_socket_keyword[bit]); } if (first) return true; tomoyo_print_name_union(head, &ptr->name); } else if (acl_type == TOMOYO_TYPE_MOUNT_ACL) { struct tomoyo_mount_acl *ptr = container_of(acl, typeof(*ptr), head); tomoyo_set_group(head, "file mount"); tomoyo_print_name_union(head, &ptr->dev_name); tomoyo_print_name_union(head, &ptr->dir_name); tomoyo_print_name_union(head, &ptr->fs_type); tomoyo_print_number_union(head, &ptr->flags); } else if (acl_type == TOMOYO_TYPE_ENV_ACL) { struct tomoyo_env_acl *ptr = container_of(acl, typeof(*ptr), head); tomoyo_set_group(head, "misc env "); tomoyo_set_string(head, ptr->env->name); } if (acl->cond) { head->r.print_cond_part = true; head->r.cond_step = 0; if (!tomoyo_flush(head)) return false; print_cond_part: if (!tomoyo_print_condition(head, acl->cond)) return false; head->r.print_cond_part = false; } else { tomoyo_set_lf(head); } return true; } /** * tomoyo_read_domain2 - Read domain policy. * * @head: Pointer to "struct tomoyo_io_buffer". * @list: Pointer to "struct list_head". * * Caller holds tomoyo_read_lock(). * * Returns true on success, false otherwise. */ static bool tomoyo_read_domain2(struct tomoyo_io_buffer *head, struct list_head *list) { list_for_each_cookie(head->r.acl, list) { struct tomoyo_acl_info *ptr = list_entry(head->r.acl, typeof(*ptr), list); if (!tomoyo_print_entry(head, ptr)) return false; } head->r.acl = NULL; return true; } /** * tomoyo_read_domain - Read domain policy. * * @head: Pointer to "struct tomoyo_io_buffer". * * Caller holds tomoyo_read_lock(). */ static void tomoyo_read_domain(struct tomoyo_io_buffer *head) { if (head->r.eof) return; list_for_each_cookie(head->r.domain, &tomoyo_domain_list) { struct tomoyo_domain_info *domain = list_entry(head->r.domain, typeof(*domain), list); u8 i; switch (head->r.step) { case 0: if (domain->is_deleted && !head->r.print_this_domain_only) continue; /* Print domainname and flags. */ tomoyo_set_string(head, domain->domainname->name); tomoyo_set_lf(head); tomoyo_io_printf(head, "use_profile %u\n", domain->profile); for (i = 0; i < TOMOYO_MAX_DOMAIN_INFO_FLAGS; i++) if (domain->flags[i]) tomoyo_set_string(head, tomoyo_dif[i]); head->r.index = 0; head->r.step++; fallthrough; case 1: while (head->r.index < TOMOYO_MAX_ACL_GROUPS) { i = head->r.index++; if (!test_bit(i, domain->group)) continue; tomoyo_io_printf(head, "use_group %u\n", i); if (!tomoyo_flush(head)) return; } head->r.index = 0; head->r.step++; tomoyo_set_lf(head); fallthrough; case 2: if (!tomoyo_read_domain2(head, &domain->acl_info_list)) return; head->r.step++; if (!tomoyo_set_lf(head)) return; fallthrough; case 3: head->r.step = 0; if (head->r.print_this_domain_only) goto done; } } done: head->r.eof = true; } /** * tomoyo_write_pid: Specify PID to obtain domainname. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0. */ static int tomoyo_write_pid(struct tomoyo_io_buffer *head) { head->r.eof = false; return 0; } /** * tomoyo_read_pid - Get domainname of the specified PID. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns the domainname which the specified PID is in on success, * empty string otherwise. * The PID is specified by tomoyo_write_pid() so that the user can obtain * using read()/write() interface rather than sysctl() interface. */ static void tomoyo_read_pid(struct tomoyo_io_buffer *head) { char *buf = head->write_buf; bool global_pid = false; unsigned int pid; struct task_struct *p; struct tomoyo_domain_info *domain = NULL; /* Accessing write_buf is safe because head->io_sem is held. */ if (!buf) { head->r.eof = true; return; /* Do nothing if open(O_RDONLY). */ } if (head->r.w_pos || head->r.eof) return; head->r.eof = true; if (tomoyo_str_starts(&buf, "global-pid ")) global_pid = true; if (kstrtouint(buf, 10, &pid)) return; rcu_read_lock(); if (global_pid) p = find_task_by_pid_ns(pid, &init_pid_ns); else p = find_task_by_vpid(pid); if (p) domain = tomoyo_task(p)->domain_info; rcu_read_unlock(); if (!domain) return; tomoyo_io_printf(head, "%u %u ", pid, domain->profile); tomoyo_set_string(head, domain->domainname->name); } /* String table for domain transition control keywords. */ static const char *tomoyo_transition_type[TOMOYO_MAX_TRANSITION_TYPE] = { [TOMOYO_TRANSITION_CONTROL_NO_RESET] = "no_reset_domain ", [TOMOYO_TRANSITION_CONTROL_RESET] = "reset_domain ", [TOMOYO_TRANSITION_CONTROL_NO_INITIALIZE] = "no_initialize_domain ", [TOMOYO_TRANSITION_CONTROL_INITIALIZE] = "initialize_domain ", [TOMOYO_TRANSITION_CONTROL_NO_KEEP] = "no_keep_domain ", [TOMOYO_TRANSITION_CONTROL_KEEP] = "keep_domain ", }; /* String table for grouping keywords. */ static const char *tomoyo_group_name[TOMOYO_MAX_GROUP] = { [TOMOYO_PATH_GROUP] = "path_group ", [TOMOYO_NUMBER_GROUP] = "number_group ", [TOMOYO_ADDRESS_GROUP] = "address_group ", }; /** * tomoyo_write_exception - Write exception policy. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_write_exception(struct tomoyo_io_buffer *head) { const bool is_delete = head->w.is_delete; struct tomoyo_acl_param param = { .ns = head->w.ns, .is_delete = is_delete, .data = head->write_buf, }; u8 i; if (tomoyo_str_starts(¶m.data, "aggregator ")) return tomoyo_write_aggregator(¶m); for (i = 0; i < TOMOYO_MAX_TRANSITION_TYPE; i++) if (tomoyo_str_starts(¶m.data, tomoyo_transition_type[i])) return tomoyo_write_transition_control(¶m, i); for (i = 0; i < TOMOYO_MAX_GROUP; i++) if (tomoyo_str_starts(¶m.data, tomoyo_group_name[i])) return tomoyo_write_group(¶m, i); if (tomoyo_str_starts(¶m.data, "acl_group ")) { unsigned int group; char *data; group = simple_strtoul(param.data, &data, 10); if (group < TOMOYO_MAX_ACL_GROUPS && *data++ == ' ') return tomoyo_write_domain2 (head->w.ns, &head->w.ns->acl_group[group], data, is_delete); } return -EINVAL; } /** * tomoyo_read_group - Read "struct tomoyo_path_group"/"struct tomoyo_number_group"/"struct tomoyo_address_group" list. * * @head: Pointer to "struct tomoyo_io_buffer". * @idx: Index number. * * Returns true on success, false otherwise. * * Caller holds tomoyo_read_lock(). */ static bool tomoyo_read_group(struct tomoyo_io_buffer *head, const int idx) { struct tomoyo_policy_namespace *ns = container_of(head->r.ns, typeof(*ns), namespace_list); struct list_head *list = &ns->group_list[idx]; list_for_each_cookie(head->r.group, list) { struct tomoyo_group *group = list_entry(head->r.group, typeof(*group), head.list); list_for_each_cookie(head->r.acl, &group->member_list) { struct tomoyo_acl_head *ptr = list_entry(head->r.acl, typeof(*ptr), list); if (ptr->is_deleted) continue; if (!tomoyo_flush(head)) return false; tomoyo_print_namespace(head); tomoyo_set_string(head, tomoyo_group_name[idx]); tomoyo_set_string(head, group->group_name->name); if (idx == TOMOYO_PATH_GROUP) { tomoyo_set_space(head); tomoyo_set_string(head, container_of (ptr, struct tomoyo_path_group, head)->member_name->name); } else if (idx == TOMOYO_NUMBER_GROUP) { tomoyo_print_number_union(head, &container_of (ptr, struct tomoyo_number_group, head)->number); } else if (idx == TOMOYO_ADDRESS_GROUP) { char buffer[128]; struct tomoyo_address_group *member = container_of(ptr, typeof(*member), head); tomoyo_print_ip(buffer, sizeof(buffer), &member->address); tomoyo_io_printf(head, " %s", buffer); } tomoyo_set_lf(head); } head->r.acl = NULL; } head->r.group = NULL; return true; } /** * tomoyo_read_policy - Read "struct tomoyo_..._entry" list. * * @head: Pointer to "struct tomoyo_io_buffer". * @idx: Index number. * * Returns true on success, false otherwise. * * Caller holds tomoyo_read_lock(). */ static bool tomoyo_read_policy(struct tomoyo_io_buffer *head, const int idx) { struct tomoyo_policy_namespace *ns = container_of(head->r.ns, typeof(*ns), namespace_list); struct list_head *list = &ns->policy_list[idx]; list_for_each_cookie(head->r.acl, list) { struct tomoyo_acl_head *acl = container_of(head->r.acl, typeof(*acl), list); if (acl->is_deleted) continue; if (!tomoyo_flush(head)) return false; switch (idx) { case TOMOYO_ID_TRANSITION_CONTROL: { struct tomoyo_transition_control *ptr = container_of(acl, typeof(*ptr), head); tomoyo_print_namespace(head); tomoyo_set_string(head, tomoyo_transition_type [ptr->type]); tomoyo_set_string(head, ptr->program ? ptr->program->name : "any"); tomoyo_set_string(head, " from "); tomoyo_set_string(head, ptr->domainname ? ptr->domainname->name : "any"); } break; case TOMOYO_ID_AGGREGATOR: { struct tomoyo_aggregator *ptr = container_of(acl, typeof(*ptr), head); tomoyo_print_namespace(head); tomoyo_set_string(head, "aggregator "); tomoyo_set_string(head, ptr->original_name->name); tomoyo_set_space(head); tomoyo_set_string(head, ptr->aggregated_name->name); } break; default: continue; } tomoyo_set_lf(head); } head->r.acl = NULL; return true; } /** * tomoyo_read_exception - Read exception policy. * * @head: Pointer to "struct tomoyo_io_buffer". * * Caller holds tomoyo_read_lock(). */ static void tomoyo_read_exception(struct tomoyo_io_buffer *head) { struct tomoyo_policy_namespace *ns = container_of(head->r.ns, typeof(*ns), namespace_list); if (head->r.eof) return; while (head->r.step < TOMOYO_MAX_POLICY && tomoyo_read_policy(head, head->r.step)) head->r.step++; if (head->r.step < TOMOYO_MAX_POLICY) return; while (head->r.step < TOMOYO_MAX_POLICY + TOMOYO_MAX_GROUP && tomoyo_read_group(head, head->r.step - TOMOYO_MAX_POLICY)) head->r.step++; if (head->r.step < TOMOYO_MAX_POLICY + TOMOYO_MAX_GROUP) return; while (head->r.step < TOMOYO_MAX_POLICY + TOMOYO_MAX_GROUP + TOMOYO_MAX_ACL_GROUPS) { head->r.acl_group_index = head->r.step - TOMOYO_MAX_POLICY - TOMOYO_MAX_GROUP; if (!tomoyo_read_domain2(head, &ns->acl_group [head->r.acl_group_index])) return; head->r.step++; } head->r.eof = true; } /* Wait queue for kernel -> userspace notification. */ static DECLARE_WAIT_QUEUE_HEAD(tomoyo_query_wait); /* Wait queue for userspace -> kernel notification. */ static DECLARE_WAIT_QUEUE_HEAD(tomoyo_answer_wait); /* Structure for query. */ struct tomoyo_query { struct list_head list; struct tomoyo_domain_info *domain; char *query; size_t query_len; unsigned int serial; u8 timer; u8 answer; u8 retry; }; /* The list for "struct tomoyo_query". */ static LIST_HEAD(tomoyo_query_list); /* Lock for manipulating tomoyo_query_list. */ static DEFINE_SPINLOCK(tomoyo_query_list_lock); /* * Number of "struct file" referring /sys/kernel/security/tomoyo/query * interface. */ static atomic_t tomoyo_query_observers = ATOMIC_INIT(0); /** * tomoyo_truncate - Truncate a line. * * @str: String to truncate. * * Returns length of truncated @str. */ static int tomoyo_truncate(char *str) { char *start = str; while (*(unsigned char *) str > (unsigned char) ' ') str++; *str = '\0'; return strlen(start) + 1; } /** * tomoyo_add_entry - Add an ACL to current thread's domain. Used by learning mode. * * @domain: Pointer to "struct tomoyo_domain_info". * @header: Lines containing ACL. * * Returns nothing. */ static void tomoyo_add_entry(struct tomoyo_domain_info *domain, char *header) { char *buffer; char *realpath = NULL; char *argv0 = NULL; char *symlink = NULL; char *cp = strchr(header, '\n'); int len; if (!cp) return; cp = strchr(cp + 1, '\n'); if (!cp) return; *cp++ = '\0'; len = strlen(cp) + 1; /* strstr() will return NULL if ordering is wrong. */ if (*cp == 'f') { argv0 = strstr(header, " argv[]={ \""); if (argv0) { argv0 += 10; len += tomoyo_truncate(argv0) + 14; } realpath = strstr(header, " exec={ realpath=\""); if (realpath) { realpath += 8; len += tomoyo_truncate(realpath) + 6; } symlink = strstr(header, " symlink.target=\""); if (symlink) len += tomoyo_truncate(symlink + 1) + 1; } buffer = kmalloc(len, GFP_NOFS); if (!buffer) return; snprintf(buffer, len - 1, "%s", cp); if (realpath) tomoyo_addprintf(buffer, len, " exec.%s", realpath); if (argv0) tomoyo_addprintf(buffer, len, " exec.argv[0]=%s", argv0); if (symlink) tomoyo_addprintf(buffer, len, "%s", symlink); tomoyo_normalize_line(buffer); if (!tomoyo_write_domain2(domain->ns, &domain->acl_info_list, buffer, false)) tomoyo_update_stat(TOMOYO_STAT_POLICY_UPDATES); kfree(buffer); } /** * tomoyo_supervisor - Ask for the supervisor's decision. * * @r: Pointer to "struct tomoyo_request_info". * @fmt: The printf()'s format string, followed by parameters. * * Returns 0 if the supervisor decided to permit the access request which * violated the policy in enforcing mode, TOMOYO_RETRY_REQUEST if the * supervisor decided to retry the access request which violated the policy in * enforcing mode, 0 if it is not in enforcing mode, -EPERM otherwise. */ int tomoyo_supervisor(struct tomoyo_request_info *r, const char *fmt, ...) { va_list args; int error; int len; static unsigned int tomoyo_serial; struct tomoyo_query entry = { }; bool quota_exceeded = false; va_start(args, fmt); len = vsnprintf(NULL, 0, fmt, args) + 1; va_end(args); /* Write /sys/kernel/security/tomoyo/audit. */ va_start(args, fmt); tomoyo_write_log2(r, len, fmt, args); va_end(args); /* Nothing more to do if granted. */ if (r->granted) return 0; if (r->mode) tomoyo_update_stat(r->mode); switch (r->mode) { case TOMOYO_CONFIG_ENFORCING: error = -EPERM; if (atomic_read(&tomoyo_query_observers)) break; goto out; case TOMOYO_CONFIG_LEARNING: error = 0; /* Check max_learning_entry parameter. */ if (tomoyo_domain_quota_is_ok(r)) break; fallthrough; default: return 0; } /* Get message. */ va_start(args, fmt); entry.query = tomoyo_init_log(r, len, fmt, args); va_end(args); if (!entry.query) goto out; entry.query_len = strlen(entry.query) + 1; if (!error) { tomoyo_add_entry(r->domain, entry.query); goto out; } len = kmalloc_size_roundup(entry.query_len); entry.domain = r->domain; spin_lock(&tomoyo_query_list_lock); if (tomoyo_memory_quota[TOMOYO_MEMORY_QUERY] && tomoyo_memory_used[TOMOYO_MEMORY_QUERY] + len >= tomoyo_memory_quota[TOMOYO_MEMORY_QUERY]) { quota_exceeded = true; } else { entry.serial = tomoyo_serial++; entry.retry = r->retry; tomoyo_memory_used[TOMOYO_MEMORY_QUERY] += len; list_add_tail(&entry.list, &tomoyo_query_list); } spin_unlock(&tomoyo_query_list_lock); if (quota_exceeded) goto out; /* Give 10 seconds for supervisor's opinion. */ while (entry.timer < 10) { wake_up_all(&tomoyo_query_wait); if (wait_event_interruptible_timeout (tomoyo_answer_wait, entry.answer || !atomic_read(&tomoyo_query_observers), HZ)) break; entry.timer++; } spin_lock(&tomoyo_query_list_lock); list_del(&entry.list); tomoyo_memory_used[TOMOYO_MEMORY_QUERY] -= len; spin_unlock(&tomoyo_query_list_lock); switch (entry.answer) { case 3: /* Asked to retry by administrator. */ error = TOMOYO_RETRY_REQUEST; r->retry++; break; case 1: /* Granted by administrator. */ error = 0; break; default: /* Timed out or rejected by administrator. */ break; } out: kfree(entry.query); return error; } /** * tomoyo_find_domain_by_qid - Get domain by query id. * * @serial: Query ID assigned by tomoyo_supervisor(). * * Returns pointer to "struct tomoyo_domain_info" if found, NULL otherwise. */ static struct tomoyo_domain_info *tomoyo_find_domain_by_qid (unsigned int serial) { struct tomoyo_query *ptr; struct tomoyo_domain_info *domain = NULL; spin_lock(&tomoyo_query_list_lock); list_for_each_entry(ptr, &tomoyo_query_list, list) { if (ptr->serial != serial) continue; domain = ptr->domain; break; } spin_unlock(&tomoyo_query_list_lock); return domain; } /** * tomoyo_poll_query - poll() for /sys/kernel/security/tomoyo/query. * * @file: Pointer to "struct file". * @wait: Pointer to "poll_table". * * Returns EPOLLIN | EPOLLRDNORM when ready to read, 0 otherwise. * * Waits for access requests which violated policy in enforcing mode. */ static __poll_t tomoyo_poll_query(struct file *file, poll_table *wait) { if (!list_empty(&tomoyo_query_list)) return EPOLLIN | EPOLLRDNORM; poll_wait(file, &tomoyo_query_wait, wait); if (!list_empty(&tomoyo_query_list)) return EPOLLIN | EPOLLRDNORM; return 0; } /** * tomoyo_read_query - Read access requests which violated policy in enforcing mode. * * @head: Pointer to "struct tomoyo_io_buffer". */ static void tomoyo_read_query(struct tomoyo_io_buffer *head) { struct list_head *tmp; unsigned int pos = 0; size_t len = 0; char *buf; if (head->r.w_pos) return; kfree(head->read_buf); head->read_buf = NULL; spin_lock(&tomoyo_query_list_lock); list_for_each(tmp, &tomoyo_query_list) { struct tomoyo_query *ptr = list_entry(tmp, typeof(*ptr), list); if (pos++ != head->r.query_index) continue; len = ptr->query_len; break; } spin_unlock(&tomoyo_query_list_lock); if (!len) { head->r.query_index = 0; return; } buf = kzalloc(len + 32, GFP_NOFS); if (!buf) return; pos = 0; spin_lock(&tomoyo_query_list_lock); list_for_each(tmp, &tomoyo_query_list) { struct tomoyo_query *ptr = list_entry(tmp, typeof(*ptr), list); if (pos++ != head->r.query_index) continue; /* * Some query can be skipped because tomoyo_query_list * can change, but I don't care. */ if (len == ptr->query_len) snprintf(buf, len + 31, "Q%u-%hu\n%s", ptr->serial, ptr->retry, ptr->query); break; } spin_unlock(&tomoyo_query_list_lock); if (buf[0]) { head->read_buf = buf; head->r.w[head->r.w_pos++] = buf; head->r.query_index++; } else { kfree(buf); } } /** * tomoyo_write_answer - Write the supervisor's decision. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0 on success, -EINVAL otherwise. */ static int tomoyo_write_answer(struct tomoyo_io_buffer *head) { char *data = head->write_buf; struct list_head *tmp; unsigned int serial; unsigned int answer; spin_lock(&tomoyo_query_list_lock); list_for_each(tmp, &tomoyo_query_list) { struct tomoyo_query *ptr = list_entry(tmp, typeof(*ptr), list); ptr->timer = 0; } spin_unlock(&tomoyo_query_list_lock); if (sscanf(data, "A%u=%u", &serial, &answer) != 2) return -EINVAL; spin_lock(&tomoyo_query_list_lock); list_for_each(tmp, &tomoyo_query_list) { struct tomoyo_query *ptr = list_entry(tmp, typeof(*ptr), list); if (ptr->serial != serial) continue; ptr->answer = answer; /* Remove from tomoyo_query_list. */ if (ptr->answer) list_del_init(&ptr->list); break; } spin_unlock(&tomoyo_query_list_lock); return 0; } /** * tomoyo_read_version: Get version. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns version information. */ static void tomoyo_read_version(struct tomoyo_io_buffer *head) { if (!head->r.eof) { tomoyo_io_printf(head, "2.6.0"); head->r.eof = true; } } /* String table for /sys/kernel/security/tomoyo/stat interface. */ static const char * const tomoyo_policy_headers[TOMOYO_MAX_POLICY_STAT] = { [TOMOYO_STAT_POLICY_UPDATES] = "update:", [TOMOYO_STAT_POLICY_LEARNING] = "violation in learning mode:", [TOMOYO_STAT_POLICY_PERMISSIVE] = "violation in permissive mode:", [TOMOYO_STAT_POLICY_ENFORCING] = "violation in enforcing mode:", }; /* String table for /sys/kernel/security/tomoyo/stat interface. */ static const char * const tomoyo_memory_headers[TOMOYO_MAX_MEMORY_STAT] = { [TOMOYO_MEMORY_POLICY] = "policy:", [TOMOYO_MEMORY_AUDIT] = "audit log:", [TOMOYO_MEMORY_QUERY] = "query message:", }; /* Counter for number of updates. */ static atomic_t tomoyo_stat_updated[TOMOYO_MAX_POLICY_STAT]; /* Timestamp counter for last updated. */ static time64_t tomoyo_stat_modified[TOMOYO_MAX_POLICY_STAT]; /** * tomoyo_update_stat - Update statistic counters. * * @index: Index for policy type. * * Returns nothing. */ void tomoyo_update_stat(const u8 index) { atomic_inc(&tomoyo_stat_updated[index]); tomoyo_stat_modified[index] = ktime_get_real_seconds(); } /** * tomoyo_read_stat - Read statistic data. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static void tomoyo_read_stat(struct tomoyo_io_buffer *head) { u8 i; unsigned int total = 0; if (head->r.eof) return; for (i = 0; i < TOMOYO_MAX_POLICY_STAT; i++) { tomoyo_io_printf(head, "Policy %-30s %10u", tomoyo_policy_headers[i], atomic_read(&tomoyo_stat_updated[i])); if (tomoyo_stat_modified[i]) { struct tomoyo_time stamp; tomoyo_convert_time(tomoyo_stat_modified[i], &stamp); tomoyo_io_printf(head, " (Last: %04u/%02u/%02u %02u:%02u:%02u)", stamp.year, stamp.month, stamp.day, stamp.hour, stamp.min, stamp.sec); } tomoyo_set_lf(head); } for (i = 0; i < TOMOYO_MAX_MEMORY_STAT; i++) { unsigned int used = tomoyo_memory_used[i]; total += used; tomoyo_io_printf(head, "Memory used by %-22s %10u", tomoyo_memory_headers[i], used); used = tomoyo_memory_quota[i]; if (used) tomoyo_io_printf(head, " (Quota: %10u)", used); tomoyo_set_lf(head); } tomoyo_io_printf(head, "Total memory used: %10u\n", total); head->r.eof = true; } /** * tomoyo_write_stat - Set memory quota. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns 0. */ static int tomoyo_write_stat(struct tomoyo_io_buffer *head) { char *data = head->write_buf; u8 i; if (tomoyo_str_starts(&data, "Memory used by ")) for (i = 0; i < TOMOYO_MAX_MEMORY_STAT; i++) if (tomoyo_str_starts(&data, tomoyo_memory_headers[i])) sscanf(data, "%u", &tomoyo_memory_quota[i]); return 0; } /** * tomoyo_open_control - open() for /sys/kernel/security/tomoyo/ interface. * * @type: Type of interface. * @file: Pointer to "struct file". * * Returns 0 on success, negative value otherwise. */ int tomoyo_open_control(const u8 type, struct file *file) { struct tomoyo_io_buffer *head = kzalloc(sizeof(*head), GFP_NOFS); if (!head) return -ENOMEM; mutex_init(&head->io_sem); head->type = type; switch (type) { case TOMOYO_DOMAINPOLICY: /* /sys/kernel/security/tomoyo/domain_policy */ head->write = tomoyo_write_domain; head->read = tomoyo_read_domain; break; case TOMOYO_EXCEPTIONPOLICY: /* /sys/kernel/security/tomoyo/exception_policy */ head->write = tomoyo_write_exception; head->read = tomoyo_read_exception; break; case TOMOYO_AUDIT: /* /sys/kernel/security/tomoyo/audit */ head->poll = tomoyo_poll_log; head->read = tomoyo_read_log; break; case TOMOYO_PROCESS_STATUS: /* /sys/kernel/security/tomoyo/.process_status */ head->write = tomoyo_write_pid; head->read = tomoyo_read_pid; break; case TOMOYO_VERSION: /* /sys/kernel/security/tomoyo/version */ head->read = tomoyo_read_version; head->readbuf_size = 128; break; case TOMOYO_STAT: /* /sys/kernel/security/tomoyo/stat */ head->write = tomoyo_write_stat; head->read = tomoyo_read_stat; head->readbuf_size = 1024; break; case TOMOYO_PROFILE: /* /sys/kernel/security/tomoyo/profile */ head->write = tomoyo_write_profile; head->read = tomoyo_read_profile; break; case TOMOYO_QUERY: /* /sys/kernel/security/tomoyo/query */ head->poll = tomoyo_poll_query; head->write = tomoyo_write_answer; head->read = tomoyo_read_query; break; case TOMOYO_MANAGER: /* /sys/kernel/security/tomoyo/manager */ head->write = tomoyo_write_manager; head->read = tomoyo_read_manager; break; } if (!(file->f_mode & FMODE_READ)) { /* * No need to allocate read_buf since it is not opened * for reading. */ head->read = NULL; head->poll = NULL; } else if (!head->poll) { /* Don't allocate read_buf for poll() access. */ if (!head->readbuf_size) head->readbuf_size = 4096 * 2; head->read_buf = kzalloc(head->readbuf_size, GFP_NOFS); if (!head->read_buf) { kfree(head); return -ENOMEM; } } if (!(file->f_mode & FMODE_WRITE)) { /* * No need to allocate write_buf since it is not opened * for writing. */ head->write = NULL; } else if (head->write) { head->writebuf_size = 4096 * 2; head->write_buf = kzalloc(head->writebuf_size, GFP_NOFS); if (!head->write_buf) { kfree(head->read_buf); kfree(head); return -ENOMEM; } } /* * If the file is /sys/kernel/security/tomoyo/query , increment the * observer counter. * The obserber counter is used by tomoyo_supervisor() to see if * there is some process monitoring /sys/kernel/security/tomoyo/query. */ if (type == TOMOYO_QUERY) atomic_inc(&tomoyo_query_observers); file->private_data = head; tomoyo_notify_gc(head, true); return 0; } /** * tomoyo_poll_control - poll() for /sys/kernel/security/tomoyo/ interface. * * @file: Pointer to "struct file". * @wait: Pointer to "poll_table". Maybe NULL. * * Returns EPOLLIN | EPOLLRDNORM | EPOLLOUT | EPOLLWRNORM if ready to read/write, * EPOLLOUT | EPOLLWRNORM otherwise. */ __poll_t tomoyo_poll_control(struct file *file, poll_table *wait) { struct tomoyo_io_buffer *head = file->private_data; if (head->poll) return head->poll(file, wait) | EPOLLOUT | EPOLLWRNORM; return EPOLLIN | EPOLLRDNORM | EPOLLOUT | EPOLLWRNORM; } /** * tomoyo_set_namespace_cursor - Set namespace to read. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ static inline void tomoyo_set_namespace_cursor(struct tomoyo_io_buffer *head) { struct list_head *ns; if (head->type != TOMOYO_EXCEPTIONPOLICY && head->type != TOMOYO_PROFILE) return; /* * If this is the first read, or reading previous namespace finished * and has more namespaces to read, update the namespace cursor. */ ns = head->r.ns; if (!ns || (head->r.eof && ns->next != &tomoyo_namespace_list)) { /* Clearing is OK because tomoyo_flush() returned true. */ memset(&head->r, 0, sizeof(head->r)); head->r.ns = ns ? ns->next : tomoyo_namespace_list.next; } } /** * tomoyo_has_more_namespace - Check for unread namespaces. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns true if we have more entries to print, false otherwise. */ static inline bool tomoyo_has_more_namespace(struct tomoyo_io_buffer *head) { return (head->type == TOMOYO_EXCEPTIONPOLICY || head->type == TOMOYO_PROFILE) && head->r.eof && head->r.ns->next != &tomoyo_namespace_list; } /** * tomoyo_read_control - read() for /sys/kernel/security/tomoyo/ interface. * * @head: Pointer to "struct tomoyo_io_buffer". * @buffer: Pointer to buffer to write to. * @buffer_len: Size of @buffer. * * Returns bytes read on success, negative value otherwise. */ ssize_t tomoyo_read_control(struct tomoyo_io_buffer *head, char __user *buffer, const int buffer_len) { int len; int idx; if (!head->read) return -EINVAL; if (mutex_lock_interruptible(&head->io_sem)) return -EINTR; head->read_user_buf = buffer; head->read_user_buf_avail = buffer_len; idx = tomoyo_read_lock(); if (tomoyo_flush(head)) /* Call the policy handler. */ do { tomoyo_set_namespace_cursor(head); head->read(head); } while (tomoyo_flush(head) && tomoyo_has_more_namespace(head)); tomoyo_read_unlock(idx); len = head->read_user_buf - buffer; mutex_unlock(&head->io_sem); return len; } /** * tomoyo_parse_policy - Parse a policy line. * * @head: Pointer to "struct tomoyo_io_buffer". * @line: Line to parse. * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ static int tomoyo_parse_policy(struct tomoyo_io_buffer *head, char *line) { /* Delete request? */ head->w.is_delete = !strncmp(line, "delete ", 7); if (head->w.is_delete) memmove(line, line + 7, strlen(line + 7) + 1); /* Selecting namespace to update. */ if (head->type == TOMOYO_EXCEPTIONPOLICY || head->type == TOMOYO_PROFILE) { if (*line == '<') { char *cp = strchr(line, ' '); if (cp) { *cp++ = '\0'; head->w.ns = tomoyo_assign_namespace(line); memmove(line, cp, strlen(cp) + 1); } else head->w.ns = NULL; } else head->w.ns = &tomoyo_kernel_namespace; /* Don't allow updating if namespace is invalid. */ if (!head->w.ns) return -ENOENT; } /* Do the update. */ return head->write(head); } /** * tomoyo_write_control - write() for /sys/kernel/security/tomoyo/ interface. * * @head: Pointer to "struct tomoyo_io_buffer". * @buffer: Pointer to buffer to read from. * @buffer_len: Size of @buffer. * * Returns @buffer_len on success, negative value otherwise. */ ssize_t tomoyo_write_control(struct tomoyo_io_buffer *head, const char __user *buffer, const int buffer_len) { int error = buffer_len; size_t avail_len = buffer_len; char *cp0; int idx; if (!head->write) return -EINVAL; if (mutex_lock_interruptible(&head->io_sem)) return -EINTR; cp0 = head->write_buf; head->read_user_buf_avail = 0; idx = tomoyo_read_lock(); /* Read a line and dispatch it to the policy handler. */ while (avail_len > 0) { char c; if (head->w.avail >= head->writebuf_size - 1) { const int len = head->writebuf_size * 2; char *cp = kzalloc(len, GFP_NOFS); if (!cp) { error = -ENOMEM; break; } memmove(cp, cp0, head->w.avail); kfree(cp0); head->write_buf = cp; cp0 = cp; head->writebuf_size = len; } if (get_user(c, buffer)) { error = -EFAULT; break; } buffer++; avail_len--; cp0[head->w.avail++] = c; if (c != '\n') continue; cp0[head->w.avail - 1] = '\0'; head->w.avail = 0; tomoyo_normalize_line(cp0); if (!strcmp(cp0, "reset")) { head->w.ns = &tomoyo_kernel_namespace; head->w.domain = NULL; memset(&head->r, 0, sizeof(head->r)); continue; } /* Don't allow updating policies by non manager programs. */ switch (head->type) { case TOMOYO_PROCESS_STATUS: /* This does not write anything. */ break; case TOMOYO_DOMAINPOLICY: if (tomoyo_select_domain(head, cp0)) continue; fallthrough; case TOMOYO_EXCEPTIONPOLICY: if (!strcmp(cp0, "select transition_only")) { head->r.print_transition_related_only = true; continue; } fallthrough; default: if (!tomoyo_manager()) { error = -EPERM; goto out; } } switch (tomoyo_parse_policy(head, cp0)) { case -EPERM: error = -EPERM; goto out; case 0: switch (head->type) { case TOMOYO_DOMAINPOLICY: case TOMOYO_EXCEPTIONPOLICY: case TOMOYO_STAT: case TOMOYO_PROFILE: case TOMOYO_MANAGER: tomoyo_update_stat(TOMOYO_STAT_POLICY_UPDATES); break; default: break; } break; } } out: tomoyo_read_unlock(idx); mutex_unlock(&head->io_sem); return error; } /** * tomoyo_close_control - close() for /sys/kernel/security/tomoyo/ interface. * * @head: Pointer to "struct tomoyo_io_buffer". */ void tomoyo_close_control(struct tomoyo_io_buffer *head) { /* * If the file is /sys/kernel/security/tomoyo/query , decrement the * observer counter. */ if (head->type == TOMOYO_QUERY && atomic_dec_and_test(&tomoyo_query_observers)) wake_up_all(&tomoyo_answer_wait); tomoyo_notify_gc(head, false); } /** * tomoyo_check_profile - Check all profiles currently assigned to domains are defined. */ void tomoyo_check_profile(void) { struct tomoyo_domain_info *domain; const int idx = tomoyo_read_lock(); tomoyo_policy_loaded = true; pr_info("TOMOYO: 2.6.0\n"); list_for_each_entry_rcu(domain, &tomoyo_domain_list, list, srcu_read_lock_held(&tomoyo_ss)) { const u8 profile = domain->profile; struct tomoyo_policy_namespace *ns = domain->ns; if (ns->profile_version == 20110903) { pr_info_once("Converting profile version from %u to %u.\n", 20110903, 20150505); ns->profile_version = 20150505; } if (ns->profile_version != 20150505) pr_err("Profile version %u is not supported.\n", ns->profile_version); else if (!ns->profile_ptr[profile]) pr_err("Profile %u (used by '%s') is not defined.\n", profile, domain->domainname->name); else continue; pr_err("Userland tools for TOMOYO 2.6 must be installed and policy must be initialized.\n"); pr_err("Please see https://tomoyo.sourceforge.net/2.6/ for more information.\n"); panic("STOP!"); } tomoyo_read_unlock(idx); pr_info("Mandatory Access Control activated.\n"); } /** * tomoyo_load_builtin_policy - Load built-in policy. * * Returns nothing. */ void __init tomoyo_load_builtin_policy(void) { #ifdef CONFIG_SECURITY_TOMOYO_INSECURE_BUILTIN_SETTING static char tomoyo_builtin_profile[] __initdata = "PROFILE_VERSION=20150505\n" "0-CONFIG={ mode=learning grant_log=no reject_log=yes }\n"; static char tomoyo_builtin_exception_policy[] __initdata = "aggregator proc:/self/exe /proc/self/exe\n"; static char tomoyo_builtin_domain_policy[] __initdata = ""; static char tomoyo_builtin_manager[] __initdata = ""; static char tomoyo_builtin_stat[] __initdata = ""; #else /* * This include file is manually created and contains built-in policy * named "tomoyo_builtin_profile", "tomoyo_builtin_exception_policy", * "tomoyo_builtin_domain_policy", "tomoyo_builtin_manager", * "tomoyo_builtin_stat" in the form of "static char [] __initdata". */ #include "builtin-policy.h" #endif u8 i; const int idx = tomoyo_read_lock(); for (i = 0; i < 5; i++) { struct tomoyo_io_buffer head = { }; char *start = ""; switch (i) { case 0: start = tomoyo_builtin_profile; head.type = TOMOYO_PROFILE; head.write = tomoyo_write_profile; break; case 1: start = tomoyo_builtin_exception_policy; head.type = TOMOYO_EXCEPTIONPOLICY; head.write = tomoyo_write_exception; break; case 2: start = tomoyo_builtin_domain_policy; head.type = TOMOYO_DOMAINPOLICY; head.write = tomoyo_write_domain; break; case 3: start = tomoyo_builtin_manager; head.type = TOMOYO_MANAGER; head.write = tomoyo_write_manager; break; case 4: start = tomoyo_builtin_stat; head.type = TOMOYO_STAT; head.write = tomoyo_write_stat; break; } while (1) { char *end = strchr(start, '\n'); if (!end) break; *end = '\0'; tomoyo_normalize_line(start); head.write_buf = start; tomoyo_parse_policy(&head, start); start = end + 1; } } tomoyo_read_unlock(idx); #ifdef CONFIG_SECURITY_TOMOYO_OMIT_USERSPACE_LOADER tomoyo_check_profile(); #endif } |
15 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/lib/crc-ccitt.c */ #include <linux/types.h> #include <linux/module.h> #include <linux/crc-ccitt.h> /* * This mysterious table is just the CRC of each possible byte. It can be * computed using the standard bit-at-a-time methods. The polynomial can * be seen in entry 128, 0x8408. This corresponds to x^0 + x^5 + x^12. * Add the implicit x^16, and you have the standard CRC-CCITT. */ u16 const crc_ccitt_table[256] = { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 }; EXPORT_SYMBOL(crc_ccitt_table); /** * crc_ccitt - recompute the CRC (CRC-CCITT variant) for the data * buffer * @crc: previous CRC value * @buffer: data pointer * @len: number of bytes in the buffer */ u16 crc_ccitt(u16 crc, u8 const *buffer, size_t len) { while (len--) crc = crc_ccitt_byte(crc, *buffer++); return crc; } EXPORT_SYMBOL(crc_ccitt); MODULE_DESCRIPTION("CRC-CCITT calculations"); MODULE_LICENSE("GPL"); |
18 18 90 89 1 133 103 103 101 103 103 103 1 102 103 102 147 146 90 90 91 90 145 147 2 5 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 146 43 147 122 122 146 13 19 19 130 2 29 146 147 145 145 136 122 7 43 52 51 9 1 1 1 1 146 26 42 1 39 39 31 3 29 18 18 24 2 26 147 123 54 54 1 54 54 145 148 146 147 24 24 24 24 24 2 24 24 2 24 24 1 1 1 24 24 21 21 24 24 24 14 18 19 24 24 4 4 21 1 5 21 1 21 1 21 1 21 1 6 6 22 3 21 21 6 17 6 2 20 1 6 6 21 24 1 1 1 1 1 1 1 1 1 21 6 1 2 24 1 3 23 23 4 2 2 22 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 | // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 Intel Corp. * * This file is part of the SCTP kernel implementation * * These functions implement the sctp_outq class. The outqueue handles * bundling and queueing of outgoing SCTP chunks. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Perry Melange <pmelange@null.cc.uic.edu> * Xingang Guo <xingang.guo@intel.com> * Hui Huang <hui.huang@nokia.com> * Sridhar Samudrala <sri@us.ibm.com> * Jon Grimm <jgrimm@us.ibm.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/list.h> /* For struct list_head */ #include <linux/socket.h> #include <linux/ip.h> #include <linux/slab.h> #include <net/sock.h> /* For skb_set_owner_w */ #include <net/sctp/sctp.h> #include <net/sctp/sm.h> #include <net/sctp/stream_sched.h> #include <trace/events/sctp.h> /* Declare internal functions here. */ static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); static void sctp_check_transmitted(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, union sctp_addr *saddr, struct sctp_sackhdr *sack, __u32 *highest_new_tsn); static void sctp_mark_missing(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, __u32 highest_new_tsn, int count_of_newacks); static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp); /* Add data to the front of the queue. */ static inline void sctp_outq_head_data(struct sctp_outq *q, struct sctp_chunk *ch) { struct sctp_stream_out_ext *oute; __u16 stream; list_add(&ch->list, &q->out_chunk_list); q->out_qlen += ch->skb->len; stream = sctp_chunk_stream_no(ch); oute = SCTP_SO(&q->asoc->stream, stream)->ext; list_add(&ch->stream_list, &oute->outq); } /* Take data from the front of the queue. */ static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) { return q->sched->dequeue(q); } /* Add data chunk to the end of the queue. */ static inline void sctp_outq_tail_data(struct sctp_outq *q, struct sctp_chunk *ch) { struct sctp_stream_out_ext *oute; __u16 stream; list_add_tail(&ch->list, &q->out_chunk_list); q->out_qlen += ch->skb->len; stream = sctp_chunk_stream_no(ch); oute = SCTP_SO(&q->asoc->stream, stream)->ext; list_add_tail(&ch->stream_list, &oute->outq); } /* * SFR-CACC algorithm: * D) If count_of_newacks is greater than or equal to 2 * and t was not sent to the current primary then the * sender MUST NOT increment missing report count for t. */ static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, struct sctp_transport *transport, int count_of_newacks) { if (count_of_newacks >= 2 && transport != primary) return 1; return 0; } /* * SFR-CACC algorithm: * F) If count_of_newacks is less than 2, let d be the * destination to which t was sent. If cacc_saw_newack * is 0 for destination d, then the sender MUST NOT * increment missing report count for t. */ static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, int count_of_newacks) { if (count_of_newacks < 2 && (transport && !transport->cacc.cacc_saw_newack)) return 1; return 0; } /* * SFR-CACC algorithm: * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD * execute steps C, D, F. * * C has been implemented in sctp_outq_sack */ static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, struct sctp_transport *transport, int count_of_newacks) { if (!primary->cacc.cycling_changeover) { if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) return 1; if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) return 1; return 0; } return 0; } /* * SFR-CACC algorithm: * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less * than next_tsn_at_change of the current primary, then * the sender MUST NOT increment missing report count * for t. */ static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) { if (primary->cacc.cycling_changeover && TSN_lt(tsn, primary->cacc.next_tsn_at_change)) return 1; return 0; } /* * SFR-CACC algorithm: * 3) If the missing report count for TSN t is to be * incremented according to [RFC2960] and * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, * then the sender MUST further execute steps 3.1 and * 3.2 to determine if the missing report count for * TSN t SHOULD NOT be incremented. * * 3.3) If 3.1 and 3.2 do not dictate that the missing * report count for t should not be incremented, then * the sender SHOULD increment missing report count for * t (according to [RFC2960] and [SCTP_STEWART_2002]). */ static inline int sctp_cacc_skip(struct sctp_transport *primary, struct sctp_transport *transport, int count_of_newacks, __u32 tsn) { if (primary->cacc.changeover_active && (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) || sctp_cacc_skip_3_2(primary, tsn))) return 1; return 0; } /* Initialize an existing sctp_outq. This does the boring stuff. * You still need to define handlers if you really want to DO * something with this structure... */ void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) { memset(q, 0, sizeof(struct sctp_outq)); q->asoc = asoc; INIT_LIST_HEAD(&q->out_chunk_list); INIT_LIST_HEAD(&q->control_chunk_list); INIT_LIST_HEAD(&q->retransmit); INIT_LIST_HEAD(&q->sacked); INIT_LIST_HEAD(&q->abandoned); sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss); } /* Free the outqueue structure and any related pending chunks. */ static void __sctp_outq_teardown(struct sctp_outq *q) { struct sctp_transport *transport; struct list_head *lchunk, *temp; struct sctp_chunk *chunk, *tmp; /* Throw away unacknowledged chunks. */ list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, transports) { while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); /* Mark as part of a failed message. */ sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } } /* Throw away chunks that have been gap ACKed. */ list_for_each_safe(lchunk, temp, &q->sacked) { list_del_init(lchunk); chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any chunks in the retransmit queue. */ list_for_each_safe(lchunk, temp, &q->retransmit) { list_del_init(lchunk); chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any chunks that are in the abandoned queue. */ list_for_each_safe(lchunk, temp, &q->abandoned) { list_del_init(lchunk); chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any leftover data chunks. */ while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { sctp_sched_dequeue_done(q, chunk); /* Mark as send failure. */ sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any leftover control chunks. */ list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { list_del_init(&chunk->list); sctp_chunk_free(chunk); } } void sctp_outq_teardown(struct sctp_outq *q) { __sctp_outq_teardown(q); sctp_outq_init(q->asoc, q); } /* Free the outqueue structure and any related pending chunks. */ void sctp_outq_free(struct sctp_outq *q) { /* Throw away leftover chunks. */ __sctp_outq_teardown(q); } /* Put a new chunk in an sctp_outq. */ void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp) { struct net *net = q->asoc->base.net; pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk, chunk && chunk->chunk_hdr ? sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : "illegal chunk"); /* If it is data, queue it up, otherwise, send it * immediately. */ if (sctp_chunk_is_data(chunk)) { pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n", __func__, q, chunk, chunk && chunk->chunk_hdr ? sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : "illegal chunk"); sctp_outq_tail_data(q, chunk); if (chunk->asoc->peer.prsctp_capable && SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) chunk->asoc->sent_cnt_removable++; if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS); else SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS); } else { list_add_tail(&chunk->list, &q->control_chunk_list); SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS); } if (!q->cork) sctp_outq_flush(q, 0, gfp); } /* Insert a chunk into the sorted list based on the TSNs. The retransmit list * and the abandoned list are in ascending order. */ static void sctp_insert_list(struct list_head *head, struct list_head *new) { struct list_head *pos; struct sctp_chunk *nchunk, *lchunk; __u32 ntsn, ltsn; int done = 0; nchunk = list_entry(new, struct sctp_chunk, transmitted_list); ntsn = ntohl(nchunk->subh.data_hdr->tsn); list_for_each(pos, head) { lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); ltsn = ntohl(lchunk->subh.data_hdr->tsn); if (TSN_lt(ntsn, ltsn)) { list_add(new, pos->prev); done = 1; break; } } if (!done) list_add_tail(new, head); } static int sctp_prsctp_prune_sent(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, struct list_head *queue, int msg_len) { struct sctp_chunk *chk, *temp; list_for_each_entry_safe(chk, temp, queue, transmitted_list) { struct sctp_stream_out *streamout; if (!chk->msg->abandoned && (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) continue; chk->msg->abandoned = 1; list_del_init(&chk->transmitted_list); sctp_insert_list(&asoc->outqueue.abandoned, &chk->transmitted_list); streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); asoc->sent_cnt_removable--; asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; if (queue != &asoc->outqueue.retransmit && !chk->tsn_gap_acked) { if (chk->transport) chk->transport->flight_size -= sctp_data_size(chk); asoc->outqueue.outstanding_bytes -= sctp_data_size(chk); } msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk); if (msg_len <= 0) break; } return msg_len; } static int sctp_prsctp_prune_unsent(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, int msg_len) { struct sctp_outq *q = &asoc->outqueue; struct sctp_chunk *chk, *temp; struct sctp_stream_out *sout; q->sched->unsched_all(&asoc->stream); list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) { if (!chk->msg->abandoned && (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) || !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) continue; chk->msg->abandoned = 1; sctp_sched_dequeue_common(q, chk); asoc->sent_cnt_removable--; asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; sout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); sout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; /* clear out_curr if all frag chunks are pruned */ if (asoc->stream.out_curr == sout && list_is_last(&chk->frag_list, &chk->msg->chunks)) asoc->stream.out_curr = NULL; msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk); sctp_chunk_free(chk); if (msg_len <= 0) break; } q->sched->sched_all(&asoc->stream); return msg_len; } /* Abandon the chunks according their priorities */ void sctp_prsctp_prune(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, int msg_len) { struct sctp_transport *transport; if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable) return; msg_len = sctp_prsctp_prune_sent(asoc, sinfo, &asoc->outqueue.retransmit, msg_len); if (msg_len <= 0) return; list_for_each_entry(transport, &asoc->peer.transport_addr_list, transports) { msg_len = sctp_prsctp_prune_sent(asoc, sinfo, &transport->transmitted, msg_len); if (msg_len <= 0) return; } sctp_prsctp_prune_unsent(asoc, sinfo, msg_len); } /* Mark all the eligible packets on a transport for retransmission. */ void sctp_retransmit_mark(struct sctp_outq *q, struct sctp_transport *transport, __u8 reason) { struct list_head *lchunk, *ltemp; struct sctp_chunk *chunk; /* Walk through the specified transmitted queue. */ list_for_each_safe(lchunk, ltemp, &transport->transmitted) { chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); /* If the chunk is abandoned, move it to abandoned list. */ if (sctp_chunk_abandoned(chunk)) { list_del_init(lchunk); sctp_insert_list(&q->abandoned, lchunk); /* If this chunk has not been previousely acked, * stop considering it 'outstanding'. Our peer * will most likely never see it since it will * not be retransmitted */ if (!chunk->tsn_gap_acked) { if (chunk->transport) chunk->transport->flight_size -= sctp_data_size(chunk); q->outstanding_bytes -= sctp_data_size(chunk); q->asoc->peer.rwnd += sctp_data_size(chunk); } continue; } /* If we are doing retransmission due to a timeout or pmtu * discovery, only the chunks that are not yet acked should * be added to the retransmit queue. */ if ((reason == SCTP_RTXR_FAST_RTX && (chunk->fast_retransmit == SCTP_NEED_FRTX)) || (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { /* RFC 2960 6.2.1 Processing a Received SACK * * C) Any time a DATA chunk is marked for * retransmission (via either T3-rtx timer expiration * (Section 6.3.3) or via fast retransmit * (Section 7.2.4)), add the data size of those * chunks to the rwnd. */ q->asoc->peer.rwnd += sctp_data_size(chunk); q->outstanding_bytes -= sctp_data_size(chunk); if (chunk->transport) transport->flight_size -= sctp_data_size(chunk); /* sctpimpguide-05 Section 2.8.2 * M5) If a T3-rtx timer expires, the * 'TSN.Missing.Report' of all affected TSNs is set * to 0. */ chunk->tsn_missing_report = 0; /* If a chunk that is being used for RTT measurement * has to be retransmitted, we cannot use this chunk * anymore for RTT measurements. Reset rto_pending so * that a new RTT measurement is started when a new * data chunk is sent. */ if (chunk->rtt_in_progress) { chunk->rtt_in_progress = 0; transport->rto_pending = 0; } /* Move the chunk to the retransmit queue. The chunks * on the retransmit queue are always kept in order. */ list_del_init(lchunk); sctp_insert_list(&q->retransmit, lchunk); } } pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, " "flight_size:%d, pba:%d\n", __func__, transport, reason, transport->cwnd, transport->ssthresh, transport->flight_size, transport->partial_bytes_acked); } /* Mark all the eligible packets on a transport for retransmission and force * one packet out. */ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, enum sctp_retransmit_reason reason) { struct net *net = q->asoc->base.net; switch (reason) { case SCTP_RTXR_T3_RTX: SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS); sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); /* Update the retran path if the T3-rtx timer has expired for * the current retran path. */ if (transport == transport->asoc->peer.retran_path) sctp_assoc_update_retran_path(transport->asoc); transport->asoc->rtx_data_chunks += transport->asoc->unack_data; if (transport->pl.state == SCTP_PL_COMPLETE && transport->asoc->unack_data) sctp_transport_reset_probe_timer(transport); break; case SCTP_RTXR_FAST_RTX: SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS); sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); q->fast_rtx = 1; break; case SCTP_RTXR_PMTUD: SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS); break; case SCTP_RTXR_T1_RTX: SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS); transport->asoc->init_retries++; break; default: BUG(); } sctp_retransmit_mark(q, transport, reason); /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by * following the procedures outlined in C1 - C5. */ if (reason == SCTP_RTXR_T3_RTX) q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point); /* Flush the queues only on timeout, since fast_rtx is only * triggered during sack processing and the queue * will be flushed at the end. */ if (reason != SCTP_RTXR_FAST_RTX) sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC); } /* * Transmit DATA chunks on the retransmit queue. Upon return from * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which * need to be transmitted by the caller. * We assume that pkt->transport has already been set. * * The return value is a normal kernel error return value. */ static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, int rtx_timeout, int *start_timer, gfp_t gfp) { struct sctp_transport *transport = pkt->transport; struct sctp_chunk *chunk, *chunk1; struct list_head *lqueue; enum sctp_xmit status; int error = 0; int timer = 0; int done = 0; int fast_rtx; lqueue = &q->retransmit; fast_rtx = q->fast_rtx; /* This loop handles time-out retransmissions, fast retransmissions, * and retransmissions due to opening of whindow. * * RFC 2960 6.3.3 Handle T3-rtx Expiration * * E3) Determine how many of the earliest (i.e., lowest TSN) * outstanding DATA chunks for the address for which the * T3-rtx has expired will fit into a single packet, subject * to the MTU constraint for the path corresponding to the * destination transport address to which the retransmission * is being sent (this may be different from the address for * which the timer expires [see Section 6.4]). Call this value * K. Bundle and retransmit those K DATA chunks in a single * packet to the destination endpoint. * * [Just to be painfully clear, if we are retransmitting * because a timeout just happened, we should send only ONE * packet of retransmitted data.] * * For fast retransmissions we also send only ONE packet. However, * if we are just flushing the queue due to open window, we'll * try to send as much as possible. */ list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) { /* If the chunk is abandoned, move it to abandoned list. */ if (sctp_chunk_abandoned(chunk)) { list_del_init(&chunk->transmitted_list); sctp_insert_list(&q->abandoned, &chunk->transmitted_list); continue; } /* Make sure that Gap Acked TSNs are not retransmitted. A * simple approach is just to move such TSNs out of the * way and into a 'transmitted' queue and skip to the * next chunk. */ if (chunk->tsn_gap_acked) { list_move_tail(&chunk->transmitted_list, &transport->transmitted); continue; } /* If we are doing fast retransmit, ignore non-fast_rtransmit * chunks */ if (fast_rtx && !chunk->fast_retransmit) continue; redo: /* Attempt to append this chunk to the packet. */ status = sctp_packet_append_chunk(pkt, chunk); switch (status) { case SCTP_XMIT_PMTU_FULL: if (!pkt->has_data && !pkt->has_cookie_echo) { /* If this packet did not contain DATA then * retransmission did not happen, so do it * again. We'll ignore the error here since * control chunks are already freed so there * is nothing we can do. */ sctp_packet_transmit(pkt, gfp); goto redo; } /* Send this packet. */ error = sctp_packet_transmit(pkt, gfp); /* If we are retransmitting, we should only * send a single packet. * Otherwise, try appending this chunk again. */ if (rtx_timeout || fast_rtx) done = 1; else goto redo; /* Bundle next chunk in the next round. */ break; case SCTP_XMIT_RWND_FULL: /* Send this packet. */ error = sctp_packet_transmit(pkt, gfp); /* Stop sending DATA as there is no more room * at the receiver. */ done = 1; break; case SCTP_XMIT_DELAY: /* Send this packet. */ error = sctp_packet_transmit(pkt, gfp); /* Stop sending DATA because of nagle delay. */ done = 1; break; default: /* The append was successful, so add this chunk to * the transmitted list. */ list_move_tail(&chunk->transmitted_list, &transport->transmitted); /* Mark the chunk as ineligible for fast retransmit * after it is retransmitted. */ if (chunk->fast_retransmit == SCTP_NEED_FRTX) chunk->fast_retransmit = SCTP_DONT_FRTX; q->asoc->stats.rtxchunks++; break; } /* Set the timer if there were no errors */ if (!error && !timer) timer = 1; if (done) break; } /* If we are here due to a retransmit timeout or a fast * retransmit and if there are any chunks left in the retransmit * queue that could not fit in the PMTU sized packet, they need * to be marked as ineligible for a subsequent fast retransmit. */ if (rtx_timeout || fast_rtx) { list_for_each_entry(chunk1, lqueue, transmitted_list) { if (chunk1->fast_retransmit == SCTP_NEED_FRTX) chunk1->fast_retransmit = SCTP_DONT_FRTX; } } *start_timer = timer; /* Clear fast retransmit hint */ if (fast_rtx) q->fast_rtx = 0; return error; } /* Cork the outqueue so queued chunks are really queued. */ void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp) { if (q->cork) q->cork = 0; sctp_outq_flush(q, 0, gfp); } static int sctp_packet_singleton(struct sctp_transport *transport, struct sctp_chunk *chunk, gfp_t gfp) { const struct sctp_association *asoc = transport->asoc; const __u16 sport = asoc->base.bind_addr.port; const __u16 dport = asoc->peer.port; const __u32 vtag = asoc->peer.i.init_tag; struct sctp_packet singleton; sctp_packet_init(&singleton, transport, sport, dport); sctp_packet_config(&singleton, vtag, 0); if (sctp_packet_append_chunk(&singleton, chunk) != SCTP_XMIT_OK) { list_del_init(&chunk->list); sctp_chunk_free(chunk); return -ENOMEM; } return sctp_packet_transmit(&singleton, gfp); } /* Struct to hold the context during sctp outq flush */ struct sctp_flush_ctx { struct sctp_outq *q; /* Current transport being used. It's NOT the same as curr active one */ struct sctp_transport *transport; /* These transports have chunks to send. */ struct list_head transport_list; struct sctp_association *asoc; /* Packet on the current transport above */ struct sctp_packet *packet; gfp_t gfp; }; /* transport: current transport */ static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx, struct sctp_chunk *chunk) { struct sctp_transport *new_transport = chunk->transport; if (!new_transport) { if (!sctp_chunk_is_data(chunk)) { /* If we have a prior transport pointer, see if * the destination address of the chunk * matches the destination address of the * current transport. If not a match, then * try to look up the transport with a given * destination address. We do this because * after processing ASCONFs, we may have new * transports created. */ if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest, &ctx->transport->ipaddr)) new_transport = ctx->transport; else new_transport = sctp_assoc_lookup_paddr(ctx->asoc, &chunk->dest); } /* if we still don't have a new transport, then * use the current active path. */ if (!new_transport) new_transport = ctx->asoc->peer.active_path; } else { __u8 type; switch (new_transport->state) { case SCTP_INACTIVE: case SCTP_UNCONFIRMED: case SCTP_PF: /* If the chunk is Heartbeat or Heartbeat Ack, * send it to chunk->transport, even if it's * inactive. * * 3.3.6 Heartbeat Acknowledgement: * ... * A HEARTBEAT ACK is always sent to the source IP * address of the IP datagram containing the * HEARTBEAT chunk to which this ack is responding. * ... * * ASCONF_ACKs also must be sent to the source. */ type = chunk->chunk_hdr->type; if (type != SCTP_CID_HEARTBEAT && type != SCTP_CID_HEARTBEAT_ACK && type != SCTP_CID_ASCONF_ACK) new_transport = ctx->asoc->peer.active_path; break; default: break; } } /* Are we switching transports? Take care of transport locks. */ if (new_transport != ctx->transport) { ctx->transport = new_transport; ctx->packet = &ctx->transport->packet; if (list_empty(&ctx->transport->send_ready)) list_add_tail(&ctx->transport->send_ready, &ctx->transport_list); sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, ctx->asoc->peer.ecn_capable); /* We've switched transports, so apply the * Burst limit to the new transport. */ sctp_transport_burst_limited(ctx->transport); } } static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx) { struct sctp_chunk *chunk, *tmp; enum sctp_xmit status; int one_packet, error; list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) { one_packet = 0; /* RFC 5061, 5.3 * F1) This means that until such time as the ASCONF * containing the add is acknowledged, the sender MUST * NOT use the new IP address as a source for ANY SCTP * packet except on carrying an ASCONF Chunk. */ if (ctx->asoc->src_out_of_asoc_ok && chunk->chunk_hdr->type != SCTP_CID_ASCONF) continue; list_del_init(&chunk->list); /* Pick the right transport to use. Should always be true for * the first chunk as we don't have a transport by then. */ sctp_outq_select_transport(ctx, chunk); switch (chunk->chunk_hdr->type) { /* 6.10 Bundling * ... * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN * COMPLETE with any other chunks. [Send them immediately.] */ case SCTP_CID_INIT: case SCTP_CID_INIT_ACK: case SCTP_CID_SHUTDOWN_COMPLETE: error = sctp_packet_singleton(ctx->transport, chunk, ctx->gfp); if (error < 0) { ctx->asoc->base.sk->sk_err = -error; return; } ctx->asoc->stats.octrlchunks++; break; case SCTP_CID_ABORT: if (sctp_test_T_bit(chunk)) ctx->packet->vtag = ctx->asoc->c.my_vtag; fallthrough; /* The following chunks are "response" chunks, i.e. * they are generated in response to something we * received. If we are sending these, then we can * send only 1 packet containing these chunks. */ case SCTP_CID_HEARTBEAT_ACK: case SCTP_CID_SHUTDOWN_ACK: case SCTP_CID_COOKIE_ACK: case SCTP_CID_COOKIE_ECHO: case SCTP_CID_ERROR: case SCTP_CID_ECN_CWR: case SCTP_CID_ASCONF_ACK: one_packet = 1; fallthrough; case SCTP_CID_HEARTBEAT: if (chunk->pmtu_probe) { error = sctp_packet_singleton(ctx->transport, chunk, ctx->gfp); if (!error) ctx->asoc->stats.octrlchunks++; break; } fallthrough; case SCTP_CID_SACK: case SCTP_CID_SHUTDOWN: case SCTP_CID_ECN_ECNE: case SCTP_CID_ASCONF: case SCTP_CID_FWD_TSN: case SCTP_CID_I_FWD_TSN: case SCTP_CID_RECONF: status = sctp_packet_transmit_chunk(ctx->packet, chunk, one_packet, ctx->gfp); if (status != SCTP_XMIT_OK) { /* put the chunk back */ list_add(&chunk->list, &ctx->q->control_chunk_list); break; } ctx->asoc->stats.octrlchunks++; /* PR-SCTP C5) If a FORWARD TSN is sent, the * sender MUST assure that at least one T3-rtx * timer is running. */ if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN || chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) { sctp_transport_reset_t3_rtx(ctx->transport); ctx->transport->last_time_sent = jiffies; } if (chunk == ctx->asoc->strreset_chunk) sctp_transport_reset_reconf_timer(ctx->transport); break; default: /* We built a chunk with an illegal type! */ BUG(); } } } /* Returns false if new data shouldn't be sent */ static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx, int rtx_timeout) { int error, start_timer = 0; if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED) return false; if (ctx->transport != ctx->asoc->peer.retran_path) { /* Switch transports & prepare the packet. */ ctx->transport = ctx->asoc->peer.retran_path; ctx->packet = &ctx->transport->packet; if (list_empty(&ctx->transport->send_ready)) list_add_tail(&ctx->transport->send_ready, &ctx->transport_list); sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, ctx->asoc->peer.ecn_capable); } error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout, &start_timer, ctx->gfp); if (error < 0) ctx->asoc->base.sk->sk_err = -error; if (start_timer) { sctp_transport_reset_t3_rtx(ctx->transport); ctx->transport->last_time_sent = jiffies; } /* This can happen on COOKIE-ECHO resend. Only * one chunk can get bundled with a COOKIE-ECHO. */ if (ctx->packet->has_cookie_echo) return false; /* Don't send new data if there is still data * waiting to retransmit. */ if (!list_empty(&ctx->q->retransmit)) return false; return true; } static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx, int rtx_timeout) { struct sctp_chunk *chunk; enum sctp_xmit status; /* Is it OK to send data chunks? */ switch (ctx->asoc->state) { case SCTP_STATE_COOKIE_ECHOED: /* Only allow bundling when this packet has a COOKIE-ECHO * chunk. */ if (!ctx->packet || !ctx->packet->has_cookie_echo) return; fallthrough; case SCTP_STATE_ESTABLISHED: case SCTP_STATE_SHUTDOWN_PENDING: case SCTP_STATE_SHUTDOWN_RECEIVED: break; default: /* Do nothing. */ return; } /* RFC 2960 6.1 Transmission of DATA Chunks * * C) When the time comes for the sender to transmit, * before sending new DATA chunks, the sender MUST * first transmit any outstanding DATA chunks which * are marked for retransmission (limited by the * current cwnd). */ if (!list_empty(&ctx->q->retransmit) && !sctp_outq_flush_rtx(ctx, rtx_timeout)) return; /* Apply Max.Burst limitation to the current transport in * case it will be used for new data. We are going to * rest it before we return, but we want to apply the limit * to the currently queued data. */ if (ctx->transport) sctp_transport_burst_limited(ctx->transport); /* Finally, transmit new packets. */ while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) { __u32 sid = ntohs(chunk->subh.data_hdr->stream); __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state; /* Has this chunk expired? */ if (sctp_chunk_abandoned(chunk)) { sctp_sched_dequeue_done(ctx->q, chunk); sctp_chunk_fail(chunk, 0); sctp_chunk_free(chunk); continue; } if (stream_state == SCTP_STREAM_CLOSED) { sctp_outq_head_data(ctx->q, chunk); break; } sctp_outq_select_transport(ctx, chunk); pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n", __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ? sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : "illegal chunk", ntohl(chunk->subh.data_hdr->tsn), chunk->skb ? chunk->skb->head : NULL, chunk->skb ? refcount_read(&chunk->skb->users) : -1); /* Add the chunk to the packet. */ status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0, ctx->gfp); if (status != SCTP_XMIT_OK) { /* We could not append this chunk, so put * the chunk back on the output queue. */ pr_debug("%s: could not transmit tsn:0x%x, status:%d\n", __func__, ntohl(chunk->subh.data_hdr->tsn), status); sctp_outq_head_data(ctx->q, chunk); break; } /* The sender is in the SHUTDOWN-PENDING state, * The sender MAY set the I-bit in the DATA * chunk header. */ if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING) chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM; if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) ctx->asoc->stats.ouodchunks++; else ctx->asoc->stats.oodchunks++; /* Only now it's safe to consider this * chunk as sent, sched-wise. */ sctp_sched_dequeue_done(ctx->q, chunk); list_add_tail(&chunk->transmitted_list, &ctx->transport->transmitted); sctp_transport_reset_t3_rtx(ctx->transport); ctx->transport->last_time_sent = jiffies; /* Only let one DATA chunk get bundled with a * COOKIE-ECHO chunk. */ if (ctx->packet->has_cookie_echo) break; } } static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx) { struct sock *sk = ctx->asoc->base.sk; struct list_head *ltransport; struct sctp_packet *packet; struct sctp_transport *t; int error = 0; while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) { t = list_entry(ltransport, struct sctp_transport, send_ready); packet = &t->packet; if (!sctp_packet_empty(packet)) { rcu_read_lock(); if (t->dst && __sk_dst_get(sk) != t->dst) { dst_hold(t->dst); sk_setup_caps(sk, t->dst); } rcu_read_unlock(); error = sctp_packet_transmit(packet, ctx->gfp); if (error < 0) ctx->q->asoc->base.sk->sk_err = -error; } /* Clear the burst limited state, if any */ sctp_transport_burst_reset(t); } } /* Try to flush an outqueue. * * Description: Send everything in q which we legally can, subject to * congestion limitations. * * Note: This function can be called from multiple contexts so appropriate * locking concerns must be made. Today we use the sock lock to protect * this function. */ static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp) { struct sctp_flush_ctx ctx = { .q = q, .transport = NULL, .transport_list = LIST_HEAD_INIT(ctx.transport_list), .asoc = q->asoc, .packet = NULL, .gfp = gfp, }; /* 6.10 Bundling * ... * When bundling control chunks with DATA chunks, an * endpoint MUST place control chunks first in the outbound * SCTP packet. The transmitter MUST transmit DATA chunks * within a SCTP packet in increasing order of TSN. * ... */ sctp_outq_flush_ctrl(&ctx); if (q->asoc->src_out_of_asoc_ok) goto sctp_flush_out; sctp_outq_flush_data(&ctx, rtx_timeout); sctp_flush_out: sctp_outq_flush_transports(&ctx); } /* Update unack_data based on the incoming SACK chunk */ static void sctp_sack_update_unack_data(struct sctp_association *assoc, struct sctp_sackhdr *sack) { union sctp_sack_variable *frags; __u16 unack_data; int i; unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; frags = (union sctp_sack_variable *)(sack + 1); for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { unack_data -= ((ntohs(frags[i].gab.end) - ntohs(frags[i].gab.start) + 1)); } assoc->unack_data = unack_data; } /* This is where we REALLY process a SACK. * * Process the SACK against the outqueue. Mostly, this just frees * things off the transmitted queue. */ int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk) { struct sctp_association *asoc = q->asoc; struct sctp_sackhdr *sack = chunk->subh.sack_hdr; struct sctp_transport *transport; struct sctp_chunk *tchunk = NULL; struct list_head *lchunk, *transport_list, *temp; __u32 sack_ctsn, ctsn, tsn; __u32 highest_tsn, highest_new_tsn; __u32 sack_a_rwnd; unsigned int outstanding; struct sctp_transport *primary = asoc->peer.primary_path; int count_of_newacks = 0; int gap_ack_blocks; u8 accum_moved = 0; /* Grab the association's destination address list. */ transport_list = &asoc->peer.transport_addr_list; /* SCTP path tracepoint for congestion control debugging. */ if (trace_sctp_probe_path_enabled()) { list_for_each_entry(transport, transport_list, transports) trace_sctp_probe_path(transport, asoc); } sack_ctsn = ntohl(sack->cum_tsn_ack); gap_ack_blocks = ntohs(sack->num_gap_ack_blocks); asoc->stats.gapcnt += gap_ack_blocks; /* * SFR-CACC algorithm: * On receipt of a SACK the sender SHOULD execute the * following statements. * * 1) If the cumulative ack in the SACK passes next tsn_at_change * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for * all destinations. * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE * is set the receiver of the SACK MUST take the following actions: * * A) Initialize the cacc_saw_newack to 0 for all destination * addresses. * * Only bother if changeover_active is set. Otherwise, this is * totally suboptimal to do on every SACK. */ if (primary->cacc.changeover_active) { u8 clear_cycling = 0; if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { primary->cacc.changeover_active = 0; clear_cycling = 1; } if (clear_cycling || gap_ack_blocks) { list_for_each_entry(transport, transport_list, transports) { if (clear_cycling) transport->cacc.cycling_changeover = 0; if (gap_ack_blocks) transport->cacc.cacc_saw_newack = 0; } } } /* Get the highest TSN in the sack. */ highest_tsn = sack_ctsn; if (gap_ack_blocks) { union sctp_sack_variable *frags = (union sctp_sack_variable *)(sack + 1); highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end); } if (TSN_lt(asoc->highest_sacked, highest_tsn)) asoc->highest_sacked = highest_tsn; highest_new_tsn = sack_ctsn; /* Run through the retransmit queue. Credit bytes received * and free those chunks that we can. */ sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn); /* Run through the transmitted queue. * Credit bytes received and free those chunks which we can. * * This is a MASSIVE candidate for optimization. */ list_for_each_entry(transport, transport_list, transports) { sctp_check_transmitted(q, &transport->transmitted, transport, &chunk->source, sack, &highest_new_tsn); /* * SFR-CACC algorithm: * C) Let count_of_newacks be the number of * destinations for which cacc_saw_newack is set. */ if (transport->cacc.cacc_saw_newack) count_of_newacks++; } /* Move the Cumulative TSN Ack Point if appropriate. */ if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) { asoc->ctsn_ack_point = sack_ctsn; accum_moved = 1; } if (gap_ack_blocks) { if (asoc->fast_recovery && accum_moved) highest_new_tsn = highest_tsn; list_for_each_entry(transport, transport_list, transports) sctp_mark_missing(q, &transport->transmitted, transport, highest_new_tsn, count_of_newacks); } /* Update unack_data field in the assoc. */ sctp_sack_update_unack_data(asoc, sack); ctsn = asoc->ctsn_ack_point; /* Throw away stuff rotting on the sack queue. */ list_for_each_safe(lchunk, temp, &q->sacked) { tchunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); tsn = ntohl(tchunk->subh.data_hdr->tsn); if (TSN_lte(tsn, ctsn)) { list_del_init(&tchunk->transmitted_list); if (asoc->peer.prsctp_capable && SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) asoc->sent_cnt_removable--; sctp_chunk_free(tchunk); } } /* ii) Set rwnd equal to the newly received a_rwnd minus the * number of bytes still outstanding after processing the * Cumulative TSN Ack and the Gap Ack Blocks. */ sack_a_rwnd = ntohl(sack->a_rwnd); asoc->peer.zero_window_announced = !sack_a_rwnd; outstanding = q->outstanding_bytes; if (outstanding < sack_a_rwnd) sack_a_rwnd -= outstanding; else sack_a_rwnd = 0; asoc->peer.rwnd = sack_a_rwnd; asoc->stream.si->generate_ftsn(q, sack_ctsn); pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn); pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, " "advertised peer ack point:0x%x\n", __func__, asoc, ctsn, asoc->adv_peer_ack_point); return sctp_outq_is_empty(q); } /* Is the outqueue empty? * The queue is empty when we have not pending data, no in-flight data * and nothing pending retransmissions. */ int sctp_outq_is_empty(const struct sctp_outq *q) { return q->out_qlen == 0 && q->outstanding_bytes == 0 && list_empty(&q->retransmit); } /******************************************************************** * 2nd Level Abstractions ********************************************************************/ /* Go through a transport's transmitted list or the association's retransmit * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. * The retransmit list will not have an associated transport. * * I added coherent debug information output. --xguo * * Instead of printing 'sacked' or 'kept' for each TSN on the * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. * KEPT TSN6-TSN7, etc. */ static void sctp_check_transmitted(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, union sctp_addr *saddr, struct sctp_sackhdr *sack, __u32 *highest_new_tsn_in_sack) { struct list_head *lchunk; struct sctp_chunk *tchunk; struct list_head tlist; __u32 tsn; __u32 sack_ctsn; __u32 rtt; __u8 restart_timer = 0; int bytes_acked = 0; int migrate_bytes = 0; bool forward_progress = false; sack_ctsn = ntohl(sack->cum_tsn_ack); INIT_LIST_HEAD(&tlist); /* The while loop will skip empty transmitted queues. */ while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { tchunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); if (sctp_chunk_abandoned(tchunk)) { /* Move the chunk to abandoned list. */ sctp_insert_list(&q->abandoned, lchunk); /* If this chunk has not been acked, stop * considering it as 'outstanding'. */ if (transmitted_queue != &q->retransmit && !tchunk->tsn_gap_acked) { if (tchunk->transport) tchunk->transport->flight_size -= sctp_data_size(tchunk); q->outstanding_bytes -= sctp_data_size(tchunk); } continue; } tsn = ntohl(tchunk->subh.data_hdr->tsn); if (sctp_acked(sack, tsn)) { /* If this queue is the retransmit queue, the * retransmit timer has already reclaimed * the outstanding bytes for this chunk, so only * count bytes associated with a transport. */ if (transport && !tchunk->tsn_gap_acked) { /* If this chunk is being used for RTT * measurement, calculate the RTT and update * the RTO using this value. * * 6.3.1 C5) Karn's algorithm: RTT measurements * MUST NOT be made using packets that were * retransmitted (and thus for which it is * ambiguous whether the reply was for the * first instance of the packet or a later * instance). */ if (!sctp_chunk_retransmitted(tchunk) && tchunk->rtt_in_progress) { tchunk->rtt_in_progress = 0; rtt = jiffies - tchunk->sent_at; sctp_transport_update_rto(transport, rtt); } if (TSN_lte(tsn, sack_ctsn)) { /* * SFR-CACC algorithm: * 2) If the SACK contains gap acks * and the flag CHANGEOVER_ACTIVE is * set the receiver of the SACK MUST * take the following action: * * B) For each TSN t being acked that * has not been acked in any SACK so * far, set cacc_saw_newack to 1 for * the destination that the TSN was * sent to. */ if (sack->num_gap_ack_blocks && q->asoc->peer.primary_path->cacc. changeover_active) transport->cacc.cacc_saw_newack = 1; } } /* If the chunk hasn't been marked as ACKED, * mark it and account bytes_acked if the * chunk had a valid transport (it will not * have a transport if ASCONF had deleted it * while DATA was outstanding). */ if (!tchunk->tsn_gap_acked) { tchunk->tsn_gap_acked = 1; if (TSN_lt(*highest_new_tsn_in_sack, tsn)) *highest_new_tsn_in_sack = tsn; bytes_acked += sctp_data_size(tchunk); if (!tchunk->transport) migrate_bytes += sctp_data_size(tchunk); forward_progress = true; } if (TSN_lte(tsn, sack_ctsn)) { /* RFC 2960 6.3.2 Retransmission Timer Rules * * R3) Whenever a SACK is received * that acknowledges the DATA chunk * with the earliest outstanding TSN * for that address, restart T3-rtx * timer for that address with its * current RTO. */ restart_timer = 1; forward_progress = true; list_add_tail(&tchunk->transmitted_list, &q->sacked); } else { /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 * M2) Each time a SACK arrives reporting * 'Stray DATA chunk(s)' record the highest TSN * reported as newly acknowledged, call this * value 'HighestTSNinSack'. A newly * acknowledged DATA chunk is one not * previously acknowledged in a SACK. * * When the SCTP sender of data receives a SACK * chunk that acknowledges, for the first time, * the receipt of a DATA chunk, all the still * unacknowledged DATA chunks whose TSN is * older than that newly acknowledged DATA * chunk, are qualified as 'Stray DATA chunks'. */ list_add_tail(lchunk, &tlist); } } else { if (tchunk->tsn_gap_acked) { pr_debug("%s: receiver reneged on data TSN:0x%x\n", __func__, tsn); tchunk->tsn_gap_acked = 0; if (tchunk->transport) bytes_acked -= sctp_data_size(tchunk); /* RFC 2960 6.3.2 Retransmission Timer Rules * * R4) Whenever a SACK is received missing a * TSN that was previously acknowledged via a * Gap Ack Block, start T3-rtx for the * destination address to which the DATA * chunk was originally * transmitted if it is not already running. */ restart_timer = 1; } list_add_tail(lchunk, &tlist); } } if (transport) { if (bytes_acked) { struct sctp_association *asoc = transport->asoc; /* We may have counted DATA that was migrated * to this transport due to DEL-IP operation. * Subtract those bytes, since the were never * send on this transport and shouldn't be * credited to this transport. */ bytes_acked -= migrate_bytes; /* 8.2. When an outstanding TSN is acknowledged, * the endpoint shall clear the error counter of * the destination transport address to which the * DATA chunk was last sent. * The association's overall error counter is * also cleared. */ transport->error_count = 0; transport->asoc->overall_error_count = 0; forward_progress = true; /* * While in SHUTDOWN PENDING, we may have started * the T5 shutdown guard timer after reaching the * retransmission limit. Stop that timer as soon * as the receiver acknowledged any data. */ if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING && del_timer(&asoc->timers [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD])) sctp_association_put(asoc); /* Mark the destination transport address as * active if it is not so marked. */ if ((transport->state == SCTP_INACTIVE || transport->state == SCTP_UNCONFIRMED) && sctp_cmp_addr_exact(&transport->ipaddr, saddr)) { sctp_assoc_control_transport( transport->asoc, transport, SCTP_TRANSPORT_UP, SCTP_RECEIVED_SACK); } sctp_transport_raise_cwnd(transport, sack_ctsn, bytes_acked); transport->flight_size -= bytes_acked; if (transport->flight_size == 0) transport->partial_bytes_acked = 0; q->outstanding_bytes -= bytes_acked + migrate_bytes; } else { /* RFC 2960 6.1, sctpimpguide-06 2.15.2 * When a sender is doing zero window probing, it * should not timeout the association if it continues * to receive new packets from the receiver. The * reason is that the receiver MAY keep its window * closed for an indefinite time. * A sender is doing zero window probing when the * receiver's advertised window is zero, and there is * only one data chunk in flight to the receiver. * * Allow the association to timeout while in SHUTDOWN * PENDING or SHUTDOWN RECEIVED in case the receiver * stays in zero window mode forever. */ if (!q->asoc->peer.rwnd && !list_empty(&tlist) && (sack_ctsn+2 == q->asoc->next_tsn) && q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) { pr_debug("%s: sack received for zero window " "probe:%u\n", __func__, sack_ctsn); q->asoc->overall_error_count = 0; transport->error_count = 0; } } /* RFC 2960 6.3.2 Retransmission Timer Rules * * R2) Whenever all outstanding data sent to an address have * been acknowledged, turn off the T3-rtx timer of that * address. */ if (!transport->flight_size) { if (del_timer(&transport->T3_rtx_timer)) sctp_transport_put(transport); } else if (restart_timer) { if (!mod_timer(&transport->T3_rtx_timer, jiffies + transport->rto)) sctp_transport_hold(transport); } if (forward_progress) { if (transport->dst) sctp_transport_dst_confirm(transport); } } list_splice(&tlist, transmitted_queue); } /* Mark chunks as missing and consequently may get retransmitted. */ static void sctp_mark_missing(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, __u32 highest_new_tsn_in_sack, int count_of_newacks) { struct sctp_chunk *chunk; __u32 tsn; char do_fast_retransmit = 0; struct sctp_association *asoc = q->asoc; struct sctp_transport *primary = asoc->peer.primary_path; list_for_each_entry(chunk, transmitted_queue, transmitted_list) { tsn = ntohl(chunk->subh.data_hdr->tsn); /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all * 'Unacknowledged TSN's', if the TSN number of an * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' * value, increment the 'TSN.Missing.Report' count on that * chunk if it has NOT been fast retransmitted or marked for * fast retransmit already. */ if (chunk->fast_retransmit == SCTP_CAN_FRTX && !chunk->tsn_gap_acked && TSN_lt(tsn, highest_new_tsn_in_sack)) { /* SFR-CACC may require us to skip marking * this chunk as missing. */ if (!transport || !sctp_cacc_skip(primary, chunk->transport, count_of_newacks, tsn)) { chunk->tsn_missing_report++; pr_debug("%s: tsn:0x%x missing counter:%d\n", __func__, tsn, chunk->tsn_missing_report); } } /* * M4) If any DATA chunk is found to have a * 'TSN.Missing.Report' * value larger than or equal to 3, mark that chunk for * retransmission and start the fast retransmit procedure. */ if (chunk->tsn_missing_report >= 3) { chunk->fast_retransmit = SCTP_NEED_FRTX; do_fast_retransmit = 1; } } if (transport) { if (do_fast_retransmit) sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, " "flight_size:%d, pba:%d\n", __func__, transport, transport->cwnd, transport->ssthresh, transport->flight_size, transport->partial_bytes_acked); } } /* Is the given TSN acked by this packet? */ static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) { __u32 ctsn = ntohl(sack->cum_tsn_ack); union sctp_sack_variable *frags; __u16 tsn_offset, blocks; int i; if (TSN_lte(tsn, ctsn)) goto pass; /* 3.3.4 Selective Acknowledgment (SACK) (3): * * Gap Ack Blocks: * These fields contain the Gap Ack Blocks. They are repeated * for each Gap Ack Block up to the number of Gap Ack Blocks * defined in the Number of Gap Ack Blocks field. All DATA * chunks with TSNs greater than or equal to (Cumulative TSN * Ack + Gap Ack Block Start) and less than or equal to * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack * Block are assumed to have been received correctly. */ frags = (union sctp_sack_variable *)(sack + 1); blocks = ntohs(sack->num_gap_ack_blocks); tsn_offset = tsn - ctsn; for (i = 0; i < blocks; ++i) { if (tsn_offset >= ntohs(frags[i].gab.start) && tsn_offset <= ntohs(frags[i].gab.end)) goto pass; } return 0; pass: return 1; } static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, int nskips, __be16 stream) { int i; for (i = 0; i < nskips; i++) { if (skiplist[i].stream == stream) return i; } return i; } /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) { struct sctp_association *asoc = q->asoc; struct sctp_chunk *ftsn_chunk = NULL; struct sctp_fwdtsn_skip ftsn_skip_arr[10]; int nskips = 0; int skip_pos = 0; __u32 tsn; struct sctp_chunk *chunk; struct list_head *lchunk, *temp; if (!asoc->peer.prsctp_capable) return; /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the * received SACK. * * If (Advanced.Peer.Ack.Point < SackCumAck), then update * Advanced.Peer.Ack.Point to be equal to SackCumAck. */ if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) asoc->adv_peer_ack_point = ctsn; /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as * the chunk next in the out-queue space is marked as "abandoned" as * shown in the following example: * * Assuming that a SACK arrived with the Cumulative TSN ACK 102 * and the Advanced.Peer.Ack.Point is updated to this value: * * out-queue at the end of ==> out-queue after Adv.Ack.Point * normal SACK processing local advancement * ... ... * Adv.Ack.Pt-> 102 acked 102 acked * 103 abandoned 103 abandoned * 104 abandoned Adv.Ack.P-> 104 abandoned * 105 105 * 106 acked 106 acked * ... ... * * In this example, the data sender successfully advanced the * "Advanced.Peer.Ack.Point" from 102 to 104 locally. */ list_for_each_safe(lchunk, temp, &q->abandoned) { chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); tsn = ntohl(chunk->subh.data_hdr->tsn); /* Remove any chunks in the abandoned queue that are acked by * the ctsn. */ if (TSN_lte(tsn, ctsn)) { list_del_init(lchunk); sctp_chunk_free(chunk); } else { if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { asoc->adv_peer_ack_point = tsn; if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) continue; skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], nskips, chunk->subh.data_hdr->stream); ftsn_skip_arr[skip_pos].stream = chunk->subh.data_hdr->stream; ftsn_skip_arr[skip_pos].ssn = chunk->subh.data_hdr->ssn; if (skip_pos == nskips) nskips++; if (nskips == 10) break; } else break; } } /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" * is greater than the Cumulative TSN ACK carried in the received * SACK, the data sender MUST send the data receiver a FORWARD TSN * chunk containing the latest value of the * "Advanced.Peer.Ack.Point". * * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD * list each stream and sequence number in the forwarded TSN. This * information will enable the receiver to easily find any * stranded TSN's waiting on stream reorder queues. Each stream * SHOULD only be reported once; this means that if multiple * abandoned messages occur in the same stream then only the * highest abandoned stream sequence number is reported. If the * total size of the FORWARD TSN does NOT fit in a single MTU then * the sender of the FORWARD TSN SHOULD lower the * Advanced.Peer.Ack.Point to the last TSN that will fit in a * single MTU. */ if (asoc->adv_peer_ack_point > ctsn) ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, nskips, &ftsn_skip_arr[0]); if (ftsn_chunk) { list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS); } } |
5 28 30 30 5 4 1 5 2 30 30 30 13 30 30 29 29 28 29 29 1 1 1 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2006 - 2007 Ivo van Doorn * Copyright (C) 2007 Dmitry Torokhov * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/workqueue.h> #include <linux/capability.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/rfkill.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/device.h> #include <linux/miscdevice.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/fs.h> #include <linux/slab.h> #include "rfkill.h" #define POLL_INTERVAL (5 * HZ) #define RFKILL_BLOCK_HW BIT(0) #define RFKILL_BLOCK_SW BIT(1) #define RFKILL_BLOCK_SW_PREV BIT(2) #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ RFKILL_BLOCK_SW |\ RFKILL_BLOCK_SW_PREV) #define RFKILL_BLOCK_SW_SETCALL BIT(31) struct rfkill { spinlock_t lock; enum rfkill_type type; unsigned long state; unsigned long hard_block_reasons; u32 idx; bool registered; bool persistent; bool polling_paused; bool suspended; bool need_sync; const struct rfkill_ops *ops; void *data; #ifdef CONFIG_RFKILL_LEDS struct led_trigger led_trigger; const char *ledtrigname; #endif struct device dev; struct list_head node; struct delayed_work poll_work; struct work_struct uevent_work; struct work_struct sync_work; char name[]; }; #define to_rfkill(d) container_of(d, struct rfkill, dev) struct rfkill_int_event { struct list_head list; struct rfkill_event_ext ev; }; struct rfkill_data { struct list_head list; struct list_head events; struct mutex mtx; wait_queue_head_t read_wait; bool input_handler; u8 max_size; }; MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); MODULE_DESCRIPTION("RF switch support"); MODULE_LICENSE("GPL"); /* * The locking here should be made much smarter, we currently have * a bit of a stupid situation because drivers might want to register * the rfkill struct under their own lock, and take this lock during * rfkill method calls -- which will cause an AB-BA deadlock situation. * * To fix that, we need to rework this code here to be mostly lock-free * and only use the mutex for list manipulations, not to protect the * various other global variables. Then we can avoid holding the mutex * around driver operations, and all is happy. */ static LIST_HEAD(rfkill_list); /* list of registered rf switches */ static DEFINE_MUTEX(rfkill_global_mutex); static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ static unsigned int rfkill_default_state = 1; module_param_named(default_state, rfkill_default_state, uint, 0444); MODULE_PARM_DESC(default_state, "Default initial state for all radio types, 0 = radio off"); static struct { bool cur, sav; } rfkill_global_states[NUM_RFKILL_TYPES]; static bool rfkill_epo_lock_active; #ifdef CONFIG_RFKILL_LEDS static void rfkill_led_trigger_event(struct rfkill *rfkill) { struct led_trigger *trigger; if (!rfkill->registered) return; trigger = &rfkill->led_trigger; if (rfkill->state & RFKILL_BLOCK_ANY) led_trigger_event(trigger, LED_OFF); else led_trigger_event(trigger, LED_FULL); } static int rfkill_led_trigger_activate(struct led_classdev *led) { struct rfkill *rfkill; rfkill = container_of(led->trigger, struct rfkill, led_trigger); rfkill_led_trigger_event(rfkill); return 0; } const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) { return rfkill->led_trigger.name; } EXPORT_SYMBOL(rfkill_get_led_trigger_name); void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) { BUG_ON(!rfkill); rfkill->ledtrigname = name; } EXPORT_SYMBOL(rfkill_set_led_trigger_name); static int rfkill_led_trigger_register(struct rfkill *rfkill) { rfkill->led_trigger.name = rfkill->ledtrigname ? : dev_name(&rfkill->dev); rfkill->led_trigger.activate = rfkill_led_trigger_activate; return led_trigger_register(&rfkill->led_trigger); } static void rfkill_led_trigger_unregister(struct rfkill *rfkill) { led_trigger_unregister(&rfkill->led_trigger); } static struct led_trigger rfkill_any_led_trigger; static struct led_trigger rfkill_none_led_trigger; static struct work_struct rfkill_global_led_trigger_work; static void rfkill_global_led_trigger_worker(struct work_struct *work) { enum led_brightness brightness = LED_OFF; struct rfkill *rfkill; mutex_lock(&rfkill_global_mutex); list_for_each_entry(rfkill, &rfkill_list, node) { if (!(rfkill->state & RFKILL_BLOCK_ANY)) { brightness = LED_FULL; break; } } mutex_unlock(&rfkill_global_mutex); led_trigger_event(&rfkill_any_led_trigger, brightness); led_trigger_event(&rfkill_none_led_trigger, brightness == LED_OFF ? LED_FULL : LED_OFF); } static void rfkill_global_led_trigger_event(void) { schedule_work(&rfkill_global_led_trigger_work); } static int rfkill_global_led_trigger_register(void) { int ret; INIT_WORK(&rfkill_global_led_trigger_work, rfkill_global_led_trigger_worker); rfkill_any_led_trigger.name = "rfkill-any"; ret = led_trigger_register(&rfkill_any_led_trigger); if (ret) return ret; rfkill_none_led_trigger.name = "rfkill-none"; ret = led_trigger_register(&rfkill_none_led_trigger); if (ret) led_trigger_unregister(&rfkill_any_led_trigger); else /* Delay activation until all global triggers are registered */ rfkill_global_led_trigger_event(); return ret; } static void rfkill_global_led_trigger_unregister(void) { led_trigger_unregister(&rfkill_none_led_trigger); led_trigger_unregister(&rfkill_any_led_trigger); cancel_work_sync(&rfkill_global_led_trigger_work); } #else static void rfkill_led_trigger_event(struct rfkill *rfkill) { } static inline int rfkill_led_trigger_register(struct rfkill *rfkill) { return 0; } static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) { } static void rfkill_global_led_trigger_event(void) { } static int rfkill_global_led_trigger_register(void) { return 0; } static void rfkill_global_led_trigger_unregister(void) { } #endif /* CONFIG_RFKILL_LEDS */ static void rfkill_fill_event(struct rfkill_event_ext *ev, struct rfkill *rfkill, enum rfkill_operation op) { unsigned long flags; ev->idx = rfkill->idx; ev->type = rfkill->type; ev->op = op; spin_lock_irqsave(&rfkill->lock, flags); ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | RFKILL_BLOCK_SW_PREV)); ev->hard_block_reasons = rfkill->hard_block_reasons; spin_unlock_irqrestore(&rfkill->lock, flags); } static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) { struct rfkill_data *data; struct rfkill_int_event *ev; list_for_each_entry(data, &rfkill_fds, list) { ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) continue; rfkill_fill_event(&ev->ev, rfkill, op); mutex_lock(&data->mtx); list_add_tail(&ev->list, &data->events); mutex_unlock(&data->mtx); wake_up_interruptible(&data->read_wait); } } static void rfkill_event(struct rfkill *rfkill) { if (!rfkill->registered) return; kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); /* also send event to /dev/rfkill */ rfkill_send_events(rfkill, RFKILL_OP_CHANGE); } /** * rfkill_set_block - wrapper for set_block method * * @rfkill: the rfkill struct to use * @blocked: the new software state * * Calls the set_block method (when applicable) and handles notifications * etc. as well. */ static void rfkill_set_block(struct rfkill *rfkill, bool blocked) { unsigned long flags; bool prev, curr; int err; if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) return; /* * Some platforms (...!) generate input events which affect the * _hard_ kill state -- whenever something tries to change the * current software state query the hardware state too. */ if (rfkill->ops->query) rfkill->ops->query(rfkill, rfkill->data); spin_lock_irqsave(&rfkill->lock, flags); prev = rfkill->state & RFKILL_BLOCK_SW; if (prev) rfkill->state |= RFKILL_BLOCK_SW_PREV; else rfkill->state &= ~RFKILL_BLOCK_SW_PREV; if (blocked) rfkill->state |= RFKILL_BLOCK_SW; else rfkill->state &= ~RFKILL_BLOCK_SW; rfkill->state |= RFKILL_BLOCK_SW_SETCALL; spin_unlock_irqrestore(&rfkill->lock, flags); err = rfkill->ops->set_block(rfkill->data, blocked); spin_lock_irqsave(&rfkill->lock, flags); if (err) { /* * Failed -- reset status to _PREV, which may be different * from what we have set _PREV to earlier in this function * if rfkill_set_sw_state was invoked. */ if (rfkill->state & RFKILL_BLOCK_SW_PREV) rfkill->state |= RFKILL_BLOCK_SW; else rfkill->state &= ~RFKILL_BLOCK_SW; } rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; rfkill->state &= ~RFKILL_BLOCK_SW_PREV; curr = rfkill->state & RFKILL_BLOCK_SW; spin_unlock_irqrestore(&rfkill->lock, flags); rfkill_led_trigger_event(rfkill); rfkill_global_led_trigger_event(); if (prev != curr) rfkill_event(rfkill); } static void rfkill_sync(struct rfkill *rfkill) { lockdep_assert_held(&rfkill_global_mutex); if (!rfkill->need_sync) return; rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur); rfkill->need_sync = false; } static void rfkill_update_global_state(enum rfkill_type type, bool blocked) { int i; if (type != RFKILL_TYPE_ALL) { rfkill_global_states[type].cur = blocked; return; } for (i = 0; i < NUM_RFKILL_TYPES; i++) rfkill_global_states[i].cur = blocked; } #ifdef CONFIG_RFKILL_INPUT static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); /** * __rfkill_switch_all - Toggle state of all switches of given type * @type: type of interfaces to be affected * @blocked: the new state * * This function sets the state of all switches of given type, * unless a specific switch is suspended. * * Caller must have acquired rfkill_global_mutex. */ static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) { struct rfkill *rfkill; rfkill_update_global_state(type, blocked); list_for_each_entry(rfkill, &rfkill_list, node) { if (rfkill->type != type && type != RFKILL_TYPE_ALL) continue; rfkill_set_block(rfkill, blocked); } } /** * rfkill_switch_all - Toggle state of all switches of given type * @type: type of interfaces to be affected * @blocked: the new state * * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). * Please refer to __rfkill_switch_all() for details. * * Does nothing if the EPO lock is active. */ void rfkill_switch_all(enum rfkill_type type, bool blocked) { if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); if (!rfkill_epo_lock_active) __rfkill_switch_all(type, blocked); mutex_unlock(&rfkill_global_mutex); } /** * rfkill_epo - emergency power off all transmitters * * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. * * The global state before the EPO is saved and can be restored later * using rfkill_restore_states(). */ void rfkill_epo(void) { struct rfkill *rfkill; int i; if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); rfkill_epo_lock_active = true; list_for_each_entry(rfkill, &rfkill_list, node) rfkill_set_block(rfkill, true); for (i = 0; i < NUM_RFKILL_TYPES; i++) { rfkill_global_states[i].sav = rfkill_global_states[i].cur; rfkill_global_states[i].cur = true; } mutex_unlock(&rfkill_global_mutex); } /** * rfkill_restore_states - restore global states * * Restore (and sync switches to) the global state from the * states in rfkill_default_states. This can undo the effects of * a call to rfkill_epo(). */ void rfkill_restore_states(void) { int i; if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); rfkill_epo_lock_active = false; for (i = 0; i < NUM_RFKILL_TYPES; i++) __rfkill_switch_all(i, rfkill_global_states[i].sav); mutex_unlock(&rfkill_global_mutex); } /** * rfkill_remove_epo_lock - unlock state changes * * Used by rfkill-input manually unlock state changes, when * the EPO switch is deactivated. */ void rfkill_remove_epo_lock(void) { if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); rfkill_epo_lock_active = false; mutex_unlock(&rfkill_global_mutex); } /** * rfkill_is_epo_lock_active - returns true EPO is active * * Returns 0 (false) if there is NOT an active EPO condition, * and 1 (true) if there is an active EPO condition, which * locks all radios in one of the BLOCKED states. * * Can be called in atomic context. */ bool rfkill_is_epo_lock_active(void) { return rfkill_epo_lock_active; } /** * rfkill_get_global_sw_state - returns global state for a type * @type: the type to get the global state of * * Returns the current global state for a given wireless * device type. */ bool rfkill_get_global_sw_state(const enum rfkill_type type) { return rfkill_global_states[type].cur; } #endif bool rfkill_set_hw_state_reason(struct rfkill *rfkill, bool blocked, enum rfkill_hard_block_reasons reason) { unsigned long flags; bool ret, prev; BUG_ON(!rfkill); spin_lock_irqsave(&rfkill->lock, flags); prev = !!(rfkill->hard_block_reasons & reason); if (blocked) { rfkill->state |= RFKILL_BLOCK_HW; rfkill->hard_block_reasons |= reason; } else { rfkill->hard_block_reasons &= ~reason; if (!rfkill->hard_block_reasons) rfkill->state &= ~RFKILL_BLOCK_HW; } ret = !!(rfkill->state & RFKILL_BLOCK_ANY); spin_unlock_irqrestore(&rfkill->lock, flags); rfkill_led_trigger_event(rfkill); rfkill_global_led_trigger_event(); if (rfkill->registered && prev != blocked) schedule_work(&rfkill->uevent_work); return ret; } EXPORT_SYMBOL(rfkill_set_hw_state_reason); static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) { u32 bit = RFKILL_BLOCK_SW; /* if in a ops->set_block right now, use other bit */ if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) bit = RFKILL_BLOCK_SW_PREV; if (blocked) rfkill->state |= bit; else rfkill->state &= ~bit; } bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) { unsigned long flags; bool prev, hwblock; BUG_ON(!rfkill); spin_lock_irqsave(&rfkill->lock, flags); prev = !!(rfkill->state & RFKILL_BLOCK_SW); __rfkill_set_sw_state(rfkill, blocked); hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); blocked = blocked || hwblock; spin_unlock_irqrestore(&rfkill->lock, flags); if (!rfkill->registered) return blocked; if (prev != blocked && !hwblock) schedule_work(&rfkill->uevent_work); rfkill_led_trigger_event(rfkill); rfkill_global_led_trigger_event(); return blocked; } EXPORT_SYMBOL(rfkill_set_sw_state); void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) { unsigned long flags; BUG_ON(!rfkill); BUG_ON(rfkill->registered); spin_lock_irqsave(&rfkill->lock, flags); __rfkill_set_sw_state(rfkill, blocked); rfkill->persistent = true; spin_unlock_irqrestore(&rfkill->lock, flags); } EXPORT_SYMBOL(rfkill_init_sw_state); void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) { unsigned long flags; bool swprev, hwprev; BUG_ON(!rfkill); spin_lock_irqsave(&rfkill->lock, flags); /* * No need to care about prev/setblock ... this is for uevent only * and that will get triggered by rfkill_set_block anyway. */ swprev = !!(rfkill->state & RFKILL_BLOCK_SW); hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); __rfkill_set_sw_state(rfkill, sw); if (hw) rfkill->state |= RFKILL_BLOCK_HW; else rfkill->state &= ~RFKILL_BLOCK_HW; spin_unlock_irqrestore(&rfkill->lock, flags); if (!rfkill->registered) { rfkill->persistent = true; } else { if (swprev != sw || hwprev != hw) schedule_work(&rfkill->uevent_work); rfkill_led_trigger_event(rfkill); rfkill_global_led_trigger_event(); } } EXPORT_SYMBOL(rfkill_set_states); static const char * const rfkill_types[] = { NULL, /* RFKILL_TYPE_ALL */ "wlan", "bluetooth", "ultrawideband", "wimax", "wwan", "gps", "fm", "nfc", }; enum rfkill_type rfkill_find_type(const char *name) { int i; BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES); if (!name) return RFKILL_TYPE_ALL; for (i = 1; i < NUM_RFKILL_TYPES; i++) if (!strcmp(name, rfkill_types[i])) return i; return RFKILL_TYPE_ALL; } EXPORT_SYMBOL(rfkill_find_type); static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sysfs_emit(buf, "%s\n", rfkill->name); } static DEVICE_ATTR_RO(name); static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]); } static DEVICE_ATTR_RO(type); static ssize_t index_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sysfs_emit(buf, "%d\n", rfkill->idx); } static DEVICE_ATTR_RO(index); static ssize_t persistent_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sysfs_emit(buf, "%d\n", rfkill->persistent); } static DEVICE_ATTR_RO(persistent); static ssize_t hard_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0); } static DEVICE_ATTR_RO(hard); static ssize_t soft_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); mutex_lock(&rfkill_global_mutex); rfkill_sync(rfkill); mutex_unlock(&rfkill_global_mutex); return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0); } static ssize_t soft_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rfkill *rfkill = to_rfkill(dev); unsigned long state; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; err = kstrtoul(buf, 0, &state); if (err) return err; if (state > 1 ) return -EINVAL; mutex_lock(&rfkill_global_mutex); rfkill_sync(rfkill); rfkill_set_block(rfkill, state); mutex_unlock(&rfkill_global_mutex); return count; } static DEVICE_ATTR_RW(soft); static ssize_t hard_block_reasons_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons); } static DEVICE_ATTR_RO(hard_block_reasons); static u8 user_state_from_blocked(unsigned long state) { if (state & RFKILL_BLOCK_HW) return RFKILL_USER_STATE_HARD_BLOCKED; if (state & RFKILL_BLOCK_SW) return RFKILL_USER_STATE_SOFT_BLOCKED; return RFKILL_USER_STATE_UNBLOCKED; } static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); mutex_lock(&rfkill_global_mutex); rfkill_sync(rfkill); mutex_unlock(&rfkill_global_mutex); return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state)); } static ssize_t state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rfkill *rfkill = to_rfkill(dev); unsigned long state; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; err = kstrtoul(buf, 0, &state); if (err) return err; if (state != RFKILL_USER_STATE_SOFT_BLOCKED && state != RFKILL_USER_STATE_UNBLOCKED) return -EINVAL; mutex_lock(&rfkill_global_mutex); rfkill_sync(rfkill); rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); mutex_unlock(&rfkill_global_mutex); return count; } static DEVICE_ATTR_RW(state); static struct attribute *rfkill_dev_attrs[] = { &dev_attr_name.attr, &dev_attr_type.attr, &dev_attr_index.attr, &dev_attr_persistent.attr, &dev_attr_state.attr, &dev_attr_soft.attr, &dev_attr_hard.attr, &dev_attr_hard_block_reasons.attr, NULL, }; ATTRIBUTE_GROUPS(rfkill_dev); static void rfkill_release(struct device *dev) { struct rfkill *rfkill = to_rfkill(dev); kfree(rfkill); } static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env) { struct rfkill *rfkill = to_rfkill(dev); unsigned long flags; unsigned long reasons; u32 state; int error; error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); if (error) return error; error = add_uevent_var(env, "RFKILL_TYPE=%s", rfkill_types[rfkill->type]); if (error) return error; spin_lock_irqsave(&rfkill->lock, flags); state = rfkill->state; reasons = rfkill->hard_block_reasons; spin_unlock_irqrestore(&rfkill->lock, flags); error = add_uevent_var(env, "RFKILL_STATE=%d", user_state_from_blocked(state)); if (error) return error; return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons); } void rfkill_pause_polling(struct rfkill *rfkill) { BUG_ON(!rfkill); if (!rfkill->ops->poll) return; rfkill->polling_paused = true; cancel_delayed_work_sync(&rfkill->poll_work); } EXPORT_SYMBOL(rfkill_pause_polling); void rfkill_resume_polling(struct rfkill *rfkill) { BUG_ON(!rfkill); if (!rfkill->ops->poll) return; rfkill->polling_paused = false; if (rfkill->suspended) return; queue_delayed_work(system_power_efficient_wq, &rfkill->poll_work, 0); } EXPORT_SYMBOL(rfkill_resume_polling); #ifdef CONFIG_PM_SLEEP static int rfkill_suspend(struct device *dev) { struct rfkill *rfkill = to_rfkill(dev); rfkill->suspended = true; cancel_delayed_work_sync(&rfkill->poll_work); return 0; } static int rfkill_resume(struct device *dev) { struct rfkill *rfkill = to_rfkill(dev); bool cur; rfkill->suspended = false; if (!rfkill->registered) return 0; if (!rfkill->persistent) { cur = !!(rfkill->state & RFKILL_BLOCK_SW); rfkill_set_block(rfkill, cur); } if (rfkill->ops->poll && !rfkill->polling_paused) queue_delayed_work(system_power_efficient_wq, &rfkill->poll_work, 0); return 0; } static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume); #define RFKILL_PM_OPS (&rfkill_pm_ops) #else #define RFKILL_PM_OPS NULL #endif static struct class rfkill_class = { .name = "rfkill", .dev_release = rfkill_release, .dev_groups = rfkill_dev_groups, .dev_uevent = rfkill_dev_uevent, .pm = RFKILL_PM_OPS, }; bool rfkill_blocked(struct rfkill *rfkill) { unsigned long flags; u32 state; spin_lock_irqsave(&rfkill->lock, flags); state = rfkill->state; spin_unlock_irqrestore(&rfkill->lock, flags); return !!(state & RFKILL_BLOCK_ANY); } EXPORT_SYMBOL(rfkill_blocked); bool rfkill_soft_blocked(struct rfkill *rfkill) { unsigned long flags; u32 state; spin_lock_irqsave(&rfkill->lock, flags); state = rfkill->state; spin_unlock_irqrestore(&rfkill->lock, flags); return !!(state & RFKILL_BLOCK_SW); } EXPORT_SYMBOL(rfkill_soft_blocked); struct rfkill * __must_check rfkill_alloc(const char *name, struct device *parent, const enum rfkill_type type, const struct rfkill_ops *ops, void *ops_data) { struct rfkill *rfkill; struct device *dev; if (WARN_ON(!ops)) return NULL; if (WARN_ON(!ops->set_block)) return NULL; if (WARN_ON(!name)) return NULL; if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) return NULL; rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL); if (!rfkill) return NULL; spin_lock_init(&rfkill->lock); INIT_LIST_HEAD(&rfkill->node); rfkill->type = type; strcpy(rfkill->name, name); rfkill->ops = ops; rfkill->data = ops_data; dev = &rfkill->dev; dev->class = &rfkill_class; dev->parent = parent; device_initialize(dev); return rfkill; } EXPORT_SYMBOL(rfkill_alloc); static void rfkill_poll(struct work_struct *work) { struct rfkill *rfkill; rfkill = container_of(work, struct rfkill, poll_work.work); /* * Poll hardware state -- driver will use one of the * rfkill_set{,_hw,_sw}_state functions and use its * return value to update the current status. */ rfkill->ops->poll(rfkill, rfkill->data); queue_delayed_work(system_power_efficient_wq, &rfkill->poll_work, round_jiffies_relative(POLL_INTERVAL)); } static void rfkill_uevent_work(struct work_struct *work) { struct rfkill *rfkill; rfkill = container_of(work, struct rfkill, uevent_work); mutex_lock(&rfkill_global_mutex); rfkill_event(rfkill); mutex_unlock(&rfkill_global_mutex); } static void rfkill_sync_work(struct work_struct *work) { struct rfkill *rfkill = container_of(work, struct rfkill, sync_work); mutex_lock(&rfkill_global_mutex); rfkill_sync(rfkill); mutex_unlock(&rfkill_global_mutex); } int __must_check rfkill_register(struct rfkill *rfkill) { static unsigned long rfkill_no; struct device *dev; int error; if (!rfkill) return -EINVAL; dev = &rfkill->dev; mutex_lock(&rfkill_global_mutex); if (rfkill->registered) { error = -EALREADY; goto unlock; } rfkill->idx = rfkill_no; dev_set_name(dev, "rfkill%lu", rfkill_no); rfkill_no++; list_add_tail(&rfkill->node, &rfkill_list); error = device_add(dev); if (error) goto remove; error = rfkill_led_trigger_register(rfkill); if (error) goto devdel; rfkill->registered = true; INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); INIT_WORK(&rfkill->sync_work, rfkill_sync_work); if (rfkill->ops->poll) queue_delayed_work(system_power_efficient_wq, &rfkill->poll_work, round_jiffies_relative(POLL_INTERVAL)); if (!rfkill->persistent || rfkill_epo_lock_active) { rfkill->need_sync = true; schedule_work(&rfkill->sync_work); } else { #ifdef CONFIG_RFKILL_INPUT bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); if (!atomic_read(&rfkill_input_disabled)) __rfkill_switch_all(rfkill->type, soft_blocked); #endif } rfkill_global_led_trigger_event(); rfkill_send_events(rfkill, RFKILL_OP_ADD); mutex_unlock(&rfkill_global_mutex); return 0; devdel: device_del(&rfkill->dev); remove: list_del_init(&rfkill->node); unlock: mutex_unlock(&rfkill_global_mutex); return error; } EXPORT_SYMBOL(rfkill_register); void rfkill_unregister(struct rfkill *rfkill) { BUG_ON(!rfkill); if (rfkill->ops->poll) cancel_delayed_work_sync(&rfkill->poll_work); cancel_work_sync(&rfkill->uevent_work); cancel_work_sync(&rfkill->sync_work); rfkill->registered = false; device_del(&rfkill->dev); mutex_lock(&rfkill_global_mutex); rfkill_send_events(rfkill, RFKILL_OP_DEL); list_del_init(&rfkill->node); rfkill_global_led_trigger_event(); mutex_unlock(&rfkill_global_mutex); rfkill_led_trigger_unregister(rfkill); } EXPORT_SYMBOL(rfkill_unregister); void rfkill_destroy(struct rfkill *rfkill) { if (rfkill) put_device(&rfkill->dev); } EXPORT_SYMBOL(rfkill_destroy); static int rfkill_fop_open(struct inode *inode, struct file *file) { struct rfkill_data *data; struct rfkill *rfkill; struct rfkill_int_event *ev, *tmp; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->max_size = RFKILL_EVENT_SIZE_V1; INIT_LIST_HEAD(&data->events); mutex_init(&data->mtx); init_waitqueue_head(&data->read_wait); mutex_lock(&rfkill_global_mutex); /* * start getting events from elsewhere but hold mtx to get * startup events added first */ list_for_each_entry(rfkill, &rfkill_list, node) { ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) goto free; rfkill_sync(rfkill); rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); mutex_lock(&data->mtx); list_add_tail(&ev->list, &data->events); mutex_unlock(&data->mtx); } list_add(&data->list, &rfkill_fds); mutex_unlock(&rfkill_global_mutex); file->private_data = data; return stream_open(inode, file); free: mutex_unlock(&rfkill_global_mutex); mutex_destroy(&data->mtx); list_for_each_entry_safe(ev, tmp, &data->events, list) kfree(ev); kfree(data); return -ENOMEM; } static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait) { struct rfkill_data *data = file->private_data; __poll_t res = EPOLLOUT | EPOLLWRNORM; poll_wait(file, &data->read_wait, wait); mutex_lock(&data->mtx); if (!list_empty(&data->events)) res = EPOLLIN | EPOLLRDNORM; mutex_unlock(&data->mtx); return res; } static ssize_t rfkill_fop_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct rfkill_data *data = file->private_data; struct rfkill_int_event *ev; unsigned long sz; int ret; mutex_lock(&data->mtx); while (list_empty(&data->events)) { if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; goto out; } mutex_unlock(&data->mtx); /* since we re-check and it just compares pointers, * using !list_empty() without locking isn't a problem */ ret = wait_event_interruptible(data->read_wait, !list_empty(&data->events)); mutex_lock(&data->mtx); if (ret) goto out; } ev = list_first_entry(&data->events, struct rfkill_int_event, list); sz = min_t(unsigned long, sizeof(ev->ev), count); sz = min_t(unsigned long, sz, data->max_size); ret = sz; if (copy_to_user(buf, &ev->ev, sz)) ret = -EFAULT; list_del(&ev->list); kfree(ev); out: mutex_unlock(&data->mtx); return ret; } static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct rfkill_data *data = file->private_data; struct rfkill *rfkill; struct rfkill_event_ext ev; int ret; /* we don't need the 'hard' variable but accept it */ if (count < RFKILL_EVENT_SIZE_V1 - 1) return -EINVAL; /* * Copy as much data as we can accept into our 'ev' buffer, * but tell userspace how much we've copied so it can determine * our API version even in a write() call, if it cares. */ count = min(count, sizeof(ev)); count = min_t(size_t, count, data->max_size); if (copy_from_user(&ev, buf, count)) return -EFAULT; if (ev.type >= NUM_RFKILL_TYPES) return -EINVAL; mutex_lock(&rfkill_global_mutex); switch (ev.op) { case RFKILL_OP_CHANGE_ALL: rfkill_update_global_state(ev.type, ev.soft); list_for_each_entry(rfkill, &rfkill_list, node) if (rfkill->type == ev.type || ev.type == RFKILL_TYPE_ALL) rfkill_set_block(rfkill, ev.soft); ret = 0; break; case RFKILL_OP_CHANGE: list_for_each_entry(rfkill, &rfkill_list, node) if (rfkill->idx == ev.idx && (rfkill->type == ev.type || ev.type == RFKILL_TYPE_ALL)) rfkill_set_block(rfkill, ev.soft); ret = 0; break; default: ret = -EINVAL; break; } mutex_unlock(&rfkill_global_mutex); return ret ?: count; } static int rfkill_fop_release(struct inode *inode, struct file *file) { struct rfkill_data *data = file->private_data; struct rfkill_int_event *ev, *tmp; mutex_lock(&rfkill_global_mutex); list_del(&data->list); mutex_unlock(&rfkill_global_mutex); mutex_destroy(&data->mtx); list_for_each_entry_safe(ev, tmp, &data->events, list) kfree(ev); #ifdef CONFIG_RFKILL_INPUT if (data->input_handler) if (atomic_dec_return(&rfkill_input_disabled) == 0) printk(KERN_DEBUG "rfkill: input handler enabled\n"); #endif kfree(data); return 0; } static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct rfkill_data *data = file->private_data; int ret = -ENOTTY; u32 size; if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) return -ENOTTY; mutex_lock(&data->mtx); switch (_IOC_NR(cmd)) { #ifdef CONFIG_RFKILL_INPUT case RFKILL_IOC_NOINPUT: if (!data->input_handler) { if (atomic_inc_return(&rfkill_input_disabled) == 1) printk(KERN_DEBUG "rfkill: input handler disabled\n"); data->input_handler = true; } ret = 0; break; #endif case RFKILL_IOC_MAX_SIZE: if (get_user(size, (__u32 __user *)arg)) { ret = -EFAULT; break; } if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) { ret = -EINVAL; break; } data->max_size = size; ret = 0; break; default: break; } mutex_unlock(&data->mtx); return ret; } static const struct file_operations rfkill_fops = { .owner = THIS_MODULE, .open = rfkill_fop_open, .read = rfkill_fop_read, .write = rfkill_fop_write, .poll = rfkill_fop_poll, .release = rfkill_fop_release, .unlocked_ioctl = rfkill_fop_ioctl, .compat_ioctl = compat_ptr_ioctl, }; #define RFKILL_NAME "rfkill" static struct miscdevice rfkill_miscdev = { .fops = &rfkill_fops, .name = RFKILL_NAME, .minor = RFKILL_MINOR, }; static int __init rfkill_init(void) { int error; rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state); error = class_register(&rfkill_class); if (error) goto error_class; error = misc_register(&rfkill_miscdev); if (error) goto error_misc; error = rfkill_global_led_trigger_register(); if (error) goto error_led_trigger; #ifdef CONFIG_RFKILL_INPUT error = rfkill_handler_init(); if (error) goto error_input; #endif return 0; #ifdef CONFIG_RFKILL_INPUT error_input: rfkill_global_led_trigger_unregister(); #endif error_led_trigger: misc_deregister(&rfkill_miscdev); error_misc: class_unregister(&rfkill_class); error_class: return error; } subsys_initcall(rfkill_init); static void __exit rfkill_exit(void) { #ifdef CONFIG_RFKILL_INPUT rfkill_handler_exit(); #endif rfkill_global_led_trigger_unregister(); misc_deregister(&rfkill_miscdev); class_unregister(&rfkill_class); } module_exit(rfkill_exit); MODULE_ALIAS_MISCDEV(RFKILL_MINOR); MODULE_ALIAS("devname:" RFKILL_NAME); |
7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /* * Copyright (c) 2006,2007 The Regents of the University of Michigan. * All rights reserved. * * Andy Adamson <andros@citi.umich.edu> * Fred Isaman <iisaman@umich.edu> * * permission is granted to use, copy, create derivative works and * redistribute this software and such derivative works for any purpose, * so long as the name of the university of michigan is not used in * any advertising or publicity pertaining to the use or distribution * of this software without specific, written prior authorization. if * the above copyright notice or any other identification of the * university of michigan is included in any copy of any portion of * this software, then the disclaimer below must also be included. * * this software is provided as is, without representation from the * university of michigan as to its fitness for any purpose, and without * warranty by the university of michigan of any kind, either express * or implied, including without limitation the implied warranties of * merchantability and fitness for a particular purpose. the regents * of the university of michigan shall not be liable for any damages, * including special, indirect, incidental, or consequential damages, * with respect to any claim arising out or in connection with the use * of the software, even if it has been or is hereafter advised of the * possibility of such damages. */ #include <linux/module.h> #include <linux/blkdev.h> #include "blocklayout.h" #define NFSDBG_FACILITY NFSDBG_PNFS_LD static void nfs4_encode_simple(__be32 *p, struct pnfs_block_volume *b) { int i; *p++ = cpu_to_be32(1); *p++ = cpu_to_be32(b->type); *p++ = cpu_to_be32(b->simple.nr_sigs); for (i = 0; i < b->simple.nr_sigs; i++) { p = xdr_encode_hyper(p, b->simple.sigs[i].offset); p = xdr_encode_opaque(p, b->simple.sigs[i].sig, b->simple.sigs[i].sig_len); } } dev_t bl_resolve_deviceid(struct nfs_server *server, struct pnfs_block_volume *b, gfp_t gfp_mask) { struct net *net = server->nfs_client->cl_net; struct nfs_net *nn = net_generic(net, nfs_net_id); struct bl_dev_msg *reply = &nn->bl_mount_reply; struct bl_pipe_msg bl_pipe_msg; struct rpc_pipe_msg *msg = &bl_pipe_msg.msg; struct bl_msg_hdr *bl_msg; DECLARE_WAITQUEUE(wq, current); dev_t dev = 0; int rc; dprintk("%s CREATING PIPEFS MESSAGE\n", __func__); mutex_lock(&nn->bl_mutex); bl_pipe_msg.bl_wq = &nn->bl_wq; b->simple.len += 4; /* single volume */ if (b->simple.len > PAGE_SIZE) goto out_unlock; memset(msg, 0, sizeof(*msg)); msg->len = sizeof(*bl_msg) + b->simple.len; msg->data = kzalloc(msg->len, gfp_mask); if (!msg->data) goto out_unlock; bl_msg = msg->data; bl_msg->type = BL_DEVICE_MOUNT; bl_msg->totallen = b->simple.len; nfs4_encode_simple(msg->data + sizeof(*bl_msg), b); dprintk("%s CALLING USERSPACE DAEMON\n", __func__); add_wait_queue(&nn->bl_wq, &wq); rc = rpc_queue_upcall(nn->bl_device_pipe, msg); if (rc < 0) { remove_wait_queue(&nn->bl_wq, &wq); goto out_free_data; } set_current_state(TASK_UNINTERRUPTIBLE); schedule(); remove_wait_queue(&nn->bl_wq, &wq); if (reply->status != BL_DEVICE_REQUEST_PROC) { printk(KERN_WARNING "%s failed to decode device: %d\n", __func__, reply->status); goto out_free_data; } dev = MKDEV(reply->major, reply->minor); out_free_data: kfree(msg->data); out_unlock: mutex_unlock(&nn->bl_mutex); return dev; } static ssize_t bl_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) { struct nfs_net *nn = net_generic(file_inode(filp)->i_sb->s_fs_info, nfs_net_id); if (mlen != sizeof (struct bl_dev_msg)) return -EINVAL; if (copy_from_user(&nn->bl_mount_reply, src, mlen) != 0) return -EFAULT; wake_up(&nn->bl_wq); return mlen; } static void bl_pipe_destroy_msg(struct rpc_pipe_msg *msg) { struct bl_pipe_msg *bl_pipe_msg = container_of(msg, struct bl_pipe_msg, msg); if (msg->errno >= 0) return; wake_up(bl_pipe_msg->bl_wq); } static const struct rpc_pipe_ops bl_upcall_ops = { .upcall = rpc_pipe_generic_upcall, .downcall = bl_pipe_downcall, .destroy_msg = bl_pipe_destroy_msg, }; static struct dentry *nfs4blocklayout_register_sb(struct super_block *sb, struct rpc_pipe *pipe) { struct dentry *dir, *dentry; dir = rpc_d_lookup_sb(sb, NFS_PIPE_DIRNAME); if (dir == NULL) return ERR_PTR(-ENOENT); dentry = rpc_mkpipe_dentry(dir, "blocklayout", NULL, pipe); dput(dir); return dentry; } static void nfs4blocklayout_unregister_sb(struct super_block *sb, struct rpc_pipe *pipe) { if (pipe->dentry) rpc_unlink(pipe->dentry); } static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct super_block *sb = ptr; struct net *net = sb->s_fs_info; struct nfs_net *nn = net_generic(net, nfs_net_id); struct dentry *dentry; int ret = 0; if (!try_module_get(THIS_MODULE)) return 0; if (nn->bl_device_pipe == NULL) { module_put(THIS_MODULE); return 0; } switch (event) { case RPC_PIPEFS_MOUNT: dentry = nfs4blocklayout_register_sb(sb, nn->bl_device_pipe); if (IS_ERR(dentry)) { ret = PTR_ERR(dentry); break; } nn->bl_device_pipe->dentry = dentry; break; case RPC_PIPEFS_UMOUNT: if (nn->bl_device_pipe->dentry) nfs4blocklayout_unregister_sb(sb, nn->bl_device_pipe); break; default: ret = -ENOTSUPP; break; } module_put(THIS_MODULE); return ret; } static struct notifier_block nfs4blocklayout_block = { .notifier_call = rpc_pipefs_event, }; static struct dentry *nfs4blocklayout_register_net(struct net *net, struct rpc_pipe *pipe) { struct super_block *pipefs_sb; struct dentry *dentry; pipefs_sb = rpc_get_sb_net(net); if (!pipefs_sb) return NULL; dentry = nfs4blocklayout_register_sb(pipefs_sb, pipe); rpc_put_sb_net(net); return dentry; } static void nfs4blocklayout_unregister_net(struct net *net, struct rpc_pipe *pipe) { struct super_block *pipefs_sb; pipefs_sb = rpc_get_sb_net(net); if (pipefs_sb) { nfs4blocklayout_unregister_sb(pipefs_sb, pipe); rpc_put_sb_net(net); } } static int nfs4blocklayout_net_init(struct net *net) { struct nfs_net *nn = net_generic(net, nfs_net_id); struct dentry *dentry; mutex_init(&nn->bl_mutex); init_waitqueue_head(&nn->bl_wq); nn->bl_device_pipe = rpc_mkpipe_data(&bl_upcall_ops, 0); if (IS_ERR(nn->bl_device_pipe)) return PTR_ERR(nn->bl_device_pipe); dentry = nfs4blocklayout_register_net(net, nn->bl_device_pipe); if (IS_ERR(dentry)) { rpc_destroy_pipe_data(nn->bl_device_pipe); return PTR_ERR(dentry); } nn->bl_device_pipe->dentry = dentry; return 0; } static void nfs4blocklayout_net_exit(struct net *net) { struct nfs_net *nn = net_generic(net, nfs_net_id); nfs4blocklayout_unregister_net(net, nn->bl_device_pipe); rpc_destroy_pipe_data(nn->bl_device_pipe); nn->bl_device_pipe = NULL; } static struct pernet_operations nfs4blocklayout_net_ops = { .init = nfs4blocklayout_net_init, .exit = nfs4blocklayout_net_exit, }; int __init bl_init_pipefs(void) { int ret; ret = rpc_pipefs_notifier_register(&nfs4blocklayout_block); if (ret) goto out; ret = register_pernet_subsys(&nfs4blocklayout_net_ops); if (ret) goto out_unregister_notifier; return 0; out_unregister_notifier: rpc_pipefs_notifier_unregister(&nfs4blocklayout_block); out: return ret; } void bl_cleanup_pipefs(void) { rpc_pipefs_notifier_unregister(&nfs4blocklayout_block); unregister_pernet_subsys(&nfs4blocklayout_net_ops); } |
7 7 1 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | // SPDX-License-Identifier: GPL-2.0-only /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * SMC statistics netlink routines * * Copyright IBM Corp. 2021 * * Author(s): Guvenc Gulce */ #include <linux/init.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/ctype.h> #include <linux/smc.h> #include <net/genetlink.h> #include <net/sock.h> #include "smc_netlink.h" #include "smc_stats.h" int smc_stats_init(struct net *net) { net->smc.fback_rsn = kzalloc(sizeof(*net->smc.fback_rsn), GFP_KERNEL); if (!net->smc.fback_rsn) goto err_fback; net->smc.smc_stats = alloc_percpu(struct smc_stats); if (!net->smc.smc_stats) goto err_stats; mutex_init(&net->smc.mutex_fback_rsn); return 0; err_stats: kfree(net->smc.fback_rsn); err_fback: return -ENOMEM; } void smc_stats_exit(struct net *net) { kfree(net->smc.fback_rsn); if (net->smc.smc_stats) free_percpu(net->smc.smc_stats); } static int smc_nl_fill_stats_rmb_data(struct sk_buff *skb, struct smc_stats *stats, int tech, int type) { struct smc_stats_rmbcnt *stats_rmb_cnt; struct nlattr *attrs; if (type == SMC_NLA_STATS_T_TX_RMB_STATS) stats_rmb_cnt = &stats->smc[tech].rmb_tx; else stats_rmb_cnt = &stats->smc[tech].rmb_rx; attrs = nla_nest_start(skb, type); if (!attrs) goto errout; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_REUSE_CNT, stats_rmb_cnt->reuse_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_SIZE_SM_PEER_CNT, stats_rmb_cnt->buf_size_small_peer_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_SIZE_SM_CNT, stats_rmb_cnt->buf_size_small_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_FULL_PEER_CNT, stats_rmb_cnt->buf_full_peer_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_FULL_CNT, stats_rmb_cnt->buf_full_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_ALLOC_CNT, stats_rmb_cnt->alloc_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_RMB_DGRADE_CNT, stats_rmb_cnt->dgrade_cnt, SMC_NLA_STATS_RMB_PAD)) goto errattr; nla_nest_end(skb, attrs); return 0; errattr: nla_nest_cancel(skb, attrs); errout: return -EMSGSIZE; } static int smc_nl_fill_stats_bufsize_data(struct sk_buff *skb, struct smc_stats *stats, int tech, int type) { struct smc_stats_memsize *stats_pload; struct nlattr *attrs; if (type == SMC_NLA_STATS_T_TXPLOAD_SIZE) stats_pload = &stats->smc[tech].tx_pd; else if (type == SMC_NLA_STATS_T_RXPLOAD_SIZE) stats_pload = &stats->smc[tech].rx_pd; else if (type == SMC_NLA_STATS_T_TX_RMB_SIZE) stats_pload = &stats->smc[tech].tx_rmbsize; else if (type == SMC_NLA_STATS_T_RX_RMB_SIZE) stats_pload = &stats->smc[tech].rx_rmbsize; else goto errout; attrs = nla_nest_start(skb, type); if (!attrs) goto errout; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_8K, stats_pload->buf[SMC_BUF_8K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_16K, stats_pload->buf[SMC_BUF_16K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_32K, stats_pload->buf[SMC_BUF_32K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_64K, stats_pload->buf[SMC_BUF_64K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_128K, stats_pload->buf[SMC_BUF_128K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_256K, stats_pload->buf[SMC_BUF_256K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_512K, stats_pload->buf[SMC_BUF_512K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_1024K, stats_pload->buf[SMC_BUF_1024K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_PLOAD_G_1024K, stats_pload->buf[SMC_BUF_G_1024K], SMC_NLA_STATS_PLOAD_PAD)) goto errattr; nla_nest_end(skb, attrs); return 0; errattr: nla_nest_cancel(skb, attrs); errout: return -EMSGSIZE; } static int smc_nl_fill_stats_tech_data(struct sk_buff *skb, struct smc_stats *stats, int tech) { struct smc_stats_tech *smc_tech; struct nlattr *attrs; smc_tech = &stats->smc[tech]; if (tech == SMC_TYPE_D) attrs = nla_nest_start(skb, SMC_NLA_STATS_SMCD_TECH); else attrs = nla_nest_start(skb, SMC_NLA_STATS_SMCR_TECH); if (!attrs) goto errout; if (smc_nl_fill_stats_rmb_data(skb, stats, tech, SMC_NLA_STATS_T_TX_RMB_STATS)) goto errattr; if (smc_nl_fill_stats_rmb_data(skb, stats, tech, SMC_NLA_STATS_T_RX_RMB_STATS)) goto errattr; if (smc_nl_fill_stats_bufsize_data(skb, stats, tech, SMC_NLA_STATS_T_TXPLOAD_SIZE)) goto errattr; if (smc_nl_fill_stats_bufsize_data(skb, stats, tech, SMC_NLA_STATS_T_RXPLOAD_SIZE)) goto errattr; if (smc_nl_fill_stats_bufsize_data(skb, stats, tech, SMC_NLA_STATS_T_TX_RMB_SIZE)) goto errattr; if (smc_nl_fill_stats_bufsize_data(skb, stats, tech, SMC_NLA_STATS_T_RX_RMB_SIZE)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_CLNT_V1_SUCC, smc_tech->clnt_v1_succ_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_CLNT_V2_SUCC, smc_tech->clnt_v2_succ_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_SRV_V1_SUCC, smc_tech->srv_v1_succ_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_SRV_V2_SUCC, smc_tech->srv_v2_succ_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_RX_BYTES, smc_tech->rx_bytes, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_TX_BYTES, smc_tech->tx_bytes, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_uint(skb, SMC_NLA_STATS_T_RX_RMB_USAGE, smc_tech->rx_rmbuse)) goto errattr; if (nla_put_uint(skb, SMC_NLA_STATS_T_TX_RMB_USAGE, smc_tech->tx_rmbuse)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_RX_CNT, smc_tech->rx_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_TX_CNT, smc_tech->tx_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_SENDPAGE_CNT, 0, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_CORK_CNT, smc_tech->cork_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_NDLY_CNT, smc_tech->ndly_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_SPLICE_CNT, smc_tech->splice_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_T_URG_DATA_CNT, smc_tech->urg_data_cnt, SMC_NLA_STATS_PAD)) goto errattr; nla_nest_end(skb, attrs); return 0; errattr: nla_nest_cancel(skb, attrs); errout: return -EMSGSIZE; } int smc_nl_get_stats(struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct net *net = sock_net(skb->sk); struct smc_stats *stats; struct nlattr *attrs; int cpu, i, size; void *nlh; u64 *src; u64 *sum; if (cb_ctx->pos[0]) goto errmsg; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_STATS); if (!nlh) goto errmsg; attrs = nla_nest_start(skb, SMC_GEN_STATS); if (!attrs) goto errnest; stats = kzalloc(sizeof(*stats), GFP_KERNEL); if (!stats) goto erralloc; size = sizeof(*stats) / sizeof(u64); for_each_possible_cpu(cpu) { src = (u64 *)per_cpu_ptr(net->smc.smc_stats, cpu); sum = (u64 *)stats; for (i = 0; i < size; i++) *(sum++) += *(src++); } if (smc_nl_fill_stats_tech_data(skb, stats, SMC_TYPE_D)) goto errattr; if (smc_nl_fill_stats_tech_data(skb, stats, SMC_TYPE_R)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_CLNT_HS_ERR_CNT, stats->clnt_hshake_err_cnt, SMC_NLA_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_STATS_SRV_HS_ERR_CNT, stats->srv_hshake_err_cnt, SMC_NLA_STATS_PAD)) goto errattr; nla_nest_end(skb, attrs); genlmsg_end(skb, nlh); cb_ctx->pos[0] = 1; kfree(stats); return skb->len; errattr: kfree(stats); erralloc: nla_nest_cancel(skb, attrs); errnest: genlmsg_cancel(skb, nlh); errmsg: return skb->len; } static int smc_nl_get_fback_details(struct sk_buff *skb, struct netlink_callback *cb, int pos, bool is_srv) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct net *net = sock_net(skb->sk); int cnt_reported = cb_ctx->pos[2]; struct smc_stats_fback *trgt_arr; struct nlattr *attrs; int rc = 0; void *nlh; if (is_srv) trgt_arr = &net->smc.fback_rsn->srv[0]; else trgt_arr = &net->smc.fback_rsn->clnt[0]; if (!trgt_arr[pos].fback_code) return -ENODATA; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_FBACK_STATS); if (!nlh) goto errmsg; attrs = nla_nest_start(skb, SMC_GEN_FBACK_STATS); if (!attrs) goto errout; if (nla_put_u8(skb, SMC_NLA_FBACK_STATS_TYPE, is_srv)) goto errattr; if (!cnt_reported) { if (nla_put_u64_64bit(skb, SMC_NLA_FBACK_STATS_SRV_CNT, net->smc.fback_rsn->srv_fback_cnt, SMC_NLA_FBACK_STATS_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_FBACK_STATS_CLNT_CNT, net->smc.fback_rsn->clnt_fback_cnt, SMC_NLA_FBACK_STATS_PAD)) goto errattr; cnt_reported = 1; } if (nla_put_u32(skb, SMC_NLA_FBACK_STATS_RSN_CODE, trgt_arr[pos].fback_code)) goto errattr; if (nla_put_u16(skb, SMC_NLA_FBACK_STATS_RSN_CNT, trgt_arr[pos].count)) goto errattr; cb_ctx->pos[2] = cnt_reported; nla_nest_end(skb, attrs); genlmsg_end(skb, nlh); return rc; errattr: nla_nest_cancel(skb, attrs); errout: genlmsg_cancel(skb, nlh); errmsg: return -EMSGSIZE; } int smc_nl_get_fback_stats(struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct net *net = sock_net(skb->sk); int rc_srv = 0, rc_clnt = 0, k; int skip_serv = cb_ctx->pos[1]; int snum = cb_ctx->pos[0]; bool is_srv = true; mutex_lock(&net->smc.mutex_fback_rsn); for (k = 0; k < SMC_MAX_FBACK_RSN_CNT; k++) { if (k < snum) continue; if (!skip_serv) { rc_srv = smc_nl_get_fback_details(skb, cb, k, is_srv); if (rc_srv && rc_srv != -ENODATA) break; } else { skip_serv = 0; } rc_clnt = smc_nl_get_fback_details(skb, cb, k, !is_srv); if (rc_clnt && rc_clnt != -ENODATA) { skip_serv = 1; break; } if (rc_clnt == -ENODATA && rc_srv == -ENODATA) break; } mutex_unlock(&net->smc.mutex_fback_rsn); cb_ctx->pos[1] = skip_serv; cb_ctx->pos[0] = k; return skb->len; } |
984 987 753 899 105 6 54 147 372 377 17 309 287 93 226 3 4 327 567 564 559 324 178 567 4 10 3 1 3 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_NEIGHBOUR_H #define _NET_NEIGHBOUR_H #include <linux/neighbour.h> /* * Generic neighbour manipulation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * Changes: * * Harald Welte: <laforge@gnumonks.org> * - Add neighbour cache statistics like rtstat */ #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/rcupdate.h> #include <linux/seq_file.h> #include <linux/bitmap.h> #include <linux/err.h> #include <linux/sysctl.h> #include <linux/workqueue.h> #include <net/rtnetlink.h> #include <net/neighbour_tables.h> /* * NUD stands for "neighbor unreachability detection" */ #define NUD_IN_TIMER (NUD_INCOMPLETE|NUD_REACHABLE|NUD_DELAY|NUD_PROBE) #define NUD_VALID (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE|NUD_PROBE|NUD_STALE|NUD_DELAY) #define NUD_CONNECTED (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE) struct neighbour; enum { NEIGH_VAR_MCAST_PROBES, NEIGH_VAR_UCAST_PROBES, NEIGH_VAR_APP_PROBES, NEIGH_VAR_MCAST_REPROBES, NEIGH_VAR_RETRANS_TIME, NEIGH_VAR_BASE_REACHABLE_TIME, NEIGH_VAR_DELAY_PROBE_TIME, NEIGH_VAR_INTERVAL_PROBE_TIME_MS, NEIGH_VAR_GC_STALETIME, NEIGH_VAR_QUEUE_LEN_BYTES, NEIGH_VAR_PROXY_QLEN, NEIGH_VAR_ANYCAST_DELAY, NEIGH_VAR_PROXY_DELAY, NEIGH_VAR_LOCKTIME, #define NEIGH_VAR_DATA_MAX (NEIGH_VAR_LOCKTIME + 1) /* Following are used as a second way to access one of the above */ NEIGH_VAR_QUEUE_LEN, /* same data as NEIGH_VAR_QUEUE_LEN_BYTES */ NEIGH_VAR_RETRANS_TIME_MS, /* same data as NEIGH_VAR_RETRANS_TIME */ NEIGH_VAR_BASE_REACHABLE_TIME_MS, /* same data as NEIGH_VAR_BASE_REACHABLE_TIME */ /* Following are used by "default" only */ NEIGH_VAR_GC_INTERVAL, NEIGH_VAR_GC_THRESH1, NEIGH_VAR_GC_THRESH2, NEIGH_VAR_GC_THRESH3, NEIGH_VAR_MAX }; struct neigh_parms { possible_net_t net; struct net_device *dev; netdevice_tracker dev_tracker; struct list_head list; int (*neigh_setup)(struct neighbour *); struct neigh_table *tbl; void *sysctl_table; int dead; refcount_t refcnt; struct rcu_head rcu_head; int reachable_time; u32 qlen; int data[NEIGH_VAR_DATA_MAX]; DECLARE_BITMAP(data_state, NEIGH_VAR_DATA_MAX); }; static inline void neigh_var_set(struct neigh_parms *p, int index, int val) { set_bit(index, p->data_state); p->data[index] = val; } #define NEIGH_VAR(p, attr) ((p)->data[NEIGH_VAR_ ## attr]) /* In ndo_neigh_setup, NEIGH_VAR_INIT should be used. * In other cases, NEIGH_VAR_SET should be used. */ #define NEIGH_VAR_INIT(p, attr, val) (NEIGH_VAR(p, attr) = val) #define NEIGH_VAR_SET(p, attr, val) neigh_var_set(p, NEIGH_VAR_ ## attr, val) static inline void neigh_parms_data_state_setall(struct neigh_parms *p) { bitmap_fill(p->data_state, NEIGH_VAR_DATA_MAX); } static inline void neigh_parms_data_state_cleanall(struct neigh_parms *p) { bitmap_zero(p->data_state, NEIGH_VAR_DATA_MAX); } struct neigh_statistics { unsigned long allocs; /* number of allocated neighs */ unsigned long destroys; /* number of destroyed neighs */ unsigned long hash_grows; /* number of hash resizes */ unsigned long res_failed; /* number of failed resolutions */ unsigned long lookups; /* number of lookups */ unsigned long hits; /* number of hits (among lookups) */ unsigned long rcv_probes_mcast; /* number of received mcast ipv6 */ unsigned long rcv_probes_ucast; /* number of received ucast ipv6 */ unsigned long periodic_gc_runs; /* number of periodic GC runs */ unsigned long forced_gc_runs; /* number of forced GC runs */ unsigned long unres_discards; /* number of unresolved drops */ unsigned long table_fulls; /* times even gc couldn't help */ }; #define NEIGH_CACHE_STAT_INC(tbl, field) this_cpu_inc((tbl)->stats->field) struct neighbour { struct hlist_node hash; struct hlist_node dev_list; struct neigh_table *tbl; struct neigh_parms *parms; unsigned long confirmed; unsigned long updated; rwlock_t lock; refcount_t refcnt; unsigned int arp_queue_len_bytes; struct sk_buff_head arp_queue; struct timer_list timer; unsigned long used; atomic_t probes; u8 nud_state; u8 type; u8 dead; u8 protocol; u32 flags; seqlock_t ha_lock; unsigned char ha[ALIGN(MAX_ADDR_LEN, sizeof(unsigned long))] __aligned(8); struct hh_cache hh; int (*output)(struct neighbour *, struct sk_buff *); const struct neigh_ops *ops; struct list_head gc_list; struct list_head managed_list; struct rcu_head rcu; struct net_device *dev; netdevice_tracker dev_tracker; u8 primary_key[]; } __randomize_layout; struct neigh_ops { int family; void (*solicit)(struct neighbour *, struct sk_buff *); void (*error_report)(struct neighbour *, struct sk_buff *); int (*output)(struct neighbour *, struct sk_buff *); int (*connected_output)(struct neighbour *, struct sk_buff *); }; struct pneigh_entry { struct pneigh_entry *next; possible_net_t net; struct net_device *dev; netdevice_tracker dev_tracker; u32 flags; u8 protocol; u32 key[]; }; /* * neighbour table manipulation */ #define NEIGH_NUM_HASH_RND 4 struct neigh_hash_table { struct hlist_head *hash_heads; unsigned int hash_shift; __u32 hash_rnd[NEIGH_NUM_HASH_RND]; struct rcu_head rcu; }; struct neigh_table { int family; unsigned int entry_size; unsigned int key_len; __be16 protocol; __u32 (*hash)(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); bool (*key_eq)(const struct neighbour *, const void *pkey); int (*constructor)(struct neighbour *); int (*pconstructor)(struct pneigh_entry *); void (*pdestructor)(struct pneigh_entry *); void (*proxy_redo)(struct sk_buff *skb); int (*is_multicast)(const void *pkey); bool (*allow_add)(const struct net_device *dev, struct netlink_ext_ack *extack); char *id; struct neigh_parms parms; struct list_head parms_list; int gc_interval; int gc_thresh1; int gc_thresh2; int gc_thresh3; unsigned long last_flush; struct delayed_work gc_work; struct delayed_work managed_work; struct timer_list proxy_timer; struct sk_buff_head proxy_queue; atomic_t entries; atomic_t gc_entries; struct list_head gc_list; struct list_head managed_list; rwlock_t lock; unsigned long last_rand; struct neigh_statistics __percpu *stats; struct neigh_hash_table __rcu *nht; struct pneigh_entry **phash_buckets; }; static inline int neigh_parms_family(struct neigh_parms *p) { return p->tbl->family; } #define NEIGH_PRIV_ALIGN sizeof(long long) #define NEIGH_ENTRY_SIZE(size) ALIGN((size), NEIGH_PRIV_ALIGN) static inline void *neighbour_priv(const struct neighbour *n) { return (char *)n + n->tbl->entry_size; } /* flags for neigh_update() */ #define NEIGH_UPDATE_F_OVERRIDE BIT(0) #define NEIGH_UPDATE_F_WEAK_OVERRIDE BIT(1) #define NEIGH_UPDATE_F_OVERRIDE_ISROUTER BIT(2) #define NEIGH_UPDATE_F_USE BIT(3) #define NEIGH_UPDATE_F_MANAGED BIT(4) #define NEIGH_UPDATE_F_EXT_LEARNED BIT(5) #define NEIGH_UPDATE_F_ISROUTER BIT(6) #define NEIGH_UPDATE_F_ADMIN BIT(7) /* In-kernel representation for NDA_FLAGS_EXT flags: */ #define NTF_OLD_MASK 0xff #define NTF_EXT_SHIFT 8 #define NTF_EXT_MASK (NTF_EXT_MANAGED) #define NTF_MANAGED (NTF_EXT_MANAGED << NTF_EXT_SHIFT) extern const struct nla_policy nda_policy[]; #define neigh_for_each_in_bucket(pos, head) hlist_for_each_entry(pos, head, hash) #define neigh_for_each_in_bucket_rcu(pos, head) \ hlist_for_each_entry_rcu(pos, head, hash) #define neigh_for_each_in_bucket_safe(pos, tmp, head) \ hlist_for_each_entry_safe(pos, tmp, head, hash) static inline bool neigh_key_eq32(const struct neighbour *n, const void *pkey) { return *(const u32 *)n->primary_key == *(const u32 *)pkey; } static inline bool neigh_key_eq128(const struct neighbour *n, const void *pkey) { const u32 *n32 = (const u32 *)n->primary_key; const u32 *p32 = pkey; return ((n32[0] ^ p32[0]) | (n32[1] ^ p32[1]) | (n32[2] ^ p32[2]) | (n32[3] ^ p32[3])) == 0; } static inline struct neighbour *___neigh_lookup_noref( struct neigh_table *tbl, bool (*key_eq)(const struct neighbour *n, const void *pkey), __u32 (*hash)(const void *pkey, const struct net_device *dev, __u32 *hash_rnd), const void *pkey, struct net_device *dev) { struct neigh_hash_table *nht = rcu_dereference(tbl->nht); struct neighbour *n; u32 hash_val; hash_val = hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); neigh_for_each_in_bucket_rcu(n, &nht->hash_heads[hash_val]) if (n->dev == dev && key_eq(n, pkey)) return n; return NULL; } static inline struct neighbour *__neigh_lookup_noref(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { return ___neigh_lookup_noref(tbl, tbl->key_eq, tbl->hash, pkey, dev); } static inline void neigh_confirm(struct neighbour *n) { if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } } void neigh_table_init(int index, struct neigh_table *tbl); int neigh_table_clear(int index, struct neigh_table *tbl); struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev); struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, bool want_ref); static inline struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { return __neigh_create(tbl, pkey, dev, true); } void neigh_destroy(struct neighbour *neigh); int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb, const bool immediate_ok); int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid); void __neigh_set_probe_once(struct neighbour *neigh); bool neigh_remove_one(struct neighbour *ndel); void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev); int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev); int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb); int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb); int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb); struct neighbour *neigh_event_ns(struct neigh_table *tbl, u8 *lladdr, void *saddr, struct net_device *dev); struct neigh_parms *neigh_parms_alloc(struct net_device *dev, struct neigh_table *tbl); void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms); static inline struct net *neigh_parms_net(const struct neigh_parms *parms) { return read_pnet(&parms->net); } unsigned long neigh_rand_reach_time(unsigned long base); void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, struct sk_buff *skb); struct pneigh_entry *pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev, int creat); struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev); int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev); static inline struct net *pneigh_net(const struct pneigh_entry *pneigh) { return read_pnet(&pneigh->net); } void neigh_app_ns(struct neighbour *n); void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie); void __neigh_for_each_release(struct neigh_table *tbl, int (*cb)(struct neighbour *)); int neigh_xmit(int fam, struct net_device *, const void *, struct sk_buff *); struct neigh_seq_state { struct seq_net_private p; struct neigh_table *tbl; struct neigh_hash_table *nht; void *(*neigh_sub_iter)(struct neigh_seq_state *state, struct neighbour *n, loff_t *pos); unsigned int bucket; unsigned int flags; #define NEIGH_SEQ_NEIGH_ONLY 0x00000001 #define NEIGH_SEQ_IS_PNEIGH 0x00000002 #define NEIGH_SEQ_SKIP_NOARP 0x00000004 }; void *neigh_seq_start(struct seq_file *, loff_t *, struct neigh_table *, unsigned int); void *neigh_seq_next(struct seq_file *, void *, loff_t *); void neigh_seq_stop(struct seq_file *, void *); int neigh_proc_dointvec(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_proc_dointvec_jiffies(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_proc_dointvec_ms_jiffies(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, proc_handler *proc_handler); void neigh_sysctl_unregister(struct neigh_parms *p); static inline void __neigh_parms_put(struct neigh_parms *parms) { refcount_dec(&parms->refcnt); } static inline struct neigh_parms *neigh_parms_clone(struct neigh_parms *parms) { refcount_inc(&parms->refcnt); return parms; } /* * Neighbour references */ static inline void neigh_release(struct neighbour *neigh) { if (refcount_dec_and_test(&neigh->refcnt)) neigh_destroy(neigh); } static inline struct neighbour * neigh_clone(struct neighbour *neigh) { if (neigh) refcount_inc(&neigh->refcnt); return neigh; } #define neigh_hold(n) refcount_inc(&(n)->refcnt) static __always_inline int neigh_event_send_probe(struct neighbour *neigh, struct sk_buff *skb, const bool immediate_ok) { unsigned long now = jiffies; if (READ_ONCE(neigh->used) != now) WRITE_ONCE(neigh->used, now); if (!(READ_ONCE(neigh->nud_state) & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))) return __neigh_event_send(neigh, skb, immediate_ok); return 0; } static inline int neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) { return neigh_event_send_probe(neigh, skb, true); } #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) static inline int neigh_hh_bridge(struct hh_cache *hh, struct sk_buff *skb) { unsigned int seq, hh_alen; do { seq = read_seqbegin(&hh->hh_lock); hh_alen = HH_DATA_ALIGN(ETH_HLEN); memcpy(skb->data - hh_alen, hh->hh_data, ETH_ALEN + hh_alen - ETH_HLEN); } while (read_seqretry(&hh->hh_lock, seq)); return 0; } #endif static inline int neigh_hh_output(const struct hh_cache *hh, struct sk_buff *skb) { unsigned int hh_alen = 0; unsigned int seq; unsigned int hh_len; do { seq = read_seqbegin(&hh->hh_lock); hh_len = READ_ONCE(hh->hh_len); if (likely(hh_len <= HH_DATA_MOD)) { hh_alen = HH_DATA_MOD; /* skb_push() would proceed silently if we have room for * the unaligned size but not for the aligned size: * check headroom explicitly. */ if (likely(skb_headroom(skb) >= HH_DATA_MOD)) { /* this is inlined by gcc */ memcpy(skb->data - HH_DATA_MOD, hh->hh_data, HH_DATA_MOD); } } else { hh_alen = HH_DATA_ALIGN(hh_len); if (likely(skb_headroom(skb) >= hh_alen)) { memcpy(skb->data - hh_alen, hh->hh_data, hh_alen); } } } while (read_seqretry(&hh->hh_lock, seq)); if (WARN_ON_ONCE(skb_headroom(skb) < hh_alen)) { kfree_skb(skb); return NET_XMIT_DROP; } __skb_push(skb, hh_len); return dev_queue_xmit(skb); } static inline int neigh_output(struct neighbour *n, struct sk_buff *skb, bool skip_cache) { const struct hh_cache *hh = &n->hh; /* n->nud_state and hh->hh_len could be changed under us. * neigh_hh_output() is taking care of the race later. */ if (!skip_cache && (READ_ONCE(n->nud_state) & NUD_CONNECTED) && READ_ONCE(hh->hh_len)) return neigh_hh_output(hh, skb); return READ_ONCE(n->output)(n, skb); } static inline struct neighbour * __neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev, int creat) { struct neighbour *n = neigh_lookup(tbl, pkey, dev); if (n || !creat) return n; n = neigh_create(tbl, pkey, dev); return IS_ERR(n) ? NULL : n; } static inline struct neighbour * __neigh_lookup_errno(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { struct neighbour *n = neigh_lookup(tbl, pkey, dev); if (n) return n; return neigh_create(tbl, pkey, dev); } struct neighbour_cb { unsigned long sched_next; unsigned int flags; }; #define LOCALLY_ENQUEUED 0x1 #define NEIGH_CB(skb) ((struct neighbour_cb *)(skb)->cb) static inline void neigh_ha_snapshot(char *dst, const struct neighbour *n, const struct net_device *dev) { unsigned int seq; do { seq = read_seqbegin(&n->ha_lock); memcpy(dst, n->ha, dev->addr_len); } while (read_seqretry(&n->ha_lock, seq)); } static inline void neigh_update_is_router(struct neighbour *neigh, u32 flags, int *notify) { u8 ndm_flags = 0; ndm_flags |= (flags & NEIGH_UPDATE_F_ISROUTER) ? NTF_ROUTER : 0; if ((neigh->flags ^ ndm_flags) & NTF_ROUTER) { if (ndm_flags & NTF_ROUTER) neigh->flags |= NTF_ROUTER; else neigh->flags &= ~NTF_ROUTER; *notify = 1; } } #endif |
180 911 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef MPLS_INTERNAL_H #define MPLS_INTERNAL_H #include <net/mpls.h> /* put a reasonable limit on the number of labels * we will accept from userspace */ #define MAX_NEW_LABELS 30 struct mpls_entry_decoded { u32 label; u8 ttl; u8 tc; u8 bos; }; struct mpls_pcpu_stats { struct mpls_link_stats stats; struct u64_stats_sync syncp; }; struct mpls_dev { int input_enabled; struct net_device *dev; struct mpls_pcpu_stats __percpu *stats; struct ctl_table_header *sysctl; struct rcu_head rcu; }; #if BITS_PER_LONG == 32 #define MPLS_INC_STATS_LEN(mdev, len, pkts_field, bytes_field) \ do { \ __typeof__(*(mdev)->stats) *ptr = \ raw_cpu_ptr((mdev)->stats); \ local_bh_disable(); \ u64_stats_update_begin(&ptr->syncp); \ ptr->stats.pkts_field++; \ ptr->stats.bytes_field += (len); \ u64_stats_update_end(&ptr->syncp); \ local_bh_enable(); \ } while (0) #define MPLS_INC_STATS(mdev, field) \ do { \ __typeof__(*(mdev)->stats) *ptr = \ raw_cpu_ptr((mdev)->stats); \ local_bh_disable(); \ u64_stats_update_begin(&ptr->syncp); \ ptr->stats.field++; \ u64_stats_update_end(&ptr->syncp); \ local_bh_enable(); \ } while (0) #else #define MPLS_INC_STATS_LEN(mdev, len, pkts_field, bytes_field) \ do { \ this_cpu_inc((mdev)->stats->stats.pkts_field); \ this_cpu_add((mdev)->stats->stats.bytes_field, (len)); \ } while (0) #define MPLS_INC_STATS(mdev, field) \ this_cpu_inc((mdev)->stats->stats.field) #endif struct sk_buff; #define LABEL_NOT_SPECIFIED (1 << 20) /* This maximum ha length copied from the definition of struct neighbour */ #define VIA_ALEN_ALIGN sizeof(unsigned long) #define MAX_VIA_ALEN (ALIGN(MAX_ADDR_LEN, VIA_ALEN_ALIGN)) enum mpls_payload_type { MPT_UNSPEC, /* IPv4 or IPv6 */ MPT_IPV4 = 4, MPT_IPV6 = 6, /* Other types not implemented: * - Pseudo-wire with or without control word (RFC4385) * - GAL (RFC5586) */ }; struct mpls_nh { /* next hop label forwarding entry */ struct net_device *nh_dev; /* nh_flags is accessed under RCU in the packet path; it is * modified handling netdev events with rtnl lock held */ unsigned int nh_flags; u8 nh_labels; u8 nh_via_alen; u8 nh_via_table; u8 nh_reserved1; u32 nh_label[]; }; /* offset of via from beginning of mpls_nh */ #define MPLS_NH_VIA_OFF(num_labels) \ ALIGN(sizeof(struct mpls_nh) + (num_labels) * sizeof(u32), \ VIA_ALEN_ALIGN) /* all nexthops within a route have the same size based on the * max number of labels and max via length across all nexthops */ #define MPLS_NH_SIZE(num_labels, max_via_alen) \ (MPLS_NH_VIA_OFF((num_labels)) + \ ALIGN((max_via_alen), VIA_ALEN_ALIGN)) enum mpls_ttl_propagation { MPLS_TTL_PROP_DEFAULT, MPLS_TTL_PROP_ENABLED, MPLS_TTL_PROP_DISABLED, }; /* The route, nexthops and vias are stored together in the same memory * block: * * +----------------------+ * | mpls_route | * +----------------------+ * | mpls_nh 0 | * +----------------------+ * | alignment padding | 4 bytes for odd number of labels * +----------------------+ * | via[rt_max_alen] 0 | * +----------------------+ * | alignment padding | via's aligned on sizeof(unsigned long) * +----------------------+ * | ... | * +----------------------+ * | mpls_nh n-1 | * +----------------------+ * | via[rt_max_alen] n-1 | * +----------------------+ */ struct mpls_route { /* next hop label forwarding entry */ struct rcu_head rt_rcu; u8 rt_protocol; u8 rt_payload_type; u8 rt_max_alen; u8 rt_ttl_propagate; u8 rt_nhn; /* rt_nhn_alive is accessed under RCU in the packet path; it * is modified handling netdev events with rtnl lock held */ u8 rt_nhn_alive; u8 rt_nh_size; u8 rt_via_offset; u8 rt_reserved1; struct mpls_nh rt_nh[]; }; #define for_nexthops(rt) { \ int nhsel; const struct mpls_nh *nh; \ for (nhsel = 0, nh = (rt)->rt_nh; \ nhsel < (rt)->rt_nhn; \ nh = (void *)nh + (rt)->rt_nh_size, nhsel++) #define change_nexthops(rt) { \ int nhsel; struct mpls_nh *nh; \ for (nhsel = 0, nh = (rt)->rt_nh; \ nhsel < (rt)->rt_nhn; \ nh = (void *)nh + (rt)->rt_nh_size, nhsel++) #define endfor_nexthops(rt) } static inline struct mpls_entry_decoded mpls_entry_decode(struct mpls_shim_hdr *hdr) { struct mpls_entry_decoded result; unsigned entry = be32_to_cpu(hdr->label_stack_entry); result.label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; result.ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; result.tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; result.bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; return result; } static inline struct mpls_dev *mpls_dev_get(const struct net_device *dev) { return rcu_dereference_rtnl(dev->mpls_ptr); } int nla_put_labels(struct sk_buff *skb, int attrtype, u8 labels, const u32 label[]); int nla_get_labels(const struct nlattr *nla, u8 max_labels, u8 *labels, u32 label[], struct netlink_ext_ack *extack); bool mpls_output_possible(const struct net_device *dev); unsigned int mpls_dev_mtu(const struct net_device *dev); bool mpls_pkt_too_big(const struct sk_buff *skb, unsigned int mtu); void mpls_stats_inc_outucastpkts(struct net_device *dev, const struct sk_buff *skb); #endif /* MPLS_INTERNAL_H */ |
152 152 152 3 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"}, \ {I_LINKABLE, "I_LINKABLE"}, \ {I_WB_SWITCH, "I_WB_SWITCH"}, \ {I_OVL_INUSE, "I_OVL_INUSE"}, \ {I_CREATING, "I_CREATING"}, \ {I_DONTCACHE, "I_DONTCACHE"}, \ {I_SYNC_QUEUED, "I_SYNC_QUEUED"}, \ {I_PINNING_NETFS_WB, "I_PINNING_NETFS_WB"}, \ {I_LRU_ISOLATING, "I_LRU_ISOLATING"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EM( WB_REASON_FORKER_THREAD, "forker_thread") \ EMe(WB_REASON_FOREIGN_FLUSH, "foreign_flush") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_folio_template, TP_PROTO(struct folio *folio, struct address_space *mapping), TP_ARGS(folio, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = (mapping && mapping->host) ? mapping->host->i_ino : 0; __entry->index = folio->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_folio_template, writeback_dirty_folio, TP_PROTO(struct folio *folio, struct address_space *mapping), TP_ARGS(folio, mapping) ); DEFINE_EVENT(writeback_folio_template, folio_wait_writeback, TP_PROTO(struct folio *folio, struct address_space *mapping), TP_ARGS(folio, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct folio *folio, struct bdi_writeback *wb), TP_ARGS(folio, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = folio_mapping(folio); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(folio_memcg(folio)->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
3 3 1 3 2 1 1 2 2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | // SPDX-License-Identifier: GPL-2.0-only #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <asm/string.h> #include <linux/kmod.h> #include <linux/sysctl.h> #include <net/ip_vs.h> /* IPVS pe list */ static LIST_HEAD(ip_vs_pe); /* semaphore for IPVS PEs. */ static DEFINE_MUTEX(ip_vs_pe_mutex); /* Get pe in the pe list by name */ struct ip_vs_pe *__ip_vs_pe_getbyname(const char *pe_name) { struct ip_vs_pe *pe; IP_VS_DBG(10, "%s(): pe_name \"%s\"\n", __func__, pe_name); rcu_read_lock(); list_for_each_entry_rcu(pe, &ip_vs_pe, n_list) { /* Test and get the modules atomically */ if (pe->module && !try_module_get(pe->module)) { /* This pe is just deleted */ continue; } if (strcmp(pe_name, pe->name)==0) { /* HIT */ rcu_read_unlock(); return pe; } module_put(pe->module); } rcu_read_unlock(); return NULL; } /* Lookup pe and try to load it if it doesn't exist */ struct ip_vs_pe *ip_vs_pe_getbyname(const char *name) { struct ip_vs_pe *pe; /* Search for the pe by name */ pe = __ip_vs_pe_getbyname(name); /* If pe not found, load the module and search again */ if (!pe) { request_module("ip_vs_pe_%s", name); pe = __ip_vs_pe_getbyname(name); } return pe; } /* Register a pe in the pe list */ int register_ip_vs_pe(struct ip_vs_pe *pe) { struct ip_vs_pe *tmp; /* increase the module use count */ if (!ip_vs_use_count_inc()) return -ENOENT; mutex_lock(&ip_vs_pe_mutex); /* Make sure that the pe with this name doesn't exist * in the pe list. */ list_for_each_entry(tmp, &ip_vs_pe, n_list) { if (strcmp(tmp->name, pe->name) == 0) { mutex_unlock(&ip_vs_pe_mutex); ip_vs_use_count_dec(); pr_err("%s(): [%s] pe already existed " "in the system\n", __func__, pe->name); return -EINVAL; } } /* Add it into the d-linked pe list */ list_add_rcu(&pe->n_list, &ip_vs_pe); mutex_unlock(&ip_vs_pe_mutex); pr_info("[%s] pe registered.\n", pe->name); return 0; } EXPORT_SYMBOL_GPL(register_ip_vs_pe); /* Unregister a pe from the pe list */ int unregister_ip_vs_pe(struct ip_vs_pe *pe) { mutex_lock(&ip_vs_pe_mutex); /* Remove it from the d-linked pe list */ list_del_rcu(&pe->n_list); mutex_unlock(&ip_vs_pe_mutex); /* decrease the module use count */ ip_vs_use_count_dec(); pr_info("[%s] pe unregistered.\n", pe->name); return 0; } EXPORT_SYMBOL_GPL(unregister_ip_vs_pe); |
500 503 336 115 49 506 486 483 486 15 16 16 6 14 16 16 16 16 9 16 10 16 16 15 16 559 17 551 550 10 549 556 554 13 3 534 3 226 11 298 114 196 229 1 531 515 487 15 500 37 522 54 483 16 16 16 38 38 38 22 10 16 15 22 16 473 477 480 481 480 74 398 385 406 409 210 195 1 422 4 51 471 41 426 1 8 5 474 475 471 478 221 223 223 219 220 220 1 1 1 1 218 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 input * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Ian P. Morris <I.P.Morris@soton.ac.uk> * * Based in linux/net/ipv4/ip_input.c */ /* Changes * * Mitsuru KANDA @USAGI and * YOSHIFUJI Hideaki @USAGI: Remove ipv6_parse_exthdrs(). */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/icmpv6.h> #include <linux/mroute6.h> #include <linux/slab.h> #include <linux/indirect_call_wrapper.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/udp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/xfrm.h> #include <net/inet_ecn.h> #include <net/dst_metadata.h> static void ip6_rcv_finish_core(struct net *net, struct sock *sk, struct sk_buff *skb) { if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) && !skb_dst(skb) && !skb->sk) { switch (ipv6_hdr(skb)->nexthdr) { case IPPROTO_TCP: if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) tcp_v6_early_demux(skb); break; case IPPROTO_UDP: if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) udp_v6_early_demux(skb); break; } } if (!skb_valid_dst(skb)) ip6_route_input(skb); } int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { /* if ingress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_rcv(skb); if (!skb) return NET_RX_SUCCESS; ip6_rcv_finish_core(net, sk, skb); return dst_input(skb); } static void ip6_sublist_rcv_finish(struct list_head *head) { struct sk_buff *skb, *next; list_for_each_entry_safe(skb, next, head, list) { skb_list_del_init(skb); dst_input(skb); } } static bool ip6_can_use_hint(const struct sk_buff *skb, const struct sk_buff *hint) { return hint && !skb_dst(skb) && ipv6_addr_equal(&ipv6_hdr(hint)->daddr, &ipv6_hdr(skb)->daddr); } static struct sk_buff *ip6_extract_route_hint(const struct net *net, struct sk_buff *skb) { if (fib6_routes_require_src(net) || fib6_has_custom_rules(net) || IP6CB(skb)->flags & IP6SKB_MULTIPATH) return NULL; return skb; } static void ip6_list_rcv_finish(struct net *net, struct sock *sk, struct list_head *head) { struct sk_buff *skb, *next, *hint = NULL; struct dst_entry *curr_dst = NULL; LIST_HEAD(sublist); list_for_each_entry_safe(skb, next, head, list) { struct dst_entry *dst; skb_list_del_init(skb); /* if ingress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_rcv(skb); if (!skb) continue; if (ip6_can_use_hint(skb, hint)) skb_dst_copy(skb, hint); else ip6_rcv_finish_core(net, sk, skb); dst = skb_dst(skb); if (curr_dst != dst) { hint = ip6_extract_route_hint(net, skb); /* dispatch old sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv_finish(&sublist); /* start new sublist */ INIT_LIST_HEAD(&sublist); curr_dst = dst; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ ip6_sublist_rcv_finish(&sublist); } static struct sk_buff *ip6_rcv_core(struct sk_buff *skb, struct net_device *dev, struct net *net) { enum skb_drop_reason reason; const struct ipv6hdr *hdr; u32 pkt_len; struct inet6_dev *idev; if (skb->pkt_type == PACKET_OTHERHOST) { dev_core_stats_rx_otherhost_dropped_inc(skb->dev); kfree_skb_reason(skb, SKB_DROP_REASON_OTHERHOST); return NULL; } rcu_read_lock(); idev = __in6_dev_get(skb->dev); __IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_IN, skb->len); SKB_DR_SET(reason, NOT_SPECIFIED); if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL || !idev || unlikely(READ_ONCE(idev->cnf.disable_ipv6))) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); if (idev && unlikely(READ_ONCE(idev->cnf.disable_ipv6))) SKB_DR_SET(reason, IPV6DISABLED); goto drop; } memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); /* * Store incoming device index. When the packet will * be queued, we cannot refer to skb->dev anymore. * * BTW, when we send a packet for our own local address on a * non-loopback interface (e.g. ethX), it is being delivered * via the loopback interface (lo) here; skb->dev = loopback_dev. * It, however, should be considered as if it is being * arrived via the sending interface (ethX), because of the * nature of scoping architecture. --yoshfuji */ IP6CB(skb)->iif = skb_valid_dst(skb) ? ip6_dst_idev(skb_dst(skb))->dev->ifindex : dev->ifindex; if (unlikely(!pskb_may_pull(skb, sizeof(*hdr)))) goto err; hdr = ipv6_hdr(skb); if (hdr->version != 6) { SKB_DR_SET(reason, UNHANDLED_PROTO); goto err; } __IP6_ADD_STATS(net, idev, IPSTATS_MIB_NOECTPKTS + (ipv6_get_dsfield(hdr) & INET_ECN_MASK), max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs)); /* * RFC4291 2.5.3 * The loopback address must not be used as the source address in IPv6 * packets that are sent outside of a single node. [..] * A packet received on an interface with a destination address * of loopback must be dropped. */ if ((ipv6_addr_loopback(&hdr->saddr) || ipv6_addr_loopback(&hdr->daddr)) && !(dev->flags & IFF_LOOPBACK) && !netif_is_l3_master(dev)) goto err; /* RFC4291 Errata ID: 3480 * Interface-Local scope spans only a single interface on a * node and is useful only for loopback transmission of * multicast. Packets with interface-local scope received * from another node must be discarded. */ if (!(skb->pkt_type == PACKET_LOOPBACK || dev->flags & IFF_LOOPBACK) && ipv6_addr_is_multicast(&hdr->daddr) && IPV6_ADDR_MC_SCOPE(&hdr->daddr) == 1) goto err; /* If enabled, drop unicast packets that were encapsulated in link-layer * multicast or broadcast to protected against the so-called "hole-196" * attack in 802.11 wireless. */ if (!ipv6_addr_is_multicast(&hdr->daddr) && (skb->pkt_type == PACKET_BROADCAST || skb->pkt_type == PACKET_MULTICAST) && READ_ONCE(idev->cnf.drop_unicast_in_l2_multicast)) { SKB_DR_SET(reason, UNICAST_IN_L2_MULTICAST); goto err; } /* RFC4291 2.7 * Nodes must not originate a packet to a multicast address whose scope * field contains the reserved value 0; if such a packet is received, it * must be silently dropped. */ if (ipv6_addr_is_multicast(&hdr->daddr) && IPV6_ADDR_MC_SCOPE(&hdr->daddr) == 0) goto err; /* * RFC4291 2.7 * Multicast addresses must not be used as source addresses in IPv6 * packets or appear in any Routing header. */ if (ipv6_addr_is_multicast(&hdr->saddr)) goto err; skb->transport_header = skb->network_header + sizeof(*hdr); IP6CB(skb)->nhoff = offsetof(struct ipv6hdr, nexthdr); pkt_len = ntohs(hdr->payload_len); /* pkt_len may be zero if Jumbo payload option is present */ if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) { if (pkt_len + sizeof(struct ipv6hdr) > skb->len) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTRUNCATEDPKTS); SKB_DR_SET(reason, PKT_TOO_SMALL); goto drop; } if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr))) goto err; hdr = ipv6_hdr(skb); } if (hdr->nexthdr == NEXTHDR_HOP) { if (ipv6_parse_hopopts(skb) < 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); rcu_read_unlock(); return NULL; } } rcu_read_unlock(); /* Must drop socket now because of tproxy. */ if (!skb_sk_is_prefetched(skb)) skb_orphan(skb); return skb; err: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); SKB_DR_OR(reason, IP_INHDR); drop: rcu_read_unlock(); kfree_skb_reason(skb, reason); return NULL; } int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct net *net = dev_net(skb->dev); skb = ip6_rcv_core(skb, dev, net); if (skb == NULL) return NET_RX_DROP; return NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, net, NULL, skb, dev, NULL, ip6_rcv_finish); } static void ip6_sublist_rcv(struct list_head *head, struct net_device *dev, struct net *net) { NF_HOOK_LIST(NFPROTO_IPV6, NF_INET_PRE_ROUTING, net, NULL, head, dev, NULL, ip6_rcv_finish); ip6_list_rcv_finish(net, NULL, head); } /* Receive a list of IPv6 packets */ void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev) { struct net_device *curr_dev = NULL; struct net *curr_net = NULL; struct sk_buff *skb, *next; LIST_HEAD(sublist); list_for_each_entry_safe(skb, next, head, list) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); skb_list_del_init(skb); skb = ip6_rcv_core(skb, dev, net); if (skb == NULL) continue; if (curr_dev != dev || curr_net != net) { /* dispatch old sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv(&sublist, curr_dev, curr_net); /* start new sublist */ INIT_LIST_HEAD(&sublist); curr_dev = dev; curr_net = net; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv(&sublist, curr_dev, curr_net); } INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *)); /* * Deliver the packet to the host */ void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, bool have_final) { const struct inet6_protocol *ipprot; struct inet6_dev *idev; unsigned int nhoff; SKB_DR(reason); bool raw; /* * Parse extension headers */ resubmit: idev = ip6_dst_idev(skb_dst(skb)); nhoff = IP6CB(skb)->nhoff; if (!have_final) { if (!pskb_pull(skb, skb_transport_offset(skb))) goto discard; nexthdr = skb_network_header(skb)[nhoff]; } resubmit_final: raw = raw6_local_deliver(skb, nexthdr); ipprot = rcu_dereference(inet6_protos[nexthdr]); if (ipprot) { int ret; if (have_final) { if (!(ipprot->flags & INET6_PROTO_FINAL)) { /* Once we've seen a final protocol don't * allow encapsulation on any non-final * ones. This allows foo in UDP encapsulation * to work. */ goto discard; } } else if (ipprot->flags & INET6_PROTO_FINAL) { const struct ipv6hdr *hdr; int sdif = inet6_sdif(skb); struct net_device *dev; /* Only do this once for first final protocol */ have_final = true; skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); hdr = ipv6_hdr(skb); /* skb->dev passed may be master dev for vrfs. */ if (sdif) { dev = dev_get_by_index_rcu(net, sdif); if (!dev) goto discard; } else { dev = skb->dev; } if (ipv6_addr_is_multicast(&hdr->daddr) && !ipv6_chk_mcast_addr(dev, &hdr->daddr, &hdr->saddr) && !ipv6_is_mld(skb, nexthdr, skb_network_header_len(skb))) { SKB_DR_SET(reason, IP_INADDRERRORS); goto discard; } } if (!(ipprot->flags & INET6_PROTO_NOPOLICY)) { if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { SKB_DR_SET(reason, XFRM_POLICY); goto discard; } nf_reset_ct(skb); } ret = INDIRECT_CALL_2(ipprot->handler, tcp_v6_rcv, udpv6_rcv, skb); if (ret > 0) { if (ipprot->flags & INET6_PROTO_FINAL) { /* Not an extension header, most likely UDP * encapsulation. Use return value as nexthdr * protocol not nhoff (which presumably is * not set by handler). */ nexthdr = ret; goto resubmit_final; } else { goto resubmit; } } else if (ret == 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDELIVERS); } } else { if (!raw) { if (xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INUNKNOWNPROTOS); icmpv6_send(skb, ICMPV6_PARAMPROB, ICMPV6_UNK_NEXTHDR, nhoff); SKB_DR_SET(reason, IP_NOPROTO); } else { SKB_DR_SET(reason, XFRM_POLICY); } kfree_skb_reason(skb, reason); } else { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDELIVERS); consume_skb(skb); } } return; discard: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); kfree_skb_reason(skb, reason); } static int ip6_input_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { skb_clear_delivery_time(skb); rcu_read_lock(); ip6_protocol_deliver_rcu(net, skb, 0, false); rcu_read_unlock(); return 0; } int ip6_input(struct sk_buff *skb) { return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_IN, dev_net(skb->dev), NULL, skb, skb->dev, NULL, ip6_input_finish); } EXPORT_SYMBOL_GPL(ip6_input); int ip6_mc_input(struct sk_buff *skb) { int sdif = inet6_sdif(skb); const struct ipv6hdr *hdr; struct net_device *dev; bool deliver; __IP6_UPD_PO_STATS(dev_net(skb_dst(skb)->dev), __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INMCAST, skb->len); /* skb->dev passed may be master dev for vrfs. */ if (sdif) { rcu_read_lock(); dev = dev_get_by_index_rcu(dev_net(skb->dev), sdif); if (!dev) { rcu_read_unlock(); kfree_skb(skb); return -ENODEV; } } else { dev = skb->dev; } hdr = ipv6_hdr(skb); deliver = ipv6_chk_mcast_addr(dev, &hdr->daddr, NULL); if (sdif) rcu_read_unlock(); #ifdef CONFIG_IPV6_MROUTE /* * IPv6 multicast router mode is now supported ;) */ if (atomic_read(&dev_net(skb->dev)->ipv6.devconf_all->mc_forwarding) && !(ipv6_addr_type(&hdr->daddr) & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)) && likely(!(IP6CB(skb)->flags & IP6SKB_FORWARDED))) { /* * Okay, we try to forward - split and duplicate * packets. */ struct sk_buff *skb2; struct inet6_skb_parm *opt = IP6CB(skb); /* Check for MLD */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { /* Check if this is a mld message */ u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; /* Check if the value of Router Alert * is for MLD (0x0000). */ if (opt->ra == htons(IPV6_OPT_ROUTERALERT_MLD)) { deliver = false; if (!ipv6_ext_hdr(nexthdr)) { /* BUG */ goto out; } offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) goto out; if (ipv6_is_mld(skb, nexthdr, offset)) deliver = true; goto out; } /* unknown RA - process it normally */ } if (deliver) skb2 = skb_clone(skb, GFP_ATOMIC); else { skb2 = skb; skb = NULL; } if (skb2) { ip6_mr_input(skb2); } } out: #endif if (likely(deliver)) ip6_input(skb); else { /* discard */ kfree_skb(skb); } return 0; } |
49 6 25 8638 177 1089 153 9 4 11 6 876 66 14 14 730 55 2 1100 1104 126 8032 203 5 121 292 203 83 18 119 169 1 189 21 21 4 46 46 2 2 2 2 1 31 90 2 94 87 1 9617 10181 78 455 461 124 10181 14 165 9613 31 9621 126 9556 21 21 21 21 6 95 2 96 8368 110 24 513 383 382 399 26 390 6 4 14 8465 44 31 10 64 1 8508 210 84 215 79 337 36 290 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Interfaces handler. * * Version: @(#)dev.h 1.0.10 08/12/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> * Alan Cox, <alan@lxorguk.ukuu.org.uk> * Bjorn Ekwall. <bj0rn@blox.se> * Pekka Riikonen <priikone@poseidon.pspt.fi> * * Moved to /usr/include/linux for NET3 */ #ifndef _LINUX_NETDEVICE_H #define _LINUX_NETDEVICE_H #include <linux/timer.h> #include <linux/bug.h> #include <linux/delay.h> #include <linux/atomic.h> #include <linux/prefetch.h> #include <asm/cache.h> #include <asm/byteorder.h> #include <asm/local.h> #include <linux/percpu.h> #include <linux/rculist.h> #include <linux/workqueue.h> #include <linux/dynamic_queue_limits.h> #include <net/net_namespace.h> #ifdef CONFIG_DCB #include <net/dcbnl.h> #endif #include <net/netprio_cgroup.h> #include <linux/netdev_features.h> #include <linux/neighbour.h> #include <linux/netdevice_xmit.h> #include <uapi/linux/netdevice.h> #include <uapi/linux/if_bonding.h> #include <uapi/linux/pkt_cls.h> #include <uapi/linux/netdev.h> #include <linux/hashtable.h> #include <linux/rbtree.h> #include <net/net_trackers.h> #include <net/net_debug.h> #include <net/dropreason-core.h> #include <net/neighbour_tables.h> struct netpoll_info; struct device; struct ethtool_ops; struct kernel_hwtstamp_config; struct phy_device; struct dsa_port; struct ip_tunnel_parm_kern; struct macsec_context; struct macsec_ops; struct netdev_name_node; struct sd_flow_limit; struct sfp_bus; /* 802.11 specific */ struct wireless_dev; /* 802.15.4 specific */ struct wpan_dev; struct mpls_dev; /* UDP Tunnel offloads */ struct udp_tunnel_info; struct udp_tunnel_nic_info; struct udp_tunnel_nic; struct bpf_prog; struct xdp_buff; struct xdp_frame; struct xdp_metadata_ops; struct xdp_md; struct ethtool_netdev_state; struct phy_link_topology; typedef u32 xdp_features_t; void synchronize_net(void); void netdev_set_default_ethtool_ops(struct net_device *dev, const struct ethtool_ops *ops); void netdev_sw_irq_coalesce_default_on(struct net_device *dev); /* Backlog congestion levels */ #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ #define NET_RX_DROP 1 /* packet dropped */ #define MAX_NEST_DEV 8 /* * Transmit return codes: transmit return codes originate from three different * namespaces: * * - qdisc return codes * - driver transmit return codes * - errno values * * Drivers are allowed to return any one of those in their hard_start_xmit() * function. Real network devices commonly used with qdiscs should only return * the driver transmit return codes though - when qdiscs are used, the actual * transmission happens asynchronously, so the value is not propagated to * higher layers. Virtual network devices transmit synchronously; in this case * the driver transmit return codes are consumed by dev_queue_xmit(), and all * others are propagated to higher layers. */ /* qdisc ->enqueue() return codes. */ #define NET_XMIT_SUCCESS 0x00 #define NET_XMIT_DROP 0x01 /* skb dropped */ #define NET_XMIT_CN 0x02 /* congestion notification */ #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It * indicates that the device will soon be dropping packets, or already drops * some packets of the same priority; prompting us to send less aggressively. */ #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) /* Driver transmit return codes */ #define NETDEV_TX_MASK 0xf0 enum netdev_tx { __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ NETDEV_TX_OK = 0x00, /* driver took care of packet */ NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ }; typedef enum netdev_tx netdev_tx_t; /* * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. */ static inline bool dev_xmit_complete(int rc) { /* * Positive cases with an skb consumed by a driver: * - successful transmission (rc == NETDEV_TX_OK) * - error while transmitting (rc < 0) * - error while queueing to a different device (rc & NET_XMIT_MASK) */ if (likely(rc < NET_XMIT_MASK)) return true; return false; } /* * Compute the worst-case header length according to the protocols * used. */ #if defined(CONFIG_HYPERV_NET) # define LL_MAX_HEADER 128 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) # if defined(CONFIG_MAC80211_MESH) # define LL_MAX_HEADER 128 # else # define LL_MAX_HEADER 96 # endif #else # define LL_MAX_HEADER 32 #endif #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) #define MAX_HEADER LL_MAX_HEADER #else #define MAX_HEADER (LL_MAX_HEADER + 48) #endif /* * Old network device statistics. Fields are native words * (unsigned long) so they can be read and written atomically. */ #define NET_DEV_STAT(FIELD) \ union { \ unsigned long FIELD; \ atomic_long_t __##FIELD; \ } struct net_device_stats { NET_DEV_STAT(rx_packets); NET_DEV_STAT(tx_packets); NET_DEV_STAT(rx_bytes); NET_DEV_STAT(tx_bytes); NET_DEV_STAT(rx_errors); NET_DEV_STAT(tx_errors); NET_DEV_STAT(rx_dropped); NET_DEV_STAT(tx_dropped); NET_DEV_STAT(multicast); NET_DEV_STAT(collisions); NET_DEV_STAT(rx_length_errors); NET_DEV_STAT(rx_over_errors); NET_DEV_STAT(rx_crc_errors); NET_DEV_STAT(rx_frame_errors); NET_DEV_STAT(rx_fifo_errors); NET_DEV_STAT(rx_missed_errors); NET_DEV_STAT(tx_aborted_errors); NET_DEV_STAT(tx_carrier_errors); NET_DEV_STAT(tx_fifo_errors); NET_DEV_STAT(tx_heartbeat_errors); NET_DEV_STAT(tx_window_errors); NET_DEV_STAT(rx_compressed); NET_DEV_STAT(tx_compressed); }; #undef NET_DEV_STAT /* per-cpu stats, allocated on demand. * Try to fit them in a single cache line, for dev_get_stats() sake. */ struct net_device_core_stats { unsigned long rx_dropped; unsigned long tx_dropped; unsigned long rx_nohandler; unsigned long rx_otherhost_dropped; } __aligned(4 * sizeof(unsigned long)); #include <linux/cache.h> #include <linux/skbuff.h> struct neighbour; struct neigh_parms; struct sk_buff; struct netdev_hw_addr { struct list_head list; struct rb_node node; unsigned char addr[MAX_ADDR_LEN]; unsigned char type; #define NETDEV_HW_ADDR_T_LAN 1 #define NETDEV_HW_ADDR_T_SAN 2 #define NETDEV_HW_ADDR_T_UNICAST 3 #define NETDEV_HW_ADDR_T_MULTICAST 4 bool global_use; int sync_cnt; int refcount; int synced; struct rcu_head rcu_head; }; struct netdev_hw_addr_list { struct list_head list; int count; /* Auxiliary tree for faster lookup on addition and deletion */ struct rb_root tree; }; #define netdev_hw_addr_list_count(l) ((l)->count) #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) #define netdev_hw_addr_list_for_each(ha, l) \ list_for_each_entry(ha, &(l)->list, list) #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) #define netdev_for_each_uc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->uc) #define netdev_for_each_synced_uc_addr(_ha, _dev) \ netdev_for_each_uc_addr((_ha), (_dev)) \ if ((_ha)->sync_cnt) #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) #define netdev_for_each_mc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->mc) #define netdev_for_each_synced_mc_addr(_ha, _dev) \ netdev_for_each_mc_addr((_ha), (_dev)) \ if ((_ha)->sync_cnt) struct hh_cache { unsigned int hh_len; seqlock_t hh_lock; /* cached hardware header; allow for machine alignment needs. */ #define HH_DATA_MOD 16 #define HH_DATA_OFF(__len) \ (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) #define HH_DATA_ALIGN(__len) \ (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; }; /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. * Alternative is: * dev->hard_header_len ? (dev->hard_header_len + * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 * * We could use other alignment values, but we must maintain the * relationship HH alignment <= LL alignment. */ #define LL_RESERVED_SPACE(dev) \ ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) struct header_ops { int (*create) (struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len); int (*parse)(const struct sk_buff *skb, unsigned char *haddr); int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void (*cache_update)(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); bool (*validate)(const char *ll_header, unsigned int len); __be16 (*parse_protocol)(const struct sk_buff *skb); }; /* These flag bits are private to the generic network queueing * layer; they may not be explicitly referenced by any other * code. */ enum netdev_state_t { __LINK_STATE_START, __LINK_STATE_PRESENT, __LINK_STATE_NOCARRIER, __LINK_STATE_LINKWATCH_PENDING, __LINK_STATE_DORMANT, __LINK_STATE_TESTING, }; struct gro_list { struct list_head list; int count; }; /* * size of gro hash buckets, must less than bit number of * napi_struct::gro_bitmask */ #define GRO_HASH_BUCKETS 8 /* * Structure for per-NAPI config */ struct napi_config { u64 gro_flush_timeout; u64 irq_suspend_timeout; u32 defer_hard_irqs; unsigned int napi_id; }; /* * Structure for NAPI scheduling similar to tasklet but with weighting */ struct napi_struct { /* The poll_list must only be managed by the entity which * changes the state of the NAPI_STATE_SCHED bit. This means * whoever atomically sets that bit can add this napi_struct * to the per-CPU poll_list, and whoever clears that bit * can remove from the list right before clearing the bit. */ struct list_head poll_list; unsigned long state; int weight; u32 defer_hard_irqs_count; unsigned long gro_bitmask; int (*poll)(struct napi_struct *, int); #ifdef CONFIG_NETPOLL /* CPU actively polling if netpoll is configured */ int poll_owner; #endif /* CPU on which NAPI has been scheduled for processing */ int list_owner; struct net_device *dev; struct gro_list gro_hash[GRO_HASH_BUCKETS]; struct sk_buff *skb; struct list_head rx_list; /* Pending GRO_NORMAL skbs */ int rx_count; /* length of rx_list */ unsigned int napi_id; struct hrtimer timer; struct task_struct *thread; unsigned long gro_flush_timeout; unsigned long irq_suspend_timeout; u32 defer_hard_irqs; /* control-path-only fields follow */ struct list_head dev_list; struct hlist_node napi_hash_node; int irq; int index; struct napi_config *config; }; enum { NAPI_STATE_SCHED, /* Poll is scheduled */ NAPI_STATE_MISSED, /* reschedule a napi */ NAPI_STATE_DISABLE, /* Disable pending */ NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ NAPI_STATE_LISTED, /* NAPI added to system lists */ NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ }; enum { NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), }; enum gro_result { GRO_MERGED, GRO_MERGED_FREE, GRO_HELD, GRO_NORMAL, GRO_CONSUMED, }; typedef enum gro_result gro_result_t; /* * enum rx_handler_result - Possible return values for rx_handlers. * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it * further. * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in * case skb->dev was changed by rx_handler. * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. * * rx_handlers are functions called from inside __netif_receive_skb(), to do * special processing of the skb, prior to delivery to protocol handlers. * * Currently, a net_device can only have a single rx_handler registered. Trying * to register a second rx_handler will return -EBUSY. * * To register a rx_handler on a net_device, use netdev_rx_handler_register(). * To unregister a rx_handler on a net_device, use * netdev_rx_handler_unregister(). * * Upon return, rx_handler is expected to tell __netif_receive_skb() what to * do with the skb. * * If the rx_handler consumed the skb in some way, it should return * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for * the skb to be delivered in some other way. * * If the rx_handler changed skb->dev, to divert the skb to another * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the * new device will be called if it exists. * * If the rx_handler decides the skb should be ignored, it should return * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that * are registered on exact device (ptype->dev == skb->dev). * * If the rx_handler didn't change skb->dev, but wants the skb to be normally * delivered, it should return RX_HANDLER_PASS. * * A device without a registered rx_handler will behave as if rx_handler * returned RX_HANDLER_PASS. */ enum rx_handler_result { RX_HANDLER_CONSUMED, RX_HANDLER_ANOTHER, RX_HANDLER_EXACT, RX_HANDLER_PASS, }; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); void __napi_schedule(struct napi_struct *n); void __napi_schedule_irqoff(struct napi_struct *n); static inline bool napi_disable_pending(struct napi_struct *n) { return test_bit(NAPI_STATE_DISABLE, &n->state); } static inline bool napi_prefer_busy_poll(struct napi_struct *n) { return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); } /** * napi_is_scheduled - test if NAPI is scheduled * @n: NAPI context * * This check is "best-effort". With no locking implemented, * a NAPI can be scheduled or terminate right after this check * and produce not precise results. * * NAPI_STATE_SCHED is an internal state, napi_is_scheduled * should not be used normally and napi_schedule should be * used instead. * * Use only if the driver really needs to check if a NAPI * is scheduled for example in the context of delayed timer * that can be skipped if a NAPI is already scheduled. * * Return True if NAPI is scheduled, False otherwise. */ static inline bool napi_is_scheduled(struct napi_struct *n) { return test_bit(NAPI_STATE_SCHED, &n->state); } bool napi_schedule_prep(struct napi_struct *n); /** * napi_schedule - schedule NAPI poll * @n: NAPI context * * Schedule NAPI poll routine to be called if it is not already * running. * Return true if we schedule a NAPI or false if not. * Refer to napi_schedule_prep() for additional reason on why * a NAPI might not be scheduled. */ static inline bool napi_schedule(struct napi_struct *n) { if (napi_schedule_prep(n)) { __napi_schedule(n); return true; } return false; } /** * napi_schedule_irqoff - schedule NAPI poll * @n: NAPI context * * Variant of napi_schedule(), assuming hard irqs are masked. */ static inline void napi_schedule_irqoff(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule_irqoff(n); } /** * napi_complete_done - NAPI processing complete * @n: NAPI context * @work_done: number of packets processed * * Mark NAPI processing as complete. Should only be called if poll budget * has not been completely consumed. * Prefer over napi_complete(). * Return false if device should avoid rearming interrupts. */ bool napi_complete_done(struct napi_struct *n, int work_done); static inline bool napi_complete(struct napi_struct *n) { return napi_complete_done(n, 0); } int dev_set_threaded(struct net_device *dev, bool threaded); /** * napi_disable - prevent NAPI from scheduling * @n: NAPI context * * Stop NAPI from being scheduled on this context. * Waits till any outstanding processing completes. */ void napi_disable(struct napi_struct *n); void napi_enable(struct napi_struct *n); /** * napi_synchronize - wait until NAPI is not running * @n: NAPI context * * Wait until NAPI is done being scheduled on this context. * Waits till any outstanding processing completes but * does not disable future activations. */ static inline void napi_synchronize(const struct napi_struct *n) { if (IS_ENABLED(CONFIG_SMP)) while (test_bit(NAPI_STATE_SCHED, &n->state)) msleep(1); else barrier(); } /** * napi_if_scheduled_mark_missed - if napi is running, set the * NAPIF_STATE_MISSED * @n: NAPI context * * If napi is running, set the NAPIF_STATE_MISSED, and return true if * NAPI is scheduled. **/ static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) { unsigned long val, new; val = READ_ONCE(n->state); do { if (val & NAPIF_STATE_DISABLE) return true; if (!(val & NAPIF_STATE_SCHED)) return false; new = val | NAPIF_STATE_MISSED; } while (!try_cmpxchg(&n->state, &val, new)); return true; } enum netdev_queue_state_t { __QUEUE_STATE_DRV_XOFF, __QUEUE_STATE_STACK_XOFF, __QUEUE_STATE_FROZEN, }; #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ QUEUE_STATE_FROZEN) #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ QUEUE_STATE_FROZEN) /* * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The * netif_tx_* functions below are used to manipulate this flag. The * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit * queue independently. The netif_xmit_*stopped functions below are called * to check if the queue has been stopped by the driver or stack (either * of the XOFF bits are set in the state). Drivers should not need to call * netif_xmit*stopped functions, they should only be using netif_tx_*. */ struct netdev_queue { /* * read-mostly part */ struct net_device *dev; netdevice_tracker dev_tracker; struct Qdisc __rcu *qdisc; struct Qdisc __rcu *qdisc_sleeping; #ifdef CONFIG_SYSFS struct kobject kobj; #endif unsigned long tx_maxrate; /* * Number of TX timeouts for this queue * (/sys/class/net/DEV/Q/trans_timeout) */ atomic_long_t trans_timeout; /* Subordinate device that the queue has been assigned to */ struct net_device *sb_dev; #ifdef CONFIG_XDP_SOCKETS struct xsk_buff_pool *pool; #endif /* * write-mostly part */ #ifdef CONFIG_BQL struct dql dql; #endif spinlock_t _xmit_lock ____cacheline_aligned_in_smp; int xmit_lock_owner; /* * Time (in jiffies) of last Tx */ unsigned long trans_start; unsigned long state; /* * slow- / control-path part */ /* NAPI instance for the queue * Readers and writers must hold RTNL */ struct napi_struct *napi; #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) int numa_node; #endif } ____cacheline_aligned_in_smp; extern int sysctl_fb_tunnels_only_for_init_net; extern int sysctl_devconf_inherit_init_net; /* * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns * == 1 : For initns only * == 2 : For none. */ static inline bool net_has_fallback_tunnels(const struct net *net) { #if IS_ENABLED(CONFIG_SYSCTL) int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); return !fb_tunnels_only_for_init_net || (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); #else return true; #endif } static inline int net_inherit_devconf(void) { #if IS_ENABLED(CONFIG_SYSCTL) return READ_ONCE(sysctl_devconf_inherit_init_net); #else return 0; #endif } static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) return q->numa_node; #else return NUMA_NO_NODE; #endif } static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) q->numa_node = node; #endif } #ifdef CONFIG_RFS_ACCEL bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, u16 filter_id); #endif /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ enum xps_map_type { XPS_CPUS = 0, XPS_RXQS, XPS_MAPS_MAX, }; #ifdef CONFIG_XPS /* * This structure holds an XPS map which can be of variable length. The * map is an array of queues. */ struct xps_map { unsigned int len; unsigned int alloc_len; struct rcu_head rcu; u16 queues[]; }; #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ - sizeof(struct xps_map)) / sizeof(u16)) /* * This structure holds all XPS maps for device. Maps are indexed by CPU. * * We keep track of the number of cpus/rxqs used when the struct is allocated, * in nr_ids. This will help not accessing out-of-bound memory. * * We keep track of the number of traffic classes used when the struct is * allocated, in num_tc. This will be used to navigate the maps, to ensure we're * not crossing its upper bound, as the original dev->num_tc can be updated in * the meantime. */ struct xps_dev_maps { struct rcu_head rcu; unsigned int nr_ids; s16 num_tc; struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ }; #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ (_rxqs * (_tcs) * sizeof(struct xps_map *))) #endif /* CONFIG_XPS */ #define TC_MAX_QUEUE 16 #define TC_BITMASK 15 /* HW offloaded queuing disciplines txq count and offset maps */ struct netdev_tc_txq { u16 count; u16 offset; }; #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) /* * This structure is to hold information about the device * configured to run FCoE protocol stack. */ struct netdev_fcoe_hbainfo { char manufacturer[64]; char serial_number[64]; char hardware_version[64]; char driver_version[64]; char optionrom_version[64]; char firmware_version[64]; char model[256]; char model_description[256]; }; #endif #define MAX_PHYS_ITEM_ID_LEN 32 /* This structure holds a unique identifier to identify some * physical item (port for example) used by a netdevice. */ struct netdev_phys_item_id { unsigned char id[MAX_PHYS_ITEM_ID_LEN]; unsigned char id_len; }; static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, struct netdev_phys_item_id *b) { return a->id_len == b->id_len && memcmp(a->id, b->id, a->id_len) == 0; } typedef u16 (*select_queue_fallback_t)(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); enum net_device_path_type { DEV_PATH_ETHERNET = 0, DEV_PATH_VLAN, DEV_PATH_BRIDGE, DEV_PATH_PPPOE, DEV_PATH_DSA, DEV_PATH_MTK_WDMA, }; struct net_device_path { enum net_device_path_type type; const struct net_device *dev; union { struct { u16 id; __be16 proto; u8 h_dest[ETH_ALEN]; } encap; struct { enum { DEV_PATH_BR_VLAN_KEEP, DEV_PATH_BR_VLAN_TAG, DEV_PATH_BR_VLAN_UNTAG, DEV_PATH_BR_VLAN_UNTAG_HW, } vlan_mode; u16 vlan_id; __be16 vlan_proto; } bridge; struct { int port; u16 proto; } dsa; struct { u8 wdma_idx; u8 queue; u16 wcid; u8 bss; u8 amsdu; } mtk_wdma; }; }; #define NET_DEVICE_PATH_STACK_MAX 5 #define NET_DEVICE_PATH_VLAN_MAX 2 struct net_device_path_stack { int num_paths; struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; }; struct net_device_path_ctx { const struct net_device *dev; u8 daddr[ETH_ALEN]; int num_vlans; struct { u16 id; __be16 proto; } vlan[NET_DEVICE_PATH_VLAN_MAX]; }; enum tc_setup_type { TC_QUERY_CAPS, TC_SETUP_QDISC_MQPRIO, TC_SETUP_CLSU32, TC_SETUP_CLSFLOWER, TC_SETUP_CLSMATCHALL, TC_SETUP_CLSBPF, TC_SETUP_BLOCK, TC_SETUP_QDISC_CBS, TC_SETUP_QDISC_RED, TC_SETUP_QDISC_PRIO, TC_SETUP_QDISC_MQ, TC_SETUP_QDISC_ETF, TC_SETUP_ROOT_QDISC, TC_SETUP_QDISC_GRED, TC_SETUP_QDISC_TAPRIO, TC_SETUP_FT, TC_SETUP_QDISC_ETS, TC_SETUP_QDISC_TBF, TC_SETUP_QDISC_FIFO, TC_SETUP_QDISC_HTB, TC_SETUP_ACT, }; /* These structures hold the attributes of bpf state that are being passed * to the netdevice through the bpf op. */ enum bpf_netdev_command { /* Set or clear a bpf program used in the earliest stages of packet * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee * is responsible for calling bpf_prog_put on any old progs that are * stored. In case of error, the callee need not release the new prog * reference, but on success it takes ownership and must bpf_prog_put * when it is no longer used. */ XDP_SETUP_PROG, XDP_SETUP_PROG_HW, /* BPF program for offload callbacks, invoked at program load time. */ BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE, XDP_SETUP_XSK_POOL, }; struct bpf_prog_offload_ops; struct netlink_ext_ack; struct xdp_umem; struct xdp_dev_bulk_queue; struct bpf_xdp_link; enum bpf_xdp_mode { XDP_MODE_SKB = 0, XDP_MODE_DRV = 1, XDP_MODE_HW = 2, __MAX_XDP_MODE }; struct bpf_xdp_entity { struct bpf_prog *prog; struct bpf_xdp_link *link; }; struct netdev_bpf { enum bpf_netdev_command command; union { /* XDP_SETUP_PROG */ struct { u32 flags; struct bpf_prog *prog; struct netlink_ext_ack *extack; }; /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ struct { struct bpf_offloaded_map *offmap; }; /* XDP_SETUP_XSK_POOL */ struct { struct xsk_buff_pool *pool; u16 queue_id; } xsk; }; }; /* Flags for ndo_xsk_wakeup. */ #define XDP_WAKEUP_RX (1 << 0) #define XDP_WAKEUP_TX (1 << 1) #ifdef CONFIG_XFRM_OFFLOAD struct xfrmdev_ops { int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); void (*xdo_dev_state_delete) (struct xfrm_state *x); void (*xdo_dev_state_free) (struct xfrm_state *x); bool (*xdo_dev_offload_ok) (struct sk_buff *skb, struct xfrm_state *x); void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); void (*xdo_dev_state_update_stats) (struct xfrm_state *x); int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); void (*xdo_dev_policy_delete) (struct xfrm_policy *x); void (*xdo_dev_policy_free) (struct xfrm_policy *x); }; #endif struct dev_ifalias { struct rcu_head rcuhead; char ifalias[]; }; struct devlink; struct tlsdev_ops; struct netdev_net_notifier { struct list_head list; struct notifier_block *nb; }; /* * This structure defines the management hooks for network devices. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*ndo_init)(struct net_device *dev); * This function is called once when a network device is registered. * The network device can use this for any late stage initialization * or semantic validation. It can fail with an error code which will * be propagated back to register_netdev. * * void (*ndo_uninit)(struct net_device *dev); * This function is called when device is unregistered or when registration * fails. It is not called if init fails. * * int (*ndo_open)(struct net_device *dev); * This function is called when a network device transitions to the up * state. * * int (*ndo_stop)(struct net_device *dev); * This function is called when a network device transitions to the down * state. * * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, * struct net_device *dev); * Called when a packet needs to be transmitted. * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop * the queue before that can happen; it's for obsolete devices and weird * corner cases, but the stack really does a non-trivial amount * of useless work if you return NETDEV_TX_BUSY. * Required; cannot be NULL. * * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, * struct net_device *dev * netdev_features_t features); * Called by core transmit path to determine if device is capable of * performing offload operations on a given packet. This is to give * the device an opportunity to implement any restrictions that cannot * be otherwise expressed by feature flags. The check is called with * the set of features that the stack has calculated and it returns * those the driver believes to be appropriate. * * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, * struct net_device *sb_dev); * Called to decide which queue to use when device supports multiple * transmit queues. * * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); * This function is called to allow device receiver to make * changes to configuration when multicast or promiscuous is enabled. * * void (*ndo_set_rx_mode)(struct net_device *dev); * This function is called device changes address list filtering. * If driver handles unicast address filtering, it should set * IFF_UNICAST_FLT in its priv_flags. * * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); * This function is called when the Media Access Control address * needs to be changed. If this interface is not defined, the * MAC address can not be changed. * * int (*ndo_validate_addr)(struct net_device *dev); * Test if Media Access Control address is valid for the device. * * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); * Old-style ioctl entry point. This is used internally by the * appletalk and ieee802154 subsystems but is no longer called by * the device ioctl handler. * * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); * Used by the bonding driver for its device specific ioctls: * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY * * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. * * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); * Used to set network devices bus interface parameters. This interface * is retained for legacy reasons; new devices should use the bus * interface (PCI) for low level management. * * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); * Called when a user wants to change the Maximum Transfer Unit * of a device. * * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); * Callback used when the transmitter has not made any progress * for dev->watchdog ticks. * * void (*ndo_get_stats64)(struct net_device *dev, * struct rtnl_link_stats64 *storage); * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); * Called when a user wants to get the network device usage * statistics. Drivers must do one of the following: * 1. Define @ndo_get_stats64 to fill in a zero-initialised * rtnl_link_stats64 structure passed by the caller. * 2. Define @ndo_get_stats to update a net_device_stats structure * (which should normally be dev->stats) and return a pointer to * it. The structure may be changed asynchronously only if each * field is written atomically. * 3. Update dev->stats asynchronously and atomically, and define * neither operation. * * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) * Return true if this device supports offload stats of this attr_id. * * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, * void *attr_data) * Get statistics for offload operations by attr_id. Write it into the * attr_data pointer. * * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device supports VLAN filtering this function is called when a * VLAN id is registered. * * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device supports VLAN filtering this function is called when a * VLAN id is unregistered. * * void (*ndo_poll_controller)(struct net_device *dev); * * SR-IOV management functions. * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, * u8 qos, __be16 proto); * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, * int max_tx_rate); * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_config)(struct net_device *dev, * int vf, struct ifla_vf_info *ivf); * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); * int (*ndo_set_vf_port)(struct net_device *dev, int vf, * struct nlattr *port[]); * * Enable or disable the VF ability to query its RSS Redirection Table and * Hash Key. This is needed since on some devices VF share this information * with PF and querying it may introduce a theoretical security risk. * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, * void *type_data); * Called to setup any 'tc' scheduler, classifier or action on @dev. * This is always called from the stack with the rtnl lock held and netif * tx queues stopped. This allows the netdevice to perform queue * management safely. * * Fiber Channel over Ethernet (FCoE) offload functions. * int (*ndo_fcoe_enable)(struct net_device *dev); * Called when the FCoE protocol stack wants to start using LLD for FCoE * so the underlying device can perform whatever needed configuration or * initialization to support acceleration of FCoE traffic. * * int (*ndo_fcoe_disable)(struct net_device *dev); * Called when the FCoE protocol stack wants to stop using LLD for FCoE * so the underlying device can perform whatever needed clean-ups to * stop supporting acceleration of FCoE traffic. * * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Initiator wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); * Called when the FCoE Initiator/Target is done with the DDPed I/O as * indicated by the FC exchange id 'xid', so the underlying device can * clean up and reuse resources for later DDP requests. * * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Target wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, * struct netdev_fcoe_hbainfo *hbainfo); * Called when the FCoE Protocol stack wants information on the underlying * device. This information is utilized by the FCoE protocol stack to * register attributes with Fiber Channel management service as per the * FC-GS Fabric Device Management Information(FDMI) specification. * * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); * Called when the underlying device wants to override default World Wide * Name (WWN) generation mechanism in FCoE protocol stack to pass its own * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE * protocol stack to use. * * RFS acceleration. * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, * u16 rxq_index, u32 flow_id); * Set hardware filter for RFS. rxq_index is the target queue index; * flow_id is a flow ID to be passed to rps_may_expire_flow() later. * Return the filter ID on success, or a negative error code. * * Slave management functions (for bridge, bonding, etc). * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to make another netdev an underling. * * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to release previously enslaved netdev. * * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, * struct sk_buff *skb, * bool all_slaves); * Get the xmit slave of master device. If all_slaves is true, function * assume all the slaves can transmit. * * Feature/offload setting functions. * netdev_features_t (*ndo_fix_features)(struct net_device *dev, * netdev_features_t features); * Adjusts the requested feature flags according to device-specific * constraints, and returns the resulting flags. Must not modify * the device state. * * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); * Called to update device configuration to new features. Passed * feature set might be less than what was returned by ndo_fix_features()). * Must return >0 or -errno if it changed dev->features itself. * * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid, u16 flags, * bool *notified, struct netlink_ext_ack *extack); * Adds an FDB entry to dev for addr. * Callee shall set *notified to true if it sent any appropriate * notification(s). Otherwise core will send a generic one. * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid * bool *notified, struct netlink_ext_ack *extack); * Deletes the FDB entry from dev corresponding to addr. * Callee shall set *notified to true if it sent any appropriate * notification(s). Otherwise core will send a generic one. * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, * struct netlink_ext_ack *extack); * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, * struct net_device *dev, struct net_device *filter_dev, * int *idx) * Used to add FDB entries to dump requests. Implementers should add * entries to skb and update idx with the number of entries. * * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], * u16 nlmsg_flags, struct netlink_ext_ack *extack); * Adds an MDB entry to dev. * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], * struct netlink_ext_ack *extack); * Deletes the MDB entry from dev. * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], * struct netlink_ext_ack *extack); * Bulk deletes MDB entries from dev. * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, * struct netlink_callback *cb); * Dumps MDB entries from dev. The first argument (marker) in the netlink * callback is used by core rtnetlink code. * * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, * u16 flags, struct netlink_ext_ack *extack) * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, * struct net_device *dev, u32 filter_mask, * int nlflags) * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, * u16 flags); * * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); * Called to change device carrier. Soft-devices (like dummy, team, etc) * which do not represent real hardware may define this to allow their * userspace components to manage their virtual carrier state. Devices * that determine carrier state from physical hardware properties (eg * network cables) or protocol-dependent mechanisms (eg * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. * * int (*ndo_get_phys_port_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid); * Called to get ID of physical port of this device. If driver does * not implement this, it is assumed that the hw is not able to have * multiple net devices on single physical port. * * int (*ndo_get_port_parent_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid) * Called to get the parent ID of the physical port of this device. * * void* (*ndo_dfwd_add_station)(struct net_device *pdev, * struct net_device *dev) * Called by upper layer devices to accelerate switching or other * station functionality into hardware. 'pdev is the lowerdev * to use for the offload and 'dev' is the net device that will * back the offload. Returns a pointer to the private structure * the upper layer will maintain. * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) * Called by upper layer device to delete the station created * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing * the station and priv is the structure returned by the add * operation. * int (*ndo_set_tx_maxrate)(struct net_device *dev, * int queue_index, u32 maxrate); * Called when a user wants to set a max-rate limitation of specific * TX queue. * int (*ndo_get_iflink)(const struct net_device *dev); * Called to get the iflink value of this device. * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); * This function is used to get egress tunnel information for given skb. * This is useful for retrieving outer tunnel header parameters while * sampling packet. * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); * This function is used to specify the headroom that the skb must * consider when allocation skb during packet reception. Setting * appropriate rx headroom value allows avoiding skb head copy on * forward. Setting a negative value resets the rx headroom to the * default value. * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); * This function is used to set or query state related to XDP on the * netdevice and manage BPF offload. See definition of * enum bpf_netdev_command for details. * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, * u32 flags); * This function is used to submit @n XDP packets for transmit on a * netdevice. Returns number of frames successfully transmitted, frames * that got dropped are freed/returned via xdp_return_frame(). * Returns negative number, means general error invoking ndo, meaning * no frames were xmit'ed and core-caller will free all frames. * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, * struct xdp_buff *xdp); * Get the xmit slave of master device based on the xdp_buff. * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); * This function is used to wake up the softirq, ksoftirqd or kthread * responsible for sending and/or receiving packets on a specific * queue id bound to an AF_XDP socket. The flags field specifies if * only RX, only Tx, or both should be woken up using the flags * XDP_WAKEUP_RX and XDP_WAKEUP_TX. * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, * int cmd); * Add, change, delete or get information on an IPv4 tunnel. * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); * If a device is paired with a peer device, return the peer instance. * The caller must be under RCU read context. * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); * Get the forwarding path to reach the real device from the HW destination address * ktime_t (*ndo_get_tstamp)(struct net_device *dev, * const struct skb_shared_hwtstamps *hwtstamps, * bool cycles); * Get hardware timestamp based on normal/adjustable time or free running * cycle counter. This function is required if physical clock supports a * free running cycle counter. * * int (*ndo_hwtstamp_get)(struct net_device *dev, * struct kernel_hwtstamp_config *kernel_config); * Get the currently configured hardware timestamping parameters for the * NIC device. * * int (*ndo_hwtstamp_set)(struct net_device *dev, * struct kernel_hwtstamp_config *kernel_config, * struct netlink_ext_ack *extack); * Change the hardware timestamping parameters for NIC device. */ struct net_device_ops { int (*ndo_init)(struct net_device *dev); void (*ndo_uninit)(struct net_device *dev); int (*ndo_open)(struct net_device *dev); int (*ndo_stop)(struct net_device *dev); netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, struct net_device *dev); netdev_features_t (*ndo_features_check)(struct sk_buff *skb, struct net_device *dev, netdev_features_t features); u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); void (*ndo_change_rx_flags)(struct net_device *dev, int flags); void (*ndo_set_rx_mode)(struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_validate_addr)(struct net_device *dev); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_siocwandev)(struct net_device *dev, struct if_settings *ifs); int (*ndo_siocdevprivate)(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd); int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); int (*ndo_neigh_setup)(struct net_device *dev, struct neigh_parms *); void (*ndo_tx_timeout) (struct net_device *dev, unsigned int txqueue); void (*ndo_get_stats64)(struct net_device *dev, struct rtnl_link_stats64 *storage); bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, void *attr_data); struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); #ifdef CONFIG_NET_POLL_CONTROLLER void (*ndo_poll_controller)(struct net_device *dev); int (*ndo_netpoll_setup)(struct net_device *dev); void (*ndo_netpoll_cleanup)(struct net_device *dev); #endif int (*ndo_set_vf_mac)(struct net_device *dev, int queue, u8 *mac); int (*ndo_set_vf_vlan)(struct net_device *dev, int queue, u16 vlan, u8 qos, __be16 proto); int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, int max_tx_rate); int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); int (*ndo_get_vf_config)(struct net_device *dev, int vf, struct ifla_vf_info *ivf); int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); int (*ndo_get_vf_stats)(struct net_device *dev, int vf, struct ifla_vf_stats *vf_stats); int (*ndo_set_vf_port)(struct net_device *dev, int vf, struct nlattr *port[]); int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); int (*ndo_get_vf_guid)(struct net_device *dev, int vf, struct ifla_vf_guid *node_guid, struct ifla_vf_guid *port_guid); int (*ndo_set_vf_guid)(struct net_device *dev, int vf, u64 guid, int guid_type); int (*ndo_set_vf_rss_query_en)( struct net_device *dev, int vf, bool setting); int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, void *type_data); #if IS_ENABLED(CONFIG_FCOE) int (*ndo_fcoe_enable)(struct net_device *dev); int (*ndo_fcoe_disable)(struct net_device *dev); int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, struct netdev_fcoe_hbainfo *hbainfo); #endif #if IS_ENABLED(CONFIG_LIBFCOE) #define NETDEV_FCOE_WWNN 0 #define NETDEV_FCOE_WWPN 1 int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); #endif #ifdef CONFIG_RFS_ACCEL int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id); #endif int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev, struct netlink_ext_ack *extack); int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, struct sk_buff *skb, bool all_slaves); struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, struct sock *sk); netdev_features_t (*ndo_fix_features)(struct net_device *dev, netdev_features_t features); int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); int (*ndo_neigh_construct)(struct net_device *dev, struct neighbour *n); void (*ndo_neigh_destroy)(struct net_device *dev, struct neighbour *n); int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags, bool *notified, struct netlink_ext_ack *extack); int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, bool *notified, struct netlink_ext_ack *extack); int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, struct netlink_ext_ack *extack); int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx); int (*ndo_fdb_get)(struct sk_buff *skb, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u32 portid, u32 seq, struct netlink_ext_ack *extack); int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], u16 nlmsg_flags, struct netlink_ext_ack *extack); int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], struct netlink_ext_ack *extack); int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], struct netlink_ext_ack *extack); int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, struct netlink_callback *cb); int (*ndo_mdb_get)(struct net_device *dev, struct nlattr *tb[], u32 portid, u32 seq, struct netlink_ext_ack *extack); int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags, struct netlink_ext_ack *extack); int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags); int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags); int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); int (*ndo_get_phys_port_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); int (*ndo_get_port_parent_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); int (*ndo_get_phys_port_name)(struct net_device *dev, char *name, size_t len); void* (*ndo_dfwd_add_station)(struct net_device *pdev, struct net_device *dev); void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv); int (*ndo_set_tx_maxrate)(struct net_device *dev, int queue_index, u32 maxrate); int (*ndo_get_iflink)(const struct net_device *dev); int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, u32 flags); struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, struct xdp_buff *xdp); int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, int cmd); struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); ktime_t (*ndo_get_tstamp)(struct net_device *dev, const struct skb_shared_hwtstamps *hwtstamps, bool cycles); int (*ndo_hwtstamp_get)(struct net_device *dev, struct kernel_hwtstamp_config *kernel_config); int (*ndo_hwtstamp_set)(struct net_device *dev, struct kernel_hwtstamp_config *kernel_config, struct netlink_ext_ack *extack); #if IS_ENABLED(CONFIG_NET_SHAPER) /** * @net_shaper_ops: Device shaping offload operations * see include/net/net_shapers.h */ const struct net_shaper_ops *net_shaper_ops; #endif }; /** * enum netdev_priv_flags - &struct net_device priv_flags * * These are the &struct net_device, they are only set internally * by drivers and used in the kernel. These flags are invisible to * userspace; this means that the order of these flags can change * during any kernel release. * * You should add bitfield booleans after either net_device::priv_flags * (hotpath) or ::threaded (slowpath) instead of extending these flags. * * @IFF_802_1Q_VLAN: 802.1Q VLAN device * @IFF_EBRIDGE: Ethernet bridging device * @IFF_BONDING: bonding master or slave * @IFF_ISATAP: ISATAP interface (RFC4214) * @IFF_WAN_HDLC: WAN HDLC device * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to * release skb->dst * @IFF_DONT_BRIDGE: disallow bridging this ether dev * @IFF_DISABLE_NETPOLL: disable netpoll at run-time * @IFF_MACVLAN_PORT: device used as macvlan port * @IFF_BRIDGE_PORT: device used as bridge port * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit * @IFF_UNICAST_FLT: Supports unicast filtering * @IFF_TEAM_PORT: device used as team port * @IFF_SUPP_NOFCS: device supports sending custom FCS * @IFF_LIVE_ADDR_CHANGE: device supports hardware address * change when it's running * @IFF_MACVLAN: Macvlan device * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account * underlying stacked devices * @IFF_L3MDEV_MASTER: device is an L3 master device * @IFF_NO_QUEUE: device can run without qdisc attached * @IFF_OPENVSWITCH: device is a Open vSwitch master * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device * @IFF_TEAM: device is a team device * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external * entity (i.e. the master device for bridged veth) * @IFF_MACSEC: device is a MACsec device * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook * @IFF_FAILOVER: device is a failover master device * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device * @IFF_NO_ADDRCONF: prevent ipv6 addrconf * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with * skb_headlen(skb) == 0 (data starts from frag0) */ enum netdev_priv_flags { IFF_802_1Q_VLAN = 1<<0, IFF_EBRIDGE = 1<<1, IFF_BONDING = 1<<2, IFF_ISATAP = 1<<3, IFF_WAN_HDLC = 1<<4, IFF_XMIT_DST_RELEASE = 1<<5, IFF_DONT_BRIDGE = 1<<6, IFF_DISABLE_NETPOLL = 1<<7, IFF_MACVLAN_PORT = 1<<8, IFF_BRIDGE_PORT = 1<<9, IFF_OVS_DATAPATH = 1<<10, IFF_TX_SKB_SHARING = 1<<11, IFF_UNICAST_FLT = 1<<12, IFF_TEAM_PORT = 1<<13, IFF_SUPP_NOFCS = 1<<14, IFF_LIVE_ADDR_CHANGE = 1<<15, IFF_MACVLAN = 1<<16, IFF_XMIT_DST_RELEASE_PERM = 1<<17, IFF_L3MDEV_MASTER = 1<<18, IFF_NO_QUEUE = 1<<19, IFF_OPENVSWITCH = 1<<20, IFF_L3MDEV_SLAVE = 1<<21, IFF_TEAM = 1<<22, IFF_RXFH_CONFIGURED = 1<<23, IFF_PHONY_HEADROOM = 1<<24, IFF_MACSEC = 1<<25, IFF_NO_RX_HANDLER = 1<<26, IFF_FAILOVER = 1<<27, IFF_FAILOVER_SLAVE = 1<<28, IFF_L3MDEV_RX_HANDLER = 1<<29, IFF_NO_ADDRCONF = BIT_ULL(30), IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), }; /* Specifies the type of the struct net_device::ml_priv pointer */ enum netdev_ml_priv_type { ML_PRIV_NONE, ML_PRIV_CAN, }; enum netdev_stat_type { NETDEV_PCPU_STAT_NONE, NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ }; enum netdev_reg_state { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED, /* completed register_netdevice */ NETREG_UNREGISTERING, /* called unregister_netdevice */ NETREG_UNREGISTERED, /* completed unregister todo */ NETREG_RELEASED, /* called free_netdev */ NETREG_DUMMY, /* dummy device for NAPI poll */ }; /** * struct net_device - The DEVICE structure. * * Actually, this whole structure is a big mistake. It mixes I/O * data with strictly "high-level" data, and it has to know about * almost every data structure used in the INET module. * * @priv_flags: flags invisible to userspace defined as bits, see * enum netdev_priv_flags for the definitions * @lltx: device supports lockless Tx. Deprecated for real HW * drivers. Mainly used by logical interfaces, such as * bonding and tunnels * * @name: This is the first field of the "visible" part of this structure * (i.e. as seen by users in the "Space.c" file). It is the name * of the interface. * * @name_node: Name hashlist node * @ifalias: SNMP alias * @mem_end: Shared memory end * @mem_start: Shared memory start * @base_addr: Device I/O address * @irq: Device IRQ number * * @state: Generic network queuing layer state, see netdev_state_t * @dev_list: The global list of network devices * @napi_list: List entry used for polling NAPI devices * @unreg_list: List entry when we are unregistering the * device; see the function unregister_netdev * @close_list: List entry used when we are closing the device * @ptype_all: Device-specific packet handlers for all protocols * @ptype_specific: Device-specific, protocol-specific packet handlers * * @adj_list: Directly linked devices, like slaves for bonding * @features: Currently active device features * @hw_features: User-changeable features * * @wanted_features: User-requested features * @vlan_features: Mask of features inheritable by VLAN devices * * @hw_enc_features: Mask of features inherited by encapsulating devices * This field indicates what encapsulation * offloads the hardware is capable of doing, * and drivers will need to set them appropriately. * * @mpls_features: Mask of features inheritable by MPLS * @gso_partial_features: value(s) from NETIF_F_GSO\* * * @ifindex: interface index * @group: The group the device belongs to * * @stats: Statistics struct, which was left as a legacy, use * rtnl_link_stats64 instead * * @core_stats: core networking counters, * do not use this in drivers * @carrier_up_count: Number of times the carrier has been up * @carrier_down_count: Number of times the carrier has been down * * @wireless_handlers: List of functions to handle Wireless Extensions, * instead of ioctl, * see <net/iw_handler.h> for details. * * @netdev_ops: Includes several pointers to callbacks, * if one wants to override the ndo_*() functions * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. * @ethtool_ops: Management operations * @l3mdev_ops: Layer 3 master device operations * @ndisc_ops: Includes callbacks for different IPv6 neighbour * discovery handling. Necessary for e.g. 6LoWPAN. * @xfrmdev_ops: Transformation offload operations * @tlsdev_ops: Transport Layer Security offload operations * @header_ops: Includes callbacks for creating,parsing,caching,etc * of Layer 2 headers. * * @flags: Interface flags (a la BSD) * @xdp_features: XDP capability supported by the device * @gflags: Global flags ( kept as legacy ) * @priv_len: Size of the ->priv flexible array * @priv: Flexible array containing private data * @operstate: RFC2863 operstate * @link_mode: Mapping policy to operstate * @if_port: Selectable AUI, TP, ... * @dma: DMA channel * @mtu: Interface MTU value * @min_mtu: Interface Minimum MTU value * @max_mtu: Interface Maximum MTU value * @type: Interface hardware type * @hard_header_len: Maximum hardware header length. * @min_header_len: Minimum hardware header length * * @needed_headroom: Extra headroom the hardware may need, but not in all * cases can this be guaranteed * @needed_tailroom: Extra tailroom the hardware may need, but not in all * cases can this be guaranteed. Some cases also use * LL_MAX_HEADER instead to allocate the skb * * interface address info: * * @perm_addr: Permanent hw address * @addr_assign_type: Hw address assignment type * @addr_len: Hardware address length * @upper_level: Maximum depth level of upper devices. * @lower_level: Maximum depth level of lower devices. * @neigh_priv_len: Used in neigh_alloc() * @dev_id: Used to differentiate devices that share * the same link layer address * @dev_port: Used to differentiate devices that share * the same function * @addr_list_lock: XXX: need comments on this one * @name_assign_type: network interface name assignment type * @uc_promisc: Counter that indicates promiscuous mode * has been enabled due to the need to listen to * additional unicast addresses in a device that * does not implement ndo_set_rx_mode() * @uc: unicast mac addresses * @mc: multicast mac addresses * @dev_addrs: list of device hw addresses * @queues_kset: Group of all Kobjects in the Tx and RX queues * @promiscuity: Number of times the NIC is told to work in * promiscuous mode; if it becomes 0 the NIC will * exit promiscuous mode * @allmulti: Counter, enables or disables allmulticast mode * * @vlan_info: VLAN info * @dsa_ptr: dsa specific data * @tipc_ptr: TIPC specific data * @atalk_ptr: AppleTalk link * @ip_ptr: IPv4 specific data * @ip6_ptr: IPv6 specific data * @ax25_ptr: AX.25 specific data * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network * device struct * @mpls_ptr: mpls_dev struct pointer * @mctp_ptr: MCTP specific data * * @dev_addr: Hw address (before bcast, * because most packets are unicast) * * @_rx: Array of RX queues * @num_rx_queues: Number of RX queues * allocated at register_netdev() time * @real_num_rx_queues: Number of RX queues currently active in device * @xdp_prog: XDP sockets filter program pointer * * @rx_handler: handler for received packets * @rx_handler_data: XXX: need comments on this one * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing * @ingress_queue: XXX: need comments on this one * @nf_hooks_ingress: netfilter hooks executed for ingress packets * @broadcast: hw bcast address * * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, * indexed by RX queue number. Assigned by driver. * This must only be set if the ndo_rx_flow_steer * operation is defined * @index_hlist: Device index hash chain * * @_tx: Array of TX queues * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time * @real_num_tx_queues: Number of TX queues currently active in device * @qdisc: Root qdisc from userspace point of view * @tx_queue_len: Max frames per queue allowed * @tx_global_lock: XXX: need comments on this one * @xdp_bulkq: XDP device bulk queue * @xps_maps: all CPUs/RXQs maps for XPS device * * @xps_maps: XXX: need comments on this one * @tcx_egress: BPF & clsact qdisc specific data for egress processing * @nf_hooks_egress: netfilter hooks executed for egress packets * @qdisc_hash: qdisc hash table * @watchdog_timeo: Represents the timeout that is used by * the watchdog (see dev_watchdog()) * @watchdog_timer: List of timers * * @proto_down_reason: reason a netdev interface is held down * @pcpu_refcnt: Number of references to this device * @dev_refcnt: Number of references to this device * @refcnt_tracker: Tracker directory for tracked references to this device * @todo_list: Delayed register/unregister * @link_watch_list: XXX: need comments on this one * * @reg_state: Register/unregister state machine * @dismantle: Device is going to be freed * @rtnl_link_state: This enum represents the phases of creating * a new link * * @needs_free_netdev: Should unregister perform free_netdev? * @priv_destructor: Called from unregister * @npinfo: XXX: need comments on this one * @nd_net: Network namespace this network device is inside * * @ml_priv: Mid-layer private * @ml_priv_type: Mid-layer private type * * @pcpu_stat_type: Type of device statistics which the core should * allocate/free: none, lstats, tstats, dstats. none * means the driver is handling statistics allocation/ * freeing internally. * @lstats: Loopback statistics: packets, bytes * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes * * @garp_port: GARP * @mrp_port: MRP * * @dm_private: Drop monitor private * * @dev: Class/net/name entry * @sysfs_groups: Space for optional device, statistics and wireless * sysfs groups * * @sysfs_rx_queue_group: Space for optional per-rx queue attributes * @rtnl_link_ops: Rtnl_link_ops * @stat_ops: Optional ops for queue-aware statistics * @queue_mgmt_ops: Optional ops for queue management * * @gso_max_size: Maximum size of generic segmentation offload * @tso_max_size: Device (as in HW) limit on the max TSO request size * @gso_max_segs: Maximum number of segments that can be passed to the * NIC for GSO * @tso_max_segs: Device (as in HW) limit on the max TSO segment count * @gso_ipv4_max_size: Maximum size of generic segmentation offload, * for IPv4. * * @dcbnl_ops: Data Center Bridging netlink ops * @num_tc: Number of traffic classes in the net device * @tc_to_txq: XXX: need comments on this one * @prio_tc_map: XXX: need comments on this one * * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp * * @priomap: XXX: need comments on this one * @link_topo: Physical link topology tracking attached PHYs * @phydev: Physical device may attach itself * for hardware timestamping * @sfp_bus: attached &struct sfp_bus structure. * * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock * * @proto_down: protocol port state information can be sent to the * switch driver and used to set the phys state of the * switch port. * * @threaded: napi threaded mode is enabled * * @see_all_hwtstamp_requests: device wants to see calls to * ndo_hwtstamp_set() for all timestamp requests * regardless of source, even if those aren't * HWTSTAMP_SOURCE_NETDEV * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN * @netns_local: interface can't change network namespaces * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes * * @net_notifier_list: List of per-net netdev notifier block * that follow this device when it is moved * to another network namespace. * * @macsec_ops: MACsec offloading ops * * @udp_tunnel_nic_info: static structure describing the UDP tunnel * offload capabilities of the device * @udp_tunnel_nic: UDP tunnel offload state * @ethtool: ethtool related state * @xdp_state: stores info on attached XDP BPF programs * * @nested_level: Used as a parameter of spin_lock_nested() of * dev->addr_list_lock. * @unlink_list: As netif_addr_lock() can be called recursively, * keep a list of interfaces to be deleted. * @gro_max_size: Maximum size of aggregated packet in generic * receive offload (GRO) * @gro_ipv4_max_size: Maximum size of aggregated packet in generic * receive offload (GRO), for IPv4. * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP * zero copy driver * * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. * @linkwatch_dev_tracker: refcount tracker used by linkwatch. * @watchdog_dev_tracker: refcount tracker used by watchdog. * @dev_registered_tracker: tracker for reference held while * registered * @offload_xstats_l3: L3 HW stats for this netdevice. * * @devlink_port: Pointer to related devlink port structure. * Assigned by a driver before netdev registration using * SET_NETDEV_DEVLINK_PORT macro. This pointer is static * during the time netdevice is registered. * * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, * where the clock is recovered. * * @max_pacing_offload_horizon: max EDT offload horizon in nsec. * @napi_config: An array of napi_config structures containing per-NAPI * settings. * @gro_flush_timeout: timeout for GRO layer in NAPI * @napi_defer_hard_irqs: If not zero, provides a counter that would * allow to avoid NIC hard IRQ, on busy queues. * * @neighbours: List heads pointing to this device's neighbours' * dev_list, one per address-family. * * FIXME: cleanup struct net_device such that network protocol info * moves out. */ struct net_device { /* Cacheline organization can be found documented in * Documentation/networking/net_cachelines/net_device.rst. * Please update the document when adding new fields. */ /* TX read-mostly hotpath */ __cacheline_group_begin(net_device_read_tx); struct_group(priv_flags_fast, unsigned long priv_flags:32; unsigned long lltx:1; ); const struct net_device_ops *netdev_ops; const struct header_ops *header_ops; struct netdev_queue *_tx; netdev_features_t gso_partial_features; unsigned int real_num_tx_queues; unsigned int gso_max_size; unsigned int gso_ipv4_max_size; u16 gso_max_segs; s16 num_tc; /* Note : dev->mtu is often read without holding a lock. * Writers usually hold RTNL. * It is recommended to use READ_ONCE() to annotate the reads, * and to use WRITE_ONCE() to annotate the writes. */ unsigned int mtu; unsigned short needed_headroom; struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; #ifdef CONFIG_XPS struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; #endif #ifdef CONFIG_NETFILTER_EGRESS struct nf_hook_entries __rcu *nf_hooks_egress; #endif #ifdef CONFIG_NET_XGRESS struct bpf_mprog_entry __rcu *tcx_egress; #endif __cacheline_group_end(net_device_read_tx); /* TXRX read-mostly hotpath */ __cacheline_group_begin(net_device_read_txrx); union { struct pcpu_lstats __percpu *lstats; struct pcpu_sw_netstats __percpu *tstats; struct pcpu_dstats __percpu *dstats; }; unsigned long state; unsigned int flags; unsigned short hard_header_len; netdev_features_t features; struct inet6_dev __rcu *ip6_ptr; __cacheline_group_end(net_device_read_txrx); /* RX read-mostly hotpath */ __cacheline_group_begin(net_device_read_rx); struct bpf_prog __rcu *xdp_prog; struct list_head ptype_specific; int ifindex; unsigned int real_num_rx_queues; struct netdev_rx_queue *_rx; unsigned int gro_max_size; unsigned int gro_ipv4_max_size; rx_handler_func_t __rcu *rx_handler; void __rcu *rx_handler_data; possible_net_t nd_net; #ifdef CONFIG_NETPOLL struct netpoll_info __rcu *npinfo; #endif #ifdef CONFIG_NET_XGRESS struct bpf_mprog_entry __rcu *tcx_ingress; #endif __cacheline_group_end(net_device_read_rx); char name[IFNAMSIZ]; struct netdev_name_node *name_node; struct dev_ifalias __rcu *ifalias; /* * I/O specific fields * FIXME: Merge these and struct ifmap into one */ unsigned long mem_end; unsigned long mem_start; unsigned long base_addr; /* * Some hardware also needs these fields (state,dev_list, * napi_list,unreg_list,close_list) but they are not * part of the usual set specified in Space.c. */ struct list_head dev_list; struct list_head napi_list; struct list_head unreg_list; struct list_head close_list; struct list_head ptype_all; struct { struct list_head upper; struct list_head lower; } adj_list; /* Read-mostly cache-line for fast-path access */ xdp_features_t xdp_features; const struct xdp_metadata_ops *xdp_metadata_ops; const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; unsigned short gflags; unsigned short needed_tailroom; netdev_features_t hw_features; netdev_features_t wanted_features; netdev_features_t vlan_features; netdev_features_t hw_enc_features; netdev_features_t mpls_features; unsigned int min_mtu; unsigned int max_mtu; unsigned short type; unsigned char min_header_len; unsigned char name_assign_type; int group; struct net_device_stats stats; /* not used by modern drivers */ struct net_device_core_stats __percpu *core_stats; /* Stats to monitor link on/off, flapping */ atomic_t carrier_up_count; atomic_t carrier_down_count; #ifdef CONFIG_WIRELESS_EXT const struct iw_handler_def *wireless_handlers; #endif const struct ethtool_ops *ethtool_ops; #ifdef CONFIG_NET_L3_MASTER_DEV const struct l3mdev_ops *l3mdev_ops; #endif #if IS_ENABLED(CONFIG_IPV6) const struct ndisc_ops *ndisc_ops; #endif #ifdef CONFIG_XFRM_OFFLOAD const struct xfrmdev_ops *xfrmdev_ops; #endif #if IS_ENABLED(CONFIG_TLS_DEVICE) const struct tlsdev_ops *tlsdev_ops; #endif unsigned int operstate; unsigned char link_mode; unsigned char if_port; unsigned char dma; /* Interface address info. */ unsigned char perm_addr[MAX_ADDR_LEN]; unsigned char addr_assign_type; unsigned char addr_len; unsigned char upper_level; unsigned char lower_level; unsigned short neigh_priv_len; unsigned short dev_id; unsigned short dev_port; int irq; u32 priv_len; spinlock_t addr_list_lock; struct netdev_hw_addr_list uc; struct netdev_hw_addr_list mc; struct netdev_hw_addr_list dev_addrs; #ifdef CONFIG_SYSFS struct kset *queues_kset; #endif #ifdef CONFIG_LOCKDEP struct list_head unlink_list; #endif unsigned int promiscuity; unsigned int allmulti; bool uc_promisc; #ifdef CONFIG_LOCKDEP unsigned char nested_level; #endif /* Protocol-specific pointers */ struct in_device __rcu *ip_ptr; /** @fib_nh_head: nexthops associated with this netdev */ struct hlist_head fib_nh_head; #if IS_ENABLED(CONFIG_VLAN_8021Q) struct vlan_info __rcu *vlan_info; #endif #if IS_ENABLED(CONFIG_NET_DSA) struct dsa_port *dsa_ptr; #endif #if IS_ENABLED(CONFIG_TIPC) struct tipc_bearer __rcu *tipc_ptr; #endif #if IS_ENABLED(CONFIG_ATALK) void *atalk_ptr; #endif #if IS_ENABLED(CONFIG_AX25) void *ax25_ptr; #endif #if IS_ENABLED(CONFIG_CFG80211) struct wireless_dev *ieee80211_ptr; #endif #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) struct wpan_dev *ieee802154_ptr; #endif #if IS_ENABLED(CONFIG_MPLS_ROUTING) struct mpls_dev __rcu *mpls_ptr; #endif #if IS_ENABLED(CONFIG_MCTP) struct mctp_dev __rcu *mctp_ptr; #endif /* * Cache lines mostly used on receive path (including eth_type_trans()) */ /* Interface address info used in eth_type_trans() */ const unsigned char *dev_addr; unsigned int num_rx_queues; #define GRO_LEGACY_MAX_SIZE 65536u /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), * and shinfo->gso_segs is a 16bit field. */ #define GRO_MAX_SIZE (8 * 65535u) unsigned int xdp_zc_max_segs; struct netdev_queue __rcu *ingress_queue; #ifdef CONFIG_NETFILTER_INGRESS struct nf_hook_entries __rcu *nf_hooks_ingress; #endif unsigned char broadcast[MAX_ADDR_LEN]; #ifdef CONFIG_RFS_ACCEL struct cpu_rmap *rx_cpu_rmap; #endif struct hlist_node index_hlist; /* * Cache lines mostly used on transmit path */ unsigned int num_tx_queues; struct Qdisc __rcu *qdisc; unsigned int tx_queue_len; spinlock_t tx_global_lock; struct xdp_dev_bulk_queue __percpu *xdp_bulkq; #ifdef CONFIG_NET_SCHED DECLARE_HASHTABLE (qdisc_hash, 4); #endif /* These may be needed for future network-power-down code. */ struct timer_list watchdog_timer; int watchdog_timeo; u32 proto_down_reason; struct list_head todo_list; #ifdef CONFIG_PCPU_DEV_REFCNT int __percpu *pcpu_refcnt; #else refcount_t dev_refcnt; #endif struct ref_tracker_dir refcnt_tracker; struct list_head link_watch_list; u8 reg_state; bool dismantle; enum { RTNL_LINK_INITIALIZED, RTNL_LINK_INITIALIZING, } rtnl_link_state:16; bool needs_free_netdev; void (*priv_destructor)(struct net_device *dev); /* mid-layer private */ void *ml_priv; enum netdev_ml_priv_type ml_priv_type; enum netdev_stat_type pcpu_stat_type:8; #if IS_ENABLED(CONFIG_GARP) struct garp_port __rcu *garp_port; #endif #if IS_ENABLED(CONFIG_MRP) struct mrp_port __rcu *mrp_port; #endif #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) struct dm_hw_stat_delta __rcu *dm_private; #endif struct device dev; const struct attribute_group *sysfs_groups[4]; const struct attribute_group *sysfs_rx_queue_group; const struct rtnl_link_ops *rtnl_link_ops; const struct netdev_stat_ops *stat_ops; const struct netdev_queue_mgmt_ops *queue_mgmt_ops; /* for setting kernel sock attribute on TCP connection setup */ #define GSO_MAX_SEGS 65535u #define GSO_LEGACY_MAX_SIZE 65536u /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), * and shinfo->gso_segs is a 16bit field. */ #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) #define TSO_LEGACY_MAX_SIZE 65536 #define TSO_MAX_SIZE UINT_MAX unsigned int tso_max_size; #define TSO_MAX_SEGS U16_MAX u16 tso_max_segs; #ifdef CONFIG_DCB const struct dcbnl_rtnl_ops *dcbnl_ops; #endif u8 prio_tc_map[TC_BITMASK + 1]; #if IS_ENABLED(CONFIG_FCOE) unsigned int fcoe_ddp_xid; #endif #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) struct netprio_map __rcu *priomap; #endif struct phy_link_topology *link_topo; struct phy_device *phydev; struct sfp_bus *sfp_bus; struct lock_class_key *qdisc_tx_busylock; bool proto_down; bool threaded; /* priv_flags_slow, ungrouped to save space */ unsigned long see_all_hwtstamp_requests:1; unsigned long change_proto_down:1; unsigned long netns_local:1; unsigned long fcoe_mtu:1; struct list_head net_notifier_list; #if IS_ENABLED(CONFIG_MACSEC) /* MACsec management functions */ const struct macsec_ops *macsec_ops; #endif const struct udp_tunnel_nic_info *udp_tunnel_nic_info; struct udp_tunnel_nic *udp_tunnel_nic; struct ethtool_netdev_state *ethtool; /* protected by rtnl_lock */ struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; u8 dev_addr_shadow[MAX_ADDR_LEN]; netdevice_tracker linkwatch_dev_tracker; netdevice_tracker watchdog_dev_tracker; netdevice_tracker dev_registered_tracker; struct rtnl_hw_stats64 *offload_xstats_l3; struct devlink_port *devlink_port; #if IS_ENABLED(CONFIG_DPLL) struct dpll_pin __rcu *dpll_pin; #endif #if IS_ENABLED(CONFIG_PAGE_POOL) /** @page_pools: page pools created for this netdevice */ struct hlist_head page_pools; #endif /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ struct dim_irq_moder *irq_moder; u64 max_pacing_offload_horizon; struct napi_config *napi_config; unsigned long gro_flush_timeout; u32 napi_defer_hard_irqs; /** * @lock: protects @net_shaper_hierarchy, feel free to use for other * netdev-scope protection. Ordering: take after rtnl_lock. */ struct mutex lock; #if IS_ENABLED(CONFIG_NET_SHAPER) /** * @net_shaper_hierarchy: data tracking the current shaper status * see include/net/net_shapers.h */ struct net_shaper_hierarchy *net_shaper_hierarchy; #endif struct hlist_head neighbours[NEIGH_NR_TABLES]; u8 priv[] ____cacheline_aligned __counted_by(priv_len); } ____cacheline_aligned; #define to_net_dev(d) container_of(d, struct net_device, dev) /* * Driver should use this to assign devlink port instance to a netdevice * before it registers the netdevice. Therefore devlink_port is static * during the netdev lifetime after it is registered. */ #define SET_NETDEV_DEVLINK_PORT(dev, port) \ ({ \ WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ ((dev)->devlink_port = (port)); \ }) static inline bool netif_elide_gro(const struct net_device *dev) { if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) return true; return false; } #define NETDEV_ALIGN 32 static inline int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) { return dev->prio_tc_map[prio & TC_BITMASK]; } static inline int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) { if (tc >= dev->num_tc) return -EINVAL; dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; return 0; } int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); void netdev_reset_tc(struct net_device *dev); int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); int netdev_set_num_tc(struct net_device *dev, u8 num_tc); static inline int netdev_get_num_tc(struct net_device *dev) { return dev->num_tc; } static inline void net_prefetch(void *p) { prefetch(p); #if L1_CACHE_BYTES < 128 prefetch((u8 *)p + L1_CACHE_BYTES); #endif } static inline void net_prefetchw(void *p) { prefetchw(p); #if L1_CACHE_BYTES < 128 prefetchw((u8 *)p + L1_CACHE_BYTES); #endif } void netdev_unbind_sb_channel(struct net_device *dev, struct net_device *sb_dev); int netdev_bind_sb_channel_queue(struct net_device *dev, struct net_device *sb_dev, u8 tc, u16 count, u16 offset); int netdev_set_sb_channel(struct net_device *dev, u16 channel); static inline int netdev_get_sb_channel(struct net_device *dev) { return max_t(int, -dev->num_tc, 0); } static inline struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, unsigned int index) { DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); return &dev->_tx[index]; } static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, const struct sk_buff *skb) { return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); } static inline void netdev_for_each_tx_queue(struct net_device *dev, void (*f)(struct net_device *, struct netdev_queue *, void *), void *arg) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) f(dev, &dev->_tx[i], arg); } #define netdev_lockdep_set_classes(dev) \ { \ static struct lock_class_key qdisc_tx_busylock_key; \ static struct lock_class_key qdisc_xmit_lock_key; \ static struct lock_class_key dev_addr_list_lock_key; \ unsigned int i; \ \ (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ lockdep_set_class(&(dev)->addr_list_lock, \ &dev_addr_list_lock_key); \ for (i = 0; i < (dev)->num_tx_queues; i++) \ lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ &qdisc_xmit_lock_key); \ } u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); /* returns the headroom that the master device needs to take in account * when forwarding to this dev */ static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) { return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; } static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) { if (dev->netdev_ops->ndo_set_rx_headroom) dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); } /* set the device rx headroom to the dev's default */ static inline void netdev_reset_rx_headroom(struct net_device *dev) { netdev_set_rx_headroom(dev, -1); } static inline void *netdev_get_ml_priv(struct net_device *dev, enum netdev_ml_priv_type type) { if (dev->ml_priv_type != type) return NULL; return dev->ml_priv; } static inline void netdev_set_ml_priv(struct net_device *dev, void *ml_priv, enum netdev_ml_priv_type type) { WARN(dev->ml_priv_type && dev->ml_priv_type != type, "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", dev->ml_priv_type, type); WARN(!dev->ml_priv_type && dev->ml_priv, "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); dev->ml_priv = ml_priv; dev->ml_priv_type = type; } /* * Net namespace inlines */ static inline struct net *dev_net(const struct net_device *dev) { return read_pnet(&dev->nd_net); } static inline void dev_net_set(struct net_device *dev, struct net *net) { write_pnet(&dev->nd_net, net); } /** * netdev_priv - access network device private data * @dev: network device * * Get network device private data */ static inline void *netdev_priv(const struct net_device *dev) { return (void *)dev->priv; } /* Set the sysfs physical device reference for the network logical device * if set prior to registration will cause a symlink during initialization. */ #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) /* Set the sysfs device type for the network logical device to allow * fine-grained identification of different network device types. For * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. */ #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, enum netdev_queue_type type, struct napi_struct *napi); static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) { napi->irq = irq; } /* Default NAPI poll() weight * Device drivers are strongly advised to not use bigger value */ #define NAPI_POLL_WEIGHT 64 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight); /** * netif_napi_add() - initialize a NAPI context * @dev: network device * @napi: NAPI context * @poll: polling function * * netif_napi_add() must be used to initialize a NAPI context prior to calling * *any* of the other NAPI-related functions. */ static inline void netif_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int)) { netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); } static inline void netif_napi_add_tx_weight(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight) { set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); netif_napi_add_weight(dev, napi, poll, weight); } /** * netif_napi_add_config - initialize a NAPI context with persistent config * @dev: network device * @napi: NAPI context * @poll: polling function * @index: the NAPI index */ static inline void netif_napi_add_config(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int index) { napi->index = index; napi->config = &dev->napi_config[index]; netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); } /** * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only * @dev: network device * @napi: NAPI context * @poll: polling function * * This variant of netif_napi_add() should be used from drivers using NAPI * to exclusively poll a TX queue. * This will avoid we add it into napi_hash[], thus polluting this hash table. */ static inline void netif_napi_add_tx(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int)) { netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); } /** * __netif_napi_del - remove a NAPI context * @napi: NAPI context * * Warning: caller must observe RCU grace period before freeing memory * containing @napi. Drivers might want to call this helper to combine * all the needed RCU grace periods into a single one. */ void __netif_napi_del(struct napi_struct *napi); /** * netif_napi_del - remove a NAPI context * @napi: NAPI context * * netif_napi_del() removes a NAPI context from the network device NAPI list */ static inline void netif_napi_del(struct napi_struct *napi) { __netif_napi_del(napi); synchronize_net(); } struct packet_type { __be16 type; /* This is really htons(ether_type). */ bool ignore_outgoing; struct net_device *dev; /* NULL is wildcarded here */ netdevice_tracker dev_tracker; int (*func) (struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); void (*list_func) (struct list_head *, struct packet_type *, struct net_device *); bool (*id_match)(struct packet_type *ptype, struct sock *sk); struct net *af_packet_net; void *af_packet_priv; struct list_head list; }; struct offload_callbacks { struct sk_buff *(*gso_segment)(struct sk_buff *skb, netdev_features_t features); struct sk_buff *(*gro_receive)(struct list_head *head, struct sk_buff *skb); int (*gro_complete)(struct sk_buff *skb, int nhoff); }; struct packet_offload { __be16 type; /* This is really htons(ether_type). */ u16 priority; struct offload_callbacks callbacks; struct list_head list; }; /* often modified stats are per-CPU, other are shared (netdev->stats) */ struct pcpu_sw_netstats { u64_stats_t rx_packets; u64_stats_t rx_bytes; u64_stats_t tx_packets; u64_stats_t tx_bytes; struct u64_stats_sync syncp; } __aligned(4 * sizeof(u64)); struct pcpu_dstats { u64_stats_t rx_packets; u64_stats_t rx_bytes; u64_stats_t rx_drops; u64_stats_t tx_packets; u64_stats_t tx_bytes; u64_stats_t tx_drops; struct u64_stats_sync syncp; } __aligned(8 * sizeof(u64)); struct pcpu_lstats { u64_stats_t packets; u64_stats_t bytes; struct u64_stats_sync syncp; } __aligned(2 * sizeof(u64)); void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) { struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); u64_stats_update_begin(&tstats->syncp); u64_stats_add(&tstats->rx_bytes, len); u64_stats_inc(&tstats->rx_packets); u64_stats_update_end(&tstats->syncp); } static inline void dev_sw_netstats_tx_add(struct net_device *dev, unsigned int packets, unsigned int len) { struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); u64_stats_update_begin(&tstats->syncp); u64_stats_add(&tstats->tx_bytes, len); u64_stats_add(&tstats->tx_packets, packets); u64_stats_update_end(&tstats->syncp); } static inline void dev_lstats_add(struct net_device *dev, unsigned int len) { struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); u64_stats_update_begin(&lstats->syncp); u64_stats_add(&lstats->bytes, len); u64_stats_inc(&lstats->packets); u64_stats_update_end(&lstats->syncp); } #define __netdev_alloc_pcpu_stats(type, gfp) \ ({ \ typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ if (pcpu_stats) { \ int __cpu; \ for_each_possible_cpu(__cpu) { \ typeof(type) *stat; \ stat = per_cpu_ptr(pcpu_stats, __cpu); \ u64_stats_init(&stat->syncp); \ } \ } \ pcpu_stats; \ }) #define netdev_alloc_pcpu_stats(type) \ __netdev_alloc_pcpu_stats(type, GFP_KERNEL) #define devm_netdev_alloc_pcpu_stats(dev, type) \ ({ \ typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ if (pcpu_stats) { \ int __cpu; \ for_each_possible_cpu(__cpu) { \ typeof(type) *stat; \ stat = per_cpu_ptr(pcpu_stats, __cpu); \ u64_stats_init(&stat->syncp); \ } \ } \ pcpu_stats; \ }) enum netdev_lag_tx_type { NETDEV_LAG_TX_TYPE_UNKNOWN, NETDEV_LAG_TX_TYPE_RANDOM, NETDEV_LAG_TX_TYPE_BROADCAST, NETDEV_LAG_TX_TYPE_ROUNDROBIN, NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, NETDEV_LAG_TX_TYPE_HASH, }; enum netdev_lag_hash { NETDEV_LAG_HASH_NONE, NETDEV_LAG_HASH_L2, NETDEV_LAG_HASH_L34, NETDEV_LAG_HASH_L23, NETDEV_LAG_HASH_E23, NETDEV_LAG_HASH_E34, NETDEV_LAG_HASH_VLAN_SRCMAC, NETDEV_LAG_HASH_UNKNOWN, }; struct netdev_lag_upper_info { enum netdev_lag_tx_type tx_type; enum netdev_lag_hash hash_type; }; struct netdev_lag_lower_state_info { u8 link_up : 1, tx_enabled : 1; }; #include <linux/notifier.h> /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() * and the rtnetlink notification exclusion list in rtnetlink_event() when * adding new types. */ enum netdev_cmd { NETDEV_UP = 1, /* For now you can't veto a device up/down */ NETDEV_DOWN, NETDEV_REBOOT, /* Tell a protocol stack a network interface detected a hardware crash and restarted - we can use this eg to kick tcp sessions once done */ NETDEV_CHANGE, /* Notify device state change */ NETDEV_REGISTER, NETDEV_UNREGISTER, NETDEV_CHANGEMTU, /* notify after mtu change happened */ NETDEV_CHANGEADDR, /* notify after the address change */ NETDEV_PRE_CHANGEADDR, /* notify before the address change */ NETDEV_GOING_DOWN, NETDEV_CHANGENAME, NETDEV_FEAT_CHANGE, NETDEV_BONDING_FAILOVER, NETDEV_PRE_UP, NETDEV_PRE_TYPE_CHANGE, NETDEV_POST_TYPE_CHANGE, NETDEV_POST_INIT, NETDEV_PRE_UNINIT, NETDEV_RELEASE, NETDEV_NOTIFY_PEERS, NETDEV_JOIN, NETDEV_CHANGEUPPER, NETDEV_RESEND_IGMP, NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ NETDEV_CHANGEINFODATA, NETDEV_BONDING_INFO, NETDEV_PRECHANGEUPPER, NETDEV_CHANGELOWERSTATE, NETDEV_UDP_TUNNEL_PUSH_INFO, NETDEV_UDP_TUNNEL_DROP_INFO, NETDEV_CHANGE_TX_QUEUE_LEN, NETDEV_CVLAN_FILTER_PUSH_INFO, NETDEV_CVLAN_FILTER_DROP_INFO, NETDEV_SVLAN_FILTER_PUSH_INFO, NETDEV_SVLAN_FILTER_DROP_INFO, NETDEV_OFFLOAD_XSTATS_ENABLE, NETDEV_OFFLOAD_XSTATS_DISABLE, NETDEV_OFFLOAD_XSTATS_REPORT_USED, NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, NETDEV_XDP_FEAT_CHANGE, }; const char *netdev_cmd_to_name(enum netdev_cmd cmd); int register_netdevice_notifier(struct notifier_block *nb); int unregister_netdevice_notifier(struct notifier_block *nb); int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); int unregister_netdevice_notifier_net(struct net *net, struct notifier_block *nb); int register_netdevice_notifier_dev_net(struct net_device *dev, struct notifier_block *nb, struct netdev_net_notifier *nn); int unregister_netdevice_notifier_dev_net(struct net_device *dev, struct notifier_block *nb, struct netdev_net_notifier *nn); struct netdev_notifier_info { struct net_device *dev; struct netlink_ext_ack *extack; }; struct netdev_notifier_info_ext { struct netdev_notifier_info info; /* must be first */ union { u32 mtu; } ext; }; struct netdev_notifier_change_info { struct netdev_notifier_info info; /* must be first */ unsigned int flags_changed; }; struct netdev_notifier_changeupper_info { struct netdev_notifier_info info; /* must be first */ struct net_device *upper_dev; /* new upper dev */ bool master; /* is upper dev master */ bool linking; /* is the notification for link or unlink */ void *upper_info; /* upper dev info */ }; struct netdev_notifier_changelowerstate_info { struct netdev_notifier_info info; /* must be first */ void *lower_state_info; /* is lower dev state */ }; struct netdev_notifier_pre_changeaddr_info { struct netdev_notifier_info info; /* must be first */ const unsigned char *dev_addr; }; enum netdev_offload_xstats_type { NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, }; struct netdev_notifier_offload_xstats_info { struct netdev_notifier_info info; /* must be first */ enum netdev_offload_xstats_type type; union { /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ struct netdev_notifier_offload_xstats_rd *report_delta; /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ struct netdev_notifier_offload_xstats_ru *report_used; }; }; int netdev_offload_xstats_enable(struct net_device *dev, enum netdev_offload_xstats_type type, struct netlink_ext_ack *extack); int netdev_offload_xstats_disable(struct net_device *dev, enum netdev_offload_xstats_type type); bool netdev_offload_xstats_enabled(const struct net_device *dev, enum netdev_offload_xstats_type type); int netdev_offload_xstats_get(struct net_device *dev, enum netdev_offload_xstats_type type, struct rtnl_hw_stats64 *stats, bool *used, struct netlink_ext_ack *extack); void netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, const struct rtnl_hw_stats64 *stats); void netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); void netdev_offload_xstats_push_delta(struct net_device *dev, enum netdev_offload_xstats_type type, const struct rtnl_hw_stats64 *stats); static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, struct net_device *dev) { info->dev = dev; info->extack = NULL; } static inline struct net_device * netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) { return info->dev; } static inline struct netlink_ext_ack * netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) { return info->extack; } int call_netdevice_notifiers(unsigned long val, struct net_device *dev); int call_netdevice_notifiers_info(unsigned long val, struct netdev_notifier_info *info); #define for_each_netdev(net, d) \ list_for_each_entry(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_reverse(net, d) \ list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_rcu(net, d) \ list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_safe(net, d, n) \ list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue(net, d) \ list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue_reverse(net, d) \ list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ dev_list) #define for_each_netdev_continue_rcu(net, d) \ list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_in_bond_rcu(bond, slave) \ for_each_netdev_rcu(&init_net, slave) \ if (netdev_master_upper_dev_get_rcu(slave) == (bond)) #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) #define for_each_netdev_dump(net, d, ifindex) \ for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ ULONG_MAX, XA_PRESENT)); ifindex++) static inline struct net_device *next_net_device(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = dev->dev_list.next; return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *next_net_device_rcu(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = rcu_dereference(list_next_rcu(&dev->dev_list)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *first_net_device(struct net *net) { return list_empty(&net->dev_base_head) ? NULL : net_device_entry(net->dev_base_head.next); } static inline struct net_device *first_net_device_rcu(struct net *net) { struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } int netdev_boot_setup_check(struct net_device *dev); struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, const char *hwaddr); struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); void dev_add_pack(struct packet_type *pt); void dev_remove_pack(struct packet_type *pt); void __dev_remove_pack(struct packet_type *pt); void dev_add_offload(struct packet_offload *po); void dev_remove_offload(struct packet_offload *po); int dev_get_iflink(const struct net_device *dev); int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, struct net_device_path_stack *stack); struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, unsigned short mask); struct net_device *dev_get_by_name(struct net *net, const char *name); struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); struct net_device *__dev_get_by_name(struct net *net, const char *name); bool netdev_name_in_use(struct net *net, const char *name); int dev_alloc_name(struct net_device *dev, const char *name); int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); void dev_close(struct net_device *dev); void dev_close_many(struct list_head *head, bool unlink); void dev_disable_lro(struct net_device *dev); int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); static inline int dev_queue_xmit(struct sk_buff *skb) { return __dev_queue_xmit(skb, NULL); } static inline int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) { return __dev_queue_xmit(skb, sb_dev); } static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) { int ret; ret = __dev_direct_xmit(skb, queue_id); if (!dev_xmit_complete(ret)) kfree_skb(skb); return ret; } int register_netdevice(struct net_device *dev); void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); void unregister_netdevice_many(struct list_head *head); static inline void unregister_netdevice(struct net_device *dev) { unregister_netdevice_queue(dev, NULL); } int netdev_refcnt_read(const struct net_device *dev); void free_netdev(struct net_device *dev); void init_dummy_netdev(struct net_device *dev); struct net_device *netdev_get_xmit_slave(struct net_device *dev, struct sk_buff *skb, bool all_slaves); struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, struct sock *sk); struct net_device *dev_get_by_index(struct net *net, int ifindex); struct net_device *__dev_get_by_index(struct net *net, int ifindex); struct net_device *netdev_get_by_index(struct net *net, int ifindex, netdevice_tracker *tracker, gfp_t gfp); struct net_device *netdev_get_by_name(struct net *net, const char *name, netdevice_tracker *tracker, gfp_t gfp); struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); struct net_device *dev_get_by_napi_id(unsigned int napi_id); void netdev_copy_name(struct net_device *dev, char *name); static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { if (!dev->header_ops || !dev->header_ops->create) return 0; return dev->header_ops->create(skb, dev, type, daddr, saddr, len); } static inline int dev_parse_header(const struct sk_buff *skb, unsigned char *haddr) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->parse) return 0; return dev->header_ops->parse(skb, haddr); } static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->parse_protocol) return 0; return dev->header_ops->parse_protocol(skb); } /* ll_header must have at least hard_header_len allocated */ static inline bool dev_validate_header(const struct net_device *dev, char *ll_header, int len) { if (likely(len >= dev->hard_header_len)) return true; if (len < dev->min_header_len) return false; if (capable(CAP_SYS_RAWIO)) { memset(ll_header + len, 0, dev->hard_header_len - len); return true; } if (dev->header_ops && dev->header_ops->validate) return dev->header_ops->validate(ll_header, len); return false; } static inline bool dev_has_header(const struct net_device *dev) { return dev->header_ops && dev->header_ops->create; } /* * Incoming packets are placed on per-CPU queues */ struct softnet_data { struct list_head poll_list; struct sk_buff_head process_queue; local_lock_t process_queue_bh_lock; /* stats */ unsigned int processed; unsigned int time_squeeze; #ifdef CONFIG_RPS struct softnet_data *rps_ipi_list; #endif unsigned int received_rps; bool in_net_rx_action; bool in_napi_threaded_poll; #ifdef CONFIG_NET_FLOW_LIMIT struct sd_flow_limit __rcu *flow_limit; #endif struct Qdisc *output_queue; struct Qdisc **output_queue_tailp; struct sk_buff *completion_queue; #ifdef CONFIG_XFRM_OFFLOAD struct sk_buff_head xfrm_backlog; #endif /* written and read only by owning cpu: */ struct netdev_xmit xmit; #ifdef CONFIG_RPS /* input_queue_head should be written by cpu owning this struct, * and only read by other cpus. Worth using a cache line. */ unsigned int input_queue_head ____cacheline_aligned_in_smp; /* Elements below can be accessed between CPUs for RPS/RFS */ call_single_data_t csd ____cacheline_aligned_in_smp; struct softnet_data *rps_ipi_next; unsigned int cpu; unsigned int input_queue_tail; #endif struct sk_buff_head input_pkt_queue; struct napi_struct backlog; atomic_t dropped ____cacheline_aligned_in_smp; /* Another possibly contended cache line */ spinlock_t defer_lock ____cacheline_aligned_in_smp; int defer_count; int defer_ipi_scheduled; struct sk_buff *defer_list; call_single_data_t defer_csd; }; DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); #ifndef CONFIG_PREEMPT_RT static inline int dev_recursion_level(void) { return this_cpu_read(softnet_data.xmit.recursion); } #else static inline int dev_recursion_level(void) { return current->net_xmit.recursion; } #endif void __netif_schedule(struct Qdisc *q); void netif_schedule_queue(struct netdev_queue *txq); static inline void netif_tx_schedule_all(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) netif_schedule_queue(netdev_get_tx_queue(dev, i)); } static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) { clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_start_queue - allow transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. */ static inline void netif_start_queue(struct net_device *dev) { netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_start_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_start_queue(txq); } } void netif_tx_wake_queue(struct netdev_queue *dev_queue); /** * netif_wake_queue - restart transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. * Used for flow control when transmit resources are available. */ static inline void netif_wake_queue(struct net_device *dev) { netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_wake_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_wake_queue(txq); } } static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) { /* Paired with READ_ONCE() from dev_watchdog() */ WRITE_ONCE(dev_queue->trans_start, jiffies); /* This barrier is paired with smp_mb() from dev_watchdog() */ smp_mb__before_atomic(); /* Must be an atomic op see netif_txq_try_stop() */ set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_stop_queue - stop transmitted packets * @dev: network device * * Stop upper layers calling the device hard_start_xmit routine. * Used for flow control when transmit resources are unavailable. */ static inline void netif_stop_queue(struct net_device *dev) { netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); } void netif_tx_stop_all_queues(struct net_device *dev); static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) { return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_queue_stopped - test if transmit queue is flowblocked * @dev: network device * * Test if transmit queue on device is currently unable to send. */ static inline bool netif_queue_stopped(const struct net_device *dev) { return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); } static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_ANY_XOFF; } static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; } static inline bool netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; } /** * netdev_queue_set_dql_min_limit - set dql minimum limit * @dev_queue: pointer to transmit queue * @min_limit: dql minimum limit * * Forces xmit_more() to return true until the minimum threshold * defined by @min_limit is reached (or until the tx queue is * empty). Warning: to be use with care, misuse will impact the * latency. */ static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, unsigned int min_limit) { #ifdef CONFIG_BQL dev_queue->dql.min_limit = min_limit; #endif } static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) { #ifdef CONFIG_BQL /* Non-BQL migrated drivers will return 0, too. */ return dql_avail(&txq->dql); #else return 0; #endif } /** * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write * @dev_queue: pointer to transmit queue * * BQL enabled drivers might use this helper in their ndo_start_xmit(), * to give appropriate hint to the CPU. */ static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) { #ifdef CONFIG_BQL prefetchw(&dev_queue->dql.num_queued); #endif } /** * netdev_txq_bql_complete_prefetchw - prefetch bql data for write * @dev_queue: pointer to transmit queue * * BQL enabled drivers might use this helper in their TX completion path, * to give appropriate hint to the CPU. */ static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) { #ifdef CONFIG_BQL prefetchw(&dev_queue->dql.limit); #endif } /** * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue * @dev_queue: network device queue * @bytes: number of bytes queued to the device queue * * Report the number of bytes queued for sending/completion to the network * device hardware queue. @bytes should be a good approximation and should * exactly match netdev_completed_queue() @bytes. * This is typically called once per packet, from ndo_start_xmit(). */ static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, unsigned int bytes) { #ifdef CONFIG_BQL dql_queued(&dev_queue->dql, bytes); if (likely(dql_avail(&dev_queue->dql) >= 0)) return; /* Paired with READ_ONCE() from dev_watchdog() */ WRITE_ONCE(dev_queue->trans_start, jiffies); /* This barrier is paired with smp_mb() from dev_watchdog() */ smp_mb__before_atomic(); set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); /* * The XOFF flag must be set before checking the dql_avail below, * because in netdev_tx_completed_queue we update the dql_completed * before checking the XOFF flag. */ smp_mb__after_atomic(); /* check again in case another CPU has just made room avail */ if (unlikely(dql_avail(&dev_queue->dql) >= 0)) clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); #endif } /* Variant of netdev_tx_sent_queue() for drivers that are aware * that they should not test BQL status themselves. * We do want to change __QUEUE_STATE_STACK_XOFF only for the last * skb of a batch. * Returns true if the doorbell must be used to kick the NIC. */ static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, unsigned int bytes, bool xmit_more) { if (xmit_more) { #ifdef CONFIG_BQL dql_queued(&dev_queue->dql, bytes); #endif return netif_tx_queue_stopped(dev_queue); } netdev_tx_sent_queue(dev_queue, bytes); return true; } /** * netdev_sent_queue - report the number of bytes queued to hardware * @dev: network device * @bytes: number of bytes queued to the hardware device queue * * Report the number of bytes queued for sending/completion to the network * device hardware queue#0. @bytes should be a good approximation and should * exactly match netdev_completed_queue() @bytes. * This is typically called once per packet, from ndo_start_xmit(). */ static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) { netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); } static inline bool __netdev_sent_queue(struct net_device *dev, unsigned int bytes, bool xmit_more) { return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, xmit_more); } /** * netdev_tx_completed_queue - report number of packets/bytes at TX completion. * @dev_queue: network device queue * @pkts: number of packets (currently ignored) * @bytes: number of bytes dequeued from the device queue * * Must be called at most once per TX completion round (and not per * individual packet), so that BQL can adjust its limits appropriately. */ static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, unsigned int pkts, unsigned int bytes) { #ifdef CONFIG_BQL if (unlikely(!bytes)) return; dql_completed(&dev_queue->dql, bytes); /* * Without the memory barrier there is a small possibility that * netdev_tx_sent_queue will miss the update and cause the queue to * be stopped forever */ smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ if (unlikely(dql_avail(&dev_queue->dql) < 0)) return; if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) netif_schedule_queue(dev_queue); #endif } /** * netdev_completed_queue - report bytes and packets completed by device * @dev: network device * @pkts: actual number of packets sent over the medium * @bytes: actual number of bytes sent over the medium * * Report the number of bytes and packets transmitted by the network device * hardware queue over the physical medium, @bytes must exactly match the * @bytes amount passed to netdev_sent_queue() */ static inline void netdev_completed_queue(struct net_device *dev, unsigned int pkts, unsigned int bytes) { netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); } static inline void netdev_tx_reset_queue(struct netdev_queue *q) { #ifdef CONFIG_BQL clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); dql_reset(&q->dql); #endif } /** * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue * @dev: network device * @qid: stack index of the queue to reset */ static inline void netdev_tx_reset_subqueue(const struct net_device *dev, u32 qid) { netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); } /** * netdev_reset_queue - reset the packets and bytes count of a network device * @dev_queue: network device * * Reset the bytes and packet count of a network device and clear the * software flow control OFF bit for this network device */ static inline void netdev_reset_queue(struct net_device *dev_queue) { netdev_tx_reset_subqueue(dev_queue, 0); } /** * netdev_cap_txqueue - check if selected tx queue exceeds device queues * @dev: network device * @queue_index: given tx queue index * * Returns 0 if given tx queue index >= number of device tx queues, * otherwise returns the originally passed tx queue index. */ static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) { if (unlikely(queue_index >= dev->real_num_tx_queues)) { net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", dev->name, queue_index, dev->real_num_tx_queues); return 0; } return queue_index; } /** * netif_running - test if up * @dev: network device * * Test if the device has been brought up. */ static inline bool netif_running(const struct net_device *dev) { return test_bit(__LINK_STATE_START, &dev->state); } /* * Routines to manage the subqueues on a device. We only need start, * stop, and a check if it's stopped. All other device management is * done at the overall netdevice level. * Also test the device if we're multiqueue. */ /** * netif_start_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Start individual transmit queue of a device with multiple transmit queues. */ static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_start_queue(txq); } /** * netif_stop_subqueue - stop sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Stop individual transmit queue of a device with multiple transmit queues. */ static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_stop_queue(txq); } /** * __netif_subqueue_stopped - test status of subqueue * @dev: network device * @queue_index: sub queue index * * Check individual transmit queue of a device with multiple transmit queues. */ static inline bool __netif_subqueue_stopped(const struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); return netif_tx_queue_stopped(txq); } /** * netif_subqueue_stopped - test status of subqueue * @dev: network device * @skb: sub queue buffer pointer * * Check individual transmit queue of a device with multiple transmit queues. */ static inline bool netif_subqueue_stopped(const struct net_device *dev, struct sk_buff *skb) { return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); } /** * netif_wake_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Resume individual transmit queue of a device with multiple transmit queues. */ static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_wake_queue(txq); } #ifdef CONFIG_XPS int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index); int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, u16 index, enum xps_map_type type); /** * netif_attr_test_mask - Test a CPU or Rx queue set in a mask * @j: CPU/Rx queue index * @mask: bitmask of all cpus/rx queues * @nr_bits: number of bits in the bitmask * * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. */ static inline bool netif_attr_test_mask(unsigned long j, const unsigned long *mask, unsigned int nr_bits) { cpu_max_bits_warn(j, nr_bits); return test_bit(j, mask); } /** * netif_attr_test_online - Test for online CPU/Rx queue * @j: CPU/Rx queue index * @online_mask: bitmask for CPUs/Rx queues that are online * @nr_bits: number of bits in the bitmask * * Returns true if a CPU/Rx queue is online. */ static inline bool netif_attr_test_online(unsigned long j, const unsigned long *online_mask, unsigned int nr_bits) { cpu_max_bits_warn(j, nr_bits); if (online_mask) return test_bit(j, online_mask); return (j < nr_bits); } /** * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask * @n: CPU/Rx queue index * @srcp: the cpumask/Rx queue mask pointer * @nr_bits: number of bits in the bitmask * * Returns >= nr_bits if no further CPUs/Rx queues set. */ static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, unsigned int nr_bits) { /* -1 is a legal arg here. */ if (n != -1) cpu_max_bits_warn(n, nr_bits); if (srcp) return find_next_bit(srcp, nr_bits, n + 1); return n + 1; } /** * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p * @n: CPU/Rx queue index * @src1p: the first CPUs/Rx queues mask pointer * @src2p: the second CPUs/Rx queues mask pointer * @nr_bits: number of bits in the bitmask * * Returns >= nr_bits if no further CPUs/Rx queues set in both. */ static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, const unsigned long *src2p, unsigned int nr_bits) { /* -1 is a legal arg here. */ if (n != -1) cpu_max_bits_warn(n, nr_bits); if (src1p && src2p) return find_next_and_bit(src1p, src2p, nr_bits, n + 1); else if (src1p) return find_next_bit(src1p, nr_bits, n + 1); else if (src2p) return find_next_bit(src2p, nr_bits, n + 1); return n + 1; } #else static inline int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index) { return 0; } static inline int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, u16 index, enum xps_map_type type) { return 0; } #endif /** * netif_is_multiqueue - test if device has multiple transmit queues * @dev: network device * * Check if device has multiple transmit queues */ static inline bool netif_is_multiqueue(const struct net_device *dev) { return dev->num_tx_queues > 1; } int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); #ifdef CONFIG_SYSFS int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); #else static inline int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxqs) { dev->real_num_rx_queues = rxqs; return 0; } #endif int netif_set_real_num_queues(struct net_device *dev, unsigned int txq, unsigned int rxq); int netif_get_num_default_rss_queues(void); void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); /* * It is not allowed to call kfree_skb() or consume_skb() from hardware * interrupt context or with hardware interrupts being disabled. * (in_hardirq() || irqs_disabled()) * * We provide four helpers that can be used in following contexts : * * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, * replacing kfree_skb(skb) * * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. * Typically used in place of consume_skb(skb) in TX completion path * * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, * replacing kfree_skb(skb) * * dev_consume_skb_any(skb) when caller doesn't know its current irq context, * and consumed a packet. Used in place of consume_skb(skb) */ static inline void dev_kfree_skb_irq(struct sk_buff *skb) { dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); } static inline void dev_consume_skb_irq(struct sk_buff *skb) { dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); } static inline void dev_kfree_skb_any(struct sk_buff *skb) { dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); } static inline void dev_consume_skb_any(struct sk_buff *skb) { dev_kfree_skb_any_reason(skb, SKB_CONSUMED); } u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog); void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); int netif_rx(struct sk_buff *skb); int __netif_rx(struct sk_buff *skb); int netif_receive_skb(struct sk_buff *skb); int netif_receive_skb_core(struct sk_buff *skb); void netif_receive_skb_list_internal(struct list_head *head); void netif_receive_skb_list(struct list_head *head); gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); void napi_gro_flush(struct napi_struct *napi, bool flush_old); struct sk_buff *napi_get_frags(struct napi_struct *napi); void napi_get_frags_check(struct napi_struct *napi); gro_result_t napi_gro_frags(struct napi_struct *napi); static inline void napi_free_frags(struct napi_struct *napi) { kfree_skb(napi->skb); napi->skb = NULL; } bool netdev_is_rx_handler_busy(struct net_device *dev); int netdev_rx_handler_register(struct net_device *dev, rx_handler_func_t *rx_handler, void *rx_handler_data); void netdev_rx_handler_unregister(struct net_device *dev); bool dev_valid_name(const char *name); static inline bool is_socket_ioctl_cmd(unsigned int cmd) { return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; } int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); int put_user_ifreq(struct ifreq *ifr, void __user *arg); int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, void __user *data, bool *need_copyout); int dev_ifconf(struct net *net, struct ifconf __user *ifc); int generic_hwtstamp_get_lower(struct net_device *dev, struct kernel_hwtstamp_config *kernel_cfg); int generic_hwtstamp_set_lower(struct net_device *dev, struct kernel_hwtstamp_config *kernel_cfg, struct netlink_ext_ack *extack); int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); unsigned int dev_get_flags(const struct net_device *); int __dev_change_flags(struct net_device *dev, unsigned int flags, struct netlink_ext_ack *extack); int dev_change_flags(struct net_device *dev, unsigned int flags, struct netlink_ext_ack *extack); int dev_set_alias(struct net_device *, const char *, size_t); int dev_get_alias(const struct net_device *, char *, size_t); int __dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat, int new_ifindex); static inline int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) { return __dev_change_net_namespace(dev, net, pat, 0); } int __dev_set_mtu(struct net_device *, int); int dev_set_mtu(struct net_device *, int); int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, struct netlink_ext_ack *extack); int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, struct netlink_ext_ack *extack); int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, struct netlink_ext_ack *extack); int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); int dev_get_port_parent_id(struct net_device *dev, struct netdev_phys_item_id *ppid, bool recurse); bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, int *ret); int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); u8 dev_xdp_prog_count(struct net_device *dev); int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); u32 dev_get_min_mp_channel_count(const struct net_device *dev); int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb); static __always_inline bool __is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb, const bool check_mtu) { const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ unsigned int len; if (!(dev->flags & IFF_UP)) return false; if (!check_mtu) return true; len = dev->mtu + dev->hard_header_len + vlan_hdr_len; if (skb->len <= len) return true; /* if TSO is enabled, we don't care about the length as the packet * could be forwarded without being segmented before */ if (skb_is_gso(skb)) return true; return false; } void netdev_core_stats_inc(struct net_device *dev, u32 offset); #define DEV_CORE_STATS_INC(FIELD) \ static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ { \ netdev_core_stats_inc(dev, \ offsetof(struct net_device_core_stats, FIELD)); \ } DEV_CORE_STATS_INC(rx_dropped) DEV_CORE_STATS_INC(tx_dropped) DEV_CORE_STATS_INC(rx_nohandler) DEV_CORE_STATS_INC(rx_otherhost_dropped) #undef DEV_CORE_STATS_INC static __always_inline int ____dev_forward_skb(struct net_device *dev, struct sk_buff *skb, const bool check_mtu) { if (skb_orphan_frags(skb, GFP_ATOMIC) || unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { dev_core_stats_rx_dropped_inc(dev); kfree_skb(skb); return NET_RX_DROP; } skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); skb->priority = 0; return 0; } bool dev_nit_active(struct net_device *dev); void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); static inline void __dev_put(struct net_device *dev) { if (dev) { #ifdef CONFIG_PCPU_DEV_REFCNT this_cpu_dec(*dev->pcpu_refcnt); #else refcount_dec(&dev->dev_refcnt); #endif } } static inline void __dev_hold(struct net_device *dev) { if (dev) { #ifdef CONFIG_PCPU_DEV_REFCNT this_cpu_inc(*dev->pcpu_refcnt); #else refcount_inc(&dev->dev_refcnt); #endif } } static inline void __netdev_tracker_alloc(struct net_device *dev, netdevice_tracker *tracker, gfp_t gfp) { #ifdef CONFIG_NET_DEV_REFCNT_TRACKER ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); #endif } /* netdev_tracker_alloc() can upgrade a prior untracked reference * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. */ static inline void netdev_tracker_alloc(struct net_device *dev, netdevice_tracker *tracker, gfp_t gfp) { #ifdef CONFIG_NET_DEV_REFCNT_TRACKER refcount_dec(&dev->refcnt_tracker.no_tracker); __netdev_tracker_alloc(dev, tracker, gfp); #endif } static inline void netdev_tracker_free(struct net_device *dev, netdevice_tracker *tracker) { #ifdef CONFIG_NET_DEV_REFCNT_TRACKER ref_tracker_free(&dev->refcnt_tracker, tracker); #endif } static inline void netdev_hold(struct net_device *dev, netdevice_tracker *tracker, gfp_t gfp) { if (dev) { __dev_hold(dev); __netdev_tracker_alloc(dev, tracker, gfp); } } static inline void netdev_put(struct net_device *dev, netdevice_tracker *tracker) { if (dev) { netdev_tracker_free(dev, tracker); __dev_put(dev); } } /** * dev_hold - get reference to device * @dev: network device * * Hold reference to device to keep it from being freed. * Try using netdev_hold() instead. */ static inline void dev_hold(struct net_device *dev) { netdev_hold(dev, NULL, GFP_ATOMIC); } /** * dev_put - release reference to device * @dev: network device * * Release reference to device to allow it to be freed. * Try using netdev_put() instead. */ static inline void dev_put(struct net_device *dev) { netdev_put(dev, NULL); } DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) static inline void netdev_ref_replace(struct net_device *odev, struct net_device *ndev, netdevice_tracker *tracker, gfp_t gfp) { if (odev) netdev_tracker_free(odev, tracker); __dev_hold(ndev); __dev_put(odev); if (ndev) __netdev_tracker_alloc(ndev, tracker, gfp); } /* Carrier loss detection, dial on demand. The functions netif_carrier_on * and _off may be called from IRQ context, but it is caller * who is responsible for serialization of these calls. * * The name carrier is inappropriate, these functions should really be * called netif_lowerlayer_*() because they represent the state of any * kind of lower layer not just hardware media. */ void linkwatch_fire_event(struct net_device *dev); /** * linkwatch_sync_dev - sync linkwatch for the given device * @dev: network device to sync linkwatch for * * Sync linkwatch for the given device, removing it from the * pending work list (if queued). */ void linkwatch_sync_dev(struct net_device *dev); /** * netif_carrier_ok - test if carrier present * @dev: network device * * Check if carrier is present on device */ static inline bool netif_carrier_ok(const struct net_device *dev) { return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); } unsigned long dev_trans_start(struct net_device *dev); void __netdev_watchdog_up(struct net_device *dev); void netif_carrier_on(struct net_device *dev); void netif_carrier_off(struct net_device *dev); void netif_carrier_event(struct net_device *dev); /** * netif_dormant_on - mark device as dormant. * @dev: network device * * Mark device as dormant (as per RFC2863). * * The dormant state indicates that the relevant interface is not * actually in a condition to pass packets (i.e., it is not 'up') but is * in a "pending" state, waiting for some external event. For "on- * demand" interfaces, this new state identifies the situation where the * interface is waiting for events to place it in the up state. */ static inline void netif_dormant_on(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant_off - set device as not dormant. * @dev: network device * * Device is not in dormant state. */ static inline void netif_dormant_off(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant - test if device is dormant * @dev: network device * * Check if device is dormant. */ static inline bool netif_dormant(const struct net_device *dev) { return test_bit(__LINK_STATE_DORMANT, &dev->state); } /** * netif_testing_on - mark device as under test. * @dev: network device * * Mark device as under test (as per RFC2863). * * The testing state indicates that some test(s) must be performed on * the interface. After completion, of the test, the interface state * will change to up, dormant, or down, as appropriate. */ static inline void netif_testing_on(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) linkwatch_fire_event(dev); } /** * netif_testing_off - set device as not under test. * @dev: network device * * Device is not in testing state. */ static inline void netif_testing_off(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) linkwatch_fire_event(dev); } /** * netif_testing - test if device is under test * @dev: network device * * Check if device is under test */ static inline bool netif_testing(const struct net_device *dev) { return test_bit(__LINK_STATE_TESTING, &dev->state); } /** * netif_oper_up - test if device is operational * @dev: network device * * Check if carrier is operational */ static inline bool netif_oper_up(const struct net_device *dev) { unsigned int operstate = READ_ONCE(dev->operstate); return operstate == IF_OPER_UP || operstate == IF_OPER_UNKNOWN /* backward compat */; } /** * netif_device_present - is device available or removed * @dev: network device * * Check if device has not been removed from system. */ static inline bool netif_device_present(const struct net_device *dev) { return test_bit(__LINK_STATE_PRESENT, &dev->state); } void netif_device_detach(struct net_device *dev); void netif_device_attach(struct net_device *dev); /* * Network interface message level settings */ enum { NETIF_MSG_DRV_BIT, NETIF_MSG_PROBE_BIT, NETIF_MSG_LINK_BIT, NETIF_MSG_TIMER_BIT, NETIF_MSG_IFDOWN_BIT, NETIF_MSG_IFUP_BIT, NETIF_MSG_RX_ERR_BIT, NETIF_MSG_TX_ERR_BIT, NETIF_MSG_TX_QUEUED_BIT, NETIF_MSG_INTR_BIT, NETIF_MSG_TX_DONE_BIT, NETIF_MSG_RX_STATUS_BIT, NETIF_MSG_PKTDATA_BIT, NETIF_MSG_HW_BIT, NETIF_MSG_WOL_BIT, /* When you add a new bit above, update netif_msg_class_names array * in net/ethtool/common.c */ NETIF_MSG_CLASS_COUNT, }; /* Both ethtool_ops interface and internal driver implementation use u32 */ static_assert(NETIF_MSG_CLASS_COUNT <= 32); #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) #define NETIF_MSG_DRV __NETIF_MSG(DRV) #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) #define NETIF_MSG_LINK __NETIF_MSG(LINK) #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) #define NETIF_MSG_INTR __NETIF_MSG(INTR) #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) #define NETIF_MSG_HW __NETIF_MSG(HW) #define NETIF_MSG_WOL __NETIF_MSG(WOL) #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) { /* use default */ if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) return default_msg_enable_bits; if (debug_value == 0) /* no output */ return 0; /* set low N bits */ return (1U << debug_value) - 1; } static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) { spin_lock(&txq->_xmit_lock); /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, cpu); } static inline bool __netif_tx_acquire(struct netdev_queue *txq) { __acquire(&txq->_xmit_lock); return true; } static inline void __netif_tx_release(struct netdev_queue *txq) { __release(&txq->_xmit_lock); } static inline void __netif_tx_lock_bh(struct netdev_queue *txq) { spin_lock_bh(&txq->_xmit_lock); /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); } static inline bool __netif_tx_trylock(struct netdev_queue *txq) { bool ok = spin_trylock(&txq->_xmit_lock); if (likely(ok)) { /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); } return ok; } static inline void __netif_tx_unlock(struct netdev_queue *txq) { /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, -1); spin_unlock(&txq->_xmit_lock); } static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) { /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, -1); spin_unlock_bh(&txq->_xmit_lock); } /* * txq->trans_start can be read locklessly from dev_watchdog() */ static inline void txq_trans_update(struct netdev_queue *txq) { if (txq->xmit_lock_owner != -1) WRITE_ONCE(txq->trans_start, jiffies); } static inline void txq_trans_cond_update(struct netdev_queue *txq) { unsigned long now = jiffies; if (READ_ONCE(txq->trans_start) != now) WRITE_ONCE(txq->trans_start, now); } /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ static inline void netif_trans_update(struct net_device *dev) { struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); txq_trans_cond_update(txq); } /** * netif_tx_lock - grab network device transmit lock * @dev: network device * * Get network device transmit lock */ void netif_tx_lock(struct net_device *dev); static inline void netif_tx_lock_bh(struct net_device *dev) { local_bh_disable(); netif_tx_lock(dev); } void netif_tx_unlock(struct net_device *dev); static inline void netif_tx_unlock_bh(struct net_device *dev) { netif_tx_unlock(dev); local_bh_enable(); } #define HARD_TX_LOCK(dev, txq, cpu) { \ if (!(dev)->lltx) { \ __netif_tx_lock(txq, cpu); \ } else { \ __netif_tx_acquire(txq); \ } \ } #define HARD_TX_TRYLOCK(dev, txq) \ (!(dev)->lltx ? \ __netif_tx_trylock(txq) : \ __netif_tx_acquire(txq)) #define HARD_TX_UNLOCK(dev, txq) { \ if (!(dev)->lltx) { \ __netif_tx_unlock(txq); \ } else { \ __netif_tx_release(txq); \ } \ } static inline void netif_tx_disable(struct net_device *dev) { unsigned int i; int cpu; local_bh_disable(); cpu = smp_processor_id(); spin_lock(&dev->tx_global_lock); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); } spin_unlock(&dev->tx_global_lock); local_bh_enable(); } static inline void netif_addr_lock(struct net_device *dev) { unsigned char nest_level = 0; #ifdef CONFIG_LOCKDEP nest_level = dev->nested_level; #endif spin_lock_nested(&dev->addr_list_lock, nest_level); } static inline void netif_addr_lock_bh(struct net_device *dev) { unsigned char nest_level = 0; #ifdef CONFIG_LOCKDEP nest_level = dev->nested_level; #endif local_bh_disable(); spin_lock_nested(&dev->addr_list_lock, nest_level); } static inline void netif_addr_unlock(struct net_device *dev) { spin_unlock(&dev->addr_list_lock); } static inline void netif_addr_unlock_bh(struct net_device *dev) { spin_unlock_bh(&dev->addr_list_lock); } /* * dev_addrs walker. Should be used only for read access. Call with * rcu_read_lock held. */ #define for_each_dev_addr(dev, ha) \ list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) /* These functions live elsewhere (drivers/net/net_init.c, but related) */ void ether_setup(struct net_device *dev); /* Allocate dummy net_device */ struct net_device *alloc_netdev_dummy(int sizeof_priv); /* Support for loadable net-drivers */ struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *), unsigned int txqs, unsigned int rxqs); #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ count) int register_netdev(struct net_device *dev); void unregister_netdev(struct net_device *dev); int devm_register_netdev(struct device *dev, struct net_device *ndev); /* General hardware address lists handling functions */ int __hw_addr_sync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)); int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *, int), int (*unsync)(struct net_device *, const unsigned char *, int)); void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *, int)); void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)); void __hw_addr_init(struct netdev_hw_addr_list *list); /* Functions used for device addresses handling */ void dev_addr_mod(struct net_device *dev, unsigned int offset, const void *addr, size_t len); static inline void __dev_addr_set(struct net_device *dev, const void *addr, size_t len) { dev_addr_mod(dev, 0, addr, len); } static inline void dev_addr_set(struct net_device *dev, const u8 *addr) { __dev_addr_set(dev, addr, dev->addr_len); } int dev_addr_add(struct net_device *dev, const unsigned char *addr, unsigned char addr_type); int dev_addr_del(struct net_device *dev, const unsigned char *addr, unsigned char addr_type); /* Functions used for unicast addresses handling */ int dev_uc_add(struct net_device *dev, const unsigned char *addr); int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); int dev_uc_del(struct net_device *dev, const unsigned char *addr); int dev_uc_sync(struct net_device *to, struct net_device *from); int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); void dev_uc_unsync(struct net_device *to, struct net_device *from); void dev_uc_flush(struct net_device *dev); void dev_uc_init(struct net_device *dev); /** * __dev_uc_sync - Synchronize device's unicast list * @dev: device to sync * @sync: function to call if address should be added * @unsync: function to call if address should be removed * * Add newly added addresses to the interface, and release * addresses that have been deleted. */ static inline int __dev_uc_sync(struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)) { return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); } /** * __dev_uc_unsync - Remove synchronized addresses from device * @dev: device to sync * @unsync: function to call if address should be removed * * Remove all addresses that were added to the device by dev_uc_sync(). */ static inline void __dev_uc_unsync(struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)) { __hw_addr_unsync_dev(&dev->uc, dev, unsync); } /* Functions used for multicast addresses handling */ int dev_mc_add(struct net_device *dev, const unsigned char *addr); int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); int dev_mc_del(struct net_device *dev, const unsigned char *addr); int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); int dev_mc_sync(struct net_device *to, struct net_device *from); int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); void dev_mc_unsync(struct net_device *to, struct net_device *from); void dev_mc_flush(struct net_device *dev); void dev_mc_init(struct net_device *dev); /** * __dev_mc_sync - Synchronize device's multicast list * @dev: device to sync * @sync: function to call if address should be added * @unsync: function to call if address should be removed * * Add newly added addresses to the interface, and release * addresses that have been deleted. */ static inline int __dev_mc_sync(struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)) { return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); } /** * __dev_mc_unsync - Remove synchronized addresses from device * @dev: device to sync * @unsync: function to call if address should be removed * * Remove all addresses that were added to the device by dev_mc_sync(). */ static inline void __dev_mc_unsync(struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)) { __hw_addr_unsync_dev(&dev->mc, dev, unsync); } /* Functions used for secondary unicast and multicast support */ void dev_set_rx_mode(struct net_device *dev); int dev_set_promiscuity(struct net_device *dev, int inc); int dev_set_allmulti(struct net_device *dev, int inc); void netdev_state_change(struct net_device *dev); void __netdev_notify_peers(struct net_device *dev); void netdev_notify_peers(struct net_device *dev); void netdev_features_change(struct net_device *dev); /* Load a device via the kmod */ void dev_load(struct net *net, const char *name); struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, struct rtnl_link_stats64 *storage); void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, const struct net_device_stats *netdev_stats); void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, const struct pcpu_sw_netstats __percpu *netstats); void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); enum { NESTED_SYNC_IMM_BIT, NESTED_SYNC_TODO_BIT, }; #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) struct netdev_nested_priv { unsigned char flags; void *data; }; bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, struct list_head **iter); /* iterate through upper list, must be called under RCU read lock */ #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ for (iter = &(dev)->adj_list.upper, \ updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ updev; \ updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) int netdev_walk_all_upper_dev_rcu(struct net_device *dev, int (*fn)(struct net_device *upper_dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv); bool netdev_has_upper_dev_all_rcu(struct net_device *dev, struct net_device *upper_dev); bool netdev_has_any_upper_dev(struct net_device *dev); void *netdev_lower_get_next_private(struct net_device *dev, struct list_head **iter); void *netdev_lower_get_next_private_rcu(struct net_device *dev, struct list_head **iter); #define netdev_for_each_lower_private(dev, priv, iter) \ for (iter = (dev)->adj_list.lower.next, \ priv = netdev_lower_get_next_private(dev, &(iter)); \ priv; \ priv = netdev_lower_get_next_private(dev, &(iter))) #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ for (iter = &(dev)->adj_list.lower, \ priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ priv; \ priv = netdev_lower_get_next_private_rcu(dev, &(iter))) void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter); #define netdev_for_each_lower_dev(dev, ldev, iter) \ for (iter = (dev)->adj_list.lower.next, \ ldev = netdev_lower_get_next(dev, &(iter)); \ ldev; \ ldev = netdev_lower_get_next(dev, &(iter))) struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, struct list_head **iter); int netdev_walk_all_lower_dev(struct net_device *dev, int (*fn)(struct net_device *lower_dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv); int netdev_walk_all_lower_dev_rcu(struct net_device *dev, int (*fn)(struct net_device *lower_dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv); void *netdev_adjacent_get_private(struct list_head *adj_list); void *netdev_lower_get_first_private_rcu(struct net_device *dev); struct net_device *netdev_master_upper_dev_get(struct net_device *dev); struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, struct netlink_ext_ack *extack); int netdev_master_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, void *upper_priv, void *upper_info, struct netlink_ext_ack *extack); void netdev_upper_dev_unlink(struct net_device *dev, struct net_device *upper_dev); int netdev_adjacent_change_prepare(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev, struct netlink_ext_ack *extack); void netdev_adjacent_change_commit(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev); void netdev_adjacent_change_abort(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev); void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); void *netdev_lower_dev_get_private(struct net_device *dev, struct net_device *lower_dev); void netdev_lower_state_changed(struct net_device *lower_dev, void *lower_state_info); /* RSS keys are 40 or 52 bytes long */ #define NETDEV_RSS_KEY_LEN 52 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; void netdev_rss_key_fill(void *buffer, size_t len); int skb_checksum_help(struct sk_buff *skb); int skb_crc32c_csum_help(struct sk_buff *skb); int skb_csum_hwoffload_help(struct sk_buff *skb, const netdev_features_t features); struct netdev_bonding_info { ifslave slave; ifbond master; }; struct netdev_notifier_bonding_info { struct netdev_notifier_info info; /* must be first */ struct netdev_bonding_info bonding_info; }; void netdev_bonding_info_change(struct net_device *dev, struct netdev_bonding_info *bonding_info); #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); #else static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data) { } #endif __be16 skb_network_protocol(struct sk_buff *skb, int *depth); static inline bool can_checksum_protocol(netdev_features_t features, __be16 protocol) { if (protocol == htons(ETH_P_FCOE)) return !!(features & NETIF_F_FCOE_CRC); /* Assume this is an IP checksum (not SCTP CRC) */ if (features & NETIF_F_HW_CSUM) { /* Can checksum everything */ return true; } switch (protocol) { case htons(ETH_P_IP): return !!(features & NETIF_F_IP_CSUM); case htons(ETH_P_IPV6): return !!(features & NETIF_F_IPV6_CSUM); default: return false; } } #ifdef CONFIG_BUG void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); #else static inline void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) { } #endif /* rx skb timestamps */ void net_enable_timestamp(void); void net_disable_timestamp(void); static inline ktime_t netdev_get_tstamp(struct net_device *dev, const struct skb_shared_hwtstamps *hwtstamps, bool cycles) { const struct net_device_ops *ops = dev->netdev_ops; if (ops->ndo_get_tstamp) return ops->ndo_get_tstamp(dev, hwtstamps, cycles); return hwtstamps->hwtstamp; } #ifndef CONFIG_PREEMPT_RT static inline void netdev_xmit_set_more(bool more) { __this_cpu_write(softnet_data.xmit.more, more); } static inline bool netdev_xmit_more(void) { return __this_cpu_read(softnet_data.xmit.more); } #else static inline void netdev_xmit_set_more(bool more) { current->net_xmit.more = more; } static inline bool netdev_xmit_more(void) { return current->net_xmit.more; } #endif static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, struct sk_buff *skb, struct net_device *dev, bool more) { netdev_xmit_set_more(more); return ops->ndo_start_xmit(skb, dev); } static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, bool more) { const struct net_device_ops *ops = dev->netdev_ops; netdev_tx_t rc; rc = __netdev_start_xmit(ops, skb, dev, more); if (rc == NETDEV_TX_OK) txq_trans_update(txq); return rc; } int netdev_class_create_file_ns(const struct class_attribute *class_attr, const void *ns); void netdev_class_remove_file_ns(const struct class_attribute *class_attr, const void *ns); extern const struct kobj_ns_type_operations net_ns_type_operations; const char *netdev_drivername(const struct net_device *dev); static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, netdev_features_t f2) { if ((f1 ^ f2) & NETIF_F_HW_CSUM) { if (f1 & NETIF_F_HW_CSUM) f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); else f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); } return f1 & f2; } static inline netdev_features_t netdev_get_wanted_features( struct net_device *dev) { return (dev->features & ~dev->hw_features) | dev->wanted_features; } netdev_features_t netdev_increment_features(netdev_features_t all, netdev_features_t one, netdev_features_t mask); /* Allow TSO being used on stacked device : * Performing the GSO segmentation before last device * is a performance improvement. */ static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, netdev_features_t mask) { return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); } int __netdev_update_features(struct net_device *dev); void netdev_update_features(struct net_device *dev); void netdev_change_features(struct net_device *dev); void netif_stacked_transfer_operstate(const struct net_device *rootdev, struct net_device *dev); netdev_features_t passthru_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features); netdev_features_t netif_skb_features(struct sk_buff *skb); void skb_warn_bad_offload(const struct sk_buff *skb); static inline bool net_gso_ok(netdev_features_t features, int gso_type) { netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; /* check flags correspondence */ BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); return (features & feature) == feature; } static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) { return net_gso_ok(features, skb_shinfo(skb)->gso_type) && (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); } static inline bool netif_needs_gso(struct sk_buff *skb, netdev_features_t features) { return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && (skb->ip_summed != CHECKSUM_UNNECESSARY))); } void netif_set_tso_max_size(struct net_device *dev, unsigned int size); void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); void netif_inherit_tso_max(struct net_device *to, const struct net_device *from); static inline unsigned int netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) { /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ return skb->protocol == htons(ETH_P_IPV6) ? READ_ONCE(dev->gro_max_size) : READ_ONCE(dev->gro_ipv4_max_size); } static inline unsigned int netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) { /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ return skb->protocol == htons(ETH_P_IPV6) ? READ_ONCE(dev->gso_max_size) : READ_ONCE(dev->gso_ipv4_max_size); } static inline bool netif_is_macsec(const struct net_device *dev) { return dev->priv_flags & IFF_MACSEC; } static inline bool netif_is_macvlan(const struct net_device *dev) { return dev->priv_flags & IFF_MACVLAN; } static inline bool netif_is_macvlan_port(const struct net_device *dev) { return dev->priv_flags & IFF_MACVLAN_PORT; } static inline bool netif_is_bond_master(const struct net_device *dev) { return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; } static inline bool netif_is_bond_slave(const struct net_device *dev) { return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; } static inline bool netif_supports_nofcs(struct net_device *dev) { return dev->priv_flags & IFF_SUPP_NOFCS; } static inline bool netif_has_l3_rx_handler(const struct net_device *dev) { return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; } static inline bool netif_is_l3_master(const struct net_device *dev) { return dev->priv_flags & IFF_L3MDEV_MASTER; } static inline bool netif_is_l3_slave(const struct net_device *dev) { return dev->priv_flags & IFF_L3MDEV_SLAVE; } static inline int dev_sdif(const struct net_device *dev) { #ifdef CONFIG_NET_L3_MASTER_DEV if (netif_is_l3_slave(dev)) return dev->ifindex; #endif return 0; } static inline bool netif_is_bridge_master(const struct net_device *dev) { return dev->priv_flags & IFF_EBRIDGE; } static inline bool netif_is_bridge_port(const struct net_device *dev) { return dev->priv_flags & IFF_BRIDGE_PORT; } static inline bool netif_is_ovs_master(const struct net_device *dev) { return dev->priv_flags & IFF_OPENVSWITCH; } static inline bool netif_is_ovs_port(const struct net_device *dev) { return dev->priv_flags & IFF_OVS_DATAPATH; } static inline bool netif_is_any_bridge_master(const struct net_device *dev) { return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); } static inline bool netif_is_any_bridge_port(const struct net_device *dev) { return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); } static inline bool netif_is_team_master(const struct net_device *dev) { return dev->priv_flags & IFF_TEAM; } static inline bool netif_is_team_port(const struct net_device *dev) { return dev->priv_flags & IFF_TEAM_PORT; } static inline bool netif_is_lag_master(const struct net_device *dev) { return netif_is_bond_master(dev) || netif_is_team_master(dev); } static inline bool netif_is_lag_port(const struct net_device *dev) { return netif_is_bond_slave(dev) || netif_is_team_port(dev); } static inline bool netif_is_rxfh_configured(const struct net_device *dev) { return dev->priv_flags & IFF_RXFH_CONFIGURED; } static inline bool netif_is_failover(const struct net_device *dev) { return dev->priv_flags & IFF_FAILOVER; } static inline bool netif_is_failover_slave(const struct net_device *dev) { return dev->priv_flags & IFF_FAILOVER_SLAVE; } /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ static inline void netif_keep_dst(struct net_device *dev) { dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); } /* return true if dev can't cope with mtu frames that need vlan tag insertion */ static inline bool netif_reduces_vlan_mtu(struct net_device *dev) { /* TODO: reserve and use an additional IFF bit, if we get more users */ return netif_is_macsec(dev); } extern struct pernet_operations __net_initdata loopback_net_ops; /* Logging, debugging and troubleshooting/diagnostic helpers. */ /* netdev_printk helpers, similar to dev_printk */ static inline const char *netdev_name(const struct net_device *dev) { if (!dev->name[0] || strchr(dev->name, '%')) return "(unnamed net_device)"; return dev->name; } static inline const char *netdev_reg_state(const struct net_device *dev) { u8 reg_state = READ_ONCE(dev->reg_state); switch (reg_state) { case NETREG_UNINITIALIZED: return " (uninitialized)"; case NETREG_REGISTERED: return ""; case NETREG_UNREGISTERING: return " (unregistering)"; case NETREG_UNREGISTERED: return " (unregistered)"; case NETREG_RELEASED: return " (released)"; case NETREG_DUMMY: return " (dummy)"; } WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); return " (unknown)"; } #define MODULE_ALIAS_NETDEV(device) \ MODULE_ALIAS("netdev-" device) /* * netdev_WARN() acts like dev_printk(), but with the key difference * of using a WARN/WARN_ON to get the message out, including the * file/line information and a backtrace. */ #define netdev_WARN(dev, format, args...) \ WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ netdev_reg_state(dev), ##args) #define netdev_WARN_ONCE(dev, format, args...) \ WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ netdev_reg_state(dev), ##args) /* * The list of packet types we will receive (as opposed to discard) * and the routines to invoke. * * Why 16. Because with 16 the only overlap we get on a hash of the * low nibble of the protocol value is RARP/SNAP/X.25. * * 0800 IP * 0001 802.3 * 0002 AX.25 * 0004 802.2 * 8035 RARP * 0005 SNAP * 0805 X.25 * 0806 ARP * 8137 IPX * 0009 Localtalk * 86DD IPv6 */ #define PTYPE_HASH_SIZE (16) #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; extern struct net_device *blackhole_netdev; /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) #define DEV_STATS_ADD(DEV, FIELD, VAL) \ atomic_long_add((VAL), &(DEV)->stats.__##FIELD) #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) #endif /* _LINUX_NETDEVICE_H */ |
2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | /* SPDX-License-Identifier: GPL-2.0 */ /* * win_minmax.h: windowed min/max tracker by Kathleen Nichols. * */ #ifndef MINMAX_H #define MINMAX_H #include <linux/types.h> /* A single data point for our parameterized min-max tracker */ struct minmax_sample { u32 t; /* time measurement was taken */ u32 v; /* value measured */ }; /* State for the parameterized min-max tracker */ struct minmax { struct minmax_sample s[3]; }; static inline u32 minmax_get(const struct minmax *m) { return m->s[0].v; } static inline u32 minmax_reset(struct minmax *m, u32 t, u32 meas) { struct minmax_sample val = { .t = t, .v = meas }; m->s[2] = m->s[1] = m->s[0] = val; return m->s[0].v; } u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas); u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas); #endif |
9 2 2 1 4 4 3 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | // SPDX-License-Identifier: GPL-2.0-only /* * ebt_ip6 * * Authors: * Manohar Castelino <manohar.r.castelino@intel.com> * Kuo-Lang Tseng <kuo-lang.tseng@intel.com> * Jan Engelhardt <jengelh@medozas.de> * * Summary: * This is just a modification of the IPv4 code written by * Bart De Schuymer <bdschuym@pandora.be> * with the changes required to support IPv6 * * Jan, 2008 */ #include <linux/ipv6.h> #include <net/ipv6.h> #include <linux/in.h> #include <linux/module.h> #include <net/dsfield.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_bridge/ebtables.h> #include <linux/netfilter_bridge/ebt_ip6.h> union pkthdr { struct { __be16 src; __be16 dst; } tcpudphdr; struct { u8 type; u8 code; } icmphdr; }; static bool ebt_ip6_mt(const struct sk_buff *skb, struct xt_action_param *par) { const struct ebt_ip6_info *info = par->matchinfo; const struct ipv6hdr *ih6; struct ipv6hdr _ip6h; const union pkthdr *pptr; union pkthdr _pkthdr; ih6 = skb_header_pointer(skb, 0, sizeof(_ip6h), &_ip6h); if (ih6 == NULL) return false; if ((info->bitmask & EBT_IP6_TCLASS) && NF_INVF(info, EBT_IP6_TCLASS, info->tclass != ipv6_get_dsfield(ih6))) return false; if (((info->bitmask & EBT_IP6_SOURCE) && NF_INVF(info, EBT_IP6_SOURCE, ipv6_masked_addr_cmp(&ih6->saddr, &info->smsk, &info->saddr))) || ((info->bitmask & EBT_IP6_DEST) && NF_INVF(info, EBT_IP6_DEST, ipv6_masked_addr_cmp(&ih6->daddr, &info->dmsk, &info->daddr)))) return false; if (info->bitmask & EBT_IP6_PROTO) { uint8_t nexthdr = ih6->nexthdr; __be16 frag_off; int offset_ph; offset_ph = ipv6_skip_exthdr(skb, sizeof(_ip6h), &nexthdr, &frag_off); if (offset_ph == -1) return false; if (NF_INVF(info, EBT_IP6_PROTO, info->protocol != nexthdr)) return false; if (!(info->bitmask & (EBT_IP6_DPORT | EBT_IP6_SPORT | EBT_IP6_ICMP6))) return true; /* min icmpv6 headersize is 4, so sizeof(_pkthdr) is ok. */ pptr = skb_header_pointer(skb, offset_ph, sizeof(_pkthdr), &_pkthdr); if (pptr == NULL) return false; if (info->bitmask & EBT_IP6_DPORT) { u16 dst = ntohs(pptr->tcpudphdr.dst); if (NF_INVF(info, EBT_IP6_DPORT, dst < info->dport[0] || dst > info->dport[1])) return false; } if (info->bitmask & EBT_IP6_SPORT) { u16 src = ntohs(pptr->tcpudphdr.src); if (NF_INVF(info, EBT_IP6_SPORT, src < info->sport[0] || src > info->sport[1])) return false; } if ((info->bitmask & EBT_IP6_ICMP6) && NF_INVF(info, EBT_IP6_ICMP6, pptr->icmphdr.type < info->icmpv6_type[0] || pptr->icmphdr.type > info->icmpv6_type[1] || pptr->icmphdr.code < info->icmpv6_code[0] || pptr->icmphdr.code > info->icmpv6_code[1])) return false; } return true; } static int ebt_ip6_mt_check(const struct xt_mtchk_param *par) { const struct ebt_entry *e = par->entryinfo; struct ebt_ip6_info *info = par->matchinfo; if (e->ethproto != htons(ETH_P_IPV6) || e->invflags & EBT_IPROTO) return -EINVAL; if (info->bitmask & ~EBT_IP6_MASK || info->invflags & ~EBT_IP6_MASK) return -EINVAL; if (info->bitmask & (EBT_IP6_DPORT | EBT_IP6_SPORT)) { if (info->invflags & EBT_IP6_PROTO) return -EINVAL; if (info->protocol != IPPROTO_TCP && info->protocol != IPPROTO_UDP && info->protocol != IPPROTO_UDPLITE && info->protocol != IPPROTO_SCTP && info->protocol != IPPROTO_DCCP) return -EINVAL; } if (info->bitmask & EBT_IP6_DPORT && info->dport[0] > info->dport[1]) return -EINVAL; if (info->bitmask & EBT_IP6_SPORT && info->sport[0] > info->sport[1]) return -EINVAL; if (info->bitmask & EBT_IP6_ICMP6) { if ((info->invflags & EBT_IP6_PROTO) || info->protocol != IPPROTO_ICMPV6) return -EINVAL; if (info->icmpv6_type[0] > info->icmpv6_type[1] || info->icmpv6_code[0] > info->icmpv6_code[1]) return -EINVAL; } return 0; } static struct xt_match ebt_ip6_mt_reg __read_mostly = { .name = "ip6", .revision = 0, .family = NFPROTO_BRIDGE, .match = ebt_ip6_mt, .checkentry = ebt_ip6_mt_check, .matchsize = sizeof(struct ebt_ip6_info), .me = THIS_MODULE, }; static int __init ebt_ip6_init(void) { return xt_register_match(&ebt_ip6_mt_reg); } static void __exit ebt_ip6_fini(void) { xt_unregister_match(&ebt_ip6_mt_reg); } module_init(ebt_ip6_init); module_exit(ebt_ip6_fini); MODULE_DESCRIPTION("Ebtables: IPv6 protocol packet match"); MODULE_AUTHOR("Kuo-Lang Tseng <kuo-lang.tseng@intel.com>"); MODULE_LICENSE("GPL"); |
82 1 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Internal procfs definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/proc_fs.h> #include <linux/proc_ns.h> #include <linux/refcount.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/binfmts.h> #include <linux/sched/coredump.h> #include <linux/sched/task.h> #include <linux/mm.h> struct ctl_table_header; struct mempolicy; /* * This is not completely implemented yet. The idea is to * create an in-memory tree (like the actual /proc filesystem * tree) of these proc_dir_entries, so that we can dynamically * add new files to /proc. * * parent/subdir are used for the directory structure (every /proc file has a * parent, but "subdir" is empty for all non-directory entries). * subdir_node is used to build the rb tree "subdir" of the parent. */ struct proc_dir_entry { /* * number of callers into module in progress; * negative -> it's going away RSN */ atomic_t in_use; refcount_t refcnt; struct list_head pde_openers; /* who did ->open, but not ->release */ /* protects ->pde_openers and all struct pde_opener instances */ spinlock_t pde_unload_lock; struct completion *pde_unload_completion; const struct inode_operations *proc_iops; union { const struct proc_ops *proc_ops; const struct file_operations *proc_dir_ops; }; const struct dentry_operations *proc_dops; union { const struct seq_operations *seq_ops; int (*single_show)(struct seq_file *, void *); }; proc_write_t write; void *data; unsigned int state_size; unsigned int low_ino; nlink_t nlink; kuid_t uid; kgid_t gid; loff_t size; struct proc_dir_entry *parent; struct rb_root subdir; struct rb_node subdir_node; char *name; umode_t mode; u8 flags; u8 namelen; char inline_name[]; } __randomize_layout; #define SIZEOF_PDE ( \ sizeof(struct proc_dir_entry) < 128 ? 128 : \ sizeof(struct proc_dir_entry) < 192 ? 192 : \ sizeof(struct proc_dir_entry) < 256 ? 256 : \ sizeof(struct proc_dir_entry) < 512 ? 512 : \ 0) #define SIZEOF_PDE_INLINE_NAME (SIZEOF_PDE - sizeof(struct proc_dir_entry)) static inline bool pde_is_permanent(const struct proc_dir_entry *pde) { return pde->flags & PROC_ENTRY_PERMANENT; } static inline void pde_make_permanent(struct proc_dir_entry *pde) { pde->flags |= PROC_ENTRY_PERMANENT; } extern struct kmem_cache *proc_dir_entry_cache; void pde_free(struct proc_dir_entry *pde); union proc_op { int (*proc_get_link)(struct dentry *, struct path *); int (*proc_show)(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); int lsmid; }; struct proc_inode { struct pid *pid; unsigned int fd; union proc_op op; struct proc_dir_entry *pde; struct ctl_table_header *sysctl; const struct ctl_table *sysctl_entry; struct hlist_node sibling_inodes; const struct proc_ns_operations *ns_ops; struct inode vfs_inode; } __randomize_layout; /* * General functions */ static inline struct proc_inode *PROC_I(const struct inode *inode) { return container_of(inode, struct proc_inode, vfs_inode); } static inline struct proc_dir_entry *PDE(const struct inode *inode) { return PROC_I(inode)->pde; } static inline struct pid *proc_pid(const struct inode *inode) { return PROC_I(inode)->pid; } static inline struct task_struct *get_proc_task(const struct inode *inode) { return get_pid_task(proc_pid(inode), PIDTYPE_PID); } void task_dump_owner(struct task_struct *task, umode_t mode, kuid_t *ruid, kgid_t *rgid); unsigned name_to_int(const struct qstr *qstr); /* * Offset of the first process in the /proc root directory.. */ #define FIRST_PROCESS_ENTRY 256 /* Worst case buffer size needed for holding an integer. */ #define PROC_NUMBUF 13 /** * folio_precise_page_mapcount() - Number of mappings of this folio page. * @folio: The folio. * @page: The page. * * The number of present user page table entries that reference this page * as tracked via the RMAP: either referenced directly (PTE) or as part of * a larger area that covers this page (e.g., PMD). * * Use this function only for the calculation of existing statistics * (USS, PSS, mapcount_max) and for debugging purposes (/proc/kpagecount). * * Do not add new users. * * Returns: The number of mappings of this folio page. 0 for * folios that are not mapped to user space or are not tracked via the RMAP * (e.g., shared zeropage). */ static inline int folio_precise_page_mapcount(struct folio *folio, struct page *page) { int mapcount = atomic_read(&page->_mapcount) + 1; if (page_mapcount_is_type(mapcount)) mapcount = 0; if (folio_test_large(folio)) mapcount += folio_entire_mapcount(folio); return mapcount; } /* * array.c */ extern const struct file_operations proc_tid_children_operations; extern void proc_task_name(struct seq_file *m, struct task_struct *p, bool escape); extern int proc_tid_stat(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_tgid_stat(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_pid_status(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_pid_statm(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); /* * base.c */ extern const struct dentry_operations pid_dentry_operations; extern int pid_getattr(struct mnt_idmap *, const struct path *, struct kstat *, u32, unsigned int); extern int proc_setattr(struct mnt_idmap *, struct dentry *, struct iattr *); extern void proc_pid_evict_inode(struct proc_inode *); extern struct inode *proc_pid_make_inode(struct super_block *, struct task_struct *, umode_t); extern void pid_update_inode(struct task_struct *, struct inode *); extern int pid_delete_dentry(const struct dentry *); extern int proc_pid_readdir(struct file *, struct dir_context *); struct dentry *proc_pid_lookup(struct dentry *, unsigned int); extern loff_t mem_lseek(struct file *, loff_t, int); /* Lookups */ typedef struct dentry *instantiate_t(struct dentry *, struct task_struct *, const void *); bool proc_fill_cache(struct file *, struct dir_context *, const char *, unsigned int, instantiate_t, struct task_struct *, const void *); /* * generic.c */ struct proc_dir_entry *proc_create_reg(const char *name, umode_t mode, struct proc_dir_entry **parent, void *data); struct proc_dir_entry *proc_register(struct proc_dir_entry *dir, struct proc_dir_entry *dp); extern struct dentry *proc_lookup(struct inode *, struct dentry *, unsigned int); struct dentry *proc_lookup_de(struct inode *, struct dentry *, struct proc_dir_entry *); extern int proc_readdir(struct file *, struct dir_context *); int proc_readdir_de(struct file *, struct dir_context *, struct proc_dir_entry *); static inline void pde_get(struct proc_dir_entry *pde) { refcount_inc(&pde->refcnt); } extern void pde_put(struct proc_dir_entry *); static inline bool is_empty_pde(const struct proc_dir_entry *pde) { return S_ISDIR(pde->mode) && !pde->proc_iops; } extern ssize_t proc_simple_write(struct file *, const char __user *, size_t, loff_t *); /* * inode.c */ struct pde_opener { struct list_head lh; struct file *file; bool closing; struct completion *c; } __randomize_layout; extern const struct inode_operations proc_link_inode_operations; extern const struct inode_operations proc_pid_link_inode_operations; extern const struct super_operations proc_sops; void proc_init_kmemcache(void); void proc_invalidate_siblings_dcache(struct hlist_head *inodes, spinlock_t *lock); void set_proc_pid_nlink(void); extern struct inode *proc_get_inode(struct super_block *, struct proc_dir_entry *); extern void proc_entry_rundown(struct proc_dir_entry *); /* * proc_namespaces.c */ extern const struct inode_operations proc_ns_dir_inode_operations; extern const struct file_operations proc_ns_dir_operations; /* * proc_net.c */ extern const struct file_operations proc_net_operations; extern const struct inode_operations proc_net_inode_operations; #ifdef CONFIG_NET extern int proc_net_init(void); #else static inline int proc_net_init(void) { return 0; } #endif /* * proc_self.c */ extern int proc_setup_self(struct super_block *); /* * proc_thread_self.c */ extern int proc_setup_thread_self(struct super_block *); extern void proc_thread_self_init(void); /* * proc_sysctl.c */ #ifdef CONFIG_PROC_SYSCTL extern int proc_sys_init(void); extern void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head); #else static inline void proc_sys_init(void) { } static inline void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) { } #endif /* * proc_tty.c */ #ifdef CONFIG_TTY extern void proc_tty_init(void); #else static inline void proc_tty_init(void) {} #endif /* * root.c */ extern struct proc_dir_entry proc_root; extern void proc_self_init(void); /* * task_[no]mmu.c */ struct mem_size_stats; struct proc_maps_private { struct inode *inode; struct task_struct *task; struct mm_struct *mm; struct vma_iterator iter; #ifdef CONFIG_NUMA struct mempolicy *task_mempolicy; #endif } __randomize_layout; struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode); extern const struct file_operations proc_pid_maps_operations; extern const struct file_operations proc_pid_numa_maps_operations; extern const struct file_operations proc_pid_smaps_operations; extern const struct file_operations proc_pid_smaps_rollup_operations; extern const struct file_operations proc_clear_refs_operations; extern const struct file_operations proc_pagemap_operations; extern unsigned long task_vsize(struct mm_struct *); extern unsigned long task_statm(struct mm_struct *, unsigned long *, unsigned long *, unsigned long *, unsigned long *); extern void task_mem(struct seq_file *, struct mm_struct *); extern const struct dentry_operations proc_net_dentry_ops; static inline void pde_force_lookup(struct proc_dir_entry *pde) { /* /proc/net/ entries can be changed under us by setns(CLONE_NEWNET) */ pde->proc_dops = &proc_net_dentry_ops; } /* * Add a new procfs dentry that can't serve as a mountpoint. That should * encompass anything that is ephemeral and can just disappear while the * process is still around. */ static inline struct dentry *proc_splice_unmountable(struct inode *inode, struct dentry *dentry, const struct dentry_operations *d_ops) { d_set_d_op(dentry, d_ops); dont_mount(dentry); return d_splice_alias(inode, dentry); } |
20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl.h (C) 2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #ifndef __LINUX_POSIX_ACL_H #define __LINUX_POSIX_ACL_H #include <linux/bug.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <uapi/linux/posix_acl.h> struct user_namespace; struct posix_acl_entry { short e_tag; unsigned short e_perm; union { kuid_t e_uid; kgid_t e_gid; }; }; struct posix_acl { refcount_t a_refcount; unsigned int a_count; struct rcu_head a_rcu; struct posix_acl_entry a_entries[] __counted_by(a_count); }; #define FOREACH_ACL_ENTRY(pa, acl, pe) \ for(pa=(acl)->a_entries, pe=pa+(acl)->a_count; pa<pe; pa++) /* * Duplicate an ACL handle. */ static inline struct posix_acl * posix_acl_dup(struct posix_acl *acl) { if (acl) refcount_inc(&acl->a_refcount); return acl; } /* * Free an ACL handle. */ static inline void posix_acl_release(struct posix_acl *acl) { if (acl && refcount_dec_and_test(&acl->a_refcount)) kfree_rcu(acl, a_rcu); } /* posix_acl.c */ extern void posix_acl_init(struct posix_acl *, int); extern struct posix_acl *posix_acl_alloc(unsigned int count, gfp_t flags); extern struct posix_acl *posix_acl_from_mode(umode_t, gfp_t); extern int posix_acl_equiv_mode(const struct posix_acl *, umode_t *); extern int __posix_acl_create(struct posix_acl **, gfp_t, umode_t *); extern int __posix_acl_chmod(struct posix_acl **, gfp_t, umode_t); extern struct posix_acl *get_posix_acl(struct inode *, int); int set_posix_acl(struct mnt_idmap *, struct dentry *, int, struct posix_acl *); struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type); struct posix_acl *posix_acl_clone(const struct posix_acl *acl, gfp_t flags); #ifdef CONFIG_FS_POSIX_ACL int posix_acl_chmod(struct mnt_idmap *, struct dentry *, umode_t); extern int posix_acl_create(struct inode *, umode_t *, struct posix_acl **, struct posix_acl **); int posix_acl_update_mode(struct mnt_idmap *, struct inode *, umode_t *, struct posix_acl **); int simple_set_acl(struct mnt_idmap *, struct dentry *, struct posix_acl *, int); extern int simple_acl_create(struct inode *, struct inode *); struct posix_acl *get_cached_acl(struct inode *inode, int type); void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl); void forget_cached_acl(struct inode *inode, int type); void forget_all_cached_acls(struct inode *inode); int posix_acl_valid(struct user_namespace *, const struct posix_acl *); int posix_acl_permission(struct mnt_idmap *, struct inode *, const struct posix_acl *, int); static inline void cache_no_acl(struct inode *inode) { inode->i_acl = NULL; inode->i_default_acl = NULL; } int vfs_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name, struct posix_acl *kacl); struct posix_acl *vfs_get_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name); int vfs_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name); int posix_acl_listxattr(struct inode *inode, char **buffer, ssize_t *remaining_size); #else static inline int posix_acl_chmod(struct mnt_idmap *idmap, struct dentry *dentry, umode_t mode) { return 0; } #define simple_set_acl NULL static inline int simple_acl_create(struct inode *dir, struct inode *inode) { return 0; } static inline void cache_no_acl(struct inode *inode) { } static inline int posix_acl_create(struct inode *inode, umode_t *mode, struct posix_acl **default_acl, struct posix_acl **acl) { *default_acl = *acl = NULL; return 0; } static inline void forget_all_cached_acls(struct inode *inode) { } static inline int vfs_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, struct posix_acl *acl) { return -EOPNOTSUPP; } static inline struct posix_acl *vfs_get_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { return ERR_PTR(-EOPNOTSUPP); } static inline int vfs_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { return -EOPNOTSUPP; } static inline int posix_acl_listxattr(struct inode *inode, char **buffer, ssize_t *remaining_size) { return 0; } #endif /* CONFIG_FS_POSIX_ACL */ struct posix_acl *get_inode_acl(struct inode *inode, int type); #endif /* __LINUX_POSIX_ACL_H */ |
2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 1 2 1 2 12 12 12 3 3 1 1 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | // SPDX-License-Identifier: GPL-2.0 #include <linux/cgroup.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/signal.h> #include "cgroup-internal.h" #include <trace/events/cgroup.h> /* * Update CGRP_FROZEN of cgroup.flag * Return true if flags is updated; false if flags has no change */ static bool cgroup_update_frozen_flag(struct cgroup *cgrp, bool frozen) { lockdep_assert_held(&css_set_lock); /* Already there? */ if (test_bit(CGRP_FROZEN, &cgrp->flags) == frozen) return false; if (frozen) set_bit(CGRP_FROZEN, &cgrp->flags); else clear_bit(CGRP_FROZEN, &cgrp->flags); cgroup_file_notify(&cgrp->events_file); TRACE_CGROUP_PATH(notify_frozen, cgrp, frozen); return true; } /* * Propagate the cgroup frozen state upwards by the cgroup tree. */ static void cgroup_propagate_frozen(struct cgroup *cgrp, bool frozen) { int desc = 1; /* * If the new state is frozen, some freezing ancestor cgroups may change * their state too, depending on if all their descendants are frozen. * * Otherwise, all ancestor cgroups are forced into the non-frozen state. */ while ((cgrp = cgroup_parent(cgrp))) { if (frozen) { cgrp->freezer.nr_frozen_descendants += desc; if (!test_bit(CGRP_FREEZE, &cgrp->flags) || (cgrp->freezer.nr_frozen_descendants != cgrp->nr_descendants)) continue; } else { cgrp->freezer.nr_frozen_descendants -= desc; } if (cgroup_update_frozen_flag(cgrp, frozen)) desc++; } } /* * Revisit the cgroup frozen state. * Checks if the cgroup is really frozen and perform all state transitions. */ void cgroup_update_frozen(struct cgroup *cgrp) { bool frozen; /* * If the cgroup has to be frozen (CGRP_FREEZE bit set), * and all tasks are frozen and/or stopped, let's consider * the cgroup frozen. Otherwise it's not frozen. */ frozen = test_bit(CGRP_FREEZE, &cgrp->flags) && cgrp->freezer.nr_frozen_tasks == __cgroup_task_count(cgrp); /* If flags is updated, update the state of ancestor cgroups. */ if (cgroup_update_frozen_flag(cgrp, frozen)) cgroup_propagate_frozen(cgrp, frozen); } /* * Increment cgroup's nr_frozen_tasks. */ static void cgroup_inc_frozen_cnt(struct cgroup *cgrp) { cgrp->freezer.nr_frozen_tasks++; } /* * Decrement cgroup's nr_frozen_tasks. */ static void cgroup_dec_frozen_cnt(struct cgroup *cgrp) { cgrp->freezer.nr_frozen_tasks--; WARN_ON_ONCE(cgrp->freezer.nr_frozen_tasks < 0); } /* * Enter frozen/stopped state, if not yet there. Update cgroup's counters, * and revisit the state of the cgroup, if necessary. */ void cgroup_enter_frozen(void) { struct cgroup *cgrp; if (current->frozen) return; spin_lock_irq(&css_set_lock); current->frozen = true; cgrp = task_dfl_cgroup(current); cgroup_inc_frozen_cnt(cgrp); cgroup_update_frozen(cgrp); spin_unlock_irq(&css_set_lock); } /* * Conditionally leave frozen/stopped state. Update cgroup's counters, * and revisit the state of the cgroup, if necessary. * * If always_leave is not set, and the cgroup is freezing, * we're racing with the cgroup freezing. In this case, we don't * drop the frozen counter to avoid a transient switch to * the unfrozen state. */ void cgroup_leave_frozen(bool always_leave) { struct cgroup *cgrp; spin_lock_irq(&css_set_lock); cgrp = task_dfl_cgroup(current); if (always_leave || !test_bit(CGRP_FREEZE, &cgrp->flags)) { cgroup_dec_frozen_cnt(cgrp); cgroup_update_frozen(cgrp); WARN_ON_ONCE(!current->frozen); current->frozen = false; } else if (!(current->jobctl & JOBCTL_TRAP_FREEZE)) { spin_lock(¤t->sighand->siglock); current->jobctl |= JOBCTL_TRAP_FREEZE; set_thread_flag(TIF_SIGPENDING); spin_unlock(¤t->sighand->siglock); } spin_unlock_irq(&css_set_lock); } /* * Freeze or unfreeze the task by setting or clearing the JOBCTL_TRAP_FREEZE * jobctl bit. */ static void cgroup_freeze_task(struct task_struct *task, bool freeze) { unsigned long flags; /* If the task is about to die, don't bother with freezing it. */ if (!lock_task_sighand(task, &flags)) return; if (freeze) { task->jobctl |= JOBCTL_TRAP_FREEZE; signal_wake_up(task, false); } else { task->jobctl &= ~JOBCTL_TRAP_FREEZE; wake_up_process(task); } unlock_task_sighand(task, &flags); } /* * Freeze or unfreeze all tasks in the given cgroup. */ static void cgroup_do_freeze(struct cgroup *cgrp, bool freeze) { struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); if (freeze) set_bit(CGRP_FREEZE, &cgrp->flags); else clear_bit(CGRP_FREEZE, &cgrp->flags); spin_unlock_irq(&css_set_lock); if (freeze) TRACE_CGROUP_PATH(freeze, cgrp); else TRACE_CGROUP_PATH(unfreeze, cgrp); css_task_iter_start(&cgrp->self, 0, &it); while ((task = css_task_iter_next(&it))) { /* * Ignore kernel threads here. Freezing cgroups containing * kthreads isn't supported. */ if (task->flags & PF_KTHREAD) continue; cgroup_freeze_task(task, freeze); } css_task_iter_end(&it); /* * Cgroup state should be revisited here to cover empty leaf cgroups * and cgroups which descendants are already in the desired state. */ spin_lock_irq(&css_set_lock); if (cgrp->nr_descendants == cgrp->freezer.nr_frozen_descendants) cgroup_update_frozen(cgrp); spin_unlock_irq(&css_set_lock); } /* * Adjust the task state (freeze or unfreeze) and revisit the state of * source and destination cgroups. */ void cgroup_freezer_migrate_task(struct task_struct *task, struct cgroup *src, struct cgroup *dst) { lockdep_assert_held(&css_set_lock); /* * Kernel threads are not supposed to be frozen at all. */ if (task->flags & PF_KTHREAD) return; /* * It's not necessary to do changes if both of the src and dst cgroups * are not freezing and task is not frozen. */ if (!test_bit(CGRP_FREEZE, &src->flags) && !test_bit(CGRP_FREEZE, &dst->flags) && !task->frozen) return; /* * Adjust counters of freezing and frozen tasks. * Note, that if the task is frozen, but the destination cgroup is not * frozen, we bump both counters to keep them balanced. */ if (task->frozen) { cgroup_inc_frozen_cnt(dst); cgroup_dec_frozen_cnt(src); } cgroup_update_frozen(dst); cgroup_update_frozen(src); /* * Force the task to the desired state. */ cgroup_freeze_task(task, test_bit(CGRP_FREEZE, &dst->flags)); } void cgroup_freeze(struct cgroup *cgrp, bool freeze) { struct cgroup_subsys_state *css; struct cgroup *parent; struct cgroup *dsct; bool applied = false; bool old_e; lockdep_assert_held(&cgroup_mutex); /* * Nothing changed? Just exit. */ if (cgrp->freezer.freeze == freeze) return; cgrp->freezer.freeze = freeze; /* * Propagate changes downwards the cgroup tree. */ css_for_each_descendant_pre(css, &cgrp->self) { dsct = css->cgroup; if (cgroup_is_dead(dsct)) continue; /* * e_freeze is affected by parent's e_freeze and dst's freeze. * If old e_freeze eq new e_freeze, no change, its children * will not be affected. So do nothing and skip the subtree */ old_e = dsct->freezer.e_freeze; parent = cgroup_parent(dsct); dsct->freezer.e_freeze = (dsct->freezer.freeze || parent->freezer.e_freeze); if (dsct->freezer.e_freeze == old_e) { css = css_rightmost_descendant(css); continue; } /* * Do change actual state: freeze or unfreeze. */ cgroup_do_freeze(dsct, freeze); applied = true; } /* * Even if the actual state hasn't changed, let's notify a user. * The state can be enforced by an ancestor cgroup: the cgroup * can already be in the desired state or it can be locked in the * opposite state, so that the transition will never happen. * In both cases it's better to notify a user, that there is * nothing to wait for. */ if (!applied) { TRACE_CGROUP_PATH(notify_frozen, cgrp, test_bit(CGRP_FROZEN, &cgrp->flags)); cgroup_file_notify(&cgrp->events_file); } } |
4 7 3 1 3 7 7 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | // SPDX-License-Identifier: GPL-2.0-or-later /* * authencesn.c - AEAD wrapper for IPsec with extended sequence numbers, * derived from authenc.c * * Copyright (C) 2010 secunet Security Networks AG * Copyright (C) 2010 Steffen Klassert <steffen.klassert@secunet.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/internal/aead.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include <crypto/authenc.h> #include <crypto/null.h> #include <crypto/scatterwalk.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/spinlock.h> struct authenc_esn_instance_ctx { struct crypto_ahash_spawn auth; struct crypto_skcipher_spawn enc; }; struct crypto_authenc_esn_ctx { unsigned int reqoff; struct crypto_ahash *auth; struct crypto_skcipher *enc; struct crypto_sync_skcipher *null; }; struct authenc_esn_request_ctx { struct scatterlist src[2]; struct scatterlist dst[2]; char tail[]; }; static void authenc_esn_request_complete(struct aead_request *req, int err) { if (err != -EINPROGRESS) aead_request_complete(req, err); } static int crypto_authenc_esn_setauthsize(struct crypto_aead *authenc_esn, unsigned int authsize) { if (authsize > 0 && authsize < 4) return -EINVAL; return 0; } static int crypto_authenc_esn_setkey(struct crypto_aead *authenc_esn, const u8 *key, unsigned int keylen) { struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(authenc_esn); struct crypto_ahash *auth = ctx->auth; struct crypto_skcipher *enc = ctx->enc; struct crypto_authenc_keys keys; int err = -EINVAL; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto out; crypto_ahash_clear_flags(auth, CRYPTO_TFM_REQ_MASK); crypto_ahash_set_flags(auth, crypto_aead_get_flags(authenc_esn) & CRYPTO_TFM_REQ_MASK); err = crypto_ahash_setkey(auth, keys.authkey, keys.authkeylen); if (err) goto out; crypto_skcipher_clear_flags(enc, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(enc, crypto_aead_get_flags(authenc_esn) & CRYPTO_TFM_REQ_MASK); err = crypto_skcipher_setkey(enc, keys.enckey, keys.enckeylen); out: memzero_explicit(&keys, sizeof(keys)); return err; } static int crypto_authenc_esn_genicv_tail(struct aead_request *req, unsigned int flags) { struct crypto_aead *authenc_esn = crypto_aead_reqtfm(req); struct authenc_esn_request_ctx *areq_ctx = aead_request_ctx(req); u8 *hash = areq_ctx->tail; unsigned int authsize = crypto_aead_authsize(authenc_esn); unsigned int assoclen = req->assoclen; unsigned int cryptlen = req->cryptlen; struct scatterlist *dst = req->dst; u32 tmp[2]; /* Move high-order bits of sequence number back. */ scatterwalk_map_and_copy(tmp, dst, 4, 4, 0); scatterwalk_map_and_copy(tmp + 1, dst, assoclen + cryptlen, 4, 0); scatterwalk_map_and_copy(tmp, dst, 0, 8, 1); scatterwalk_map_and_copy(hash, dst, assoclen + cryptlen, authsize, 1); return 0; } static void authenc_esn_geniv_ahash_done(void *data, int err) { struct aead_request *req = data; err = err ?: crypto_authenc_esn_genicv_tail(req, 0); aead_request_complete(req, err); } static int crypto_authenc_esn_genicv(struct aead_request *req, unsigned int flags) { struct crypto_aead *authenc_esn = crypto_aead_reqtfm(req); struct authenc_esn_request_ctx *areq_ctx = aead_request_ctx(req); struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(authenc_esn); struct crypto_ahash *auth = ctx->auth; u8 *hash = areq_ctx->tail; struct ahash_request *ahreq = (void *)(areq_ctx->tail + ctx->reqoff); unsigned int authsize = crypto_aead_authsize(authenc_esn); unsigned int assoclen = req->assoclen; unsigned int cryptlen = req->cryptlen; struct scatterlist *dst = req->dst; u32 tmp[2]; if (!authsize) return 0; /* Move high-order bits of sequence number to the end. */ scatterwalk_map_and_copy(tmp, dst, 0, 8, 0); scatterwalk_map_and_copy(tmp, dst, 4, 4, 1); scatterwalk_map_and_copy(tmp + 1, dst, assoclen + cryptlen, 4, 1); sg_init_table(areq_ctx->dst, 2); dst = scatterwalk_ffwd(areq_ctx->dst, dst, 4); ahash_request_set_tfm(ahreq, auth); ahash_request_set_crypt(ahreq, dst, hash, assoclen + cryptlen); ahash_request_set_callback(ahreq, flags, authenc_esn_geniv_ahash_done, req); return crypto_ahash_digest(ahreq) ?: crypto_authenc_esn_genicv_tail(req, aead_request_flags(req)); } static void crypto_authenc_esn_encrypt_done(void *data, int err) { struct aead_request *areq = data; if (!err) err = crypto_authenc_esn_genicv(areq, 0); authenc_esn_request_complete(areq, err); } static int crypto_authenc_esn_copy(struct aead_request *req, unsigned int len) { struct crypto_aead *authenc_esn = crypto_aead_reqtfm(req); struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(authenc_esn); SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, ctx->null); skcipher_request_set_sync_tfm(skreq, ctx->null); skcipher_request_set_callback(skreq, aead_request_flags(req), NULL, NULL); skcipher_request_set_crypt(skreq, req->src, req->dst, len, NULL); return crypto_skcipher_encrypt(skreq); } static int crypto_authenc_esn_encrypt(struct aead_request *req) { struct crypto_aead *authenc_esn = crypto_aead_reqtfm(req); struct authenc_esn_request_ctx *areq_ctx = aead_request_ctx(req); struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(authenc_esn); struct skcipher_request *skreq = (void *)(areq_ctx->tail + ctx->reqoff); struct crypto_skcipher *enc = ctx->enc; unsigned int assoclen = req->assoclen; unsigned int cryptlen = req->cryptlen; struct scatterlist *src, *dst; int err; sg_init_table(areq_ctx->src, 2); src = scatterwalk_ffwd(areq_ctx->src, req->src, assoclen); dst = src; if (req->src != req->dst) { err = crypto_authenc_esn_copy(req, assoclen); if (err) return err; sg_init_table(areq_ctx->dst, 2); dst = scatterwalk_ffwd(areq_ctx->dst, req->dst, assoclen); } skcipher_request_set_tfm(skreq, enc); skcipher_request_set_callback(skreq, aead_request_flags(req), crypto_authenc_esn_encrypt_done, req); skcipher_request_set_crypt(skreq, src, dst, cryptlen, req->iv); err = crypto_skcipher_encrypt(skreq); if (err) return err; return crypto_authenc_esn_genicv(req, aead_request_flags(req)); } static int crypto_authenc_esn_decrypt_tail(struct aead_request *req, unsigned int flags) { struct crypto_aead *authenc_esn = crypto_aead_reqtfm(req); unsigned int authsize = crypto_aead_authsize(authenc_esn); struct authenc_esn_request_ctx *areq_ctx = aead_request_ctx(req); struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(authenc_esn); struct skcipher_request *skreq = (void *)(areq_ctx->tail + ctx->reqoff); struct crypto_ahash *auth = ctx->auth; u8 *ohash = areq_ctx->tail; unsigned int cryptlen = req->cryptlen - authsize; unsigned int assoclen = req->assoclen; struct scatterlist *dst = req->dst; u8 *ihash = ohash + crypto_ahash_digestsize(auth); u32 tmp[2]; if (!authsize) goto decrypt; /* Move high-order bits of sequence number back. */ scatterwalk_map_and_copy(tmp, dst, 4, 4, 0); scatterwalk_map_and_copy(tmp + 1, dst, assoclen + cryptlen, 4, 0); scatterwalk_map_and_copy(tmp, dst, 0, 8, 1); if (crypto_memneq(ihash, ohash, authsize)) return -EBADMSG; decrypt: sg_init_table(areq_ctx->dst, 2); dst = scatterwalk_ffwd(areq_ctx->dst, dst, assoclen); skcipher_request_set_tfm(skreq, ctx->enc); skcipher_request_set_callback(skreq, flags, req->base.complete, req->base.data); skcipher_request_set_crypt(skreq, dst, dst, cryptlen, req->iv); return crypto_skcipher_decrypt(skreq); } static void authenc_esn_verify_ahash_done(void *data, int err) { struct aead_request *req = data; err = err ?: crypto_authenc_esn_decrypt_tail(req, 0); authenc_esn_request_complete(req, err); } static int crypto_authenc_esn_decrypt(struct aead_request *req) { struct crypto_aead *authenc_esn = crypto_aead_reqtfm(req); struct authenc_esn_request_ctx *areq_ctx = aead_request_ctx(req); struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(authenc_esn); struct ahash_request *ahreq = (void *)(areq_ctx->tail + ctx->reqoff); unsigned int authsize = crypto_aead_authsize(authenc_esn); struct crypto_ahash *auth = ctx->auth; u8 *ohash = areq_ctx->tail; unsigned int assoclen = req->assoclen; unsigned int cryptlen = req->cryptlen; u8 *ihash = ohash + crypto_ahash_digestsize(auth); struct scatterlist *dst = req->dst; u32 tmp[2]; int err; cryptlen -= authsize; if (req->src != dst) { err = crypto_authenc_esn_copy(req, assoclen + cryptlen); if (err) return err; } scatterwalk_map_and_copy(ihash, req->src, assoclen + cryptlen, authsize, 0); if (!authsize) goto tail; /* Move high-order bits of sequence number to the end. */ scatterwalk_map_and_copy(tmp, dst, 0, 8, 0); scatterwalk_map_and_copy(tmp, dst, 4, 4, 1); scatterwalk_map_and_copy(tmp + 1, dst, assoclen + cryptlen, 4, 1); sg_init_table(areq_ctx->dst, 2); dst = scatterwalk_ffwd(areq_ctx->dst, dst, 4); ahash_request_set_tfm(ahreq, auth); ahash_request_set_crypt(ahreq, dst, ohash, assoclen + cryptlen); ahash_request_set_callback(ahreq, aead_request_flags(req), authenc_esn_verify_ahash_done, req); err = crypto_ahash_digest(ahreq); if (err) return err; tail: return crypto_authenc_esn_decrypt_tail(req, aead_request_flags(req)); } static int crypto_authenc_esn_init_tfm(struct crypto_aead *tfm) { struct aead_instance *inst = aead_alg_instance(tfm); struct authenc_esn_instance_ctx *ictx = aead_instance_ctx(inst); struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_ahash *auth; struct crypto_skcipher *enc; struct crypto_sync_skcipher *null; int err; auth = crypto_spawn_ahash(&ictx->auth); if (IS_ERR(auth)) return PTR_ERR(auth); enc = crypto_spawn_skcipher(&ictx->enc); err = PTR_ERR(enc); if (IS_ERR(enc)) goto err_free_ahash; null = crypto_get_default_null_skcipher(); err = PTR_ERR(null); if (IS_ERR(null)) goto err_free_skcipher; ctx->auth = auth; ctx->enc = enc; ctx->null = null; ctx->reqoff = 2 * crypto_ahash_digestsize(auth); crypto_aead_set_reqsize( tfm, sizeof(struct authenc_esn_request_ctx) + ctx->reqoff + max_t(unsigned int, crypto_ahash_reqsize(auth) + sizeof(struct ahash_request), sizeof(struct skcipher_request) + crypto_skcipher_reqsize(enc))); return 0; err_free_skcipher: crypto_free_skcipher(enc); err_free_ahash: crypto_free_ahash(auth); return err; } static void crypto_authenc_esn_exit_tfm(struct crypto_aead *tfm) { struct crypto_authenc_esn_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_ahash(ctx->auth); crypto_free_skcipher(ctx->enc); crypto_put_default_null_skcipher(); } static void crypto_authenc_esn_free(struct aead_instance *inst) { struct authenc_esn_instance_ctx *ctx = aead_instance_ctx(inst); crypto_drop_skcipher(&ctx->enc); crypto_drop_ahash(&ctx->auth); kfree(inst); } static int crypto_authenc_esn_create(struct crypto_template *tmpl, struct rtattr **tb) { u32 mask; struct aead_instance *inst; struct authenc_esn_instance_ctx *ctx; struct skcipher_alg_common *enc; struct hash_alg_common *auth; struct crypto_alg *auth_base; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AEAD, &mask); if (err) return err; inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = aead_instance_ctx(inst); err = crypto_grab_ahash(&ctx->auth, aead_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, mask); if (err) goto err_free_inst; auth = crypto_spawn_ahash_alg(&ctx->auth); auth_base = &auth->base; err = crypto_grab_skcipher(&ctx->enc, aead_crypto_instance(inst), crypto_attr_alg_name(tb[2]), 0, mask); if (err) goto err_free_inst; enc = crypto_spawn_skcipher_alg_common(&ctx->enc); err = -ENAMETOOLONG; if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "authencesn(%s,%s)", auth_base->cra_name, enc->base.cra_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "authencesn(%s,%s)", auth_base->cra_driver_name, enc->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; inst->alg.base.cra_priority = enc->base.cra_priority * 10 + auth_base->cra_priority; inst->alg.base.cra_blocksize = enc->base.cra_blocksize; inst->alg.base.cra_alignmask = enc->base.cra_alignmask; inst->alg.base.cra_ctxsize = sizeof(struct crypto_authenc_esn_ctx); inst->alg.ivsize = enc->ivsize; inst->alg.chunksize = enc->chunksize; inst->alg.maxauthsize = auth->digestsize; inst->alg.init = crypto_authenc_esn_init_tfm; inst->alg.exit = crypto_authenc_esn_exit_tfm; inst->alg.setkey = crypto_authenc_esn_setkey; inst->alg.setauthsize = crypto_authenc_esn_setauthsize; inst->alg.encrypt = crypto_authenc_esn_encrypt; inst->alg.decrypt = crypto_authenc_esn_decrypt; inst->free = crypto_authenc_esn_free; err = aead_register_instance(tmpl, inst); if (err) { err_free_inst: crypto_authenc_esn_free(inst); } return err; } static struct crypto_template crypto_authenc_esn_tmpl = { .name = "authencesn", .create = crypto_authenc_esn_create, .module = THIS_MODULE, }; static int __init crypto_authenc_esn_module_init(void) { return crypto_register_template(&crypto_authenc_esn_tmpl); } static void __exit crypto_authenc_esn_module_exit(void) { crypto_unregister_template(&crypto_authenc_esn_tmpl); } subsys_initcall(crypto_authenc_esn_module_init); module_exit(crypto_authenc_esn_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>"); MODULE_DESCRIPTION("AEAD wrapper for IPsec with extended sequence numbers"); MODULE_ALIAS_CRYPTO("authencesn"); |
1 8 1 2 1 2 1 3 2 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2007-2012 Siemens AG * * Written by: * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Sergey Lapin <slapin@ossfans.org> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #include <linux/if_arp.h> #include <net/mac802154.h> #include <net/ieee802154_netdev.h> #include <net/cfg802154.h> #include "ieee802154_i.h" #include "driver-ops.h" void mac802154_dev_set_page_channel(struct net_device *dev, u8 page, u8 chan) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct ieee802154_local *local = sdata->local; int res; ASSERT_RTNL(); BUG_ON(dev->type != ARPHRD_IEEE802154); res = drv_set_channel(local, page, chan); if (res) { pr_debug("set_channel failed\n"); } else { local->phy->current_channel = chan; local->phy->current_page = page; } } int mac802154_get_params(struct net_device *dev, struct ieee802154_llsec_params *params) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_get_params(&sdata->sec, params); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_set_params(struct net_device *dev, const struct ieee802154_llsec_params *params, int changed) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_set_params(&sdata->sec, params, changed); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_add_key(struct net_device *dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_key_add(&sdata->sec, id, key); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_del_key(struct net_device *dev, const struct ieee802154_llsec_key_id *id) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_key_del(&sdata->sec, id); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_add_dev(struct net_device *dev, const struct ieee802154_llsec_device *llsec_dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_dev_add(&sdata->sec, llsec_dev); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_del_dev(struct net_device *dev, __le64 dev_addr) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_dev_del(&sdata->sec, dev_addr); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_add_devkey(struct net_device *dev, __le64 device_addr, const struct ieee802154_llsec_device_key *key) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_devkey_add(&sdata->sec, device_addr, key); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_del_devkey(struct net_device *dev, __le64 device_addr, const struct ieee802154_llsec_device_key *key) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_devkey_del(&sdata->sec, device_addr, key); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_add_seclevel(struct net_device *dev, const struct ieee802154_llsec_seclevel *sl) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_seclevel_add(&sdata->sec, sl); mutex_unlock(&sdata->sec_mtx); return res; } int mac802154_del_seclevel(struct net_device *dev, const struct ieee802154_llsec_seclevel *sl) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); int res; BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); res = mac802154_llsec_seclevel_del(&sdata->sec, sl); mutex_unlock(&sdata->sec_mtx); return res; } void mac802154_lock_table(struct net_device *dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_lock(&sdata->sec_mtx); } void mac802154_get_table(struct net_device *dev, struct ieee802154_llsec_table **t) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); BUG_ON(dev->type != ARPHRD_IEEE802154); *t = &sdata->sec.table; } void mac802154_unlock_table(struct net_device *dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); BUG_ON(dev->type != ARPHRD_IEEE802154); mutex_unlock(&sdata->sec_mtx); } |
1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_TC_GACT_H #define __NET_TC_GACT_H #include <net/act_api.h> #include <linux/tc_act/tc_gact.h> struct tcf_gact { struct tc_action common; #ifdef CONFIG_GACT_PROB u16 tcfg_ptype; u16 tcfg_pval; int tcfg_paction; atomic_t packets; #endif }; #define to_gact(a) ((struct tcf_gact *)a) static inline bool __is_tcf_gact_act(const struct tc_action *a, int act, bool is_ext) { #ifdef CONFIG_NET_CLS_ACT struct tcf_gact *gact; if (a->ops && a->ops->id != TCA_ID_GACT) return false; gact = to_gact(a); if ((!is_ext && gact->tcf_action == act) || (is_ext && TC_ACT_EXT_CMP(gact->tcf_action, act))) return true; #endif return false; } static inline bool is_tcf_gact_ok(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_OK, false); } static inline bool is_tcf_gact_shot(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_SHOT, false); } static inline bool is_tcf_gact_trap(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_TRAP, false); } static inline bool is_tcf_gact_goto_chain(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_GOTO_CHAIN, true); } static inline u32 tcf_gact_goto_chain_index(const struct tc_action *a) { return READ_ONCE(a->tcfa_action) & TC_ACT_EXT_VAL_MASK; } static inline bool is_tcf_gact_continue(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_UNSPEC, false); } static inline bool is_tcf_gact_reclassify(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_RECLASSIFY, false); } static inline bool is_tcf_gact_pipe(const struct tc_action *a) { return __is_tcf_gact_act(a, TC_ACT_PIPE, false); } #endif /* __NET_TC_GACT_H */ |
1 2 2 1 5 5 3 3 2 1 2 2 2 1 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/net/netfilter/xt_IDLETIMER.c * * Netfilter module to trigger a timer when packet matches. * After timer expires a kevent will be sent. * * Copyright (C) 2004, 2010 Nokia Corporation * Written by Timo Teras <ext-timo.teras@nokia.com> * * Converted to x_tables and reworked for upstream inclusion * by Luciano Coelho <luciano.coelho@nokia.com> * * Contact: Luciano Coelho <luciano.coelho@nokia.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/timer.h> #include <linux/alarmtimer.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/netfilter.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_IDLETIMER.h> #include <linux/kdev_t.h> #include <linux/kobject.h> #include <linux/workqueue.h> #include <linux/sysfs.h> struct idletimer_tg { struct list_head entry; struct alarm alarm; struct timer_list timer; struct work_struct work; struct kobject *kobj; struct device_attribute attr; unsigned int refcnt; u8 timer_type; }; static LIST_HEAD(idletimer_tg_list); static DEFINE_MUTEX(list_mutex); static struct kobject *idletimer_tg_kobj; static struct idletimer_tg *__idletimer_tg_find_by_label(const char *label) { struct idletimer_tg *entry; list_for_each_entry(entry, &idletimer_tg_list, entry) { if (!strcmp(label, entry->attr.attr.name)) return entry; } return NULL; } static ssize_t idletimer_tg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct idletimer_tg *timer; unsigned long expires = 0; struct timespec64 ktimespec = {}; long time_diff = 0; mutex_lock(&list_mutex); timer = __idletimer_tg_find_by_label(attr->attr.name); if (timer) { if (timer->timer_type & XT_IDLETIMER_ALARM) { ktime_t expires_alarm = alarm_expires_remaining(&timer->alarm); ktimespec = ktime_to_timespec64(expires_alarm); time_diff = ktimespec.tv_sec; } else { expires = timer->timer.expires; time_diff = jiffies_to_msecs(expires - jiffies) / 1000; } } mutex_unlock(&list_mutex); if (time_after(expires, jiffies) || ktimespec.tv_sec > 0) return sysfs_emit(buf, "%ld\n", time_diff); return sysfs_emit(buf, "0\n"); } static void idletimer_tg_work(struct work_struct *work) { struct idletimer_tg *timer = container_of(work, struct idletimer_tg, work); sysfs_notify(idletimer_tg_kobj, NULL, timer->attr.attr.name); } static void idletimer_tg_expired(struct timer_list *t) { struct idletimer_tg *timer = from_timer(timer, t, timer); pr_debug("timer %s expired\n", timer->attr.attr.name); schedule_work(&timer->work); } static void idletimer_tg_alarmproc(struct alarm *alarm, ktime_t now) { struct idletimer_tg *timer = alarm->data; pr_debug("alarm %s expired\n", timer->attr.attr.name); schedule_work(&timer->work); } static int idletimer_check_sysfs_name(const char *name, unsigned int size) { int ret; ret = xt_check_proc_name(name, size); if (ret < 0) return ret; if (!strcmp(name, "power") || !strcmp(name, "subsystem") || !strcmp(name, "uevent")) return -EINVAL; return 0; } static int idletimer_tg_create(struct idletimer_tg_info *info) { int ret; info->timer = kzalloc(sizeof(*info->timer), GFP_KERNEL); if (!info->timer) { ret = -ENOMEM; goto out; } ret = idletimer_check_sysfs_name(info->label, sizeof(info->label)); if (ret < 0) goto out_free_timer; sysfs_attr_init(&info->timer->attr.attr); info->timer->attr.attr.name = kstrdup(info->label, GFP_KERNEL); if (!info->timer->attr.attr.name) { ret = -ENOMEM; goto out_free_timer; } info->timer->attr.attr.mode = 0444; info->timer->attr.show = idletimer_tg_show; ret = sysfs_create_file(idletimer_tg_kobj, &info->timer->attr.attr); if (ret < 0) { pr_debug("couldn't add file to sysfs"); goto out_free_attr; } list_add(&info->timer->entry, &idletimer_tg_list); timer_setup(&info->timer->timer, idletimer_tg_expired, 0); info->timer->refcnt = 1; INIT_WORK(&info->timer->work, idletimer_tg_work); mod_timer(&info->timer->timer, msecs_to_jiffies(info->timeout * 1000) + jiffies); return 0; out_free_attr: kfree(info->timer->attr.attr.name); out_free_timer: kfree(info->timer); out: return ret; } static int idletimer_tg_create_v1(struct idletimer_tg_info_v1 *info) { int ret; info->timer = kmalloc(sizeof(*info->timer), GFP_KERNEL); if (!info->timer) { ret = -ENOMEM; goto out; } ret = idletimer_check_sysfs_name(info->label, sizeof(info->label)); if (ret < 0) goto out_free_timer; sysfs_attr_init(&info->timer->attr.attr); info->timer->attr.attr.name = kstrdup(info->label, GFP_KERNEL); if (!info->timer->attr.attr.name) { ret = -ENOMEM; goto out_free_timer; } info->timer->attr.attr.mode = 0444; info->timer->attr.show = idletimer_tg_show; ret = sysfs_create_file(idletimer_tg_kobj, &info->timer->attr.attr); if (ret < 0) { pr_debug("couldn't add file to sysfs"); goto out_free_attr; } /* notify userspace */ kobject_uevent(idletimer_tg_kobj,KOBJ_ADD); list_add(&info->timer->entry, &idletimer_tg_list); pr_debug("timer type value is %u", info->timer_type); info->timer->timer_type = info->timer_type; info->timer->refcnt = 1; INIT_WORK(&info->timer->work, idletimer_tg_work); if (info->timer->timer_type & XT_IDLETIMER_ALARM) { ktime_t tout; alarm_init(&info->timer->alarm, ALARM_BOOTTIME, idletimer_tg_alarmproc); info->timer->alarm.data = info->timer; tout = ktime_set(info->timeout, 0); alarm_start_relative(&info->timer->alarm, tout); } else { timer_setup(&info->timer->timer, idletimer_tg_expired, 0); mod_timer(&info->timer->timer, msecs_to_jiffies(info->timeout * 1000) + jiffies); } return 0; out_free_attr: kfree(info->timer->attr.attr.name); out_free_timer: kfree(info->timer); out: return ret; } /* * The actual xt_tables plugin. */ static unsigned int idletimer_tg_target(struct sk_buff *skb, const struct xt_action_param *par) { const struct idletimer_tg_info *info = par->targinfo; pr_debug("resetting timer %s, timeout period %u\n", info->label, info->timeout); mod_timer(&info->timer->timer, msecs_to_jiffies(info->timeout * 1000) + jiffies); return XT_CONTINUE; } /* * The actual xt_tables plugin. */ static unsigned int idletimer_tg_target_v1(struct sk_buff *skb, const struct xt_action_param *par) { const struct idletimer_tg_info_v1 *info = par->targinfo; pr_debug("resetting timer %s, timeout period %u\n", info->label, info->timeout); if (info->timer->timer_type & XT_IDLETIMER_ALARM) { ktime_t tout = ktime_set(info->timeout, 0); alarm_start_relative(&info->timer->alarm, tout); } else { mod_timer(&info->timer->timer, msecs_to_jiffies(info->timeout * 1000) + jiffies); } return XT_CONTINUE; } static int idletimer_tg_helper(struct idletimer_tg_info *info) { if (info->timeout == 0) { pr_debug("timeout value is zero\n"); return -EINVAL; } if (info->timeout >= INT_MAX / 1000) { pr_debug("timeout value is too big\n"); return -EINVAL; } if (info->label[0] == '\0' || strnlen(info->label, MAX_IDLETIMER_LABEL_SIZE) == MAX_IDLETIMER_LABEL_SIZE) { pr_debug("label is empty or not nul-terminated\n"); return -EINVAL; } return 0; } static int idletimer_tg_checkentry(const struct xt_tgchk_param *par) { struct idletimer_tg_info *info = par->targinfo; int ret; pr_debug("checkentry targinfo%s\n", info->label); ret = idletimer_tg_helper(info); if(ret < 0) { pr_debug("checkentry helper return invalid\n"); return -EINVAL; } mutex_lock(&list_mutex); info->timer = __idletimer_tg_find_by_label(info->label); if (info->timer) { info->timer->refcnt++; mod_timer(&info->timer->timer, msecs_to_jiffies(info->timeout * 1000) + jiffies); pr_debug("increased refcnt of timer %s to %u\n", info->label, info->timer->refcnt); } else { ret = idletimer_tg_create(info); if (ret < 0) { pr_debug("failed to create timer\n"); mutex_unlock(&list_mutex); return ret; } } mutex_unlock(&list_mutex); return 0; } static int idletimer_tg_checkentry_v1(const struct xt_tgchk_param *par) { struct idletimer_tg_info_v1 *info = par->targinfo; int ret; pr_debug("checkentry targinfo%s\n", info->label); if (info->send_nl_msg) return -EOPNOTSUPP; ret = idletimer_tg_helper((struct idletimer_tg_info *)info); if(ret < 0) { pr_debug("checkentry helper return invalid\n"); return -EINVAL; } if (info->timer_type > XT_IDLETIMER_ALARM) { pr_debug("invalid value for timer type\n"); return -EINVAL; } mutex_lock(&list_mutex); info->timer = __idletimer_tg_find_by_label(info->label); if (info->timer) { if (info->timer->timer_type != info->timer_type) { pr_debug("Adding/Replacing rule with same label and different timer type is not allowed\n"); mutex_unlock(&list_mutex); return -EINVAL; } info->timer->refcnt++; if (info->timer_type & XT_IDLETIMER_ALARM) { /* calculate remaining expiry time */ ktime_t tout = alarm_expires_remaining(&info->timer->alarm); struct timespec64 ktimespec = ktime_to_timespec64(tout); if (ktimespec.tv_sec > 0) { pr_debug("time_expiry_remaining %lld\n", ktimespec.tv_sec); alarm_start_relative(&info->timer->alarm, tout); } } else { mod_timer(&info->timer->timer, msecs_to_jiffies(info->timeout * 1000) + jiffies); } pr_debug("increased refcnt of timer %s to %u\n", info->label, info->timer->refcnt); } else { ret = idletimer_tg_create_v1(info); if (ret < 0) { pr_debug("failed to create timer\n"); mutex_unlock(&list_mutex); return ret; } } mutex_unlock(&list_mutex); return 0; } static void idletimer_tg_destroy(const struct xt_tgdtor_param *par) { const struct idletimer_tg_info *info = par->targinfo; pr_debug("destroy targinfo %s\n", info->label); mutex_lock(&list_mutex); if (--info->timer->refcnt > 0) { pr_debug("decreased refcnt of timer %s to %u\n", info->label, info->timer->refcnt); mutex_unlock(&list_mutex); return; } pr_debug("deleting timer %s\n", info->label); list_del(&info->timer->entry); mutex_unlock(&list_mutex); timer_shutdown_sync(&info->timer->timer); cancel_work_sync(&info->timer->work); sysfs_remove_file(idletimer_tg_kobj, &info->timer->attr.attr); kfree(info->timer->attr.attr.name); kfree(info->timer); } static void idletimer_tg_destroy_v1(const struct xt_tgdtor_param *par) { const struct idletimer_tg_info_v1 *info = par->targinfo; pr_debug("destroy targinfo %s\n", info->label); mutex_lock(&list_mutex); if (--info->timer->refcnt > 0) { pr_debug("decreased refcnt of timer %s to %u\n", info->label, info->timer->refcnt); mutex_unlock(&list_mutex); return; } pr_debug("deleting timer %s\n", info->label); list_del(&info->timer->entry); mutex_unlock(&list_mutex); if (info->timer->timer_type & XT_IDLETIMER_ALARM) { alarm_cancel(&info->timer->alarm); } else { timer_shutdown_sync(&info->timer->timer); } cancel_work_sync(&info->timer->work); sysfs_remove_file(idletimer_tg_kobj, &info->timer->attr.attr); kfree(info->timer->attr.attr.name); kfree(info->timer); } static struct xt_target idletimer_tg[] __read_mostly = { { .name = "IDLETIMER", .family = NFPROTO_IPV4, .target = idletimer_tg_target, .targetsize = sizeof(struct idletimer_tg_info), .usersize = offsetof(struct idletimer_tg_info, timer), .checkentry = idletimer_tg_checkentry, .destroy = idletimer_tg_destroy, .me = THIS_MODULE, }, { .name = "IDLETIMER", .family = NFPROTO_IPV4, .revision = 1, .target = idletimer_tg_target_v1, .targetsize = sizeof(struct idletimer_tg_info_v1), .usersize = offsetof(struct idletimer_tg_info_v1, timer), .checkentry = idletimer_tg_checkentry_v1, .destroy = idletimer_tg_destroy_v1, .me = THIS_MODULE, }, #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) { .name = "IDLETIMER", .family = NFPROTO_IPV6, .target = idletimer_tg_target, .targetsize = sizeof(struct idletimer_tg_info), .usersize = offsetof(struct idletimer_tg_info, timer), .checkentry = idletimer_tg_checkentry, .destroy = idletimer_tg_destroy, .me = THIS_MODULE, }, { .name = "IDLETIMER", .family = NFPROTO_IPV6, .revision = 1, .target = idletimer_tg_target_v1, .targetsize = sizeof(struct idletimer_tg_info_v1), .usersize = offsetof(struct idletimer_tg_info_v1, timer), .checkentry = idletimer_tg_checkentry_v1, .destroy = idletimer_tg_destroy_v1, .me = THIS_MODULE, }, #endif }; static struct class *idletimer_tg_class; static struct device *idletimer_tg_device; static int __init idletimer_tg_init(void) { int err; idletimer_tg_class = class_create("xt_idletimer"); err = PTR_ERR(idletimer_tg_class); if (IS_ERR(idletimer_tg_class)) { pr_debug("couldn't register device class\n"); goto out; } idletimer_tg_device = device_create(idletimer_tg_class, NULL, MKDEV(0, 0), NULL, "timers"); err = PTR_ERR(idletimer_tg_device); if (IS_ERR(idletimer_tg_device)) { pr_debug("couldn't register system device\n"); goto out_class; } idletimer_tg_kobj = &idletimer_tg_device->kobj; err = xt_register_targets(idletimer_tg, ARRAY_SIZE(idletimer_tg)); if (err < 0) { pr_debug("couldn't register xt target\n"); goto out_dev; } return 0; out_dev: device_destroy(idletimer_tg_class, MKDEV(0, 0)); out_class: class_destroy(idletimer_tg_class); out: return err; } static void __exit idletimer_tg_exit(void) { xt_unregister_targets(idletimer_tg, ARRAY_SIZE(idletimer_tg)); device_destroy(idletimer_tg_class, MKDEV(0, 0)); class_destroy(idletimer_tg_class); } module_init(idletimer_tg_init); module_exit(idletimer_tg_exit); MODULE_AUTHOR("Timo Teras <ext-timo.teras@nokia.com>"); MODULE_AUTHOR("Luciano Coelho <luciano.coelho@nokia.com>"); MODULE_DESCRIPTION("Xtables: idle time monitor"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("ipt_IDLETIMER"); MODULE_ALIAS("ip6t_IDLETIMER"); |
7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | // SPDX-License-Identifier: GPL-2.0-or-later /* * NET4: Sysctl interface to net af_unix subsystem. * * Authors: Mike Shaver. */ #include <linux/mm.h> #include <linux/slab.h> #include <linux/sysctl.h> #include <net/af_unix.h> static struct ctl_table unix_table[] = { { .procname = "max_dgram_qlen", .data = &init_net.unx.sysctl_max_dgram_qlen, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, }; int __net_init unix_sysctl_register(struct net *net) { struct ctl_table *table; if (net_eq(net, &init_net)) { table = unix_table; } else { table = kmemdup(unix_table, sizeof(unix_table), GFP_KERNEL); if (!table) goto err_alloc; table[0].data = &net->unx.sysctl_max_dgram_qlen; } net->unx.ctl = register_net_sysctl_sz(net, "net/unix", table, ARRAY_SIZE(unix_table)); if (net->unx.ctl == NULL) goto err_reg; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } void unix_sysctl_unregister(struct net *net) { const struct ctl_table *table; table = net->unx.ctl->ctl_table_arg; unregister_net_sysctl_table(net->unx.ctl); if (!net_eq(net, &init_net)) kfree(table); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DEBUGREG_H #define _ASM_X86_DEBUGREG_H #include <linux/bug.h> #include <linux/percpu.h> #include <uapi/asm/debugreg.h> #include <asm/cpufeature.h> #include <asm/msr.h> DECLARE_PER_CPU(unsigned long, cpu_dr7); #ifndef CONFIG_PARAVIRT_XXL /* * These special macros can be used to get or set a debugging register */ #define get_debugreg(var, register) \ (var) = native_get_debugreg(register) #define set_debugreg(value, register) \ native_set_debugreg(register, value) #endif static __always_inline unsigned long native_get_debugreg(int regno) { unsigned long val = 0; /* Damn you, gcc! */ switch (regno) { case 0: asm("mov %%db0, %0" :"=r" (val)); break; case 1: asm("mov %%db1, %0" :"=r" (val)); break; case 2: asm("mov %%db2, %0" :"=r" (val)); break; case 3: asm("mov %%db3, %0" :"=r" (val)); break; case 6: asm("mov %%db6, %0" :"=r" (val)); break; case 7: /* * Apply __FORCE_ORDER to DR7 reads to forbid re-ordering them * with other code. * * This is needed because a DR7 access can cause a #VC exception * when running under SEV-ES. Taking a #VC exception is not a * safe thing to do just anywhere in the entry code and * re-ordering might place the access into an unsafe location. * * This happened in the NMI handler, where the DR7 read was * re-ordered to happen before the call to sev_es_ist_enter(), * causing stack recursion. */ asm volatile("mov %%db7, %0" : "=r" (val) : __FORCE_ORDER); break; default: BUG(); } return val; } static __always_inline void native_set_debugreg(int regno, unsigned long value) { switch (regno) { case 0: asm("mov %0, %%db0" ::"r" (value)); break; case 1: asm("mov %0, %%db1" ::"r" (value)); break; case 2: asm("mov %0, %%db2" ::"r" (value)); break; case 3: asm("mov %0, %%db3" ::"r" (value)); break; case 6: asm("mov %0, %%db6" ::"r" (value)); break; case 7: /* * Apply __FORCE_ORDER to DR7 writes to forbid re-ordering them * with other code. * * While is didn't happen with a DR7 write (see the DR7 read * comment above which explains where it happened), add the * __FORCE_ORDER here too to avoid similar problems in the * future. */ asm volatile("mov %0, %%db7" ::"r" (value), __FORCE_ORDER); break; default: BUG(); } } static inline void hw_breakpoint_disable(void) { /* Zero the control register for HW Breakpoint */ set_debugreg(0UL, 7); /* Zero-out the individual HW breakpoint address registers */ set_debugreg(0UL, 0); set_debugreg(0UL, 1); set_debugreg(0UL, 2); set_debugreg(0UL, 3); } static __always_inline bool hw_breakpoint_active(void) { return __this_cpu_read(cpu_dr7) & DR_GLOBAL_ENABLE_MASK; } extern void hw_breakpoint_restore(void); static __always_inline unsigned long local_db_save(void) { unsigned long dr7; if (static_cpu_has(X86_FEATURE_HYPERVISOR) && !hw_breakpoint_active()) return 0; get_debugreg(dr7, 7); dr7 &= ~0x400; /* architecturally set bit */ if (dr7) set_debugreg(0, 7); /* * Ensure the compiler doesn't lower the above statements into * the critical section; disabling breakpoints late would not * be good. */ barrier(); return dr7; } static __always_inline void local_db_restore(unsigned long dr7) { /* * Ensure the compiler doesn't raise this statement into * the critical section; enabling breakpoints early would * not be good. */ barrier(); if (dr7) set_debugreg(dr7, 7); } #ifdef CONFIG_CPU_SUP_AMD extern void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr); extern unsigned long amd_get_dr_addr_mask(unsigned int dr); #else static inline void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) { } static inline unsigned long amd_get_dr_addr_mask(unsigned int dr) { return 0; } #endif static inline unsigned long get_debugctlmsr(void) { unsigned long debugctlmsr = 0; #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return 0; #endif rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); return debugctlmsr; } static inline void update_debugctlmsr(unsigned long debugctlmsr) { #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return; #endif wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); } #endif /* _ASM_X86_DEBUGREG_H */ |
7 7 6 6 9 9 6 6 1 1 1 1 1 1 7 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/proc/net.c * * Copyright (C) 2007 * * Author: Eric Biederman <ebiederm@xmission.com> * * proc net directory handling functions */ #include <linux/errno.h> #include <linux/time.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/mount.h> #include <linux/nsproxy.h> #include <linux/uidgid.h> #include <net/net_namespace.h> #include <linux/seq_file.h> #include "internal.h" static inline struct net *PDE_NET(struct proc_dir_entry *pde) { return pde->parent->data; } static struct net *get_proc_net(const struct inode *inode) { return maybe_get_net(PDE_NET(PDE(inode))); } static int seq_open_net(struct inode *inode, struct file *file) { unsigned int state_size = PDE(inode)->state_size; struct seq_net_private *p; struct net *net; WARN_ON_ONCE(state_size < sizeof(*p)); if (file->f_mode & FMODE_WRITE && !PDE(inode)->write) return -EACCES; net = get_proc_net(inode); if (!net) return -ENXIO; p = __seq_open_private(file, PDE(inode)->seq_ops, state_size); if (!p) { put_net(net); return -ENOMEM; } #ifdef CONFIG_NET_NS p->net = net; netns_tracker_alloc(net, &p->ns_tracker, GFP_KERNEL); #endif return 0; } static void seq_file_net_put_net(struct seq_file *seq) { #ifdef CONFIG_NET_NS struct seq_net_private *priv = seq->private; put_net_track(priv->net, &priv->ns_tracker); #else put_net(&init_net); #endif } static int seq_release_net(struct inode *ino, struct file *f) { struct seq_file *seq = f->private_data; seq_file_net_put_net(seq); seq_release_private(ino, f); return 0; } static const struct proc_ops proc_net_seq_ops = { .proc_open = seq_open_net, .proc_read = seq_read, .proc_write = proc_simple_write, .proc_lseek = seq_lseek, .proc_release = seq_release_net, }; int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux) { #ifdef CONFIG_NET_NS struct seq_net_private *p = priv_data; p->net = get_net_track(current->nsproxy->net_ns, &p->ns_tracker, GFP_KERNEL); #endif return 0; } void bpf_iter_fini_seq_net(void *priv_data) { #ifdef CONFIG_NET_NS struct seq_net_private *p = priv_data; put_net_track(p->net, &p->ns_tracker); #endif } struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_seq_ops; p->seq_ops = ops; p->state_size = state_size; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_data); /** * proc_create_net_data_write - Create a writable net_ns-specific proc file * @name: The name of the file. * @mode: The file's access mode. * @parent: The parent directory in which to create. * @ops: The seq_file ops with which to read the file. * @write: The write method with which to 'modify' the file. * @state_size: The size of the per-file private state to allocate. * @data: Data for retrieval by pde_data(). * * Create a network namespaced proc file in the @parent directory with the * specified @name and @mode that allows reading of a file that displays a * series of elements and also provides for the file accepting writes that have * some arbitrary effect. * * The functions in the @ops table are used to iterate over items to be * presented and extract the readable content using the seq_file interface. * * The @write function is called with the data copied into a kernel space * scratch buffer and has a NUL appended for convenience. The buffer may be * modified by the @write function. @write should return 0 on success. * * The @data value is accessible from the @show and @write functions by calling * pde_data() on the file inode. The network namespace must be accessed by * calling seq_file_net() on the seq_file struct. */ struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_seq_ops; p->seq_ops = ops; p->state_size = state_size; p->write = write; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_data_write); static int single_open_net(struct inode *inode, struct file *file) { struct proc_dir_entry *de = PDE(inode); struct net *net; int err; net = get_proc_net(inode); if (!net) return -ENXIO; err = single_open(file, de->single_show, net); if (err) put_net(net); return err; } static int single_release_net(struct inode *ino, struct file *f) { struct seq_file *seq = f->private_data; put_net(seq->private); return single_release(ino, f); } static const struct proc_ops proc_net_single_ops = { .proc_open = single_open_net, .proc_read = seq_read, .proc_write = proc_simple_write, .proc_lseek = seq_lseek, .proc_release = single_release_net, }; struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_single_ops; p->single_show = show; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_single); /** * proc_create_net_single_write - Create a writable net_ns-specific proc file * @name: The name of the file. * @mode: The file's access mode. * @parent: The parent directory in which to create. * @show: The seqfile show method with which to read the file. * @write: The write method with which to 'modify' the file. * @data: Data for retrieval by pde_data(). * * Create a network-namespaced proc file in the @parent directory with the * specified @name and @mode that allows reading of a file that displays a * single element rather than a series and also provides for the file accepting * writes that have some arbitrary effect. * * The @show function is called to extract the readable content via the * seq_file interface. * * The @write function is called with the data copied into a kernel space * scratch buffer and has a NUL appended for convenience. The buffer may be * modified by the @write function. @write should return 0 on success. * * The @data value is accessible from the @show and @write functions by calling * pde_data() on the file inode. The network namespace must be accessed by * calling seq_file_single_net() on the seq_file struct. */ struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_single_ops; p->single_show = show; p->write = write; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_single_write); static struct net *get_proc_task_net(struct inode *dir) { struct task_struct *task; struct nsproxy *ns; struct net *net = NULL; rcu_read_lock(); task = pid_task(proc_pid(dir), PIDTYPE_PID); if (task != NULL) { task_lock(task); ns = task->nsproxy; if (ns != NULL) net = get_net(ns->net_ns); task_unlock(task); } rcu_read_unlock(); return net; } static struct dentry *proc_tgid_net_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct dentry *de; struct net *net; de = ERR_PTR(-ENOENT); net = get_proc_task_net(dir); if (net != NULL) { de = proc_lookup_de(dir, dentry, net->proc_net); put_net(net); } return de; } static int proc_tgid_net_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct net *net; net = get_proc_task_net(inode); generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); if (net != NULL) { stat->nlink = net->proc_net->nlink; put_net(net); } return 0; } const struct inode_operations proc_net_inode_operations = { .lookup = proc_tgid_net_lookup, .getattr = proc_tgid_net_getattr, .setattr = proc_setattr, }; static int proc_tgid_net_readdir(struct file *file, struct dir_context *ctx) { int ret; struct net *net; ret = -EINVAL; net = get_proc_task_net(file_inode(file)); if (net != NULL) { ret = proc_readdir_de(file, ctx, net->proc_net); put_net(net); } return ret; } const struct file_operations proc_net_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = proc_tgid_net_readdir, }; static __net_init int proc_net_ns_init(struct net *net) { struct proc_dir_entry *netd, *net_statd; kuid_t uid; kgid_t gid; int err; /* * This PDE acts only as an anchor for /proc/${pid}/net hierarchy. * Corresponding inode (PDE(inode) == net->proc_net) is never * instantiated therefore blanket zeroing is fine. * net->proc_net_stat inode is instantiated normally. */ err = -ENOMEM; netd = kmem_cache_zalloc(proc_dir_entry_cache, GFP_KERNEL); if (!netd) goto out; netd->subdir = RB_ROOT; netd->data = net; netd->nlink = 2; netd->namelen = 3; netd->parent = &proc_root; netd->name = netd->inline_name; memcpy(netd->name, "net", 4); uid = make_kuid(net->user_ns, 0); if (!uid_valid(uid)) uid = netd->uid; gid = make_kgid(net->user_ns, 0); if (!gid_valid(gid)) gid = netd->gid; proc_set_user(netd, uid, gid); /* Seed dentry revalidation for /proc/${pid}/net */ pde_force_lookup(netd); err = -EEXIST; net_statd = proc_net_mkdir(net, "stat", netd); if (!net_statd) goto free_net; net->proc_net = netd; net->proc_net_stat = net_statd; return 0; free_net: pde_free(netd); out: return err; } static __net_exit void proc_net_ns_exit(struct net *net) { remove_proc_entry("stat", net->proc_net); pde_free(net->proc_net); } static struct pernet_operations __net_initdata proc_net_ns_ops = { .init = proc_net_ns_init, .exit = proc_net_ns_exit, }; int __init proc_net_init(void) { proc_symlink("net", NULL, "self/net"); return register_pernet_subsys(&proc_net_ns_ops); } |
10 10 3 6 6 6 2 3 6 9 10 10 12 12 6 2 10 12 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016 Facebook */ #include "percpu_freelist.h" int pcpu_freelist_init(struct pcpu_freelist *s) { int cpu; s->freelist = alloc_percpu(struct pcpu_freelist_head); if (!s->freelist) return -ENOMEM; for_each_possible_cpu(cpu) { struct pcpu_freelist_head *head = per_cpu_ptr(s->freelist, cpu); raw_spin_lock_init(&head->lock); head->first = NULL; } raw_spin_lock_init(&s->extralist.lock); s->extralist.first = NULL; return 0; } void pcpu_freelist_destroy(struct pcpu_freelist *s) { free_percpu(s->freelist); } static inline void pcpu_freelist_push_node(struct pcpu_freelist_head *head, struct pcpu_freelist_node *node) { node->next = head->first; WRITE_ONCE(head->first, node); } static inline void ___pcpu_freelist_push(struct pcpu_freelist_head *head, struct pcpu_freelist_node *node) { raw_spin_lock(&head->lock); pcpu_freelist_push_node(head, node); raw_spin_unlock(&head->lock); } static inline bool pcpu_freelist_try_push_extra(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { if (!raw_spin_trylock(&s->extralist.lock)) return false; pcpu_freelist_push_node(&s->extralist, node); raw_spin_unlock(&s->extralist.lock); return true; } static inline void ___pcpu_freelist_push_nmi(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { int cpu, orig_cpu; orig_cpu = raw_smp_processor_id(); while (1) { for_each_cpu_wrap(cpu, cpu_possible_mask, orig_cpu) { struct pcpu_freelist_head *head; head = per_cpu_ptr(s->freelist, cpu); if (raw_spin_trylock(&head->lock)) { pcpu_freelist_push_node(head, node); raw_spin_unlock(&head->lock); return; } } /* cannot lock any per cpu lock, try extralist */ if (pcpu_freelist_try_push_extra(s, node)) return; } } void __pcpu_freelist_push(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { if (in_nmi()) ___pcpu_freelist_push_nmi(s, node); else ___pcpu_freelist_push(this_cpu_ptr(s->freelist), node); } void pcpu_freelist_push(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { unsigned long flags; local_irq_save(flags); __pcpu_freelist_push(s, node); local_irq_restore(flags); } void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size, u32 nr_elems) { struct pcpu_freelist_head *head; unsigned int cpu, cpu_idx, i, j, n, m; n = nr_elems / num_possible_cpus(); m = nr_elems % num_possible_cpus(); cpu_idx = 0; for_each_possible_cpu(cpu) { head = per_cpu_ptr(s->freelist, cpu); j = n + (cpu_idx < m ? 1 : 0); for (i = 0; i < j; i++) { /* No locking required as this is not visible yet. */ pcpu_freelist_push_node(head, buf); buf += elem_size; } cpu_idx++; } } static struct pcpu_freelist_node *___pcpu_freelist_pop(struct pcpu_freelist *s) { struct pcpu_freelist_head *head; struct pcpu_freelist_node *node; int cpu; for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { head = per_cpu_ptr(s->freelist, cpu); if (!READ_ONCE(head->first)) continue; raw_spin_lock(&head->lock); node = head->first; if (node) { WRITE_ONCE(head->first, node->next); raw_spin_unlock(&head->lock); return node; } raw_spin_unlock(&head->lock); } /* per cpu lists are all empty, try extralist */ if (!READ_ONCE(s->extralist.first)) return NULL; raw_spin_lock(&s->extralist.lock); node = s->extralist.first; if (node) WRITE_ONCE(s->extralist.first, node->next); raw_spin_unlock(&s->extralist.lock); return node; } static struct pcpu_freelist_node * ___pcpu_freelist_pop_nmi(struct pcpu_freelist *s) { struct pcpu_freelist_head *head; struct pcpu_freelist_node *node; int cpu; for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { head = per_cpu_ptr(s->freelist, cpu); if (!READ_ONCE(head->first)) continue; if (raw_spin_trylock(&head->lock)) { node = head->first; if (node) { WRITE_ONCE(head->first, node->next); raw_spin_unlock(&head->lock); return node; } raw_spin_unlock(&head->lock); } } /* cannot pop from per cpu lists, try extralist */ if (!READ_ONCE(s->extralist.first) || !raw_spin_trylock(&s->extralist.lock)) return NULL; node = s->extralist.first; if (node) WRITE_ONCE(s->extralist.first, node->next); raw_spin_unlock(&s->extralist.lock); return node; } struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *s) { if (in_nmi()) return ___pcpu_freelist_pop_nmi(s); return ___pcpu_freelist_pop(s); } struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *s) { struct pcpu_freelist_node *ret; unsigned long flags; local_irq_save(flags); ret = __pcpu_freelist_pop(s); local_irq_restore(flags); return ret; } |
8 28 1 21 21 20 21 21 7 1 6 5 5 1 4 5 1 5 1 4 2 5 1 5 1 6 6 28 27 28 1 14 8 1 10 10 10 5 5 21 21 13 13 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2013 Cisco Systems, Inc, 2013. * * Author: Vijay Subramanian <vijaynsu@cisco.com> * Author: Mythili Prabhu <mysuryan@cisco.com> * * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no> * University of Oslo, Norway. * * References: * RFC 8033: https://tools.ietf.org/html/rfc8033 */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #include <net/pie.h> /* private data for the Qdisc */ struct pie_sched_data { struct pie_vars vars; struct pie_params params; struct pie_stats stats; struct timer_list adapt_timer; struct Qdisc *sch; }; bool pie_drop_early(struct Qdisc *sch, struct pie_params *params, struct pie_vars *vars, u32 backlog, u32 packet_size) { u64 rnd; u64 local_prob = vars->prob; u32 mtu = psched_mtu(qdisc_dev(sch)); /* If there is still burst allowance left skip random early drop */ if (vars->burst_time > 0) return false; /* If current delay is less than half of target, and * if drop prob is low already, disable early_drop */ if ((vars->qdelay < params->target / 2) && (vars->prob < MAX_PROB / 5)) return false; /* If we have fewer than 2 mtu-sized packets, disable pie_drop_early, * similar to min_th in RED */ if (backlog < 2 * mtu) return false; /* If bytemode is turned on, use packet size to compute new * probablity. Smaller packets will have lower drop prob in this case */ if (params->bytemode && packet_size <= mtu) local_prob = (u64)packet_size * div_u64(local_prob, mtu); else local_prob = vars->prob; if (local_prob == 0) vars->accu_prob = 0; else vars->accu_prob += local_prob; if (vars->accu_prob < (MAX_PROB / 100) * 85) return false; if (vars->accu_prob >= (MAX_PROB / 2) * 17) return true; get_random_bytes(&rnd, 8); if ((rnd >> BITS_PER_BYTE) < local_prob) { vars->accu_prob = 0; return true; } return false; } EXPORT_SYMBOL_GPL(pie_drop_early); static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct pie_sched_data *q = qdisc_priv(sch); bool enqueue = false; if (unlikely(qdisc_qlen(sch) >= sch->limit)) { q->stats.overlimit++; goto out; } if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog, skb->len)) { enqueue = true; } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && INET_ECN_set_ce(skb)) { /* If packet is ecn capable, mark it if drop probability * is lower than 10%, else drop it. */ q->stats.ecn_mark++; enqueue = true; } /* we can enqueue the packet */ if (enqueue) { /* Set enqueue time only when dq_rate_estimator is disabled. */ if (!q->params.dq_rate_estimator) pie_set_enqueue_time(skb); q->stats.packets_in++; if (qdisc_qlen(sch) > q->stats.maxq) q->stats.maxq = qdisc_qlen(sch); return qdisc_enqueue_tail(skb, sch); } out: q->stats.dropped++; q->vars.accu_prob = 0; return qdisc_drop(skb, sch, to_free); } static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { [TCA_PIE_TARGET] = {.type = NLA_U32}, [TCA_PIE_LIMIT] = {.type = NLA_U32}, [TCA_PIE_TUPDATE] = {.type = NLA_U32}, [TCA_PIE_ALPHA] = {.type = NLA_U32}, [TCA_PIE_BETA] = {.type = NLA_U32}, [TCA_PIE_ECN] = {.type = NLA_U32}, [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, [TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32}, }; static int pie_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_PIE_MAX + 1]; unsigned int qlen, dropped = 0; int err; err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy, NULL); if (err < 0) return err; sch_tree_lock(sch); /* convert from microseconds to pschedtime */ if (tb[TCA_PIE_TARGET]) { /* target is in us */ u32 target = nla_get_u32(tb[TCA_PIE_TARGET]); /* convert to pschedtime */ WRITE_ONCE(q->params.target, PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC)); } /* tupdate is in jiffies */ if (tb[TCA_PIE_TUPDATE]) WRITE_ONCE(q->params.tupdate, usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]))); if (tb[TCA_PIE_LIMIT]) { u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); WRITE_ONCE(q->params.limit, limit); WRITE_ONCE(sch->limit, limit); } if (tb[TCA_PIE_ALPHA]) WRITE_ONCE(q->params.alpha, nla_get_u32(tb[TCA_PIE_ALPHA])); if (tb[TCA_PIE_BETA]) WRITE_ONCE(q->params.beta, nla_get_u32(tb[TCA_PIE_BETA])); if (tb[TCA_PIE_ECN]) WRITE_ONCE(q->params.ecn, nla_get_u32(tb[TCA_PIE_ECN])); if (tb[TCA_PIE_BYTEMODE]) WRITE_ONCE(q->params.bytemode, nla_get_u32(tb[TCA_PIE_BYTEMODE])); if (tb[TCA_PIE_DQ_RATE_ESTIMATOR]) WRITE_ONCE(q->params.dq_rate_estimator, nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR])); /* Drop excess packets if new limit is lower */ qlen = sch->q.qlen; while (sch->q.qlen > sch->limit) { struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); dropped += qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); rtnl_qdisc_drop(skb, sch); } qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); sch_tree_unlock(sch); return 0; } void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params, struct pie_vars *vars, u32 backlog) { psched_time_t now = psched_get_time(); u32 dtime = 0; /* If dq_rate_estimator is disabled, calculate qdelay using the * packet timestamp. */ if (!params->dq_rate_estimator) { vars->qdelay = now - pie_get_enqueue_time(skb); if (vars->dq_tstamp != DTIME_INVALID) dtime = now - vars->dq_tstamp; vars->dq_tstamp = now; if (backlog == 0) vars->qdelay = 0; if (dtime == 0) return; goto burst_allowance_reduction; } /* If current queue is about 10 packets or more and dq_count is unset * we have enough packets to calculate the drain rate. Save * current time as dq_tstamp and start measurement cycle. */ if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) { vars->dq_tstamp = psched_get_time(); vars->dq_count = 0; } /* Calculate the average drain rate from this value. If queue length * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset * the dq_count to -1 as we don't have enough packets to calculate the * drain rate anymore. The following if block is entered only when we * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) * and we calculate the drain rate for the threshold here. dq_count is * in bytes, time difference in psched_time, hence rate is in * bytes/psched_time. */ if (vars->dq_count != DQCOUNT_INVALID) { vars->dq_count += skb->len; if (vars->dq_count >= QUEUE_THRESHOLD) { u32 count = vars->dq_count << PIE_SCALE; dtime = now - vars->dq_tstamp; if (dtime == 0) return; count = count / dtime; if (vars->avg_dq_rate == 0) vars->avg_dq_rate = count; else vars->avg_dq_rate = (vars->avg_dq_rate - (vars->avg_dq_rate >> 3)) + (count >> 3); /* If the queue has receded below the threshold, we hold * on to the last drain rate calculated, else we reset * dq_count to 0 to re-enter the if block when the next * packet is dequeued */ if (backlog < QUEUE_THRESHOLD) { vars->dq_count = DQCOUNT_INVALID; } else { vars->dq_count = 0; vars->dq_tstamp = psched_get_time(); } goto burst_allowance_reduction; } } return; burst_allowance_reduction: if (vars->burst_time > 0) { if (vars->burst_time > dtime) vars->burst_time -= dtime; else vars->burst_time = 0; } } EXPORT_SYMBOL_GPL(pie_process_dequeue); void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars, u32 backlog) { psched_time_t qdelay = 0; /* in pschedtime */ psched_time_t qdelay_old = 0; /* in pschedtime */ s64 delta = 0; /* determines the change in probability */ u64 oldprob; u64 alpha, beta; u32 power; bool update_prob = true; if (params->dq_rate_estimator) { qdelay_old = vars->qdelay; vars->qdelay_old = vars->qdelay; if (vars->avg_dq_rate > 0) qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate; else qdelay = 0; } else { qdelay = vars->qdelay; qdelay_old = vars->qdelay_old; } /* If qdelay is zero and backlog is not, it means backlog is very small, * so we do not update probability in this round. */ if (qdelay == 0 && backlog != 0) update_prob = false; /* In the algorithm, alpha and beta are between 0 and 2 with typical * value for alpha as 0.125. In this implementation, we use values 0-32 * passed from user space to represent this. Also, alpha and beta have * unit of HZ and need to be scaled before they can used to update * probability. alpha/beta are updated locally below by scaling down * by 16 to come to 0-2 range. */ alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; /* We scale alpha and beta differently depending on how heavy the * congestion is. Please see RFC 8033 for details. */ if (vars->prob < MAX_PROB / 10) { alpha >>= 1; beta >>= 1; power = 100; while (vars->prob < div_u64(MAX_PROB, power) && power <= 1000000) { alpha >>= 2; beta >>= 2; power *= 10; } } /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ delta += alpha * (qdelay - params->target); delta += beta * (qdelay - qdelay_old); oldprob = vars->prob; /* to ensure we increase probability in steps of no more than 2% */ if (delta > (s64)(MAX_PROB / (100 / 2)) && vars->prob >= MAX_PROB / 10) delta = (MAX_PROB / 100) * 2; /* Non-linear drop: * Tune drop probability to increase quickly for high delays(>= 250ms) * 250ms is derived through experiments and provides error protection */ if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) delta += MAX_PROB / (100 / 2); vars->prob += delta; if (delta > 0) { /* prevent overflow */ if (vars->prob < oldprob) { vars->prob = MAX_PROB; /* Prevent normalization error. If probability is at * maximum value already, we normalize it here, and * skip the check to do a non-linear drop in the next * section. */ update_prob = false; } } else { /* prevent underflow */ if (vars->prob > oldprob) vars->prob = 0; } /* Non-linear drop in probability: Reduce drop probability quickly if * delay is 0 for 2 consecutive Tupdate periods. */ if (qdelay == 0 && qdelay_old == 0 && update_prob) /* Reduce drop probability to 98.4% */ vars->prob -= vars->prob / 64; vars->qdelay = qdelay; vars->backlog_old = backlog; /* We restart the measurement cycle if the following conditions are met * 1. If the delay has been low for 2 consecutive Tupdate periods * 2. Calculated drop probability is zero * 3. If average dq_rate_estimator is enabled, we have at least one * estimate for the avg_dq_rate ie., is a non-zero value */ if ((vars->qdelay < params->target / 2) && (vars->qdelay_old < params->target / 2) && vars->prob == 0 && (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) { pie_vars_init(vars); } if (!params->dq_rate_estimator) vars->qdelay_old = qdelay; } EXPORT_SYMBOL_GPL(pie_calculate_probability); static void pie_timer(struct timer_list *t) { struct pie_sched_data *q = from_timer(q, t, adapt_timer); struct Qdisc *sch = q->sch; spinlock_t *root_lock; rcu_read_lock(); root_lock = qdisc_lock(qdisc_root_sleeping(sch)); spin_lock(root_lock); pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog); /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ if (q->params.tupdate) mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); spin_unlock(root_lock); rcu_read_unlock(); } static int pie_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct pie_sched_data *q = qdisc_priv(sch); pie_params_init(&q->params); pie_vars_init(&q->vars); sch->limit = q->params.limit; q->sch = sch; timer_setup(&q->adapt_timer, pie_timer, 0); if (opt) { int err = pie_change(sch, opt, extack); if (err) return err; } mod_timer(&q->adapt_timer, jiffies + HZ / 2); return 0; } static int pie_dump(struct Qdisc *sch, struct sk_buff *skb) { struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *opts; opts = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!opts) goto nla_put_failure; /* convert target from pschedtime to us */ if (nla_put_u32(skb, TCA_PIE_TARGET, ((u32)PSCHED_TICKS2NS(READ_ONCE(q->params.target))) / NSEC_PER_USEC) || nla_put_u32(skb, TCA_PIE_LIMIT, READ_ONCE(sch->limit)) || nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(READ_ONCE(q->params.tupdate))) || nla_put_u32(skb, TCA_PIE_ALPHA, READ_ONCE(q->params.alpha)) || nla_put_u32(skb, TCA_PIE_BETA, READ_ONCE(q->params.beta)) || nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || nla_put_u32(skb, TCA_PIE_BYTEMODE, READ_ONCE(q->params.bytemode)) || nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR, READ_ONCE(q->params.dq_rate_estimator))) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: nla_nest_cancel(skb, opts); return -1; } static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct pie_sched_data *q = qdisc_priv(sch); struct tc_pie_xstats st = { .prob = q->vars.prob << BITS_PER_BYTE, .delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) / NSEC_PER_USEC, .packets_in = q->stats.packets_in, .overlimit = q->stats.overlimit, .maxq = q->stats.maxq, .dropped = q->stats.dropped, .ecn_mark = q->stats.ecn_mark, }; /* avg_dq_rate is only valid if dq_rate_estimator is enabled */ st.dq_rate_estimating = q->params.dq_rate_estimator; /* unscale and return dq_rate in bytes per sec */ if (q->params.dq_rate_estimator) st.avg_dq_rate = q->vars.avg_dq_rate * (PSCHED_TICKS_PER_SEC) >> PIE_SCALE; return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); struct sk_buff *skb = qdisc_dequeue_head(sch); if (!skb) return NULL; pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog); return skb; } static void pie_reset(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); qdisc_reset_queue(sch); pie_vars_init(&q->vars); } static void pie_destroy(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); q->params.tupdate = 0; del_timer_sync(&q->adapt_timer); } static struct Qdisc_ops pie_qdisc_ops __read_mostly = { .id = "pie", .priv_size = sizeof(struct pie_sched_data), .enqueue = pie_qdisc_enqueue, .dequeue = pie_qdisc_dequeue, .peek = qdisc_peek_dequeued, .init = pie_init, .destroy = pie_destroy, .reset = pie_reset, .change = pie_change, .dump = pie_dump, .dump_stats = pie_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("pie"); static int __init pie_module_init(void) { return register_qdisc(&pie_qdisc_ops); } static void __exit pie_module_exit(void) { unregister_qdisc(&pie_qdisc_ops); } module_init(pie_module_init); module_exit(pie_module_exit); MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler"); MODULE_AUTHOR("Vijay Subramanian"); MODULE_AUTHOR("Mythili Prabhu"); MODULE_LICENSE("GPL"); |
3 3 14 15 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Cryptographic API. * * SHA1 Secure Hash Algorithm. * * Derived from cryptoapi implementation, adapted for in-place * scatterlist interface. * * Copyright (c) Alan Smithee. * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> * Copyright (c) Jean-Francois Dive <jef@linuxbe.org> */ #include <crypto/internal/hash.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/types.h> #include <crypto/sha1.h> #include <crypto/sha1_base.h> #include <asm/byteorder.h> const u8 sha1_zero_message_hash[SHA1_DIGEST_SIZE] = { 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09 }; EXPORT_SYMBOL_GPL(sha1_zero_message_hash); static void sha1_generic_block_fn(struct sha1_state *sst, u8 const *src, int blocks) { u32 temp[SHA1_WORKSPACE_WORDS]; while (blocks--) { sha1_transform(sst->state, src, temp); src += SHA1_BLOCK_SIZE; } memzero_explicit(temp, sizeof(temp)); } int crypto_sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_base_do_update(desc, data, len, sha1_generic_block_fn); } EXPORT_SYMBOL(crypto_sha1_update); static int sha1_final(struct shash_desc *desc, u8 *out) { sha1_base_do_finalize(desc, sha1_generic_block_fn); return sha1_base_finish(desc, out); } int crypto_sha1_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { sha1_base_do_update(desc, data, len, sha1_generic_block_fn); return sha1_final(desc, out); } EXPORT_SYMBOL(crypto_sha1_finup); static struct shash_alg alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = crypto_sha1_update, .final = sha1_final, .finup = crypto_sha1_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name= "sha1-generic", .cra_priority = 100, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int __init sha1_generic_mod_init(void) { return crypto_register_shash(&alg); } static void __exit sha1_generic_mod_fini(void) { crypto_unregister_shash(&alg); } subsys_initcall(sha1_generic_mod_init); module_exit(sha1_generic_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm"); MODULE_ALIAS_CRYPTO("sha1"); MODULE_ALIAS_CRYPTO("sha1-generic"); |
3 4 2 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | // SPDX-License-Identifier: GPL-2.0 /* * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum * (AVX2 accelerated version) * * Copyright 2018 Google LLC */ #include <crypto/internal/hash.h> #include <crypto/internal/simd.h> #include <crypto/nhpoly1305.h> #include <linux/module.h> #include <linux/sizes.h> #include <asm/simd.h> asmlinkage void nh_avx2(const u32 *key, const u8 *message, size_t message_len, __le64 hash[NH_NUM_PASSES]); static int nhpoly1305_avx2_update(struct shash_desc *desc, const u8 *src, unsigned int srclen) { if (srclen < 64 || !crypto_simd_usable()) return crypto_nhpoly1305_update(desc, src, srclen); do { unsigned int n = min_t(unsigned int, srclen, SZ_4K); kernel_fpu_begin(); crypto_nhpoly1305_update_helper(desc, src, n, nh_avx2); kernel_fpu_end(); src += n; srclen -= n; } while (srclen); return 0; } static int nhpoly1305_avx2_digest(struct shash_desc *desc, const u8 *src, unsigned int srclen, u8 *out) { return crypto_nhpoly1305_init(desc) ?: nhpoly1305_avx2_update(desc, src, srclen) ?: crypto_nhpoly1305_final(desc, out); } static struct shash_alg nhpoly1305_alg = { .base.cra_name = "nhpoly1305", .base.cra_driver_name = "nhpoly1305-avx2", .base.cra_priority = 300, .base.cra_ctxsize = sizeof(struct nhpoly1305_key), .base.cra_module = THIS_MODULE, .digestsize = POLY1305_DIGEST_SIZE, .init = crypto_nhpoly1305_init, .update = nhpoly1305_avx2_update, .final = crypto_nhpoly1305_final, .digest = nhpoly1305_avx2_digest, .setkey = crypto_nhpoly1305_setkey, .descsize = sizeof(struct nhpoly1305_state), }; static int __init nhpoly1305_mod_init(void) { if (!boot_cpu_has(X86_FEATURE_AVX2) || !boot_cpu_has(X86_FEATURE_OSXSAVE)) return -ENODEV; return crypto_register_shash(&nhpoly1305_alg); } static void __exit nhpoly1305_mod_exit(void) { crypto_unregister_shash(&nhpoly1305_alg); } module_init(nhpoly1305_mod_init); module_exit(nhpoly1305_mod_exit); MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function (AVX2-accelerated)"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); MODULE_ALIAS_CRYPTO("nhpoly1305"); MODULE_ALIAS_CRYPTO("nhpoly1305-avx2"); |
15 15 4 4 3 1 4 1 1 1 3 4 3 1 3 2 1 17 17 7 1 17 16 1 3 2 2 13 15 15 6 11 6 4 15 15 15 14 15 14 15 15 15 15 15 4 10 15 15 15 15 15 15 15 15 15 15 15 11 6 15 3 3 3 3 25 1 19 5 16 1 3 16 19 19 16 3 3 3 3 9 11 3 6 6 4 1 2 1 3 9 26 1 25 1 1 10 10 5 7 1 5 2 2 1 5 5 2 1 2 2 2 4 4 2 2 2 4 1 3 4 4 2 2 2 4 4 3 3 4 4 4 4 11 11 11 11 11 1 1 11 11 7 7 12 1 11 1 11 11 10 1 8 9 4 4 4 2 2 4 4 8 7 8 2 2 2 2 2 6 3 3 1 1 2 2 2 1 1 1 4 4 4 2 2 4 4 4 1 1 1 1 1 1 1 1 9 1 11 6 10 11 16 6 10 16 16 16 6 10 1 9 10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 | /* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/bug.h> #include <linux/sched/signal.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/splice.h> #include <crypto/aead.h> #include <net/strparser.h> #include <net/tls.h> #include <trace/events/sock.h> #include "tls.h" struct tls_decrypt_arg { struct_group(inargs, bool zc; bool async; bool async_done; u8 tail; ); struct sk_buff *skb; }; struct tls_decrypt_ctx { struct sock *sk; u8 iv[TLS_MAX_IV_SIZE]; u8 aad[TLS_MAX_AAD_SIZE]; u8 tail; bool free_sgout; struct scatterlist sg[]; }; noinline void tls_err_abort(struct sock *sk, int err) { WARN_ON_ONCE(err >= 0); /* sk->sk_err should contain a positive error code. */ WRITE_ONCE(sk->sk_err, -err); /* Paired with smp_rmb() in tcp_poll() */ smp_wmb(); sk_error_report(sk); } static int __skb_nsg(struct sk_buff *skb, int offset, int len, unsigned int recursion_level) { int start = skb_headlen(skb); int i, chunk = start - offset; struct sk_buff *frag_iter; int elt = 0; if (unlikely(recursion_level >= 24)) return -EMSGSIZE; if (chunk > 0) { if (chunk > len) chunk = len; elt++; len -= chunk; if (len == 0) return elt; offset += chunk; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); chunk = end - offset; if (chunk > 0) { if (chunk > len) chunk = len; elt++; len -= chunk; if (len == 0) return elt; offset += chunk; } start = end; } if (unlikely(skb_has_frag_list(skb))) { skb_walk_frags(skb, frag_iter) { int end, ret; WARN_ON(start > offset + len); end = start + frag_iter->len; chunk = end - offset; if (chunk > 0) { if (chunk > len) chunk = len; ret = __skb_nsg(frag_iter, offset - start, chunk, recursion_level + 1); if (unlikely(ret < 0)) return ret; elt += ret; len -= chunk; if (len == 0) return elt; offset += chunk; } start = end; } } BUG_ON(len); return elt; } /* Return the number of scatterlist elements required to completely map the * skb, or -EMSGSIZE if the recursion depth is exceeded. */ static int skb_nsg(struct sk_buff *skb, int offset, int len) { return __skb_nsg(skb, offset, len, 0); } static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, struct tls_decrypt_arg *darg) { struct strp_msg *rxm = strp_msg(skb); struct tls_msg *tlm = tls_msg(skb); int sub = 0; /* Determine zero-padding length */ if (prot->version == TLS_1_3_VERSION) { int offset = rxm->full_len - TLS_TAG_SIZE - 1; char content_type = darg->zc ? darg->tail : 0; int err; while (content_type == 0) { if (offset < prot->prepend_size) return -EBADMSG; err = skb_copy_bits(skb, rxm->offset + offset, &content_type, 1); if (err) return err; if (content_type) break; sub++; offset--; } tlm->control = content_type; } return sub; } static void tls_decrypt_done(void *data, int err) { struct aead_request *aead_req = data; struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); struct scatterlist *sgout = aead_req->dst; struct tls_sw_context_rx *ctx; struct tls_decrypt_ctx *dctx; struct tls_context *tls_ctx; struct scatterlist *sg; unsigned int pages; struct sock *sk; int aead_size; /* If requests get too backlogged crypto API returns -EBUSY and calls * ->complete(-EINPROGRESS) immediately followed by ->complete(0) * to make waiting for backlog to flush with crypto_wait_req() easier. * First wait converts -EBUSY -> -EINPROGRESS, and the second one * -EINPROGRESS -> 0. * We have a single struct crypto_async_request per direction, this * scheme doesn't help us, so just ignore the first ->complete(). */ if (err == -EINPROGRESS) return; aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); aead_size = ALIGN(aead_size, __alignof__(*dctx)); dctx = (void *)((u8 *)aead_req + aead_size); sk = dctx->sk; tls_ctx = tls_get_ctx(sk); ctx = tls_sw_ctx_rx(tls_ctx); /* Propagate if there was an err */ if (err) { if (err == -EBADMSG) TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); ctx->async_wait.err = err; tls_err_abort(sk, err); } /* Free the destination pages if skb was not decrypted inplace */ if (dctx->free_sgout) { /* Skip the first S/G entry as it points to AAD */ for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { if (!sg) break; put_page(sg_page(sg)); } } kfree(aead_req); if (atomic_dec_and_test(&ctx->decrypt_pending)) complete(&ctx->async_wait.completion); } static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) { if (!atomic_dec_and_test(&ctx->decrypt_pending)) crypto_wait_req(-EINPROGRESS, &ctx->async_wait); atomic_inc(&ctx->decrypt_pending); return ctx->async_wait.err; } static int tls_do_decryption(struct sock *sk, struct scatterlist *sgin, struct scatterlist *sgout, char *iv_recv, size_t data_len, struct aead_request *aead_req, struct tls_decrypt_arg *darg) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); int ret; aead_request_set_tfm(aead_req, ctx->aead_recv); aead_request_set_ad(aead_req, prot->aad_size); aead_request_set_crypt(aead_req, sgin, sgout, data_len + prot->tag_size, (u8 *)iv_recv); if (darg->async) { aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, tls_decrypt_done, aead_req); DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); atomic_inc(&ctx->decrypt_pending); } else { DECLARE_CRYPTO_WAIT(wait); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_aead_decrypt(aead_req); if (ret == -EINPROGRESS || ret == -EBUSY) ret = crypto_wait_req(ret, &wait); return ret; } ret = crypto_aead_decrypt(aead_req); if (ret == -EINPROGRESS) return 0; if (ret == -EBUSY) { ret = tls_decrypt_async_wait(ctx); darg->async_done = true; /* all completions have run, we're not doing async anymore */ darg->async = false; return ret; } atomic_dec(&ctx->decrypt_pending); darg->async = false; return ret; } static void tls_trim_both_msgs(struct sock *sk, int target_size) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; sk_msg_trim(sk, &rec->msg_plaintext, target_size); if (target_size > 0) target_size += prot->overhead_size; sk_msg_trim(sk, &rec->msg_encrypted, target_size); } static int tls_alloc_encrypted_msg(struct sock *sk, int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_en = &rec->msg_encrypted; return sk_msg_alloc(sk, msg_en, len, 0); } static int tls_clone_plaintext_msg(struct sock *sk, int required) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_pl = &rec->msg_plaintext; struct sk_msg *msg_en = &rec->msg_encrypted; int skip, len; /* We add page references worth len bytes from encrypted sg * at the end of plaintext sg. It is guaranteed that msg_en * has enough required room (ensured by caller). */ len = required - msg_pl->sg.size; /* Skip initial bytes in msg_en's data to be able to use * same offset of both plain and encrypted data. */ skip = prot->prepend_size + msg_pl->sg.size; return sk_msg_clone(sk, msg_pl, msg_en, skip, len); } static struct tls_rec *tls_get_rec(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct sk_msg *msg_pl, *msg_en; struct tls_rec *rec; int mem_size; mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); rec = kzalloc(mem_size, sk->sk_allocation); if (!rec) return NULL; msg_pl = &rec->msg_plaintext; msg_en = &rec->msg_encrypted; sk_msg_init(msg_pl); sk_msg_init(msg_en); sg_init_table(rec->sg_aead_in, 2); sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); sg_unmark_end(&rec->sg_aead_in[1]); sg_init_table(rec->sg_aead_out, 2); sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); sg_unmark_end(&rec->sg_aead_out[1]); rec->sk = sk; return rec; } static void tls_free_rec(struct sock *sk, struct tls_rec *rec) { sk_msg_free(sk, &rec->msg_encrypted); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } static void tls_free_open_rec(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; if (rec) { tls_free_rec(sk, rec); ctx->open_rec = NULL; } } int tls_tx_records(struct sock *sk, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec, *tmp; struct sk_msg *msg_en; int tx_flags, rc = 0; if (tls_is_partially_sent_record(tls_ctx)) { rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (flags == -1) tx_flags = rec->tx_flags; else tx_flags = flags; rc = tls_push_partial_record(sk, tls_ctx, tx_flags); if (rc) goto tx_err; /* Full record has been transmitted. * Remove the head of tx_list */ list_del(&rec->list); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } /* Tx all ready records */ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { if (READ_ONCE(rec->tx_ready)) { if (flags == -1) tx_flags = rec->tx_flags; else tx_flags = flags; msg_en = &rec->msg_encrypted; rc = tls_push_sg(sk, tls_ctx, &msg_en->sg.data[msg_en->sg.curr], 0, tx_flags); if (rc) goto tx_err; list_del(&rec->list); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } else { break; } } tx_err: if (rc < 0 && rc != -EAGAIN) tls_err_abort(sk, -EBADMSG); return rc; } static void tls_encrypt_done(void *data, int err) { struct tls_sw_context_tx *ctx; struct tls_context *tls_ctx; struct tls_prot_info *prot; struct tls_rec *rec = data; struct scatterlist *sge; struct sk_msg *msg_en; struct sock *sk; if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ return; msg_en = &rec->msg_encrypted; sk = rec->sk; tls_ctx = tls_get_ctx(sk); prot = &tls_ctx->prot_info; ctx = tls_sw_ctx_tx(tls_ctx); sge = sk_msg_elem(msg_en, msg_en->sg.curr); sge->offset -= prot->prepend_size; sge->length += prot->prepend_size; /* Check if error is previously set on socket */ if (err || sk->sk_err) { rec = NULL; /* If err is already set on socket, return the same code */ if (sk->sk_err) { ctx->async_wait.err = -sk->sk_err; } else { ctx->async_wait.err = err; tls_err_abort(sk, err); } } if (rec) { struct tls_rec *first_rec; /* Mark the record as ready for transmission */ smp_store_mb(rec->tx_ready, true); /* If received record is at head of tx_list, schedule tx */ first_rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (rec == first_rec) { /* Schedule the transmission */ if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) schedule_delayed_work(&ctx->tx_work.work, 1); } } if (atomic_dec_and_test(&ctx->encrypt_pending)) complete(&ctx->async_wait.completion); } static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) { if (!atomic_dec_and_test(&ctx->encrypt_pending)) crypto_wait_req(-EINPROGRESS, &ctx->async_wait); atomic_inc(&ctx->encrypt_pending); return ctx->async_wait.err; } static int tls_do_encryption(struct sock *sk, struct tls_context *tls_ctx, struct tls_sw_context_tx *ctx, struct aead_request *aead_req, size_t data_len, u32 start) { struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_en = &rec->msg_encrypted; struct scatterlist *sge = sk_msg_elem(msg_en, start); int rc, iv_offset = 0; /* For CCM based ciphers, first byte of IV is a constant */ switch (prot->cipher_type) { case TLS_CIPHER_AES_CCM_128: rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; iv_offset = 1; break; case TLS_CIPHER_SM4_CCM: rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; iv_offset = 1; break; } memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, prot->iv_size + prot->salt_size); tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq); sge->offset += prot->prepend_size; sge->length -= prot->prepend_size; msg_en->sg.curr = start; aead_request_set_tfm(aead_req, ctx->aead_send); aead_request_set_ad(aead_req, prot->aad_size); aead_request_set_crypt(aead_req, rec->sg_aead_in, rec->sg_aead_out, data_len, rec->iv_data); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, tls_encrypt_done, rec); /* Add the record in tx_list */ list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); atomic_inc(&ctx->encrypt_pending); rc = crypto_aead_encrypt(aead_req); if (rc == -EBUSY) { rc = tls_encrypt_async_wait(ctx); rc = rc ?: -EINPROGRESS; } if (!rc || rc != -EINPROGRESS) { atomic_dec(&ctx->encrypt_pending); sge->offset -= prot->prepend_size; sge->length += prot->prepend_size; } if (!rc) { WRITE_ONCE(rec->tx_ready, true); } else if (rc != -EINPROGRESS) { list_del(&rec->list); return rc; } /* Unhook the record from context if encryption is not failure */ ctx->open_rec = NULL; tls_advance_record_sn(sk, prot, &tls_ctx->tx); return rc; } static int tls_split_open_record(struct sock *sk, struct tls_rec *from, struct tls_rec **to, struct sk_msg *msg_opl, struct sk_msg *msg_oen, u32 split_point, u32 tx_overhead_size, u32 *orig_end) { u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; struct scatterlist *sge, *osge, *nsge; u32 orig_size = msg_opl->sg.size; struct scatterlist tmp = { }; struct sk_msg *msg_npl; struct tls_rec *new; int ret; new = tls_get_rec(sk); if (!new) return -ENOMEM; ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + tx_overhead_size, 0); if (ret < 0) { tls_free_rec(sk, new); return ret; } *orig_end = msg_opl->sg.end; i = msg_opl->sg.start; sge = sk_msg_elem(msg_opl, i); while (apply && sge->length) { if (sge->length > apply) { u32 len = sge->length - apply; get_page(sg_page(sge)); sg_set_page(&tmp, sg_page(sge), len, sge->offset + apply); sge->length = apply; bytes += apply; apply = 0; } else { apply -= sge->length; bytes += sge->length; } sk_msg_iter_var_next(i); if (i == msg_opl->sg.end) break; sge = sk_msg_elem(msg_o |