Total coverage: 249129 (14%)of 1802138
12 10 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland * Copyright (c) 2002, 2003 Tuukka Toivonen * Copyright (c) 2008 Erik Andrén * * P/N 861037: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam * P/N 861075-0040: Sensor HDCS1000 ASIC * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "stv06xx_vv6410.h" static struct v4l2_pix_format vv6410_mode[] = { { 356, 292, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 356 * 292, .bytesperline = 356, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 } }; static int vv6410_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); int err = -EINVAL; switch (ctrl->id) { case V4L2_CID_HFLIP: if (!gspca_dev->streaming) return 0; err = vv6410_set_hflip(gspca_dev, ctrl->val); break; case V4L2_CID_VFLIP: if (!gspca_dev->streaming) return 0; err = vv6410_set_vflip(gspca_dev, ctrl->val); break; case V4L2_CID_GAIN: err = vv6410_set_analog_gain(gspca_dev, ctrl->val); break; case V4L2_CID_EXPOSURE: err = vv6410_set_exposure(gspca_dev, ctrl->val); break; } return err; } static const struct v4l2_ctrl_ops vv6410_ctrl_ops = { .s_ctrl = vv6410_s_ctrl, }; static int vv6410_probe(struct sd *sd) { u16 data; int err; err = stv06xx_read_sensor(sd, VV6410_DEVICEH, &data); if (err < 0) return -ENODEV; if (data != 0x19) return -ENODEV; pr_info("vv6410 sensor detected\n"); sd->gspca_dev.cam.cam_mode = vv6410_mode; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(vv6410_mode); return 0; } static int vv6410_init_controls(struct sd *sd) { struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler; v4l2_ctrl_handler_init(hdl, 2); /* Disable the hardware VFLIP and HFLIP as we currently lack a mechanism to adjust the image offset in such a way that we don't need to renegotiate the announced format */ /* v4l2_ctrl_new_std(hdl, &vv6410_ctrl_ops, */ /* V4L2_CID_HFLIP, 0, 1, 1, 0); */ /* v4l2_ctrl_new_std(hdl, &vv6410_ctrl_ops, */ /* V4L2_CID_VFLIP, 0, 1, 1, 0); */ v4l2_ctrl_new_std(hdl, &vv6410_ctrl_ops, V4L2_CID_EXPOSURE, 0, 32768, 1, 20000); v4l2_ctrl_new_std(hdl, &vv6410_ctrl_ops, V4L2_CID_GAIN, 0, 15, 1, 10); return hdl->error; } static int vv6410_init(struct sd *sd) { int err = 0, i; for (i = 0; i < ARRAY_SIZE(stv_bridge_init); i++) stv06xx_write_bridge(sd, stv_bridge_init[i].addr, stv_bridge_init[i].data); err = stv06xx_write_sensor_bytes(sd, (u8 *) vv6410_sensor_init, ARRAY_SIZE(vv6410_sensor_init)); return (err < 0) ? err : 0; } static int vv6410_start(struct sd *sd) { int err; struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; struct cam *cam = &sd->gspca_dev.cam; u32 priv = cam->cam_mode[sd->gspca_dev.curr_mode].priv; if (priv & VV6410_SUBSAMPLE) { gspca_dbg(gspca_dev, D_CONF, "Enabling subsampling\n"); stv06xx_write_bridge(sd, STV_Y_CTRL, 0x02); stv06xx_write_bridge(sd, STV_X_CTRL, 0x06); stv06xx_write_bridge(sd, STV_SCAN_RATE, 0x10); } else { stv06xx_write_bridge(sd, STV_Y_CTRL, 0x01); stv06xx_write_bridge(sd, STV_X_CTRL, 0x0a); stv06xx_write_bridge(sd, STV_SCAN_RATE, 0x00); } /* Turn on LED */ err = stv06xx_write_bridge(sd, STV_LED_CTRL, LED_ON); if (err < 0) return err; err = stv06xx_write_sensor(sd, VV6410_SETUP0, 0); if (err < 0) return err; gspca_dbg(gspca_dev, D_STREAM, "Starting stream\n"); return 0; } static int vv6410_stop(struct sd *sd) { struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; int err; /* Turn off LED */ err = stv06xx_write_bridge(sd, STV_LED_CTRL, LED_OFF); if (err < 0) return err; err = stv06xx_write_sensor(sd, VV6410_SETUP0, VV6410_LOW_POWER_MODE); if (err < 0) return err; gspca_dbg(gspca_dev, D_STREAM, "Halting stream\n"); return 0; } static int vv6410_dump(struct sd *sd) { u8 i; int err = 0; pr_info("Dumping all vv6410 sensor registers\n"); for (i = 0; i < 0xff && !err; i++) { u16 data; err = stv06xx_read_sensor(sd, i, &data); pr_info("Register 0x%x contained 0x%x\n", i, data); } return (err < 0) ? err : 0; } static int vv6410_set_hflip(struct gspca_dev *gspca_dev, __s32 val) { int err; u16 i2c_data; struct sd *sd = (struct sd *) gspca_dev; err = stv06xx_read_sensor(sd, VV6410_DATAFORMAT, &i2c_data); if (err < 0) return err; if (val) i2c_data |= VV6410_HFLIP; else i2c_data &= ~VV6410_HFLIP; gspca_dbg(gspca_dev, D_CONF, "Set horizontal flip to %d\n", val); err = stv06xx_write_sensor(sd, VV6410_DATAFORMAT, i2c_data); return (err < 0) ? err : 0; } static int vv6410_set_vflip(struct gspca_dev *gspca_dev, __s32 val) { int err; u16 i2c_data; struct sd *sd = (struct sd *) gspca_dev; err = stv06xx_read_sensor(sd, VV6410_DATAFORMAT, &i2c_data); if (err < 0) return err; if (val) i2c_data |= VV6410_VFLIP; else i2c_data &= ~VV6410_VFLIP; gspca_dbg(gspca_dev, D_CONF, "Set vertical flip to %d\n", val); err = stv06xx_write_sensor(sd, VV6410_DATAFORMAT, i2c_data); return (err < 0) ? err : 0; } static int vv6410_set_analog_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; gspca_dbg(gspca_dev, D_CONF, "Set analog gain to %d\n", val); err = stv06xx_write_sensor(sd, VV6410_ANALOGGAIN, 0xf0 | (val & 0xf)); return (err < 0) ? err : 0; } static int vv6410_set_exposure(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; unsigned int fine, coarse; val = (val * val >> 14) + val / 4; fine = val % VV6410_CIF_LINELENGTH; coarse = min(512, val / VV6410_CIF_LINELENGTH); gspca_dbg(gspca_dev, D_CONF, "Set coarse exposure to %d, fine exposure to %d\n", coarse, fine); err = stv06xx_write_sensor(sd, VV6410_FINEH, fine >> 8); if (err < 0) goto out; err = stv06xx_write_sensor(sd, VV6410_FINEL, fine & 0xff); if (err < 0) goto out; err = stv06xx_write_sensor(sd, VV6410_COARSEH, coarse >> 8); if (err < 0) goto out; err = stv06xx_write_sensor(sd, VV6410_COARSEL, coarse & 0xff); out: return err; }
17 1 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0-only */ /* * File: af_phonet.h * * Phonet sockets kernel definitions * * Copyright (C) 2008 Nokia Corporation. */ #ifndef AF_PHONET_H #define AF_PHONET_H #include <linux/phonet.h> #include <linux/skbuff.h> #include <net/sock.h> /* * The lower layers may not require more space, ever. Make sure it's * enough. */ #define MAX_PHONET_HEADER (8 + MAX_HEADER) /* * Every Phonet* socket has this structure first in its * protocol-specific structure under name c. */ struct pn_sock { struct sock sk; u16 sobject; u16 dobject; u8 resource; }; static inline struct pn_sock *pn_sk(struct sock *sk) { return (struct pn_sock *)sk; } extern const struct proto_ops phonet_dgram_ops; void pn_sock_init(void); struct sock *pn_find_sock_by_sa(struct net *net, const struct sockaddr_pn *sa); void pn_deliver_sock_broadcast(struct net *net, struct sk_buff *skb); void phonet_get_local_port_range(int *min, int *max); int pn_sock_hash(struct sock *sk); void pn_sock_unhash(struct sock *sk); int pn_sock_get_port(struct sock *sk, unsigned short sport); struct sock *pn_find_sock_by_res(struct net *net, u8 res); int pn_sock_bind_res(struct sock *sock, u8 res); int pn_sock_unbind_res(struct sock *sk, u8 res); void pn_sock_unbind_all_res(struct sock *sk); int pn_skb_send(struct sock *sk, struct sk_buff *skb, const struct sockaddr_pn *target); static inline struct phonethdr *pn_hdr(struct sk_buff *skb) { return (struct phonethdr *)skb_network_header(skb); } static inline struct phonetmsg *pn_msg(struct sk_buff *skb) { return (struct phonetmsg *)skb_transport_header(skb); } /* * Get the other party's sockaddr from received skb. The skb begins * with a Phonet header. */ static inline void pn_skb_get_src_sockaddr(struct sk_buff *skb, struct sockaddr_pn *sa) { struct phonethdr *ph = pn_hdr(skb); u16 obj = pn_object(ph->pn_sdev, ph->pn_sobj); sa->spn_family = AF_PHONET; pn_sockaddr_set_object(sa, obj); pn_sockaddr_set_resource(sa, ph->pn_res); memset(sa->spn_zero, 0, sizeof(sa->spn_zero)); } static inline void pn_skb_get_dst_sockaddr(struct sk_buff *skb, struct sockaddr_pn *sa) { struct phonethdr *ph = pn_hdr(skb); u16 obj = pn_object(ph->pn_rdev, ph->pn_robj); sa->spn_family = AF_PHONET; pn_sockaddr_set_object(sa, obj); pn_sockaddr_set_resource(sa, ph->pn_res); memset(sa->spn_zero, 0, sizeof(sa->spn_zero)); } /* Protocols in Phonet protocol family. */ struct phonet_protocol { const struct proto_ops *ops; struct proto *prot; int sock_type; }; int phonet_proto_register(unsigned int protocol, const struct phonet_protocol *pp); void phonet_proto_unregister(unsigned int protocol, const struct phonet_protocol *pp); int phonet_sysctl_init(void); void phonet_sysctl_exit(void); int isi_register(void); void isi_unregister(void); static inline bool sk_is_phonet(struct sock *sk) { return sk->sk_family == PF_PHONET; } static inline int phonet_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { int karg; switch (cmd) { case SIOCPNADDRESOURCE: case SIOCPNDELRESOURCE: if (get_user(karg, (int __user *)arg)) return -EFAULT; return sk->sk_prot->ioctl(sk, cmd, &karg); } /* A positive return value means that the ioctl was not processed */ return 1; } #endif
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 // SPDX-License-Identifier: GPL-2.0 /* * USB ZyXEL omni.net driver * * Copyright (C) 2013,2017 Johan Hovold <johan@kernel.org> * * See Documentation/usb/usb-serial.rst for more information on using this * driver * * Please report both successes and troubles to the author at omninet@kroah.com */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/tty.h> #include <linux/tty_driver.h> #include <linux/tty_flip.h> #include <linux/module.h> #include <linux/uaccess.h> #include <linux/usb.h> #include <linux/usb/serial.h> #define DRIVER_AUTHOR "Alessandro Zummo" #define DRIVER_DESC "USB ZyXEL omni.net Driver" #define ZYXEL_VENDOR_ID 0x0586 #define ZYXEL_OMNINET_ID 0x1000 #define ZYXEL_OMNI_56K_PLUS_ID 0x1500 /* This one seems to be a re-branded ZyXEL device */ #define BT_IGNITIONPRO_ID 0x2000 /* function prototypes */ static void omninet_process_read_urb(struct urb *urb); static int omninet_prepare_write_buffer(struct usb_serial_port *port, void *buf, size_t count); static int omninet_calc_num_ports(struct usb_serial *serial, struct usb_serial_endpoints *epds); static int omninet_port_probe(struct usb_serial_port *port); static void omninet_port_remove(struct usb_serial_port *port); static const struct usb_device_id id_table[] = { { USB_DEVICE(ZYXEL_VENDOR_ID, ZYXEL_OMNINET_ID) }, { USB_DEVICE(ZYXEL_VENDOR_ID, ZYXEL_OMNI_56K_PLUS_ID) }, { USB_DEVICE(ZYXEL_VENDOR_ID, BT_IGNITIONPRO_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, id_table); static struct usb_serial_driver zyxel_omninet_device = { .driver = { .owner = THIS_MODULE, .name = "omninet", }, .description = "ZyXEL - omni.net usb", .id_table = id_table, .num_bulk_out = 2, .calc_num_ports = omninet_calc_num_ports, .port_probe = omninet_port_probe, .port_remove = omninet_port_remove, .process_read_urb = omninet_process_read_urb, .prepare_write_buffer = omninet_prepare_write_buffer, }; static struct usb_serial_driver * const serial_drivers[] = { &zyxel_omninet_device, NULL }; /* * The protocol. * * The omni.net always exchange 64 bytes of data with the host. The first * four bytes are the control header. * * oh_seq is a sequence number. Don't know if/how it's used. * oh_len is the length of the data bytes in the packet. * oh_xxx Bit-mapped, related to handshaking and status info. * I normally set it to 0x03 in transmitted frames. * 7: Active when the TA is in a CONNECTed state. * 6: unknown * 5: handshaking, unknown * 4: handshaking, unknown * 3: unknown, usually 0 * 2: unknown, usually 0 * 1: handshaking, unknown, usually set to 1 in transmitted frames * 0: handshaking, unknown, usually set to 1 in transmitted frames * oh_pad Probably a pad byte. * * After the header you will find data bytes if oh_len was greater than zero. */ struct omninet_header { __u8 oh_seq; __u8 oh_len; __u8 oh_xxx; __u8 oh_pad; }; struct omninet_data { __u8 od_outseq; /* Sequence number for bulk_out URBs */ }; static int omninet_calc_num_ports(struct usb_serial *serial, struct usb_serial_endpoints *epds) { /* We need only the second bulk-out for our single-port device. */ epds->bulk_out[0] = epds->bulk_out[1]; epds->num_bulk_out = 1; return 1; } static int omninet_port_probe(struct usb_serial_port *port) { struct omninet_data *od; od = kzalloc(sizeof(*od), GFP_KERNEL); if (!od) return -ENOMEM; usb_set_serial_port_data(port, od); return 0; } static void omninet_port_remove(struct usb_serial_port *port) { struct omninet_data *od; od = usb_get_serial_port_data(port); kfree(od); } #define OMNINET_HEADERLEN 4 #define OMNINET_BULKOUTSIZE 64 #define OMNINET_PAYLOADSIZE (OMNINET_BULKOUTSIZE - OMNINET_HEADERLEN) static void omninet_process_read_urb(struct urb *urb) { struct usb_serial_port *port = urb->context; const struct omninet_header *hdr = urb->transfer_buffer; const unsigned char *data; size_t data_len; if (urb->actual_length <= OMNINET_HEADERLEN || !hdr->oh_len) return; data = (char *)urb->transfer_buffer + OMNINET_HEADERLEN; data_len = min_t(size_t, urb->actual_length - OMNINET_HEADERLEN, hdr->oh_len); tty_insert_flip_string(&port->port, data, data_len); tty_flip_buffer_push(&port->port); } static int omninet_prepare_write_buffer(struct usb_serial_port *port, void *buf, size_t count) { struct omninet_data *od = usb_get_serial_port_data(port); struct omninet_header *header = buf; count = min_t(size_t, count, OMNINET_PAYLOADSIZE); count = kfifo_out_locked(&port->write_fifo, buf + OMNINET_HEADERLEN, count, &port->lock); header->oh_seq = od->od_outseq++; header->oh_len = count; header->oh_xxx = 0x03; header->oh_pad = 0x00; /* always 64 bytes */ return OMNINET_BULKOUTSIZE; } module_usb_serial_driver(serial_drivers, id_table); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL v2");
9 9 9 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 // SPDX-License-Identifier: GPL-2.0+ /* * Driver for Realtek RTS51xx USB card reader * * Copyright(c) 2009 Realtek Semiconductor Corp. All rights reserved. * * Author: * wwang (wei_wang@realsil.com.cn) * No. 450, Shenhu Road, Suzhou Industry Park, Suzhou, China */ #include <linux/module.h> #include <linux/blkdev.h> #include <linux/kthread.h> #include <linux/sched.h> #include <linux/kernel.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <linux/cdrom.h> #include <linux/usb.h> #include <linux/slab.h> #include <linux/usb_usual.h> #include "usb.h" #include "transport.h" #include "protocol.h" #include "debug.h" #include "scsiglue.h" #define DRV_NAME "ums-realtek" MODULE_DESCRIPTION("Driver for Realtek USB Card Reader"); MODULE_AUTHOR("wwang <wei_wang@realsil.com.cn>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(USB_STORAGE); static int auto_delink_en = 1; module_param(auto_delink_en, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(auto_delink_en, "auto delink mode (0=firmware, 1=software [default])"); #ifdef CONFIG_REALTEK_AUTOPM static int ss_en = 1; module_param(ss_en, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(ss_en, "enable selective suspend"); static int ss_delay = 50; module_param(ss_delay, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(ss_delay, "seconds to delay before entering selective suspend"); enum RTS51X_STAT { RTS51X_STAT_INIT, RTS51X_STAT_IDLE, RTS51X_STAT_RUN, RTS51X_STAT_SS }; #define POLLING_INTERVAL 50 #define rts51x_set_stat(chip, stat) \ ((chip)->state = (enum RTS51X_STAT)(stat)) #define rts51x_get_stat(chip) ((chip)->state) #define SET_LUN_READY(chip, lun) ((chip)->lun_ready |= ((u8)1 << (lun))) #define CLR_LUN_READY(chip, lun) ((chip)->lun_ready &= ~((u8)1 << (lun))) #define TST_LUN_READY(chip, lun) ((chip)->lun_ready & ((u8)1 << (lun))) #endif struct rts51x_status { u16 vid; u16 pid; u8 cur_lun; u8 card_type; u8 total_lun; u16 fw_ver; u8 phy_exist; u8 multi_flag; u8 multi_card; u8 log_exist; union { u8 detailed_type1; u8 detailed_type2; } detailed_type; u8 function[2]; }; struct rts51x_chip { u16 vendor_id; u16 product_id; char max_lun; struct rts51x_status *status; int status_len; u32 flag; struct us_data *us; #ifdef CONFIG_REALTEK_AUTOPM struct timer_list rts51x_suspend_timer; unsigned long timer_expires; int pwr_state; u8 lun_ready; enum RTS51X_STAT state; int support_auto_delink; #endif /* used to back up the protocol chosen in probe1 phase */ proto_cmnd proto_handler_backup; }; /* flag definition */ #define FLIDX_AUTO_DELINK 0x01 #define SCSI_LUN(srb) ((srb)->device->lun) /* Bit Operation */ #define SET_BIT(data, idx) ((data) |= 1 << (idx)) #define CLR_BIT(data, idx) ((data) &= ~(1 << (idx))) #define CHK_BIT(data, idx) ((data) & (1 << (idx))) #define SET_AUTO_DELINK(chip) ((chip)->flag |= FLIDX_AUTO_DELINK) #define CLR_AUTO_DELINK(chip) ((chip)->flag &= ~FLIDX_AUTO_DELINK) #define CHK_AUTO_DELINK(chip) ((chip)->flag & FLIDX_AUTO_DELINK) #define RTS51X_GET_VID(chip) ((chip)->vendor_id) #define RTS51X_GET_PID(chip) ((chip)->product_id) #define VENDOR_ID(chip) ((chip)->status[0].vid) #define PRODUCT_ID(chip) ((chip)->status[0].pid) #define FW_VERSION(chip) ((chip)->status[0].fw_ver) #define STATUS_LEN(chip) ((chip)->status_len) #define STATUS_SUCCESS 0 #define STATUS_FAIL 1 /* Check card reader function */ #define SUPPORT_DETAILED_TYPE1(chip) \ CHK_BIT((chip)->status[0].function[0], 1) #define SUPPORT_OT(chip) \ CHK_BIT((chip)->status[0].function[0], 2) #define SUPPORT_OC(chip) \ CHK_BIT((chip)->status[0].function[0], 3) #define SUPPORT_AUTO_DELINK(chip) \ CHK_BIT((chip)->status[0].function[0], 4) #define SUPPORT_SDIO(chip) \ CHK_BIT((chip)->status[0].function[1], 0) #define SUPPORT_DETAILED_TYPE2(chip) \ CHK_BIT((chip)->status[0].function[1], 1) #define CHECK_PID(chip, pid) (RTS51X_GET_PID(chip) == (pid)) #define CHECK_FW_VER(chip, fw_ver) (FW_VERSION(chip) == (fw_ver)) #define CHECK_ID(chip, pid, fw_ver) \ (CHECK_PID((chip), (pid)) && CHECK_FW_VER((chip), (fw_ver))) static int init_realtek_cr(struct us_data *us); /* * The table of devices */ #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ vendorName, productName, useProtocol, useTransport, \ initFunction, flags) \ {\ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ .driver_info = (flags) \ } static const struct usb_device_id realtek_cr_ids[] = { # include "unusual_realtek.h" {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, realtek_cr_ids); #undef UNUSUAL_DEV /* * The flags table */ #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ vendor_name, product_name, use_protocol, use_transport, \ init_function, Flags) \ { \ .vendorName = vendor_name, \ .productName = product_name, \ .useProtocol = use_protocol, \ .useTransport = use_transport, \ .initFunction = init_function, \ } static struct us_unusual_dev realtek_cr_unusual_dev_list[] = { # include "unusual_realtek.h" {} /* Terminating entry */ }; #undef UNUSUAL_DEV static int rts51x_bulk_transport(struct us_data *us, u8 lun, u8 *cmd, int cmd_len, u8 *buf, int buf_len, enum dma_data_direction dir, int *act_len) { struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *)us->iobuf; struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *)us->iobuf; int result; unsigned int residue; unsigned int cswlen; unsigned int cbwlen = US_BULK_CB_WRAP_LEN; /* set up the command wrapper */ bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); bcb->DataTransferLength = cpu_to_le32(buf_len); bcb->Flags = (dir == DMA_FROM_DEVICE) ? US_BULK_FLAG_IN : 0; bcb->Tag = ++us->tag; bcb->Lun = lun; bcb->Length = cmd_len; /* copy the command payload */ memset(bcb->CDB, 0, sizeof(bcb->CDB)); memcpy(bcb->CDB, cmd, bcb->Length); /* send it to out endpoint */ result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, bcb, cbwlen, NULL); if (result != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; /* DATA STAGE */ /* send/receive data payload, if there is any */ if (buf && buf_len) { unsigned int pipe = (dir == DMA_FROM_DEVICE) ? us->recv_bulk_pipe : us->send_bulk_pipe; result = usb_stor_bulk_transfer_buf(us, pipe, buf, buf_len, NULL); if (result == USB_STOR_XFER_ERROR) return USB_STOR_TRANSPORT_ERROR; } /* get CSW for device status */ result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, bcs, US_BULK_CS_WRAP_LEN, &cswlen); if (result != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; /* check bulk status */ if (bcs->Signature != cpu_to_le32(US_BULK_CS_SIGN)) { usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n", le32_to_cpu(bcs->Signature), US_BULK_CS_SIGN); return USB_STOR_TRANSPORT_ERROR; } residue = bcs->Residue; if (bcs->Tag != us->tag) return USB_STOR_TRANSPORT_ERROR; /* * try to compute the actual residue, based on how much data * was really transferred and what the device tells us */ if (residue) residue = residue < buf_len ? residue : buf_len; if (act_len) *act_len = buf_len - residue; /* based on the status code, we report good or bad */ switch (bcs->Status) { case US_BULK_STAT_OK: /* command good -- note that data could be short */ return USB_STOR_TRANSPORT_GOOD; case US_BULK_STAT_FAIL: /* command failed */ return USB_STOR_TRANSPORT_FAILED; case US_BULK_STAT_PHASE: /* * phase error -- note that a transport reset will be * invoked by the invoke_transport() function */ return USB_STOR_TRANSPORT_ERROR; } /* we should never get here, but if we do, we're in trouble */ return USB_STOR_TRANSPORT_ERROR; } static int rts51x_bulk_transport_special(struct us_data *us, u8 lun, u8 *cmd, int cmd_len, u8 *buf, int buf_len, enum dma_data_direction dir, int *act_len) { struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; int result; unsigned int cswlen; unsigned int cbwlen = US_BULK_CB_WRAP_LEN; /* set up the command wrapper */ bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); bcb->DataTransferLength = cpu_to_le32(buf_len); bcb->Flags = (dir == DMA_FROM_DEVICE) ? US_BULK_FLAG_IN : 0; bcb->Tag = ++us->tag; bcb->Lun = lun; bcb->Length = cmd_len; /* copy the command payload */ memset(bcb->CDB, 0, sizeof(bcb->CDB)); memcpy(bcb->CDB, cmd, bcb->Length); /* send it to out endpoint */ result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, bcb, cbwlen, NULL); if (result != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; /* DATA STAGE */ /* send/receive data payload, if there is any */ if (buf && buf_len) { unsigned int pipe = (dir == DMA_FROM_DEVICE) ? us->recv_bulk_pipe : us->send_bulk_pipe; result = usb_stor_bulk_transfer_buf(us, pipe, buf, buf_len, NULL); if (result == USB_STOR_XFER_ERROR) return USB_STOR_TRANSPORT_ERROR; } /* get CSW for device status */ result = usb_bulk_msg(us->pusb_dev, us->recv_bulk_pipe, bcs, US_BULK_CS_WRAP_LEN, &cswlen, 250); return result; } /* Determine what the maximum LUN supported is */ static int rts51x_get_max_lun(struct us_data *us) { int result; /* issue the command */ us->iobuf[0] = 0; result = usb_stor_control_msg(us, us->recv_ctrl_pipe, US_BULK_GET_MAX_LUN, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, us->ifnum, us->iobuf, 1, 10 * HZ); usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n", result, us->iobuf[0]); /* if we have a successful request, return the result */ if (result > 0) return us->iobuf[0]; return 0; } static int rts51x_read_mem(struct us_data *us, u16 addr, u8 *data, u16 len) { int retval; u8 cmnd[12] = { 0 }; u8 *buf; buf = kmalloc(len, GFP_NOIO); if (buf == NULL) return -ENOMEM; usb_stor_dbg(us, "addr = 0x%x, len = %d\n", addr, len); cmnd[0] = 0xF0; cmnd[1] = 0x0D; cmnd[2] = (u8) (addr >> 8); cmnd[3] = (u8) addr; cmnd[4] = (u8) (len >> 8); cmnd[5] = (u8) len; retval = rts51x_bulk_transport(us, 0, cmnd, 12, buf, len, DMA_FROM_DEVICE, NULL); if (retval != USB_STOR_TRANSPORT_GOOD) { kfree(buf); return -EIO; } memcpy(data, buf, len); kfree(buf); return 0; } static int rts51x_write_mem(struct us_data *us, u16 addr, u8 *data, u16 len) { int retval; u8 cmnd[12] = { 0 }; u8 *buf; buf = kmemdup(data, len, GFP_NOIO); if (buf == NULL) return USB_STOR_TRANSPORT_ERROR; usb_stor_dbg(us, "addr = 0x%x, len = %d\n", addr, len); cmnd[0] = 0xF0; cmnd[1] = 0x0E; cmnd[2] = (u8) (addr >> 8); cmnd[3] = (u8) addr; cmnd[4] = (u8) (len >> 8); cmnd[5] = (u8) len; retval = rts51x_bulk_transport(us, 0, cmnd, 12, buf, len, DMA_TO_DEVICE, NULL); kfree(buf); if (retval != USB_STOR_TRANSPORT_GOOD) return -EIO; return 0; } static int rts51x_read_status(struct us_data *us, u8 lun, u8 *status, int len, int *actlen) { int retval; u8 cmnd[12] = { 0 }; u8 *buf; buf = kmalloc(len, GFP_NOIO); if (buf == NULL) return USB_STOR_TRANSPORT_ERROR; usb_stor_dbg(us, "lun = %d\n", lun); cmnd[0] = 0xF0; cmnd[1] = 0x09; retval = rts51x_bulk_transport(us, lun, cmnd, 12, buf, len, DMA_FROM_DEVICE, actlen); if (retval != USB_STOR_TRANSPORT_GOOD) { kfree(buf); return -EIO; } memcpy(status, buf, len); kfree(buf); return 0; } static int rts51x_check_status(struct us_data *us, u8 lun) { struct rts51x_chip *chip = (struct rts51x_chip *)(us->extra); int retval; u8 buf[16]; retval = rts51x_read_status(us, lun, buf, 16, &(chip->status_len)); if (retval != STATUS_SUCCESS) return -EIO; usb_stor_dbg(us, "chip->status_len = %d\n", chip->status_len); chip->status[lun].vid = ((u16) buf[0] << 8) | buf[1]; chip->status[lun].pid = ((u16) buf[2] << 8) | buf[3]; chip->status[lun].cur_lun = buf[4]; chip->status[lun].card_type = buf[5]; chip->status[lun].total_lun = buf[6]; chip->status[lun].fw_ver = ((u16) buf[7] << 8) | buf[8]; chip->status[lun].phy_exist = buf[9]; chip->status[lun].multi_flag = buf[10]; chip->status[lun].multi_card = buf[11]; chip->status[lun].log_exist = buf[12]; if (chip->status_len == 16) { chip->status[lun].detailed_type.detailed_type1 = buf[13]; chip->status[lun].function[0] = buf[14]; chip->status[lun].function[1] = buf[15]; } return 0; } static int enable_oscillator(struct us_data *us) { int retval; u8 value; retval = rts51x_read_mem(us, 0xFE77, &value, 1); if (retval < 0) return -EIO; value |= 0x04; retval = rts51x_write_mem(us, 0xFE77, &value, 1); if (retval < 0) return -EIO; retval = rts51x_read_mem(us, 0xFE77, &value, 1); if (retval < 0) return -EIO; if (!(value & 0x04)) return -EIO; return 0; } static int __do_config_autodelink(struct us_data *us, u8 *data, u16 len) { int retval; u8 cmnd[12] = {0}; u8 *buf; usb_stor_dbg(us, "addr = 0xfe47, len = %d\n", len); buf = kmemdup(data, len, GFP_NOIO); if (!buf) return USB_STOR_TRANSPORT_ERROR; cmnd[0] = 0xF0; cmnd[1] = 0x0E; cmnd[2] = 0xfe; cmnd[3] = 0x47; cmnd[4] = (u8)(len >> 8); cmnd[5] = (u8)len; retval = rts51x_bulk_transport_special(us, 0, cmnd, 12, buf, len, DMA_TO_DEVICE, NULL); kfree(buf); if (retval != USB_STOR_TRANSPORT_GOOD) { return -EIO; } return 0; } static int do_config_autodelink(struct us_data *us, int enable, int force) { int retval; u8 value; retval = rts51x_read_mem(us, 0xFE47, &value, 1); if (retval < 0) return -EIO; if (enable) { if (force) value |= 0x03; else value |= 0x01; } else { value &= ~0x03; } usb_stor_dbg(us, "set 0xfe47 to 0x%x\n", value); /* retval = rts51x_write_mem(us, 0xFE47, &value, 1); */ retval = __do_config_autodelink(us, &value, 1); if (retval < 0) return -EIO; return 0; } static int config_autodelink_after_power_on(struct us_data *us) { struct rts51x_chip *chip = (struct rts51x_chip *)(us->extra); int retval; u8 value; if (!CHK_AUTO_DELINK(chip)) return 0; retval = rts51x_read_mem(us, 0xFE47, &value, 1); if (retval < 0) return -EIO; if (auto_delink_en) { CLR_BIT(value, 0); CLR_BIT(value, 1); SET_BIT(value, 2); if (CHECK_ID(chip, 0x0138, 0x3882)) CLR_BIT(value, 2); SET_BIT(value, 7); /* retval = rts51x_write_mem(us, 0xFE47, &value, 1); */ retval = __do_config_autodelink(us, &value, 1); if (retval < 0) return -EIO; retval = enable_oscillator(us); if (retval == 0) (void)do_config_autodelink(us, 1, 0); } else { /* Autodelink controlled by firmware */ SET_BIT(value, 2); if (CHECK_ID(chip, 0x0138, 0x3882)) CLR_BIT(value, 2); if (CHECK_ID(chip, 0x0159, 0x5889) || CHECK_ID(chip, 0x0138, 0x3880)) { CLR_BIT(value, 0); CLR_BIT(value, 7); } /* retval = rts51x_write_mem(us, 0xFE47, &value, 1); */ retval = __do_config_autodelink(us, &value, 1); if (retval < 0) return -EIO; if (CHECK_ID(chip, 0x0159, 0x5888)) { value = 0xFF; retval = rts51x_write_mem(us, 0xFE79, &value, 1); if (retval < 0) return -EIO; value = 0x01; retval = rts51x_write_mem(us, 0x48, &value, 1); if (retval < 0) return -EIO; } } return 0; } #ifdef CONFIG_PM static int config_autodelink_before_power_down(struct us_data *us) { struct rts51x_chip *chip = (struct rts51x_chip *)(us->extra); int retval; u8 value; if (!CHK_AUTO_DELINK(chip)) return 0; if (auto_delink_en) { retval = rts51x_read_mem(us, 0xFE77, &value, 1); if (retval < 0) return -EIO; SET_BIT(value, 2); retval = rts51x_write_mem(us, 0xFE77, &value, 1); if (retval < 0) return -EIO; if (CHECK_ID(chip, 0x0159, 0x5888)) { value = 0x01; retval = rts51x_write_mem(us, 0x48, &value, 1); if (retval < 0) return -EIO; } retval = rts51x_read_mem(us, 0xFE47, &value, 1); if (retval < 0) return -EIO; SET_BIT(value, 0); if (CHECK_ID(chip, 0x0138, 0x3882)) SET_BIT(value, 2); retval = rts51x_write_mem(us, 0xFE77, &value, 1); if (retval < 0) return -EIO; } else { if (CHECK_ID(chip, 0x0159, 0x5889) || CHECK_ID(chip, 0x0138, 0x3880) || CHECK_ID(chip, 0x0138, 0x3882)) { retval = rts51x_read_mem(us, 0xFE47, &value, 1); if (retval < 0) return -EIO; if (CHECK_ID(chip, 0x0159, 0x5889) || CHECK_ID(chip, 0x0138, 0x3880)) { SET_BIT(value, 0); SET_BIT(value, 7); } if (CHECK_ID(chip, 0x0138, 0x3882)) SET_BIT(value, 2); /* retval = rts51x_write_mem(us, 0xFE47, &value, 1); */ retval = __do_config_autodelink(us, &value, 1); if (retval < 0) return -EIO; } if (CHECK_ID(chip, 0x0159, 0x5888)) { value = 0x01; retval = rts51x_write_mem(us, 0x48, &value, 1); if (retval < 0) return -EIO; } } return 0; } static void fw5895_init(struct us_data *us) { struct rts51x_chip *chip = (struct rts51x_chip *)(us->extra); int retval; u8 val; if ((PRODUCT_ID(chip) != 0x0158) || (FW_VERSION(chip) != 0x5895)) { usb_stor_dbg(us, "Not the specified device, return immediately!\n"); } else { retval = rts51x_read_mem(us, 0xFD6F, &val, 1); if (retval == STATUS_SUCCESS && (val & 0x1F) == 0) { val = 0x1F; retval = rts51x_write_mem(us, 0xFD70, &val, 1); if (retval != STATUS_SUCCESS) usb_stor_dbg(us, "Write memory fail\n"); } else { usb_stor_dbg(us, "Read memory fail, OR (val & 0x1F) != 0\n"); } } } #endif #ifdef CONFIG_REALTEK_AUTOPM static void fw5895_set_mmc_wp(struct us_data *us) { struct rts51x_chip *chip = (struct rts51x_chip *)(us->extra); int retval; u8 buf[13]; if ((PRODUCT_ID(chip) != 0x0158) || (FW_VERSION(chip) != 0x5895)) { usb_stor_dbg(us, "Not the specified device, return immediately!\n"); } else { retval = rts51x_read_mem(us, 0xFD6F, buf, 1); if (retval == STATUS_SUCCESS && (buf[0] & 0x24) == 0x24) { /* SD Exist and SD WP */ retval = rts51x_read_mem(us, 0xD04E, buf, 1); if (retval == STATUS_SUCCESS) { buf[0] |= 0x04; retval = rts51x_write_mem(us, 0xFD70, buf, 1); if (retval != STATUS_SUCCESS) usb_stor_dbg(us, "Write memory fail\n"); } else { usb_stor_dbg(us, "Read memory fail\n"); } } else { usb_stor_dbg(us, "Read memory fail, OR (buf[0]&0x24)!=0x24\n"); } } } static void rts51x_modi_suspend_timer(struct rts51x_chip *chip) { struct us_data *us = chip->us; usb_stor_dbg(us, "state:%d\n", rts51x_get_stat(chip)); chip->timer_expires = jiffies + msecs_to_jiffies(1000*ss_delay); mod_timer(&chip->rts51x_suspend_timer, chip->timer_expires); } static void rts51x_suspend_timer_fn(struct timer_list *t) { struct rts51x_chip *chip = from_timer(chip, t, rts51x_suspend_timer); struct us_data *us = chip->us; switch (rts51x_get_stat(chip)) { case RTS51X_STAT_INIT: case RTS51X_STAT_RUN: rts51x_modi_suspend_timer(chip); break; case RTS51X_STAT_IDLE: case RTS51X_STAT_SS: usb_stor_dbg(us, "RTS51X_STAT_SS, power.usage:%d\n", atomic_read(&us->pusb_intf->dev.power.usage_count)); if (atomic_read(&us->pusb_intf->dev.power.usage_count) > 0) { usb_stor_dbg(us, "Ready to enter SS state\n"); rts51x_set_stat(chip, RTS51X_STAT_SS); /* ignore mass storage interface's children */ pm_suspend_ignore_children(&us->pusb_intf->dev, true); usb_autopm_put_interface_async(us->pusb_intf); usb_stor_dbg(us, "RTS51X_STAT_SS 01, power.usage:%d\n", atomic_read(&us->pusb_intf->dev.power.usage_count)); } break; default: usb_stor_dbg(us, "Unknown state !!!\n"); break; } } static inline int working_scsi(struct scsi_cmnd *srb) { if ((srb->cmnd[0] == TEST_UNIT_READY) || (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)) { return 0; } return 1; } static void rts51x_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) { struct rts51x_chip *chip = (struct rts51x_chip *)(us->extra); static int card_first_show = 1; static u8 media_not_present[] = { 0x70, 0, 0x02, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0x3A, 0, 0, 0, 0, 0 }; static u8 invalid_cmd_field[] = { 0x70, 0, 0x05, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0x24, 0, 0, 0, 0, 0 }; int ret; if (working_scsi(srb)) { usb_stor_dbg(us, "working scsi, power.usage:%d\n", atomic_read(&us->pusb_intf->dev.power.usage_count)); if (atomic_read(&us->pusb_intf->dev.power.usage_count) <= 0) { ret = usb_autopm_get_interface(us->pusb_intf); usb_stor_dbg(us, "working scsi, ret=%d\n", ret); } if (rts51x_get_stat(chip) != RTS51X_STAT_RUN) rts51x_set_stat(chip, RTS51X_STAT_RUN); chip->proto_handler_backup(srb, us); } else { if (rts51x_get_stat(chip) == RTS51X_STAT_SS) { usb_stor_dbg(us, "NOT working scsi\n"); if ((srb->cmnd[0] == TEST_UNIT_READY) && (chip->pwr_state == US_SUSPEND)) { if (TST_LUN_READY(chip, srb->device->lun)) { srb->result = SAM_STAT_GOOD; } else { srb->result = SAM_STAT_CHECK_CONDITION; memcpy(srb->sense_buffer, media_not_present, US_SENSE_SIZE); } usb_stor_dbg(us, "TEST_UNIT_READY\n"); goto out; } if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { int prevent = srb->cmnd[4] & 0x1; if (prevent) { srb->result = SAM_STAT_CHECK_CONDITION; memcpy(srb->sense_buffer, invalid_cmd_field, US_SENSE_SIZE); } else { srb->result = SAM_STAT_GOOD; } usb_stor_dbg(us, "ALLOW_MEDIUM_REMOVAL\n"); goto out; } } else { usb_stor_dbg(us, "NOT working scsi, not SS\n"); chip->proto_handler_backup(srb, us); /* Check whether card is plugged in */ if (srb->cmnd[0] == TEST_UNIT_READY) { if (srb->result == SAM_STAT_GOOD) { SET_LUN_READY(chip, srb->device->lun); if (card_first_show) { card_first_show = 0; fw5895_set_mmc_wp(us); } } else { CLR_LUN_READY(chip, srb->device->lun); card_first_show = 1; } } if (rts51x_get_stat(chip) != RTS51X_STAT_IDLE) rts51x_set_stat(chip, RTS51X_STAT_IDLE); } } out: usb_stor_dbg(us, "state:%d\n", rts51x_get_stat(chip)); if (rts51x_get_stat(chip) == RTS51X_STAT_RUN) rts51x_modi_suspend_timer(chip); } static int realtek_cr_autosuspend_setup(struct us_data *us) { struct rts51x_chip *chip; struct rts51x_status *status = NULL; u8 buf[16]; int retval; chip = (struct rts51x_chip *)us->extra; chip->support_auto_delink = 0; chip->pwr_state = US_RESUME; chip->lun_ready = 0; rts51x_set_stat(chip, RTS51X_STAT_INIT); retval = rts51x_read_status(us, 0, buf, 16, &(chip->status_len)); if (retval != STATUS_SUCCESS) { usb_stor_dbg(us, "Read status fail\n"); return -EIO; } status = chip->status; status->vid = ((u16) buf[0] << 8) | buf[1]; status->pid = ((u16) buf[2] << 8) | buf[3]; status->cur_lun = buf[4]; status->card_type = buf[5]; status->total_lun = buf[6]; status->fw_ver = ((u16) buf[7] << 8) | buf[8]; status->phy_exist = buf[9]; status->multi_flag = buf[10]; status->multi_card = buf[11]; status->log_exist = buf[12]; if (chip->status_len == 16) { status->detailed_type.detailed_type1 = buf[13]; status->function[0] = buf[14]; status->function[1] = buf[15]; } /* back up the proto_handler in us->extra */ chip = (struct rts51x_chip *)(us->extra); chip->proto_handler_backup = us->proto_handler; /* Set the autosuspend_delay to 0 */ pm_runtime_set_autosuspend_delay(&us->pusb_dev->dev, 0); /* override us->proto_handler setted in get_protocol() */ us->proto_handler = rts51x_invoke_transport; chip->timer_expires = 0; timer_setup(&chip->rts51x_suspend_timer, rts51x_suspend_timer_fn, 0); fw5895_init(us); /* enable autosuspend function of the usb device */ usb_enable_autosuspend(us->pusb_dev); return 0; } #endif static void realtek_cr_destructor(void *extra) { struct rts51x_chip *chip = extra; if (!chip) return; #ifdef CONFIG_REALTEK_AUTOPM if (ss_en) { del_timer(&chip->rts51x_suspend_timer); chip->timer_expires = 0; } #endif kfree(chip->status); } #ifdef CONFIG_PM static int realtek_cr_suspend(struct usb_interface *iface, pm_message_t message) { struct us_data *us = usb_get_intfdata(iface); /* wait until no command is running */ mutex_lock(&us->dev_mutex); config_autodelink_before_power_down(us); mutex_unlock(&us->dev_mutex); return 0; } static int realtek_cr_resume(struct usb_interface *iface) { struct us_data *us = usb_get_intfdata(iface); fw5895_init(us); config_autodelink_after_power_on(us); return 0; } #else #define realtek_cr_suspend NULL #define realtek_cr_resume NULL #endif static int init_realtek_cr(struct us_data *us) { struct rts51x_chip *chip; int size, i, retval; chip = kzalloc(sizeof(struct rts51x_chip), GFP_KERNEL); if (!chip) return -ENOMEM; us->extra = chip; us->extra_destructor = realtek_cr_destructor; us->max_lun = chip->max_lun = rts51x_get_max_lun(us); chip->us = us; usb_stor_dbg(us, "chip->max_lun = %d\n", chip->max_lun); size = (chip->max_lun + 1) * sizeof(struct rts51x_status); chip->status = kzalloc(size, GFP_KERNEL); if (!chip->status) goto INIT_FAIL; for (i = 0; i <= (int)(chip->max_lun); i++) { retval = rts51x_check_status(us, (u8) i); if (retval < 0) goto INIT_FAIL; } if (CHECK_PID(chip, 0x0138) || CHECK_PID(chip, 0x0158) || CHECK_PID(chip, 0x0159)) { if (CHECK_FW_VER(chip, 0x5888) || CHECK_FW_VER(chip, 0x5889) || CHECK_FW_VER(chip, 0x5901)) SET_AUTO_DELINK(chip); if (STATUS_LEN(chip) == 16) { if (SUPPORT_AUTO_DELINK(chip)) SET_AUTO_DELINK(chip); } } #ifdef CONFIG_REALTEK_AUTOPM if (ss_en) realtek_cr_autosuspend_setup(us); #endif usb_stor_dbg(us, "chip->flag = 0x%x\n", chip->flag); (void)config_autodelink_after_power_on(us); return 0; INIT_FAIL: if (us->extra) { kfree(chip->status); kfree(us->extra); us->extra = NULL; } return -EIO; } static struct scsi_host_template realtek_cr_host_template; static int realtek_cr_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct us_data *us; int result; dev_dbg(&intf->dev, "Probe Realtek Card Reader!\n"); result = usb_stor_probe1(&us, intf, id, (id - realtek_cr_ids) + realtek_cr_unusual_dev_list, &realtek_cr_host_template); if (result) return result; result = usb_stor_probe2(us); return result; } static struct usb_driver realtek_cr_driver = { .name = DRV_NAME, .probe = realtek_cr_probe, .disconnect = usb_stor_disconnect, /* .suspend = usb_stor_suspend, */ /* .resume = usb_stor_resume, */ .reset_resume = usb_stor_reset_resume, .suspend = realtek_cr_suspend, .resume = realtek_cr_resume, .pre_reset = usb_stor_pre_reset, .post_reset = usb_stor_post_reset, .id_table = realtek_cr_ids, .soft_unbind = 1, .supports_autosuspend = 1, .no_dynamic_id = 1, }; module_usb_stor_driver(realtek_cr_driver, realtek_cr_host_template, DRV_NAME);
2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 #ifndef _NF_FLOW_TABLE_H #define _NF_FLOW_TABLE_H #include <linux/in.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/rhashtable-types.h> #include <linux/rcupdate.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <net/flow_offload.h> #include <net/dst.h> #include <linux/if_pppox.h> #include <linux/ppp_defs.h> struct nf_flowtable; struct nf_flow_rule; struct flow_offload; enum flow_offload_tuple_dir; struct nf_flow_key { struct flow_dissector_key_meta meta; struct flow_dissector_key_control control; struct flow_dissector_key_control enc_control; struct flow_dissector_key_basic basic; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; union { struct flow_dissector_key_ipv4_addrs ipv4; struct flow_dissector_key_ipv6_addrs ipv6; }; struct flow_dissector_key_keyid enc_key_id; union { struct flow_dissector_key_ipv4_addrs enc_ipv4; struct flow_dissector_key_ipv6_addrs enc_ipv6; }; struct flow_dissector_key_tcp tcp; struct flow_dissector_key_ports tp; } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */ struct nf_flow_match { struct flow_dissector dissector; struct nf_flow_key key; struct nf_flow_key mask; }; struct nf_flow_rule { struct nf_flow_match match; struct flow_rule *rule; }; struct nf_flowtable_type { struct list_head list; int family; int (*init)(struct nf_flowtable *ft); bool (*gc)(const struct flow_offload *flow); int (*setup)(struct nf_flowtable *ft, struct net_device *dev, enum flow_block_command cmd); int (*action)(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir dir, struct nf_flow_rule *flow_rule); void (*free)(struct nf_flowtable *ft); void (*get)(struct nf_flowtable *ft); void (*put)(struct nf_flowtable *ft); nf_hookfn *hook; struct module *owner; }; enum nf_flowtable_flags { NF_FLOWTABLE_HW_OFFLOAD = 0x1, /* NFT_FLOWTABLE_HW_OFFLOAD */ NF_FLOWTABLE_COUNTER = 0x2, /* NFT_FLOWTABLE_COUNTER */ }; struct nf_flowtable { unsigned int flags; /* readonly in datapath */ int priority; /* control path (padding hole) */ struct rhashtable rhashtable; /* datapath, read-mostly members come first */ struct list_head list; /* slowpath parts */ const struct nf_flowtable_type *type; struct delayed_work gc_work; struct flow_block flow_block; struct rw_semaphore flow_block_lock; /* Guards flow_block */ possible_net_t net; }; static inline bool nf_flowtable_hw_offload(struct nf_flowtable *flowtable) { return flowtable->flags & NF_FLOWTABLE_HW_OFFLOAD; } enum flow_offload_tuple_dir { FLOW_OFFLOAD_DIR_ORIGINAL = IP_CT_DIR_ORIGINAL, FLOW_OFFLOAD_DIR_REPLY = IP_CT_DIR_REPLY, }; #define FLOW_OFFLOAD_DIR_MAX IP_CT_DIR_MAX enum flow_offload_xmit_type { FLOW_OFFLOAD_XMIT_UNSPEC = 0, FLOW_OFFLOAD_XMIT_NEIGH, FLOW_OFFLOAD_XMIT_XFRM, FLOW_OFFLOAD_XMIT_DIRECT, FLOW_OFFLOAD_XMIT_TC, }; #define NF_FLOW_TABLE_ENCAP_MAX 2 struct flow_offload_tuple { union { struct in_addr src_v4; struct in6_addr src_v6; }; union { struct in_addr dst_v4; struct in6_addr dst_v6; }; struct { __be16 src_port; __be16 dst_port; }; int iifidx; u8 l3proto; u8 l4proto; struct { u16 id; __be16 proto; } encap[NF_FLOW_TABLE_ENCAP_MAX]; /* All members above are keys for lookups, see flow_offload_hash(). */ struct { } __hash; u8 dir:2, xmit_type:3, encap_num:2, in_vlan_ingress:2; u16 mtu; union { struct { struct dst_entry *dst_cache; u32 dst_cookie; }; struct { u32 ifidx; u32 hw_ifidx; u8 h_source[ETH_ALEN]; u8 h_dest[ETH_ALEN]; } out; struct { u32 iifidx; } tc; }; }; struct flow_offload_tuple_rhash { struct rhash_head node; struct flow_offload_tuple tuple; }; enum nf_flow_flags { NF_FLOW_SNAT, NF_FLOW_DNAT, NF_FLOW_TEARDOWN, NF_FLOW_HW, NF_FLOW_HW_DYING, NF_FLOW_HW_DEAD, NF_FLOW_HW_PENDING, NF_FLOW_HW_BIDIRECTIONAL, NF_FLOW_HW_ESTABLISHED, }; enum flow_offload_type { NF_FLOW_OFFLOAD_UNSPEC = 0, NF_FLOW_OFFLOAD_ROUTE, }; struct flow_offload { struct flow_offload_tuple_rhash tuplehash[FLOW_OFFLOAD_DIR_MAX]; struct nf_conn *ct; unsigned long flags; u16 type; u32 timeout; struct rcu_head rcu_head; }; #define NF_FLOW_TIMEOUT (30 * HZ) #define nf_flowtable_time_stamp (u32)jiffies unsigned long flow_offload_get_timeout(struct flow_offload *flow); static inline __s32 nf_flow_timeout_delta(unsigned int timeout) { return (__s32)(timeout - nf_flowtable_time_stamp); } struct nf_flow_route { struct { struct dst_entry *dst; struct { u32 ifindex; struct { u16 id; __be16 proto; } encap[NF_FLOW_TABLE_ENCAP_MAX]; u8 num_encaps:2, ingress_vlans:2; } in; struct { u32 ifindex; u32 hw_ifindex; u8 h_source[ETH_ALEN]; u8 h_dest[ETH_ALEN]; } out; enum flow_offload_xmit_type xmit_type; } tuple[FLOW_OFFLOAD_DIR_MAX]; }; struct flow_offload *flow_offload_alloc(struct nf_conn *ct); void flow_offload_free(struct flow_offload *flow); static inline int nf_flow_table_offload_add_cb(struct nf_flowtable *flow_table, flow_setup_cb_t *cb, void *cb_priv) { struct flow_block *block = &flow_table->flow_block; struct flow_block_cb *block_cb; int err = 0; down_write(&flow_table->flow_block_lock); block_cb = flow_block_cb_lookup(block, cb, cb_priv); if (block_cb) { err = -EEXIST; goto unlock; } block_cb = flow_block_cb_alloc(cb, cb_priv, cb_priv, NULL); if (IS_ERR(block_cb)) { err = PTR_ERR(block_cb); goto unlock; } list_add_tail(&block_cb->list, &block->cb_list); up_write(&flow_table->flow_block_lock); if (flow_table->type->get) flow_table->type->get(flow_table); return 0; unlock: up_write(&flow_table->flow_block_lock); return err; } static inline void nf_flow_table_offload_del_cb(struct nf_flowtable *flow_table, flow_setup_cb_t *cb, void *cb_priv) { struct flow_block *block = &flow_table->flow_block; struct flow_block_cb *block_cb; down_write(&flow_table->flow_block_lock); block_cb = flow_block_cb_lookup(block, cb, cb_priv); if (block_cb) { list_del(&block_cb->list); flow_block_cb_free(block_cb); } else { WARN_ON(true); } up_write(&flow_table->flow_block_lock); if (flow_table->type->put) flow_table->type->put(flow_table); } void flow_offload_route_init(struct flow_offload *flow, struct nf_flow_route *route); int flow_offload_add(struct nf_flowtable *flow_table, struct flow_offload *flow); void flow_offload_refresh(struct nf_flowtable *flow_table, struct flow_offload *flow, bool force); struct flow_offload_tuple_rhash *flow_offload_lookup(struct nf_flowtable *flow_table, struct flow_offload_tuple *tuple); void nf_flow_table_gc_run(struct nf_flowtable *flow_table); void nf_flow_table_gc_cleanup(struct nf_flowtable *flowtable, struct net_device *dev); void nf_flow_table_cleanup(struct net_device *dev); int nf_flow_table_init(struct nf_flowtable *flow_table); void nf_flow_table_free(struct nf_flowtable *flow_table); void flow_offload_teardown(struct flow_offload *flow); void nf_flow_snat_port(const struct flow_offload *flow, struct sk_buff *skb, unsigned int thoff, u8 protocol, enum flow_offload_tuple_dir dir); void nf_flow_dnat_port(const struct flow_offload *flow, struct sk_buff *skb, unsigned int thoff, u8 protocol, enum flow_offload_tuple_dir dir); struct flow_ports { __be16 source, dest; }; struct nf_flowtable *nf_flowtable_by_dev(const struct net_device *dev); int nf_flow_offload_xdp_setup(struct nf_flowtable *flowtable, struct net_device *dev, enum flow_block_command cmd); unsigned int nf_flow_offload_ip_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); unsigned int nf_flow_offload_ipv6_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); #if (IS_BUILTIN(CONFIG_NF_FLOW_TABLE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \ (IS_MODULE(CONFIG_NF_FLOW_TABLE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) extern int nf_flow_register_bpf(void); #else static inline int nf_flow_register_bpf(void) { return 0; } #endif #define MODULE_ALIAS_NF_FLOWTABLE(family) \ MODULE_ALIAS("nf-flowtable-" __stringify(family)) void nf_flow_offload_add(struct nf_flowtable *flowtable, struct flow_offload *flow); void nf_flow_offload_del(struct nf_flowtable *flowtable, struct flow_offload *flow); void nf_flow_offload_stats(struct nf_flowtable *flowtable, struct flow_offload *flow); void nf_flow_table_offload_flush(struct nf_flowtable *flowtable); void nf_flow_table_offload_flush_cleanup(struct nf_flowtable *flowtable); int nf_flow_table_offload_setup(struct nf_flowtable *flowtable, struct net_device *dev, enum flow_block_command cmd); int nf_flow_rule_route_ipv4(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir dir, struct nf_flow_rule *flow_rule); int nf_flow_rule_route_ipv6(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir dir, struct nf_flow_rule *flow_rule); int nf_flow_table_offload_init(void); void nf_flow_table_offload_exit(void); static inline __be16 __nf_flow_pppoe_proto(const struct sk_buff *skb) { __be16 proto; proto = *((__be16 *)(skb_mac_header(skb) + ETH_HLEN + sizeof(struct pppoe_hdr))); switch (proto) { case htons(PPP_IP): return htons(ETH_P_IP); case htons(PPP_IPV6): return htons(ETH_P_IPV6); } return 0; } static inline bool nf_flow_pppoe_proto(struct sk_buff *skb, __be16 *inner_proto) { if (!pskb_may_pull(skb, PPPOE_SES_HLEN)) return false; *inner_proto = __nf_flow_pppoe_proto(skb); return true; } #define NF_FLOW_TABLE_STAT_INC(net, count) __this_cpu_inc((net)->ft.stat->count) #define NF_FLOW_TABLE_STAT_DEC(net, count) __this_cpu_dec((net)->ft.stat->count) #define NF_FLOW_TABLE_STAT_INC_ATOMIC(net, count) \ this_cpu_inc((net)->ft.stat->count) #define NF_FLOW_TABLE_STAT_DEC_ATOMIC(net, count) \ this_cpu_dec((net)->ft.stat->count) #ifdef CONFIG_NF_FLOW_TABLE_PROCFS int nf_flow_table_init_proc(struct net *net); void nf_flow_table_fini_proc(struct net *net); #else static inline int nf_flow_table_init_proc(struct net *net) { return 0; } static inline void nf_flow_table_fini_proc(struct net *net) { } #endif /* CONFIG_NF_FLOW_TABLE_PROCFS */ #endif /* _NF_FLOW_TABLE_H */
5 5 5 5 5 20 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* * mtdram - a test mtd device * Author: Alexander Larsson <alex@cendio.se> * * Copyright (c) 1999 Alexander Larsson <alex@cendio.se> * Copyright (c) 2005 Joern Engel <joern@wh.fh-wedel.de> * * This code is GPL * */ #include <linux/module.h> #include <linux/slab.h> #include <linux/ioport.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/mtdram.h> static unsigned long total_size = CONFIG_MTDRAM_TOTAL_SIZE; static unsigned long erase_size = CONFIG_MTDRAM_ERASE_SIZE; static unsigned long writebuf_size = 64; #define MTDRAM_TOTAL_SIZE (total_size * 1024) #define MTDRAM_ERASE_SIZE (erase_size * 1024) module_param(total_size, ulong, 0); MODULE_PARM_DESC(total_size, "Total device size in KiB"); module_param(erase_size, ulong, 0); MODULE_PARM_DESC(erase_size, "Device erase block size in KiB"); module_param(writebuf_size, ulong, 0); MODULE_PARM_DESC(writebuf_size, "Device write buf size in Bytes (Default: 64)"); // We could store these in the mtd structure, but we only support 1 device.. static struct mtd_info *mtd_info; static int check_offs_len(struct mtd_info *mtd, loff_t ofs, uint64_t len) { int ret = 0; /* Start address must align on block boundary */ if (mtd_mod_by_eb(ofs, mtd)) { pr_debug("%s: unaligned address\n", __func__); ret = -EINVAL; } /* Length must align on block boundary */ if (mtd_mod_by_eb(len, mtd)) { pr_debug("%s: length not block aligned\n", __func__); ret = -EINVAL; } return ret; } static int ram_erase(struct mtd_info *mtd, struct erase_info *instr) { if (check_offs_len(mtd, instr->addr, instr->len)) return -EINVAL; memset((char *)mtd->priv + instr->addr, 0xff, instr->len); return 0; } static int ram_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { *virt = mtd->priv + from; *retlen = len; if (phys) { /* limit retlen to the number of contiguous physical pages */ unsigned long page_ofs = offset_in_page(*virt); void *addr = *virt - page_ofs; unsigned long pfn1, pfn0 = vmalloc_to_pfn(addr); *phys = __pfn_to_phys(pfn0) + page_ofs; len += page_ofs; while (len > PAGE_SIZE) { len -= PAGE_SIZE; addr += PAGE_SIZE; pfn0++; pfn1 = vmalloc_to_pfn(addr); if (pfn1 != pfn0) { *retlen = addr - *virt; break; } } } return 0; } static int ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { return 0; } static int ram_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { memcpy(buf, mtd->priv + from, len); *retlen = len; return 0; } static int ram_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { memcpy((char *)mtd->priv + to, buf, len); *retlen = len; return 0; } static void __exit cleanup_mtdram(void) { if (mtd_info) { mtd_device_unregister(mtd_info); vfree(mtd_info->priv); kfree(mtd_info); } } int mtdram_init_device(struct mtd_info *mtd, void *mapped_address, unsigned long size, const char *name) { memset(mtd, 0, sizeof(*mtd)); /* Setup the MTD structure */ mtd->name = name; mtd->type = MTD_RAM; mtd->flags = MTD_CAP_RAM; mtd->size = size; mtd->writesize = 1; mtd->writebufsize = writebuf_size; mtd->erasesize = MTDRAM_ERASE_SIZE; mtd->priv = mapped_address; mtd->owner = THIS_MODULE; mtd->_erase = ram_erase; mtd->_point = ram_point; mtd->_unpoint = ram_unpoint; mtd->_read = ram_read; mtd->_write = ram_write; if (mtd_device_register(mtd, NULL, 0)) return -EIO; return 0; } static int __init init_mtdram(void) { void *addr; int err; if (!total_size) return -EINVAL; /* Allocate some memory */ mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL); if (!mtd_info) return -ENOMEM; addr = vmalloc(MTDRAM_TOTAL_SIZE); if (!addr) { kfree(mtd_info); mtd_info = NULL; return -ENOMEM; } err = mtdram_init_device(mtd_info, addr, MTDRAM_TOTAL_SIZE, "mtdram test device"); if (err) { vfree(addr); kfree(mtd_info); mtd_info = NULL; return err; } memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE); return err; } module_init(init_mtdram); module_exit(cleanup_mtdram); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alexander Larsson <alexl@redhat.com>"); MODULE_DESCRIPTION("Simulated MTD driver for testing");
1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 126 126 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * This file implements the various access functions for the * PROC file system. It is mainly used for debugging and * statistics. * * Authors: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Gerald J. Heim, <heim@peanuts.informatik.uni-tuebingen.de> * Fred Baumgarten, <dc6iq@insu1.etec.uni-karlsruhe.de> * Erik Schoenfelder, <schoenfr@ibr.cs.tu-bs.de> * * Fixes: * Alan Cox : UDP sockets show the rxqueue/txqueue * using hint flag for the netinfo. * Pauline Middelink : identd support * Alan Cox : Make /proc safer. * Erik Schoenfelder : /proc/net/snmp * Alan Cox : Handle dead sockets properly. * Gerhard Koerting : Show both timers * Alan Cox : Allow inode to be NULL (kernel socket) * Andi Kleen : Add support for open_requests and * split functions for more readibility. * Andi Kleen : Add support for /proc/net/netstat * Arnaldo C. Melo : Convert to seq_file */ #include <linux/types.h> #include <net/net_namespace.h> #include <net/icmp.h> #include <net/protocol.h> #include <net/tcp.h> #include <net/mptcp.h> #include <net/proto_memory.h> #include <net/udp.h> #include <net/udplite.h> #include <linux/bottom_half.h> #include <linux/inetdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/export.h> #include <net/sock.h> #include <net/raw.h> #define TCPUDP_MIB_MAX MAX_T(u32, UDP_MIB_MAX, TCP_MIB_MAX) /* * Report socket allocation statistics [mea@utu.fi] */ static int sockstat_seq_show(struct seq_file *seq, void *v) { struct net *net = seq->private; int orphans, sockets; orphans = tcp_orphan_count_sum(); sockets = proto_sockets_allocated_sum_positive(&tcp_prot); socket_seq_show(seq); seq_printf(seq, "TCP: inuse %d orphan %d tw %d alloc %d mem %ld\n", sock_prot_inuse_get(net, &tcp_prot), orphans, refcount_read(&net->ipv4.tcp_death_row.tw_refcount) - 1, sockets, proto_memory_allocated(&tcp_prot)); seq_printf(seq, "UDP: inuse %d mem %ld\n", sock_prot_inuse_get(net, &udp_prot), proto_memory_allocated(&udp_prot)); seq_printf(seq, "UDPLITE: inuse %d\n", sock_prot_inuse_get(net, &udplite_prot)); seq_printf(seq, "RAW: inuse %d\n", sock_prot_inuse_get(net, &raw_prot)); seq_printf(seq, "FRAG: inuse %u memory %lu\n", atomic_read(&net->ipv4.fqdir->rhashtable.nelems), frag_mem_limit(net->ipv4.fqdir)); return 0; } /* snmp items */ static const struct snmp_mib snmp4_ipstats_list[] = { SNMP_MIB_ITEM("InReceives", IPSTATS_MIB_INPKTS), SNMP_MIB_ITEM("InHdrErrors", IPSTATS_MIB_INHDRERRORS), SNMP_MIB_ITEM("InAddrErrors", IPSTATS_MIB_INADDRERRORS), SNMP_MIB_ITEM("ForwDatagrams", IPSTATS_MIB_OUTFORWDATAGRAMS), SNMP_MIB_ITEM("InUnknownProtos", IPSTATS_MIB_INUNKNOWNPROTOS), SNMP_MIB_ITEM("InDiscards", IPSTATS_MIB_INDISCARDS), SNMP_MIB_ITEM("InDelivers", IPSTATS_MIB_INDELIVERS), SNMP_MIB_ITEM("OutRequests", IPSTATS_MIB_OUTREQUESTS), SNMP_MIB_ITEM("OutDiscards", IPSTATS_MIB_OUTDISCARDS), SNMP_MIB_ITEM("OutNoRoutes", IPSTATS_MIB_OUTNOROUTES), SNMP_MIB_ITEM("ReasmTimeout", IPSTATS_MIB_REASMTIMEOUT), SNMP_MIB_ITEM("ReasmReqds", IPSTATS_MIB_REASMREQDS), SNMP_MIB_ITEM("ReasmOKs", IPSTATS_MIB_REASMOKS), SNMP_MIB_ITEM("ReasmFails", IPSTATS_MIB_REASMFAILS), SNMP_MIB_ITEM("FragOKs", IPSTATS_MIB_FRAGOKS), SNMP_MIB_ITEM("FragFails", IPSTATS_MIB_FRAGFAILS), SNMP_MIB_ITEM("FragCreates", IPSTATS_MIB_FRAGCREATES), SNMP_MIB_ITEM("OutTransmits", IPSTATS_MIB_OUTPKTS), SNMP_MIB_SENTINEL }; /* Following items are displayed in /proc/net/netstat */ static const struct snmp_mib snmp4_ipextstats_list[] = { SNMP_MIB_ITEM("InNoRoutes", IPSTATS_MIB_INNOROUTES), SNMP_MIB_ITEM("InTruncatedPkts", IPSTATS_MIB_INTRUNCATEDPKTS), SNMP_MIB_ITEM("InMcastPkts", IPSTATS_MIB_INMCASTPKTS), SNMP_MIB_ITEM("OutMcastPkts", IPSTATS_MIB_OUTMCASTPKTS), SNMP_MIB_ITEM("InBcastPkts", IPSTATS_MIB_INBCASTPKTS), SNMP_MIB_ITEM("OutBcastPkts", IPSTATS_MIB_OUTBCASTPKTS), SNMP_MIB_ITEM("InOctets", IPSTATS_MIB_INOCTETS), SNMP_MIB_ITEM("OutOctets", IPSTATS_MIB_OUTOCTETS), SNMP_MIB_ITEM("InMcastOctets", IPSTATS_MIB_INMCASTOCTETS), SNMP_MIB_ITEM("OutMcastOctets", IPSTATS_MIB_OUTMCASTOCTETS), SNMP_MIB_ITEM("InBcastOctets", IPSTATS_MIB_INBCASTOCTETS), SNMP_MIB_ITEM("OutBcastOctets", IPSTATS_MIB_OUTBCASTOCTETS), /* Non RFC4293 fields */ SNMP_MIB_ITEM("InCsumErrors", IPSTATS_MIB_CSUMERRORS), SNMP_MIB_ITEM("InNoECTPkts", IPSTATS_MIB_NOECTPKTS), SNMP_MIB_ITEM("InECT1Pkts", IPSTATS_MIB_ECT1PKTS), SNMP_MIB_ITEM("InECT0Pkts", IPSTATS_MIB_ECT0PKTS), SNMP_MIB_ITEM("InCEPkts", IPSTATS_MIB_CEPKTS), SNMP_MIB_ITEM("ReasmOverlaps", IPSTATS_MIB_REASM_OVERLAPS), SNMP_MIB_SENTINEL }; static const struct { const char *name; int index; } icmpmibmap[] = { { "DestUnreachs", ICMP_DEST_UNREACH }, { "TimeExcds", ICMP_TIME_EXCEEDED }, { "ParmProbs", ICMP_PARAMETERPROB }, { "SrcQuenchs", ICMP_SOURCE_QUENCH }, { "Redirects", ICMP_REDIRECT }, { "Echos", ICMP_ECHO }, { "EchoReps", ICMP_ECHOREPLY }, { "Timestamps", ICMP_TIMESTAMP }, { "TimestampReps", ICMP_TIMESTAMPREPLY }, { "AddrMasks", ICMP_ADDRESS }, { "AddrMaskReps", ICMP_ADDRESSREPLY }, { NULL, 0 } }; static const struct snmp_mib snmp4_tcp_list[] = { SNMP_MIB_ITEM("RtoAlgorithm", TCP_MIB_RTOALGORITHM), SNMP_MIB_ITEM("RtoMin", TCP_MIB_RTOMIN), SNMP_MIB_ITEM("RtoMax", TCP_MIB_RTOMAX), SNMP_MIB_ITEM("MaxConn", TCP_MIB_MAXCONN), SNMP_MIB_ITEM("ActiveOpens", TCP_MIB_ACTIVEOPENS), SNMP_MIB_ITEM("PassiveOpens", TCP_MIB_PASSIVEOPENS), SNMP_MIB_ITEM("AttemptFails", TCP_MIB_ATTEMPTFAILS), SNMP_MIB_ITEM("EstabResets", TCP_MIB_ESTABRESETS), SNMP_MIB_ITEM("CurrEstab", TCP_MIB_CURRESTAB), SNMP_MIB_ITEM("InSegs", TCP_MIB_INSEGS), SNMP_MIB_ITEM("OutSegs", TCP_MIB_OUTSEGS), SNMP_MIB_ITEM("RetransSegs", TCP_MIB_RETRANSSEGS), SNMP_MIB_ITEM("InErrs", TCP_MIB_INERRS), SNMP_MIB_ITEM("OutRsts", TCP_MIB_OUTRSTS), SNMP_MIB_ITEM("InCsumErrors", TCP_MIB_CSUMERRORS), SNMP_MIB_SENTINEL }; static const struct snmp_mib snmp4_udp_list[] = { SNMP_MIB_ITEM("InDatagrams", UDP_MIB_INDATAGRAMS), SNMP_MIB_ITEM("NoPorts", UDP_MIB_NOPORTS), SNMP_MIB_ITEM("InErrors", UDP_MIB_INERRORS), SNMP_MIB_ITEM("OutDatagrams", UDP_MIB_OUTDATAGRAMS), SNMP_MIB_ITEM("RcvbufErrors", UDP_MIB_RCVBUFERRORS), SNMP_MIB_ITEM("SndbufErrors", UDP_MIB_SNDBUFERRORS), SNMP_MIB_ITEM("InCsumErrors", UDP_MIB_CSUMERRORS), SNMP_MIB_ITEM("IgnoredMulti", UDP_MIB_IGNOREDMULTI), SNMP_MIB_ITEM("MemErrors", UDP_MIB_MEMERRORS), SNMP_MIB_SENTINEL }; static const struct snmp_mib snmp4_net_list[] = { SNMP_MIB_ITEM("SyncookiesSent", LINUX_MIB_SYNCOOKIESSENT), SNMP_MIB_ITEM("SyncookiesRecv", LINUX_MIB_SYNCOOKIESRECV), SNMP_MIB_ITEM("SyncookiesFailed", LINUX_MIB_SYNCOOKIESFAILED), SNMP_MIB_ITEM("EmbryonicRsts", LINUX_MIB_EMBRYONICRSTS), SNMP_MIB_ITEM("PruneCalled", LINUX_MIB_PRUNECALLED), SNMP_MIB_ITEM("RcvPruned", LINUX_MIB_RCVPRUNED), SNMP_MIB_ITEM("OfoPruned", LINUX_MIB_OFOPRUNED), SNMP_MIB_ITEM("OutOfWindowIcmps", LINUX_MIB_OUTOFWINDOWICMPS), SNMP_MIB_ITEM("LockDroppedIcmps", LINUX_MIB_LOCKDROPPEDICMPS), SNMP_MIB_ITEM("ArpFilter", LINUX_MIB_ARPFILTER), SNMP_MIB_ITEM("TW", LINUX_MIB_TIMEWAITED), SNMP_MIB_ITEM("TWRecycled", LINUX_MIB_TIMEWAITRECYCLED), SNMP_MIB_ITEM("TWKilled", LINUX_MIB_TIMEWAITKILLED), SNMP_MIB_ITEM("PAWSActive", LINUX_MIB_PAWSACTIVEREJECTED), SNMP_MIB_ITEM("PAWSEstab", LINUX_MIB_PAWSESTABREJECTED), SNMP_MIB_ITEM("DelayedACKs", LINUX_MIB_DELAYEDACKS), SNMP_MIB_ITEM("DelayedACKLocked", LINUX_MIB_DELAYEDACKLOCKED), SNMP_MIB_ITEM("DelayedACKLost", LINUX_MIB_DELAYEDACKLOST), SNMP_MIB_ITEM("ListenOverflows", LINUX_MIB_LISTENOVERFLOWS), SNMP_MIB_ITEM("ListenDrops", LINUX_MIB_LISTENDROPS), SNMP_MIB_ITEM("TCPHPHits", LINUX_MIB_TCPHPHITS), SNMP_MIB_ITEM("TCPPureAcks", LINUX_MIB_TCPPUREACKS), SNMP_MIB_ITEM("TCPHPAcks", LINUX_MIB_TCPHPACKS), SNMP_MIB_ITEM("TCPRenoRecovery", LINUX_MIB_TCPRENORECOVERY), SNMP_MIB_ITEM("TCPSackRecovery", LINUX_MIB_TCPSACKRECOVERY), SNMP_MIB_ITEM("TCPSACKReneging", LINUX_MIB_TCPSACKRENEGING), SNMP_MIB_ITEM("TCPSACKReorder", LINUX_MIB_TCPSACKREORDER), SNMP_MIB_ITEM("TCPRenoReorder", LINUX_MIB_TCPRENOREORDER), SNMP_MIB_ITEM("TCPTSReorder", LINUX_MIB_TCPTSREORDER), SNMP_MIB_ITEM("TCPFullUndo", LINUX_MIB_TCPFULLUNDO), SNMP_MIB_ITEM("TCPPartialUndo", LINUX_MIB_TCPPARTIALUNDO), SNMP_MIB_ITEM("TCPDSACKUndo", LINUX_MIB_TCPDSACKUNDO), SNMP_MIB_ITEM("TCPLossUndo", LINUX_MIB_TCPLOSSUNDO), SNMP_MIB_ITEM("TCPLostRetransmit", LINUX_MIB_TCPLOSTRETRANSMIT), SNMP_MIB_ITEM("TCPRenoFailures", LINUX_MIB_TCPRENOFAILURES), SNMP_MIB_ITEM("TCPSackFailures", LINUX_MIB_TCPSACKFAILURES), SNMP_MIB_ITEM("TCPLossFailures", LINUX_MIB_TCPLOSSFAILURES), SNMP_MIB_ITEM("TCPFastRetrans", LINUX_MIB_TCPFASTRETRANS), SNMP_MIB_ITEM("TCPSlowStartRetrans", LINUX_MIB_TCPSLOWSTARTRETRANS), SNMP_MIB_ITEM("TCPTimeouts", LINUX_MIB_TCPTIMEOUTS), SNMP_MIB_ITEM("TCPLossProbes", LINUX_MIB_TCPLOSSPROBES), SNMP_MIB_ITEM("TCPLossProbeRecovery", LINUX_MIB_TCPLOSSPROBERECOVERY), SNMP_MIB_ITEM("TCPRenoRecoveryFail", LINUX_MIB_TCPRENORECOVERYFAIL), SNMP_MIB_ITEM("TCPSackRecoveryFail", LINUX_MIB_TCPSACKRECOVERYFAIL), SNMP_MIB_ITEM("TCPRcvCollapsed", LINUX_MIB_TCPRCVCOLLAPSED), SNMP_MIB_ITEM("TCPBacklogCoalesce", LINUX_MIB_TCPBACKLOGCOALESCE), SNMP_MIB_ITEM("TCPDSACKOldSent", LINUX_MIB_TCPDSACKOLDSENT), SNMP_MIB_ITEM("TCPDSACKOfoSent", LINUX_MIB_TCPDSACKOFOSENT), SNMP_MIB_ITEM("TCPDSACKRecv", LINUX_MIB_TCPDSACKRECV), SNMP_MIB_ITEM("TCPDSACKOfoRecv", LINUX_MIB_TCPDSACKOFORECV), SNMP_MIB_ITEM("TCPAbortOnData", LINUX_MIB_TCPABORTONDATA), SNMP_MIB_ITEM("TCPAbortOnClose", LINUX_MIB_TCPABORTONCLOSE), SNMP_MIB_ITEM("TCPAbortOnMemory", LINUX_MIB_TCPABORTONMEMORY), SNMP_MIB_ITEM("TCPAbortOnTimeout", LINUX_MIB_TCPABORTONTIMEOUT), SNMP_MIB_ITEM("TCPAbortOnLinger", LINUX_MIB_TCPABORTONLINGER), SNMP_MIB_ITEM("TCPAbortFailed", LINUX_MIB_TCPABORTFAILED), SNMP_MIB_ITEM("TCPMemoryPressures", LINUX_MIB_TCPMEMORYPRESSURES), SNMP_MIB_ITEM("TCPMemoryPressuresChrono", LINUX_MIB_TCPMEMORYPRESSURESCHRONO), SNMP_MIB_ITEM("TCPSACKDiscard", LINUX_MIB_TCPSACKDISCARD), SNMP_MIB_ITEM("TCPDSACKIgnoredOld", LINUX_MIB_TCPDSACKIGNOREDOLD), SNMP_MIB_ITEM("TCPDSACKIgnoredNoUndo", LINUX_MIB_TCPDSACKIGNOREDNOUNDO), SNMP_MIB_ITEM("TCPSpuriousRTOs", LINUX_MIB_TCPSPURIOUSRTOS), SNMP_MIB_ITEM("TCPMD5NotFound", LINUX_MIB_TCPMD5NOTFOUND), SNMP_MIB_ITEM("TCPMD5Unexpected", LINUX_MIB_TCPMD5UNEXPECTED), SNMP_MIB_ITEM("TCPMD5Failure", LINUX_MIB_TCPMD5FAILURE), SNMP_MIB_ITEM("TCPSackShifted", LINUX_MIB_SACKSHIFTED), SNMP_MIB_ITEM("TCPSackMerged", LINUX_MIB_SACKMERGED), SNMP_MIB_ITEM("TCPSackShiftFallback", LINUX_MIB_SACKSHIFTFALLBACK), SNMP_MIB_ITEM("TCPBacklogDrop", LINUX_MIB_TCPBACKLOGDROP), SNMP_MIB_ITEM("PFMemallocDrop", LINUX_MIB_PFMEMALLOCDROP), SNMP_MIB_ITEM("TCPMinTTLDrop", LINUX_MIB_TCPMINTTLDROP), SNMP_MIB_ITEM("TCPDeferAcceptDrop", LINUX_MIB_TCPDEFERACCEPTDROP), SNMP_MIB_ITEM("IPReversePathFilter", LINUX_MIB_IPRPFILTER), SNMP_MIB_ITEM("TCPTimeWaitOverflow", LINUX_MIB_TCPTIMEWAITOVERFLOW), SNMP_MIB_ITEM("TCPReqQFullDoCookies", LINUX_MIB_TCPREQQFULLDOCOOKIES), SNMP_MIB_ITEM("TCPReqQFullDrop", LINUX_MIB_TCPREQQFULLDROP), SNMP_MIB_ITEM("TCPRetransFail", LINUX_MIB_TCPRETRANSFAIL), SNMP_MIB_ITEM("TCPRcvCoalesce", LINUX_MIB_TCPRCVCOALESCE), SNMP_MIB_ITEM("TCPOFOQueue", LINUX_MIB_TCPOFOQUEUE), SNMP_MIB_ITEM("TCPOFODrop", LINUX_MIB_TCPOFODROP), SNMP_MIB_ITEM("TCPOFOMerge", LINUX_MIB_TCPOFOMERGE), SNMP_MIB_ITEM("TCPChallengeACK", LINUX_MIB_TCPCHALLENGEACK), SNMP_MIB_ITEM("TCPSYNChallenge", LINUX_MIB_TCPSYNCHALLENGE), SNMP_MIB_ITEM("TCPFastOpenActive", LINUX_MIB_TCPFASTOPENACTIVE), SNMP_MIB_ITEM("TCPFastOpenActiveFail", LINUX_MIB_TCPFASTOPENACTIVEFAIL), SNMP_MIB_ITEM("TCPFastOpenPassive", LINUX_MIB_TCPFASTOPENPASSIVE), SNMP_MIB_ITEM("TCPFastOpenPassiveFail", LINUX_MIB_TCPFASTOPENPASSIVEFAIL), SNMP_MIB_ITEM("TCPFastOpenListenOverflow", LINUX_MIB_TCPFASTOPENLISTENOVERFLOW), SNMP_MIB_ITEM("TCPFastOpenCookieReqd", LINUX_MIB_TCPFASTOPENCOOKIEREQD), SNMP_MIB_ITEM("TCPFastOpenBlackhole", LINUX_MIB_TCPFASTOPENBLACKHOLE), SNMP_MIB_ITEM("TCPSpuriousRtxHostQueues", LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES), SNMP_MIB_ITEM("BusyPollRxPackets", LINUX_MIB_BUSYPOLLRXPACKETS), SNMP_MIB_ITEM("TCPAutoCorking", LINUX_MIB_TCPAUTOCORKING), SNMP_MIB_ITEM("TCPFromZeroWindowAdv", LINUX_MIB_TCPFROMZEROWINDOWADV), SNMP_MIB_ITEM("TCPToZeroWindowAdv", LINUX_MIB_TCPTOZEROWINDOWADV), SNMP_MIB_ITEM("TCPWantZeroWindowAdv", LINUX_MIB_TCPWANTZEROWINDOWADV), SNMP_MIB_ITEM("TCPSynRetrans", LINUX_MIB_TCPSYNRETRANS), SNMP_MIB_ITEM("TCPOrigDataSent", LINUX_MIB_TCPORIGDATASENT), SNMP_MIB_ITEM("TCPHystartTrainDetect", LINUX_MIB_TCPHYSTARTTRAINDETECT), SNMP_MIB_ITEM("TCPHystartTrainCwnd", LINUX_MIB_TCPHYSTARTTRAINCWND), SNMP_MIB_ITEM("TCPHystartDelayDetect", LINUX_MIB_TCPHYSTARTDELAYDETECT), SNMP_MIB_ITEM("TCPHystartDelayCwnd", LINUX_MIB_TCPHYSTARTDELAYCWND), SNMP_MIB_ITEM("TCPACKSkippedSynRecv", LINUX_MIB_TCPACKSKIPPEDSYNRECV), SNMP_MIB_ITEM("TCPACKSkippedPAWS", LINUX_MIB_TCPACKSKIPPEDPAWS), SNMP_MIB_ITEM("TCPACKSkippedSeq", LINUX_MIB_TCPACKSKIPPEDSEQ), SNMP_MIB_ITEM("TCPACKSkippedFinWait2", LINUX_MIB_TCPACKSKIPPEDFINWAIT2), SNMP_MIB_ITEM("TCPACKSkippedTimeWait", LINUX_MIB_TCPACKSKIPPEDTIMEWAIT), SNMP_MIB_ITEM("TCPACKSkippedChallenge", LINUX_MIB_TCPACKSKIPPEDCHALLENGE), SNMP_MIB_ITEM("TCPWinProbe", LINUX_MIB_TCPWINPROBE), SNMP_MIB_ITEM("TCPKeepAlive", LINUX_MIB_TCPKEEPALIVE), SNMP_MIB_ITEM("TCPMTUPFail", LINUX_MIB_TCPMTUPFAIL), SNMP_MIB_ITEM("TCPMTUPSuccess", LINUX_MIB_TCPMTUPSUCCESS), SNMP_MIB_ITEM("TCPDelivered", LINUX_MIB_TCPDELIVERED), SNMP_MIB_ITEM("TCPDeliveredCE", LINUX_MIB_TCPDELIVEREDCE), SNMP_MIB_ITEM("TCPAckCompressed", LINUX_MIB_TCPACKCOMPRESSED), SNMP_MIB_ITEM("TCPZeroWindowDrop", LINUX_MIB_TCPZEROWINDOWDROP), SNMP_MIB_ITEM("TCPRcvQDrop", LINUX_MIB_TCPRCVQDROP), SNMP_MIB_ITEM("TCPWqueueTooBig", LINUX_MIB_TCPWQUEUETOOBIG), SNMP_MIB_ITEM("TCPFastOpenPassiveAltKey", LINUX_MIB_TCPFASTOPENPASSIVEALTKEY), SNMP_MIB_ITEM("TcpTimeoutRehash", LINUX_MIB_TCPTIMEOUTREHASH), SNMP_MIB_ITEM("TcpDuplicateDataRehash", LINUX_MIB_TCPDUPLICATEDATAREHASH), SNMP_MIB_ITEM("TCPDSACKRecvSegs", LINUX_MIB_TCPDSACKRECVSEGS), SNMP_MIB_ITEM("TCPDSACKIgnoredDubious", LINUX_MIB_TCPDSACKIGNOREDDUBIOUS), SNMP_MIB_ITEM("TCPMigrateReqSuccess", LINUX_MIB_TCPMIGRATEREQSUCCESS), SNMP_MIB_ITEM("TCPMigrateReqFailure", LINUX_MIB_TCPMIGRATEREQFAILURE), SNMP_MIB_ITEM("TCPPLBRehash", LINUX_MIB_TCPPLBREHASH), SNMP_MIB_ITEM("TCPAORequired", LINUX_MIB_TCPAOREQUIRED), SNMP_MIB_ITEM("TCPAOBad", LINUX_MIB_TCPAOBAD), SNMP_MIB_ITEM("TCPAOKeyNotFound", LINUX_MIB_TCPAOKEYNOTFOUND), SNMP_MIB_ITEM("TCPAOGood", LINUX_MIB_TCPAOGOOD), SNMP_MIB_ITEM("TCPAODroppedIcmps", LINUX_MIB_TCPAODROPPEDICMPS), SNMP_MIB_SENTINEL }; static void icmpmsg_put_line(struct seq_file *seq, unsigned long *vals, unsigned short *type, int count) { int j; if (count) { seq_puts(seq, "\nIcmpMsg:"); for (j = 0; j < count; ++j) seq_printf(seq, " %sType%u", type[j] & 0x100 ? "Out" : "In", type[j] & 0xff); seq_puts(seq, "\nIcmpMsg:"); for (j = 0; j < count; ++j) seq_printf(seq, " %lu", vals[j]); } } static void icmpmsg_put(struct seq_file *seq) { #define PERLINE 16 int i, count; unsigned short type[PERLINE]; unsigned long vals[PERLINE], val; struct net *net = seq->private; count = 0; for (i = 0; i < ICMPMSG_MIB_MAX; i++) { val = atomic_long_read(&net->mib.icmpmsg_statistics->mibs[i]); if (val) { type[count] = i; vals[count++] = val; } if (count == PERLINE) { icmpmsg_put_line(seq, vals, type, count); count = 0; } } icmpmsg_put_line(seq, vals, type, count); #undef PERLINE } static void icmp_put(struct seq_file *seq) { int i; struct net *net = seq->private; atomic_long_t *ptr = net->mib.icmpmsg_statistics->mibs; seq_puts(seq, "\nIcmp: InMsgs InErrors InCsumErrors"); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " In%s", icmpmibmap[i].name); seq_puts(seq, " OutMsgs OutErrors OutRateLimitGlobal OutRateLimitHost"); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " Out%s", icmpmibmap[i].name); seq_printf(seq, "\nIcmp: %lu %lu %lu", snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_INMSGS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_INERRORS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_CSUMERRORS)); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " %lu", atomic_long_read(ptr + icmpmibmap[i].index)); seq_printf(seq, " %lu %lu %lu %lu", snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_OUTMSGS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_OUTERRORS), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_RATELIMITGLOBAL), snmp_fold_field(net->mib.icmp_statistics, ICMP_MIB_RATELIMITHOST)); for (i = 0; icmpmibmap[i].name; i++) seq_printf(seq, " %lu", atomic_long_read(ptr + (icmpmibmap[i].index | 0x100))); } /* * Called from the PROCfs module. This outputs /proc/net/snmp. */ static int snmp_seq_show_ipstats(struct seq_file *seq, void *v) { struct net *net = seq->private; u64 buff64[IPSTATS_MIB_MAX]; int i; memset(buff64, 0, IPSTATS_MIB_MAX * sizeof(u64)); seq_puts(seq, "Ip: Forwarding DefaultTTL"); for (i = 0; snmp4_ipstats_list[i].name; i++) seq_printf(seq, " %s", snmp4_ipstats_list[i].name); seq_printf(seq, "\nIp: %d %d", IPV4_DEVCONF_ALL_RO(net, FORWARDING) ? 1 : 2, READ_ONCE(net->ipv4.sysctl_ip_default_ttl)); BUILD_BUG_ON(offsetof(struct ipstats_mib, mibs) != 0); snmp_get_cpu_field64_batch(buff64, snmp4_ipstats_list, net->mib.ip_statistics, offsetof(struct ipstats_mib, syncp)); for (i = 0; snmp4_ipstats_list[i].name; i++) seq_printf(seq, " %llu", buff64[i]); return 0; } static int snmp_seq_show_tcp_udp(struct seq_file *seq, void *v) { unsigned long buff[TCPUDP_MIB_MAX]; struct net *net = seq->private; int i; memset(buff, 0, TCPUDP_MIB_MAX * sizeof(unsigned long)); seq_puts(seq, "\nTcp:"); for (i = 0; snmp4_tcp_list[i].name; i++) seq_printf(seq, " %s", snmp4_tcp_list[i].name); seq_puts(seq, "\nTcp:"); snmp_get_cpu_field_batch(buff, snmp4_tcp_list, net->mib.tcp_statistics); for (i = 0; snmp4_tcp_list[i].name; i++) { /* MaxConn field is signed, RFC 2012 */ if (snmp4_tcp_list[i].entry == TCP_MIB_MAXCONN) seq_printf(seq, " %ld", buff[i]); else seq_printf(seq, " %lu", buff[i]); } memset(buff, 0, TCPUDP_MIB_MAX * sizeof(unsigned long)); snmp_get_cpu_field_batch(buff, snmp4_udp_list, net->mib.udp_statistics); seq_puts(seq, "\nUdp:"); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %s", snmp4_udp_list[i].name); seq_puts(seq, "\nUdp:"); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %lu", buff[i]); memset(buff, 0, TCPUDP_MIB_MAX * sizeof(unsigned long)); /* the UDP and UDP-Lite MIBs are the same */ seq_puts(seq, "\nUdpLite:"); snmp_get_cpu_field_batch(buff, snmp4_udp_list, net->mib.udplite_statistics); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %s", snmp4_udp_list[i].name); seq_puts(seq, "\nUdpLite:"); for (i = 0; snmp4_udp_list[i].name; i++) seq_printf(seq, " %lu", buff[i]); seq_putc(seq, '\n'); return 0; } static int snmp_seq_show(struct seq_file *seq, void *v) { snmp_seq_show_ipstats(seq, v); icmp_put(seq); /* RFC 2011 compatibility */ icmpmsg_put(seq); snmp_seq_show_tcp_udp(seq, v); return 0; } /* * Output /proc/net/netstat */ static int netstat_seq_show(struct seq_file *seq, void *v) { const int ip_cnt = ARRAY_SIZE(snmp4_ipextstats_list) - 1; const int tcp_cnt = ARRAY_SIZE(snmp4_net_list) - 1; struct net *net = seq->private; unsigned long *buff; int i; seq_puts(seq, "TcpExt:"); for (i = 0; i < tcp_cnt; i++) seq_printf(seq, " %s", snmp4_net_list[i].name); seq_puts(seq, "\nTcpExt:"); buff = kzalloc(max(tcp_cnt * sizeof(long), ip_cnt * sizeof(u64)), GFP_KERNEL); if (buff) { snmp_get_cpu_field_batch(buff, snmp4_net_list, net->mib.net_statistics); for (i = 0; i < tcp_cnt; i++) seq_printf(seq, " %lu", buff[i]); } else { for (i = 0; i < tcp_cnt; i++) seq_printf(seq, " %lu", snmp_fold_field(net->mib.net_statistics, snmp4_net_list[i].entry)); } seq_puts(seq, "\nIpExt:"); for (i = 0; i < ip_cnt; i++) seq_printf(seq, " %s", snmp4_ipextstats_list[i].name); seq_puts(seq, "\nIpExt:"); if (buff) { u64 *buff64 = (u64 *)buff; memset(buff64, 0, ip_cnt * sizeof(u64)); snmp_get_cpu_field64_batch(buff64, snmp4_ipextstats_list, net->mib.ip_statistics, offsetof(struct ipstats_mib, syncp)); for (i = 0; i < ip_cnt; i++) seq_printf(seq, " %llu", buff64[i]); } else { for (i = 0; i < ip_cnt; i++) seq_printf(seq, " %llu", snmp_fold_field64(net->mib.ip_statistics, snmp4_ipextstats_list[i].entry, offsetof(struct ipstats_mib, syncp))); } kfree(buff); seq_putc(seq, '\n'); mptcp_seq_show(seq); return 0; } static __net_init int ip_proc_init_net(struct net *net) { if (!proc_create_net_single("sockstat", 0444, net->proc_net, sockstat_seq_show, NULL)) goto out_sockstat; if (!proc_create_net_single("netstat", 0444, net->proc_net, netstat_seq_show, NULL)) goto out_netstat; if (!proc_create_net_single("snmp", 0444, net->proc_net, snmp_seq_show, NULL)) goto out_snmp; return 0; out_snmp: remove_proc_entry("netstat", net->proc_net); out_netstat: remove_proc_entry("sockstat", net->proc_net); out_sockstat: return -ENOMEM; } static __net_exit void ip_proc_exit_net(struct net *net) { remove_proc_entry("snmp", net->proc_net); remove_proc_entry("netstat", net->proc_net); remove_proc_entry("sockstat", net->proc_net); } static __net_initdata struct pernet_operations ip_proc_ops = { .init = ip_proc_init_net, .exit = ip_proc_exit_net, }; int __init ip_misc_proc_init(void) { return register_pernet_subsys(&ip_proc_ops); }
18 18 545 90 55 58 54 21 15 616 544 1 1 21 21 21 21 21 1 1 1 617 618 618 1 37 37 37 9 5 4 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 // SPDX-License-Identifier: GPL-2.0-only /* * Process number limiting controller for cgroups. * * Used to allow a cgroup hierarchy to stop any new processes from fork()ing * after a certain limit is reached. * * Since it is trivial to hit the task limit without hitting any kmemcg limits * in place, PIDs are a fundamental resource. As such, PID exhaustion must be * preventable in the scope of a cgroup hierarchy by allowing resource limiting * of the number of tasks in a cgroup. * * In order to use the `pids` controller, set the maximum number of tasks in * pids.max (this is not available in the root cgroup for obvious reasons). The * number of processes currently in the cgroup is given by pids.current. * Organisational operations are not blocked by cgroup policies, so it is * possible to have pids.current > pids.max. However, it is not possible to * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking * would cause a cgroup policy to be violated. * * To set a cgroup to have no limit, set pids.max to "max". This is the default * for all new cgroups (N.B. that PID limits are hierarchical, so the most * stringent limit in the hierarchy is followed). * * pids.current tracks all child cgroup hierarchies, so parent/pids.current is * a superset of parent/child/pids.current. * * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com> */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cgroup.h> #include <linux/slab.h> #include <linux/sched/task.h> #define PIDS_MAX (PID_MAX_LIMIT + 1ULL) #define PIDS_MAX_STR "max" enum pidcg_event { /* Fork failed in subtree because this pids_cgroup limit was hit. */ PIDCG_MAX, /* Fork failed in this pids_cgroup because ancestor limit was hit. */ PIDCG_FORKFAIL, NR_PIDCG_EVENTS, }; struct pids_cgroup { struct cgroup_subsys_state css; /* * Use 64-bit types so that we can safely represent "max" as * %PIDS_MAX = (%PID_MAX_LIMIT + 1). */ atomic64_t counter; atomic64_t limit; int64_t watermark; /* Handles for pids.events[.local] */ struct cgroup_file events_file; struct cgroup_file events_local_file; atomic64_t events[NR_PIDCG_EVENTS]; atomic64_t events_local[NR_PIDCG_EVENTS]; }; static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) { return container_of(css, struct pids_cgroup, css); } static struct pids_cgroup *parent_pids(struct pids_cgroup *pids) { return css_pids(pids->css.parent); } static struct cgroup_subsys_state * pids_css_alloc(struct cgroup_subsys_state *parent) { struct pids_cgroup *pids; pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL); if (!pids) return ERR_PTR(-ENOMEM); atomic64_set(&pids->limit, PIDS_MAX); return &pids->css; } static void pids_css_free(struct cgroup_subsys_state *css) { kfree(css_pids(css)); } static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids) { /* * This is racy, but we don't need perfectly accurate tallying of * the watermark, and this lets us avoid extra atomic overhead. */ if (nr_pids > READ_ONCE(p->watermark)) WRITE_ONCE(p->watermark, nr_pids); } /** * pids_cancel - uncharge the local pid count * @pids: the pid cgroup state * @num: the number of pids to cancel * * This function will WARN if the pid count goes under 0, because such a case is * a bug in the pids controller proper. */ static void pids_cancel(struct pids_cgroup *pids, int num) { /* * A negative count (or overflow for that matter) is invalid, * and indicates a bug in the `pids` controller proper. */ WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter)); } /** * pids_uncharge - hierarchically uncharge the pid count * @pids: the pid cgroup state * @num: the number of pids to uncharge */ static void pids_uncharge(struct pids_cgroup *pids, int num) { struct pids_cgroup *p; for (p = pids; parent_pids(p); p = parent_pids(p)) pids_cancel(p, num); } /** * pids_charge - hierarchically charge the pid count * @pids: the pid cgroup state * @num: the number of pids to charge * * This function does *not* follow the pid limit set. It cannot fail and the new * pid count may exceed the limit. This is only used for reverting failed * attaches, where there is no other way out than violating the limit. */ static void pids_charge(struct pids_cgroup *pids, int num) { struct pids_cgroup *p; for (p = pids; parent_pids(p); p = parent_pids(p)) { int64_t new = atomic64_add_return(num, &p->counter); pids_update_watermark(p, new); } } /** * pids_try_charge - hierarchically try to charge the pid count * @pids: the pid cgroup state * @num: the number of pids to charge * @fail: storage of pid cgroup causing the fail * * This function follows the set limit. It will fail if the charge would cause * the new value to exceed the hierarchical limit. Returns 0 if the charge * succeeded, otherwise -EAGAIN. */ static int pids_try_charge(struct pids_cgroup *pids, int num, struct pids_cgroup **fail) { struct pids_cgroup *p, *q; for (p = pids; parent_pids(p); p = parent_pids(p)) { int64_t new = atomic64_add_return(num, &p->counter); int64_t limit = atomic64_read(&p->limit); /* * Since new is capped to the maximum number of pid_t, if * p->limit is %PIDS_MAX then we know that this test will never * fail. */ if (new > limit) { *fail = p; goto revert; } /* * Not technically accurate if we go over limit somewhere up * the hierarchy, but that's tolerable for the watermark. */ pids_update_watermark(p, new); } return 0; revert: for (q = pids; q != p; q = parent_pids(q)) pids_cancel(q, num); pids_cancel(p, num); return -EAGAIN; } static int pids_can_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct cgroup_subsys_state *dst_css; cgroup_taskset_for_each(task, dst_css, tset) { struct pids_cgroup *pids = css_pids(dst_css); struct cgroup_subsys_state *old_css; struct pids_cgroup *old_pids; /* * No need to pin @old_css between here and cancel_attach() * because cgroup core protects it from being freed before * the migration completes or fails. */ old_css = task_css(task, pids_cgrp_id); old_pids = css_pids(old_css); pids_charge(pids, 1); pids_uncharge(old_pids, 1); } return 0; } static void pids_cancel_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct cgroup_subsys_state *dst_css; cgroup_taskset_for_each(task, dst_css, tset) { struct pids_cgroup *pids = css_pids(dst_css); struct cgroup_subsys_state *old_css; struct pids_cgroup *old_pids; old_css = task_css(task, pids_cgrp_id); old_pids = css_pids(old_css); pids_charge(old_pids, 1); pids_uncharge(pids, 1); } } static void pids_event(struct pids_cgroup *pids_forking, struct pids_cgroup *pids_over_limit) { struct pids_cgroup *p = pids_forking; bool limit = false; /* Only log the first time limit is hit. */ if (atomic64_inc_return(&p->events_local[PIDCG_FORKFAIL]) == 1) { pr_info("cgroup: fork rejected by pids controller in "); pr_cont_cgroup_path(p->css.cgroup); pr_cont("\n"); } cgroup_file_notify(&p->events_local_file); if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) || cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) return; for (; parent_pids(p); p = parent_pids(p)) { if (p == pids_over_limit) { limit = true; atomic64_inc(&p->events_local[PIDCG_MAX]); cgroup_file_notify(&p->events_local_file); } if (limit) atomic64_inc(&p->events[PIDCG_MAX]); cgroup_file_notify(&p->events_file); } } /* * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies * on cgroup_threadgroup_change_begin() held by the copy_process(). */ static int pids_can_fork(struct task_struct *task, struct css_set *cset) { struct cgroup_subsys_state *css; struct pids_cgroup *pids, *pids_over_limit; int err; if (cset) css = cset->subsys[pids_cgrp_id]; else css = task_css_check(current, pids_cgrp_id, true); pids = css_pids(css); err = pids_try_charge(pids, 1, &pids_over_limit); if (err) pids_event(pids, pids_over_limit); return err; } static void pids_cancel_fork(struct task_struct *task, struct css_set *cset) { struct cgroup_subsys_state *css; struct pids_cgroup *pids; if (cset) css = cset->subsys[pids_cgrp_id]; else css = task_css_check(current, pids_cgrp_id, true); pids = css_pids(css); pids_uncharge(pids, 1); } static void pids_release(struct task_struct *task) { struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id)); pids_uncharge(pids, 1); } static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup_subsys_state *css = of_css(of); struct pids_cgroup *pids = css_pids(css); int64_t limit; int err; buf = strstrip(buf); if (!strcmp(buf, PIDS_MAX_STR)) { limit = PIDS_MAX; goto set_limit; } err = kstrtoll(buf, 0, &limit); if (err) return err; if (limit < 0 || limit >= PIDS_MAX) return -EINVAL; set_limit: /* * Limit updates don't need to be mutex'd, since it isn't * critical that any racing fork()s follow the new limit. */ atomic64_set(&pids->limit, limit); return nbytes; } static int pids_max_show(struct seq_file *sf, void *v) { struct cgroup_subsys_state *css = seq_css(sf); struct pids_cgroup *pids = css_pids(css); int64_t limit = atomic64_read(&pids->limit); if (limit >= PIDS_MAX) seq_printf(sf, "%s\n", PIDS_MAX_STR); else seq_printf(sf, "%lld\n", limit); return 0; } static s64 pids_current_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct pids_cgroup *pids = css_pids(css); return atomic64_read(&pids->counter); } static s64 pids_peak_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct pids_cgroup *pids = css_pids(css); return READ_ONCE(pids->watermark); } static int __pids_events_show(struct seq_file *sf, bool local) { struct pids_cgroup *pids = css_pids(seq_css(sf)); enum pidcg_event pe = PIDCG_MAX; atomic64_t *events; if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) || cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) { pe = PIDCG_FORKFAIL; local = true; } events = local ? pids->events_local : pids->events; seq_printf(sf, "max %lld\n", (s64)atomic64_read(&events[pe])); return 0; } static int pids_events_show(struct seq_file *sf, void *v) { __pids_events_show(sf, false); return 0; } static int pids_events_local_show(struct seq_file *sf, void *v) { __pids_events_show(sf, true); return 0; } static struct cftype pids_files[] = { { .name = "max", .write = pids_max_write, .seq_show = pids_max_show, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "current", .read_s64 = pids_current_read, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "peak", .flags = CFTYPE_NOT_ON_ROOT, .read_s64 = pids_peak_read, }, { .name = "events", .seq_show = pids_events_show, .file_offset = offsetof(struct pids_cgroup, events_file), .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "events.local", .seq_show = pids_events_local_show, .file_offset = offsetof(struct pids_cgroup, events_local_file), .flags = CFTYPE_NOT_ON_ROOT, }, { } /* terminate */ }; static struct cftype pids_files_legacy[] = { { .name = "max", .write = pids_max_write, .seq_show = pids_max_show, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "current", .read_s64 = pids_current_read, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "peak", .flags = CFTYPE_NOT_ON_ROOT, .read_s64 = pids_peak_read, }, { .name = "events", .seq_show = pids_events_show, .file_offset = offsetof(struct pids_cgroup, events_file), .flags = CFTYPE_NOT_ON_ROOT, }, { } /* terminate */ }; struct cgroup_subsys pids_cgrp_subsys = { .css_alloc = pids_css_alloc, .css_free = pids_css_free, .can_attach = pids_can_attach, .cancel_attach = pids_cancel_attach, .can_fork = pids_can_fork, .cancel_fork = pids_cancel_fork, .release = pids_release, .legacy_cftypes = pids_files_legacy, .dfl_cftypes = pids_files, .threaded = true, };
492 492 315 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 #include <linux/dcache.h> #include "internal.h" unsigned name_to_int(const struct qstr *qstr) { const char *name = qstr->name; int len = qstr->len; unsigned n = 0; if (len > 1 && *name == '0') goto out; do { unsigned c = *name++ - '0'; if (c > 9) goto out; if (n >= (~0U-9)/10) goto out; n *= 10; n += c; } while (--len > 0); return n; out: return ~0U; }
31 9 21 21 21 21 21 21 21 21 21 21 1 3 3 14 1 7 7 1 1 3 1 1 1 1 1 1 8 7 3 1 1 20 1 1 2 2 1 10 10 10 10 10 1 1 3 3 3 1 3 8 1 1 1 2 2 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 // SPDX-License-Identifier: GPL-2.0-only /* * vivid-ctrls.c - control support functions. * * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/videodev2.h> #include <media/v4l2-event.h> #include <media/v4l2-common.h> #include "vivid-core.h" #include "vivid-vid-cap.h" #include "vivid-vid-out.h" #include "vivid-vid-common.h" #include "vivid-radio-common.h" #include "vivid-osd.h" #include "vivid-ctrls.h" #define VIVID_CID_CUSTOM_BASE (V4L2_CID_USER_BASE | 0xf000) #define VIVID_CID_BUTTON (VIVID_CID_CUSTOM_BASE + 0) #define VIVID_CID_BOOLEAN (VIVID_CID_CUSTOM_BASE + 1) #define VIVID_CID_INTEGER (VIVID_CID_CUSTOM_BASE + 2) #define VIVID_CID_INTEGER64 (VIVID_CID_CUSTOM_BASE + 3) #define VIVID_CID_MENU (VIVID_CID_CUSTOM_BASE + 4) #define VIVID_CID_STRING (VIVID_CID_CUSTOM_BASE + 5) #define VIVID_CID_BITMASK (VIVID_CID_CUSTOM_BASE + 6) #define VIVID_CID_INTMENU (VIVID_CID_CUSTOM_BASE + 7) #define VIVID_CID_U32_ARRAY (VIVID_CID_CUSTOM_BASE + 8) #define VIVID_CID_U16_MATRIX (VIVID_CID_CUSTOM_BASE + 9) #define VIVID_CID_U8_4D_ARRAY (VIVID_CID_CUSTOM_BASE + 10) #define VIVID_CID_AREA (VIVID_CID_CUSTOM_BASE + 11) #define VIVID_CID_RO_INTEGER (VIVID_CID_CUSTOM_BASE + 12) #define VIVID_CID_U32_DYN_ARRAY (VIVID_CID_CUSTOM_BASE + 13) #define VIVID_CID_U8_PIXEL_ARRAY (VIVID_CID_CUSTOM_BASE + 14) #define VIVID_CID_S32_ARRAY (VIVID_CID_CUSTOM_BASE + 15) #define VIVID_CID_S64_ARRAY (VIVID_CID_CUSTOM_BASE + 16) #define VIVID_CID_VIVID_BASE (0x00f00000 | 0xf000) #define VIVID_CID_VIVID_CLASS (0x00f00000 | 1) #define VIVID_CID_TEST_PATTERN (VIVID_CID_VIVID_BASE + 0) #define VIVID_CID_OSD_TEXT_MODE (VIVID_CID_VIVID_BASE + 1) #define VIVID_CID_HOR_MOVEMENT (VIVID_CID_VIVID_BASE + 2) #define VIVID_CID_VERT_MOVEMENT (VIVID_CID_VIVID_BASE + 3) #define VIVID_CID_SHOW_BORDER (VIVID_CID_VIVID_BASE + 4) #define VIVID_CID_SHOW_SQUARE (VIVID_CID_VIVID_BASE + 5) #define VIVID_CID_INSERT_SAV (VIVID_CID_VIVID_BASE + 6) #define VIVID_CID_INSERT_EAV (VIVID_CID_VIVID_BASE + 7) #define VIVID_CID_VBI_CAP_INTERLACED (VIVID_CID_VIVID_BASE + 8) #define VIVID_CID_INSERT_HDMI_VIDEO_GUARD_BAND (VIVID_CID_VIVID_BASE + 9) #define VIVID_CID_HFLIP (VIVID_CID_VIVID_BASE + 20) #define VIVID_CID_VFLIP (VIVID_CID_VIVID_BASE + 21) #define VIVID_CID_STD_ASPECT_RATIO (VIVID_CID_VIVID_BASE + 22) #define VIVID_CID_DV_TIMINGS_ASPECT_RATIO (VIVID_CID_VIVID_BASE + 23) #define VIVID_CID_TSTAMP_SRC (VIVID_CID_VIVID_BASE + 24) #define VIVID_CID_COLORSPACE (VIVID_CID_VIVID_BASE + 25) #define VIVID_CID_XFER_FUNC (VIVID_CID_VIVID_BASE + 26) #define VIVID_CID_YCBCR_ENC (VIVID_CID_VIVID_BASE + 27) #define VIVID_CID_QUANTIZATION (VIVID_CID_VIVID_BASE + 28) #define VIVID_CID_LIMITED_RGB_RANGE (VIVID_CID_VIVID_BASE + 29) #define VIVID_CID_ALPHA_MODE (VIVID_CID_VIVID_BASE + 30) #define VIVID_CID_HAS_CROP_CAP (VIVID_CID_VIVID_BASE + 31) #define VIVID_CID_HAS_COMPOSE_CAP (VIVID_CID_VIVID_BASE + 32) #define VIVID_CID_HAS_SCALER_CAP (VIVID_CID_VIVID_BASE + 33) #define VIVID_CID_HAS_CROP_OUT (VIVID_CID_VIVID_BASE + 34) #define VIVID_CID_HAS_COMPOSE_OUT (VIVID_CID_VIVID_BASE + 35) #define VIVID_CID_HAS_SCALER_OUT (VIVID_CID_VIVID_BASE + 36) #define VIVID_CID_SEQ_WRAP (VIVID_CID_VIVID_BASE + 38) #define VIVID_CID_TIME_WRAP (VIVID_CID_VIVID_BASE + 39) #define VIVID_CID_MAX_EDID_BLOCKS (VIVID_CID_VIVID_BASE + 40) #define VIVID_CID_PERCENTAGE_FILL (VIVID_CID_VIVID_BASE + 41) #define VIVID_CID_REDUCED_FPS (VIVID_CID_VIVID_BASE + 42) #define VIVID_CID_HSV_ENC (VIVID_CID_VIVID_BASE + 43) #define VIVID_CID_STD_SIGNAL_MODE (VIVID_CID_VIVID_BASE + 60) #define VIVID_CID_STANDARD (VIVID_CID_VIVID_BASE + 61) #define VIVID_CID_DV_TIMINGS_SIGNAL_MODE (VIVID_CID_VIVID_BASE + 62) #define VIVID_CID_DV_TIMINGS (VIVID_CID_VIVID_BASE + 63) #define VIVID_CID_PERC_DROPPED (VIVID_CID_VIVID_BASE + 64) #define VIVID_CID_DISCONNECT (VIVID_CID_VIVID_BASE + 65) #define VIVID_CID_DQBUF_ERROR (VIVID_CID_VIVID_BASE + 66) #define VIVID_CID_QUEUE_SETUP_ERROR (VIVID_CID_VIVID_BASE + 67) #define VIVID_CID_BUF_PREPARE_ERROR (VIVID_CID_VIVID_BASE + 68) #define VIVID_CID_START_STR_ERROR (VIVID_CID_VIVID_BASE + 69) #define VIVID_CID_QUEUE_ERROR (VIVID_CID_VIVID_BASE + 70) #define VIVID_CID_CLEAR_FB (VIVID_CID_VIVID_BASE + 71) #define VIVID_CID_REQ_VALIDATE_ERROR (VIVID_CID_VIVID_BASE + 72) #define VIVID_CID_RADIO_SEEK_MODE (VIVID_CID_VIVID_BASE + 90) #define VIVID_CID_RADIO_SEEK_PROG_LIM (VIVID_CID_VIVID_BASE + 91) #define VIVID_CID_RADIO_RX_RDS_RBDS (VIVID_CID_VIVID_BASE + 92) #define VIVID_CID_RADIO_RX_RDS_BLOCKIO (VIVID_CID_VIVID_BASE + 93) #define VIVID_CID_RADIO_TX_RDS_BLOCKIO (VIVID_CID_VIVID_BASE + 94) #define VIVID_CID_SDR_CAP_FM_DEVIATION (VIVID_CID_VIVID_BASE + 110) #define VIVID_CID_META_CAP_GENERATE_PTS (VIVID_CID_VIVID_BASE + 111) #define VIVID_CID_META_CAP_GENERATE_SCR (VIVID_CID_VIVID_BASE + 112) /* HDMI inputs are in the range 0-14. The next available CID is VIVID_CID_VIVID_BASE + 128 */ #define VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(input) (VIVID_CID_VIVID_BASE + 113 + (input)) /* S-Video inputs are in the range 0-15. The next available CID is VIVID_CID_VIVID_BASE + 144 */ #define VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(input) (VIVID_CID_VIVID_BASE + 128 + (input)) /* General User Controls */ static void vivid_unregister_dev(bool valid, struct video_device *vdev) { if (!valid) return; clear_bit(V4L2_FL_REGISTERED, &vdev->flags); v4l2_event_wake_all(vdev); } static int vivid_user_gen_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_user_gen); switch (ctrl->id) { case VIVID_CID_DISCONNECT: v4l2_info(&dev->v4l2_dev, "disconnect\n"); dev->disconnect_error = true; vivid_unregister_dev(dev->has_vid_cap, &dev->vid_cap_dev); vivid_unregister_dev(dev->has_vid_out, &dev->vid_out_dev); vivid_unregister_dev(dev->has_vbi_cap, &dev->vbi_cap_dev); vivid_unregister_dev(dev->has_vbi_out, &dev->vbi_out_dev); vivid_unregister_dev(dev->has_radio_rx, &dev->radio_rx_dev); vivid_unregister_dev(dev->has_radio_tx, &dev->radio_tx_dev); vivid_unregister_dev(dev->has_sdr_cap, &dev->sdr_cap_dev); vivid_unregister_dev(dev->has_meta_cap, &dev->meta_cap_dev); vivid_unregister_dev(dev->has_meta_out, &dev->meta_out_dev); vivid_unregister_dev(dev->has_touch_cap, &dev->touch_cap_dev); break; case VIVID_CID_BUTTON: dev->button_pressed = 30; break; } return 0; } static const struct v4l2_ctrl_ops vivid_user_gen_ctrl_ops = { .s_ctrl = vivid_user_gen_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_button = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_BUTTON, .name = "Button", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_boolean = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_BOOLEAN, .name = "Boolean", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = 0, .max = 1, .step = 1, .def = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_int32 = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_INTEGER, .name = "Integer 32 Bits", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0xffffffff80000000ULL, .max = 0x7fffffff, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_int64 = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_INTEGER64, .name = "Integer 64 Bits", .type = V4L2_CTRL_TYPE_INTEGER64, .min = 0x8000000000000000ULL, .max = 0x7fffffffffffffffLL, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_u32_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U32_ARRAY, .name = "U32 1 Element Array", .type = V4L2_CTRL_TYPE_U32, .def = 0x18, .min = 0x10, .max = 0x20000, .step = 1, .dims = { 1 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u32_dyn_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U32_DYN_ARRAY, .name = "U32 Dynamic Array", .type = V4L2_CTRL_TYPE_U32, .flags = V4L2_CTRL_FLAG_DYNAMIC_ARRAY, .def = 50, .min = 10, .max = 90, .step = 1, .dims = { 100 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u16_matrix = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U16_MATRIX, .name = "U16 8x16 Matrix", .type = V4L2_CTRL_TYPE_U16, .def = 0x18, .min = 0x10, .max = 0x2000, .step = 1, .dims = { 8, 16 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u8_4d_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U8_4D_ARRAY, .name = "U8 2x3x4x5 Array", .type = V4L2_CTRL_TYPE_U8, .def = 0x18, .min = 0x10, .max = 0x20, .step = 1, .dims = { 2, 3, 4, 5 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u8_pixel_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U8_PIXEL_ARRAY, .name = "U8 Pixel Array", .type = V4L2_CTRL_TYPE_U8, .def = 0x80, .min = 0x00, .max = 0xff, .step = 1, .dims = { 640 / PIXEL_ARRAY_DIV, 360 / PIXEL_ARRAY_DIV }, }; static const struct v4l2_ctrl_config vivid_ctrl_s32_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_S32_ARRAY, .name = "S32 2 Element Array", .type = V4L2_CTRL_TYPE_INTEGER, .def = 2, .min = -10, .max = 10, .step = 1, .dims = { 2 }, }; static const struct v4l2_ctrl_config vivid_ctrl_s64_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_S64_ARRAY, .name = "S64 5 Element Array", .type = V4L2_CTRL_TYPE_INTEGER64, .def = 4, .min = -10, .max = 10, .step = 1, .dims = { 5 }, }; static const char * const vivid_ctrl_menu_strings[] = { "Menu Item 0 (Skipped)", "Menu Item 1", "Menu Item 2 (Skipped)", "Menu Item 3", "Menu Item 4", "Menu Item 5 (Skipped)", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_menu = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_MENU, .name = "Menu", .type = V4L2_CTRL_TYPE_MENU, .min = 1, .max = 4, .def = 3, .menu_skip_mask = 0x04, .qmenu = vivid_ctrl_menu_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_string = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_STRING, .name = "String", .type = V4L2_CTRL_TYPE_STRING, .min = 2, .max = 4, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_bitmask = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_BITMASK, .name = "Bitmask", .type = V4L2_CTRL_TYPE_BITMASK, .def = 0x80002000, .min = 0, .max = 0x80402010, .step = 0, }; static const s64 vivid_ctrl_int_menu_values[] = { 1, 1, 2, 3, 5, 8, 13, 21, 42, }; static const struct v4l2_ctrl_config vivid_ctrl_int_menu = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_INTMENU, .name = "Integer Menu", .type = V4L2_CTRL_TYPE_INTEGER_MENU, .min = 1, .max = 8, .def = 4, .menu_skip_mask = 0x02, .qmenu_int = vivid_ctrl_int_menu_values, }; static const struct v4l2_ctrl_config vivid_ctrl_disconnect = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_DISCONNECT, .name = "Disconnect", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_area area = { .width = 1000, .height = 2000, }; static const struct v4l2_ctrl_config vivid_ctrl_area = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_AREA, .name = "Area", .type = V4L2_CTRL_TYPE_AREA, .p_def.p_const = &area, }; static const struct v4l2_ctrl_config vivid_ctrl_ro_int32 = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_RO_INTEGER, .name = "Read-Only Integer 32 Bits", .type = V4L2_CTRL_TYPE_INTEGER, .flags = V4L2_CTRL_FLAG_READ_ONLY, .min = 0, .max = 255, .step = 1, }; /* Framebuffer Controls */ static int vivid_fb_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_fb); switch (ctrl->id) { case VIVID_CID_CLEAR_FB: vivid_clear_fb(dev); break; } return 0; } static const struct v4l2_ctrl_ops vivid_fb_ctrl_ops = { .s_ctrl = vivid_fb_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_clear_fb = { .ops = &vivid_fb_ctrl_ops, .id = VIVID_CID_CLEAR_FB, .name = "Clear Framebuffer", .type = V4L2_CTRL_TYPE_BUTTON, }; /* Video User Controls */ static int vivid_user_vid_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_user_vid); switch (ctrl->id) { case V4L2_CID_AUTOGAIN: dev->gain->val = (jiffies_to_msecs(jiffies) / 1000) & 0xff; break; } return 0; } static int vivid_user_vid_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_user_vid); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: dev->input_brightness[dev->input] = ctrl->val - dev->input * 128; tpg_s_brightness(&dev->tpg, dev->input_brightness[dev->input]); break; case V4L2_CID_CONTRAST: tpg_s_contrast(&dev->tpg, ctrl->val); break; case V4L2_CID_SATURATION: tpg_s_saturation(&dev->tpg, ctrl->val); break; case V4L2_CID_HUE: tpg_s_hue(&dev->tpg, ctrl->val); break; case V4L2_CID_HFLIP: dev->hflip = ctrl->val; tpg_s_hflip(&dev->tpg, dev->sensor_hflip ^ dev->hflip); break; case V4L2_CID_VFLIP: dev->vflip = ctrl->val; tpg_s_vflip(&dev->tpg, dev->sensor_vflip ^ dev->vflip); break; case V4L2_CID_ALPHA_COMPONENT: tpg_s_alpha_component(&dev->tpg, ctrl->val); break; } return 0; } static const struct v4l2_ctrl_ops vivid_user_vid_ctrl_ops = { .g_volatile_ctrl = vivid_user_vid_g_volatile_ctrl, .s_ctrl = vivid_user_vid_s_ctrl, }; /* Video Capture Controls */ static void vivid_update_power_present(struct vivid_dev *dev) { unsigned int i, j; dev->power_present = 0; for (i = 0, j = 0; i < ARRAY_SIZE(dev->dv_timings_signal_mode); i++) { if (dev->input_type[i] != HDMI) continue; /* * If connected to TPG or HDMI output, and the signal * mode is not NO_SIGNAL, then there is power present. */ if (dev->input_is_connected_to_output[i] != 1 && dev->dv_timings_signal_mode[i] != NO_SIGNAL) dev->power_present |= (1 << j); j++; } __v4l2_ctrl_s_ctrl(dev->ctrl_rx_power_present, dev->power_present); v4l2_ctrl_activate(dev->ctrl_dv_timings, dev->dv_timings_signal_mode[dev->input] == SELECTED_DV_TIMINGS); } static int vivid_vid_cap_s_ctrl(struct v4l2_ctrl *ctrl) { static const u32 colorspaces[] = { V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_REC709, V4L2_COLORSPACE_SRGB, V4L2_COLORSPACE_OPRGB, V4L2_COLORSPACE_BT2020, V4L2_COLORSPACE_DCI_P3, V4L2_COLORSPACE_SMPTE240M, V4L2_COLORSPACE_470_SYSTEM_M, V4L2_COLORSPACE_470_SYSTEM_BG, }; struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_vid_cap); unsigned int i; struct vivid_dev *output_inst = NULL; int index = 0; int hdmi_index, svid_index; s32 input_index = 0; switch (ctrl->id) { case VIVID_CID_TEST_PATTERN: vivid_update_quality(dev); tpg_s_pattern(&dev->tpg, ctrl->val); break; case VIVID_CID_COLORSPACE: tpg_s_colorspace(&dev->tpg, colorspaces[ctrl->val]); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_XFER_FUNC: tpg_s_xfer_func(&dev->tpg, ctrl->val); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_YCBCR_ENC: tpg_s_ycbcr_enc(&dev->tpg, ctrl->val); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_HSV_ENC: tpg_s_hsv_enc(&dev->tpg, ctrl->val ? V4L2_HSV_ENC_256 : V4L2_HSV_ENC_180); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_QUANTIZATION: tpg_s_quantization(&dev->tpg, ctrl->val); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case V4L2_CID_DV_RX_RGB_RANGE: if (!vivid_is_hdmi_cap(dev)) break; tpg_s_rgb_range(&dev->tpg, ctrl->val); break; case VIVID_CID_LIMITED_RGB_RANGE: tpg_s_real_rgb_range(&dev->tpg, ctrl->val ? V4L2_DV_RGB_RANGE_LIMITED : V4L2_DV_RGB_RANGE_FULL); break; case VIVID_CID_ALPHA_MODE: tpg_s_alpha_mode(&dev->tpg, ctrl->val); break; case VIVID_CID_HOR_MOVEMENT: tpg_s_mv_hor_mode(&dev->tpg, ctrl->val); break; case VIVID_CID_VERT_MOVEMENT: tpg_s_mv_vert_mode(&dev->tpg, ctrl->val); break; case VIVID_CID_OSD_TEXT_MODE: dev->osd_mode = ctrl->val; break; case VIVID_CID_PERCENTAGE_FILL: tpg_s_perc_fill(&dev->tpg, ctrl->val); for (i = 0; i < VIDEO_MAX_FRAME; i++) dev->must_blank[i] = ctrl->val < 100; break; case VIVID_CID_INSERT_SAV: tpg_s_insert_sav(&dev->tpg, ctrl->val); break; case VIVID_CID_INSERT_EAV: tpg_s_insert_eav(&dev->tpg, ctrl->val); break; case VIVID_CID_INSERT_HDMI_VIDEO_GUARD_BAND: tpg_s_insert_hdmi_video_guard_band(&dev->tpg, ctrl->val); break; case VIVID_CID_HFLIP: dev->sensor_hflip = ctrl->val; tpg_s_hflip(&dev->tpg, dev->sensor_hflip ^ dev->hflip); break; case VIVID_CID_VFLIP: dev->sensor_vflip = ctrl->val; tpg_s_vflip(&dev->tpg, dev->sensor_vflip ^ dev->vflip); break; case VIVID_CID_REDUCED_FPS: dev->reduced_fps = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_HAS_CROP_CAP: dev->has_crop_cap = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_HAS_COMPOSE_CAP: dev->has_compose_cap = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_HAS_SCALER_CAP: dev->has_scaler_cap = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_SHOW_BORDER: tpg_s_show_border(&dev->tpg, ctrl->val); break; case VIVID_CID_SHOW_SQUARE: tpg_s_show_square(&dev->tpg, ctrl->val); break; case VIVID_CID_STD_ASPECT_RATIO: dev->std_aspect_ratio[dev->input] = ctrl->val; tpg_s_video_aspect(&dev->tpg, vivid_get_video_aspect(dev)); break; case VIVID_CID_DV_TIMINGS_SIGNAL_MODE: dev->dv_timings_signal_mode[dev->input] = dev->ctrl_dv_timings_signal_mode->val; dev->query_dv_timings[dev->input] = dev->ctrl_dv_timings->val; vivid_update_power_present(dev); vivid_update_quality(dev); vivid_send_input_source_change(dev, dev->input); break; case VIVID_CID_DV_TIMINGS_ASPECT_RATIO: dev->dv_timings_aspect_ratio[dev->input] = ctrl->val; tpg_s_video_aspect(&dev->tpg, vivid_get_video_aspect(dev)); break; case VIVID_CID_TSTAMP_SRC: dev->tstamp_src_is_soe = ctrl->val; dev->vb_vid_cap_q.timestamp_flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK; if (dev->tstamp_src_is_soe) dev->vb_vid_cap_q.timestamp_flags |= V4L2_BUF_FLAG_TSTAMP_SRC_SOE; break; case VIVID_CID_MAX_EDID_BLOCKS: dev->edid_max_blocks = ctrl->val; if (dev->edid_blocks > dev->edid_max_blocks) dev->edid_blocks = dev->edid_max_blocks; break; case VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(0) ... VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(14): hdmi_index = ctrl->id - VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(0); output_inst = vivid_ctrl_hdmi_to_output_instance[ctrl->cur.val]; index = vivid_ctrl_hdmi_to_output_index[ctrl->cur.val]; input_index = dev->hdmi_index_to_input_index[hdmi_index]; dev->input_is_connected_to_output[input_index] = ctrl->val; if (output_inst) { output_inst->output_to_input_instance[index] = NULL; vivid_update_outputs(output_inst); cec_phys_addr_invalidate(output_inst->cec_tx_adap[index]); } if (ctrl->val >= FIXED_MENU_ITEMS) { output_inst = vivid_ctrl_hdmi_to_output_instance[ctrl->val]; index = vivid_ctrl_hdmi_to_output_index[ctrl->val]; output_inst->output_to_input_instance[index] = dev; output_inst->output_to_input_index[index] = dev->hdmi_index_to_input_index[hdmi_index]; } spin_lock(&hdmi_output_skip_mask_lock); hdmi_to_output_menu_skip_mask &= ~(1ULL << ctrl->cur.val); if (ctrl->val >= FIXED_MENU_ITEMS) hdmi_to_output_menu_skip_mask |= 1ULL << ctrl->val; spin_unlock(&hdmi_output_skip_mask_lock); vivid_update_power_present(dev); vivid_update_quality(dev); vivid_send_input_source_change(dev, dev->hdmi_index_to_input_index[hdmi_index]); if (ctrl->val < FIXED_MENU_ITEMS && ctrl->cur.val < FIXED_MENU_ITEMS) break; spin_lock(&hdmi_output_skip_mask_lock); hdmi_input_update_outputs_mask |= 1 << dev->inst; spin_unlock(&hdmi_output_skip_mask_lock); queue_work(update_hdmi_ctrls_workqueue, &dev->update_hdmi_ctrl_work); break; case VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(0) ... VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(15): svid_index = ctrl->id - VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(0); output_inst = vivid_ctrl_svid_to_output_instance[ctrl->cur.val]; index = vivid_ctrl_svid_to_output_index[ctrl->cur.val]; input_index = dev->svid_index_to_input_index[svid_index]; dev->input_is_connected_to_output[input_index] = ctrl->val; if (output_inst) output_inst->output_to_input_instance[index] = NULL; if (ctrl->val >= FIXED_MENU_ITEMS) { output_inst = vivid_ctrl_svid_to_output_instance[ctrl->val]; index = vivid_ctrl_svid_to_output_index[ctrl->val]; output_inst->output_to_input_instance[index] = dev; output_inst->output_to_input_index[index] = dev->svid_index_to_input_index[svid_index]; } spin_lock(&svid_output_skip_mask_lock); svid_to_output_menu_skip_mask &= ~(1ULL << ctrl->cur.val); if (ctrl->val >= FIXED_MENU_ITEMS) svid_to_output_menu_skip_mask |= 1ULL << ctrl->val; spin_unlock(&svid_output_skip_mask_lock); vivid_update_quality(dev); vivid_send_input_source_change(dev, dev->svid_index_to_input_index[svid_index]); if (ctrl->val < FIXED_MENU_ITEMS && ctrl->cur.val < FIXED_MENU_ITEMS) break; queue_work(update_svid_ctrls_workqueue, &dev->update_svid_ctrl_work); break; } return 0; } static const struct v4l2_ctrl_ops vivid_vid_cap_ctrl_ops = { .s_ctrl = vivid_vid_cap_s_ctrl, }; static const char * const vivid_ctrl_hor_movement_strings[] = { "Move Left Fast", "Move Left", "Move Left Slow", "No Movement", "Move Right Slow", "Move Right", "Move Right Fast", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_hor_movement = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HOR_MOVEMENT, .name = "Horizontal Movement", .type = V4L2_CTRL_TYPE_MENU, .max = TPG_MOVE_POS_FAST, .def = TPG_MOVE_NONE, .qmenu = vivid_ctrl_hor_movement_strings, }; static const char * const vivid_ctrl_vert_movement_strings[] = { "Move Up Fast", "Move Up", "Move Up Slow", "No Movement", "Move Down Slow", "Move Down", "Move Down Fast", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_vert_movement = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_VERT_MOVEMENT, .name = "Vertical Movement", .type = V4L2_CTRL_TYPE_MENU, .max = TPG_MOVE_POS_FAST, .def = TPG_MOVE_NONE, .qmenu = vivid_ctrl_vert_movement_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_show_border = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_SHOW_BORDER, .name = "Show Border", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_show_square = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_SHOW_SQUARE, .name = "Show Square", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const char * const vivid_ctrl_osd_mode_strings[] = { "All", "Counters Only", "None", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_osd_mode = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_OSD_TEXT_MODE, .name = "OSD Text Mode", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_osd_mode_strings) - 2, .qmenu = vivid_ctrl_osd_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_perc_fill = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_PERCENTAGE_FILL, .name = "Fill Percentage of Frame", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 100, .def = 100, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_insert_sav = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_INSERT_SAV, .name = "Insert SAV Code in Image", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_insert_eav = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_INSERT_EAV, .name = "Insert EAV Code in Image", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_insert_hdmi_video_guard_band = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_INSERT_HDMI_VIDEO_GUARD_BAND, .name = "Insert Video Guard Band", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_hflip = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HFLIP, .name = "Sensor Flipped Horizontally", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_vflip = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_VFLIP, .name = "Sensor Flipped Vertically", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_reduced_fps = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_REDUCED_FPS, .name = "Reduced Framerate", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_crop_cap = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HAS_CROP_CAP, .name = "Enable Capture Cropping", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_compose_cap = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HAS_COMPOSE_CAP, .name = "Enable Capture Composing", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_scaler_cap = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HAS_SCALER_CAP, .name = "Enable Capture Scaler", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const char * const vivid_ctrl_tstamp_src_strings[] = { "End of Frame", "Start of Exposure", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_tstamp_src = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_TSTAMP_SRC, .name = "Timestamp Source", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_tstamp_src_strings) - 2, .qmenu = vivid_ctrl_tstamp_src_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_std_aspect_ratio = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_STD_ASPECT_RATIO, .name = "Standard Aspect Ratio", .type = V4L2_CTRL_TYPE_MENU, .min = 1, .max = 4, .def = 1, .qmenu = tpg_aspect_strings, }; static const char * const vivid_ctrl_dv_timings_signal_mode_strings[] = { "Current DV Timings", "No Signal", "No Lock", "Out of Range", "Selected DV Timings", "Cycle Through All DV Timings", "Custom DV Timings", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_dv_timings_signal_mode = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_DV_TIMINGS_SIGNAL_MODE, .name = "DV Timings Signal Mode", .type = V4L2_CTRL_TYPE_MENU, .max = 5, .qmenu = vivid_ctrl_dv_timings_signal_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_dv_timings_aspect_ratio = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_DV_TIMINGS_ASPECT_RATIO, .name = "DV Timings Aspect Ratio", .type = V4L2_CTRL_TYPE_MENU, .max = 3, .qmenu = tpg_aspect_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_max_edid_blocks = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_MAX_EDID_BLOCKS, .name = "Maximum EDID Blocks", .type = V4L2_CTRL_TYPE_INTEGER, .min = 1, .max = 256, .def = 2, .step = 1, }; static const char * const vivid_ctrl_colorspace_strings[] = { "SMPTE 170M", "Rec. 709", "sRGB", "opRGB", "BT.2020", "DCI-P3", "SMPTE 240M", "470 System M", "470 System BG", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_colorspace = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_COLORSPACE, .name = "Colorspace", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_colorspace_strings) - 2, .def = 2, .qmenu = vivid_ctrl_colorspace_strings, }; static const char * const vivid_ctrl_xfer_func_strings[] = { "Default", "Rec. 709", "sRGB", "opRGB", "SMPTE 240M", "None", "DCI-P3", "SMPTE 2084", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_xfer_func = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_XFER_FUNC, .name = "Transfer Function", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_xfer_func_strings) - 2, .qmenu = vivid_ctrl_xfer_func_strings, }; static const char * const vivid_ctrl_ycbcr_enc_strings[] = { "Default", "ITU-R 601", "Rec. 709", "xvYCC 601", "xvYCC 709", "", "BT.2020", "BT.2020 Constant Luminance", "SMPTE 240M", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_ycbcr_enc = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_YCBCR_ENC, .name = "Y'CbCr Encoding", .type = V4L2_CTRL_TYPE_MENU, .menu_skip_mask = 1 << 5, .max = ARRAY_SIZE(vivid_ctrl_ycbcr_enc_strings) - 2, .qmenu = vivid_ctrl_ycbcr_enc_strings, }; static const char * const vivid_ctrl_hsv_enc_strings[] = { "Hue 0-179", "Hue 0-256", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_hsv_enc = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HSV_ENC, .name = "HSV Encoding", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_hsv_enc_strings) - 2, .qmenu = vivid_ctrl_hsv_enc_strings, }; static const char * const vivid_ctrl_quantization_strings[] = { "Default", "Full Range", "Limited Range", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_quantization = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_QUANTIZATION, .name = "Quantization", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_quantization_strings) - 2, .qmenu = vivid_ctrl_quantization_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_alpha_mode = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_ALPHA_MODE, .name = "Apply Alpha To Red Only", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_limited_rgb_range = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_LIMITED_RGB_RANGE, .name = "Limited RGB Range (16-235)", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; /* VBI Capture Control */ static int vivid_vbi_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_vbi_cap); switch (ctrl->id) { case VIVID_CID_VBI_CAP_INTERLACED: dev->vbi_cap_interlaced = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_vbi_cap_ctrl_ops = { .s_ctrl = vivid_vbi_cap_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_vbi_cap_interlaced = { .ops = &vivid_vbi_cap_ctrl_ops, .id = VIVID_CID_VBI_CAP_INTERLACED, .name = "Interlaced VBI Format", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; /* Video Output Controls */ static int vivid_vid_out_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_vid_out); struct v4l2_bt_timings *bt = &dev->dv_timings_out.bt; switch (ctrl->id) { case VIVID_CID_HAS_CROP_OUT: dev->has_crop_out = ctrl->val; vivid_update_format_out(dev); break; case VIVID_CID_HAS_COMPOSE_OUT: dev->has_compose_out = ctrl->val; vivid_update_format_out(dev); break; case VIVID_CID_HAS_SCALER_OUT: dev->has_scaler_out = ctrl->val; vivid_update_format_out(dev); break; case V4L2_CID_DV_TX_MODE: dev->dvi_d_out = ctrl->val == V4L2_DV_TX_MODE_DVI_D; if (!vivid_is_hdmi_out(dev)) break; if (!dev->dvi_d_out && (bt->flags & V4L2_DV_FL_IS_CE_VIDEO)) { if (bt->width == 720 && bt->height <= 576) dev->colorspace_out = V4L2_COLORSPACE_SMPTE170M; else dev->colorspace_out = V4L2_COLORSPACE_REC709; dev->quantization_out = V4L2_QUANTIZATION_DEFAULT; } else { dev->colorspace_out = V4L2_COLORSPACE_SRGB; dev->quantization_out = dev->dvi_d_out ? V4L2_QUANTIZATION_LIM_RANGE : V4L2_QUANTIZATION_DEFAULT; } if (vivid_output_is_connected_to(dev)) { struct vivid_dev *dev_rx = vivid_output_is_connected_to(dev); vivid_send_source_change(dev_rx, HDMI); } break; } return 0; } static const struct v4l2_ctrl_ops vivid_vid_out_ctrl_ops = { .s_ctrl = vivid_vid_out_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_has_crop_out = { .ops = &vivid_vid_out_ctrl_ops, .id = VIVID_CID_HAS_CROP_OUT, .name = "Enable Output Cropping", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_compose_out = { .ops = &vivid_vid_out_ctrl_ops, .id = VIVID_CID_HAS_COMPOSE_OUT, .name = "Enable Output Composing", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_scaler_out = { .ops = &vivid_vid_out_ctrl_ops, .id = VIVID_CID_HAS_SCALER_OUT, .name = "Enable Output Scaler", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; /* Streaming Controls */ static int vivid_streaming_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_streaming); switch (ctrl->id) { case VIVID_CID_DQBUF_ERROR: dev->dqbuf_error = true; break; case VIVID_CID_PERC_DROPPED: dev->perc_dropped_buffers = ctrl->val; break; case VIVID_CID_QUEUE_SETUP_ERROR: dev->queue_setup_error = true; break; case VIVID_CID_BUF_PREPARE_ERROR: dev->buf_prepare_error = true; break; case VIVID_CID_START_STR_ERROR: dev->start_streaming_error = true; break; case VIVID_CID_REQ_VALIDATE_ERROR: dev->req_validate_error = true; break; case VIVID_CID_QUEUE_ERROR: if (vb2_start_streaming_called(&dev->vb_vid_cap_q)) vb2_queue_error(&dev->vb_vid_cap_q); if (vb2_start_streaming_called(&dev->vb_vbi_cap_q)) vb2_queue_error(&dev->vb_vbi_cap_q); if (vb2_start_streaming_called(&dev->vb_vid_out_q)) vb2_queue_error(&dev->vb_vid_out_q); if (vb2_start_streaming_called(&dev->vb_vbi_out_q)) vb2_queue_error(&dev->vb_vbi_out_q); if (vb2_start_streaming_called(&dev->vb_sdr_cap_q)) vb2_queue_error(&dev->vb_sdr_cap_q); break; case VIVID_CID_SEQ_WRAP: dev->seq_wrap = ctrl->val; break; case VIVID_CID_TIME_WRAP: dev->time_wrap = ctrl->val; if (dev->time_wrap == 1) dev->time_wrap = (1ULL << 63) - NSEC_PER_SEC * 16ULL; else if (dev->time_wrap == 2) dev->time_wrap = ((1ULL << 31) - 16) * NSEC_PER_SEC; break; } return 0; } static const struct v4l2_ctrl_ops vivid_streaming_ctrl_ops = { .s_ctrl = vivid_streaming_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_dqbuf_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_DQBUF_ERROR, .name = "Inject V4L2_BUF_FLAG_ERROR", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_perc_dropped = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_PERC_DROPPED, .name = "Percentage of Dropped Buffers", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 100, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_queue_setup_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_QUEUE_SETUP_ERROR, .name = "Inject VIDIOC_REQBUFS Error", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_buf_prepare_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_BUF_PREPARE_ERROR, .name = "Inject VIDIOC_QBUF Error", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_start_streaming_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_START_STR_ERROR, .name = "Inject VIDIOC_STREAMON Error", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_queue_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_QUEUE_ERROR, .name = "Inject Fatal Streaming Error", .type = V4L2_CTRL_TYPE_BUTTON, }; #ifdef CONFIG_MEDIA_CONTROLLER static const struct v4l2_ctrl_config vivid_ctrl_req_validate_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_REQ_VALIDATE_ERROR, .name = "Inject req_validate() Error", .type = V4L2_CTRL_TYPE_BUTTON, }; #endif static const struct v4l2_ctrl_config vivid_ctrl_seq_wrap = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_SEQ_WRAP, .name = "Wrap Sequence Number", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const char * const vivid_ctrl_time_wrap_strings[] = { "None", "64 Bit", "32 Bit", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_time_wrap = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_TIME_WRAP, .name = "Wrap Timestamp", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_time_wrap_strings) - 2, .qmenu = vivid_ctrl_time_wrap_strings, }; /* SDTV Capture Controls */ static int vivid_sdtv_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_sdtv_cap); switch (ctrl->id) { case VIVID_CID_STD_SIGNAL_MODE: dev->std_signal_mode[dev->input] = dev->ctrl_std_signal_mode->val; if (dev->std_signal_mode[dev->input] == SELECTED_STD) dev->query_std[dev->input] = vivid_standard[dev->ctrl_standard->val]; v4l2_ctrl_activate(dev->ctrl_standard, dev->std_signal_mode[dev->input] == SELECTED_STD); vivid_update_quality(dev); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); break; } return 0; } static const struct v4l2_ctrl_ops vivid_sdtv_cap_ctrl_ops = { .s_ctrl = vivid_sdtv_cap_s_ctrl, }; static const char * const vivid_ctrl_std_signal_mode_strings[] = { "Current Standard", "No Signal", "No Lock", "", "Selected Standard", "Cycle Through All Standards", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_std_signal_mode = { .ops = &vivid_sdtv_cap_ctrl_ops, .id = VIVID_CID_STD_SIGNAL_MODE, .name = "Standard Signal Mode", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_std_signal_mode_strings) - 2, .menu_skip_mask = 1 << 3, .qmenu = vivid_ctrl_std_signal_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_standard = { .ops = &vivid_sdtv_cap_ctrl_ops, .id = VIVID_CID_STANDARD, .name = "Standard", .type = V4L2_CTRL_TYPE_MENU, .max = 14, .qmenu = vivid_ctrl_standard_strings, }; /* Radio Receiver Controls */ static int vivid_radio_rx_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_radio_rx); switch (ctrl->id) { case VIVID_CID_RADIO_SEEK_MODE: dev->radio_rx_hw_seek_mode = ctrl->val; break; case VIVID_CID_RADIO_SEEK_PROG_LIM: dev->radio_rx_hw_seek_prog_lim = ctrl->val; break; case VIVID_CID_RADIO_RX_RDS_RBDS: dev->rds_gen.use_rbds = ctrl->val; break; case VIVID_CID_RADIO_RX_RDS_BLOCKIO: dev->radio_rx_rds_controls = ctrl->val; dev->radio_rx_caps &= ~V4L2_CAP_READWRITE; dev->radio_rx_rds_use_alternates = false; if (!dev->radio_rx_rds_controls) { dev->radio_rx_caps |= V4L2_CAP_READWRITE; __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_pty, 0); __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ta, 0); __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_tp, 0); __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ms, 0); __v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_psname, ""); __v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_radiotext, ""); } v4l2_ctrl_activate(dev->radio_rx_rds_pty, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_psname, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_radiotext, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_ta, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_tp, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_ms, dev->radio_rx_rds_controls); dev->radio_rx_dev.device_caps = dev->radio_rx_caps; break; case V4L2_CID_RDS_RECEPTION: dev->radio_rx_rds_enabled = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_radio_rx_ctrl_ops = { .s_ctrl = vivid_radio_rx_s_ctrl, }; static const char * const vivid_ctrl_radio_rds_mode_strings[] = { "Block I/O", "Controls", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_rx_rds_blockio = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_RX_RDS_BLOCKIO, .name = "RDS Rx I/O Mode", .type = V4L2_CTRL_TYPE_MENU, .qmenu = vivid_ctrl_radio_rds_mode_strings, .max = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_rx_rds_rbds = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_RX_RDS_RBDS, .name = "Generate RBDS Instead of RDS", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const char * const vivid_ctrl_radio_hw_seek_mode_strings[] = { "Bounded", "Wrap Around", "Both", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_hw_seek_mode = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_SEEK_MODE, .name = "Radio HW Seek Mode", .type = V4L2_CTRL_TYPE_MENU, .max = 2, .qmenu = vivid_ctrl_radio_hw_seek_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_hw_seek_prog_lim = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_SEEK_PROG_LIM, .name = "Radio Programmable HW Seek", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; /* Radio Transmitter Controls */ static int vivid_radio_tx_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_radio_tx); switch (ctrl->id) { case VIVID_CID_RADIO_TX_RDS_BLOCKIO: dev->radio_tx_rds_controls = ctrl->val; dev->radio_tx_caps &= ~V4L2_CAP_READWRITE; if (!dev->radio_tx_rds_controls) dev->radio_tx_caps |= V4L2_CAP_READWRITE; dev->radio_tx_dev.device_caps = dev->radio_tx_caps; break; case V4L2_CID_RDS_TX_PTY: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_pty, ctrl->val); break; case V4L2_CID_RDS_TX_PS_NAME: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_psname, ctrl->p_new.p_char); break; case V4L2_CID_RDS_TX_RADIO_TEXT: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_radiotext, ctrl->p_new.p_char); break; case V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ta, ctrl->val); break; case V4L2_CID_RDS_TX_TRAFFIC_PROGRAM: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_tp, ctrl->val); break; case V4L2_CID_RDS_TX_MUSIC_SPEECH: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ms, ctrl->val); break; } return 0; } static const struct v4l2_ctrl_ops vivid_radio_tx_ctrl_ops = { .s_ctrl = vivid_radio_tx_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_tx_rds_blockio = { .ops = &vivid_radio_tx_ctrl_ops, .id = VIVID_CID_RADIO_TX_RDS_BLOCKIO, .name = "RDS Tx I/O Mode", .type = V4L2_CTRL_TYPE_MENU, .qmenu = vivid_ctrl_radio_rds_mode_strings, .max = 1, .def = 1, }; /* SDR Capture Controls */ static int vivid_sdr_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_sdr_cap); switch (ctrl->id) { case VIVID_CID_SDR_CAP_FM_DEVIATION: dev->sdr_fm_deviation = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_sdr_cap_ctrl_ops = { .s_ctrl = vivid_sdr_cap_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_sdr_cap_fm_deviation = { .ops = &vivid_sdr_cap_ctrl_ops, .id = VIVID_CID_SDR_CAP_FM_DEVIATION, .name = "FM Deviation", .type = V4L2_CTRL_TYPE_INTEGER, .min = 100, .max = 200000, .def = 75000, .step = 1, }; /* Metadata Capture Control */ static int vivid_meta_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_meta_cap); switch (ctrl->id) { case VIVID_CID_META_CAP_GENERATE_PTS: dev->meta_pts = ctrl->val; break; case VIVID_CID_META_CAP_GENERATE_SCR: dev->meta_scr = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_meta_cap_ctrl_ops = { .s_ctrl = vivid_meta_cap_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_meta_has_pts = { .ops = &vivid_meta_cap_ctrl_ops, .id = VIVID_CID_META_CAP_GENERATE_PTS, .name = "Generate PTS", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_meta_has_src_clk = { .ops = &vivid_meta_cap_ctrl_ops, .id = VIVID_CID_META_CAP_GENERATE_SCR, .name = "Generate SCR", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_class = { .ops = &vivid_user_gen_ctrl_ops, .flags = V4L2_CTRL_FLAG_READ_ONLY | V4L2_CTRL_FLAG_WRITE_ONLY, .id = VIVID_CID_VIVID_CLASS, .name = "Vivid Controls", .type = V4L2_CTRL_TYPE_CTRL_CLASS, }; int vivid_create_controls(struct vivid_dev *dev, bool show_ccs_cap, bool show_ccs_out, bool no_error_inj, bool has_sdtv, bool has_hdmi) { struct v4l2_ctrl_handler *hdl_user_gen = &dev->ctrl_hdl_user_gen; struct v4l2_ctrl_handler *hdl_user_vid = &dev->ctrl_hdl_user_vid; struct v4l2_ctrl_handler *hdl_user_aud = &dev->ctrl_hdl_user_aud; struct v4l2_ctrl_handler *hdl_streaming = &dev->ctrl_hdl_streaming; struct v4l2_ctrl_handler *hdl_sdtv_cap = &dev->ctrl_hdl_sdtv_cap; struct v4l2_ctrl_handler *hdl_loop_cap = &dev->ctrl_hdl_loop_cap; struct v4l2_ctrl_handler *hdl_fb = &dev->ctrl_hdl_fb; struct v4l2_ctrl_handler *hdl_vid_cap = &dev->ctrl_hdl_vid_cap; struct v4l2_ctrl_handler *hdl_vid_out = &dev->ctrl_hdl_vid_out; struct v4l2_ctrl_handler *hdl_vbi_cap = &dev->ctrl_hdl_vbi_cap; struct v4l2_ctrl_handler *hdl_vbi_out = &dev->ctrl_hdl_vbi_out; struct v4l2_ctrl_handler *hdl_radio_rx = &dev->ctrl_hdl_radio_rx; struct v4l2_ctrl_handler *hdl_radio_tx = &dev->ctrl_hdl_radio_tx; struct v4l2_ctrl_handler *hdl_sdr_cap = &dev->ctrl_hdl_sdr_cap; struct v4l2_ctrl_handler *hdl_meta_cap = &dev->ctrl_hdl_meta_cap; struct v4l2_ctrl_handler *hdl_meta_out = &dev->ctrl_hdl_meta_out; struct v4l2_ctrl_handler *hdl_tch_cap = &dev->ctrl_hdl_touch_cap; struct v4l2_ctrl_config vivid_ctrl_dv_timings = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_DV_TIMINGS, .name = "DV Timings", .type = V4L2_CTRL_TYPE_MENU, }; int i; v4l2_ctrl_handler_init(hdl_user_gen, 10); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_user_vid, 9); v4l2_ctrl_new_custom(hdl_user_vid, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_user_aud, 2); v4l2_ctrl_new_custom(hdl_user_aud, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_streaming, 8); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_sdtv_cap, 2); v4l2_ctrl_new_custom(hdl_sdtv_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_loop_cap, 1); v4l2_ctrl_new_custom(hdl_loop_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_fb, 1); v4l2_ctrl_new_custom(hdl_fb, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vid_cap, 55); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vid_out, 26); if (!no_error_inj || dev->has_fb || dev->num_hdmi_outputs) v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vbi_cap, 21); v4l2_ctrl_new_custom(hdl_vbi_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vbi_out, 19); if (!no_error_inj) v4l2_ctrl_new_custom(hdl_vbi_out, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_radio_rx, 17); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_radio_tx, 17); v4l2_ctrl_new_custom(hdl_radio_tx, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_sdr_cap, 19); v4l2_ctrl_new_custom(hdl_sdr_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_meta_cap, 2); v4l2_ctrl_new_custom(hdl_meta_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_meta_out, 2); v4l2_ctrl_new_custom(hdl_meta_out, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_tch_cap, 2); v4l2_ctrl_new_custom(hdl_tch_cap, &vivid_ctrl_class, NULL); /* User Controls */ dev->volume = v4l2_ctrl_new_std(hdl_user_aud, NULL, V4L2_CID_AUDIO_VOLUME, 0, 255, 1, 200); dev->mute = v4l2_ctrl_new_std(hdl_user_aud, NULL, V4L2_CID_AUDIO_MUTE, 0, 1, 1, 0); if (dev->has_vid_cap) { dev->brightness = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); for (i = 0; i < MAX_INPUTS; i++) dev->input_brightness[i] = 128; dev->contrast = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_CONTRAST, 0, 255, 1, 128); dev->saturation = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_SATURATION, 0, 255, 1, 128); dev->hue = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_HUE, -128, 128, 1, 0); v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); dev->autogain = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); dev->gain = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_GAIN, 0, 255, 1, 100); dev->alpha = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 0); } dev->button = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_button, NULL); dev->int32 = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_int32, NULL); dev->int64 = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_int64, NULL); dev->boolean = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_boolean, NULL); dev->menu = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_menu, NULL); dev->string = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_string, NULL); dev->bitmask = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_bitmask, NULL); dev->int_menu = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_int_menu, NULL); dev->ro_int32 = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_ro_int32, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_area, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u32_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u32_dyn_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u16_matrix, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u8_4d_array, NULL); dev->pixel_array = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u8_pixel_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_s32_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_s64_array, NULL); if (dev->has_vid_cap) { /* Image Processing Controls */ struct v4l2_ctrl_config vivid_ctrl_test_pattern = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_TEST_PATTERN, .name = "Test Pattern", .type = V4L2_CTRL_TYPE_MENU, .max = TPG_PAT_NOISE, .qmenu = tpg_pattern_strings, }; dev->test_pattern = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_test_pattern, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_perc_fill, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_hor_movement, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_vert_movement, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_osd_mode, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_show_border, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_show_square, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_hflip, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_vflip, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_insert_sav, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_insert_eav, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_insert_hdmi_video_guard_band, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_reduced_fps, NULL); WARN_ON(dev->num_hdmi_inputs > MAX_HDMI_INPUTS); WARN_ON(dev->num_svid_inputs > MAX_SVID_INPUTS); for (u8 i = 0; i < dev->num_hdmi_inputs; i++) { snprintf(dev->ctrl_hdmi_to_output_names[i], sizeof(dev->ctrl_hdmi_to_output_names[i]), "HDMI %03u-%u Is Connected To", dev->inst, i); } for (u8 i = 0; i < dev->num_hdmi_inputs; i++) { struct v4l2_ctrl_config ctrl_config = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(i), .name = dev->ctrl_hdmi_to_output_names[i], .type = V4L2_CTRL_TYPE_MENU, .max = 1, .qmenu = (const char * const *)vivid_ctrl_hdmi_to_output_strings, }; dev->ctrl_hdmi_to_output[i] = v4l2_ctrl_new_custom(hdl_vid_cap, &ctrl_config, NULL); } for (u8 i = 0; i < dev->num_svid_inputs; i++) { snprintf(dev->ctrl_svid_to_output_names[i], sizeof(dev->ctrl_svid_to_output_names[i]), "S-Video %03u-%u Is Connected To", dev->inst, i); } for (u8 i = 0; i < dev->num_svid_inputs; i++) { struct v4l2_ctrl_config ctrl_config = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(i), .name = dev->ctrl_svid_to_output_names[i], .type = V4L2_CTRL_TYPE_MENU, .max = 1, .qmenu = (const char * const *)vivid_ctrl_svid_to_output_strings, }; dev->ctrl_svid_to_output[i] = v4l2_ctrl_new_custom(hdl_vid_cap, &ctrl_config, NULL); } if (show_ccs_cap) { dev->ctrl_has_crop_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_has_crop_cap, NULL); dev->ctrl_has_compose_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_has_compose_cap, NULL); dev->ctrl_has_scaler_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_has_scaler_cap, NULL); } v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_tstamp_src, NULL); dev->colorspace = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_colorspace, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_xfer_func, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_ycbcr_enc, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_hsv_enc, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_quantization, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_alpha_mode, NULL); } if (dev->has_vid_out && show_ccs_out) { dev->ctrl_has_crop_out = v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_has_crop_out, NULL); dev->ctrl_has_compose_out = v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_has_compose_out, NULL); dev->ctrl_has_scaler_out = v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_has_scaler_out, NULL); } /* * Testing this driver with v4l2-compliance will trigger the error * injection controls, and after that nothing will work as expected. * So we have a module option to drop these error injecting controls * allowing us to run v4l2_compliance again. */ if (!no_error_inj) { v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_disconnect, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_dqbuf_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_perc_dropped, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_queue_setup_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_buf_prepare_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_start_streaming_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_queue_error, NULL); #ifdef CONFIG_MEDIA_CONTROLLER v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_req_validate_error, NULL); #endif v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_seq_wrap, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_time_wrap, NULL); } if (has_sdtv && (dev->has_vid_cap || dev->has_vbi_cap)) { if (dev->has_vid_cap) v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_std_aspect_ratio, NULL); dev->ctrl_std_signal_mode = v4l2_ctrl_new_custom(hdl_sdtv_cap, &vivid_ctrl_std_signal_mode, NULL); dev->ctrl_standard = v4l2_ctrl_new_custom(hdl_sdtv_cap, &vivid_ctrl_standard, NULL); if (dev->ctrl_std_signal_mode) v4l2_ctrl_cluster(2, &dev->ctrl_std_signal_mode); if (dev->has_raw_vbi_cap) v4l2_ctrl_new_custom(hdl_vbi_cap, &vivid_ctrl_vbi_cap_interlaced, NULL); } if (dev->num_hdmi_inputs) { s64 hdmi_input_mask = GENMASK(dev->num_hdmi_inputs - 1, 0); dev->ctrl_dv_timings_signal_mode = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_dv_timings_signal_mode, NULL); vivid_ctrl_dv_timings.max = dev->query_dv_timings_size - 1; vivid_ctrl_dv_timings.qmenu = (const char * const *)dev->query_dv_timings_qmenu; dev->ctrl_dv_timings = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_dv_timings, NULL); if (dev->ctrl_dv_timings_signal_mode) v4l2_ctrl_cluster(2, &dev->ctrl_dv_timings_signal_mode); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_dv_timings_aspect_ratio, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_max_edid_blocks, NULL); dev->real_rgb_range_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_limited_rgb_range, NULL); dev->rgb_range_cap = v4l2_ctrl_new_std_menu(hdl_vid_cap, &vivid_vid_cap_ctrl_ops, V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); dev->ctrl_rx_power_present = v4l2_ctrl_new_std(hdl_vid_cap, NULL, V4L2_CID_DV_RX_POWER_PRESENT, 0, hdmi_input_mask, 0, hdmi_input_mask); } if (dev->num_hdmi_outputs) { s64 hdmi_output_mask = GENMASK(dev->num_hdmi_outputs - 1, 0); /* * We aren't doing anything with this at the moment, but * HDMI outputs typically have this controls. */ dev->ctrl_tx_rgb_range = v4l2_ctrl_new_std_menu(hdl_vid_out, NULL, V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); dev->ctrl_tx_mode = v4l2_ctrl_new_std_menu(hdl_vid_out, NULL, V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI, 0, V4L2_DV_TX_MODE_HDMI); dev->ctrl_tx_hotplug = v4l2_ctrl_new_std(hdl_vid_out, NULL, V4L2_CID_DV_TX_HOTPLUG, 0, hdmi_output_mask, 0, 0); dev->ctrl_tx_rxsense = v4l2_ctrl_new_std(hdl_vid_out, NULL, V4L2_CID_DV_TX_RXSENSE, 0, hdmi_output_mask, 0, 0); dev->ctrl_tx_edid_present = v4l2_ctrl_new_std(hdl_vid_out, NULL, V4L2_CID_DV_TX_EDID_PRESENT, 0, hdmi_output_mask, 0, 0); } if (dev->has_fb) v4l2_ctrl_new_custom(hdl_fb, &vivid_ctrl_clear_fb, NULL); if (dev->has_radio_rx) { v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_hw_seek_mode, NULL); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_hw_seek_prog_lim, NULL); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_rx_rds_blockio, NULL); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_rx_rds_rbds, NULL); v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RECEPTION, 0, 1, 1, 1); dev->radio_rx_rds_pty = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_PTY, 0, 31, 1, 0); dev->radio_rx_rds_psname = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_PS_NAME, 0, 8, 8, 0); dev->radio_rx_rds_radiotext = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_RADIO_TEXT, 0, 64, 64, 0); dev->radio_rx_rds_ta = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT, 0, 1, 1, 0); dev->radio_rx_rds_tp = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_TRAFFIC_PROGRAM, 0, 1, 1, 0); dev->radio_rx_rds_ms = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_MUSIC_SPEECH, 0, 1, 1, 1); } if (dev->has_radio_tx) { v4l2_ctrl_new_custom(hdl_radio_tx, &vivid_ctrl_radio_tx_rds_blockio, NULL); dev->radio_tx_rds_pi = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_PI, 0, 0xffff, 1, 0x8088); dev->radio_tx_rds_pty = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_PTY, 0, 31, 1, 3); dev->radio_tx_rds_psname = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_PS_NAME, 0, 8, 8, 0); if (dev->radio_tx_rds_psname) v4l2_ctrl_s_ctrl_string(dev->radio_tx_rds_psname, "VIVID-TX"); dev->radio_tx_rds_radiotext = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_RADIO_TEXT, 0, 64 * 2, 64, 0); if (dev->radio_tx_rds_radiotext) v4l2_ctrl_s_ctrl_string(dev->radio_tx_rds_radiotext, "This is a VIVID default Radio Text template text, change at will"); dev->radio_tx_rds_mono_stereo = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_MONO_STEREO, 0, 1, 1, 1); dev->radio_tx_rds_art_head = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_ARTIFICIAL_HEAD, 0, 1, 1, 0); dev->radio_tx_rds_compressed = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_COMPRESSED, 0, 1, 1, 0); dev->radio_tx_rds_dyn_pty = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_DYNAMIC_PTY, 0, 1, 1, 0); dev->radio_tx_rds_ta = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT, 0, 1, 1, 0); dev->radio_tx_rds_tp = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_TRAFFIC_PROGRAM, 0, 1, 1, 1); dev->radio_tx_rds_ms = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_MUSIC_SPEECH, 0, 1, 1, 1); } if (dev->has_sdr_cap) { v4l2_ctrl_new_custom(hdl_sdr_cap, &vivid_ctrl_sdr_cap_fm_deviation, NULL); } if (dev->has_meta_cap) { v4l2_ctrl_new_custom(hdl_meta_cap, &vivid_ctrl_meta_has_pts, NULL); v4l2_ctrl_new_custom(hdl_meta_cap, &vivid_ctrl_meta_has_src_clk, NULL); } if (hdl_user_gen->error) return hdl_user_gen->error; if (hdl_user_vid->error) return hdl_user_vid->error; if (hdl_user_aud->error) return hdl_user_aud->error; if (hdl_streaming->error) return hdl_streaming->error; if (hdl_sdr_cap->error) return hdl_sdr_cap->error; if (hdl_loop_cap->error) return hdl_loop_cap->error; if (dev->autogain) v4l2_ctrl_auto_cluster(2, &dev->autogain, 0, true); if (dev->has_vid_cap) { v4l2_ctrl_add_handler(hdl_vid_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_user_vid, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_user_aud, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_streaming, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_sdtv_cap, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_loop_cap, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_fb, NULL, false); if (hdl_vid_cap->error) return hdl_vid_cap->error; dev->vid_cap_dev.ctrl_handler = hdl_vid_cap; } if (dev->has_vid_out) { v4l2_ctrl_add_handler(hdl_vid_out, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vid_out, hdl_user_aud, NULL, false); v4l2_ctrl_add_handler(hdl_vid_out, hdl_streaming, NULL, false); v4l2_ctrl_add_handler(hdl_vid_out, hdl_fb, NULL, false); if (hdl_vid_out->error) return hdl_vid_out->error; dev->vid_out_dev.ctrl_handler = hdl_vid_out; } if (dev->has_vbi_cap) { v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_streaming, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_sdtv_cap, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_loop_cap, NULL, false); if (hdl_vbi_cap->error) return hdl_vbi_cap->error; dev->vbi_cap_dev.ctrl_handler = hdl_vbi_cap; } if (dev->has_vbi_out) { v4l2_ctrl_add_handler(hdl_vbi_out, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_out, hdl_streaming, NULL, false); if (hdl_vbi_out->error) return hdl_vbi_out->error; dev->vbi_out_dev.ctrl_handler = hdl_vbi_out; } if (dev->has_radio_rx) { v4l2_ctrl_add_handler(hdl_radio_rx, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_radio_rx, hdl_user_aud, NULL, false); if (hdl_radio_rx->error) return hdl_radio_rx->error; dev->radio_rx_dev.ctrl_handler = hdl_radio_rx; } if (dev->has_radio_tx) { v4l2_ctrl_add_handler(hdl_radio_tx, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_radio_tx, hdl_user_aud, NULL, false); if (hdl_radio_tx->error) return hdl_radio_tx->error; dev->radio_tx_dev.ctrl_handler = hdl_radio_tx; } if (dev->has_sdr_cap) { v4l2_ctrl_add_handler(hdl_sdr_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_sdr_cap, hdl_streaming, NULL, false); if (hdl_sdr_cap->error) return hdl_sdr_cap->error; dev->sdr_cap_dev.ctrl_handler = hdl_sdr_cap; } if (dev->has_meta_cap) { v4l2_ctrl_add_handler(hdl_meta_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_meta_cap, hdl_streaming, NULL, false); if (hdl_meta_cap->error) return hdl_meta_cap->error; dev->meta_cap_dev.ctrl_handler = hdl_meta_cap; } if (dev->has_meta_out) { v4l2_ctrl_add_handler(hdl_meta_out, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_meta_out, hdl_streaming, NULL, false); if (hdl_meta_out->error) return hdl_meta_out->error; dev->meta_out_dev.ctrl_handler = hdl_meta_out; } if (dev->has_touch_cap) { v4l2_ctrl_add_handler(hdl_tch_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_tch_cap, hdl_streaming, NULL, false); if (hdl_tch_cap->error) return hdl_tch_cap->error; dev->touch_cap_dev.ctrl_handler = hdl_tch_cap; } return 0; } void vivid_free_controls(struct vivid_dev *dev) { v4l2_ctrl_handler_free(&dev->ctrl_hdl_vid_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_vid_out); v4l2_ctrl_handler_free(&dev->ctrl_hdl_vbi_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_vbi_out); v4l2_ctrl_handler_free(&dev->ctrl_hdl_radio_rx); v4l2_ctrl_handler_free(&dev->ctrl_hdl_radio_tx); v4l2_ctrl_handler_free(&dev->ctrl_hdl_sdr_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_user_gen); v4l2_ctrl_handler_free(&dev->ctrl_hdl_user_vid); v4l2_ctrl_handler_free(&dev->ctrl_hdl_user_aud); v4l2_ctrl_handler_free(&dev->ctrl_hdl_streaming); v4l2_ctrl_handler_free(&dev->ctrl_hdl_sdtv_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_loop_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_fb); v4l2_ctrl_handler_free(&dev->ctrl_hdl_meta_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_meta_out); v4l2_ctrl_handler_free(&dev->ctrl_hdl_touch_cap); }
7 7 9 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 // SPDX-License-Identifier: GPL-2.0 #include <linux/ceph/ceph_debug.h> #include <linux/bug.h> #include <linux/err.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/ceph/messenger.h> #include <linux/ceph/decode.h> #include "mdsmap.h" #include "mds_client.h" #include "super.h" #define CEPH_MDS_IS_READY(i, ignore_laggy) \ (m->m_info[i].state > 0 && ignore_laggy ? true : !m->m_info[i].laggy) static int __mdsmap_get_random_mds(struct ceph_mdsmap *m, bool ignore_laggy) { int n = 0; int i, j; /* count */ for (i = 0; i < m->possible_max_rank; i++) if (CEPH_MDS_IS_READY(i, ignore_laggy)) n++; if (n == 0) return -1; /* pick */ n = get_random_u32_below(n); for (j = 0, i = 0; i < m->possible_max_rank; i++) { if (CEPH_MDS_IS_READY(i, ignore_laggy)) j++; if (j > n) break; } return i; } /* * choose a random mds that is "up" (i.e. has a state > 0), or -1. */ int ceph_mdsmap_get_random_mds(struct ceph_mdsmap *m) { int mds; mds = __mdsmap_get_random_mds(m, false); if (mds == m->possible_max_rank || mds == -1) mds = __mdsmap_get_random_mds(m, true); return mds == m->possible_max_rank ? -1 : mds; } #define __decode_and_drop_type(p, end, type, bad) \ do { \ if (*p + sizeof(type) > end) \ goto bad; \ *p += sizeof(type); \ } while (0) #define __decode_and_drop_set(p, end, type, bad) \ do { \ u32 n; \ size_t need; \ ceph_decode_32_safe(p, end, n, bad); \ need = sizeof(type) * n; \ ceph_decode_need(p, end, need, bad); \ *p += need; \ } while (0) #define __decode_and_drop_map(p, end, ktype, vtype, bad) \ do { \ u32 n; \ size_t need; \ ceph_decode_32_safe(p, end, n, bad); \ need = (sizeof(ktype) + sizeof(vtype)) * n; \ ceph_decode_need(p, end, need, bad); \ *p += need; \ } while (0) static int __decode_and_drop_compat_set(void **p, void* end) { int i; /* compat, ro_compat, incompat*/ for (i = 0; i < 3; i++) { u32 n; ceph_decode_need(p, end, sizeof(u64) + sizeof(u32), bad); /* mask */ *p += sizeof(u64); /* names (map<u64, string>) */ n = ceph_decode_32(p); while (n-- > 0) { u32 len; ceph_decode_need(p, end, sizeof(u64) + sizeof(u32), bad); *p += sizeof(u64); len = ceph_decode_32(p); ceph_decode_need(p, end, len, bad); *p += len; } } return 0; bad: return -1; } /* * Decode an MDS map * * Ignore any fields we don't care about (there are quite a few of * them). */ struct ceph_mdsmap *ceph_mdsmap_decode(struct ceph_mds_client *mdsc, void **p, void *end, bool msgr2) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mdsmap *m; const void *start = *p; int i, j, n; int err; u8 mdsmap_v; u16 mdsmap_ev; u32 target; m = kzalloc(sizeof(*m), GFP_NOFS); if (!m) return ERR_PTR(-ENOMEM); ceph_decode_need(p, end, 1 + 1, bad); mdsmap_v = ceph_decode_8(p); *p += sizeof(u8); /* mdsmap_cv */ if (mdsmap_v >= 4) { u32 mdsmap_len; ceph_decode_32_safe(p, end, mdsmap_len, bad); if (end < *p + mdsmap_len) goto bad; end = *p + mdsmap_len; } ceph_decode_need(p, end, 8*sizeof(u32) + sizeof(u64), bad); m->m_epoch = ceph_decode_32(p); m->m_client_epoch = ceph_decode_32(p); m->m_last_failure = ceph_decode_32(p); m->m_root = ceph_decode_32(p); m->m_session_timeout = ceph_decode_32(p); m->m_session_autoclose = ceph_decode_32(p); m->m_max_file_size = ceph_decode_64(p); m->m_max_mds = ceph_decode_32(p); /* * pick out the active nodes as the m_num_active_mds, the * m_num_active_mds maybe larger than m_max_mds when decreasing * the max_mds in cluster side, in other case it should less * than or equal to m_max_mds. */ m->m_num_active_mds = n = ceph_decode_32(p); /* * the possible max rank, it maybe larger than the m_num_active_mds, * for example if the mds_max == 2 in the cluster, when the MDS(0) * was laggy and being replaced by a new MDS, we will temporarily * receive a new mds map with n_num_mds == 1 and the active MDS(1), * and the mds rank >= m_num_active_mds. */ m->possible_max_rank = max(m->m_num_active_mds, m->m_max_mds); m->m_info = kcalloc(m->possible_max_rank, sizeof(*m->m_info), GFP_NOFS); if (!m->m_info) goto nomem; /* pick out active nodes from mds_info (state > 0) */ for (i = 0; i < n; i++) { u64 global_id; u32 namelen; s32 mds, inc, state; u8 info_v; void *info_end = NULL; struct ceph_entity_addr addr; u32 num_export_targets; void *pexport_targets = NULL; struct ceph_timespec laggy_since; struct ceph_mds_info *info; bool laggy; ceph_decode_need(p, end, sizeof(u64) + 1, bad); global_id = ceph_decode_64(p); info_v= ceph_decode_8(p); if (info_v >= 4) { u32 info_len; ceph_decode_need(p, end, 1 + sizeof(u32), bad); *p += sizeof(u8); /* info_cv */ info_len = ceph_decode_32(p); info_end = *p + info_len; if (info_end > end) goto bad; } ceph_decode_need(p, end, sizeof(u64) + sizeof(u32), bad); *p += sizeof(u64); namelen = ceph_decode_32(p); /* skip mds name */ *p += namelen; ceph_decode_32_safe(p, end, mds, bad); ceph_decode_32_safe(p, end, inc, bad); ceph_decode_32_safe(p, end, state, bad); *p += sizeof(u64); /* state_seq */ if (info_v >= 8) err = ceph_decode_entity_addrvec(p, end, msgr2, &addr); else err = ceph_decode_entity_addr(p, end, &addr); if (err) goto corrupt; ceph_decode_copy_safe(p, end, &laggy_since, sizeof(laggy_since), bad); laggy = laggy_since.tv_sec != 0 || laggy_since.tv_nsec != 0; *p += sizeof(u32); ceph_decode_32_safe(p, end, namelen, bad); *p += namelen; if (info_v >= 2) { ceph_decode_32_safe(p, end, num_export_targets, bad); pexport_targets = *p; *p += num_export_targets * sizeof(u32); } else { num_export_targets = 0; } if (info_end && *p != info_end) { if (*p > info_end) goto bad; *p = info_end; } doutc(cl, "%d/%d %lld mds%d.%d %s %s%s\n", i+1, n, global_id, mds, inc, ceph_pr_addr(&addr), ceph_mds_state_name(state), laggy ? "(laggy)" : ""); if (mds < 0 || mds >= m->possible_max_rank) { pr_warn_client(cl, "got incorrect mds(%d)\n", mds); continue; } if (state <= 0) { doutc(cl, "got incorrect state(%s)\n", ceph_mds_state_name(state)); continue; } info = &m->m_info[mds]; info->global_id = global_id; info->state = state; info->addr = addr; info->laggy = laggy; info->num_export_targets = num_export_targets; if (num_export_targets) { info->export_targets = kcalloc(num_export_targets, sizeof(u32), GFP_NOFS); if (!info->export_targets) goto nomem; for (j = 0; j < num_export_targets; j++) { target = ceph_decode_32(&pexport_targets); info->export_targets[j] = target; } } else { info->export_targets = NULL; } } /* pg_pools */ ceph_decode_32_safe(p, end, n, bad); m->m_num_data_pg_pools = n; m->m_data_pg_pools = kcalloc(n, sizeof(u64), GFP_NOFS); if (!m->m_data_pg_pools) goto nomem; ceph_decode_need(p, end, sizeof(u64)*(n+1), bad); for (i = 0; i < n; i++) m->m_data_pg_pools[i] = ceph_decode_64(p); m->m_cas_pg_pool = ceph_decode_64(p); m->m_enabled = m->m_epoch > 1; mdsmap_ev = 1; if (mdsmap_v >= 2) { ceph_decode_16_safe(p, end, mdsmap_ev, bad_ext); } if (mdsmap_ev >= 3) { if (__decode_and_drop_compat_set(p, end) < 0) goto bad_ext; } /* metadata_pool */ if (mdsmap_ev < 5) { __decode_and_drop_type(p, end, u32, bad_ext); } else { __decode_and_drop_type(p, end, u64, bad_ext); } /* created + modified + tableserver */ __decode_and_drop_type(p, end, struct ceph_timespec, bad_ext); __decode_and_drop_type(p, end, struct ceph_timespec, bad_ext); __decode_and_drop_type(p, end, u32, bad_ext); /* in */ { int num_laggy = 0; ceph_decode_32_safe(p, end, n, bad_ext); ceph_decode_need(p, end, sizeof(u32) * n, bad_ext); for (i = 0; i < n; i++) { s32 mds = ceph_decode_32(p); if (mds >= 0 && mds < m->possible_max_rank) { if (m->m_info[mds].laggy) num_laggy++; } } m->m_num_laggy = num_laggy; if (n > m->possible_max_rank) { void *new_m_info = krealloc(m->m_info, n * sizeof(*m->m_info), GFP_NOFS | __GFP_ZERO); if (!new_m_info) goto nomem; m->m_info = new_m_info; } m->possible_max_rank = n; } /* inc */ __decode_and_drop_map(p, end, u32, u32, bad_ext); /* up */ __decode_and_drop_map(p, end, u32, u64, bad_ext); /* failed */ __decode_and_drop_set(p, end, u32, bad_ext); /* stopped */ __decode_and_drop_set(p, end, u32, bad_ext); if (mdsmap_ev >= 4) { /* last_failure_osd_epoch */ __decode_and_drop_type(p, end, u32, bad_ext); } if (mdsmap_ev >= 6) { /* ever_allowed_snaps */ __decode_and_drop_type(p, end, u8, bad_ext); /* explicitly_allowed_snaps */ __decode_and_drop_type(p, end, u8, bad_ext); } if (mdsmap_ev >= 7) { /* inline_data_enabled */ __decode_and_drop_type(p, end, u8, bad_ext); } if (mdsmap_ev >= 8) { /* enabled */ ceph_decode_8_safe(p, end, m->m_enabled, bad_ext); /* fs_name */ ceph_decode_skip_string(p, end, bad_ext); } /* damaged */ if (mdsmap_ev >= 9) { size_t need; ceph_decode_32_safe(p, end, n, bad_ext); need = sizeof(u32) * n; ceph_decode_need(p, end, need, bad_ext); *p += need; m->m_damaged = n > 0; } else { m->m_damaged = false; } if (mdsmap_ev >= 17) { /* balancer */ ceph_decode_skip_string(p, end, bad_ext); /* standby_count_wanted */ ceph_decode_skip_32(p, end, bad_ext); /* old_max_mds */ ceph_decode_skip_32(p, end, bad_ext); /* min_compat_client */ ceph_decode_skip_8(p, end, bad_ext); /* required_client_features */ ceph_decode_skip_set(p, end, 64, bad_ext); /* bal_rank_mask */ ceph_decode_skip_string(p, end, bad_ext); } if (mdsmap_ev >= 18) { ceph_decode_64_safe(p, end, m->m_max_xattr_size, bad_ext); } bad_ext: doutc(cl, "m_enabled: %d, m_damaged: %d, m_num_laggy: %d\n", !!m->m_enabled, !!m->m_damaged, m->m_num_laggy); *p = end; doutc(cl, "success epoch %u\n", m->m_epoch); return m; nomem: err = -ENOMEM; goto out_err; corrupt: pr_err_client(cl, "corrupt mdsmap\n"); print_hex_dump(KERN_DEBUG, "mdsmap: ", DUMP_PREFIX_OFFSET, 16, 1, start, end - start, true); out_err: ceph_mdsmap_destroy(m); return ERR_PTR(err); bad: err = -EINVAL; goto corrupt; } void ceph_mdsmap_destroy(struct ceph_mdsmap *m) { int i; if (m->m_info) { for (i = 0; i < m->possible_max_rank; i++) kfree(m->m_info[i].export_targets); kfree(m->m_info); } kfree(m->m_data_pg_pools); kfree(m); } bool ceph_mdsmap_is_cluster_available(struct ceph_mdsmap *m) { int i, nr_active = 0; if (!m->m_enabled) return false; if (m->m_damaged) return false; if (m->m_num_laggy == m->m_num_active_mds) return false; for (i = 0; i < m->possible_max_rank; i++) { if (m->m_info[i].state == CEPH_MDS_STATE_ACTIVE) nr_active++; } return nr_active > 0; }
72 73 73 6 67 43 50 6 11 7 7 73 1 2 70 1 7 64 7 56 9 80 79 1 1 78 77 81 81 81 1 80 89 1 73 65 19 76 2 49 14 35 16 16 9 3 5 7 12 70 3 89 89 73 70 89 2 87 87 70 15 15 2 1 2 1 1 7 5 2 4 4 1 1 4 7 1 3 4 4 18 2 1 16 12 12 12 7 9 41 41 1 4 31 31 41 29 13 11 4 7 36 9 9 7 1 88 88 88 81 79 50 49 50 27 29 40 31 29 29 29 29 29 29 24 24 5 2 1 1 22 16 67 67 67 3 9 3 3 2 96 96 96 96 4 1 92 78 78 79 8 77 77 69 67 57 57 57 57 9 57 36 24 24 22 4 24 24 6 1 4 5 5 5 5 5 5 8 8 7 3 6 1 1 14 2 12 9 1 20 1 19 7 7 7 76 76 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. * * The io_pagetable is the top of datastructure that maps IOVA's to PFNs. The * PFNs can be placed into an iommu_domain, or returned to the caller as a page * list for access by an in-kernel user. * * The datastructure uses the iopt_pages to optimize the storage of the PFNs * between the domains and xarray. */ #include <linux/iommufd.h> #include <linux/lockdep.h> #include <linux/iommu.h> #include <linux/sched/mm.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/errno.h> #include <uapi/linux/iommufd.h> #include "io_pagetable.h" #include "double_span.h" struct iopt_pages_list { struct iopt_pages *pages; struct iopt_area *area; struct list_head next; unsigned long start_byte; unsigned long length; }; struct iopt_area *iopt_area_contig_init(struct iopt_area_contig_iter *iter, struct io_pagetable *iopt, unsigned long iova, unsigned long last_iova) { lockdep_assert_held(&iopt->iova_rwsem); iter->cur_iova = iova; iter->last_iova = last_iova; iter->area = iopt_area_iter_first(iopt, iova, iova); if (!iter->area) return NULL; if (!iter->area->pages) { iter->area = NULL; return NULL; } return iter->area; } struct iopt_area *iopt_area_contig_next(struct iopt_area_contig_iter *iter) { unsigned long last_iova; if (!iter->area) return NULL; last_iova = iopt_area_last_iova(iter->area); if (iter->last_iova <= last_iova) return NULL; iter->cur_iova = last_iova + 1; iter->area = iopt_area_iter_next(iter->area, iter->cur_iova, iter->last_iova); if (!iter->area) return NULL; if (iter->cur_iova != iopt_area_iova(iter->area) || !iter->area->pages) { iter->area = NULL; return NULL; } return iter->area; } static bool __alloc_iova_check_hole(struct interval_tree_double_span_iter *span, unsigned long length, unsigned long iova_alignment, unsigned long page_offset) { if (span->is_used || span->last_hole - span->start_hole < length - 1) return false; span->start_hole = ALIGN(span->start_hole, iova_alignment) | page_offset; if (span->start_hole > span->last_hole || span->last_hole - span->start_hole < length - 1) return false; return true; } static bool __alloc_iova_check_used(struct interval_tree_span_iter *span, unsigned long length, unsigned long iova_alignment, unsigned long page_offset) { if (span->is_hole || span->last_used - span->start_used < length - 1) return false; span->start_used = ALIGN(span->start_used, iova_alignment) | page_offset; if (span->start_used > span->last_used || span->last_used - span->start_used < length - 1) return false; return true; } /* * Automatically find a block of IOVA that is not being used and not reserved. * Does not return a 0 IOVA even if it is valid. */ static int iopt_alloc_iova(struct io_pagetable *iopt, unsigned long *iova, unsigned long uptr, unsigned long length) { unsigned long page_offset = uptr % PAGE_SIZE; struct interval_tree_double_span_iter used_span; struct interval_tree_span_iter allowed_span; unsigned long iova_alignment; lockdep_assert_held(&iopt->iova_rwsem); /* Protect roundup_pow-of_two() from overflow */ if (length == 0 || length >= ULONG_MAX / 2) return -EOVERFLOW; /* * Keep alignment present in the uptr when building the IOVA, this * increases the chance we can map a THP. */ if (!uptr) iova_alignment = roundup_pow_of_two(length); else iova_alignment = min_t(unsigned long, roundup_pow_of_two(length), 1UL << __ffs64(uptr)); if (iova_alignment < iopt->iova_alignment) return -EINVAL; interval_tree_for_each_span(&allowed_span, &iopt->allowed_itree, PAGE_SIZE, ULONG_MAX - PAGE_SIZE) { if (RB_EMPTY_ROOT(&iopt->allowed_itree.rb_root)) { allowed_span.start_used = PAGE_SIZE; allowed_span.last_used = ULONG_MAX - PAGE_SIZE; allowed_span.is_hole = false; } if (!__alloc_iova_check_used(&allowed_span, length, iova_alignment, page_offset)) continue; interval_tree_for_each_double_span( &used_span, &iopt->reserved_itree, &iopt->area_itree, allowed_span.start_used, allowed_span.last_used) { if (!__alloc_iova_check_hole(&used_span, length, iova_alignment, page_offset)) continue; *iova = used_span.start_hole; return 0; } } return -ENOSPC; } static int iopt_check_iova(struct io_pagetable *iopt, unsigned long iova, unsigned long length) { unsigned long last; lockdep_assert_held(&iopt->iova_rwsem); if ((iova & (iopt->iova_alignment - 1))) return -EINVAL; if (check_add_overflow(iova, length - 1, &last)) return -EOVERFLOW; /* No reserved IOVA intersects the range */ if (iopt_reserved_iter_first(iopt, iova, last)) return -EINVAL; /* Check that there is not already a mapping in the range */ if (iopt_area_iter_first(iopt, iova, last)) return -EEXIST; return 0; } /* * The area takes a slice of the pages from start_bytes to start_byte + length */ static int iopt_insert_area(struct io_pagetable *iopt, struct iopt_area *area, struct iopt_pages *pages, unsigned long iova, unsigned long start_byte, unsigned long length, int iommu_prot) { lockdep_assert_held_write(&iopt->iova_rwsem); if ((iommu_prot & IOMMU_WRITE) && !pages->writable) return -EPERM; area->iommu_prot = iommu_prot; area->page_offset = start_byte % PAGE_SIZE; if (area->page_offset & (iopt->iova_alignment - 1)) return -EINVAL; area->node.start = iova; if (check_add_overflow(iova, length - 1, &area->node.last)) return -EOVERFLOW; area->pages_node.start = start_byte / PAGE_SIZE; if (check_add_overflow(start_byte, length - 1, &area->pages_node.last)) return -EOVERFLOW; area->pages_node.last = area->pages_node.last / PAGE_SIZE; if (WARN_ON(area->pages_node.last >= pages->npages)) return -EOVERFLOW; /* * The area is inserted with a NULL pages indicating it is not fully * initialized yet. */ area->iopt = iopt; interval_tree_insert(&area->node, &iopt->area_itree); return 0; } static struct iopt_area *iopt_area_alloc(void) { struct iopt_area *area; area = kzalloc(sizeof(*area), GFP_KERNEL_ACCOUNT); if (!area) return NULL; RB_CLEAR_NODE(&area->node.rb); RB_CLEAR_NODE(&area->pages_node.rb); return area; } static int iopt_alloc_area_pages(struct io_pagetable *iopt, struct list_head *pages_list, unsigned long length, unsigned long *dst_iova, int iommu_prot, unsigned int flags) { struct iopt_pages_list *elm; unsigned long iova; int rc = 0; list_for_each_entry(elm, pages_list, next) { elm->area = iopt_area_alloc(); if (!elm->area) return -ENOMEM; } down_write(&iopt->iova_rwsem); if ((length & (iopt->iova_alignment - 1)) || !length) { rc = -EINVAL; goto out_unlock; } if (flags & IOPT_ALLOC_IOVA) { /* Use the first entry to guess the ideal IOVA alignment */ elm = list_first_entry(pages_list, struct iopt_pages_list, next); rc = iopt_alloc_iova( iopt, dst_iova, (uintptr_t)elm->pages->uptr + elm->start_byte, length); if (rc) goto out_unlock; if (IS_ENABLED(CONFIG_IOMMUFD_TEST) && WARN_ON(iopt_check_iova(iopt, *dst_iova, length))) { rc = -EINVAL; goto out_unlock; } } else { rc = iopt_check_iova(iopt, *dst_iova, length); if (rc) goto out_unlock; } /* * Areas are created with a NULL pages so that the IOVA space is * reserved and we can unlock the iova_rwsem. */ iova = *dst_iova; list_for_each_entry(elm, pages_list, next) { rc = iopt_insert_area(iopt, elm->area, elm->pages, iova, elm->start_byte, elm->length, iommu_prot); if (rc) goto out_unlock; iova += elm->length; } out_unlock: up_write(&iopt->iova_rwsem); return rc; } static void iopt_abort_area(struct iopt_area *area) { if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) WARN_ON(area->pages); if (area->iopt) { down_write(&area->iopt->iova_rwsem); interval_tree_remove(&area->node, &area->iopt->area_itree); up_write(&area->iopt->iova_rwsem); } kfree(area); } void iopt_free_pages_list(struct list_head *pages_list) { struct iopt_pages_list *elm; while ((elm = list_first_entry_or_null(pages_list, struct iopt_pages_list, next))) { if (elm->area) iopt_abort_area(elm->area); if (elm->pages) iopt_put_pages(elm->pages); list_del(&elm->next); kfree(elm); } } static int iopt_fill_domains_pages(struct list_head *pages_list) { struct iopt_pages_list *undo_elm; struct iopt_pages_list *elm; int rc; list_for_each_entry(elm, pages_list, next) { rc = iopt_area_fill_domains(elm->area, elm->pages); if (rc) goto err_undo; } return 0; err_undo: list_for_each_entry(undo_elm, pages_list, next) { if (undo_elm == elm) break; iopt_area_unfill_domains(undo_elm->area, undo_elm->pages); } return rc; } int iopt_map_pages(struct io_pagetable *iopt, struct list_head *pages_list, unsigned long length, unsigned long *dst_iova, int iommu_prot, unsigned int flags) { struct iopt_pages_list *elm; int rc; rc = iopt_alloc_area_pages(iopt, pages_list, length, dst_iova, iommu_prot, flags); if (rc) return rc; down_read(&iopt->domains_rwsem); rc = iopt_fill_domains_pages(pages_list); if (rc) goto out_unlock_domains; down_write(&iopt->iova_rwsem); list_for_each_entry(elm, pages_list, next) { /* * area->pages must be set inside the domains_rwsem to ensure * any newly added domains will get filled. Moves the reference * in from the list. */ elm->area->pages = elm->pages; elm->pages = NULL; elm->area = NULL; } up_write(&iopt->iova_rwsem); out_unlock_domains: up_read(&iopt->domains_rwsem); return rc; } /** * iopt_map_user_pages() - Map a user VA to an iova in the io page table * @ictx: iommufd_ctx the iopt is part of * @iopt: io_pagetable to act on * @iova: If IOPT_ALLOC_IOVA is set this is unused on input and contains * the chosen iova on output. Otherwise is the iova to map to on input * @uptr: User VA to map * @length: Number of bytes to map * @iommu_prot: Combination of IOMMU_READ/WRITE/etc bits for the mapping * @flags: IOPT_ALLOC_IOVA or zero * * iova, uptr, and length must be aligned to iova_alignment. For domain backed * page tables this will pin the pages and load them into the domain at iova. * For non-domain page tables this will only setup a lazy reference and the * caller must use iopt_access_pages() to touch them. * * iopt_unmap_iova() must be called to undo this before the io_pagetable can be * destroyed. */ int iopt_map_user_pages(struct iommufd_ctx *ictx, struct io_pagetable *iopt, unsigned long *iova, void __user *uptr, unsigned long length, int iommu_prot, unsigned int flags) { struct iopt_pages_list elm = {}; LIST_HEAD(pages_list); int rc; elm.pages = iopt_alloc_pages(uptr, length, iommu_prot & IOMMU_WRITE); if (IS_ERR(elm.pages)) return PTR_ERR(elm.pages); if (ictx->account_mode == IOPT_PAGES_ACCOUNT_MM && elm.pages->account_mode == IOPT_PAGES_ACCOUNT_USER) elm.pages->account_mode = IOPT_PAGES_ACCOUNT_MM; elm.start_byte = uptr - elm.pages->uptr; elm.length = length; list_add(&elm.next, &pages_list); rc = iopt_map_pages(iopt, &pages_list, length, iova, iommu_prot, flags); if (rc) { if (elm.area) iopt_abort_area(elm.area); if (elm.pages) iopt_put_pages(elm.pages); return rc; } return 0; } struct iova_bitmap_fn_arg { unsigned long flags; struct io_pagetable *iopt; struct iommu_domain *domain; struct iommu_dirty_bitmap *dirty; }; static int __iommu_read_and_clear_dirty(struct iova_bitmap *bitmap, unsigned long iova, size_t length, void *opaque) { struct iopt_area *area; struct iopt_area_contig_iter iter; struct iova_bitmap_fn_arg *arg = opaque; struct iommu_domain *domain = arg->domain; struct iommu_dirty_bitmap *dirty = arg->dirty; const struct iommu_dirty_ops *ops = domain->dirty_ops; unsigned long last_iova = iova + length - 1; unsigned long flags = arg->flags; int ret; iopt_for_each_contig_area(&iter, area, arg->iopt, iova, last_iova) { unsigned long last = min(last_iova, iopt_area_last_iova(area)); ret = ops->read_and_clear_dirty(domain, iter.cur_iova, last - iter.cur_iova + 1, flags, dirty); if (ret) return ret; } if (!iopt_area_contig_done(&iter)) return -EINVAL; return 0; } static int iommu_read_and_clear_dirty(struct iommu_domain *domain, struct io_pagetable *iopt, unsigned long flags, struct iommu_hwpt_get_dirty_bitmap *bitmap) { const struct iommu_dirty_ops *ops = domain->dirty_ops; struct iommu_iotlb_gather gather; struct iommu_dirty_bitmap dirty; struct iova_bitmap_fn_arg arg; struct iova_bitmap *iter; int ret = 0; if (!ops || !ops->read_and_clear_dirty) return -EOPNOTSUPP; iter = iova_bitmap_alloc(bitmap->iova, bitmap->length, bitmap->page_size, u64_to_user_ptr(bitmap->data)); if (IS_ERR(iter)) return -ENOMEM; iommu_dirty_bitmap_init(&dirty, iter, &gather); arg.flags = flags; arg.iopt = iopt; arg.domain = domain; arg.dirty = &dirty; iova_bitmap_for_each(iter, &arg, __iommu_read_and_clear_dirty); if (!(flags & IOMMU_DIRTY_NO_CLEAR)) iommu_iotlb_sync(domain, &gather); iova_bitmap_free(iter); return ret; } int iommufd_check_iova_range(struct io_pagetable *iopt, struct iommu_hwpt_get_dirty_bitmap *bitmap) { size_t iommu_pgsize = iopt->iova_alignment; u64 last_iova; if (check_add_overflow(bitmap->iova, bitmap->length - 1, &last_iova)) return -EOVERFLOW; if (bitmap->iova > ULONG_MAX || last_iova > ULONG_MAX) return -EOVERFLOW; if ((bitmap->iova & (iommu_pgsize - 1)) || ((last_iova + 1) & (iommu_pgsize - 1))) return -EINVAL; if (!bitmap->page_size) return -EINVAL; if ((bitmap->iova & (bitmap->page_size - 1)) || ((last_iova + 1) & (bitmap->page_size - 1))) return -EINVAL; return 0; } int iopt_read_and_clear_dirty_data(struct io_pagetable *iopt, struct iommu_domain *domain, unsigned long flags, struct iommu_hwpt_get_dirty_bitmap *bitmap) { int ret; ret = iommufd_check_iova_range(iopt, bitmap); if (ret) return ret; down_read(&iopt->iova_rwsem); ret = iommu_read_and_clear_dirty(domain, iopt, flags, bitmap); up_read(&iopt->iova_rwsem); return ret; } static int iopt_clear_dirty_data(struct io_pagetable *iopt, struct iommu_domain *domain) { const struct iommu_dirty_ops *ops = domain->dirty_ops; struct iommu_iotlb_gather gather; struct iommu_dirty_bitmap dirty; struct iopt_area *area; int ret = 0; lockdep_assert_held_read(&iopt->iova_rwsem); iommu_dirty_bitmap_init(&dirty, NULL, &gather); for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; area = iopt_area_iter_next(area, 0, ULONG_MAX)) { if (!area->pages) continue; ret = ops->read_and_clear_dirty(domain, iopt_area_iova(area), iopt_area_length(area), 0, &dirty); if (ret) break; } iommu_iotlb_sync(domain, &gather); return ret; } int iopt_set_dirty_tracking(struct io_pagetable *iopt, struct iommu_domain *domain, bool enable) { const struct iommu_dirty_ops *ops = domain->dirty_ops; int ret = 0; if (!ops) return -EOPNOTSUPP; down_read(&iopt->iova_rwsem); /* Clear dirty bits from PTEs to ensure a clean snapshot */ if (enable) { ret = iopt_clear_dirty_data(iopt, domain); if (ret) goto out_unlock; } ret = ops->set_dirty_tracking(domain, enable); out_unlock: up_read(&iopt->iova_rwsem); return ret; } int iopt_get_pages(struct io_pagetable *iopt, unsigned long iova, unsigned long length, struct list_head *pages_list) { struct iopt_area_contig_iter iter; unsigned long last_iova; struct iopt_area *area; int rc; if (!length) return -EINVAL; if (check_add_overflow(iova, length - 1, &last_iova)) return -EOVERFLOW; down_read(&iopt->iova_rwsem); iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova) { struct iopt_pages_list *elm; unsigned long last = min(last_iova, iopt_area_last_iova(area)); elm = kzalloc(sizeof(*elm), GFP_KERNEL_ACCOUNT); if (!elm) { rc = -ENOMEM; goto err_free; } elm->start_byte = iopt_area_start_byte(area, iter.cur_iova); elm->pages = area->pages; elm->length = (last - iter.cur_iova) + 1; kref_get(&elm->pages->kref); list_add_tail(&elm->next, pages_list); } if (!iopt_area_contig_done(&iter)) { rc = -ENOENT; goto err_free; } up_read(&iopt->iova_rwsem); return 0; err_free: up_read(&iopt->iova_rwsem); iopt_free_pages_list(pages_list); return rc; } static int iopt_unmap_iova_range(struct io_pagetable *iopt, unsigned long start, unsigned long last, unsigned long *unmapped) { struct iopt_area *area; unsigned long unmapped_bytes = 0; unsigned int tries = 0; int rc = -ENOENT; /* * The domains_rwsem must be held in read mode any time any area->pages * is NULL. This prevents domain attach/detatch from running * concurrently with cleaning up the area. */ again: down_read(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); while ((area = iopt_area_iter_first(iopt, start, last))) { unsigned long area_last = iopt_area_last_iova(area); unsigned long area_first = iopt_area_iova(area); struct iopt_pages *pages; /* Userspace should not race map/unmap's of the same area */ if (!area->pages) { rc = -EBUSY; goto out_unlock_iova; } if (area_first < start || area_last > last) { rc = -ENOENT; goto out_unlock_iova; } if (area_first != start) tries = 0; /* * num_accesses writers must hold the iova_rwsem too, so we can * safely read it under the write side of the iovam_rwsem * without the pages->mutex. */ if (area->num_accesses) { size_t length = iopt_area_length(area); start = area_first; area->prevent_access = true; up_write(&iopt->iova_rwsem); up_read(&iopt->domains_rwsem); iommufd_access_notify_unmap(iopt, area_first, length); /* Something is not responding to unmap requests. */ tries++; if (WARN_ON(tries > 100)) return -EDEADLOCK; goto again; } pages = area->pages; area->pages = NULL; up_write(&iopt->iova_rwsem); iopt_area_unfill_domains(area, pages); iopt_abort_area(area); iopt_put_pages(pages); unmapped_bytes += area_last - area_first + 1; down_write(&iopt->iova_rwsem); } if (unmapped_bytes) rc = 0; out_unlock_iova: up_write(&iopt->iova_rwsem); up_read(&iopt->domains_rwsem); if (unmapped) *unmapped = unmapped_bytes; return rc; } /** * iopt_unmap_iova() - Remove a range of iova * @iopt: io_pagetable to act on * @iova: Starting iova to unmap * @length: Number of bytes to unmap * @unmapped: Return number of bytes unmapped * * The requested range must be a superset of existing ranges. * Splitting/truncating IOVA mappings is not allowed. */ int iopt_unmap_iova(struct io_pagetable *iopt, unsigned long iova, unsigned long length, unsigned long *unmapped) { unsigned long iova_last; if (!length) return -EINVAL; if (check_add_overflow(iova, length - 1, &iova_last)) return -EOVERFLOW; return iopt_unmap_iova_range(iopt, iova, iova_last, unmapped); } int iopt_unmap_all(struct io_pagetable *iopt, unsigned long *unmapped) { int rc; rc = iopt_unmap_iova_range(iopt, 0, ULONG_MAX, unmapped); /* If the IOVAs are empty then unmap all succeeds */ if (rc == -ENOENT) return 0; return rc; } /* The caller must always free all the nodes in the allowed_iova rb_root. */ int iopt_set_allow_iova(struct io_pagetable *iopt, struct rb_root_cached *allowed_iova) { struct iopt_allowed *allowed; down_write(&iopt->iova_rwsem); swap(*allowed_iova, iopt->allowed_itree); for (allowed = iopt_allowed_iter_first(iopt, 0, ULONG_MAX); allowed; allowed = iopt_allowed_iter_next(allowed, 0, ULONG_MAX)) { if (iopt_reserved_iter_first(iopt, allowed->node.start, allowed->node.last)) { swap(*allowed_iova, iopt->allowed_itree); up_write(&iopt->iova_rwsem); return -EADDRINUSE; } } up_write(&iopt->iova_rwsem); return 0; } int iopt_reserve_iova(struct io_pagetable *iopt, unsigned long start, unsigned long last, void *owner) { struct iopt_reserved *reserved; lockdep_assert_held_write(&iopt->iova_rwsem); if (iopt_area_iter_first(iopt, start, last) || iopt_allowed_iter_first(iopt, start, last)) return -EADDRINUSE; reserved = kzalloc(sizeof(*reserved), GFP_KERNEL_ACCOUNT); if (!reserved) return -ENOMEM; reserved->node.start = start; reserved->node.last = last; reserved->owner = owner; interval_tree_insert(&reserved->node, &iopt->reserved_itree); return 0; } static void __iopt_remove_reserved_iova(struct io_pagetable *iopt, void *owner) { struct iopt_reserved *reserved, *next; lockdep_assert_held_write(&iopt->iova_rwsem); for (reserved = iopt_reserved_iter_first(iopt, 0, ULONG_MAX); reserved; reserved = next) { next = iopt_reserved_iter_next(reserved, 0, ULONG_MAX); if (reserved->owner == owner) { interval_tree_remove(&reserved->node, &iopt->reserved_itree); kfree(reserved); } } } void iopt_remove_reserved_iova(struct io_pagetable *iopt, void *owner) { down_write(&iopt->iova_rwsem); __iopt_remove_reserved_iova(iopt, owner); up_write(&iopt->iova_rwsem); } void iopt_init_table(struct io_pagetable *iopt) { init_rwsem(&iopt->iova_rwsem); init_rwsem(&iopt->domains_rwsem); iopt->area_itree = RB_ROOT_CACHED; iopt->allowed_itree = RB_ROOT_CACHED; iopt->reserved_itree = RB_ROOT_CACHED; xa_init_flags(&iopt->domains, XA_FLAGS_ACCOUNT); xa_init_flags(&iopt->access_list, XA_FLAGS_ALLOC); /* * iopt's start as SW tables that can use the entire size_t IOVA space * due to the use of size_t in the APIs. They have no alignment * restriction. */ iopt->iova_alignment = 1; } void iopt_destroy_table(struct io_pagetable *iopt) { struct interval_tree_node *node; if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) iopt_remove_reserved_iova(iopt, NULL); while ((node = interval_tree_iter_first(&iopt->allowed_itree, 0, ULONG_MAX))) { interval_tree_remove(node, &iopt->allowed_itree); kfree(container_of(node, struct iopt_allowed, node)); } WARN_ON(!RB_EMPTY_ROOT(&iopt->reserved_itree.rb_root)); WARN_ON(!xa_empty(&iopt->domains)); WARN_ON(!xa_empty(&iopt->access_list)); WARN_ON(!RB_EMPTY_ROOT(&iopt->area_itree.rb_root)); } /** * iopt_unfill_domain() - Unfill a domain with PFNs * @iopt: io_pagetable to act on * @domain: domain to unfill * * This is used when removing a domain from the iopt. Every area in the iopt * will be unmapped from the domain. The domain must already be removed from the * domains xarray. */ static void iopt_unfill_domain(struct io_pagetable *iopt, struct iommu_domain *domain) { struct iopt_area *area; lockdep_assert_held(&iopt->iova_rwsem); lockdep_assert_held_write(&iopt->domains_rwsem); /* * Some other domain is holding all the pfns still, rapidly unmap this * domain. */ if (iopt->next_domain_id != 0) { /* Pick an arbitrary remaining domain to act as storage */ struct iommu_domain *storage_domain = xa_load(&iopt->domains, 0); for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; area = iopt_area_iter_next(area, 0, ULONG_MAX)) { struct iopt_pages *pages = area->pages; if (!pages) continue; mutex_lock(&pages->mutex); if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) WARN_ON(!area->storage_domain); if (area->storage_domain == domain) area->storage_domain = storage_domain; mutex_unlock(&pages->mutex); iopt_area_unmap_domain(area, domain); } return; } for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; area = iopt_area_iter_next(area, 0, ULONG_MAX)) { struct iopt_pages *pages = area->pages; if (!pages) continue; mutex_lock(&pages->mutex); interval_tree_remove(&area->pages_node, &pages->domains_itree); WARN_ON(area->storage_domain != domain); area->storage_domain = NULL; iopt_area_unfill_domain(area, pages, domain); mutex_unlock(&pages->mutex); } } /** * iopt_fill_domain() - Fill a domain with PFNs * @iopt: io_pagetable to act on * @domain: domain to fill * * Fill the domain with PFNs from every area in the iopt. On failure the domain * is left unchanged. */ static int iopt_fill_domain(struct io_pagetable *iopt, struct iommu_domain *domain) { struct iopt_area *end_area; struct iopt_area *area; int rc; lockdep_assert_held(&iopt->iova_rwsem); lockdep_assert_held_write(&iopt->domains_rwsem); for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; area = iopt_area_iter_next(area, 0, ULONG_MAX)) { struct iopt_pages *pages = area->pages; if (!pages) continue; mutex_lock(&pages->mutex); rc = iopt_area_fill_domain(area, domain); if (rc) { mutex_unlock(&pages->mutex); goto out_unfill; } if (!area->storage_domain) { WARN_ON(iopt->next_domain_id != 0); area->storage_domain = domain; interval_tree_insert(&area->pages_node, &pages->domains_itree); } mutex_unlock(&pages->mutex); } return 0; out_unfill: end_area = area; for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; area = iopt_area_iter_next(area, 0, ULONG_MAX)) { struct iopt_pages *pages = area->pages; if (area == end_area) break; if (!pages) continue; mutex_lock(&pages->mutex); if (iopt->next_domain_id == 0) { interval_tree_remove(&area->pages_node, &pages->domains_itree); area->storage_domain = NULL; } iopt_area_unfill_domain(area, pages, domain); mutex_unlock(&pages->mutex); } return rc; } /* All existing area's conform to an increased page size */ static int iopt_check_iova_alignment(struct io_pagetable *iopt, unsigned long new_iova_alignment) { unsigned long align_mask = new_iova_alignment - 1; struct iopt_area *area; lockdep_assert_held(&iopt->iova_rwsem); lockdep_assert_held(&iopt->domains_rwsem); for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; area = iopt_area_iter_next(area, 0, ULONG_MAX)) if ((iopt_area_iova(area) & align_mask) || (iopt_area_length(area) & align_mask) || (area->page_offset & align_mask)) return -EADDRINUSE; if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) { struct iommufd_access *access; unsigned long index; xa_for_each(&iopt->access_list, index, access) if (WARN_ON(access->iova_alignment > new_iova_alignment)) return -EADDRINUSE; } return 0; } int iopt_table_add_domain(struct io_pagetable *iopt, struct iommu_domain *domain) { const struct iommu_domain_geometry *geometry = &domain->geometry; struct iommu_domain *iter_domain; unsigned int new_iova_alignment; unsigned long index; int rc; down_write(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); xa_for_each(&iopt->domains, index, iter_domain) { if (WARN_ON(iter_domain == domain)) { rc = -EEXIST; goto out_unlock; } } /* * The io page size drives the iova_alignment. Internally the iopt_pages * works in PAGE_SIZE units and we adjust when mapping sub-PAGE_SIZE * objects into the iommu_domain. * * A iommu_domain must always be able to accept PAGE_SIZE to be * compatible as we can't guarantee higher contiguity. */ new_iova_alignment = max_t(unsigned long, 1UL << __ffs(domain->pgsize_bitmap), iopt->iova_alignment); if (new_iova_alignment > PAGE_SIZE) { rc = -EINVAL; goto out_unlock; } if (new_iova_alignment != iopt->iova_alignment) { rc = iopt_check_iova_alignment(iopt, new_iova_alignment); if (rc) goto out_unlock; } /* No area exists that is outside the allowed domain aperture */ if (geometry->aperture_start != 0) { rc = iopt_reserve_iova(iopt, 0, geometry->aperture_start - 1, domain); if (rc) goto out_reserved; } if (geometry->aperture_end != ULONG_MAX) { rc = iopt_reserve_iova(iopt, geometry->aperture_end + 1, ULONG_MAX, domain); if (rc) goto out_reserved; } rc = xa_reserve(&iopt->domains, iopt->next_domain_id, GFP_KERNEL); if (rc) goto out_reserved; rc = iopt_fill_domain(iopt, domain); if (rc) goto out_release; iopt->iova_alignment = new_iova_alignment; xa_store(&iopt->domains, iopt->next_domain_id, domain, GFP_KERNEL); iopt->next_domain_id++; up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); return 0; out_release: xa_release(&iopt->domains, iopt->next_domain_id); out_reserved: __iopt_remove_reserved_iova(iopt, domain); out_unlock: up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); return rc; } static int iopt_calculate_iova_alignment(struct io_pagetable *iopt) { unsigned long new_iova_alignment; struct iommufd_access *access; struct iommu_domain *domain; unsigned long index; lockdep_assert_held_write(&iopt->iova_rwsem); lockdep_assert_held(&iopt->domains_rwsem); /* See batch_iommu_map_small() */ if (iopt->disable_large_pages) new_iova_alignment = PAGE_SIZE; else new_iova_alignment = 1; xa_for_each(&iopt->domains, index, domain) new_iova_alignment = max_t(unsigned long, 1UL << __ffs(domain->pgsize_bitmap), new_iova_alignment); xa_for_each(&iopt->access_list, index, access) new_iova_alignment = max_t(unsigned long, access->iova_alignment, new_iova_alignment); if (new_iova_alignment > iopt->iova_alignment) { int rc; rc = iopt_check_iova_alignment(iopt, new_iova_alignment); if (rc) return rc; } iopt->iova_alignment = new_iova_alignment; return 0; } void iopt_table_remove_domain(struct io_pagetable *iopt, struct iommu_domain *domain) { struct iommu_domain *iter_domain = NULL; unsigned long index; down_write(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); xa_for_each(&iopt->domains, index, iter_domain) if (iter_domain == domain) break; if (WARN_ON(iter_domain != domain) || index >= iopt->next_domain_id) goto out_unlock; /* * Compress the xarray to keep it linear by swapping the entry to erase * with the tail entry and shrinking the tail. */ iopt->next_domain_id--; iter_domain = xa_erase(&iopt->domains, iopt->next_domain_id); if (index != iopt->next_domain_id) xa_store(&iopt->domains, index, iter_domain, GFP_KERNEL); iopt_unfill_domain(iopt, domain); __iopt_remove_reserved_iova(iopt, domain); WARN_ON(iopt_calculate_iova_alignment(iopt)); out_unlock: up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); } /** * iopt_area_split - Split an area into two parts at iova * @area: The area to split * @iova: Becomes the last of a new area * * This splits an area into two. It is part of the VFIO compatibility to allow * poking a hole in the mapping. The two areas continue to point at the same * iopt_pages, just with different starting bytes. */ static int iopt_area_split(struct iopt_area *area, unsigned long iova) { unsigned long alignment = area->iopt->iova_alignment; unsigned long last_iova = iopt_area_last_iova(area); unsigned long start_iova = iopt_area_iova(area); unsigned long new_start = iova + 1; struct io_pagetable *iopt = area->iopt; struct iopt_pages *pages = area->pages; struct iopt_area *lhs; struct iopt_area *rhs; int rc; lockdep_assert_held_write(&iopt->iova_rwsem); if (iova == start_iova || iova == last_iova) return 0; if (!pages || area->prevent_access) return -EBUSY; if (new_start & (alignment - 1) || iopt_area_start_byte(area, new_start) & (alignment - 1)) return -EINVAL; lhs = iopt_area_alloc(); if (!lhs) return -ENOMEM; rhs = iopt_area_alloc(); if (!rhs) { rc = -ENOMEM; goto err_free_lhs; } mutex_lock(&pages->mutex); /* * Splitting is not permitted if an access exists, we don't track enough * information to split existing accesses. */ if (area->num_accesses) { rc = -EINVAL; goto err_unlock; } /* * Splitting is not permitted if a domain could have been mapped with * huge pages. */ if (area->storage_domain && !iopt->disable_large_pages) { rc = -EINVAL; goto err_unlock; } interval_tree_remove(&area->node, &iopt->area_itree); rc = iopt_insert_area(iopt, lhs, area->pages, start_iova, iopt_area_start_byte(area, start_iova), (new_start - 1) - start_iova + 1, area->iommu_prot); if (WARN_ON(rc)) goto err_insert; rc = iopt_insert_area(iopt, rhs, area->pages, new_start, iopt_area_start_byte(area, new_start), last_iova - new_start + 1, area->iommu_prot); if (WARN_ON(rc)) goto err_remove_lhs; /* * If the original area has filled a domain, domains_itree has to be * updated. */ if (area->storage_domain) { interval_tree_remove(&area->pages_node, &pages->domains_itree); interval_tree_insert(&lhs->pages_node, &pages->domains_itree); interval_tree_insert(&rhs->pages_node, &pages->domains_itree); } lhs->storage_domain = area->storage_domain; lhs->pages = area->pages; rhs->storage_domain = area->storage_domain; rhs->pages = area->pages; kref_get(&rhs->pages->kref); kfree(area); mutex_unlock(&pages->mutex); /* * No change to domains or accesses because the pages hasn't been * changed */ return 0; err_remove_lhs: interval_tree_remove(&lhs->node, &iopt->area_itree); err_insert: interval_tree_insert(&area->node, &iopt->area_itree); err_unlock: mutex_unlock(&pages->mutex); kfree(rhs); err_free_lhs: kfree(lhs); return rc; } int iopt_cut_iova(struct io_pagetable *iopt, unsigned long *iovas, size_t num_iovas) { int rc = 0; int i; down_write(&iopt->iova_rwsem); for (i = 0; i < num_iovas; i++) { struct iopt_area *area; area = iopt_area_iter_first(iopt, iovas[i], iovas[i]); if (!area) continue; rc = iopt_area_split(area, iovas[i]); if (rc) break; } up_write(&iopt->iova_rwsem); return rc; } void iopt_enable_large_pages(struct io_pagetable *iopt) { int rc; down_write(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); WRITE_ONCE(iopt->disable_large_pages, false); rc = iopt_calculate_iova_alignment(iopt); WARN_ON(rc); up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); } int iopt_disable_large_pages(struct io_pagetable *iopt) { int rc = 0; down_write(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); if (iopt->disable_large_pages) goto out_unlock; /* Won't do it if domains already have pages mapped in them */ if (!xa_empty(&iopt->domains) && !RB_EMPTY_ROOT(&iopt->area_itree.rb_root)) { rc = -EINVAL; goto out_unlock; } WRITE_ONCE(iopt->disable_large_pages, true); rc = iopt_calculate_iova_alignment(iopt); if (rc) WRITE_ONCE(iopt->disable_large_pages, false); out_unlock: up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); return rc; } int iopt_add_access(struct io_pagetable *iopt, struct iommufd_access *access) { u32 new_id; int rc; down_write(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); rc = xa_alloc(&iopt->access_list, &new_id, access, xa_limit_16b, GFP_KERNEL_ACCOUNT); if (rc) goto out_unlock; rc = iopt_calculate_iova_alignment(iopt); if (rc) { xa_erase(&iopt->access_list, new_id); goto out_unlock; } access->iopt_access_list_id = new_id; out_unlock: up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); return rc; } void iopt_remove_access(struct io_pagetable *iopt, struct iommufd_access *access, u32 iopt_access_list_id) { down_write(&iopt->domains_rwsem); down_write(&iopt->iova_rwsem); WARN_ON(xa_erase(&iopt->access_list, iopt_access_list_id) != access); WARN_ON(iopt_calculate_iova_alignment(iopt)); up_write(&iopt->iova_rwsem); up_write(&iopt->domains_rwsem); } /* Narrow the valid_iova_itree to include reserved ranges from a device. */ int iopt_table_enforce_dev_resv_regions(struct io_pagetable *iopt, struct device *dev, phys_addr_t *sw_msi_start) { struct iommu_resv_region *resv; LIST_HEAD(resv_regions); unsigned int num_hw_msi = 0; unsigned int num_sw_msi = 0; int rc; if (iommufd_should_fail()) return -EINVAL; down_write(&iopt->iova_rwsem); /* FIXME: drivers allocate memory but there is no failure propogated */ iommu_get_resv_regions(dev, &resv_regions); list_for_each_entry(resv, &resv_regions, list) { if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE) continue; if (sw_msi_start && resv->type == IOMMU_RESV_MSI) num_hw_msi++; if (sw_msi_start && resv->type == IOMMU_RESV_SW_MSI) { *sw_msi_start = resv->start; num_sw_msi++; } rc = iopt_reserve_iova(iopt, resv->start, resv->length - 1 + resv->start, dev); if (rc) goto out_reserved; } /* Drivers must offer sane combinations of regions */ if (WARN_ON(num_sw_msi && num_hw_msi) || WARN_ON(num_sw_msi > 1)) { rc = -EINVAL; goto out_reserved; } rc = 0; goto out_free_resv; out_reserved: __iopt_remove_reserved_iova(iopt, dev); out_free_resv: iommu_put_resv_regions(dev, &resv_regions); up_write(&iopt->iova_rwsem); return rc; }
14 14 14 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 // SPDX-License-Identifier: GPL-2.0 /****************************************************************************** * * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved. * * Modifications for inclusion into the Linux staging tree are * Copyright(c) 2010 Larry Finger. All rights reserved. * * Contact information: * WLAN FAE <wlanfae@realtek.com> * Larry Finger <Larry.Finger@lwfinger.net> * ******************************************************************************/ #define _RTL871X_MP_C_ #include "osdep_service.h" #include "drv_types.h" #include "rtl871x_mp_phy_regdef.h" #include "rtl8712_cmd.h" static void _init_mp_priv_(struct mp_priv *pmp_priv) { pmp_priv->mode = _LOOPBOOK_MODE_; pmp_priv->curr_ch = 1; pmp_priv->curr_modem = MIXED_PHY; pmp_priv->curr_rateidx = 0; pmp_priv->curr_txpoweridx = 0x14; pmp_priv->antenna_tx = ANTENNA_A; pmp_priv->antenna_rx = ANTENNA_AB; pmp_priv->check_mp_pkt = 0; pmp_priv->tx_pktcount = 0; pmp_priv->rx_pktcount = 0; pmp_priv->rx_crcerrpktcount = 0; } static int init_mp_priv(struct mp_priv *pmp_priv) { int i; struct mp_xmit_frame *pmp_xmitframe; _init_mp_priv_(pmp_priv); _init_queue(&pmp_priv->free_mp_xmitqueue); pmp_priv->pallocated_mp_xmitframe_buf = NULL; pmp_priv->pallocated_mp_xmitframe_buf = kmalloc(NR_MP_XMITFRAME * sizeof(struct mp_xmit_frame) + 4, GFP_ATOMIC); if (!pmp_priv->pallocated_mp_xmitframe_buf) return -ENOMEM; pmp_priv->pmp_xmtframe_buf = pmp_priv->pallocated_mp_xmitframe_buf + 4 - ((addr_t)(pmp_priv->pallocated_mp_xmitframe_buf) & 3); pmp_xmitframe = (struct mp_xmit_frame *)pmp_priv->pmp_xmtframe_buf; for (i = 0; i < NR_MP_XMITFRAME; i++) { INIT_LIST_HEAD(&(pmp_xmitframe->list)); list_add_tail(&(pmp_xmitframe->list), &(pmp_priv->free_mp_xmitqueue.queue)); pmp_xmitframe->pkt = NULL; pmp_xmitframe->frame_tag = MP_FRAMETAG; pmp_xmitframe->padapter = pmp_priv->papdater; pmp_xmitframe++; } pmp_priv->free_mp_xmitframe_cnt = NR_MP_XMITFRAME; return 0; } static int free_mp_priv(struct mp_priv *pmp_priv) { kfree(pmp_priv->pallocated_mp_xmitframe_buf); return 0; } void mp871xinit(struct _adapter *padapter) { struct mp_priv *pmppriv = &padapter->mppriv; pmppriv->papdater = padapter; init_mp_priv(pmppriv); } void mp871xdeinit(struct _adapter *padapter) { struct mp_priv *pmppriv = &padapter->mppriv; free_mp_priv(pmppriv); } /* * Special for bb and rf reg read/write */ static u32 fw_iocmd_read(struct _adapter *pAdapter, struct IOCMD_STRUCT iocmd) { u32 cmd32 = 0, val32 = 0; u8 iocmd_class = iocmd.cmdclass; u16 iocmd_value = iocmd.value; u8 iocmd_idx = iocmd.index; cmd32 = (iocmd_class << 24) | (iocmd_value << 8) | iocmd_idx; if (r8712_fw_cmd(pAdapter, cmd32)) r8712_fw_cmd_data(pAdapter, &val32, 1); else val32 = 0; return val32; } static u8 fw_iocmd_write(struct _adapter *pAdapter, struct IOCMD_STRUCT iocmd, u32 value) { u32 cmd32 = 0; u8 iocmd_class = iocmd.cmdclass; u32 iocmd_value = iocmd.value; u8 iocmd_idx = iocmd.index; r8712_fw_cmd_data(pAdapter, &value, 0); msleep(100); cmd32 = (iocmd_class << 24) | (iocmd_value << 8) | iocmd_idx; return r8712_fw_cmd(pAdapter, cmd32); } /* offset : 0X800~0XFFF */ u32 r8712_bb_reg_read(struct _adapter *pAdapter, u16 offset) { u8 shift = offset & 0x0003; /* 4 byte access */ u16 bb_addr = offset & 0x0FFC; /* 4 byte access */ u32 bb_val = 0; struct IOCMD_STRUCT iocmd; iocmd.cmdclass = IOCMD_CLASS_BB_RF; iocmd.value = bb_addr; iocmd.index = IOCMD_BB_READ_IDX; bb_val = fw_iocmd_read(pAdapter, iocmd); if (shift != 0) { u32 bb_val2 = 0; bb_val >>= (shift * 8); iocmd.value += 4; bb_val2 = fw_iocmd_read(pAdapter, iocmd); bb_val2 <<= ((4 - shift) * 8); bb_val |= bb_val2; } return bb_val; } /* offset : 0X800~0XFFF */ u8 r8712_bb_reg_write(struct _adapter *pAdapter, u16 offset, u32 value) { u8 shift = offset & 0x0003; /* 4 byte access */ u16 bb_addr = offset & 0x0FFC; /* 4 byte access */ struct IOCMD_STRUCT iocmd; iocmd.cmdclass = IOCMD_CLASS_BB_RF; iocmd.value = bb_addr; iocmd.index = IOCMD_BB_WRITE_IDX; if (shift != 0) { u32 oldValue = 0; u32 newValue = value; oldValue = r8712_bb_reg_read(pAdapter, iocmd.value); oldValue &= (0xFFFFFFFF >> ((4 - shift) * 8)); value = oldValue | (newValue << (shift * 8)); if (!fw_iocmd_write(pAdapter, iocmd, value)) return false; iocmd.value += 4; oldValue = r8712_bb_reg_read(pAdapter, iocmd.value); oldValue &= (0xFFFFFFFF << (shift * 8)); value = oldValue | (newValue >> ((4 - shift) * 8)); } return fw_iocmd_write(pAdapter, iocmd, value); } /* offset : 0x00 ~ 0xFF */ u32 r8712_rf_reg_read(struct _adapter *pAdapter, u8 path, u8 offset) { u16 rf_addr = (path << 8) | offset; struct IOCMD_STRUCT iocmd; iocmd.cmdclass = IOCMD_CLASS_BB_RF; iocmd.value = rf_addr; iocmd.index = IOCMD_RF_READ_IDX; return fw_iocmd_read(pAdapter, iocmd); } u8 r8712_rf_reg_write(struct _adapter *pAdapter, u8 path, u8 offset, u32 value) { u16 rf_addr = (path << 8) | offset; struct IOCMD_STRUCT iocmd; iocmd.cmdclass = IOCMD_CLASS_BB_RF; iocmd.value = rf_addr; iocmd.index = IOCMD_RF_WRIT_IDX; return fw_iocmd_write(pAdapter, iocmd, value); } static u32 bitshift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) if (((bitmask >> i) & 0x1) == 1) break; return i; } static u32 get_bb_reg(struct _adapter *pAdapter, u16 offset, u32 bitmask) { u32 org_value, bit_shift; org_value = r8712_bb_reg_read(pAdapter, offset); bit_shift = bitshift(bitmask); return (org_value & bitmask) >> bit_shift; } static u8 set_bb_reg(struct _adapter *pAdapter, u16 offset, u32 bitmask, u32 value) { u32 org_value, bit_shift, new_value; if (bitmask != bMaskDWord) { org_value = r8712_bb_reg_read(pAdapter, offset); bit_shift = bitshift(bitmask); new_value = (org_value & (~bitmask)) | (value << bit_shift); } else { new_value = value; } return r8712_bb_reg_write(pAdapter, offset, new_value); } static u32 get_rf_reg(struct _adapter *pAdapter, u8 path, u8 offset, u32 bitmask) { u32 org_value, bit_shift; org_value = r8712_rf_reg_read(pAdapter, path, offset); bit_shift = bitshift(bitmask); return (org_value & bitmask) >> bit_shift; } static u8 set_rf_reg(struct _adapter *pAdapter, u8 path, u8 offset, u32 bitmask, u32 value) { u32 org_value, bit_shift, new_value; if (bitmask != bMaskDWord) { org_value = r8712_rf_reg_read(pAdapter, path, offset); bit_shift = bitshift(bitmask); new_value = (org_value & (~bitmask)) | (value << bit_shift); } else { new_value = value; } return r8712_rf_reg_write(pAdapter, path, offset, new_value); } /* * SetChannel * Description * Use H2C command to change channel, * not only modify rf register, but also other setting need to be done. */ void r8712_SetChannel(struct _adapter *pAdapter) { struct cmd_priv *pcmdpriv = &pAdapter->cmdpriv; struct cmd_obj *pcmd = NULL; struct SetChannel_parm *pparm = NULL; u16 code = GEN_CMD_CODE(_SetChannel); pcmd = kmalloc(sizeof(*pcmd), GFP_ATOMIC); if (!pcmd) return; pparm = kmalloc(sizeof(*pparm), GFP_ATOMIC); if (!pparm) { kfree(pcmd); return; } pparm->curr_ch = pAdapter->mppriv.curr_ch; init_h2fwcmd_w_parm_no_rsp(pcmd, pparm, code); r8712_enqueue_cmd(pcmdpriv, pcmd); } static void SetCCKTxPower(struct _adapter *pAdapter, u8 TxPower) { u16 TxAGC = 0; TxAGC = TxPower; set_bb_reg(pAdapter, rTxAGC_CCK_Mcs32, bTxAGCRateCCK, TxAGC); } static void SetOFDMTxPower(struct _adapter *pAdapter, u8 TxPower) { u32 TxAGC = 0; TxAGC |= ((TxPower << 24) | (TxPower << 16) | (TxPower << 8) | TxPower); set_bb_reg(pAdapter, rTxAGC_Rate18_06, bTxAGCRate18_06, TxAGC); set_bb_reg(pAdapter, rTxAGC_Rate54_24, bTxAGCRate54_24, TxAGC); set_bb_reg(pAdapter, rTxAGC_Mcs03_Mcs00, bTxAGCRateMCS3_MCS0, TxAGC); set_bb_reg(pAdapter, rTxAGC_Mcs07_Mcs04, bTxAGCRateMCS7_MCS4, TxAGC); set_bb_reg(pAdapter, rTxAGC_Mcs11_Mcs08, bTxAGCRateMCS11_MCS8, TxAGC); set_bb_reg(pAdapter, rTxAGC_Mcs15_Mcs12, bTxAGCRateMCS15_MCS12, TxAGC); } void r8712_SetTxPower(struct _adapter *pAdapter) { u8 TxPower = pAdapter->mppriv.curr_txpoweridx; SetCCKTxPower(pAdapter, TxPower); SetOFDMTxPower(pAdapter, TxPower); } void r8712_SetTxAGCOffset(struct _adapter *pAdapter, u32 ulTxAGCOffset) { u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D, tmpAGC; TxAGCOffset_B = ulTxAGCOffset & 0x000000ff; TxAGCOffset_C = (ulTxAGCOffset & 0x0000ff00) >> 8; TxAGCOffset_D = (ulTxAGCOffset & 0x00ff0000) >> 16; tmpAGC = TxAGCOffset_D << 8 | TxAGCOffset_C << 4 | TxAGCOffset_B; set_bb_reg(pAdapter, rFPGA0_TxGainStage, (bXBTxAGC | bXCTxAGC | bXDTxAGC), tmpAGC); } void r8712_SetDataRate(struct _adapter *pAdapter) { u8 path = RF_PATH_A; u8 offset = RF_SYN_G2; u32 value; value = (pAdapter->mppriv.curr_rateidx < 4) ? 0x4440 : 0xF200; r8712_rf_reg_write(pAdapter, path, offset, value); } void r8712_SwitchBandwidth(struct _adapter *pAdapter) { /* 3 1.Set MAC register : BWOPMODE bit2:1 20MhzBW */ u8 regBwOpMode = 0; u8 Bandwidth = pAdapter->mppriv.curr_bandwidth; regBwOpMode = r8712_read8(pAdapter, 0x10250203); if (Bandwidth == HT_CHANNEL_WIDTH_20) regBwOpMode |= BIT(2); else regBwOpMode &= ~(BIT(2)); r8712_write8(pAdapter, 0x10250203, regBwOpMode); /* 3 2.Set PHY related register */ switch (Bandwidth) { /* 20 MHz channel*/ case HT_CHANNEL_WIDTH_20: set_bb_reg(pAdapter, rFPGA0_RFMOD, bRFMOD, 0x0); set_bb_reg(pAdapter, rFPGA1_RFMOD, bRFMOD, 0x0); /* Use PHY_REG.txt default value. Do not need to change. * Correct the tx power for CCK rate in 40M. * It is set in Tx descriptor for 8192x series */ set_bb_reg(pAdapter, rFPGA0_AnalogParameter2, bMaskDWord, 0x58); break; /* 40 MHz channel*/ case HT_CHANNEL_WIDTH_40: set_bb_reg(pAdapter, rFPGA0_RFMOD, bRFMOD, 0x1); set_bb_reg(pAdapter, rFPGA1_RFMOD, bRFMOD, 0x1); /* Use PHY_REG.txt default value. Do not need to change. * Correct the tx power for CCK rate in 40M. * Set Control channel to upper or lower. These settings are * required only for 40MHz */ set_bb_reg(pAdapter, rCCK0_System, bCCKSideBand, (HAL_PRIME_CHNL_OFFSET_DONT_CARE >> 1)); set_bb_reg(pAdapter, rOFDM1_LSTF, 0xC00, HAL_PRIME_CHNL_OFFSET_DONT_CARE); set_bb_reg(pAdapter, rFPGA0_AnalogParameter2, bMaskDWord, 0x18); break; default: break; } /* 3 3.Set RF related register */ switch (Bandwidth) { case HT_CHANNEL_WIDTH_20: set_rf_reg(pAdapter, RF_PATH_A, RF_CHNLBW, BIT(10) | BIT(11), 0x01); break; case HT_CHANNEL_WIDTH_40: set_rf_reg(pAdapter, RF_PATH_A, RF_CHNLBW, BIT(10) | BIT(11), 0x00); break; default: break; } } /*------------------------------Define structure----------------------------*/ struct R_ANTENNA_SELECT_OFDM { u32 r_tx_antenna:4; u32 r_ant_l:4; u32 r_ant_non_ht:4; u32 r_ant_ht1:4; u32 r_ant_ht2:4; u32 r_ant_ht_s1:4; u32 r_ant_non_ht_s1:4; u32 OFDM_TXSC:2; u32 Reserved:2; }; struct R_ANTENNA_SELECT_CCK { u8 r_cckrx_enable_2:2; u8 r_cckrx_enable:2; u8 r_ccktx_enable:4; }; void r8712_SwitchAntenna(struct _adapter *pAdapter) { u32 ofdm_tx_en_val = 0, ofdm_tx_ant_sel_val = 0; u8 ofdm_rx_ant_sel_val = 0; u8 cck_ant_select_val = 0; u32 cck_ant_sel_val = 0; struct R_ANTENNA_SELECT_CCK *p_cck_txrx; p_cck_txrx = (struct R_ANTENNA_SELECT_CCK *)&cck_ant_select_val; switch (pAdapter->mppriv.antenna_tx) { case ANTENNA_A: /* From SD3 Willis suggestion !!! Set RF A=TX and B as standby*/ set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2); set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 1); ofdm_tx_en_val = 0x3; ofdm_tx_ant_sel_val = 0x11111111;/* Power save */ p_cck_txrx->r_ccktx_enable = 0x8; break; case ANTENNA_B: set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 1); set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2); ofdm_tx_en_val = 0x3; ofdm_tx_ant_sel_val = 0x22222222;/* Power save */ p_cck_txrx->r_ccktx_enable = 0x4; break; case ANTENNA_AB: /* For 8192S */ set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2); set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2); ofdm_tx_en_val = 0x3; ofdm_tx_ant_sel_val = 0x3321333; /* Disable Power save */ p_cck_txrx->r_ccktx_enable = 0xC; break; default: break; } /*OFDM Tx*/ set_bb_reg(pAdapter, rFPGA1_TxInfo, 0xffffffff, ofdm_tx_ant_sel_val); /*OFDM Tx*/ set_bb_reg(pAdapter, rFPGA0_TxInfo, 0x0000000f, ofdm_tx_en_val); switch (pAdapter->mppriv.antenna_rx) { case ANTENNA_A: ofdm_rx_ant_sel_val = 0x1; /* A */ p_cck_txrx->r_cckrx_enable = 0x0; /* default: A */ p_cck_txrx->r_cckrx_enable_2 = 0x0; /* option: A */ break; case ANTENNA_B: ofdm_rx_ant_sel_val = 0x2; /* B */ p_cck_txrx->r_cckrx_enable = 0x1; /* default: B */ p_cck_txrx->r_cckrx_enable_2 = 0x1; /* option: B */ break; case ANTENNA_AB: ofdm_rx_ant_sel_val = 0x3; /* AB */ p_cck_txrx->r_cckrx_enable = 0x0; /* default:A */ p_cck_txrx->r_cckrx_enable_2 = 0x1; /* option:B */ break; default: break; } /*OFDM Rx*/ set_bb_reg(pAdapter, rOFDM0_TRxPathEnable, 0x0000000f, ofdm_rx_ant_sel_val); /*OFDM Rx*/ set_bb_reg(pAdapter, rOFDM1_TRxPathEnable, 0x0000000f, ofdm_rx_ant_sel_val); cck_ant_sel_val = cck_ant_select_val; /*CCK TxRx*/ set_bb_reg(pAdapter, rCCK0_AFESetting, bMaskByte3, cck_ant_sel_val); } static void TriggerRFThermalMeter(struct _adapter *pAdapter) { /* 0x24: RF Reg[6:5] */ set_rf_reg(pAdapter, RF_PATH_A, RF_T_METER, bRFRegOffsetMask, 0x60); } static u32 ReadRFThermalMeter(struct _adapter *pAdapter) { /* 0x24: RF Reg[4:0] */ return get_rf_reg(pAdapter, RF_PATH_A, RF_T_METER, 0x1F); } void r8712_GetThermalMeter(struct _adapter *pAdapter, u32 *value) { TriggerRFThermalMeter(pAdapter); msleep(1000); *value = ReadRFThermalMeter(pAdapter); } void r8712_SetSingleCarrierTx(struct _adapter *pAdapter, u8 bStart) { if (bStart) { /* Start Single Carrier. */ /* 1. if OFDM block on? */ if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) /*set OFDM block on*/ set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable); /* 2. set CCK test mode off, set to CCK normal mode */ set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, bDisable); /* 3. turn on scramble setting */ set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable); /* 4. Turn On Single Carrier Tx and off the other test modes. */ set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bEnable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); } else { /* Stop Single Carrier.*/ /* Turn off all test modes.*/ set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); msleep(20); /*BB Reset*/ set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } } void r8712_SetSingleToneTx(struct _adapter *pAdapter, u8 bStart) { u8 rfPath; switch (pAdapter->mppriv.antenna_tx) { case ANTENNA_B: rfPath = RF_PATH_B; break; case ANTENNA_A: default: rfPath = RF_PATH_A; break; } if (bStart) { /* Start Single Tone.*/ set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bDisable); set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bDisable); set_rf_reg(pAdapter, rfPath, RF_TX_G2, bRFRegOffsetMask, 0xd4000); msleep(100); /* PAD all on.*/ set_rf_reg(pAdapter, rfPath, RF_AC, bRFRegOffsetMask, 0x2001f); msleep(100); } else { /* Stop Single Tone.*/ set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable); set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable); set_rf_reg(pAdapter, rfPath, RF_TX_G2, bRFRegOffsetMask, 0x54000); msleep(100); /* PAD all on.*/ set_rf_reg(pAdapter, rfPath, RF_AC, bRFRegOffsetMask, 0x30000); msleep(100); } } void r8712_SetCarrierSuppressionTx(struct _adapter *pAdapter, u8 bStart) { if (bStart) { /* Start Carrier Suppression.*/ if (pAdapter->mppriv.curr_rateidx <= MPT_RATE_11M) { /* 1. if CCK block on? */ if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn)) { /*set CCK block on*/ set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable); } /* Turn Off All Test Mode */ set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); /*transmit mode*/ set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); /*turn off scramble setting*/ set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bDisable); /*Set CCK Tx Test Rate*/ /*Set FTxRate to 1Mbps*/ set_bb_reg(pAdapter, rCCK0_System, bCCKTxRate, 0x0); } } else { /* Stop Carrier Suppression. */ if (pAdapter->mppriv.curr_rateidx <= MPT_RATE_11M) { /*normal mode*/ set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); /*turn on scramble setting*/ set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable); /*BB Reset*/ set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } } } static void SetCCKContinuousTx(struct _adapter *pAdapter, u8 bStart) { u32 cckrate; if (bStart) { /* 1. if CCK block on? */ if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn)) { /*set CCK block on*/ set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable); } /* Turn Off All Test Mode */ set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); /*Set CCK Tx Test Rate*/ cckrate = pAdapter->mppriv.curr_rateidx; set_bb_reg(pAdapter, rCCK0_System, bCCKTxRate, cckrate); /*transmit mode*/ set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); /*turn on scramble setting*/ set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable); } else { /*normal mode*/ set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); /*turn on scramble setting*/ set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable); /*BB Reset*/ set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } } /* mpt_StartCckContTx */ static void SetOFDMContinuousTx(struct _adapter *pAdapter, u8 bStart) { if (bStart) { /* 1. if OFDM block on? */ if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) { /*set OFDM block on*/ set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable); } /* 2. set CCK test mode off, set to CCK normal mode*/ set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, bDisable); /* 3. turn on scramble setting */ set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable); /* 4. Turn On Continue Tx and turn off the other test modes.*/ set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bEnable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); } else { set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable); set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable); msleep(20); /*BB Reset*/ set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0); set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1); } } /* mpt_StartOfdmContTx */ void r8712_SetContinuousTx(struct _adapter *pAdapter, u8 bStart) { /* ADC turn off [bit24-21] adc port0 ~ port1 */ if (bStart) { r8712_bb_reg_write(pAdapter, rRx_Wait_CCCA, r8712_bb_reg_read(pAdapter, rRx_Wait_CCCA) & 0xFE1FFFFF); msleep(100); } if (pAdapter->mppriv.curr_rateidx <= MPT_RATE_11M) SetCCKContinuousTx(pAdapter, bStart); else if ((pAdapter->mppriv.curr_rateidx >= MPT_RATE_6M) && (pAdapter->mppriv.curr_rateidx <= MPT_RATE_MCS15)) SetOFDMContinuousTx(pAdapter, bStart); /* ADC turn on [bit24-21] adc port0 ~ port1 */ if (!bStart) r8712_bb_reg_write(pAdapter, rRx_Wait_CCCA, r8712_bb_reg_read(pAdapter, rRx_Wait_CCCA) | 0x01E00000); } void r8712_ResetPhyRxPktCount(struct _adapter *pAdapter) { u32 i, phyrx_set = 0; for (i = OFDM_PPDU_BIT; i <= HT_MPDU_FAIL_BIT; i++) { phyrx_set = 0; phyrx_set |= (i << 28); /*select*/ phyrx_set |= 0x08000000; /* set counter to zero*/ r8712_write32(pAdapter, RXERR_RPT, phyrx_set); } } static u32 GetPhyRxPktCounts(struct _adapter *pAdapter, u32 selbit) { /*selection*/ u32 phyrx_set = 0; u32 SelectBit; SelectBit = selbit << 28; phyrx_set |= (SelectBit & 0xF0000000); r8712_write32(pAdapter, RXERR_RPT, phyrx_set); /*Read packet count*/ return r8712_read32(pAdapter, RXERR_RPT) & RPTMaxCount; } u32 r8712_GetPhyRxPktReceived(struct _adapter *pAdapter) { u32 OFDM_cnt = GetPhyRxPktCounts(pAdapter, OFDM_MPDU_OK_BIT); u32 CCK_cnt = GetPhyRxPktCounts(pAdapter, CCK_MPDU_OK_BIT); u32 HT_cnt = GetPhyRxPktCounts(pAdapter, HT_MPDU_OK_BIT); return OFDM_cnt + CCK_cnt + HT_cnt; } u32 r8712_GetPhyRxPktCRC32Error(struct _adapter *pAdapter) { u32 OFDM_cnt = GetPhyRxPktCounts(pAdapter, OFDM_MPDU_FAIL_BIT); u32 CCK_cnt = GetPhyRxPktCounts(pAdapter, CCK_MPDU_FAIL_BIT); u32 HT_cnt = GetPhyRxPktCounts(pAdapter, HT_MPDU_FAIL_BIT); return OFDM_cnt + CCK_cnt + HT_cnt; }
71 41 223 87 118 24 53 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. * */ #ifndef __IO_PAGETABLE_H #define __IO_PAGETABLE_H #include <linux/interval_tree.h> #include <linux/mutex.h> #include <linux/kref.h> #include <linux/xarray.h> #include "iommufd_private.h" struct iommu_domain; /* * Each io_pagetable is composed of intervals of areas which cover regions of * the iova that are backed by something. iova not covered by areas is not * populated in the page table. Each area is fully populated with pages. * * iovas are in byte units, but must be iopt->iova_alignment aligned. * * pages can be NULL, this means some other thread is still working on setting * up or tearing down the area. When observed under the write side of the * domain_rwsem a NULL pages must mean the area is still being setup and no * domains are filled. * * storage_domain points at an arbitrary iommu_domain that is holding the PFNs * for this area. It is locked by the pages->mutex. This simplifies the locking * as the pages code can rely on the storage_domain without having to get the * iopt->domains_rwsem. * * The io_pagetable::iova_rwsem protects node * The iopt_pages::mutex protects pages_node * iopt and iommu_prot are immutable * The pages::mutex protects num_accesses */ struct iopt_area { struct interval_tree_node node; struct interval_tree_node pages_node; struct io_pagetable *iopt; struct iopt_pages *pages; struct iommu_domain *storage_domain; /* How many bytes into the first page the area starts */ unsigned int page_offset; /* IOMMU_READ, IOMMU_WRITE, etc */ int iommu_prot; bool prevent_access : 1; unsigned int num_accesses; }; struct iopt_allowed { struct interval_tree_node node; }; struct iopt_reserved { struct interval_tree_node node; void *owner; }; int iopt_area_fill_domains(struct iopt_area *area, struct iopt_pages *pages); void iopt_area_unfill_domains(struct iopt_area *area, struct iopt_pages *pages); int iopt_area_fill_domain(struct iopt_area *area, struct iommu_domain *domain); void iopt_area_unfill_domain(struct iopt_area *area, struct iopt_pages *pages, struct iommu_domain *domain); void iopt_area_unmap_domain(struct iopt_area *area, struct iommu_domain *domain); static inline unsigned long iopt_area_index(struct iopt_area *area) { return area->pages_node.start; } static inline unsigned long iopt_area_last_index(struct iopt_area *area) { return area->pages_node.last; } static inline unsigned long iopt_area_iova(struct iopt_area *area) { return area->node.start; } static inline unsigned long iopt_area_last_iova(struct iopt_area *area) { return area->node.last; } static inline size_t iopt_area_length(struct iopt_area *area) { return (area->node.last - area->node.start) + 1; } /* * Number of bytes from the start of the iopt_pages that the iova begins. * iopt_area_start_byte() / PAGE_SIZE encodes the starting page index * iopt_area_start_byte() % PAGE_SIZE encodes the offset within that page */ static inline unsigned long iopt_area_start_byte(struct iopt_area *area, unsigned long iova) { if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) WARN_ON(iova < iopt_area_iova(area) || iova > iopt_area_last_iova(area)); return (iova - iopt_area_iova(area)) + area->page_offset + iopt_area_index(area) * PAGE_SIZE; } static inline unsigned long iopt_area_iova_to_index(struct iopt_area *area, unsigned long iova) { return iopt_area_start_byte(area, iova) / PAGE_SIZE; } #define __make_iopt_iter(name) \ static inline struct iopt_##name *iopt_##name##_iter_first( \ struct io_pagetable *iopt, unsigned long start, \ unsigned long last) \ { \ struct interval_tree_node *node; \ \ lockdep_assert_held(&iopt->iova_rwsem); \ node = interval_tree_iter_first(&iopt->name##_itree, start, \ last); \ if (!node) \ return NULL; \ return container_of(node, struct iopt_##name, node); \ } \ static inline struct iopt_##name *iopt_##name##_iter_next( \ struct iopt_##name *last_node, unsigned long start, \ unsigned long last) \ { \ struct interval_tree_node *node; \ \ node = interval_tree_iter_next(&last_node->node, start, last); \ if (!node) \ return NULL; \ return container_of(node, struct iopt_##name, node); \ } __make_iopt_iter(area) __make_iopt_iter(allowed) __make_iopt_iter(reserved) struct iopt_area_contig_iter { unsigned long cur_iova; unsigned long last_iova; struct iopt_area *area; }; struct iopt_area *iopt_area_contig_init(struct iopt_area_contig_iter *iter, struct io_pagetable *iopt, unsigned long iova, unsigned long last_iova); struct iopt_area *iopt_area_contig_next(struct iopt_area_contig_iter *iter); static inline bool iopt_area_contig_done(struct iopt_area_contig_iter *iter) { return iter->area && iter->last_iova <= iopt_area_last_iova(iter->area); } /* * Iterate over a contiguous list of areas that span the iova,last_iova range. * The caller must check iopt_area_contig_done() after the loop to see if * contiguous areas existed. */ #define iopt_for_each_contig_area(iter, area, iopt, iova, last_iova) \ for (area = iopt_area_contig_init(iter, iopt, iova, last_iova); area; \ area = iopt_area_contig_next(iter)) enum { IOPT_PAGES_ACCOUNT_NONE = 0, IOPT_PAGES_ACCOUNT_USER = 1, IOPT_PAGES_ACCOUNT_MM = 2, }; /* * This holds a pinned page list for multiple areas of IO address space. The * pages always originate from a linear chunk of userspace VA. Multiple * io_pagetable's, through their iopt_area's, can share a single iopt_pages * which avoids multi-pinning and double accounting of page consumption. * * indexes in this structure are measured in PAGE_SIZE units, are 0 based from * the start of the uptr and extend to npages. pages are pinned dynamically * according to the intervals in the access_itree and domains_itree, npinned * records the current number of pages pinned. */ struct iopt_pages { struct kref kref; struct mutex mutex; size_t npages; size_t npinned; size_t last_npinned; struct task_struct *source_task; struct mm_struct *source_mm; struct user_struct *source_user; void __user *uptr; bool writable:1; u8 account_mode; struct xarray pinned_pfns; /* Of iopt_pages_access::node */ struct rb_root_cached access_itree; /* Of iopt_area::pages_node */ struct rb_root_cached domains_itree; }; struct iopt_pages *iopt_alloc_pages(void __user *uptr, unsigned long length, bool writable); void iopt_release_pages(struct kref *kref); static inline void iopt_put_pages(struct iopt_pages *pages) { kref_put(&pages->kref, iopt_release_pages); } void iopt_pages_fill_from_xarray(struct iopt_pages *pages, unsigned long start, unsigned long last, struct page **out_pages); int iopt_pages_fill_xarray(struct iopt_pages *pages, unsigned long start, unsigned long last, struct page **out_pages); void iopt_pages_unfill_xarray(struct iopt_pages *pages, unsigned long start, unsigned long last); int iopt_area_add_access(struct iopt_area *area, unsigned long start, unsigned long last, struct page **out_pages, unsigned int flags); void iopt_area_remove_access(struct iopt_area *area, unsigned long start, unsigned long last); int iopt_pages_rw_access(struct iopt_pages *pages, unsigned long start_byte, void *data, unsigned long length, unsigned int flags); /* * Each interval represents an active iopt_access_pages(), it acts as an * interval lock that keeps the PFNs pinned and stored in the xarray. */ struct iopt_pages_access { struct interval_tree_node node; unsigned int users; }; #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 // SPDX-License-Identifier: GPL-2.0-or-later /* * Net1080 based USB host-to-host cables * Copyright (C) 2000-2005 by David Brownell */ // #define DEBUG // error path messages, extra info // #define VERBOSE // more; success messages #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/workqueue.h> #include <linux/mii.h> #include <linux/usb.h> #include <linux/usb/usbnet.h> #include <linux/slab.h> #include <asm/unaligned.h> /* * Netchip 1080 driver ... http://www.netchip.com * (Sept 2004: End-of-life announcement has been sent.) * Used in (some) LapLink cables */ #define frame_errors data[1] /* * NetChip framing of ethernet packets, supporting additional error * checks for links that may drop bulk packets from inside messages. * Odd USB length == always short read for last usb packet. * - nc_header * - Ethernet header (14 bytes) * - payload * - (optional padding byte, if needed so length becomes odd) * - nc_trailer * * This framing is to be avoided for non-NetChip devices. */ struct nc_header { // packed: __le16 hdr_len; // sizeof nc_header (LE, all) __le16 packet_len; // payload size (including ethhdr) __le16 packet_id; // detects dropped packets #define MIN_HEADER 6 // all else is optional, and must start with: // __le16 vendorId; // from usb-if // __le16 productId; } __packed; #define PAD_BYTE ((unsigned char)0xAC) struct nc_trailer { __le16 packet_id; } __packed; // packets may use FLAG_FRAMING_NC and optional pad #define FRAMED_SIZE(mtu) (sizeof (struct nc_header) \ + sizeof (struct ethhdr) \ + (mtu) \ + 1 \ + sizeof (struct nc_trailer)) #define MIN_FRAMED FRAMED_SIZE(0) /* packets _could_ be up to 64KB... */ #define NC_MAX_PACKET 32767 /* * Zero means no timeout; else, how long a 64 byte bulk packet may be queued * before the hardware drops it. If that's done, the driver will need to * frame network packets to guard against the dropped USB packets. The win32 * driver sets this for both sides of the link. */ #define NC_READ_TTL_MS ((u8)255) // ms /* * We ignore most registers and EEPROM contents. */ #define REG_USBCTL ((u8)0x04) #define REG_TTL ((u8)0x10) #define REG_STATUS ((u8)0x11) /* * Vendor specific requests to read/write data */ #define REQUEST_REGISTER ((u8)0x10) #define REQUEST_EEPROM ((u8)0x11) static int nc_vendor_read(struct usbnet *dev, u8 req, u8 regnum, u16 *retval_ptr) { int status = usbnet_read_cmd(dev, req, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, regnum, retval_ptr, sizeof *retval_ptr); if (status > 0) status = 0; if (!status) le16_to_cpus(retval_ptr); return status; } static inline int nc_register_read(struct usbnet *dev, u8 regnum, u16 *retval_ptr) { return nc_vendor_read(dev, REQUEST_REGISTER, regnum, retval_ptr); } static void nc_vendor_write(struct usbnet *dev, u8 req, u8 regnum, u16 value) { usbnet_write_cmd(dev, req, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, regnum, NULL, 0); } static inline void nc_register_write(struct usbnet *dev, u8 regnum, u16 value) { nc_vendor_write(dev, REQUEST_REGISTER, regnum, value); } #if 0 static void nc_dump_registers(struct usbnet *dev) { u8 reg; u16 *vp = kmalloc(sizeof (u16)); if (!vp) return; netdev_dbg(dev->net, "registers:\n"); for (reg = 0; reg < 0x20; reg++) { int retval; // reading some registers is trouble if (reg >= 0x08 && reg <= 0xf) continue; if (reg >= 0x12 && reg <= 0x1e) continue; retval = nc_register_read(dev, reg, vp); if (retval < 0) netdev_dbg(dev->net, "reg [0x%x] ==> error %d\n", reg, retval); else netdev_dbg(dev->net, "reg [0x%x] = 0x%x\n", reg, *vp); } kfree(vp); } #endif /*-------------------------------------------------------------------------*/ /* * Control register */ #define USBCTL_WRITABLE_MASK 0x1f0f // bits 15-13 reserved, r/o #define USBCTL_ENABLE_LANG (1 << 12) #define USBCTL_ENABLE_MFGR (1 << 11) #define USBCTL_ENABLE_PROD (1 << 10) #define USBCTL_ENABLE_SERIAL (1 << 9) #define USBCTL_ENABLE_DEFAULTS (1 << 8) // bits 7-4 reserved, r/o #define USBCTL_FLUSH_OTHER (1 << 3) #define USBCTL_FLUSH_THIS (1 << 2) #define USBCTL_DISCONN_OTHER (1 << 1) #define USBCTL_DISCONN_THIS (1 << 0) static inline void nc_dump_usbctl(struct usbnet *dev, u16 usbctl) { netif_dbg(dev, link, dev->net, "net1080 %s-%s usbctl 0x%x:%s%s%s%s%s; this%s%s; other%s%s; r/o 0x%x\n", dev->udev->bus->bus_name, dev->udev->devpath, usbctl, (usbctl & USBCTL_ENABLE_LANG) ? " lang" : "", (usbctl & USBCTL_ENABLE_MFGR) ? " mfgr" : "", (usbctl & USBCTL_ENABLE_PROD) ? " prod" : "", (usbctl & USBCTL_ENABLE_SERIAL) ? " serial" : "", (usbctl & USBCTL_ENABLE_DEFAULTS) ? " defaults" : "", (usbctl & USBCTL_FLUSH_THIS) ? " FLUSH" : "", (usbctl & USBCTL_DISCONN_THIS) ? " DIS" : "", (usbctl & USBCTL_FLUSH_OTHER) ? " FLUSH" : "", (usbctl & USBCTL_DISCONN_OTHER) ? " DIS" : "", usbctl & ~USBCTL_WRITABLE_MASK); } /*-------------------------------------------------------------------------*/ /* * Status register */ #define STATUS_PORT_A (1 << 15) #define STATUS_CONN_OTHER (1 << 14) #define STATUS_SUSPEND_OTHER (1 << 13) #define STATUS_MAILBOX_OTHER (1 << 12) #define STATUS_PACKETS_OTHER(n) (((n) >> 8) & 0x03) #define STATUS_CONN_THIS (1 << 6) #define STATUS_SUSPEND_THIS (1 << 5) #define STATUS_MAILBOX_THIS (1 << 4) #define STATUS_PACKETS_THIS(n) (((n) >> 0) & 0x03) #define STATUS_UNSPEC_MASK 0x0c8c #define STATUS_NOISE_MASK ((u16)~(0x0303|STATUS_UNSPEC_MASK)) static inline void nc_dump_status(struct usbnet *dev, u16 status) { netif_dbg(dev, link, dev->net, "net1080 %s-%s status 0x%x: this (%c) PKT=%d%s%s%s; other PKT=%d%s%s%s; unspec 0x%x\n", dev->udev->bus->bus_name, dev->udev->devpath, status, // XXX the packet counts don't seem right // (1 at reset, not 0); maybe UNSPEC too (status & STATUS_PORT_A) ? 'A' : 'B', STATUS_PACKETS_THIS(status), (status & STATUS_CONN_THIS) ? " CON" : "", (status & STATUS_SUSPEND_THIS) ? " SUS" : "", (status & STATUS_MAILBOX_THIS) ? " MBOX" : "", STATUS_PACKETS_OTHER(status), (status & STATUS_CONN_OTHER) ? " CON" : "", (status & STATUS_SUSPEND_OTHER) ? " SUS" : "", (status & STATUS_MAILBOX_OTHER) ? " MBOX" : "", status & STATUS_UNSPEC_MASK); } /*-------------------------------------------------------------------------*/ /* * TTL register */ #define TTL_OTHER(ttl) (0x00ff & (ttl >> 8)) #define MK_TTL(this,other) ((u16)(((other)<<8)|(0x00ff&(this)))) /*-------------------------------------------------------------------------*/ static int net1080_reset(struct usbnet *dev) { u16 usbctl, status, ttl; u16 vp; int retval; // nc_dump_registers(dev); if ((retval = nc_register_read(dev, REG_STATUS, &vp)) < 0) { netdev_dbg(dev->net, "can't read %s-%s status: %d\n", dev->udev->bus->bus_name, dev->udev->devpath, retval); goto done; } status = vp; nc_dump_status(dev, status); if ((retval = nc_register_read(dev, REG_USBCTL, &vp)) < 0) { netdev_dbg(dev->net, "can't read USBCTL, %d\n", retval); goto done; } usbctl = vp; nc_dump_usbctl(dev, usbctl); nc_register_write(dev, REG_USBCTL, USBCTL_FLUSH_THIS | USBCTL_FLUSH_OTHER); if ((retval = nc_register_read(dev, REG_TTL, &vp)) < 0) { netdev_dbg(dev->net, "can't read TTL, %d\n", retval); goto done; } ttl = vp; nc_register_write(dev, REG_TTL, MK_TTL(NC_READ_TTL_MS, TTL_OTHER(ttl)) ); netdev_dbg(dev->net, "assigned TTL, %d ms\n", NC_READ_TTL_MS); netif_info(dev, link, dev->net, "port %c, peer %sconnected\n", (status & STATUS_PORT_A) ? 'A' : 'B', (status & STATUS_CONN_OTHER) ? "" : "dis"); retval = 0; done: return retval; } static int net1080_check_connect(struct usbnet *dev) { int retval; u16 status; u16 vp; retval = nc_register_read(dev, REG_STATUS, &vp); status = vp; if (retval != 0) { netdev_dbg(dev->net, "net1080_check_conn read - %d\n", retval); return retval; } if ((status & STATUS_CONN_OTHER) != STATUS_CONN_OTHER) return -ENOLINK; return 0; } static void nc_ensure_sync(struct usbnet *dev) { if (++dev->frame_errors <= 5) return; if (usbnet_write_cmd_async(dev, REQUEST_REGISTER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, USBCTL_FLUSH_THIS | USBCTL_FLUSH_OTHER, REG_USBCTL, NULL, 0)) return; netif_dbg(dev, rx_err, dev->net, "flush net1080; too many framing errors\n"); dev->frame_errors = 0; } static int net1080_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { struct nc_header *header; struct nc_trailer *trailer; u16 hdr_len, packet_len; /* This check is no longer done by usbnet */ if (skb->len < dev->net->hard_header_len) return 0; if (!(skb->len & 0x01)) { netdev_dbg(dev->net, "rx framesize %d range %d..%d mtu %d\n", skb->len, dev->net->hard_header_len, dev->hard_mtu, dev->net->mtu); dev->net->stats.rx_frame_errors++; nc_ensure_sync(dev); return 0; } header = (struct nc_header *) skb->data; hdr_len = le16_to_cpup(&header->hdr_len); packet_len = le16_to_cpup(&header->packet_len); if (FRAMED_SIZE(packet_len) > NC_MAX_PACKET) { dev->net->stats.rx_frame_errors++; netdev_dbg(dev->net, "packet too big, %d\n", packet_len); nc_ensure_sync(dev); return 0; } else if (hdr_len < MIN_HEADER) { dev->net->stats.rx_frame_errors++; netdev_dbg(dev->net, "header too short, %d\n", hdr_len); nc_ensure_sync(dev); return 0; } else if (hdr_len > MIN_HEADER) { // out of band data for us? netdev_dbg(dev->net, "header OOB, %d bytes\n", hdr_len - MIN_HEADER); nc_ensure_sync(dev); // switch (vendor/product ids) { ... } } skb_pull(skb, hdr_len); trailer = (struct nc_trailer *) (skb->data + skb->len - sizeof *trailer); skb_trim(skb, skb->len - sizeof *trailer); if ((packet_len & 0x01) == 0) { if (skb->data [packet_len] != PAD_BYTE) { dev->net->stats.rx_frame_errors++; netdev_dbg(dev->net, "bad pad\n"); return 0; } skb_trim(skb, skb->len - 1); } if (skb->len != packet_len) { dev->net->stats.rx_frame_errors++; netdev_dbg(dev->net, "bad packet len %d (expected %d)\n", skb->len, packet_len); nc_ensure_sync(dev); return 0; } if (header->packet_id != get_unaligned(&trailer->packet_id)) { dev->net->stats.rx_fifo_errors++; netdev_dbg(dev->net, "(2+ dropped) rx packet_id mismatch 0x%x 0x%x\n", le16_to_cpu(header->packet_id), le16_to_cpu(trailer->packet_id)); return 0; } #if 0 netdev_dbg(dev->net, "frame <rx h %d p %d id %d\n", header->hdr_len, header->packet_len, header->packet_id); #endif dev->frame_errors = 0; return 1; } static struct sk_buff * net1080_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { struct sk_buff *skb2; struct nc_header *header = NULL; struct nc_trailer *trailer = NULL; int padlen = sizeof (struct nc_trailer); int len = skb->len; if (!((len + padlen + sizeof (struct nc_header)) & 0x01)) padlen++; if (!skb_cloned(skb)) { int headroom = skb_headroom(skb); int tailroom = skb_tailroom(skb); if (padlen <= tailroom && sizeof(struct nc_header) <= headroom) /* There's enough head and tail room */ goto encapsulate; if ((sizeof (struct nc_header) + padlen) < (headroom + tailroom)) { /* There's enough total room, so just readjust */ skb->data = memmove(skb->head + sizeof (struct nc_header), skb->data, skb->len); skb_set_tail_pointer(skb, len); goto encapsulate; } } /* Create a new skb to use with the correct size */ skb2 = skb_copy_expand(skb, sizeof (struct nc_header), padlen, flags); dev_kfree_skb_any(skb); if (!skb2) return skb2; skb = skb2; encapsulate: /* header first */ header = skb_push(skb, sizeof *header); header->hdr_len = cpu_to_le16(sizeof (*header)); header->packet_len = cpu_to_le16(len); header->packet_id = cpu_to_le16((u16)dev->xid++); /* maybe pad; then trailer */ if (!((skb->len + sizeof *trailer) & 0x01)) skb_put_u8(skb, PAD_BYTE); trailer = skb_put(skb, sizeof *trailer); put_unaligned(header->packet_id, &trailer->packet_id); #if 0 netdev_dbg(dev->net, "frame >tx h %d p %d id %d\n", header->hdr_len, header->packet_len, header->packet_id); #endif return skb; } static int net1080_bind(struct usbnet *dev, struct usb_interface *intf) { unsigned extra = sizeof (struct nc_header) + 1 + sizeof (struct nc_trailer); dev->net->hard_header_len += extra; dev->rx_urb_size = dev->net->hard_header_len + dev->net->mtu; dev->hard_mtu = NC_MAX_PACKET; return usbnet_get_endpoints (dev, intf); } static const struct driver_info net1080_info = { .description = "NetChip TurboCONNECT", .flags = FLAG_POINTTOPOINT | FLAG_FRAMING_NC, .bind = net1080_bind, .reset = net1080_reset, .check_connect = net1080_check_connect, .rx_fixup = net1080_rx_fixup, .tx_fixup = net1080_tx_fixup, }; static const struct usb_device_id products [] = { { USB_DEVICE(0x0525, 0x1080), // NetChip ref design .driver_info = (unsigned long) &net1080_info, }, { USB_DEVICE(0x06D0, 0x0622), // Laplink Gold .driver_info = (unsigned long) &net1080_info, }, { }, // END }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver net1080_driver = { .name = "net1080", .id_table = products, .probe = usbnet_probe, .disconnect = usbnet_disconnect, .suspend = usbnet_suspend, .resume = usbnet_resume, .disable_hub_initiated_lpm = 1, }; module_usb_driver(net1080_driver); MODULE_AUTHOR("David Brownell"); MODULE_DESCRIPTION("NetChip 1080 based USB Host-to-Host Links"); MODULE_LICENSE("GPL");
7 7 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 // SPDX-License-Identifier: GPL-2.0-only /* * Card-specific functions for the Siano SMS1xxx USB dongle * * Copyright (c) 2008 Michael Krufky <mkrufky@linuxtv.org> */ #include "sms-cards.h" #include "smsir.h" #include <linux/module.h> static struct sms_board sms_boards[] = { [SMS_BOARD_UNKNOWN] = { .name = "Unknown board", .type = SMS_UNKNOWN_TYPE, .default_mode = DEVICE_MODE_NONE, }, [SMS1XXX_BOARD_SIANO_STELLAR] = { .name = "Siano Stellar Digital Receiver", .type = SMS_STELLAR, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_SIANO_NOVA_A] = { .name = "Siano Nova A Digital Receiver", .type = SMS_NOVA_A0, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_SIANO_NOVA_B] = { .name = "Siano Nova B Digital Receiver", .type = SMS_NOVA_B0, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_SIANO_VEGA] = { .name = "Siano Vega Digital Receiver", .type = SMS_VEGA, .default_mode = DEVICE_MODE_CMMB, }, [SMS1XXX_BOARD_HAUPPAUGE_CATAMOUNT] = { .name = "Hauppauge Catamount", .type = SMS_STELLAR, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVBT_STELLAR, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_HAUPPAUGE_OKEMO_A] = { .name = "Hauppauge Okemo-A", .type = SMS_NOVA_A0, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVBT_NOVA_A, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_HAUPPAUGE_OKEMO_B] = { .name = "Hauppauge Okemo-B", .type = SMS_NOVA_B0, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVBT_NOVA_B, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_HAUPPAUGE_WINDHAM] = { .name = "Hauppauge WinTV MiniStick", .type = SMS_NOVA_B0, .fw[DEVICE_MODE_ISDBT_BDA] = SMS_FW_ISDBT_HCW_55XXX, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVBT_HCW_55XXX, .default_mode = DEVICE_MODE_DVBT_BDA, .rc_codes = RC_MAP_HAUPPAUGE, .board_cfg.leds_power = 26, .board_cfg.led0 = 27, .board_cfg.led1 = 28, .board_cfg.ir = 9, .led_power = 26, .led_lo = 27, .led_hi = 28, }, [SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD] = { .name = "Hauppauge WinTV MiniCard", .type = SMS_NOVA_B0, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVBT_HCW_55XXX, .default_mode = DEVICE_MODE_DVBT_BDA, .lna_ctrl = 29, .board_cfg.foreign_lna0_ctrl = 29, .rf_switch = 17, .board_cfg.rf_switch_uhf = 17, }, [SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD_R2] = { .name = "Hauppauge WinTV MiniCard Rev 2", .type = SMS_NOVA_B0, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVBT_HCW_55XXX, .default_mode = DEVICE_MODE_DVBT_BDA, .lna_ctrl = -1, }, [SMS1XXX_BOARD_SIANO_NICE] = { .name = "Siano Nice Digital Receiver", .type = SMS_NOVA_B0, .default_mode = DEVICE_MODE_DVBT_BDA, }, [SMS1XXX_BOARD_SIANO_VENICE] = { .name = "Siano Venice Digital Receiver", .type = SMS_VEGA, .default_mode = DEVICE_MODE_CMMB, }, [SMS1XXX_BOARD_SIANO_STELLAR_ROM] = { .name = "Siano Stellar Digital Receiver ROM", .type = SMS_STELLAR, .default_mode = DEVICE_MODE_DVBT_BDA, .intf_num = 1, }, [SMS1XXX_BOARD_ZTE_DVB_DATA_CARD] = { .name = "ZTE Data Card Digital Receiver", .type = SMS_NOVA_B0, .default_mode = DEVICE_MODE_DVBT_BDA, .intf_num = 5, .mtu = 15792, }, [SMS1XXX_BOARD_ONDA_MDTV_DATA_CARD] = { .name = "ONDA Data Card Digital Receiver", .type = SMS_NOVA_B0, .default_mode = DEVICE_MODE_DVBT_BDA, .intf_num = 6, .mtu = 15792, }, [SMS1XXX_BOARD_SIANO_MING] = { .name = "Siano Ming Digital Receiver", .type = SMS_MING, .default_mode = DEVICE_MODE_CMMB, }, [SMS1XXX_BOARD_SIANO_PELE] = { .name = "Siano Pele Digital Receiver", .type = SMS_PELE, .default_mode = DEVICE_MODE_ISDBT_BDA, }, [SMS1XXX_BOARD_SIANO_RIO] = { .name = "Siano Rio Digital Receiver", .type = SMS_RIO, .default_mode = DEVICE_MODE_ISDBT_BDA, }, [SMS1XXX_BOARD_SIANO_DENVER_1530] = { .name = "Siano Denver (ATSC-M/H) Digital Receiver", .type = SMS_DENVER_1530, .default_mode = DEVICE_MODE_ATSC, .crystal = 2400, }, [SMS1XXX_BOARD_SIANO_DENVER_2160] = { .name = "Siano Denver (TDMB) Digital Receiver", .type = SMS_DENVER_2160, .default_mode = DEVICE_MODE_DAB_TDMB, }, [SMS1XXX_BOARD_PCTV_77E] = { .name = "Hauppauge microStick 77e", .type = SMS_NOVA_B0, .fw[DEVICE_MODE_DVBT_BDA] = SMS_FW_DVB_NOVA_12MHZ_B0, .default_mode = DEVICE_MODE_DVBT_BDA, }, }; struct sms_board *sms_get_board(unsigned id) { BUG_ON(id >= ARRAY_SIZE(sms_boards)); return &sms_boards[id]; } EXPORT_SYMBOL_GPL(sms_get_board); static inline void sms_gpio_assign_11xx_default_led_config( struct smscore_config_gpio *p_gpio_config) { p_gpio_config->direction = SMS_GPIO_DIRECTION_OUTPUT; p_gpio_config->inputcharacteristics = SMS_GPIO_INPUTCHARACTERISTICS_NORMAL; p_gpio_config->outputdriving = SMS_GPIO_OUTPUTDRIVING_4mA; p_gpio_config->outputslewrate = SMS_GPIO_OUTPUT_SLEW_RATE_0_45_V_NS; p_gpio_config->pullupdown = SMS_GPIO_PULLUPDOWN_NONE; } int sms_board_event(struct smscore_device_t *coredev, enum SMS_BOARD_EVENTS gevent) { struct smscore_config_gpio my_gpio_config; sms_gpio_assign_11xx_default_led_config(&my_gpio_config); switch (gevent) { case BOARD_EVENT_POWER_INIT: /* including hotplug */ break; /* BOARD_EVENT_BIND */ case BOARD_EVENT_POWER_SUSPEND: break; /* BOARD_EVENT_POWER_SUSPEND */ case BOARD_EVENT_POWER_RESUME: break; /* BOARD_EVENT_POWER_RESUME */ case BOARD_EVENT_BIND: break; /* BOARD_EVENT_BIND */ case BOARD_EVENT_SCAN_PROG: break; /* BOARD_EVENT_SCAN_PROG */ case BOARD_EVENT_SCAN_COMP: break; /* BOARD_EVENT_SCAN_COMP */ case BOARD_EVENT_EMERGENCY_WARNING_SIGNAL: break; /* BOARD_EVENT_EMERGENCY_WARNING_SIGNAL */ case BOARD_EVENT_FE_LOCK: break; /* BOARD_EVENT_FE_LOCK */ case BOARD_EVENT_FE_UNLOCK: break; /* BOARD_EVENT_FE_UNLOCK */ case BOARD_EVENT_DEMOD_LOCK: break; /* BOARD_EVENT_DEMOD_LOCK */ case BOARD_EVENT_DEMOD_UNLOCK: break; /* BOARD_EVENT_DEMOD_UNLOCK */ case BOARD_EVENT_RECEPTION_MAX_4: break; /* BOARD_EVENT_RECEPTION_MAX_4 */ case BOARD_EVENT_RECEPTION_3: break; /* BOARD_EVENT_RECEPTION_3 */ case BOARD_EVENT_RECEPTION_2: break; /* BOARD_EVENT_RECEPTION_2 */ case BOARD_EVENT_RECEPTION_1: break; /* BOARD_EVENT_RECEPTION_1 */ case BOARD_EVENT_RECEPTION_LOST_0: break; /* BOARD_EVENT_RECEPTION_LOST_0 */ case BOARD_EVENT_MULTIPLEX_OK: break; /* BOARD_EVENT_MULTIPLEX_OK */ case BOARD_EVENT_MULTIPLEX_ERRORS: break; /* BOARD_EVENT_MULTIPLEX_ERRORS */ default: pr_err("Unknown SMS board event\n"); break; } return 0; } EXPORT_SYMBOL_GPL(sms_board_event); static int sms_set_gpio(struct smscore_device_t *coredev, int pin, int enable) { int lvl, ret; u32 gpio; struct smscore_config_gpio gpioconfig = { .direction = SMS_GPIO_DIRECTION_OUTPUT, .pullupdown = SMS_GPIO_PULLUPDOWN_NONE, .inputcharacteristics = SMS_GPIO_INPUTCHARACTERISTICS_NORMAL, .outputslewrate = SMS_GPIO_OUTPUT_SLEW_RATE_FAST, .outputdriving = SMS_GPIO_OUTPUTDRIVING_S_4mA, }; if (pin == 0) return -EINVAL; if (pin < 0) { /* inverted gpio */ gpio = pin * -1; lvl = enable ? 0 : 1; } else { gpio = pin; lvl = enable ? 1 : 0; } ret = smscore_configure_gpio(coredev, gpio, &gpioconfig); if (ret < 0) return ret; return smscore_set_gpio(coredev, gpio, lvl); } int sms_board_setup(struct smscore_device_t *coredev) { int board_id = smscore_get_board_id(coredev); struct sms_board *board = sms_get_board(board_id); switch (board_id) { case SMS1XXX_BOARD_HAUPPAUGE_WINDHAM: /* turn off all LEDs */ sms_set_gpio(coredev, board->led_power, 0); sms_set_gpio(coredev, board->led_hi, 0); sms_set_gpio(coredev, board->led_lo, 0); break; case SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD_R2: case SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD: /* turn off LNA */ sms_set_gpio(coredev, board->lna_ctrl, 0); break; } return 0; } EXPORT_SYMBOL_GPL(sms_board_setup); int sms_board_power(struct smscore_device_t *coredev, int onoff) { int board_id = smscore_get_board_id(coredev); struct sms_board *board = sms_get_board(board_id); switch (board_id) { case SMS1XXX_BOARD_HAUPPAUGE_WINDHAM: /* power LED */ sms_set_gpio(coredev, board->led_power, onoff ? 1 : 0); break; case SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD_R2: case SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD: /* LNA */ if (!onoff) sms_set_gpio(coredev, board->lna_ctrl, 0); break; } return 0; } EXPORT_SYMBOL_GPL(sms_board_power); int sms_board_led_feedback(struct smscore_device_t *coredev, int led) { int board_id = smscore_get_board_id(coredev); struct sms_board *board = sms_get_board(board_id); /* don't touch GPIO if LEDs are already set */ if (smscore_led_state(coredev, -1) == led) return 0; switch (board_id) { case SMS1XXX_BOARD_HAUPPAUGE_WINDHAM: sms_set_gpio(coredev, board->led_lo, (led & SMS_LED_LO) ? 1 : 0); sms_set_gpio(coredev, board->led_hi, (led & SMS_LED_HI) ? 1 : 0); smscore_led_state(coredev, led); break; } return 0; } EXPORT_SYMBOL_GPL(sms_board_led_feedback); int sms_board_lna_control(struct smscore_device_t *coredev, int onoff) { int board_id = smscore_get_board_id(coredev); struct sms_board *board = sms_get_board(board_id); pr_debug("%s: LNA %s\n", __func__, onoff ? "enabled" : "disabled"); switch (board_id) { case SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD_R2: case SMS1XXX_BOARD_HAUPPAUGE_TIGER_MINICARD: sms_set_gpio(coredev, board->rf_switch, onoff ? 1 : 0); return sms_set_gpio(coredev, board->lna_ctrl, onoff ? 1 : 0); } return -EINVAL; } EXPORT_SYMBOL_GPL(sms_board_lna_control); int sms_board_load_modules(int id) { request_module("smsdvb"); return 0; } EXPORT_SYMBOL_GPL(sms_board_load_modules);
6 1 7 7 7 7 4 86 12 74 124 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 // SPDX-License-Identifier: LGPL-2.1 /* * A V4L2 frontend for the FWHT codec * * Copyright 2018 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include <linux/errno.h> #include <linux/string.h> #include <linux/videodev2.h> #include "codec-v4l2-fwht.h" static const struct v4l2_fwht_pixfmt_info v4l2_fwht_pixfmts[] = { { V4L2_PIX_FMT_YUV420, 1, 3, 2, 1, 1, 2, 2, 3, 3, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_YVU420, 1, 3, 2, 1, 1, 2, 2, 3, 3, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_YUV422P, 1, 2, 1, 1, 1, 2, 1, 3, 3, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_NV12, 1, 3, 2, 1, 2, 2, 2, 3, 2, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_NV21, 1, 3, 2, 1, 2, 2, 2, 3, 2, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_NV16, 1, 2, 1, 1, 2, 2, 1, 3, 2, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_NV61, 1, 2, 1, 1, 2, 2, 1, 3, 2, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_NV24, 1, 3, 1, 1, 2, 1, 1, 3, 2, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_NV42, 1, 3, 1, 1, 2, 1, 1, 3, 2, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_YUYV, 2, 2, 1, 2, 4, 2, 1, 3, 1, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_YVYU, 2, 2, 1, 2, 4, 2, 1, 3, 1, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_UYVY, 2, 2, 1, 2, 4, 2, 1, 3, 1, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_VYUY, 2, 2, 1, 2, 4, 2, 1, 3, 1, V4L2_FWHT_FL_PIXENC_YUV}, { V4L2_PIX_FMT_BGR24, 3, 3, 1, 3, 3, 1, 1, 3, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_RGB24, 3, 3, 1, 3, 3, 1, 1, 3, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_HSV24, 3, 3, 1, 3, 3, 1, 1, 3, 1, V4L2_FWHT_FL_PIXENC_HSV}, { V4L2_PIX_FMT_BGR32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_XBGR32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_ABGR32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_RGB32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_XRGB32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_ARGB32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_BGRX32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_BGRA32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_RGBX32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_RGBA32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_RGB}, { V4L2_PIX_FMT_HSV32, 4, 4, 1, 4, 4, 1, 1, 4, 1, V4L2_FWHT_FL_PIXENC_HSV}, { V4L2_PIX_FMT_GREY, 1, 1, 1, 1, 0, 1, 1, 1, 1, V4L2_FWHT_FL_PIXENC_RGB}, }; bool v4l2_fwht_validate_fmt(const struct v4l2_fwht_pixfmt_info *info, u32 width_div, u32 height_div, u32 components_num, u32 pixenc) { if (info->width_div == width_div && info->height_div == height_div && (!pixenc || info->pixenc == pixenc) && info->components_num == components_num) return true; return false; } const struct v4l2_fwht_pixfmt_info *v4l2_fwht_find_nth_fmt(u32 width_div, u32 height_div, u32 components_num, u32 pixenc, unsigned int start_idx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(v4l2_fwht_pixfmts); i++) { bool is_valid = v4l2_fwht_validate_fmt(&v4l2_fwht_pixfmts[i], width_div, height_div, components_num, pixenc); if (is_valid) { if (start_idx == 0) return v4l2_fwht_pixfmts + i; start_idx--; } } return NULL; } const struct v4l2_fwht_pixfmt_info *v4l2_fwht_find_pixfmt(u32 pixelformat) { unsigned int i; for (i = 0; i < ARRAY_SIZE(v4l2_fwht_pixfmts); i++) if (v4l2_fwht_pixfmts[i].id == pixelformat) return v4l2_fwht_pixfmts + i; return NULL; } const struct v4l2_fwht_pixfmt_info *v4l2_fwht_get_pixfmt(u32 idx) { if (idx >= ARRAY_SIZE(v4l2_fwht_pixfmts)) return NULL; return v4l2_fwht_pixfmts + idx; } static int prepare_raw_frame(struct fwht_raw_frame *rf, const struct v4l2_fwht_pixfmt_info *info, u8 *buf, unsigned int size) { rf->luma = buf; rf->width_div = info->width_div; rf->height_div = info->height_div; rf->luma_alpha_step = info->luma_alpha_step; rf->chroma_step = info->chroma_step; rf->alpha = NULL; rf->components_num = info->components_num; /* * The buffer is NULL if it is the reference * frame of an I-frame in the stateless decoder */ if (!buf) { rf->luma = NULL; rf->cb = NULL; rf->cr = NULL; rf->alpha = NULL; return 0; } switch (info->id) { case V4L2_PIX_FMT_GREY: rf->cb = NULL; rf->cr = NULL; break; case V4L2_PIX_FMT_YUV420: rf->cb = rf->luma + size; rf->cr = rf->cb + size / 4; break; case V4L2_PIX_FMT_YVU420: rf->cr = rf->luma + size; rf->cb = rf->cr + size / 4; break; case V4L2_PIX_FMT_YUV422P: rf->cb = rf->luma + size; rf->cr = rf->cb + size / 2; break; case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV24: rf->cb = rf->luma + size; rf->cr = rf->cb + 1; break; case V4L2_PIX_FMT_NV21: case V4L2_PIX_FMT_NV61: case V4L2_PIX_FMT_NV42: rf->cr = rf->luma + size; rf->cb = rf->cr + 1; break; case V4L2_PIX_FMT_YUYV: rf->cb = rf->luma + 1; rf->cr = rf->cb + 2; break; case V4L2_PIX_FMT_YVYU: rf->cr = rf->luma + 1; rf->cb = rf->cr + 2; break; case V4L2_PIX_FMT_UYVY: rf->cb = rf->luma; rf->cr = rf->cb + 2; rf->luma++; break; case V4L2_PIX_FMT_VYUY: rf->cr = rf->luma; rf->cb = rf->cr + 2; rf->luma++; break; case V4L2_PIX_FMT_RGB24: case V4L2_PIX_FMT_HSV24: rf->cr = rf->luma; rf->cb = rf->cr + 2; rf->luma++; break; case V4L2_PIX_FMT_BGR24: rf->cb = rf->luma; rf->cr = rf->cb + 2; rf->luma++; break; case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_HSV32: case V4L2_PIX_FMT_ARGB32: rf->alpha = rf->luma; rf->cr = rf->luma + 1; rf->cb = rf->cr + 2; rf->luma += 2; break; case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_ABGR32: rf->cb = rf->luma; rf->cr = rf->cb + 2; rf->luma++; rf->alpha = rf->cr + 1; break; case V4L2_PIX_FMT_BGRX32: case V4L2_PIX_FMT_BGRA32: rf->alpha = rf->luma; rf->cb = rf->luma + 1; rf->cr = rf->cb + 2; rf->luma += 2; break; case V4L2_PIX_FMT_RGBX32: case V4L2_PIX_FMT_RGBA32: rf->alpha = rf->luma + 3; rf->cr = rf->luma; rf->cb = rf->cr + 2; rf->luma++; break; default: return -EINVAL; } return 0; } int v4l2_fwht_encode(struct v4l2_fwht_state *state, u8 *p_in, u8 *p_out) { unsigned int size = state->stride * state->coded_height; unsigned int chroma_stride = state->stride; const struct v4l2_fwht_pixfmt_info *info = state->info; struct fwht_cframe_hdr *p_hdr; struct fwht_cframe cf; struct fwht_raw_frame rf; u32 encoding; u32 flags = 0; if (!info) return -EINVAL; if (prepare_raw_frame(&rf, info, p_in, size)) return -EINVAL; if (info->planes_num == 3) chroma_stride /= 2; if (info->id == V4L2_PIX_FMT_NV24 || info->id == V4L2_PIX_FMT_NV42) chroma_stride *= 2; cf.i_frame_qp = state->i_frame_qp; cf.p_frame_qp = state->p_frame_qp; cf.rlc_data = (__be16 *)(p_out + sizeof(*p_hdr)); encoding = fwht_encode_frame(&rf, &state->ref_frame, &cf, !state->gop_cnt, state->gop_cnt == state->gop_size - 1, state->visible_width, state->visible_height, state->stride, chroma_stride); if (!(encoding & FWHT_FRAME_PCODED)) state->gop_cnt = 0; if (++state->gop_cnt >= state->gop_size) state->gop_cnt = 0; p_hdr = (struct fwht_cframe_hdr *)p_out; p_hdr->magic1 = FWHT_MAGIC1; p_hdr->magic2 = FWHT_MAGIC2; p_hdr->version = htonl(V4L2_FWHT_VERSION); p_hdr->width = htonl(state->visible_width); p_hdr->height = htonl(state->visible_height); flags |= (info->components_num - 1) << V4L2_FWHT_FL_COMPONENTS_NUM_OFFSET; flags |= info->pixenc; if (encoding & FWHT_LUMA_UNENCODED) flags |= V4L2_FWHT_FL_LUMA_IS_UNCOMPRESSED; if (encoding & FWHT_CB_UNENCODED) flags |= V4L2_FWHT_FL_CB_IS_UNCOMPRESSED; if (encoding & FWHT_CR_UNENCODED) flags |= V4L2_FWHT_FL_CR_IS_UNCOMPRESSED; if (encoding & FWHT_ALPHA_UNENCODED) flags |= V4L2_FWHT_FL_ALPHA_IS_UNCOMPRESSED; if (!(encoding & FWHT_FRAME_PCODED)) flags |= V4L2_FWHT_FL_I_FRAME; if (rf.height_div == 1) flags |= V4L2_FWHT_FL_CHROMA_FULL_HEIGHT; if (rf.width_div == 1) flags |= V4L2_FWHT_FL_CHROMA_FULL_WIDTH; p_hdr->flags = htonl(flags); p_hdr->colorspace = htonl(state->colorspace); p_hdr->xfer_func = htonl(state->xfer_func); p_hdr->ycbcr_enc = htonl(state->ycbcr_enc); p_hdr->quantization = htonl(state->quantization); p_hdr->size = htonl(cf.size); return cf.size + sizeof(*p_hdr); } int v4l2_fwht_decode(struct v4l2_fwht_state *state, u8 *p_in, u8 *p_out) { u32 flags; struct fwht_cframe cf; unsigned int components_num = 3; unsigned int version; const struct v4l2_fwht_pixfmt_info *info; unsigned int hdr_width_div, hdr_height_div; struct fwht_raw_frame dst_rf; unsigned int dst_chroma_stride = state->stride; unsigned int ref_chroma_stride = state->ref_stride; unsigned int dst_size = state->stride * state->coded_height; unsigned int ref_size; if (!state->info) return -EINVAL; info = state->info; version = ntohl(state->header.version); if (!version || version > V4L2_FWHT_VERSION) { pr_err("version %d is not supported, current version is %d\n", version, V4L2_FWHT_VERSION); return -EINVAL; } if (state->header.magic1 != FWHT_MAGIC1 || state->header.magic2 != FWHT_MAGIC2) return -EINVAL; /* TODO: support resolution changes */ if (ntohl(state->header.width) != state->visible_width || ntohl(state->header.height) != state->visible_height) return -EINVAL; flags = ntohl(state->header.flags); if (version >= 2) { if ((flags & V4L2_FWHT_FL_PIXENC_MSK) != info->pixenc) return -EINVAL; components_num = 1 + ((flags & V4L2_FWHT_FL_COMPONENTS_NUM_MSK) >> V4L2_FWHT_FL_COMPONENTS_NUM_OFFSET); } if (components_num != info->components_num) return -EINVAL; state->colorspace = ntohl(state->header.colorspace); state->xfer_func = ntohl(state->header.xfer_func); state->ycbcr_enc = ntohl(state->header.ycbcr_enc); state->quantization = ntohl(state->header.quantization); cf.rlc_data = (__be16 *)p_in; cf.size = ntohl(state->header.size); hdr_width_div = (flags & V4L2_FWHT_FL_CHROMA_FULL_WIDTH) ? 1 : 2; hdr_height_div = (flags & V4L2_FWHT_FL_CHROMA_FULL_HEIGHT) ? 1 : 2; if (hdr_width_div != info->width_div || hdr_height_div != info->height_div) return -EINVAL; if (prepare_raw_frame(&dst_rf, info, p_out, dst_size)) return -EINVAL; if (info->planes_num == 3) { dst_chroma_stride /= 2; ref_chroma_stride /= 2; } if (info->id == V4L2_PIX_FMT_NV24 || info->id == V4L2_PIX_FMT_NV42) { dst_chroma_stride *= 2; ref_chroma_stride *= 2; } ref_size = state->ref_stride * state->coded_height; if (prepare_raw_frame(&state->ref_frame, info, state->ref_frame.buf, ref_size)) return -EINVAL; if (!fwht_decode_frame(&cf, flags, components_num, state->visible_width, state->visible_height, &state->ref_frame, state->ref_stride, ref_chroma_stride, &dst_rf, state->stride, dst_chroma_stride)) return -EINVAL; return 0; }
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 // SPDX-License-Identifier: GPL-2.0 #include <linux/fs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/mmzone.h> #include <linux/memblock.h> #include <linux/proc_fs.h> #include <linux/percpu.h> #include <linux/seq_file.h> #include <linux/swap.h> #include <linux/vmstat.h> #include <linux/atomic.h> #include <linux/vmalloc.h> #ifdef CONFIG_CMA #include <linux/cma.h> #endif #include <linux/zswap.h> #include <asm/page.h> #include "internal.h" void __attribute__((weak)) arch_report_meminfo(struct seq_file *m) { } static void show_val_kb(struct seq_file *m, const char *s, unsigned long num) { seq_put_decimal_ull_width(m, s, num << (PAGE_SHIFT - 10), 8); seq_write(m, " kB\n", 4); } static int meminfo_proc_show(struct seq_file *m, void *v) { struct sysinfo i; unsigned long committed; long cached; long available; unsigned long pages[NR_LRU_LISTS]; unsigned long sreclaimable, sunreclaim; int lru; si_meminfo(&i); si_swapinfo(&i); committed = vm_memory_committed(); cached = global_node_page_state(NR_FILE_PAGES) - total_swapcache_pages() - i.bufferram; if (cached < 0) cached = 0; for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) pages[lru] = global_node_page_state(NR_LRU_BASE + lru); available = si_mem_available(); sreclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B); sunreclaim = global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B); show_val_kb(m, "MemTotal: ", i.totalram); show_val_kb(m, "MemFree: ", i.freeram); show_val_kb(m, "MemAvailable: ", available); show_val_kb(m, "Buffers: ", i.bufferram); show_val_kb(m, "Cached: ", cached); show_val_kb(m, "SwapCached: ", total_swapcache_pages()); show_val_kb(m, "Active: ", pages[LRU_ACTIVE_ANON] + pages[LRU_ACTIVE_FILE]); show_val_kb(m, "Inactive: ", pages[LRU_INACTIVE_ANON] + pages[LRU_INACTIVE_FILE]); show_val_kb(m, "Active(anon): ", pages[LRU_ACTIVE_ANON]); show_val_kb(m, "Inactive(anon): ", pages[LRU_INACTIVE_ANON]); show_val_kb(m, "Active(file): ", pages[LRU_ACTIVE_FILE]); show_val_kb(m, "Inactive(file): ", pages[LRU_INACTIVE_FILE]); show_val_kb(m, "Unevictable: ", pages[LRU_UNEVICTABLE]); show_val_kb(m, "Mlocked: ", global_zone_page_state(NR_MLOCK)); #ifdef CONFIG_HIGHMEM show_val_kb(m, "HighTotal: ", i.totalhigh); show_val_kb(m, "HighFree: ", i.freehigh); show_val_kb(m, "LowTotal: ", i.totalram - i.totalhigh); show_val_kb(m, "LowFree: ", i.freeram - i.freehigh); #endif #ifndef CONFIG_MMU show_val_kb(m, "MmapCopy: ", (unsigned long)atomic_long_read(&mmap_pages_allocated)); #endif show_val_kb(m, "SwapTotal: ", i.totalswap); show_val_kb(m, "SwapFree: ", i.freeswap); #ifdef CONFIG_ZSWAP show_val_kb(m, "Zswap: ", zswap_total_pages()); seq_printf(m, "Zswapped: %8lu kB\n", (unsigned long)atomic_read(&zswap_stored_pages) << (PAGE_SHIFT - 10)); #endif show_val_kb(m, "Dirty: ", global_node_page_state(NR_FILE_DIRTY)); show_val_kb(m, "Writeback: ", global_node_page_state(NR_WRITEBACK)); show_val_kb(m, "AnonPages: ", global_node_page_state(NR_ANON_MAPPED)); show_val_kb(m, "Mapped: ", global_node_page_state(NR_FILE_MAPPED)); show_val_kb(m, "Shmem: ", i.sharedram); show_val_kb(m, "KReclaimable: ", sreclaimable + global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE)); show_val_kb(m, "Slab: ", sreclaimable + sunreclaim); show_val_kb(m, "SReclaimable: ", sreclaimable); show_val_kb(m, "SUnreclaim: ", sunreclaim); seq_printf(m, "KernelStack: %8lu kB\n", global_node_page_state(NR_KERNEL_STACK_KB)); #ifdef CONFIG_SHADOW_CALL_STACK seq_printf(m, "ShadowCallStack:%8lu kB\n", global_node_page_state(NR_KERNEL_SCS_KB)); #endif show_val_kb(m, "PageTables: ", global_node_page_state(NR_PAGETABLE)); show_val_kb(m, "SecPageTables: ", global_node_page_state(NR_SECONDARY_PAGETABLE)); show_val_kb(m, "NFS_Unstable: ", 0); show_val_kb(m, "Bounce: ", global_zone_page_state(NR_BOUNCE)); show_val_kb(m, "WritebackTmp: ", global_node_page_state(NR_WRITEBACK_TEMP)); show_val_kb(m, "CommitLimit: ", vm_commit_limit()); show_val_kb(m, "Committed_AS: ", committed); seq_printf(m, "VmallocTotal: %8lu kB\n", (unsigned long)VMALLOC_TOTAL >> 10); show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages()); show_val_kb(m, "VmallocChunk: ", 0ul); show_val_kb(m, "Percpu: ", pcpu_nr_pages()); memtest_report_meminfo(m); #ifdef CONFIG_MEMORY_FAILURE seq_printf(m, "HardwareCorrupted: %5lu kB\n", atomic_long_read(&num_poisoned_pages) << (PAGE_SHIFT - 10)); #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE show_val_kb(m, "AnonHugePages: ", global_node_page_state(NR_ANON_THPS)); show_val_kb(m, "ShmemHugePages: ", global_node_page_state(NR_SHMEM_THPS)); show_val_kb(m, "ShmemPmdMapped: ", global_node_page_state(NR_SHMEM_PMDMAPPED)); show_val_kb(m, "FileHugePages: ", global_node_page_state(NR_FILE_THPS)); show_val_kb(m, "FilePmdMapped: ", global_node_page_state(NR_FILE_PMDMAPPED)); #endif #ifdef CONFIG_CMA show_val_kb(m, "CmaTotal: ", totalcma_pages); show_val_kb(m, "CmaFree: ", global_zone_page_state(NR_FREE_CMA_PAGES)); #endif #ifdef CONFIG_UNACCEPTED_MEMORY show_val_kb(m, "Unaccepted: ", global_zone_page_state(NR_UNACCEPTED)); #endif hugetlb_report_meminfo(m); arch_report_meminfo(m); return 0; } static int __init proc_meminfo_init(void) { struct proc_dir_entry *pde; pde = proc_create_single("meminfo", 0, NULL, meminfo_proc_show); pde_make_permanent(pde); return 0; } fs_initcall(proc_meminfo_init);
2 2 38 36 2 38 38 38 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 // SPDX-License-Identifier: GPL-2.0 /* * ACPI helpers for GPIO API * * Copyright (C) 2012, Intel Corporation * Authors: Mathias Nyman <mathias.nyman@linux.intel.com> * Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/mutex.h> #include <linux/pinctrl/pinctrl.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/gpio/machine.h> #include "gpiolib.h" #include "gpiolib-acpi.h" static int run_edge_events_on_boot = -1; module_param(run_edge_events_on_boot, int, 0444); MODULE_PARM_DESC(run_edge_events_on_boot, "Run edge _AEI event-handlers at boot: 0=no, 1=yes, -1=auto"); static char *ignore_wake; module_param(ignore_wake, charp, 0444); MODULE_PARM_DESC(ignore_wake, "controller@pin combos on which to ignore the ACPI wake flag " "ignore_wake=controller@pin[,controller@pin[,...]]"); static char *ignore_interrupt; module_param(ignore_interrupt, charp, 0444); MODULE_PARM_DESC(ignore_interrupt, "controller@pin combos on which to ignore interrupt " "ignore_interrupt=controller@pin[,controller@pin[,...]]"); struct acpi_gpiolib_dmi_quirk { bool no_edge_events_on_boot; char *ignore_wake; char *ignore_interrupt; }; /** * struct acpi_gpio_event - ACPI GPIO event handler data * * @node: list-entry of the events list of the struct acpi_gpio_chip * @handle: handle of ACPI method to execute when the IRQ triggers * @handler: handler function to pass to request_irq() when requesting the IRQ * @pin: GPIO pin number on the struct gpio_chip * @irq: Linux IRQ number for the event, for request_irq() / free_irq() * @irqflags: flags to pass to request_irq() when requesting the IRQ * @irq_is_wake: If the ACPI flags indicate the IRQ is a wakeup source * @irq_requested:True if request_irq() has been done * @desc: struct gpio_desc for the GPIO pin for this event */ struct acpi_gpio_event { struct list_head node; acpi_handle handle; irq_handler_t handler; unsigned int pin; unsigned int irq; unsigned long irqflags; bool irq_is_wake; bool irq_requested; struct gpio_desc *desc; }; struct acpi_gpio_connection { struct list_head node; unsigned int pin; struct gpio_desc *desc; }; struct acpi_gpio_chip { /* * ACPICA requires that the first field of the context parameter * passed to acpi_install_address_space_handler() is large enough * to hold struct acpi_connection_info. */ struct acpi_connection_info conn_info; struct list_head conns; struct mutex conn_lock; struct gpio_chip *chip; struct list_head events; struct list_head deferred_req_irqs_list_entry; }; /** * struct acpi_gpio_info - ACPI GPIO specific information * @adev: reference to ACPI device which consumes GPIO resource * @flags: GPIO initialization flags * @gpioint: if %true this GPIO is of type GpioInt otherwise type is GpioIo * @pin_config: pin bias as provided by ACPI * @polarity: interrupt polarity as provided by ACPI * @triggering: triggering type as provided by ACPI * @wake_capable: wake capability as provided by ACPI * @debounce: debounce timeout as provided by ACPI * @quirks: Linux specific quirks as provided by struct acpi_gpio_mapping */ struct acpi_gpio_info { struct acpi_device *adev; enum gpiod_flags flags; bool gpioint; int pin_config; int polarity; int triggering; bool wake_capable; unsigned int debounce; unsigned int quirks; }; /* * For GPIO chips which call acpi_gpiochip_request_interrupts() before late_init * (so builtin drivers) we register the ACPI GpioInt IRQ handlers from a * late_initcall_sync() handler, so that other builtin drivers can register their * OpRegions before the event handlers can run. This list contains GPIO chips * for which the acpi_gpiochip_request_irqs() call has been deferred. */ static DEFINE_MUTEX(acpi_gpio_deferred_req_irqs_lock); static LIST_HEAD(acpi_gpio_deferred_req_irqs_list); static bool acpi_gpio_deferred_req_irqs_done; static int acpi_gpiochip_find(struct gpio_chip *gc, const void *data) { /* First check the actual GPIO device */ if (device_match_acpi_handle(&gc->gpiodev->dev, data)) return true; /* * When the ACPI device is artificially split to the banks of GPIOs, * where each of them is represented by a separate GPIO device, * the firmware node of the physical device may not be shared among * the banks as they may require different values for the same property, * e.g., number of GPIOs in a certain bank. In such case the ACPI handle * of a GPIO device is NULL and can not be used. Hence we have to check * the parent device to be sure that there is no match before bailing * out. */ if (gc->parent) return device_match_acpi_handle(gc->parent, data); return false; } /** * acpi_get_gpiod() - Translate ACPI GPIO pin to GPIO descriptor usable with GPIO API * @path: ACPI GPIO controller full path name, (e.g. "\\_SB.GPO1") * @pin: ACPI GPIO pin number (0-based, controller-relative) * * Return: GPIO descriptor to use with Linux generic GPIO API, or ERR_PTR * error value. Specifically returns %-EPROBE_DEFER if the referenced GPIO * controller does not have GPIO chip registered at the moment. This is to * support probe deferral. */ static struct gpio_desc *acpi_get_gpiod(char *path, unsigned int pin) { acpi_handle handle; acpi_status status; status = acpi_get_handle(NULL, path, &handle); if (ACPI_FAILURE(status)) return ERR_PTR(-ENODEV); struct gpio_device *gdev __free(gpio_device_put) = gpio_device_find(handle, acpi_gpiochip_find); if (!gdev) return ERR_PTR(-EPROBE_DEFER); /* * FIXME: keep track of the reference to the GPIO device somehow * instead of putting it here. */ return gpio_device_get_desc(gdev, pin); } static irqreturn_t acpi_gpio_irq_handler(int irq, void *data) { struct acpi_gpio_event *event = data; acpi_evaluate_object(event->handle, NULL, NULL, NULL); return IRQ_HANDLED; } static irqreturn_t acpi_gpio_irq_handler_evt(int irq, void *data) { struct acpi_gpio_event *event = data; acpi_execute_simple_method(event->handle, NULL, event->pin); return IRQ_HANDLED; } static void acpi_gpio_chip_dh(acpi_handle handle, void *data) { /* The address of this function is used as a key. */ } bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { struct acpi_resource_gpio *gpio; if (ares->type != ACPI_RESOURCE_TYPE_GPIO) return false; gpio = &ares->data.gpio; if (gpio->connection_type != ACPI_RESOURCE_GPIO_TYPE_INT) return false; *agpio = gpio; return true; } EXPORT_SYMBOL_GPL(acpi_gpio_get_irq_resource); /** * acpi_gpio_get_io_resource - Fetch details of an ACPI resource if it is a GPIO * I/O resource or return False if not. * @ares: Pointer to the ACPI resource to fetch * @agpio: Pointer to a &struct acpi_resource_gpio to store the output pointer */ bool acpi_gpio_get_io_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { struct acpi_resource_gpio *gpio; if (ares->type != ACPI_RESOURCE_TYPE_GPIO) return false; gpio = &ares->data.gpio; if (gpio->connection_type != ACPI_RESOURCE_GPIO_TYPE_IO) return false; *agpio = gpio; return true; } EXPORT_SYMBOL_GPL(acpi_gpio_get_io_resource); static void acpi_gpiochip_request_irq(struct acpi_gpio_chip *acpi_gpio, struct acpi_gpio_event *event) { struct device *parent = acpi_gpio->chip->parent; int ret, value; ret = request_threaded_irq(event->irq, NULL, event->handler, event->irqflags | IRQF_ONESHOT, "ACPI:Event", event); if (ret) { dev_err(parent, "Failed to setup interrupt handler for %d\n", event->irq); return; } if (event->irq_is_wake) enable_irq_wake(event->irq); event->irq_requested = true; /* Make sure we trigger the initial state of edge-triggered IRQs */ if (run_edge_events_on_boot && (event->irqflags & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING))) { value = gpiod_get_raw_value_cansleep(event->desc); if (((event->irqflags & IRQF_TRIGGER_RISING) && value == 1) || ((event->irqflags & IRQF_TRIGGER_FALLING) && value == 0)) event->handler(event->irq, event); } } static void acpi_gpiochip_request_irqs(struct acpi_gpio_chip *acpi_gpio) { struct acpi_gpio_event *event; list_for_each_entry(event, &acpi_gpio->events, node) acpi_gpiochip_request_irq(acpi_gpio, event); } static enum gpiod_flags acpi_gpio_to_gpiod_flags(const struct acpi_resource_gpio *agpio, int polarity) { /* GpioInt() implies input configuration */ if (agpio->connection_type == ACPI_RESOURCE_GPIO_TYPE_INT) return GPIOD_IN; switch (agpio->io_restriction) { case ACPI_IO_RESTRICT_INPUT: return GPIOD_IN; case ACPI_IO_RESTRICT_OUTPUT: /* * ACPI GPIO resources don't contain an initial value for the * GPIO. Therefore we deduce that value from the pull field * and the polarity instead. If the pin is pulled up we assume * default to be high, if it is pulled down we assume default * to be low, otherwise we leave pin untouched. For active low * polarity values will be switched. See also * Documentation/firmware-guide/acpi/gpio-properties.rst. */ switch (agpio->pin_config) { case ACPI_PIN_CONFIG_PULLUP: return polarity == GPIO_ACTIVE_LOW ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; case ACPI_PIN_CONFIG_PULLDOWN: return polarity == GPIO_ACTIVE_LOW ? GPIOD_OUT_HIGH : GPIOD_OUT_LOW; default: break; } break; default: break; } /* * Assume that the BIOS has configured the direction and pull * accordingly. */ return GPIOD_ASIS; } static struct gpio_desc *acpi_request_own_gpiod(struct gpio_chip *chip, struct acpi_resource_gpio *agpio, unsigned int index, const char *label) { int polarity = GPIO_ACTIVE_HIGH; enum gpiod_flags flags = acpi_gpio_to_gpiod_flags(agpio, polarity); unsigned int pin = agpio->pin_table[index]; struct gpio_desc *desc; int ret; desc = gpiochip_request_own_desc(chip, pin, label, polarity, flags); if (IS_ERR(desc)) return desc; /* ACPI uses hundredths of milliseconds units */ ret = gpio_set_debounce_timeout(desc, agpio->debounce_timeout * 10); if (ret) dev_warn(chip->parent, "Failed to set debounce-timeout for pin 0x%04X, err %d\n", pin, ret); return desc; } static bool acpi_gpio_in_ignore_list(const char *ignore_list, const char *controller_in, unsigned int pin_in) { const char *controller, *pin_str; unsigned int pin; char *endp; int len; controller = ignore_list; while (controller) { pin_str = strchr(controller, '@'); if (!pin_str) goto err; len = pin_str - controller; if (len == strlen(controller_in) && strncmp(controller, controller_in, len) == 0) { pin = simple_strtoul(pin_str + 1, &endp, 10); if (*endp != 0 && *endp != ',') goto err; if (pin == pin_in) return true; } controller = strchr(controller, ','); if (controller) controller++; } return false; err: pr_err_once("Error: Invalid value for gpiolib_acpi.ignore_...: %s\n", ignore_list); return false; } static bool acpi_gpio_irq_is_wake(struct device *parent, const struct acpi_resource_gpio *agpio) { unsigned int pin = agpio->pin_table[0]; if (agpio->wake_capable != ACPI_WAKE_CAPABLE) return false; if (acpi_gpio_in_ignore_list(ignore_wake, dev_name(parent), pin)) { dev_info(parent, "Ignoring wakeup on pin %u\n", pin); return false; } return true; } /* Always returns AE_OK so that we keep looping over the resources */ static acpi_status acpi_gpiochip_alloc_event(struct acpi_resource *ares, void *context) { struct acpi_gpio_chip *acpi_gpio = context; struct gpio_chip *chip = acpi_gpio->chip; struct acpi_resource_gpio *agpio; acpi_handle handle, evt_handle; struct acpi_gpio_event *event; irq_handler_t handler = NULL; struct gpio_desc *desc; unsigned int pin; int ret, irq; if (!acpi_gpio_get_irq_resource(ares, &agpio)) return AE_OK; handle = ACPI_HANDLE(chip->parent); pin = agpio->pin_table[0]; if (pin <= 255) { char ev_name[8]; sprintf(ev_name, "_%c%02X", agpio->triggering == ACPI_EDGE_SENSITIVE ? 'E' : 'L', pin); if (ACPI_SUCCESS(acpi_get_handle(handle, ev_name, &evt_handle))) handler = acpi_gpio_irq_handler; } if (!handler) { if (ACPI_SUCCESS(acpi_get_handle(handle, "_EVT", &evt_handle))) handler = acpi_gpio_irq_handler_evt; } if (!handler) return AE_OK; if (acpi_gpio_in_ignore_list(ignore_interrupt, dev_name(chip->parent), pin)) { dev_info(chip->parent, "Ignoring interrupt on pin %u\n", pin); return AE_OK; } desc = acpi_request_own_gpiod(chip, agpio, 0, "ACPI:Event"); if (IS_ERR(desc)) { dev_err(chip->parent, "Failed to request GPIO for pin 0x%04X, err %ld\n", pin, PTR_ERR(desc)); return AE_OK; } ret = gpiochip_lock_as_irq(chip, pin); if (ret) { dev_err(chip->parent, "Failed to lock GPIO pin 0x%04X as interrupt, err %d\n", pin, ret); goto fail_free_desc; } irq = gpiod_to_irq(desc); if (irq < 0) { dev_err(chip->parent, "Failed to translate GPIO pin 0x%04X to IRQ, err %d\n", pin, irq); goto fail_unlock_irq; } event = kzalloc(sizeof(*event), GFP_KERNEL); if (!event) goto fail_unlock_irq; event->irqflags = IRQF_ONESHOT; if (agpio->triggering == ACPI_LEVEL_SENSITIVE) { if (agpio->polarity == ACPI_ACTIVE_HIGH) event->irqflags |= IRQF_TRIGGER_HIGH; else event->irqflags |= IRQF_TRIGGER_LOW; } else { switch (agpio->polarity) { case ACPI_ACTIVE_HIGH: event->irqflags |= IRQF_TRIGGER_RISING; break; case ACPI_ACTIVE_LOW: event->irqflags |= IRQF_TRIGGER_FALLING; break; default: event->irqflags |= IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING; break; } } event->handle = evt_handle; event->handler = handler; event->irq = irq; event->irq_is_wake = acpi_gpio_irq_is_wake(chip->parent, agpio); event->pin = pin; event->desc = desc; list_add_tail(&event->node, &acpi_gpio->events); return AE_OK; fail_unlock_irq: gpiochip_unlock_as_irq(chip, pin); fail_free_desc: gpiochip_free_own_desc(desc); return AE_OK; } /** * acpi_gpiochip_request_interrupts() - Register isr for gpio chip ACPI events * @chip: GPIO chip * * ACPI5 platforms can use GPIO signaled ACPI events. These GPIO interrupts are * handled by ACPI event methods which need to be called from the GPIO * chip's interrupt handler. acpi_gpiochip_request_interrupts() finds out which * GPIO pins have ACPI event methods and assigns interrupt handlers that calls * the ACPI event methods for those pins. */ void acpi_gpiochip_request_interrupts(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; acpi_handle handle; acpi_status status; bool defer; if (!chip->parent || !chip->to_irq) return; handle = ACPI_HANDLE(chip->parent); if (!handle) return; status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio); if (ACPI_FAILURE(status)) return; if (acpi_quirk_skip_gpio_event_handlers()) return; acpi_walk_resources(handle, METHOD_NAME__AEI, acpi_gpiochip_alloc_event, acpi_gpio); mutex_lock(&acpi_gpio_deferred_req_irqs_lock); defer = !acpi_gpio_deferred_req_irqs_done; if (defer) list_add(&acpi_gpio->deferred_req_irqs_list_entry, &acpi_gpio_deferred_req_irqs_list); mutex_unlock(&acpi_gpio_deferred_req_irqs_lock); if (defer) return; acpi_gpiochip_request_irqs(acpi_gpio); } EXPORT_SYMBOL_GPL(acpi_gpiochip_request_interrupts); /** * acpi_gpiochip_free_interrupts() - Free GPIO ACPI event interrupts. * @chip: GPIO chip * * Free interrupts associated with GPIO ACPI event method for the given * GPIO chip. */ void acpi_gpiochip_free_interrupts(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; struct acpi_gpio_event *event, *ep; acpi_handle handle; acpi_status status; if (!chip->parent || !chip->to_irq) return; handle = ACPI_HANDLE(chip->parent); if (!handle) return; status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio); if (ACPI_FAILURE(status)) return; mutex_lock(&acpi_gpio_deferred_req_irqs_lock); if (!list_empty(&acpi_gpio->deferred_req_irqs_list_entry)) list_del_init(&acpi_gpio->deferred_req_irqs_list_entry); mutex_unlock(&acpi_gpio_deferred_req_irqs_lock); list_for_each_entry_safe_reverse(event, ep, &acpi_gpio->events, node) { if (event->irq_requested) { if (event->irq_is_wake) disable_irq_wake(event->irq); free_irq(event->irq, event); } gpiochip_unlock_as_irq(chip, event->pin); gpiochip_free_own_desc(event->desc); list_del(&event->node); kfree(event); } } EXPORT_SYMBOL_GPL(acpi_gpiochip_free_interrupts); int acpi_dev_add_driver_gpios(struct acpi_device *adev, const struct acpi_gpio_mapping *gpios) { if (adev && gpios) { adev->driver_gpios = gpios; return 0; } return -EINVAL; } EXPORT_SYMBOL_GPL(acpi_dev_add_driver_gpios); void acpi_dev_remove_driver_gpios(struct acpi_device *adev) { if (adev) adev->driver_gpios = NULL; } EXPORT_SYMBOL_GPL(acpi_dev_remove_driver_gpios); static void acpi_dev_release_driver_gpios(void *adev) { acpi_dev_remove_driver_gpios(adev); } int devm_acpi_dev_add_driver_gpios(struct device *dev, const struct acpi_gpio_mapping *gpios) { struct acpi_device *adev = ACPI_COMPANION(dev); int ret; ret = acpi_dev_add_driver_gpios(adev, gpios); if (ret) return ret; return devm_add_action_or_reset(dev, acpi_dev_release_driver_gpios, adev); } EXPORT_SYMBOL_GPL(devm_acpi_dev_add_driver_gpios); static bool acpi_get_driver_gpio_data(struct acpi_device *adev, const char *name, int index, struct fwnode_reference_args *args, unsigned int *quirks) { const struct acpi_gpio_mapping *gm; if (!adev || !adev->driver_gpios) return false; for (gm = adev->driver_gpios; gm->name; gm++) if (!strcmp(name, gm->name) && gm->data && index < gm->size) { const struct acpi_gpio_params *par = gm->data + index; args->fwnode = acpi_fwnode_handle(adev); args->args[0] = par->crs_entry_index; args->args[1] = par->line_index; args->args[2] = par->active_low; args->nargs = 3; *quirks = gm->quirks; return true; } return false; } static int __acpi_gpio_update_gpiod_flags(enum gpiod_flags *flags, enum gpiod_flags update) { const enum gpiod_flags mask = GPIOD_FLAGS_BIT_DIR_SET | GPIOD_FLAGS_BIT_DIR_OUT | GPIOD_FLAGS_BIT_DIR_VAL; int ret = 0; /* * Check if the BIOS has IoRestriction with explicitly set direction * and update @flags accordingly. Otherwise use whatever caller asked * for. */ if (update & GPIOD_FLAGS_BIT_DIR_SET) { enum gpiod_flags diff = *flags ^ update; /* * Check if caller supplied incompatible GPIO initialization * flags. * * Return %-EINVAL to notify that firmware has different * settings and we are going to use them. */ if (((*flags & GPIOD_FLAGS_BIT_DIR_SET) && (diff & GPIOD_FLAGS_BIT_DIR_OUT)) || ((*flags & GPIOD_FLAGS_BIT_DIR_OUT) && (diff & GPIOD_FLAGS_BIT_DIR_VAL))) ret = -EINVAL; *flags = (*flags & ~mask) | (update & mask); } return ret; } static int acpi_gpio_update_gpiod_flags(enum gpiod_flags *flags, struct acpi_gpio_info *info) { struct device *dev = &info->adev->dev; enum gpiod_flags old = *flags; int ret; ret = __acpi_gpio_update_gpiod_flags(&old, info->flags); if (info->quirks & ACPI_GPIO_QUIRK_NO_IO_RESTRICTION) { if (ret) dev_warn(dev, FW_BUG "GPIO not in correct mode, fixing\n"); } else { if (ret) dev_dbg(dev, "Override GPIO initialization flags\n"); *flags = old; } return ret; } static int acpi_gpio_update_gpiod_lookup_flags(unsigned long *lookupflags, struct acpi_gpio_info *info) { switch (info->pin_config) { case ACPI_PIN_CONFIG_PULLUP: *lookupflags |= GPIO_PULL_UP; break; case ACPI_PIN_CONFIG_PULLDOWN: *lookupflags |= GPIO_PULL_DOWN; break; case ACPI_PIN_CONFIG_NOPULL: *lookupflags |= GPIO_PULL_DISABLE; break; default: break; } if (info->polarity == GPIO_ACTIVE_LOW) *lookupflags |= GPIO_ACTIVE_LOW; return 0; } struct acpi_gpio_lookup { struct acpi_gpio_info info; int index; u16 pin_index; bool active_low; struct gpio_desc *desc; int n; }; static int acpi_populate_gpio_lookup(struct acpi_resource *ares, void *data) { struct acpi_gpio_lookup *lookup = data; if (ares->type != ACPI_RESOURCE_TYPE_GPIO) return 1; if (!lookup->desc) { const struct acpi_resource_gpio *agpio = &ares->data.gpio; bool gpioint = agpio->connection_type == ACPI_RESOURCE_GPIO_TYPE_INT; struct gpio_desc *desc; u16 pin_index; if (lookup->info.quirks & ACPI_GPIO_QUIRK_ONLY_GPIOIO && gpioint) lookup->index++; if (lookup->n++ != lookup->index) return 1; pin_index = lookup->pin_index; if (pin_index >= agpio->pin_table_length) return 1; if (lookup->info.quirks & ACPI_GPIO_QUIRK_ABSOLUTE_NUMBER) desc = gpio_to_desc(agpio->pin_table[pin_index]); else desc = acpi_get_gpiod(agpio->resource_source.string_ptr, agpio->pin_table[pin_index]); lookup->desc = desc; lookup->info.pin_config = agpio->pin_config; lookup->info.debounce = agpio->debounce_timeout; lookup->info.gpioint = gpioint; lookup->info.wake_capable = acpi_gpio_irq_is_wake(&lookup->info.adev->dev, agpio); /* * Polarity and triggering are only specified for GpioInt * resource. * Note: we expect here: * - ACPI_ACTIVE_LOW == GPIO_ACTIVE_LOW * - ACPI_ACTIVE_HIGH == GPIO_ACTIVE_HIGH */ if (lookup->info.gpioint) { lookup->info.polarity = agpio->polarity; lookup->info.triggering = agpio->triggering; } else { lookup->info.polarity = lookup->active_low; } lookup->info.flags = acpi_gpio_to_gpiod_flags(agpio, lookup->info.polarity); } return 1; } static int acpi_gpio_resource_lookup(struct acpi_gpio_lookup *lookup, struct acpi_gpio_info *info) { struct acpi_device *adev = lookup->info.adev; struct list_head res_list; int ret; INIT_LIST_HEAD(&res_list); ret = acpi_dev_get_resources(adev, &res_list, acpi_populate_gpio_lookup, lookup); if (ret < 0) return ret; acpi_dev_free_resource_list(&res_list); if (!lookup->desc) return -ENOENT; if (info) *info = lookup->info; return 0; } static int acpi_gpio_property_lookup(struct fwnode_handle *fwnode, const char *propname, int index, struct acpi_gpio_lookup *lookup) { struct fwnode_reference_args args; unsigned int quirks = 0; int ret; memset(&args, 0, sizeof(args)); ret = __acpi_node_get_property_reference(fwnode, propname, index, 3, &args); if (ret) { struct acpi_device *adev; adev = to_acpi_device_node(fwnode); if (!acpi_get_driver_gpio_data(adev, propname, index, &args, &quirks)) return ret; } /* * The property was found and resolved, so need to lookup the GPIO based * on returned args. */ if (!to_acpi_device_node(args.fwnode)) return -EINVAL; if (args.nargs != 3) return -EPROTO; lookup->index = args.args[0]; lookup->pin_index = args.args[1]; lookup->active_low = !!args.args[2]; lookup->info.adev = to_acpi_device_node(args.fwnode); lookup->info.quirks = quirks; return 0; } /** * acpi_get_gpiod_by_index() - get a GPIO descriptor from device resources * @adev: pointer to a ACPI device to get GPIO from * @propname: Property name of the GPIO (optional) * @index: index of GpioIo/GpioInt resource (starting from %0) * @info: info pointer to fill in (optional) * * Function goes through ACPI resources for @adev and based on @index looks * up a GpioIo/GpioInt resource, translates it to the Linux GPIO descriptor, * and returns it. @index matches GpioIo/GpioInt resources only so if there * are total %3 GPIO resources, the index goes from %0 to %2. * * If @propname is specified the GPIO is looked using device property. In * that case @index is used to select the GPIO entry in the property value * (in case of multiple). * * If the GPIO cannot be translated or there is an error, an ERR_PTR is * returned. * * Note: if the GPIO resource has multiple entries in the pin list, this * function only returns the first. */ static struct gpio_desc *acpi_get_gpiod_by_index(struct acpi_device *adev, const char *propname, int index, struct acpi_gpio_info *info) { struct acpi_gpio_lookup lookup; int ret; memset(&lookup, 0, sizeof(lookup)); lookup.index = index; if (propname) { dev_dbg(&adev->dev, "GPIO: looking up %s\n", propname); ret = acpi_gpio_property_lookup(acpi_fwnode_handle(adev), propname, index, &lookup); if (ret) return ERR_PTR(ret); dev_dbg(&adev->dev, "GPIO: _DSD returned %s %d %u %u\n", dev_name(&lookup.info.adev->dev), lookup.index, lookup.pin_index, lookup.active_low); } else { dev_dbg(&adev->dev, "GPIO: looking up %d in _CRS\n", index); lookup.info.adev = adev; } ret = acpi_gpio_resource_lookup(&lookup, info); return ret ? ERR_PTR(ret) : lookup.desc; } /** * acpi_get_gpiod_from_data() - get a GPIO descriptor from ACPI data node * @fwnode: pointer to an ACPI firmware node to get the GPIO information from * @propname: Property name of the GPIO * @index: index of GpioIo/GpioInt resource (starting from %0) * @info: info pointer to fill in (optional) * * This function uses the property-based GPIO lookup to get to the GPIO * resource with the relevant information from a data-only ACPI firmware node * and uses that to obtain the GPIO descriptor to return. * * If the GPIO cannot be translated or there is an error an ERR_PTR is * returned. */ static struct gpio_desc *acpi_get_gpiod_from_data(struct fwnode_handle *fwnode, const char *propname, int index, struct acpi_gpio_info *info) { struct acpi_gpio_lookup lookup; int ret; if (!is_acpi_data_node(fwnode)) return ERR_PTR(-ENODEV); if (!propname) return ERR_PTR(-EINVAL); memset(&lookup, 0, sizeof(lookup)); lookup.index = index; ret = acpi_gpio_property_lookup(fwnode, propname, index, &lookup); if (ret) return ERR_PTR(ret); ret = acpi_gpio_resource_lookup(&lookup, info); return ret ? ERR_PTR(ret) : lookup.desc; } static bool acpi_can_fallback_to_crs(struct acpi_device *adev, const char *con_id) { /* If there is no ACPI device, there is no _CRS to fall back to */ if (!adev) return false; /* Never allow fallback if the device has properties */ if (acpi_dev_has_props(adev) || adev->driver_gpios) return false; return con_id == NULL; } static struct gpio_desc * __acpi_find_gpio(struct fwnode_handle *fwnode, const char *con_id, unsigned int idx, bool can_fallback, struct acpi_gpio_info *info) { struct acpi_device *adev = to_acpi_device_node(fwnode); struct gpio_desc *desc; char propname[32]; int i; /* Try first from _DSD */ for (i = 0; i < gpio_suffix_count; i++) { if (con_id) { snprintf(propname, sizeof(propname), "%s-%s", con_id, gpio_suffixes[i]); } else { snprintf(propname, sizeof(propname), "%s", gpio_suffixes[i]); } if (adev) desc = acpi_get_gpiod_by_index(adev, propname, idx, info); else desc = acpi_get_gpiod_from_data(fwnode, propname, idx, info); if (PTR_ERR(desc) == -EPROBE_DEFER) return ERR_CAST(desc); if (!IS_ERR(desc)) return desc; } /* Then from plain _CRS GPIOs */ if (can_fallback) return acpi_get_gpiod_by_index(adev, NULL, idx, info); return ERR_PTR(-ENOENT); } struct gpio_desc *acpi_find_gpio(struct fwnode_handle *fwnode, const char *con_id, unsigned int idx, enum gpiod_flags *dflags, unsigned long *lookupflags) { struct acpi_device *adev = to_acpi_device_node(fwnode); bool can_fallback = acpi_can_fallback_to_crs(adev, con_id); struct acpi_gpio_info info; struct gpio_desc *desc; desc = __acpi_find_gpio(fwnode, con_id, idx, can_fallback, &info); if (IS_ERR(desc)) return desc; if (info.gpioint && (*dflags == GPIOD_OUT_LOW || *dflags == GPIOD_OUT_HIGH)) { dev_dbg(&adev->dev, "refusing GpioInt() entry when doing GPIOD_OUT_* lookup\n"); return ERR_PTR(-ENOENT); } acpi_gpio_update_gpiod_flags(dflags, &info); acpi_gpio_update_gpiod_lookup_flags(lookupflags, &info); return desc; } /** * acpi_dev_gpio_irq_wake_get_by() - Find GpioInt and translate it to Linux IRQ number * @adev: pointer to a ACPI device to get IRQ from * @con_id: optional name of GpioInt resource * @index: index of GpioInt resource (starting from %0) * @wake_capable: Set to true if the IRQ is wake capable * * If the device has one or more GpioInt resources, this function can be * used to translate from the GPIO offset in the resource to the Linux IRQ * number. * * The function is idempotent, though each time it runs it will configure GPIO * pin direction according to the flags in GpioInt resource. * * The function takes optional @con_id parameter. If the resource has * a @con_id in a property, then only those will be taken into account. * * The GPIO is considered wake capable if the GpioInt resource specifies * SharedAndWake or ExclusiveAndWake. * * Return: Linux IRQ number (> %0) on success, negative errno on failure. */ int acpi_dev_gpio_irq_wake_get_by(struct acpi_device *adev, const char *con_id, int index, bool *wake_capable) { struct fwnode_handle *fwnode = acpi_fwnode_handle(adev); int idx, i; unsigned int irq_flags; int ret; for (i = 0, idx = 0; idx <= index; i++) { struct acpi_gpio_info info; struct gpio_desc *desc; /* Ignore -EPROBE_DEFER, it only matters if idx matches */ desc = __acpi_find_gpio(fwnode, con_id, i, true, &info); if (IS_ERR(desc) && PTR_ERR(desc) != -EPROBE_DEFER) return PTR_ERR(desc); if (info.gpioint && idx++ == index) { unsigned long lflags = GPIO_LOOKUP_FLAGS_DEFAULT; enum gpiod_flags dflags = GPIOD_ASIS; char label[32]; int irq; if (IS_ERR(desc)) return PTR_ERR(desc); irq = gpiod_to_irq(desc); if (irq < 0) return irq; acpi_gpio_update_gpiod_flags(&dflags, &info); acpi_gpio_update_gpiod_lookup_flags(&lflags, &info); snprintf(label, sizeof(label), "%pfwP GpioInt(%d)", fwnode, index); ret = gpiod_set_consumer_name(desc, con_id ?: label); if (ret) return ret; ret = gpiod_configure_flags(desc, label, lflags, dflags); if (ret < 0) return ret; /* ACPI uses hundredths of milliseconds units */ ret = gpio_set_debounce_timeout(desc, info.debounce * 10); if (ret) return ret; irq_flags = acpi_dev_get_irq_type(info.triggering, info.polarity); /* * If the IRQ is not already in use then set type * if specified and different than the current one. */ if (can_request_irq(irq, irq_flags)) { if (irq_flags != IRQ_TYPE_NONE && irq_flags != irq_get_trigger_type(irq)) irq_set_irq_type(irq, irq_flags); } else { dev_dbg(&adev->dev, "IRQ %d already in use\n", irq); } /* avoid suspend issues with GPIOs when systems are using S3 */ if (wake_capable && acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0) *wake_capable = info.wake_capable; return irq; } } return -ENOENT; } EXPORT_SYMBOL_GPL(acpi_dev_gpio_irq_wake_get_by); static acpi_status acpi_gpio_adr_space_handler(u32 function, acpi_physical_address address, u32 bits, u64 *value, void *handler_context, void *region_context) { struct acpi_gpio_chip *achip = region_context; struct gpio_chip *chip = achip->chip; struct acpi_resource_gpio *agpio; struct acpi_resource *ares; u16 pin_index = address; acpi_status status; int length; int i; status = acpi_buffer_to_resource(achip->conn_info.connection, achip->conn_info.length, &ares); if (ACPI_FAILURE(status)) return status; if (WARN_ON(ares->type != ACPI_RESOURCE_TYPE_GPIO)) { ACPI_FREE(ares); return AE_BAD_PARAMETER; } agpio = &ares->data.gpio; if (WARN_ON(agpio->io_restriction == ACPI_IO_RESTRICT_INPUT && function == ACPI_WRITE)) { ACPI_FREE(ares); return AE_BAD_PARAMETER; } length = min_t(u16, agpio->pin_table_length, pin_index + bits); for (i = pin_index; i < length; ++i) { unsigned int pin = agpio->pin_table[i]; struct acpi_gpio_connection *conn; struct gpio_desc *desc; bool found; mutex_lock(&achip->conn_lock); found = false; list_for_each_entry(conn, &achip->conns, node) { if (conn->pin == pin) { found = true; desc = conn->desc; break; } } /* * The same GPIO can be shared between operation region and * event but only if the access here is ACPI_READ. In that * case we "borrow" the event GPIO instead. */ if (!found && agpio->shareable == ACPI_SHARED && function == ACPI_READ) { struct acpi_gpio_event *event; list_for_each_entry(event, &achip->events, node) { if (event->pin == pin) { desc = event->desc; found = true; break; } } } if (!found) { desc = acpi_request_own_gpiod(chip, agpio, i, "ACPI:OpRegion"); if (IS_ERR(desc)) { mutex_unlock(&achip->conn_lock); status = AE_ERROR; goto out; } conn = kzalloc(sizeof(*conn), GFP_KERNEL); if (!conn) { gpiochip_free_own_desc(desc); mutex_unlock(&achip->conn_lock); status = AE_NO_MEMORY; goto out; } conn->pin = pin; conn->desc = desc; list_add_tail(&conn->node, &achip->conns); } mutex_unlock(&achip->conn_lock); if (function == ACPI_WRITE) gpiod_set_raw_value_cansleep(desc, !!(*value & BIT(i))); else *value |= (u64)gpiod_get_raw_value_cansleep(desc) << i; } out: ACPI_FREE(ares); return status; } static void acpi_gpiochip_request_regions(struct acpi_gpio_chip *achip) { struct gpio_chip *chip = achip->chip; acpi_handle handle = ACPI_HANDLE(chip->parent); acpi_status status; INIT_LIST_HEAD(&achip->conns); mutex_init(&achip->conn_lock); status = acpi_install_address_space_handler(handle, ACPI_ADR_SPACE_GPIO, acpi_gpio_adr_space_handler, NULL, achip); if (ACPI_FAILURE(status)) dev_err(chip->parent, "Failed to install GPIO OpRegion handler\n"); } static void acpi_gpiochip_free_regions(struct acpi_gpio_chip *achip) { struct gpio_chip *chip = achip->chip; acpi_handle handle = ACPI_HANDLE(chip->parent); struct acpi_gpio_connection *conn, *tmp; acpi_status status; status = acpi_remove_address_space_handler(handle, ACPI_ADR_SPACE_GPIO, acpi_gpio_adr_space_handler); if (ACPI_FAILURE(status)) { dev_err(chip->parent, "Failed to remove GPIO OpRegion handler\n"); return; } list_for_each_entry_safe_reverse(conn, tmp, &achip->conns, node) { gpiochip_free_own_desc(conn->desc); list_del(&conn->node); kfree(conn); } } static struct gpio_desc * acpi_gpiochip_parse_own_gpio(struct acpi_gpio_chip *achip, struct fwnode_handle *fwnode, const char **name, unsigned long *lflags, enum gpiod_flags *dflags) { struct gpio_chip *chip = achip->chip; struct gpio_desc *desc; u32 gpios[2]; int ret; *lflags = GPIO_LOOKUP_FLAGS_DEFAULT; *dflags = GPIOD_ASIS; *name = NULL; ret = fwnode_property_read_u32_array(fwnode, "gpios", gpios, ARRAY_SIZE(gpios)); if (ret < 0) return ERR_PTR(ret); desc = gpiochip_get_desc(chip, gpios[0]); if (IS_ERR(desc)) return desc; if (gpios[1]) *lflags |= GPIO_ACTIVE_LOW; if (fwnode_property_present(fwnode, "input")) *dflags |= GPIOD_IN; else if (fwnode_property_present(fwnode, "output-low")) *dflags |= GPIOD_OUT_LOW; else if (fwnode_property_present(fwnode, "output-high")) *dflags |= GPIOD_OUT_HIGH; else return ERR_PTR(-EINVAL); fwnode_property_read_string(fwnode, "line-name", name); return desc; } static void acpi_gpiochip_scan_gpios(struct acpi_gpio_chip *achip) { struct gpio_chip *chip = achip->chip; struct fwnode_handle *fwnode; device_for_each_child_node(chip->parent, fwnode) { unsigned long lflags; enum gpiod_flags dflags; struct gpio_desc *desc; const char *name; int ret; if (!fwnode_property_present(fwnode, "gpio-hog")) continue; desc = acpi_gpiochip_parse_own_gpio(achip, fwnode, &name, &lflags, &dflags); if (IS_ERR(desc)) continue; ret = gpiod_hog(desc, name, lflags, dflags); if (ret) { dev_err(chip->parent, "Failed to hog GPIO\n"); fwnode_handle_put(fwnode); return; } } } void acpi_gpiochip_add(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; struct acpi_device *adev; acpi_status status; if (!chip || !chip->parent) return; adev = ACPI_COMPANION(chip->parent); if (!adev) return; acpi_gpio = kzalloc(sizeof(*acpi_gpio), GFP_KERNEL); if (!acpi_gpio) { dev_err(chip->parent, "Failed to allocate memory for ACPI GPIO chip\n"); return; } acpi_gpio->chip = chip; INIT_LIST_HEAD(&acpi_gpio->events); INIT_LIST_HEAD(&acpi_gpio->deferred_req_irqs_list_entry); status = acpi_attach_data(adev->handle, acpi_gpio_chip_dh, acpi_gpio); if (ACPI_FAILURE(status)) { dev_err(chip->parent, "Failed to attach ACPI GPIO chip\n"); kfree(acpi_gpio); return; } acpi_gpiochip_request_regions(acpi_gpio); acpi_gpiochip_scan_gpios(acpi_gpio); acpi_dev_clear_dependencies(adev); } void acpi_gpiochip_remove(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; acpi_handle handle; acpi_status status; if (!chip || !chip->parent) return; handle = ACPI_HANDLE(chip->parent); if (!handle) return; status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio); if (ACPI_FAILURE(status)) { dev_warn(chip->parent, "Failed to retrieve ACPI GPIO chip\n"); return; } acpi_gpiochip_free_regions(acpi_gpio); acpi_detach_data(handle, acpi_gpio_chip_dh); kfree(acpi_gpio); } static int acpi_gpio_package_count(const union acpi_object *obj) { const union acpi_object *element = obj->package.elements; const union acpi_object *end = element + obj->package.count; unsigned int count = 0; while (element < end) { switch (element->type) { case ACPI_TYPE_LOCAL_REFERENCE: element += 3; fallthrough; case ACPI_TYPE_INTEGER: element++; count++; break; default: return -EPROTO; } } return count; } static int acpi_find_gpio_count(struct acpi_resource *ares, void *data) { unsigned int *count = data; if (ares->type == ACPI_RESOURCE_TYPE_GPIO) *count += ares->data.gpio.pin_table_length; return 1; } /** * acpi_gpio_count - count the GPIOs associated with a firmware node / function * @fwnode: firmware node of the GPIO consumer * @con_id: function within the GPIO consumer * * Return: * The number of GPIOs associated with a firmware node / function or %-ENOENT, * if no GPIO has been assigned to the requested function. */ int acpi_gpio_count(const struct fwnode_handle *fwnode, const char *con_id) { struct acpi_device *adev = to_acpi_device_node(fwnode); const union acpi_object *obj; const struct acpi_gpio_mapping *gm; int count = -ENOENT; int ret; char propname[32]; unsigned int i; /* Try first from _DSD */ for (i = 0; i < gpio_suffix_count; i++) { if (con_id) snprintf(propname, sizeof(propname), "%s-%s", con_id, gpio_suffixes[i]); else snprintf(propname, sizeof(propname), "%s", gpio_suffixes[i]); ret = acpi_dev_get_property(adev, propname, ACPI_TYPE_ANY, &obj); if (ret == 0) { if (obj->type == ACPI_TYPE_LOCAL_REFERENCE) count = 1; else if (obj->type == ACPI_TYPE_PACKAGE) count = acpi_gpio_package_count(obj); } else if (adev->driver_gpios) { for (gm = adev->driver_gpios; gm->name; gm++) if (strcmp(propname, gm->name) == 0) { count = gm->size; break; } } if (count > 0) break; } /* Then from plain _CRS GPIOs */ if (count < 0) { struct list_head resource_list; unsigned int crs_count = 0; if (!acpi_can_fallback_to_crs(adev, con_id)) return count; INIT_LIST_HEAD(&resource_list); acpi_dev_get_resources(adev, &resource_list, acpi_find_gpio_count, &crs_count); acpi_dev_free_resource_list(&resource_list); if (crs_count > 0) count = crs_count; } return count ? count : -ENOENT; } /* Run deferred acpi_gpiochip_request_irqs() */ static int __init acpi_gpio_handle_deferred_request_irqs(void) { struct acpi_gpio_chip *acpi_gpio, *tmp; mutex_lock(&acpi_gpio_deferred_req_irqs_lock); list_for_each_entry_safe(acpi_gpio, tmp, &acpi_gpio_deferred_req_irqs_list, deferred_req_irqs_list_entry) acpi_gpiochip_request_irqs(acpi_gpio); acpi_gpio_deferred_req_irqs_done = true; mutex_unlock(&acpi_gpio_deferred_req_irqs_lock); return 0; } /* We must use _sync so that this runs after the first deferred_probe run */ late_initcall_sync(acpi_gpio_handle_deferred_request_irqs); static const struct dmi_system_id gpiolib_acpi_quirks[] __initconst = { { /* * The Minix Neo Z83-4 has a micro-USB-B id-pin handler for * a non existing micro-USB-B connector which puts the HDMI * DDC pins in GPIO mode, breaking HDMI support. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MINIX"), DMI_MATCH(DMI_PRODUCT_NAME, "Z83-4"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .no_edge_events_on_boot = true, }, }, { /* * The Terra Pad 1061 has a micro-USB-B id-pin handler, which * instead of controlling the actual micro-USB-B turns the 5V * boost for its USB-A connector off. The actual micro-USB-B * connector is wired for charging only. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Wortmann_AG"), DMI_MATCH(DMI_PRODUCT_NAME, "TERRA_PAD_1061"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .no_edge_events_on_boot = true, }, }, { /* * The Dell Venue 10 Pro 5055, with Bay Trail SoC + TI PMIC uses an * external embedded-controller connected via I2C + an ACPI GPIO * event handler on INT33FFC:02 pin 12, causing spurious wakeups. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Venue 10 Pro 5055"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "INT33FC:02@12", }, }, { /* * HP X2 10 models with Cherry Trail SoC + TI PMIC use an * external embedded-controller connected via I2C + an ACPI GPIO * event handler on INT33FF:01 pin 0, causing spurious wakeups. * When suspending by closing the LID, the power to the USB * keyboard is turned off, causing INT0002 ACPI events to * trigger once the XHCI controller notices the keyboard is * gone. So INT0002 events cause spurious wakeups too. Ignoring * EC wakes breaks wakeup when opening the lid, the user needs * to press the power-button to wakeup the system. The * alternative is suspend simply not working, which is worse. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP x2 Detachable 10-p0XX"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "INT33FF:01@0,INT0002:00@2", }, }, { /* * HP X2 10 models with Bay Trail SoC + AXP288 PMIC use an * external embedded-controller connected via I2C + an ACPI GPIO * event handler on INT33FC:02 pin 28, causing spurious wakeups. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion x2 Detachable"), DMI_MATCH(DMI_BOARD_NAME, "815D"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "INT33FC:02@28", }, }, { /* * HP X2 10 models with Cherry Trail SoC + AXP288 PMIC use an * external embedded-controller connected via I2C + an ACPI GPIO * event handler on INT33FF:01 pin 0, causing spurious wakeups. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion x2 Detachable"), DMI_MATCH(DMI_BOARD_NAME, "813E"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "INT33FF:01@0", }, }, { /* * Interrupt storm caused from edge triggered floating pin * Found in BIOS UX325UAZ.300 * https://bugzilla.kernel.org/show_bug.cgi?id=216208 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "ZenBook UX325UAZ_UM325UAZ"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_interrupt = "AMDI0030:00@18", }, }, { /* * Spurious wakeups from TP_ATTN# pin * Found in BIOS 1.7.8 * https://gitlab.freedesktop.org/drm/amd/-/issues/1722#note_1720627 */ .matches = { DMI_MATCH(DMI_BOARD_NAME, "NL5xNU"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "ELAN0415:00@9", }, }, { /* * Spurious wakeups from TP_ATTN# pin * Found in BIOS 1.7.8 * https://gitlab.freedesktop.org/drm/amd/-/issues/1722#note_1720627 */ .matches = { DMI_MATCH(DMI_BOARD_NAME, "NL5xRU"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "ELAN0415:00@9", }, }, { /* * Spurious wakeups from TP_ATTN# pin * Found in BIOS 1.7.7 */ .matches = { DMI_MATCH(DMI_BOARD_NAME, "NH5xAx"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "SYNA1202:00@16", }, }, { /* * On the Peaq C1010 2-in-1 INT33FC:00 pin 3 is connected to * a "dolby" button. At the ACPI level an _AEI event-handler * is connected which sets an ACPI variable to 1 on both * edges. This variable can be polled + cleared to 0 using * WMI. But since the variable is set on both edges the WMI * interface is pretty useless even when polling. * So instead the x86-android-tablets code instantiates * a gpio-keys platform device for it. * Ignore the _AEI handler for the pin, so that it is not busy. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PEAQ"), DMI_MATCH(DMI_PRODUCT_NAME, "PEAQ PMM C1010 MD99187"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_interrupt = "INT33FC:00@3", }, }, { /* * Spurious wakeups from TP_ATTN# pin * Found in BIOS 0.35 * https://gitlab.freedesktop.org/drm/amd/-/issues/3073 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "GPD"), DMI_MATCH(DMI_PRODUCT_NAME, "G1619-04"), }, .driver_data = &(struct acpi_gpiolib_dmi_quirk) { .ignore_wake = "PNP0C50:00@8", }, }, {} /* Terminating entry */ }; static int __init acpi_gpio_setup_params(void) { const struct acpi_gpiolib_dmi_quirk *quirk = NULL; const struct dmi_system_id *id; id = dmi_first_match(gpiolib_acpi_quirks); if (id) quirk = id->driver_data; if (run_edge_events_on_boot < 0) { if (quirk && quirk->no_edge_events_on_boot) run_edge_events_on_boot = 0; else run_edge_events_on_boot = 1; } if (ignore_wake == NULL && quirk && quirk->ignore_wake) ignore_wake = quirk->ignore_wake; if (ignore_interrupt == NULL && quirk && quirk->ignore_interrupt) ignore_interrupt = quirk->ignore_interrupt; return 0; } /* Directly after dmi_setup() which runs as core_initcall() */ postcore_initcall(acpi_gpio_setup_params);
2 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 // SPDX-License-Identifier: GPL-2.0-or-later /* * * AVM BlueFRITZ! USB driver * * Copyright (C) 2003-2006 Marcel Holtmann <marcel@holtmann.org> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/device.h> #include <linux/firmware.h> #include <linux/usb.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #define VERSION "1.2" static struct usb_driver bfusb_driver; static const struct usb_device_id bfusb_table[] = { /* AVM BlueFRITZ! USB */ { USB_DEVICE(0x057c, 0x2200) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, bfusb_table); #define BFUSB_MAX_BLOCK_SIZE 256 #define BFUSB_BLOCK_TIMEOUT 3000 #define BFUSB_TX_PROCESS 1 #define BFUSB_TX_WAKEUP 2 #define BFUSB_MAX_BULK_TX 2 #define BFUSB_MAX_BULK_RX 2 struct bfusb_data { struct hci_dev *hdev; unsigned long state; struct usb_device *udev; unsigned int bulk_in_ep; unsigned int bulk_out_ep; unsigned int bulk_pkt_size; rwlock_t lock; struct sk_buff_head transmit_q; struct sk_buff *reassembly; atomic_t pending_tx; struct sk_buff_head pending_q; struct sk_buff_head completed_q; }; struct bfusb_data_scb { struct urb *urb; }; static void bfusb_tx_complete(struct urb *urb); static void bfusb_rx_complete(struct urb *urb); static struct urb *bfusb_get_completed(struct bfusb_data *data) { struct sk_buff *skb; struct urb *urb = NULL; BT_DBG("bfusb %p", data); skb = skb_dequeue(&data->completed_q); if (skb) { urb = ((struct bfusb_data_scb *) skb->cb)->urb; kfree_skb(skb); } return urb; } static void bfusb_unlink_urbs(struct bfusb_data *data) { struct sk_buff *skb; struct urb *urb; BT_DBG("bfusb %p", data); while ((skb = skb_dequeue(&data->pending_q))) { urb = ((struct bfusb_data_scb *) skb->cb)->urb; usb_kill_urb(urb); skb_queue_tail(&data->completed_q, skb); } while ((urb = bfusb_get_completed(data))) usb_free_urb(urb); } static int bfusb_send_bulk(struct bfusb_data *data, struct sk_buff *skb) { struct bfusb_data_scb *scb = (void *) skb->cb; struct urb *urb = bfusb_get_completed(data); int err, pipe; BT_DBG("bfusb %p skb %p len %d", data, skb, skb->len); if (!urb) { urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; } pipe = usb_sndbulkpipe(data->udev, data->bulk_out_ep); usb_fill_bulk_urb(urb, data->udev, pipe, skb->data, skb->len, bfusb_tx_complete, skb); scb->urb = urb; skb_queue_tail(&data->pending_q, skb); err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { bt_dev_err(data->hdev, "bulk tx submit failed urb %p err %d", urb, err); skb_unlink(skb, &data->pending_q); usb_free_urb(urb); } else atomic_inc(&data->pending_tx); return err; } static void bfusb_tx_wakeup(struct bfusb_data *data) { struct sk_buff *skb; BT_DBG("bfusb %p", data); if (test_and_set_bit(BFUSB_TX_PROCESS, &data->state)) { set_bit(BFUSB_TX_WAKEUP, &data->state); return; } do { clear_bit(BFUSB_TX_WAKEUP, &data->state); while ((atomic_read(&data->pending_tx) < BFUSB_MAX_BULK_TX) && (skb = skb_dequeue(&data->transmit_q))) { if (bfusb_send_bulk(data, skb) < 0) { skb_queue_head(&data->transmit_q, skb); break; } } } while (test_bit(BFUSB_TX_WAKEUP, &data->state)); clear_bit(BFUSB_TX_PROCESS, &data->state); } static void bfusb_tx_complete(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *) urb->context; struct bfusb_data *data = (struct bfusb_data *) skb->dev; BT_DBG("bfusb %p urb %p skb %p len %d", data, urb, skb, skb->len); atomic_dec(&data->pending_tx); if (!test_bit(HCI_RUNNING, &data->hdev->flags)) return; if (!urb->status) data->hdev->stat.byte_tx += skb->len; else data->hdev->stat.err_tx++; read_lock(&data->lock); skb_unlink(skb, &data->pending_q); skb_queue_tail(&data->completed_q, skb); bfusb_tx_wakeup(data); read_unlock(&data->lock); } static int bfusb_rx_submit(struct bfusb_data *data, struct urb *urb) { struct bfusb_data_scb *scb; struct sk_buff *skb; int err, pipe, size = HCI_MAX_FRAME_SIZE + 32; BT_DBG("bfusb %p urb %p", data, urb); if (!urb) { urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; } skb = bt_skb_alloc(size, GFP_ATOMIC); if (!skb) { usb_free_urb(urb); return -ENOMEM; } skb->dev = (void *) data; scb = (struct bfusb_data_scb *) skb->cb; scb->urb = urb; pipe = usb_rcvbulkpipe(data->udev, data->bulk_in_ep); usb_fill_bulk_urb(urb, data->udev, pipe, skb->data, size, bfusb_rx_complete, skb); skb_queue_tail(&data->pending_q, skb); err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { bt_dev_err(data->hdev, "bulk rx submit failed urb %p err %d", urb, err); skb_unlink(skb, &data->pending_q); kfree_skb(skb); usb_free_urb(urb); } return err; } static inline int bfusb_recv_block(struct bfusb_data *data, int hdr, unsigned char *buf, int len) { BT_DBG("bfusb %p hdr 0x%02x data %p len %d", data, hdr, buf, len); if (hdr & 0x10) { bt_dev_err(data->hdev, "error in block"); kfree_skb(data->reassembly); data->reassembly = NULL; return -EIO; } if (hdr & 0x04) { struct sk_buff *skb; unsigned char pkt_type; int pkt_len = 0; if (data->reassembly) { bt_dev_err(data->hdev, "unexpected start block"); kfree_skb(data->reassembly); data->reassembly = NULL; } if (len < 1) { bt_dev_err(data->hdev, "no packet type found"); return -EPROTO; } pkt_type = *buf++; len--; switch (pkt_type) { case HCI_EVENT_PKT: if (len >= HCI_EVENT_HDR_SIZE) { struct hci_event_hdr *hdr = (struct hci_event_hdr *) buf; pkt_len = HCI_EVENT_HDR_SIZE + hdr->plen; } else { bt_dev_err(data->hdev, "event block is too short"); return -EILSEQ; } break; case HCI_ACLDATA_PKT: if (len >= HCI_ACL_HDR_SIZE) { struct hci_acl_hdr *hdr = (struct hci_acl_hdr *) buf; pkt_len = HCI_ACL_HDR_SIZE + __le16_to_cpu(hdr->dlen); } else { bt_dev_err(data->hdev, "data block is too short"); return -EILSEQ; } break; case HCI_SCODATA_PKT: if (len >= HCI_SCO_HDR_SIZE) { struct hci_sco_hdr *hdr = (struct hci_sco_hdr *) buf; pkt_len = HCI_SCO_HDR_SIZE + hdr->dlen; } else { bt_dev_err(data->hdev, "audio block is too short"); return -EILSEQ; } break; } skb = bt_skb_alloc(pkt_len, GFP_ATOMIC); if (!skb) { bt_dev_err(data->hdev, "no memory for the packet"); return -ENOMEM; } hci_skb_pkt_type(skb) = pkt_type; data->reassembly = skb; } else { if (!data->reassembly) { bt_dev_err(data->hdev, "unexpected continuation block"); return -EIO; } } if (len > 0) skb_put_data(data->reassembly, buf, len); if (hdr & 0x08) { hci_recv_frame(data->hdev, data->reassembly); data->reassembly = NULL; } return 0; } static void bfusb_rx_complete(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *) urb->context; struct bfusb_data *data = (struct bfusb_data *) skb->dev; unsigned char *buf = urb->transfer_buffer; int count = urb->actual_length; int err, hdr, len; BT_DBG("bfusb %p urb %p skb %p len %d", data, urb, skb, skb->len); read_lock(&data->lock); if (!test_bit(HCI_RUNNING, &data->hdev->flags)) goto unlock; if (urb->status || !count) goto resubmit; data->hdev->stat.byte_rx += count; skb_put(skb, count); while (count) { hdr = buf[0] | (buf[1] << 8); if (hdr & 0x4000) { len = 0; count -= 2; buf += 2; } else { len = (buf[2] == 0) ? 256 : buf[2]; count -= 3; buf += 3; } if (count < len) { bt_dev_err(data->hdev, "block extends over URB buffer ranges"); } if ((hdr & 0xe1) == 0xc1) bfusb_recv_block(data, hdr, buf, len); count -= len; buf += len; } skb_unlink(skb, &data->pending_q); kfree_skb(skb); bfusb_rx_submit(data, urb); read_unlock(&data->lock); return; resubmit: urb->dev = data->udev; err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { bt_dev_err(data->hdev, "bulk resubmit failed urb %p err %d", urb, err); } unlock: read_unlock(&data->lock); } static int bfusb_open(struct hci_dev *hdev) { struct bfusb_data *data = hci_get_drvdata(hdev); unsigned long flags; int i, err; BT_DBG("hdev %p bfusb %p", hdev, data); write_lock_irqsave(&data->lock, flags); err = bfusb_rx_submit(data, NULL); if (!err) { for (i = 1; i < BFUSB_MAX_BULK_RX; i++) bfusb_rx_submit(data, NULL); } write_unlock_irqrestore(&data->lock, flags); return err; } static int bfusb_flush(struct hci_dev *hdev) { struct bfusb_data *data = hci_get_drvdata(hdev); BT_DBG("hdev %p bfusb %p", hdev, data); skb_queue_purge(&data->transmit_q); return 0; } static int bfusb_close(struct hci_dev *hdev) { struct bfusb_data *data = hci_get_drvdata(hdev); unsigned long flags; BT_DBG("hdev %p bfusb %p", hdev, data); write_lock_irqsave(&data->lock, flags); write_unlock_irqrestore(&data->lock, flags); bfusb_unlink_urbs(data); bfusb_flush(hdev); return 0; } static int bfusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { struct bfusb_data *data = hci_get_drvdata(hdev); struct sk_buff *nskb; unsigned char buf[3]; int sent = 0, size, count; BT_DBG("hdev %p skb %p type %d len %d", hdev, skb, hci_skb_pkt_type(skb), skb->len); switch (hci_skb_pkt_type(skb)) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; } /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); count = skb->len; /* Max HCI frame size seems to be 1511 + 1 */ nskb = bt_skb_alloc(count + 32, GFP_KERNEL); if (!nskb) { bt_dev_err(hdev, "Can't allocate memory for new packet"); return -ENOMEM; } nskb->dev = (void *) data; while (count) { size = min_t(uint, count, BFUSB_MAX_BLOCK_SIZE); buf[0] = 0xc1 | ((sent == 0) ? 0x04 : 0) | ((count == size) ? 0x08 : 0); buf[1] = 0x00; buf[2] = (size == BFUSB_MAX_BLOCK_SIZE) ? 0 : size; skb_put_data(nskb, buf, 3); skb_copy_from_linear_data_offset(skb, sent, skb_put(nskb, size), size); sent += size; count -= size; } /* Don't send frame with multiple size of bulk max packet */ if ((nskb->len % data->bulk_pkt_size) == 0) { buf[0] = 0xdd; buf[1] = 0x00; skb_put_data(nskb, buf, 2); } read_lock(&data->lock); skb_queue_tail(&data->transmit_q, nskb); bfusb_tx_wakeup(data); read_unlock(&data->lock); kfree_skb(skb); return 0; } static int bfusb_load_firmware(struct bfusb_data *data, const unsigned char *firmware, int count) { unsigned char *buf; int err, pipe, len, size, sent = 0; BT_DBG("bfusb %p udev %p", data, data->udev); BT_INFO("BlueFRITZ! USB loading firmware"); buf = kmalloc(BFUSB_MAX_BLOCK_SIZE + 3, GFP_KERNEL); if (!buf) { BT_ERR("Can't allocate memory chunk for firmware"); return -ENOMEM; } pipe = usb_sndctrlpipe(data->udev, 0); if (usb_control_msg(data->udev, pipe, USB_REQ_SET_CONFIGURATION, 0, 1, 0, NULL, 0, USB_CTRL_SET_TIMEOUT) < 0) { BT_ERR("Can't change to loading configuration"); kfree(buf); return -EBUSY; } data->udev->toggle[0] = data->udev->toggle[1] = 0; pipe = usb_sndbulkpipe(data->udev, data->bulk_out_ep); while (count) { size = min_t(uint, count, BFUSB_MAX_BLOCK_SIZE + 3); memcpy(buf, firmware + sent, size); err = usb_bulk_msg(data->udev, pipe, buf, size, &len, BFUSB_BLOCK_TIMEOUT); if (err || (len != size)) { BT_ERR("Error in firmware loading"); goto error; } sent += size; count -= size; } err = usb_bulk_msg(data->udev, pipe, NULL, 0, &len, BFUSB_BLOCK_TIMEOUT); if (err < 0) { BT_ERR("Error in null packet request"); goto error; } pipe = usb_sndctrlpipe(data->udev, 0); err = usb_control_msg(data->udev, pipe, USB_REQ_SET_CONFIGURATION, 0, 2, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (err < 0) { BT_ERR("Can't change to running configuration"); goto error; } data->udev->toggle[0] = data->udev->toggle[1] = 0; BT_INFO("BlueFRITZ! USB device ready"); kfree(buf); return 0; error: kfree(buf); pipe = usb_sndctrlpipe(data->udev, 0); usb_control_msg(data->udev, pipe, USB_REQ_SET_CONFIGURATION, 0, 0, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); return err; } static int bfusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { const struct firmware *firmware; struct usb_device *udev = interface_to_usbdev(intf); struct usb_host_endpoint *bulk_out_ep; struct usb_host_endpoint *bulk_in_ep; struct hci_dev *hdev; struct bfusb_data *data; BT_DBG("intf %p id %p", intf, id); /* Check number of endpoints */ if (intf->cur_altsetting->desc.bNumEndpoints < 2) return -EIO; bulk_out_ep = &intf->cur_altsetting->endpoint[0]; bulk_in_ep = &intf->cur_altsetting->endpoint[1]; if (!bulk_out_ep || !bulk_in_ep) { BT_ERR("Bulk endpoints not found"); goto done; } /* Initialize control structure and load firmware */ data = devm_kzalloc(&intf->dev, sizeof(struct bfusb_data), GFP_KERNEL); if (!data) return -ENOMEM; data->udev = udev; data->bulk_in_ep = bulk_in_ep->desc.bEndpointAddress; data->bulk_out_ep = bulk_out_ep->desc.bEndpointAddress; data->bulk_pkt_size = le16_to_cpu(bulk_out_ep->desc.wMaxPacketSize); if (!data->bulk_pkt_size) goto done; rwlock_init(&data->lock); data->reassembly = NULL; skb_queue_head_init(&data->transmit_q); skb_queue_head_init(&data->pending_q); skb_queue_head_init(&data->completed_q); if (request_firmware(&firmware, "bfubase.frm", &udev->dev) < 0) { BT_ERR("Firmware request failed"); goto done; } BT_DBG("firmware data %p size %zu", firmware->data, firmware->size); if (bfusb_load_firmware(data, firmware->data, firmware->size) < 0) { BT_ERR("Firmware loading failed"); goto release; } release_firmware(firmware); /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { BT_ERR("Can't allocate HCI device"); goto done; } data->hdev = hdev; hdev->bus = HCI_USB; hci_set_drvdata(hdev, data); SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = bfusb_open; hdev->close = bfusb_close; hdev->flush = bfusb_flush; hdev->send = bfusb_send_frame; set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks); if (hci_register_dev(hdev) < 0) { BT_ERR("Can't register HCI device"); hci_free_dev(hdev); goto done; } usb_set_intfdata(intf, data); return 0; release: release_firmware(firmware); done: return -EIO; } static void bfusb_disconnect(struct usb_interface *intf) { struct bfusb_data *data = usb_get_intfdata(intf); struct hci_dev *hdev = data->hdev; BT_DBG("intf %p", intf); if (!hdev) return; usb_set_intfdata(intf, NULL); bfusb_close(hdev); hci_unregister_dev(hdev); hci_free_dev(hdev); } static struct usb_driver bfusb_driver = { .name = "bfusb", .probe = bfusb_probe, .disconnect = bfusb_disconnect, .id_table = bfusb_table, .disable_hub_initiated_lpm = 1, }; module_usb_driver(bfusb_driver); MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); MODULE_DESCRIPTION("BlueFRITZ! USB driver ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("bfubase.frm");
152 153 153 149 149 143 2 141 140 3 142 143 149 148 15 15 134 58 2 58 3 55 5 135 29 134 132 138 138 137 17 108 12 135 135 1 9 123 1 3 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 // SPDX-License-Identifier: GPL-2.0-or-later /* * Forwarding decision * Linux ethernet bridge * * Authors: * Lennert Buytenhek <buytenh@gnu.org> */ #include <linux/err.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/netpoll.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/netfilter_bridge.h> #include "br_private.h" /* Don't forward packets to originating port or forwarding disabled */ static inline int should_deliver(const struct net_bridge_port *p, const struct sk_buff *skb) { struct net_bridge_vlan_group *vg; vg = nbp_vlan_group_rcu(p); return ((p->flags & BR_HAIRPIN_MODE) || skb->dev != p->dev) && (br_mst_is_enabled(p->br) || p->state == BR_STATE_FORWARDING) && br_allowed_egress(vg, skb) && nbp_switchdev_allowed_egress(p, skb) && !br_skb_isolated(p, skb); } int br_dev_queue_push_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) { skb_push(skb, ETH_HLEN); if (!is_skb_forwardable(skb->dev, skb)) goto drop; br_drop_fake_rtable(skb); if (skb->ip_summed == CHECKSUM_PARTIAL && eth_type_vlan(skb->protocol)) { int depth; if (!vlan_get_protocol_and_depth(skb, skb->protocol, &depth)) goto drop; skb_set_network_header(skb, depth); } br_switchdev_frame_set_offload_fwd_mark(skb); dev_queue_xmit(skb); return 0; drop: kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(br_dev_queue_push_xmit); int br_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { skb_clear_tstamp(skb); return NF_HOOK(NFPROTO_BRIDGE, NF_BR_POST_ROUTING, net, sk, skb, NULL, skb->dev, br_dev_queue_push_xmit); } EXPORT_SYMBOL_GPL(br_forward_finish); static void __br_forward(const struct net_bridge_port *to, struct sk_buff *skb, bool local_orig) { struct net_bridge_vlan_group *vg; struct net_device *indev; struct net *net; int br_hook; /* Mark the skb for forwarding offload early so that br_handle_vlan() * can know whether to pop the VLAN header on egress or keep it. */ nbp_switchdev_frame_mark_tx_fwd_offload(to, skb); vg = nbp_vlan_group_rcu(to); skb = br_handle_vlan(to->br, to, vg, skb); if (!skb) return; indev = skb->dev; skb->dev = to->dev; if (!local_orig) { if (skb_warn_if_lro(skb)) { kfree_skb(skb); return; } br_hook = NF_BR_FORWARD; skb_forward_csum(skb); net = dev_net(indev); } else { if (unlikely(netpoll_tx_running(to->br->dev))) { skb_push(skb, ETH_HLEN); if (!is_skb_forwardable(skb->dev, skb)) kfree_skb(skb); else br_netpoll_send_skb(to, skb); return; } br_hook = NF_BR_LOCAL_OUT; net = dev_net(skb->dev); indev = NULL; } NF_HOOK(NFPROTO_BRIDGE, br_hook, net, NULL, skb, indev, skb->dev, br_forward_finish); } static int deliver_clone(const struct net_bridge_port *prev, struct sk_buff *skb, bool local_orig) { struct net_device *dev = BR_INPUT_SKB_CB(skb)->brdev; skb = skb_clone(skb, GFP_ATOMIC); if (!skb) { DEV_STATS_INC(dev, tx_dropped); return -ENOMEM; } __br_forward(prev, skb, local_orig); return 0; } /** * br_forward - forward a packet to a specific port * @to: destination port * @skb: packet being forwarded * @local_rcv: packet will be received locally after forwarding * @local_orig: packet is locally originated * * Should be called with rcu_read_lock. */ void br_forward(const struct net_bridge_port *to, struct sk_buff *skb, bool local_rcv, bool local_orig) { if (unlikely(!to)) goto out; /* redirect to backup link if the destination port is down */ if (rcu_access_pointer(to->backup_port) && !netif_carrier_ok(to->dev)) { struct net_bridge_port *backup_port; backup_port = rcu_dereference(to->backup_port); if (unlikely(!backup_port)) goto out; BR_INPUT_SKB_CB(skb)->backup_nhid = READ_ONCE(to->backup_nhid); to = backup_port; } if (should_deliver(to, skb)) { if (local_rcv) deliver_clone(to, skb, local_orig); else __br_forward(to, skb, local_orig); return; } out: if (!local_rcv) kfree_skb(skb); } EXPORT_SYMBOL_GPL(br_forward); static struct net_bridge_port *maybe_deliver( struct net_bridge_port *prev, struct net_bridge_port *p, struct sk_buff *skb, bool local_orig) { u8 igmp_type = br_multicast_igmp_type(skb); int err; if (!should_deliver(p, skb)) return prev; nbp_switchdev_frame_mark_tx_fwd_to_hwdom(p, skb); if (!prev) goto out; err = deliver_clone(prev, skb, local_orig); if (err) return ERR_PTR(err); out: br_multicast_count(p->br, p, skb, igmp_type, BR_MCAST_DIR_TX); return p; } /* called under rcu_read_lock */ void br_flood(struct net_bridge *br, struct sk_buff *skb, enum br_pkt_type pkt_type, bool local_rcv, bool local_orig, u16 vid) { struct net_bridge_port *prev = NULL; struct net_bridge_port *p; br_tc_skb_miss_set(skb, pkt_type != BR_PKT_BROADCAST); list_for_each_entry_rcu(p, &br->port_list, list) { /* Do not flood unicast traffic to ports that turn it off, nor * other traffic if flood off, except for traffic we originate */ switch (pkt_type) { case BR_PKT_UNICAST: if (!(p->flags & BR_FLOOD)) continue; break; case BR_PKT_MULTICAST: if (!(p->flags & BR_MCAST_FLOOD) && skb->dev != br->dev) continue; break; case BR_PKT_BROADCAST: if (!(p->flags & BR_BCAST_FLOOD) && skb->dev != br->dev) continue; break; } /* Do not flood to ports that enable proxy ARP */ if (p->flags & BR_PROXYARP) continue; if (BR_INPUT_SKB_CB(skb)->proxyarp_replied && ((p->flags & BR_PROXYARP_WIFI) || br_is_neigh_suppress_enabled(p, vid))) continue; prev = maybe_deliver(prev, p, skb, local_orig); if (IS_ERR(prev)) goto out; } if (!prev) goto out; if (local_rcv) deliver_clone(prev, skb, local_orig); else __br_forward(prev, skb, local_orig); return; out: if (!local_rcv) kfree_skb(skb); } #ifdef CONFIG_BRIDGE_IGMP_SNOOPING static void maybe_deliver_addr(struct net_bridge_port *p, struct sk_buff *skb, const unsigned char *addr, bool local_orig) { struct net_device *dev = BR_INPUT_SKB_CB(skb)->brdev; const unsigned char *src = eth_hdr(skb)->h_source; struct sk_buff *nskb; if (!should_deliver(p, skb)) return; /* Even with hairpin, no soliloquies - prevent breaking IPv6 DAD */ if (skb->dev == p->dev && ether_addr_equal(src, addr)) return; __skb_push(skb, ETH_HLEN); nskb = pskb_copy(skb, GFP_ATOMIC); __skb_pull(skb, ETH_HLEN); if (!nskb) { DEV_STATS_INC(dev, tx_dropped); return; } skb = nskb; __skb_pull(skb, ETH_HLEN); if (!is_broadcast_ether_addr(addr)) memcpy(eth_hdr(skb)->h_dest, addr, ETH_ALEN); __br_forward(p, skb, local_orig); } /* called with rcu_read_lock */ void br_multicast_flood(struct net_bridge_mdb_entry *mdst, struct sk_buff *skb, struct net_bridge_mcast *brmctx, bool local_rcv, bool local_orig) { struct net_bridge_port *prev = NULL; struct net_bridge_port_group *p; bool allow_mode_include = true; struct hlist_node *rp; rp = br_multicast_get_first_rport_node(brmctx, skb); if (mdst) { p = rcu_dereference(mdst->ports); if (br_multicast_should_handle_mode(brmctx, mdst->addr.proto) && br_multicast_is_star_g(&mdst->addr)) allow_mode_include = false; } else { p = NULL; br_tc_skb_miss_set(skb, true); } while (p || rp) { struct net_bridge_port *port, *lport, *rport; lport = p ? p->key.port : NULL; rport = br_multicast_rport_from_node_skb(rp, skb); if ((unsigned long)lport > (unsigned long)rport) { port = lport; if (port->flags & BR_MULTICAST_TO_UNICAST) { maybe_deliver_addr(lport, skb, p->eth_addr, local_orig); goto delivered; } if ((!allow_mode_include && p->filter_mode == MCAST_INCLUDE) || (p->flags & MDB_PG_FLAGS_BLOCKED)) goto delivered; } else { port = rport; } prev = maybe_deliver(prev, port, skb, local_orig); if (IS_ERR(prev)) goto out; delivered: if ((unsigned long)lport >= (unsigned long)port) p = rcu_dereference(p->next); if ((unsigned long)rport >= (unsigned long)port) rp = rcu_dereference(hlist_next_rcu(rp)); } if (!prev) goto out; if (local_rcv) deliver_clone(prev, skb, local_orig); else __br_forward(prev, skb, local_orig); return; out: if (!local_rcv) kfree_skb(skb); } #endif
50 50 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 // SPDX-License-Identifier: GPL-2.0-only /* * ksyms_common.c: A split of kernel/kallsyms.c * Contains a few generic function definations independent of config KALLSYMS. */ #include <linux/kallsyms.h> #include <linux/security.h> static inline int kallsyms_for_perf(void) { #ifdef CONFIG_PERF_EVENTS extern int sysctl_perf_event_paranoid; if (sysctl_perf_event_paranoid <= 1) return 1; #endif return 0; } /* * We show kallsyms information even to normal users if we've enabled * kernel profiling and are explicitly not paranoid (so kptr_restrict * is clear, and sysctl_perf_event_paranoid isn't set). * * Otherwise, require CAP_SYSLOG (assuming kptr_restrict isn't set to * block even that). */ bool kallsyms_show_value(const struct cred *cred) { switch (kptr_restrict) { case 0: if (kallsyms_for_perf()) return true; fallthrough; case 1: if (security_capable(cred, &init_user_ns, CAP_SYSLOG, CAP_OPT_NOAUDIT) == 0) return true; fallthrough; default: return false; } }
3 3 4 4 1 4 3 2 1 5 5 4 1 4 4 4 1 3 1 1 3 4 4 3 4 1 4 5 5 5 4 1 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 // SPDX-License-Identifier: GPL-2.0-only /* Network filesystem high-level buffered write support. * * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/export.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/pagevec.h> #include "internal.h" /* * Determined write method. Adjust netfs_folio_traces if this is changed. */ enum netfs_how_to_modify { NETFS_FOLIO_IS_UPTODATE, /* Folio is uptodate already */ NETFS_JUST_PREFETCH, /* We have to read the folio anyway */ NETFS_WHOLE_FOLIO_MODIFY, /* We're going to overwrite the whole folio */ NETFS_MODIFY_AND_CLEAR, /* We can assume there is no data to be downloaded. */ NETFS_STREAMING_WRITE, /* Store incomplete data in non-uptodate page. */ NETFS_STREAMING_WRITE_CONT, /* Continue streaming write. */ NETFS_FLUSH_CONTENT, /* Flush incompatible content. */ }; static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group) { void *priv = folio_get_private(folio); if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE)) folio_attach_private(folio, netfs_get_group(netfs_group)); else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE) folio_detach_private(folio); } /* * Decide how we should modify a folio. We might be attempting to do * write-streaming, in which case we don't want to a local RMW cycle if we can * avoid it. If we're doing local caching or content crypto, we award that * priority over avoiding RMW. If the file is open readably, then we also * assume that we may want to read what we wrote. */ static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx, struct file *file, struct folio *folio, void *netfs_group, size_t flen, size_t offset, size_t len, bool maybe_trouble) { struct netfs_folio *finfo = netfs_folio_info(folio); struct netfs_group *group = netfs_folio_group(folio); loff_t pos = folio_pos(folio); _enter(""); if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) return NETFS_FLUSH_CONTENT; if (folio_test_uptodate(folio)) return NETFS_FOLIO_IS_UPTODATE; if (pos >= ctx->zero_point) return NETFS_MODIFY_AND_CLEAR; if (!maybe_trouble && offset == 0 && len >= flen) return NETFS_WHOLE_FOLIO_MODIFY; if (file->f_mode & FMODE_READ) goto no_write_streaming; if (netfs_is_cache_enabled(ctx)) { /* We don't want to get a streaming write on a file that loses * caching service temporarily because the backing store got * culled. */ goto no_write_streaming; } if (!finfo) return NETFS_STREAMING_WRITE; /* We can continue a streaming write only if it continues on from the * previous. If it overlaps, we must flush lest we suffer a partial * copy and disjoint dirty regions. */ if (offset == finfo->dirty_offset + finfo->dirty_len) return NETFS_STREAMING_WRITE_CONT; return NETFS_FLUSH_CONTENT; no_write_streaming: if (finfo) { netfs_stat(&netfs_n_wh_wstream_conflict); return NETFS_FLUSH_CONTENT; } return NETFS_JUST_PREFETCH; } /* * Grab a folio for writing and lock it. Attempt to allocate as large a folio * as possible to hold as much of the remaining length as possible in one go. */ static struct folio *netfs_grab_folio_for_write(struct address_space *mapping, loff_t pos, size_t part) { pgoff_t index = pos / PAGE_SIZE; fgf_t fgp_flags = FGP_WRITEBEGIN; if (mapping_large_folio_support(mapping)) fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part); return __filemap_get_folio(mapping, index, fgp_flags, mapping_gfp_mask(mapping)); } /* * Update i_size and estimate the update to i_blocks to reflect the additional * data written into the pagecache until we can find out from the server what * the values actually are. */ static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode, loff_t i_size, loff_t pos, size_t copied) { blkcnt_t add; size_t gap; if (ctx->ops->update_i_size) { ctx->ops->update_i_size(inode, pos); return; } i_size_write(inode, pos); #if IS_ENABLED(CONFIG_FSCACHE) fscache_update_cookie(ctx->cache, NULL, &pos); #endif gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1)); if (copied > gap) { add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE); inode->i_blocks = min_t(blkcnt_t, DIV_ROUND_UP(pos, SECTOR_SIZE), inode->i_blocks + add); } } /** * netfs_perform_write - Copy data into the pagecache. * @iocb: The operation parameters * @iter: The source buffer * @netfs_group: Grouping for dirty pages (eg. ceph snaps). * * Copy data into pagecache pages attached to the inode specified by @iocb. * The caller must hold appropriate inode locks. * * Dirty pages are tagged with a netfs_folio struct if they're not up to date * to indicate the range modified. Dirty pages may also be tagged with a * netfs-specific grouping such that data from an old group gets flushed before * a new one is started. */ ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter, struct netfs_group *netfs_group) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; struct netfs_inode *ctx = netfs_inode(inode); struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, .for_sync = true, .nr_to_write = LONG_MAX, .range_start = iocb->ki_pos, .range_end = iocb->ki_pos + iter->count, }; struct netfs_io_request *wreq = NULL; struct netfs_folio *finfo; struct folio *folio, *writethrough = NULL; enum netfs_how_to_modify howto; enum netfs_folio_trace trace; unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0; ssize_t written = 0, ret, ret2; loff_t i_size, pos = iocb->ki_pos, from, to; size_t max_chunk = mapping_max_folio_size(mapping); bool maybe_trouble = false; if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) || iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) ) { wbc_attach_fdatawrite_inode(&wbc, mapping->host); ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count); if (ret < 0) { wbc_detach_inode(&wbc); goto out; } wreq = netfs_begin_writethrough(iocb, iter->count); if (IS_ERR(wreq)) { wbc_detach_inode(&wbc); ret = PTR_ERR(wreq); wreq = NULL; goto out; } if (!is_sync_kiocb(iocb)) wreq->iocb = iocb; netfs_stat(&netfs_n_wh_writethrough); } else { netfs_stat(&netfs_n_wh_buffered_write); } do { size_t flen; size_t offset; /* Offset into pagecache folio */ size_t part; /* Bytes to write to folio */ size_t copied; /* Bytes copied from user */ ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags); if (unlikely(ret < 0)) break; offset = pos & (max_chunk - 1); part = min(max_chunk - offset, iov_iter_count(iter)); /* Bring in the user pages that we will copy from _first_ lest * we hit a nasty deadlock on copying from the same page as * we're writing to, without it being marked uptodate. * * Not only is this an optimisation, but it is also required to * check that the address is actually valid, when atomic * usercopies are used below. * * We rely on the page being held onto long enough by the LRU * that we can grab it below if this causes it to be read. */ ret = -EFAULT; if (unlikely(fault_in_iov_iter_readable(iter, part) == part)) break; folio = netfs_grab_folio_for_write(mapping, pos, part); if (IS_ERR(folio)) { ret = PTR_ERR(folio); break; } flen = folio_size(folio); offset = pos & (flen - 1); part = min_t(size_t, flen - offset, part); /* Wait for writeback to complete. The writeback engine owns * the info in folio->private and may change it until it * removes the WB mark. */ if (folio_get_private(folio) && folio_wait_writeback_killable(folio)) { ret = written ? -EINTR : -ERESTARTSYS; goto error_folio_unlock; } if (signal_pending(current)) { ret = written ? -EINTR : -ERESTARTSYS; goto error_folio_unlock; } /* See if we need to prefetch the area we're going to modify. * We need to do this before we get a lock on the folio in case * there's more than one writer competing for the same cache * block. */ howto = netfs_how_to_modify(ctx, file, folio, netfs_group, flen, offset, part, maybe_trouble); _debug("howto %u", howto); switch (howto) { case NETFS_JUST_PREFETCH: ret = netfs_prefetch_for_write(file, folio, offset, part); if (ret < 0) { _debug("prefetch = %zd", ret); goto error_folio_unlock; } break; case NETFS_FOLIO_IS_UPTODATE: case NETFS_WHOLE_FOLIO_MODIFY: case NETFS_STREAMING_WRITE_CONT: break; case NETFS_MODIFY_AND_CLEAR: zero_user_segment(&folio->page, 0, offset); break; case NETFS_STREAMING_WRITE: ret = -EIO; if (WARN_ON(folio_get_private(folio))) goto error_folio_unlock; break; case NETFS_FLUSH_CONTENT: trace_netfs_folio(folio, netfs_flush_content); from = folio_pos(folio); to = from + folio_size(folio) - 1; folio_unlock(folio); folio_put(folio); ret = filemap_write_and_wait_range(mapping, from, to); if (ret < 0) goto error_folio_unlock; continue; } if (mapping_writably_mapped(mapping)) flush_dcache_folio(folio); copied = copy_folio_from_iter_atomic(folio, offset, part, iter); flush_dcache_folio(folio); /* Deal with a (partially) failed copy */ if (copied == 0) { ret = -EFAULT; goto error_folio_unlock; } trace = (enum netfs_folio_trace)howto; switch (howto) { case NETFS_FOLIO_IS_UPTODATE: case NETFS_JUST_PREFETCH: netfs_set_group(folio, netfs_group); break; case NETFS_MODIFY_AND_CLEAR: zero_user_segment(&folio->page, offset + copied, flen); netfs_set_group(folio, netfs_group); folio_mark_uptodate(folio); break; case NETFS_WHOLE_FOLIO_MODIFY: if (unlikely(copied < part)) { maybe_trouble = true; iov_iter_revert(iter, copied); copied = 0; folio_unlock(folio); goto retry; } netfs_set_group(folio, netfs_group); folio_mark_uptodate(folio); break; case NETFS_STREAMING_WRITE: if (offset == 0 && copied == flen) { netfs_set_group(folio, netfs_group); folio_mark_uptodate(folio); trace = netfs_streaming_filled_page; break; } finfo = kzalloc(sizeof(*finfo), GFP_KERNEL); if (!finfo) { iov_iter_revert(iter, copied); ret = -ENOMEM; goto error_folio_unlock; } finfo->netfs_group = netfs_get_group(netfs_group); finfo->dirty_offset = offset; finfo->dirty_len = copied; folio_attach_private(folio, (void *)((unsigned long)finfo | NETFS_FOLIO_INFO)); break; case NETFS_STREAMING_WRITE_CONT: finfo = netfs_folio_info(folio); finfo->dirty_len += copied; if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) { if (finfo->netfs_group) folio_change_private(folio, finfo->netfs_group); else folio_detach_private(folio); folio_mark_uptodate(folio); kfree(finfo); trace = netfs_streaming_cont_filled_page; } break; default: WARN(true, "Unexpected modify type %u ix=%lx\n", howto, folio->index); ret = -EIO; goto error_folio_unlock; } trace_netfs_folio(folio, trace); /* Update the inode size if we moved the EOF marker */ pos += copied; i_size = i_size_read(inode); if (pos > i_size) netfs_update_i_size(ctx, inode, i_size, pos, copied); written += copied; if (likely(!wreq)) { folio_mark_dirty(folio); folio_unlock(folio); } else { netfs_advance_writethrough(wreq, &wbc, folio, copied, offset + copied == flen, &writethrough); /* Folio unlocked */ } retry: folio_put(folio); folio = NULL; cond_resched(); } while (iov_iter_count(iter)); out: if (likely(written) && ctx->ops->post_modify) ctx->ops->post_modify(inode); if (unlikely(wreq)) { ret2 = netfs_end_writethrough(wreq, &wbc, writethrough); wbc_detach_inode(&wbc); if (ret2 == -EIOCBQUEUED) return ret2; if (ret == 0) ret = ret2; } iocb->ki_pos += written; _leave(" = %zd [%zd]", written, ret); return written ? written : ret; error_folio_unlock: folio_unlock(folio); folio_put(folio); goto out; } EXPORT_SYMBOL(netfs_perform_write); /** * netfs_buffered_write_iter_locked - write data to a file * @iocb: IO state structure (file, offset, etc.) * @from: iov_iter with data to write * @netfs_group: Grouping for dirty pages (eg. ceph snaps). * * This function does all the work needed for actually writing data to a * file. It does all basic checks, removes SUID from the file, updates * modification times and calls proper subroutines depending on whether we * do direct IO or a standard buffered write. * * The caller must hold appropriate locks around this function and have called * generic_write_checks() already. The caller is also responsible for doing * any necessary syncing afterwards. * * This function does *not* take care of syncing data in case of O_SYNC write. * A caller has to handle it. This is mainly due to the fact that we want to * avoid syncing under i_rwsem. * * Return: * * number of bytes written, even for truncated writes * * negative error code if no data has been written at all */ ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from, struct netfs_group *netfs_group) { struct file *file = iocb->ki_filp; ssize_t ret; trace_netfs_write_iter(iocb, from); ret = file_remove_privs(file); if (ret) return ret; ret = file_update_time(file); if (ret) return ret; return netfs_perform_write(iocb, from, netfs_group); } EXPORT_SYMBOL(netfs_buffered_write_iter_locked); /** * netfs_file_write_iter - write data to a file * @iocb: IO state structure * @from: iov_iter with data to write * * Perform a write to a file, writing into the pagecache if possible and doing * an unbuffered write instead if not. * * Return: * * Negative error code if no data has been written at all of * vfs_fsync_range() failed for a synchronous write * * Number of bytes written, even for truncated writes */ ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; struct netfs_inode *ictx = netfs_inode(inode); ssize_t ret; _enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode)); if (!iov_iter_count(from)) return 0; if ((iocb->ki_flags & IOCB_DIRECT) || test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)) return netfs_unbuffered_write_iter(iocb, from); ret = netfs_start_io_write(inode); if (ret < 0) return ret; ret = generic_write_checks(iocb, from); if (ret > 0) ret = netfs_buffered_write_iter_locked(iocb, from, NULL); netfs_end_io_write(inode); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } EXPORT_SYMBOL(netfs_file_write_iter); /* * Notification that a previously read-only page is about to become writable. * Note that the caller indicates a single page of a multipage folio. */ vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group) { struct netfs_group *group; struct folio *folio = page_folio(vmf->page); struct file *file = vmf->vma->vm_file; struct address_space *mapping = file->f_mapping; struct inode *inode = file_inode(file); struct netfs_inode *ictx = netfs_inode(inode); vm_fault_t ret = VM_FAULT_RETRY; int err; _enter("%lx", folio->index); sb_start_pagefault(inode->i_sb); if (folio_lock_killable(folio) < 0) goto out; if (folio->mapping != mapping) { folio_unlock(folio); ret = VM_FAULT_NOPAGE; goto out; } if (folio_wait_writeback_killable(folio)) { ret = VM_FAULT_LOCKED; goto out; } /* Can we see a streaming write here? */ if (WARN_ON(!folio_test_uptodate(folio))) { ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED; goto out; } group = netfs_folio_group(folio); if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) { folio_unlock(folio); err = filemap_fdatawrite_range(mapping, folio_pos(folio), folio_pos(folio) + folio_size(folio)); switch (err) { case 0: ret = VM_FAULT_RETRY; goto out; case -ENOMEM: ret = VM_FAULT_OOM; goto out; default: ret = VM_FAULT_SIGBUS; goto out; } } if (folio_test_dirty(folio)) trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus); else trace_netfs_folio(folio, netfs_folio_trace_mkwrite); netfs_set_group(folio, netfs_group); file_update_time(file); if (ictx->ops->post_modify) ictx->ops->post_modify(inode); ret = VM_FAULT_LOCKED; out: sb_end_pagefault(inode->i_sb); return ret; } EXPORT_SYMBOL(netfs_page_mkwrite);
8 8 6 6 6 5 6 6 5 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 // SPDX-License-Identifier: GPL-2.0 /* * linux/net/sunrpc/auth_unix.c * * UNIX-style authentication; no AUTH_SHORT support * * Copyright (C) 1996, Olaf Kirch <okir@monad.swb.de> */ #include <linux/slab.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/mempool.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/auth.h> #include <linux/user_namespace.h> #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_AUTH #endif static struct rpc_auth unix_auth; static const struct rpc_credops unix_credops; static mempool_t *unix_pool; static struct rpc_auth * unx_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) { refcount_inc(&unix_auth.au_count); return &unix_auth; } static void unx_destroy(struct rpc_auth *auth) { } /* * Lookup AUTH_UNIX creds for current process */ static struct rpc_cred *unx_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) { struct rpc_cred *ret; ret = kmalloc(sizeof(*ret), rpc_task_gfp_mask()); if (!ret) { if (!(flags & RPCAUTH_LOOKUP_ASYNC)) return ERR_PTR(-ENOMEM); ret = mempool_alloc(unix_pool, GFP_NOWAIT); if (!ret) return ERR_PTR(-ENOMEM); } rpcauth_init_cred(ret, acred, auth, &unix_credops); ret->cr_flags = 1UL << RPCAUTH_CRED_UPTODATE; return ret; } static void unx_free_cred_callback(struct rcu_head *head) { struct rpc_cred *rpc_cred = container_of(head, struct rpc_cred, cr_rcu); put_cred(rpc_cred->cr_cred); mempool_free(rpc_cred, unix_pool); } static void unx_destroy_cred(struct rpc_cred *cred) { call_rcu(&cred->cr_rcu, unx_free_cred_callback); } /* * Match credentials against current the auth_cred. */ static int unx_match(struct auth_cred *acred, struct rpc_cred *cred, int flags) { unsigned int groups = 0; unsigned int i; if (cred->cr_cred == acred->cred) return 1; if (!uid_eq(cred->cr_cred->fsuid, acred->cred->fsuid) || !gid_eq(cred->cr_cred->fsgid, acred->cred->fsgid)) return 0; if (acred->cred->group_info != NULL) groups = acred->cred->group_info->ngroups; if (groups > UNX_NGROUPS) groups = UNX_NGROUPS; if (cred->cr_cred->group_info == NULL) return groups == 0; if (groups != cred->cr_cred->group_info->ngroups) return 0; for (i = 0; i < groups ; i++) if (!gid_eq(cred->cr_cred->group_info->gid[i], acred->cred->group_info->gid[i])) return 0; return 1; } /* * Marshal credentials. * Maybe we should keep a cached credential for performance reasons. */ static int unx_marshal(struct rpc_task *task, struct xdr_stream *xdr) { struct rpc_clnt *clnt = task->tk_client; struct rpc_cred *cred = task->tk_rqstp->rq_cred; __be32 *p, *cred_len, *gidarr_len; int i; struct group_info *gi = cred->cr_cred->group_info; struct user_namespace *userns = clnt->cl_cred ? clnt->cl_cred->user_ns : &init_user_ns; /* Credential */ p = xdr_reserve_space(xdr, 3 * sizeof(*p)); if (!p) goto marshal_failed; *p++ = rpc_auth_unix; cred_len = p++; *p++ = xdr_zero; /* stamp */ if (xdr_stream_encode_opaque(xdr, clnt->cl_nodename, clnt->cl_nodelen) < 0) goto marshal_failed; p = xdr_reserve_space(xdr, 3 * sizeof(*p)); if (!p) goto marshal_failed; *p++ = cpu_to_be32(from_kuid_munged(userns, cred->cr_cred->fsuid)); *p++ = cpu_to_be32(from_kgid_munged(userns, cred->cr_cred->fsgid)); gidarr_len = p++; if (gi) for (i = 0; i < UNX_NGROUPS && i < gi->ngroups; i++) *p++ = cpu_to_be32(from_kgid_munged(userns, gi->gid[i])); *gidarr_len = cpu_to_be32(p - gidarr_len - 1); *cred_len = cpu_to_be32((p - cred_len - 1) << 2); p = xdr_reserve_space(xdr, (p - gidarr_len - 1) << 2); if (!p) goto marshal_failed; /* Verifier */ p = xdr_reserve_space(xdr, 2 * sizeof(*p)); if (!p) goto marshal_failed; *p++ = rpc_auth_null; *p = xdr_zero; return 0; marshal_failed: return -EMSGSIZE; } /* * Refresh credentials. This is a no-op for AUTH_UNIX */ static int unx_refresh(struct rpc_task *task) { set_bit(RPCAUTH_CRED_UPTODATE, &task->tk_rqstp->rq_cred->cr_flags); return 0; } static int unx_validate(struct rpc_task *task, struct xdr_stream *xdr) { struct rpc_auth *auth = task->tk_rqstp->rq_cred->cr_auth; __be32 *p; u32 size; p = xdr_inline_decode(xdr, 2 * sizeof(*p)); if (!p) return -EIO; switch (*p++) { case rpc_auth_null: case rpc_auth_unix: case rpc_auth_short: break; default: return -EIO; } size = be32_to_cpup(p); if (size > RPC_MAX_AUTH_SIZE) return -EIO; p = xdr_inline_decode(xdr, size); if (!p) return -EIO; auth->au_verfsize = XDR_QUADLEN(size) + 2; auth->au_rslack = XDR_QUADLEN(size) + 2; auth->au_ralign = XDR_QUADLEN(size) + 2; return 0; } int __init rpc_init_authunix(void) { unix_pool = mempool_create_kmalloc_pool(16, sizeof(struct rpc_cred)); return unix_pool ? 0 : -ENOMEM; } void rpc_destroy_authunix(void) { mempool_destroy(unix_pool); } const struct rpc_authops authunix_ops = { .owner = THIS_MODULE, .au_flavor = RPC_AUTH_UNIX, .au_name = "UNIX", .create = unx_create, .destroy = unx_destroy, .lookup_cred = unx_lookup_cred, }; static struct rpc_auth unix_auth = { .au_cslack = UNX_CALLSLACK, .au_rslack = NUL_REPLYSLACK, .au_verfsize = NUL_REPLYSLACK, .au_ops = &authunix_ops, .au_flavor = RPC_AUTH_UNIX, .au_count = REFCOUNT_INIT(1), }; static const struct rpc_credops unix_credops = { .cr_name = "AUTH_UNIX", .crdestroy = unx_destroy_cred, .crmatch = unx_match, .crmarshal = unx_marshal, .crwrap_req = rpcauth_wrap_req_encode, .crrefresh = unx_refresh, .crvalidate = unx_validate, .crunwrap_resp = rpcauth_unwrap_resp_decode, };
11 11 11 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 /* * Copyright (c) 2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/random.h> #include <rdma/ib_cache.h> #include "sa.h" static int mcast_add_one(struct ib_device *device); static void mcast_remove_one(struct ib_device *device, void *client_data); static struct ib_client mcast_client = { .name = "ib_multicast", .add = mcast_add_one, .remove = mcast_remove_one }; static struct ib_sa_client sa_client; static struct workqueue_struct *mcast_wq; static union ib_gid mgid0; struct mcast_device; struct mcast_port { struct mcast_device *dev; spinlock_t lock; struct rb_root table; refcount_t refcount; struct completion comp; u32 port_num; }; struct mcast_device { struct ib_device *device; struct ib_event_handler event_handler; int start_port; int end_port; struct mcast_port port[]; }; enum mcast_state { MCAST_JOINING, MCAST_MEMBER, MCAST_ERROR, }; enum mcast_group_state { MCAST_IDLE, MCAST_BUSY, MCAST_GROUP_ERROR, MCAST_PKEY_EVENT }; enum { MCAST_INVALID_PKEY_INDEX = 0xFFFF }; struct mcast_member; struct mcast_group { struct ib_sa_mcmember_rec rec; struct rb_node node; struct mcast_port *port; spinlock_t lock; struct work_struct work; struct list_head pending_list; struct list_head active_list; struct mcast_member *last_join; int members[NUM_JOIN_MEMBERSHIP_TYPES]; atomic_t refcount; enum mcast_group_state state; struct ib_sa_query *query; u16 pkey_index; u8 leave_state; int retries; }; struct mcast_member { struct ib_sa_multicast multicast; struct ib_sa_client *client; struct mcast_group *group; struct list_head list; enum mcast_state state; refcount_t refcount; struct completion comp; }; static void join_handler(int status, struct ib_sa_mcmember_rec *rec, void *context); static void leave_handler(int status, struct ib_sa_mcmember_rec *rec, void *context); static struct mcast_group *mcast_find(struct mcast_port *port, union ib_gid *mgid) { struct rb_node *node = port->table.rb_node; struct mcast_group *group; int ret; while (node) { group = rb_entry(node, struct mcast_group, node); ret = memcmp(mgid->raw, group->rec.mgid.raw, sizeof *mgid); if (!ret) return group; if (ret < 0) node = node->rb_left; else node = node->rb_right; } return NULL; } static struct mcast_group *mcast_insert(struct mcast_port *port, struct mcast_group *group, int allow_duplicates) { struct rb_node **link = &port->table.rb_node; struct rb_node *parent = NULL; struct mcast_group *cur_group; int ret; while (*link) { parent = *link; cur_group = rb_entry(parent, struct mcast_group, node); ret = memcmp(group->rec.mgid.raw, cur_group->rec.mgid.raw, sizeof group->rec.mgid); if (ret < 0) link = &(*link)->rb_left; else if (ret > 0) link = &(*link)->rb_right; else if (allow_duplicates) link = &(*link)->rb_left; else return cur_group; } rb_link_node(&group->node, parent, link); rb_insert_color(&group->node, &port->table); return NULL; } static void deref_port(struct mcast_port *port) { if (refcount_dec_and_test(&port->refcount)) complete(&port->comp); } static void release_group(struct mcast_group *group) { struct mcast_port *port = group->port; unsigned long flags; spin_lock_irqsave(&port->lock, flags); if (atomic_dec_and_test(&group->refcount)) { rb_erase(&group->node, &port->table); spin_unlock_irqrestore(&port->lock, flags); kfree(group); deref_port(port); } else spin_unlock_irqrestore(&port->lock, flags); } static void deref_member(struct mcast_member *member) { if (refcount_dec_and_test(&member->refcount)) complete(&member->comp); } static void queue_join(struct mcast_member *member) { struct mcast_group *group = member->group; unsigned long flags; spin_lock_irqsave(&group->lock, flags); list_add_tail(&member->list, &group->pending_list); if (group->state == MCAST_IDLE) { group->state = MCAST_BUSY; atomic_inc(&group->refcount); queue_work(mcast_wq, &group->work); } spin_unlock_irqrestore(&group->lock, flags); } /* * A multicast group has four types of members: full member, non member, * sendonly non member and sendonly full member. * We need to keep track of the number of members of each * type based on their join state. Adjust the number of members the belong to * the specified join states. */ static void adjust_membership(struct mcast_group *group, u8 join_state, int inc) { int i; for (i = 0; i < NUM_JOIN_MEMBERSHIP_TYPES; i++, join_state >>= 1) if (join_state & 0x1) group->members[i] += inc; } /* * If a multicast group has zero members left for a particular join state, but * the group is still a member with the SA, we need to leave that join state. * Determine which join states we still belong to, but that do not have any * active members. */ static u8 get_leave_state(struct mcast_group *group) { u8 leave_state = 0; int i; for (i = 0; i < NUM_JOIN_MEMBERSHIP_TYPES; i++) if (!group->members[i]) leave_state |= (0x1 << i); return leave_state & group->rec.join_state; } static int check_selector(ib_sa_comp_mask comp_mask, ib_sa_comp_mask selector_mask, ib_sa_comp_mask value_mask, u8 selector, u8 src_value, u8 dst_value) { int err; if (!(comp_mask & selector_mask) || !(comp_mask & value_mask)) return 0; switch (selector) { case IB_SA_GT: err = (src_value <= dst_value); break; case IB_SA_LT: err = (src_value >= dst_value); break; case IB_SA_EQ: err = (src_value != dst_value); break; default: err = 0; break; } return err; } static int cmp_rec(struct ib_sa_mcmember_rec *src, struct ib_sa_mcmember_rec *dst, ib_sa_comp_mask comp_mask) { /* MGID must already match */ if (comp_mask & IB_SA_MCMEMBER_REC_PORT_GID && memcmp(&src->port_gid, &dst->port_gid, sizeof src->port_gid)) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_QKEY && src->qkey != dst->qkey) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_MLID && src->mlid != dst->mlid) return -EINVAL; if (check_selector(comp_mask, IB_SA_MCMEMBER_REC_MTU_SELECTOR, IB_SA_MCMEMBER_REC_MTU, dst->mtu_selector, src->mtu, dst->mtu)) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_TRAFFIC_CLASS && src->traffic_class != dst->traffic_class) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_PKEY && src->pkey != dst->pkey) return -EINVAL; if (check_selector(comp_mask, IB_SA_MCMEMBER_REC_RATE_SELECTOR, IB_SA_MCMEMBER_REC_RATE, dst->rate_selector, src->rate, dst->rate)) return -EINVAL; if (check_selector(comp_mask, IB_SA_MCMEMBER_REC_PACKET_LIFE_TIME_SELECTOR, IB_SA_MCMEMBER_REC_PACKET_LIFE_TIME, dst->packet_life_time_selector, src->packet_life_time, dst->packet_life_time)) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_SL && src->sl != dst->sl) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_FLOW_LABEL && src->flow_label != dst->flow_label) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_HOP_LIMIT && src->hop_limit != dst->hop_limit) return -EINVAL; if (comp_mask & IB_SA_MCMEMBER_REC_SCOPE && src->scope != dst->scope) return -EINVAL; /* join_state checked separately, proxy_join ignored */ return 0; } static int send_join(struct mcast_group *group, struct mcast_member *member) { struct mcast_port *port = group->port; int ret; group->last_join = member; ret = ib_sa_mcmember_rec_query(&sa_client, port->dev->device, port->port_num, IB_MGMT_METHOD_SET, &member->multicast.rec, member->multicast.comp_mask, 3000, GFP_KERNEL, join_handler, group, &group->query); return (ret > 0) ? 0 : ret; } static int send_leave(struct mcast_group *group, u8 leave_state) { struct mcast_port *port = group->port; struct ib_sa_mcmember_rec rec; int ret; rec = group->rec; rec.join_state = leave_state; group->leave_state = leave_state; ret = ib_sa_mcmember_rec_query(&sa_client, port->dev->device, port->port_num, IB_SA_METHOD_DELETE, &rec, IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | IB_SA_MCMEMBER_REC_JOIN_STATE, 3000, GFP_KERNEL, leave_handler, group, &group->query); return (ret > 0) ? 0 : ret; } static void join_group(struct mcast_group *group, struct mcast_member *member, u8 join_state) { member->state = MCAST_MEMBER; adjust_membership(group, join_state, 1); group->rec.join_state |= join_state; member->multicast.rec = group->rec; member->multicast.rec.join_state = join_state; list_move(&member->list, &group->active_list); } static int fail_join(struct mcast_group *group, struct mcast_member *member, int status) { spin_lock_irq(&group->lock); list_del_init(&member->list); spin_unlock_irq(&group->lock); return member->multicast.callback(status, &member->multicast); } static void process_group_error(struct mcast_group *group) { struct mcast_member *member; int ret = 0; u16 pkey_index; if (group->state == MCAST_PKEY_EVENT) ret = ib_find_pkey(group->port->dev->device, group->port->port_num, be16_to_cpu(group->rec.pkey), &pkey_index); spin_lock_irq(&group->lock); if (group->state == MCAST_PKEY_EVENT && !ret && group->pkey_index == pkey_index) goto out; while (!list_empty(&group->active_list)) { member = list_entry(group->active_list.next, struct mcast_member, list); refcount_inc(&member->refcount); list_del_init(&member->list); adjust_membership(group, member->multicast.rec.join_state, -1); member->state = MCAST_ERROR; spin_unlock_irq(&group->lock); ret = member->multicast.callback(-ENETRESET, &member->multicast); deref_member(member); if (ret) ib_sa_free_multicast(&member->multicast); spin_lock_irq(&group->lock); } group->rec.join_state = 0; out: group->state = MCAST_BUSY; spin_unlock_irq(&group->lock); } static void mcast_work_handler(struct work_struct *work) { struct mcast_group *group; struct mcast_member *member; struct ib_sa_multicast *multicast; int status, ret; u8 join_state; group = container_of(work, typeof(*group), work); retest: spin_lock_irq(&group->lock); while (!list_empty(&group->pending_list) || (group->state != MCAST_BUSY)) { if (group->state != MCAST_BUSY) { spin_unlock_irq(&group->lock); process_group_error(group); goto retest; } member = list_entry(group->pending_list.next, struct mcast_member, list); multicast = &member->multicast; join_state = multicast->rec.join_state; refcount_inc(&member->refcount); if (join_state == (group->rec.join_state & join_state)) { status = cmp_rec(&group->rec, &multicast->rec, multicast->comp_mask); if (!status) join_group(group, member, join_state); else list_del_init(&member->list); spin_unlock_irq(&group->lock); ret = multicast->callback(status, multicast); } else { spin_unlock_irq(&group->lock); status = send_join(group, member); if (!status) { deref_member(member); return; } ret = fail_join(group, member, status); } deref_member(member); if (ret) ib_sa_free_multicast(&member->multicast); spin_lock_irq(&group->lock); } join_state = get_leave_state(group); if (join_state) { group->rec.join_state &= ~join_state; spin_unlock_irq(&group->lock); if (send_leave(group, join_state)) goto retest; } else { group->state = MCAST_IDLE; spin_unlock_irq(&group->lock); release_group(group); } } /* * Fail a join request if it is still active - at the head of the pending queue. */ static void process_join_error(struct mcast_group *group, int status) { struct mcast_member *member; int ret; spin_lock_irq(&group->lock); member = list_entry(group->pending_list.next, struct mcast_member, list); if (group->last_join == member) { refcount_inc(&member->refcount); list_del_init(&member->list); spin_unlock_irq(&group->lock); ret = member->multicast.callback(status, &member->multicast); deref_member(member); if (ret) ib_sa_free_multicast(&member->multicast); } else spin_unlock_irq(&group->lock); } static void join_handler(int status, struct ib_sa_mcmember_rec *rec, void *context) { struct mcast_group *group = context; u16 pkey_index = MCAST_INVALID_PKEY_INDEX; if (status) process_join_error(group, status); else { int mgids_changed, is_mgid0; if (ib_find_pkey(group->port->dev->device, group->port->port_num, be16_to_cpu(rec->pkey), &pkey_index)) pkey_index = MCAST_INVALID_PKEY_INDEX; spin_lock_irq(&group->port->lock); if (group->state == MCAST_BUSY && group->pkey_index == MCAST_INVALID_PKEY_INDEX) group->pkey_index = pkey_index; mgids_changed = memcmp(&rec->mgid, &group->rec.mgid, sizeof(group->rec.mgid)); group->rec = *rec; if (mgids_changed) { rb_erase(&group->node, &group->port->table); is_mgid0 = !memcmp(&mgid0, &group->rec.mgid, sizeof(mgid0)); mcast_insert(group->port, group, is_mgid0); } spin_unlock_irq(&group->port->lock); } mcast_work_handler(&group->work); } static void leave_handler(int status, struct ib_sa_mcmember_rec *rec, void *context) { struct mcast_group *group = context; if (status && group->retries > 0 && !send_leave(group, group->leave_state)) group->retries--; else mcast_work_handler(&group->work); } static struct mcast_group *acquire_group(struct mcast_port *port, union ib_gid *mgid, gfp_t gfp_mask) { struct mcast_group *group, *cur_group; unsigned long flags; int is_mgid0; is_mgid0 = !memcmp(&mgid0, mgid, sizeof mgid0); if (!is_mgid0) { spin_lock_irqsave(&port->lock, flags); group = mcast_find(port, mgid); if (group) goto found; spin_unlock_irqrestore(&port->lock, flags); } group = kzalloc(sizeof *group, gfp_mask); if (!group) return NULL; group->retries = 3; group->port = port; group->rec.mgid = *mgid; group->pkey_index = MCAST_INVALID_PKEY_INDEX; INIT_LIST_HEAD(&group->pending_list); INIT_LIST_HEAD(&group->active_list); INIT_WORK(&group->work, mcast_work_handler); spin_lock_init(&group->lock); spin_lock_irqsave(&port->lock, flags); cur_group = mcast_insert(port, group, is_mgid0); if (cur_group) { kfree(group); group = cur_group; } else refcount_inc(&port->refcount); found: atomic_inc(&group->refcount); spin_unlock_irqrestore(&port->lock, flags); return group; } /* * We serialize all join requests to a single group to make our lives much * easier. Otherwise, two users could try to join the same group * simultaneously, with different configurations, one could leave while the * join is in progress, etc., which makes locking around error recovery * difficult. */ struct ib_sa_multicast * ib_sa_join_multicast(struct ib_sa_client *client, struct ib_device *device, u32 port_num, struct ib_sa_mcmember_rec *rec, ib_sa_comp_mask comp_mask, gfp_t gfp_mask, int (*callback)(int status, struct ib_sa_multicast *multicast), void *context) { struct mcast_device *dev; struct mcast_member *member; struct ib_sa_multicast *multicast; int ret; dev = ib_get_client_data(device, &mcast_client); if (!dev) return ERR_PTR(-ENODEV); member = kmalloc(sizeof *member, gfp_mask); if (!member) return ERR_PTR(-ENOMEM); ib_sa_client_get(client); member->client = client; member->multicast.rec = *rec; member->multicast.comp_mask = comp_mask; member->multicast.callback = callback; member->multicast.context = context; init_completion(&member->comp); refcount_set(&member->refcount, 1); member->state = MCAST_JOINING; member->group = acquire_group(&dev->port[port_num - dev->start_port], &rec->mgid, gfp_mask); if (!member->group) { ret = -ENOMEM; goto err; } /* * The user will get the multicast structure in their callback. They * could then free the multicast structure before we can return from * this routine. So we save the pointer to return before queuing * any callback. */ multicast = &member->multicast; queue_join(member); return multicast; err: ib_sa_client_put(client); kfree(member); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_sa_join_multicast); void ib_sa_free_multicast(struct ib_sa_multicast *multicast) { struct mcast_member *member; struct mcast_group *group; member = container_of(multicast, struct mcast_member, multicast); group = member->group; spin_lock_irq(&group->lock); if (member->state == MCAST_MEMBER) adjust_membership(group, multicast->rec.join_state, -1); list_del_init(&member->list); if (group->state == MCAST_IDLE) { group->state = MCAST_BUSY; spin_unlock_irq(&group->lock); /* Continue to hold reference on group until callback */ queue_work(mcast_wq, &group->work); } else { spin_unlock_irq(&group->lock); release_group(group); } deref_member(member); wait_for_completion(&member->comp); ib_sa_client_put(member->client); kfree(member); } EXPORT_SYMBOL(ib_sa_free_multicast); int ib_sa_get_mcmember_rec(struct ib_device *device, u32 port_num, union ib_gid *mgid, struct ib_sa_mcmember_rec *rec) { struct mcast_device *dev; struct mcast_port *port; struct mcast_group *group; unsigned long flags; int ret = 0; dev = ib_get_client_data(device, &mcast_client); if (!dev) return -ENODEV; port = &dev->port[port_num - dev->start_port]; spin_lock_irqsave(&port->lock, flags); group = mcast_find(port, mgid); if (group) *rec = group->rec; else ret = -EADDRNOTAVAIL; spin_unlock_irqrestore(&port->lock, flags); return ret; } EXPORT_SYMBOL(ib_sa_get_mcmember_rec); /** * ib_init_ah_from_mcmember - Initialize AH attribute from multicast * member record and gid of the device. * @device: RDMA device * @port_num: Port of the rdma device to consider * @rec: Multicast member record to use * @ndev: Optional netdevice, applicable only for RoCE * @gid_type: GID type to consider * @ah_attr: AH attribute to fillup on successful completion * * ib_init_ah_from_mcmember() initializes AH attribute based on multicast * member record and other device properties. On success the caller is * responsible to call rdma_destroy_ah_attr on the ah_attr. Returns 0 on * success or appropriate error code. * */ int ib_init_ah_from_mcmember(struct ib_device *device, u32 port_num, struct ib_sa_mcmember_rec *rec, struct net_device *ndev, enum ib_gid_type gid_type, struct rdma_ah_attr *ah_attr) { const struct ib_gid_attr *sgid_attr; /* GID table is not based on the netdevice for IB link layer, * so ignore ndev during search. */ if (rdma_protocol_ib(device, port_num)) ndev = NULL; else if (!rdma_protocol_roce(device, port_num)) return -EINVAL; sgid_attr = rdma_find_gid_by_port(device, &rec->port_gid, gid_type, port_num, ndev); if (IS_ERR(sgid_attr)) return PTR_ERR(sgid_attr); memset(ah_attr, 0, sizeof(*ah_attr)); ah_attr->type = rdma_ah_find_type(device, port_num); rdma_ah_set_dlid(ah_attr, be16_to_cpu(rec->mlid)); rdma_ah_set_sl(ah_attr, rec->sl); rdma_ah_set_port_num(ah_attr, port_num); rdma_ah_set_static_rate(ah_attr, rec->rate); rdma_move_grh_sgid_attr(ah_attr, &rec->mgid, be32_to_cpu(rec->flow_label), rec->hop_limit, rec->traffic_class, sgid_attr); return 0; } EXPORT_SYMBOL(ib_init_ah_from_mcmember); static void mcast_groups_event(struct mcast_port *port, enum mcast_group_state state) { struct mcast_group *group; struct rb_node *node; unsigned long flags; spin_lock_irqsave(&port->lock, flags); for (node = rb_first(&port->table); node; node = rb_next(node)) { group = rb_entry(node, struct mcast_group, node); spin_lock(&group->lock); if (group->state == MCAST_IDLE) { atomic_inc(&group->refcount); queue_work(mcast_wq, &group->work); } if (group->state != MCAST_GROUP_ERROR) group->state = state; spin_unlock(&group->lock); } spin_unlock_irqrestore(&port->lock, flags); } static void mcast_event_handler(struct ib_event_handler *handler, struct ib_event *event) { struct mcast_device *dev; int index; dev = container_of(handler, struct mcast_device, event_handler); if (!rdma_cap_ib_mcast(dev->device, event->element.port_num)) return; index = event->element.port_num - dev->start_port; switch (event->event) { case IB_EVENT_PORT_ERR: case IB_EVENT_LID_CHANGE: case IB_EVENT_CLIENT_REREGISTER: mcast_groups_event(&dev->port[index], MCAST_GROUP_ERROR); break; case IB_EVENT_PKEY_CHANGE: mcast_groups_event(&dev->port[index], MCAST_PKEY_EVENT); break; default: break; } } static int mcast_add_one(struct ib_device *device) { struct mcast_device *dev; struct mcast_port *port; int i; int count = 0; dev = kmalloc(struct_size(dev, port, device->phys_port_cnt), GFP_KERNEL); if (!dev) return -ENOMEM; dev->start_port = rdma_start_port(device); dev->end_port = rdma_end_port(device); for (i = 0; i <= dev->end_port - dev->start_port; i++) { if (!rdma_cap_ib_mcast(device, dev->start_port + i)) continue; port = &dev->port[i]; port->dev = dev; port->port_num = dev->start_port + i; spin_lock_init(&port->lock); port->table = RB_ROOT; init_completion(&port->comp); refcount_set(&port->refcount, 1); ++count; } if (!count) { kfree(dev); return -EOPNOTSUPP; } dev->device = device; ib_set_client_data(device, &mcast_client, dev); INIT_IB_EVENT_HANDLER(&dev->event_handler, device, mcast_event_handler); ib_register_event_handler(&dev->event_handler); return 0; } static void mcast_remove_one(struct ib_device *device, void *client_data) { struct mcast_device *dev = client_data; struct mcast_port *port; int i; ib_unregister_event_handler(&dev->event_handler); flush_workqueue(mcast_wq); for (i = 0; i <= dev->end_port - dev->start_port; i++) { if (rdma_cap_ib_mcast(device, dev->start_port + i)) { port = &dev->port[i]; deref_port(port); wait_for_completion(&port->comp); } } kfree(dev); } int mcast_init(void) { int ret; mcast_wq = alloc_ordered_workqueue("ib_mcast", WQ_MEM_RECLAIM); if (!mcast_wq) return -ENOMEM; ib_sa_register_client(&sa_client); ret = ib_register_client(&mcast_client); if (ret) goto err; return 0; err: ib_sa_unregister_client(&sa_client); destroy_workqueue(mcast_wq); return ret; } void mcast_cleanup(void) { ib_unregister_client(&mcast_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(mcast_wq); }
4 333 337 336 43 20 20 29 71 22 18 17 94 1 4 7 71 72 7 34 21 20 28 73 19 29 83 2143 1563 1 1 17 579 42 823 26 817 818 817 2 460 168 209 362 1 816 4 4 2 5 5 5 1 338 338 338 338 338 338 338 337 337 4 336 338 335 338 338 6 334 338 2 2 1 1 1 1 326 328 329 329 242 94 328 11 1 10 10 1 10 332 94 243 334 7 56 10 10 1 1 8 2 4 1 4 1 2 2 3 3 1 2 1 2 2 2 3 11 11 11 1 1 9 8 2 2 4 1 1 4 3 3 1 1 1 1 1 22 22 22 61 60 5 57 5 50 1 51 52 47 4 47 14 3 1 40 8 5 46 46 5 52 37 46 4 49 50 20 27 27 27 27 11 24 30 20 39 2 10 5 3 3 26 18 23 22 34 20 51 52 31 31 7 3 16 5 5 2 119 119 1 120 120 117 118 118 4 1 10 11 1 61 31 2416 2227 134 27 514 515 41 523 520 405 150 512 48 509 125 125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 // SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Mike Shaver <shaver@ingenia.com> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_PREFIX_INFO || opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64 || ndisc_ops_is_useropt(dev, opt->nd_opt_type); } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { bool unknown = false; int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { ND_PRINTK(2, warn, "%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: unknown = true; } if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else if (unknown) { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ ND_PRINTK(2, notice, "%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); return 0; } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sock *sk = dev_net(dev)->ipv6.ndisc_sk; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) { ND_PRINTK(0, err, "ndisc: %s failed to allocate an skb\n", __func__); return NULL; } skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ skb_set_owner_w(skb, sk); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? READ_ONCE(idev->cnf.ndisc_tclass) : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(skb->dev); struct sock *sk = net->ipv6.ndisc_sk; struct inet6_dev *idev; int err; struct icmp6hdr *icmp6h = icmp6_hdr(skb); u8 type; type = icmp6h->icmp6_type; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, READ_ONCE(inet6_sk(sk)->hop_limit), skb->len); rcu_read_lock(); idev = __in6_dev_get(dst->dev); IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTREQUESTS); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dst->dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } EXPORT_SYMBOL(ndisc_send_skb); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= READ_ONCE(ifp->idev->cnf.force_tllao); in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } struct sk_buff *ndisc_ns_create(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *saddr, u64 nonce) { int inc_opt = dev->addr_len; struct sk_buff *skb; struct nd_msg *msg; int optlen = 0; if (!saddr) return NULL; if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return NULL; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } return skb; } EXPORT_SYMBOL(ndisc_ns_create); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct in6_addr addr_buf; struct sk_buff *skb; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE | IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } skb = ndisc_ns_create(dev, solicit, saddr, nonce); if (skb) ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) { ND_PRINTK(1, dbg, "%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; read_lock_bh(&nd_tbl.lock); n = __pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(n->flags & NTF_ROUTER); read_unlock_bh(&nd_tbl.lock); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static enum skb_drop_reason ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); int is_router = -1; SKB_DR(reason); u64 nonce = 0; bool inc; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NS: multicast target address\n"); return reason; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n"); return reason; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NS: invalid link-layer address length\n"); return reason; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { ND_PRINTK(2, warn, "NS: bad DAD packet (link-layer address option)\n"); return reason; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ ND_PRINTK(2, notice, "%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return reason; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return reason; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (READ_ONCE(idev->cnf.forwarding) && (READ_ONCE(net->ipv6.devconf_all->proxy_ndp) || READ_ONCE(idev->cnf.proxy_ndp)) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else { SKB_DR_SET(reason, IPV6_NDISC_NS_OTHERHOST); goto out; } } if (is_router < 0) is_router = READ_ONCE(idev->cnf.forwarding); if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); reason = SKB_CONSUMED; } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); return reason; } static int accept_untracked_na(struct net_device *dev, struct in6_addr *saddr) { struct inet6_dev *idev = __in6_dev_get(dev); switch (READ_ONCE(idev->cnf.accept_untracked_na)) { case 0: /* Don't accept untracked na (absent in neighbor cache) */ return 0; case 1: /* Create new entries from na if currently untracked */ return 1; case 2: /* Create new entries from untracked na only if saddr is in the * same subnet as an address configured on the interface that * received the na */ return !!ipv6_chk_prefix(saddr, dev); default: return 0; } } static enum skb_drop_reason ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; SKB_DR(reason); u8 new_state; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NA: target address is multicast\n"); return reason; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n"); return reason; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. * drop_unsolicited_na takes precedence over accept_untracked_na */ if (!msg->icmph.icmp6_solicited && idev && READ_ONCE(idev->cnf.drop_unsolicited_na)) return reason; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NA: invalid link-layer address length\n"); return reason; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return reason; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) ND_PRINTK(1, warn, "NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return reason; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); /* RFC 9131 updates original Neighbour Discovery RFC 4861. * NAs with Target LL Address option without a corresponding * entry in the neighbour cache can now create a STALE neighbour * cache entry on routers. * * entry accept fwding solicited behaviour * ------- ------ ------ --------- ---------------------- * present X X 0 Set state to STALE * present X X 1 Set state to REACHABLE * absent 0 X X Do nothing * absent 1 0 X Do nothing * absent 1 1 X Add a new STALE entry * * Note that we don't do a (daddr == all-routers-mcast) check. */ new_state = msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE; if (!neigh && lladdr && idev && READ_ONCE(idev->cnf.forwarding)) { if (accept_untracked_na(dev, saddr)) { neigh = neigh_create(&nd_tbl, &msg->target, dev); new_state = NUD_STALE; } } if (neigh && !IS_ERR(neigh)) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (READ_ONCE(neigh->nud_state) & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && READ_ONCE(net->ipv6.devconf_all->forwarding) && READ_ONCE(net->ipv6.devconf_all->proxy_ndp) && pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, new_state, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } reason = SKB_CONSUMED; out: neigh_release(neigh); } return reason; } static enum skb_drop_reason ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; SKB_DR(reason); if (skb->len < sizeof(*rs_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; idev = __in6_dev_get(skb->dev); if (!idev) { ND_PRINTK(1, err, "RS: can't find in6 device\n"); return reason; } /* Don't accept RS if we're not in router mode */ if (!READ_ONCE(idev->cnf.forwarding)) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); reason = SKB_CONSUMED; } out: return reason; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static enum skb_drop_reason ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); bool send_ifinfo_notify = false; struct neighbour *neigh = NULL; struct ndisc_options ndopts; struct fib6_info *rt = NULL; struct inet6_dev *in6_dev; struct fib6_table *table; u32 defrtr_usr_metric; unsigned int pref = 0; __u32 old_if_flags; struct net *net; SKB_DR(reason); int lifetime; int optlen; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); ND_PRINTK(2, info, "RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "RA: source address is not link-local\n"); return reason; } if (optlen < 0) return SKB_DROP_REASON_PKT_TOO_SMALL; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { ND_PRINTK(2, warn, "RA: from host or unauthorized router\n"); return reason; } #endif in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { ND_PRINTK(0, err, "RA: can't find inet6 device for %s\n", skb->dev->name); return reason; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!READ_ONCE(in6_dev->cnf.accept_ra_defrtr)) { ND_PRINTK(2, info, "RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); if (lifetime != 0 && lifetime < READ_ONCE(in6_dev->cnf.accept_ra_min_lft)) { ND_PRINTK(2, info, "RA: router lifetime (%ds) is too short: %s\n", lifetime, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!READ_ONCE(in6_dev->cnf.accept_ra_from_local) && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !READ_ONCE(in6_dev->cnf.accept_ra_rtr_pref)) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } } /* Set default route metric as specified by user */ defrtr_usr_metric = in6_dev->cnf.ra_defrtr_metric; /* delete the route if lifetime is 0 or if metric needs change */ if (rt && (lifetime == 0 || rt->fib6_metric != defrtr_usr_metric)) { ip6_del_rt(net, rt, false); rt = NULL; } ND_PRINTK(3, info, "RA: rt: %p lifetime: %d, metric: %d, for dev: %s\n", rt, lifetime, defrtr_usr_metric, skb->dev->name); if (!rt && lifetime) { ND_PRINTK(3, info, "RA: adding default router\n"); if (neigh) neigh_release(neigh); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref, defrtr_usr_metric, lifetime); if (!rt) { ND_PRINTK(0, err, "RA: %s failed to add default route\n", __func__); return reason; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } neigh->flags |= NTF_ROUTER; } else if (rt && IPV6_EXTRACT_PREF(rt->fib6_flags) != pref) { struct nl_info nlinfo = { .nl_net = net, }; rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); inet6_rt_notify(RTM_NEWROUTE, rt, &nlinfo, NLM_F_REPLACE); } if (rt) { table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); fib6_set_expires(rt, jiffies + (HZ * lifetime)); fib6_add_gc_list(rt); spin_unlock_bh(&table->tb6_lock); } if (READ_ONCE(in6_dev->cnf.accept_ra_min_hop_limit) < 256 && ra_msg->icmph.icmp6_hop_limit) { if (READ_ONCE(in6_dev->cnf.accept_ra_min_hop_limit) <= ra_msg->icmph.icmp6_hop_limit) { WRITE_ONCE(in6_dev->cnf.hop_limit, ra_msg->icmph.icmp6_hop_limit); fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { ND_PRINTK(2, warn, "RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { ND_PRINTK(2, warn, "RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); reason = SKB_CONSUMED; } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!READ_ONCE(in6_dev->cnf.accept_ra_from_local) && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (READ_ONCE(in6_dev->cnf.accept_ra_rtr_pref) && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !READ_ONCE(in6_dev->cnf.accept_ra_defrtr)) continue; if (ri->lifetime != 0 && ntohl(ri->lifetime) < READ_ONCE(in6_dev->cnf.accept_ra_min_lft)) continue; if (ri->prefix_len < READ_ONCE(in6_dev->cnf.accept_ra_rt_info_min_plen)) continue; if (ri->prefix_len > READ_ONCE(in6_dev->cnf.accept_ra_rt_info_max_plen)) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (READ_ONCE(in6_dev->cnf.accept_ra_pinfo) && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && READ_ONCE(in6_dev->cnf.accept_ra_mtu)) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (in6_dev->ra_mtu != mtu) { in6_dev->ra_mtu = mtu; send_ifinfo_notify = true; } if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { ND_PRINTK(2, warn, "RA: invalid mtu: %d\n", mtu); } else if (READ_ONCE(in6_dev->cnf.mtu6) != mtu) { WRITE_ONCE(in6_dev->cnf.mtu6, mtu); fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { ND_PRINTK(2, warn, "RA: invalid RA options\n"); } out: /* Send a notify if RA changed managed/otherconf flags or * timer settings or ra_mtu value */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); fib6_info_release(rt); if (neigh) neigh_release(neigh); return reason; } static enum skb_drop_reason ndisc_redirect_rcv(struct sk_buff *skb) { struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); struct ndisc_options ndopts; SKB_DR(reason); u8 *hdr; #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: ND_PRINTK(2, warn, "Redirect: from host or unauthorized router\n"); return reason; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: source address is not link-local\n"); return reason; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return reason; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return SKB_DROP_REASON_PKT_TOO_SMALL; return icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(skb->dev)) { dev = __dev_get_by_index(dev_net(skb->dev), IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { ND_PRINTK(2, warn, "Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = dst_rt6_info(dst); if (rt->rt6i_flags & RTF_GATEWAY) { ND_PRINTK(2, warn, "Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr, 1); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (peer) inet_putpeer(peer); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { ND_PRINTK(2, warn, "Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { enum skb_drop_reason reason = ndisc_recv_ns(skb); kfree_skb_reason(skb, reason); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && READ_ONCE(idev->cnf.suppress_frag_ndisc)) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } enum skb_drop_reason ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; SKB_DR(reason); if (ndisc_suppress_frag_ndisc(skb)) return SKB_DROP_REASON_IPV6_NDISC_FRAG; if (skb_linearize(skb)) return SKB_DROP_REASON_NOMEM; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return SKB_DROP_REASON_IPV6_NDISC_HOP_LIMIT; } if (msg->icmph.icmp6_code != 0) { ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return SKB_DROP_REASON_IPV6_NDISC_BAD_CODE; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); reason = ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: reason = ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: reason = ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: reason = ndisc_router_discovery(skb); break; case NDISC_REDIRECT: reason = ndisc_redirect_rcv(skb); break; } return reason; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; bool evict_nocarrier; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (READ_ONCE(idev->cnf.ndisc_notify) || READ_ONCE(net->ipv6.devconf_all->ndisc_notify)) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: idev = in6_dev_get(dev); if (!idev) evict_nocarrier = true; else { evict_nocarrier = READ_ONCE(idev->cnf.ndisc_evict_nocarrier) && READ_ONCE(net->ipv6.devconf_all->ndisc_evict_nocarrier); in6_dev_put(idev); } change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (evict_nocarrier && !netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(const struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); WRITE_ONCE(idev->tstamp, jiffies); inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { ND_PRINTK(0, err, "NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ inet6_clear_bit(MC6_LOOP, sk); return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); }
12 7 2 1 410 410 183 723 722 11 723 723 3 3 723 1 187 723 175 723 723 722 184 470 470 409 409 15 15 8 7 1 17 4 1 4 3 4 5 2 4 1 5 11 10 1 3 5 2 10 9 3 1 5 11 4 2 1 2 3 5 10 4 9 20 6 6 4 2 1 1 4 4 5 1 1 5 4 1 4 1 2 1 3 1 1 3 18 18 4 5 1 1 7 5 5 2 1 4 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001 Intel Corp. * * This file is part of the SCTP kernel implementation * * This file contains sctp stream maniuplation primitives and helpers. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * Xin Long <lucien.xin@gmail.com> */ #include <linux/list.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> #include <net/sctp/stream_sched.h> static void sctp_stream_shrink_out(struct sctp_stream *stream, __u16 outcnt) { struct sctp_association *asoc; struct sctp_chunk *ch, *temp; struct sctp_outq *outq; asoc = container_of(stream, struct sctp_association, stream); outq = &asoc->outqueue; list_for_each_entry_safe(ch, temp, &outq->out_chunk_list, list) { __u16 sid = sctp_chunk_stream_no(ch); if (sid < outcnt) continue; sctp_sched_dequeue_common(outq, ch); /* No need to call dequeue_done here because * the chunks are not scheduled by now. */ /* Mark as failed send. */ sctp_chunk_fail(ch, (__force __u32)SCTP_ERROR_INV_STRM); if (asoc->peer.prsctp_capable && SCTP_PR_PRIO_ENABLED(ch->sinfo.sinfo_flags)) asoc->sent_cnt_removable--; sctp_chunk_free(ch); } } static void sctp_stream_free_ext(struct sctp_stream *stream, __u16 sid) { struct sctp_sched_ops *sched; if (!SCTP_SO(stream, sid)->ext) return; sched = sctp_sched_ops_from_stream(stream); sched->free_sid(stream, sid); kfree(SCTP_SO(stream, sid)->ext); SCTP_SO(stream, sid)->ext = NULL; } /* Migrates chunks from stream queues to new stream queues if needed, * but not across associations. Also, removes those chunks to streams * higher than the new max. */ static void sctp_stream_outq_migrate(struct sctp_stream *stream, struct sctp_stream *new, __u16 outcnt) { int i; if (stream->outcnt > outcnt) sctp_stream_shrink_out(stream, outcnt); if (new) { /* Here we actually move the old ext stuff into the new * buffer, because we want to keep it. Then * sctp_stream_update will swap ->out pointers. */ for (i = 0; i < outcnt; i++) { sctp_stream_free_ext(new, i); SCTP_SO(new, i)->ext = SCTP_SO(stream, i)->ext; SCTP_SO(stream, i)->ext = NULL; } } for (i = outcnt; i < stream->outcnt; i++) sctp_stream_free_ext(stream, i); } static int sctp_stream_alloc_out(struct sctp_stream *stream, __u16 outcnt, gfp_t gfp) { int ret; if (outcnt <= stream->outcnt) goto out; ret = genradix_prealloc(&stream->out, outcnt, gfp); if (ret) return ret; out: stream->outcnt = outcnt; return 0; } static int sctp_stream_alloc_in(struct sctp_stream *stream, __u16 incnt, gfp_t gfp) { int ret; if (incnt <= stream->incnt) goto out; ret = genradix_prealloc(&stream->in, incnt, gfp); if (ret) return ret; out: stream->incnt = incnt; return 0; } int sctp_stream_init(struct sctp_stream *stream, __u16 outcnt, __u16 incnt, gfp_t gfp) { struct sctp_sched_ops *sched = sctp_sched_ops_from_stream(stream); int i, ret = 0; gfp |= __GFP_NOWARN; /* Initial stream->out size may be very big, so free it and alloc * a new one with new outcnt to save memory if needed. */ if (outcnt == stream->outcnt) goto handle_in; /* Filter out chunks queued on streams that won't exist anymore */ sched->unsched_all(stream); sctp_stream_outq_migrate(stream, NULL, outcnt); sched->sched_all(stream); ret = sctp_stream_alloc_out(stream, outcnt, gfp); if (ret) return ret; for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_OPEN; handle_in: sctp_stream_interleave_init(stream); if (!incnt) return 0; return sctp_stream_alloc_in(stream, incnt, gfp); } int sctp_stream_init_ext(struct sctp_stream *stream, __u16 sid) { struct sctp_stream_out_ext *soute; int ret; soute = kzalloc(sizeof(*soute), GFP_KERNEL); if (!soute) return -ENOMEM; SCTP_SO(stream, sid)->ext = soute; ret = sctp_sched_init_sid(stream, sid, GFP_KERNEL); if (ret) { kfree(SCTP_SO(stream, sid)->ext); SCTP_SO(stream, sid)->ext = NULL; } return ret; } void sctp_stream_free(struct sctp_stream *stream) { struct sctp_sched_ops *sched = sctp_sched_ops_from_stream(stream); int i; sched->unsched_all(stream); for (i = 0; i < stream->outcnt; i++) sctp_stream_free_ext(stream, i); genradix_free(&stream->out); genradix_free(&stream->in); } void sctp_stream_clear(struct sctp_stream *stream) { int i; for (i = 0; i < stream->outcnt; i++) { SCTP_SO(stream, i)->mid = 0; SCTP_SO(stream, i)->mid_uo = 0; } for (i = 0; i < stream->incnt; i++) SCTP_SI(stream, i)->mid = 0; } void sctp_stream_update(struct sctp_stream *stream, struct sctp_stream *new) { struct sctp_sched_ops *sched = sctp_sched_ops_from_stream(stream); sched->unsched_all(stream); sctp_stream_outq_migrate(stream, new, new->outcnt); sctp_stream_free(stream); stream->out = new->out; stream->in = new->in; stream->outcnt = new->outcnt; stream->incnt = new->incnt; sched->sched_all(stream); new->out.tree.root = NULL; new->in.tree.root = NULL; new->outcnt = 0; new->incnt = 0; } static int sctp_send_reconf(struct sctp_association *asoc, struct sctp_chunk *chunk) { int retval = 0; retval = sctp_primitive_RECONF(asoc->base.net, asoc, chunk); if (retval) sctp_chunk_free(chunk); return retval; } static bool sctp_stream_outq_is_empty(struct sctp_stream *stream, __u16 str_nums, __be16 *str_list) { struct sctp_association *asoc; __u16 i; asoc = container_of(stream, struct sctp_association, stream); if (!asoc->outqueue.out_qlen) return true; if (!str_nums) return false; for (i = 0; i < str_nums; i++) { __u16 sid = ntohs(str_list[i]); if (SCTP_SO(stream, sid)->ext && !list_empty(&SCTP_SO(stream, sid)->ext->outq)) return false; } return true; } int sctp_send_reset_streams(struct sctp_association *asoc, struct sctp_reset_streams *params) { struct sctp_stream *stream = &asoc->stream; __u16 i, str_nums, *str_list; struct sctp_chunk *chunk; int retval = -EINVAL; __be16 *nstr_list; bool out, in; if (!asoc->peer.reconf_capable || !(asoc->strreset_enable & SCTP_ENABLE_RESET_STREAM_REQ)) { retval = -ENOPROTOOPT; goto out; } if (asoc->strreset_outstanding) { retval = -EINPROGRESS; goto out; } out = params->srs_flags & SCTP_STREAM_RESET_OUTGOING; in = params->srs_flags & SCTP_STREAM_RESET_INCOMING; if (!out && !in) goto out; str_nums = params->srs_number_streams; str_list = params->srs_stream_list; if (str_nums) { int param_len = 0; if (out) { for (i = 0; i < str_nums; i++) if (str_list[i] >= stream->outcnt) goto out; param_len = str_nums * sizeof(__u16) + sizeof(struct sctp_strreset_outreq); } if (in) { for (i = 0; i < str_nums; i++) if (str_list[i] >= stream->incnt) goto out; param_len += str_nums * sizeof(__u16) + sizeof(struct sctp_strreset_inreq); } if (param_len > SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_reconf_chunk)) goto out; } nstr_list = kcalloc(str_nums, sizeof(__be16), GFP_KERNEL); if (!nstr_list) { retval = -ENOMEM; goto out; } for (i = 0; i < str_nums; i++) nstr_list[i] = htons(str_list[i]); if (out && !sctp_stream_outq_is_empty(stream, str_nums, nstr_list)) { kfree(nstr_list); retval = -EAGAIN; goto out; } chunk = sctp_make_strreset_req(asoc, str_nums, nstr_list, out, in); kfree(nstr_list); if (!chunk) { retval = -ENOMEM; goto out; } if (out) { if (str_nums) for (i = 0; i < str_nums; i++) SCTP_SO(stream, str_list[i])->state = SCTP_STREAM_CLOSED; else for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_CLOSED; } asoc->strreset_chunk = chunk; sctp_chunk_hold(asoc->strreset_chunk); retval = sctp_send_reconf(asoc, chunk); if (retval) { sctp_chunk_put(asoc->strreset_chunk); asoc->strreset_chunk = NULL; if (!out) goto out; if (str_nums) for (i = 0; i < str_nums; i++) SCTP_SO(stream, str_list[i])->state = SCTP_STREAM_OPEN; else for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_OPEN; goto out; } asoc->strreset_outstanding = out + in; out: return retval; } int sctp_send_reset_assoc(struct sctp_association *asoc) { struct sctp_stream *stream = &asoc->stream; struct sctp_chunk *chunk = NULL; int retval; __u16 i; if (!asoc->peer.reconf_capable || !(asoc->strreset_enable & SCTP_ENABLE_RESET_ASSOC_REQ)) return -ENOPROTOOPT; if (asoc->strreset_outstanding) return -EINPROGRESS; if (!sctp_outq_is_empty(&asoc->outqueue)) return -EAGAIN; chunk = sctp_make_strreset_tsnreq(asoc); if (!chunk) return -ENOMEM; /* Block further xmit of data until this request is completed */ for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_CLOSED; asoc->strreset_chunk = chunk; sctp_chunk_hold(asoc->strreset_chunk); retval = sctp_send_reconf(asoc, chunk); if (retval) { sctp_chunk_put(asoc->strreset_chunk); asoc->strreset_chunk = NULL; for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_OPEN; return retval; } asoc->strreset_outstanding = 1; return 0; } int sctp_send_add_streams(struct sctp_association *asoc, struct sctp_add_streams *params) { struct sctp_stream *stream = &asoc->stream; struct sctp_chunk *chunk = NULL; int retval; __u32 outcnt, incnt; __u16 out, in; if (!asoc->peer.reconf_capable || !(asoc->strreset_enable & SCTP_ENABLE_CHANGE_ASSOC_REQ)) { retval = -ENOPROTOOPT; goto out; } if (asoc->strreset_outstanding) { retval = -EINPROGRESS; goto out; } out = params->sas_outstrms; in = params->sas_instrms; outcnt = stream->outcnt + out; incnt = stream->incnt + in; if (outcnt > SCTP_MAX_STREAM || incnt > SCTP_MAX_STREAM || (!out && !in)) { retval = -EINVAL; goto out; } if (out) { retval = sctp_stream_alloc_out(stream, outcnt, GFP_KERNEL); if (retval) goto out; } chunk = sctp_make_strreset_addstrm(asoc, out, in); if (!chunk) { retval = -ENOMEM; goto out; } asoc->strreset_chunk = chunk; sctp_chunk_hold(asoc->strreset_chunk); retval = sctp_send_reconf(asoc, chunk); if (retval) { sctp_chunk_put(asoc->strreset_chunk); asoc->strreset_chunk = NULL; goto out; } asoc->strreset_outstanding = !!out + !!in; out: return retval; } static struct sctp_paramhdr *sctp_chunk_lookup_strreset_param( struct sctp_association *asoc, __be32 resp_seq, __be16 type) { struct sctp_chunk *chunk = asoc->strreset_chunk; struct sctp_reconf_chunk *hdr; union sctp_params param; if (!chunk) return NULL; hdr = (struct sctp_reconf_chunk *)chunk->chunk_hdr; sctp_walk_params(param, hdr) { /* sctp_strreset_tsnreq is actually the basic structure * of all stream reconf params, so it's safe to use it * to access request_seq. */ struct sctp_strreset_tsnreq *req = param.v; if ((!resp_seq || req->request_seq == resp_seq) && (!type || type == req->param_hdr.type)) return param.v; } return NULL; } static void sctp_update_strreset_result(struct sctp_association *asoc, __u32 result) { asoc->strreset_result[1] = asoc->strreset_result[0]; asoc->strreset_result[0] = result; } struct sctp_chunk *sctp_process_strreset_outreq( struct sctp_association *asoc, union sctp_params param, struct sctp_ulpevent **evp) { struct sctp_strreset_outreq *outreq = param.v; struct sctp_stream *stream = &asoc->stream; __u32 result = SCTP_STRRESET_DENIED; __be16 *str_p = NULL; __u32 request_seq; __u16 i, nums; request_seq = ntohl(outreq->request_seq); if (ntohl(outreq->send_reset_at_tsn) > sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)) { result = SCTP_STRRESET_IN_PROGRESS; goto err; } if (TSN_lt(asoc->strreset_inseq, request_seq) || TSN_lt(request_seq, asoc->strreset_inseq - 2)) { result = SCTP_STRRESET_ERR_BAD_SEQNO; goto err; } else if (TSN_lt(request_seq, asoc->strreset_inseq)) { i = asoc->strreset_inseq - request_seq - 1; result = asoc->strreset_result[i]; goto err; } asoc->strreset_inseq++; /* Check strreset_enable after inseq inc, as sender cannot tell * the peer doesn't enable strreset after receiving response with * result denied, as well as to keep consistent with bsd. */ if (!(asoc->strreset_enable & SCTP_ENABLE_RESET_STREAM_REQ)) goto out; nums = (ntohs(param.p->length) - sizeof(*outreq)) / sizeof(__u16); str_p = outreq->list_of_streams; for (i = 0; i < nums; i++) { if (ntohs(str_p[i]) >= stream->incnt) { result = SCTP_STRRESET_ERR_WRONG_SSN; goto out; } } if (asoc->strreset_chunk) { if (!sctp_chunk_lookup_strreset_param( asoc, outreq->response_seq, SCTP_PARAM_RESET_IN_REQUEST)) { /* same process with outstanding isn't 0 */ result = SCTP_STRRESET_ERR_IN_PROGRESS; goto out; } asoc->strreset_outstanding--; asoc->strreset_outseq++; if (!asoc->strreset_outstanding) { struct sctp_transport *t; t = asoc->strreset_chunk->transport; if (del_timer(&t->reconf_timer)) sctp_transport_put(t); sctp_chunk_put(asoc->strreset_chunk); asoc->strreset_chunk = NULL; } } if (nums) for (i = 0; i < nums; i++) SCTP_SI(stream, ntohs(str_p[i]))->mid = 0; else for (i = 0; i < stream->incnt; i++) SCTP_SI(stream, i)->mid = 0; result = SCTP_STRRESET_PERFORMED; *evp = sctp_ulpevent_make_stream_reset_event(asoc, SCTP_STREAM_RESET_INCOMING_SSN, nums, str_p, GFP_ATOMIC); out: sctp_update_strreset_result(asoc, result); err: return sctp_make_strreset_resp(asoc, result, request_seq); } struct sctp_chunk *sctp_process_strreset_inreq( struct sctp_association *asoc, union sctp_params param, struct sctp_ulpevent **evp) { struct sctp_strreset_inreq *inreq = param.v; struct sctp_stream *stream = &asoc->stream; __u32 result = SCTP_STRRESET_DENIED; struct sctp_chunk *chunk = NULL; __u32 request_seq; __u16 i, nums; __be16 *str_p; request_seq = ntohl(inreq->request_seq); if (TSN_lt(asoc->strreset_inseq, request_seq) || TSN_lt(request_seq, asoc->strreset_inseq - 2)) { result = SCTP_STRRESET_ERR_BAD_SEQNO; goto err; } else if (TSN_lt(request_seq, asoc->strreset_inseq)) { i = asoc->strreset_inseq - request_seq - 1; result = asoc->strreset_result[i]; if (result == SCTP_STRRESET_PERFORMED) return NULL; goto err; } asoc->strreset_inseq++; if (!(asoc->strreset_enable & SCTP_ENABLE_RESET_STREAM_REQ)) goto out; if (asoc->strreset_outstanding) { result = SCTP_STRRESET_ERR_IN_PROGRESS; goto out; } nums = (ntohs(param.p->length) - sizeof(*inreq)) / sizeof(__u16); str_p = inreq->list_of_streams; for (i = 0; i < nums; i++) { if (ntohs(str_p[i]) >= stream->outcnt) { result = SCTP_STRRESET_ERR_WRONG_SSN; goto out; } } if (!sctp_stream_outq_is_empty(stream, nums, str_p)) { result = SCTP_STRRESET_IN_PROGRESS; asoc->strreset_inseq--; goto err; } chunk = sctp_make_strreset_req(asoc, nums, str_p, 1, 0); if (!chunk) goto out; if (nums) for (i = 0; i < nums; i++) SCTP_SO(stream, ntohs(str_p[i]))->state = SCTP_STREAM_CLOSED; else for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_CLOSED; asoc->strreset_chunk = chunk; asoc->strreset_outstanding = 1; sctp_chunk_hold(asoc->strreset_chunk); result = SCTP_STRRESET_PERFORMED; out: sctp_update_strreset_result(asoc, result); err: if (!chunk) chunk = sctp_make_strreset_resp(asoc, result, request_seq); return chunk; } struct sctp_chunk *sctp_process_strreset_tsnreq( struct sctp_association *asoc, union sctp_params param, struct sctp_ulpevent **evp) { __u32 init_tsn = 0, next_tsn = 0, max_tsn_seen; struct sctp_strreset_tsnreq *tsnreq = param.v; struct sctp_stream *stream = &asoc->stream; __u32 result = SCTP_STRRESET_DENIED; __u32 request_seq; __u16 i; request_seq = ntohl(tsnreq->request_seq); if (TSN_lt(asoc->strreset_inseq, request_seq) || TSN_lt(request_seq, asoc->strreset_inseq - 2)) { result = SCTP_STRRESET_ERR_BAD_SEQNO; goto err; } else if (TSN_lt(request_seq, asoc->strreset_inseq)) { i = asoc->strreset_inseq - request_seq - 1; result = asoc->strreset_result[i]; if (result == SCTP_STRRESET_PERFORMED) { next_tsn = asoc->ctsn_ack_point + 1; init_tsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map) + 1; } goto err; } if (!sctp_outq_is_empty(&asoc->outqueue)) { result = SCTP_STRRESET_IN_PROGRESS; goto err; } asoc->strreset_inseq++; if (!(asoc->strreset_enable & SCTP_ENABLE_RESET_ASSOC_REQ)) goto out; if (asoc->strreset_outstanding) { result = SCTP_STRRESET_ERR_IN_PROGRESS; goto out; } /* G4: The same processing as though a FWD-TSN chunk (as defined in * [RFC3758]) with all streams affected and a new cumulative TSN * ACK of the Receiver's Next TSN minus 1 were received MUST be * performed. */ max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); asoc->stream.si->report_ftsn(&asoc->ulpq, max_tsn_seen); /* G1: Compute an appropriate value for the Receiver's Next TSN -- the * TSN that the peer should use to send the next DATA chunk. The * value SHOULD be the smallest TSN not acknowledged by the * receiver of the request plus 2^31. */ init_tsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map) + (1 << 31); sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, init_tsn, GFP_ATOMIC); /* G3: The same processing as though a SACK chunk with no gap report * and a cumulative TSN ACK of the Sender's Next TSN minus 1 were * received MUST be performed. */ sctp_outq_free(&asoc->outqueue); /* G2: Compute an appropriate value for the local endpoint's next TSN, * i.e., the next TSN assigned by the receiver of the SSN/TSN reset * chunk. The value SHOULD be the highest TSN sent by the receiver * of the request plus 1. */ next_tsn = asoc->next_tsn; asoc->ctsn_ack_point = next_tsn - 1; asoc->adv_peer_ack_point = asoc->ctsn_ack_point; /* G5: The next expected and outgoing SSNs MUST be reset to 0 for all * incoming and outgoing streams. */ for (i = 0; i < stream->outcnt; i++) { SCTP_SO(stream, i)->mid = 0; SCTP_SO(stream, i)->mid_uo = 0; } for (i = 0; i < stream->incnt; i++) SCTP_SI(stream, i)->mid = 0; result = SCTP_STRRESET_PERFORMED; *evp = sctp_ulpevent_make_assoc_reset_event(asoc, 0, init_tsn, next_tsn, GFP_ATOMIC); out: sctp_update_strreset_result(asoc, result); err: return sctp_make_strreset_tsnresp(asoc, result, request_seq, next_tsn, init_tsn); } struct sctp_chunk *sctp_process_strreset_addstrm_out( struct sctp_association *asoc, union sctp_params param, struct sctp_ulpevent **evp) { struct sctp_strreset_addstrm *addstrm = param.v; struct sctp_stream *stream = &asoc->stream; __u32 result = SCTP_STRRESET_DENIED; __u32 request_seq, incnt; __u16 in, i; request_seq = ntohl(addstrm->request_seq); if (TSN_lt(asoc->strreset_inseq, request_seq) || TSN_lt(request_seq, asoc->strreset_inseq - 2)) { result = SCTP_STRRESET_ERR_BAD_SEQNO; goto err; } else if (TSN_lt(request_seq, asoc->strreset_inseq)) { i = asoc->strreset_inseq - request_seq - 1; result = asoc->strreset_result[i]; goto err; } asoc->strreset_inseq++; if (!(asoc->strreset_enable & SCTP_ENABLE_CHANGE_ASSOC_REQ)) goto out; in = ntohs(addstrm->number_of_streams); incnt = stream->incnt + in; if (!in || incnt > SCTP_MAX_STREAM) goto out; if (sctp_stream_alloc_in(stream, incnt, GFP_ATOMIC)) goto out; if (asoc->strreset_chunk) { if (!sctp_chunk_lookup_strreset_param( asoc, 0, SCTP_PARAM_RESET_ADD_IN_STREAMS)) { /* same process with outstanding isn't 0 */ result = SCTP_STRRESET_ERR_IN_PROGRESS; goto out; } asoc->strreset_outstanding--; asoc->strreset_outseq++; if (!asoc->strreset_outstanding) { struct sctp_transport *t; t = asoc->strreset_chunk->transport; if (del_timer(&t->reconf_timer)) sctp_transport_put(t); sctp_chunk_put(asoc->strreset_chunk); asoc->strreset_chunk = NULL; } } stream->incnt = incnt; result = SCTP_STRRESET_PERFORMED; *evp = sctp_ulpevent_make_stream_change_event(asoc, 0, ntohs(addstrm->number_of_streams), 0, GFP_ATOMIC); out: sctp_update_strreset_result(asoc, result); err: return sctp_make_strreset_resp(asoc, result, request_seq); } struct sctp_chunk *sctp_process_strreset_addstrm_in( struct sctp_association *asoc, union sctp_params param, struct sctp_ulpevent **evp) { struct sctp_strreset_addstrm *addstrm = param.v; struct sctp_stream *stream = &asoc->stream; __u32 result = SCTP_STRRESET_DENIED; struct sctp_chunk *chunk = NULL; __u32 request_seq, outcnt; __u16 out, i; int ret; request_seq = ntohl(addstrm->request_seq); if (TSN_lt(asoc->strreset_inseq, request_seq) || TSN_lt(request_seq, asoc->strreset_inseq - 2)) { result = SCTP_STRRESET_ERR_BAD_SEQNO; goto err; } else if (TSN_lt(request_seq, asoc->strreset_inseq)) { i = asoc->strreset_inseq - request_seq - 1; result = asoc->strreset_result[i]; if (result == SCTP_STRRESET_PERFORMED) return NULL; goto err; } asoc->strreset_inseq++; if (!(asoc->strreset_enable & SCTP_ENABLE_CHANGE_ASSOC_REQ)) goto out; if (asoc->strreset_outstanding) { result = SCTP_STRRESET_ERR_IN_PROGRESS; goto out; } out = ntohs(addstrm->number_of_streams); outcnt = stream->outcnt + out; if (!out || outcnt > SCTP_MAX_STREAM) goto out; ret = sctp_stream_alloc_out(stream, outcnt, GFP_ATOMIC); if (ret) goto out; chunk = sctp_make_strreset_addstrm(asoc, out, 0); if (!chunk) goto out; asoc->strreset_chunk = chunk; asoc->strreset_outstanding = 1; sctp_chunk_hold(asoc->strreset_chunk); stream->outcnt = outcnt; result = SCTP_STRRESET_PERFORMED; out: sctp_update_strreset_result(asoc, result); err: if (!chunk) chunk = sctp_make_strreset_resp(asoc, result, request_seq); return chunk; } struct sctp_chunk *sctp_process_strreset_resp( struct sctp_association *asoc, union sctp_params param, struct sctp_ulpevent **evp) { struct sctp_stream *stream = &asoc->stream; struct sctp_strreset_resp *resp = param.v; struct sctp_transport *t; __u16 i, nums, flags = 0; struct sctp_paramhdr *req; __u32 result; req = sctp_chunk_lookup_strreset_param(asoc, resp->response_seq, 0); if (!req) return NULL; result = ntohl(resp->result); if (result != SCTP_STRRESET_PERFORMED) { /* if in progress, do nothing but retransmit */ if (result == SCTP_STRRESET_IN_PROGRESS) return NULL; else if (result == SCTP_STRRESET_DENIED) flags = SCTP_STREAM_RESET_DENIED; else flags = SCTP_STREAM_RESET_FAILED; } if (req->type == SCTP_PARAM_RESET_OUT_REQUEST) { struct sctp_strreset_outreq *outreq; __be16 *str_p; outreq = (struct sctp_strreset_outreq *)req; str_p = outreq->list_of_streams; nums = (ntohs(outreq->param_hdr.length) - sizeof(*outreq)) / sizeof(__u16); if (result == SCTP_STRRESET_PERFORMED) { struct sctp_stream_out *sout; if (nums) { for (i = 0; i < nums; i++) { sout = SCTP_SO(stream, ntohs(str_p[i])); sout->mid = 0; sout->mid_uo = 0; } } else { for (i = 0; i < stream->outcnt; i++) { sout = SCTP_SO(stream, i); sout->mid = 0; sout->mid_uo = 0; } } } flags |= SCTP_STREAM_RESET_OUTGOING_SSN; for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_OPEN; *evp = sctp_ulpevent_make_stream_reset_event(asoc, flags, nums, str_p, GFP_ATOMIC); } else if (req->type == SCTP_PARAM_RESET_IN_REQUEST) { struct sctp_strreset_inreq *inreq; __be16 *str_p; /* if the result is performed, it's impossible for inreq */ if (result == SCTP_STRRESET_PERFORMED) return NULL; inreq = (struct sctp_strreset_inreq *)req; str_p = inreq->list_of_streams; nums = (ntohs(inreq->param_hdr.length) - sizeof(*inreq)) / sizeof(__u16); flags |= SCTP_STREAM_RESET_INCOMING_SSN; *evp = sctp_ulpevent_make_stream_reset_event(asoc, flags, nums, str_p, GFP_ATOMIC); } else if (req->type == SCTP_PARAM_RESET_TSN_REQUEST) { struct sctp_strreset_resptsn *resptsn; __u32 stsn, rtsn; /* check for resptsn, as sctp_verify_reconf didn't do it*/ if (ntohs(param.p->length) != sizeof(*resptsn)) return NULL; resptsn = (struct sctp_strreset_resptsn *)resp; stsn = ntohl(resptsn->senders_next_tsn); rtsn = ntohl(resptsn->receivers_next_tsn); if (result == SCTP_STRRESET_PERFORMED) { __u32 mtsn = sctp_tsnmap_get_max_tsn_seen( &asoc->peer.tsn_map); LIST_HEAD(temp); asoc->stream.si->report_ftsn(&asoc->ulpq, mtsn); sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, stsn, GFP_ATOMIC); /* Clean up sacked and abandoned queues only. As the * out_chunk_list may not be empty, splice it to temp, * then get it back after sctp_outq_free is done. */ list_splice_init(&asoc->outqueue.out_chunk_list, &temp); sctp_outq_free(&asoc->outqueue); list_splice_init(&temp, &asoc->outqueue.out_chunk_list); asoc->next_tsn = rtsn; asoc->ctsn_ack_point = asoc->next_tsn - 1; asoc->adv_peer_ack_point = asoc->ctsn_ack_point; for (i = 0; i < stream->outcnt; i++) { SCTP_SO(stream, i)->mid = 0; SCTP_SO(stream, i)->mid_uo = 0; } for (i = 0; i < stream->incnt; i++) SCTP_SI(stream, i)->mid = 0; } for (i = 0; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_OPEN; *evp = sctp_ulpevent_make_assoc_reset_event(asoc, flags, stsn, rtsn, GFP_ATOMIC); } else if (req->type == SCTP_PARAM_RESET_ADD_OUT_STREAMS) { struct sctp_strreset_addstrm *addstrm; __u16 number; addstrm = (struct sctp_strreset_addstrm *)req; nums = ntohs(addstrm->number_of_streams); number = stream->outcnt - nums; if (result == SCTP_STRRESET_PERFORMED) { for (i = number; i < stream->outcnt; i++) SCTP_SO(stream, i)->state = SCTP_STREAM_OPEN; } else { sctp_stream_shrink_out(stream, number); stream->outcnt = number; } *evp = sctp_ulpevent_make_stream_change_event(asoc, flags, 0, nums, GFP_ATOMIC); } else if (req->type == SCTP_PARAM_RESET_ADD_IN_STREAMS) { struct sctp_strreset_addstrm *addstrm; /* if the result is performed, it's impossible for addstrm in * request. */ if (result == SCTP_STRRESET_PERFORMED) return NULL; addstrm = (struct sctp_strreset_addstrm *)req; nums = ntohs(addstrm->number_of_streams); *evp = sctp_ulpevent_make_stream_change_event(asoc, flags, nums, 0, GFP_ATOMIC); } asoc->strreset_outstanding--; asoc->strreset_outseq++; /* remove everything for this reconf request */ if (!asoc->strreset_outstanding) { t = asoc->strreset_chunk->transport; if (del_timer(&t->reconf_timer)) sctp_transport_put(t); sctp_chunk_put(asoc->strreset_chunk); asoc->strreset_chunk = NULL; } return NULL; }
40 39 40 40 39 3 4 28 28 27 21 21 5 5 6 6 13 7 6 12 13 29 12 16 1 2 2 13 1 6 6 19 15 4 4 4 3 1 26 26 25 25 25 20 20 1 19 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 // SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, arvid.brodin@alten.se * * The HSR spec says never to forward the same frame twice on the same * interface. A frame is identified by its source MAC address and its HSR * sequence number. This code keeps track of senders and their sequence numbers * to allow filtering of duplicate frames, and to detect HSR ring errors. * Same code handles filtering of duplicates for PRP as well. */ #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <linux/slab.h> #include <linux/rculist.h> #include "hsr_main.h" #include "hsr_framereg.h" #include "hsr_netlink.h" /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, * false otherwise. */ static bool seq_nr_after(u16 a, u16 b) { /* Remove inconsistency where * seq_nr_after(a, b) == seq_nr_before(a, b) */ if ((int)b - a == 32768) return false; return (((s16)(b - a)) < 0); } #define seq_nr_before(a, b) seq_nr_after((b), (a)) #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) bool hsr_addr_is_redbox(struct hsr_priv *hsr, unsigned char *addr) { if (!hsr->redbox || !is_valid_ether_addr(hsr->macaddress_redbox)) return false; return ether_addr_equal(addr, hsr->macaddress_redbox); } bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) { struct hsr_self_node *sn; bool ret = false; rcu_read_lock(); sn = rcu_dereference(hsr->self_node); if (!sn) { WARN_ONCE(1, "HSR: No self node\n"); goto out; } if (ether_addr_equal(addr, sn->macaddress_A) || ether_addr_equal(addr, sn->macaddress_B)) ret = true; out: rcu_read_unlock(); return ret; } /* Search for mac entry. Caller must hold rcu read lock. */ static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, const unsigned char addr[ETH_ALEN]) { struct hsr_node *node; list_for_each_entry_rcu(node, node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, addr)) return node; } return NULL; } /* Check if node for a given MAC address is already present in data base */ bool hsr_is_node_in_db(struct list_head *node_db, const unsigned char addr[ETH_ALEN]) { return !!find_node_by_addr_A(node_db, addr); } /* Helper for device init; the self_node is used in hsr_rcv() to recognize * frames from self that's been looped over the HSR ring. */ int hsr_create_self_node(struct hsr_priv *hsr, const unsigned char addr_a[ETH_ALEN], const unsigned char addr_b[ETH_ALEN]) { struct hsr_self_node *sn, *old; sn = kmalloc(sizeof(*sn), GFP_KERNEL); if (!sn) return -ENOMEM; ether_addr_copy(sn->macaddress_A, addr_a); ether_addr_copy(sn->macaddress_B, addr_b); spin_lock_bh(&hsr->list_lock); old = rcu_replace_pointer(hsr->self_node, sn, lockdep_is_held(&hsr->list_lock)); spin_unlock_bh(&hsr->list_lock); if (old) kfree_rcu(old, rcu_head); return 0; } void hsr_del_self_node(struct hsr_priv *hsr) { struct hsr_self_node *old; spin_lock_bh(&hsr->list_lock); old = rcu_replace_pointer(hsr->self_node, NULL, lockdep_is_held(&hsr->list_lock)); spin_unlock_bh(&hsr->list_lock); if (old) kfree_rcu(old, rcu_head); } void hsr_del_nodes(struct list_head *node_db) { struct hsr_node *node; struct hsr_node *tmp; list_for_each_entry_safe(node, tmp, node_db, mac_list) kfree(node); } void prp_handle_san_frame(bool san, enum hsr_port_type port, struct hsr_node *node) { /* Mark if the SAN node is over LAN_A or LAN_B */ if (port == HSR_PT_SLAVE_A) { node->san_a = true; return; } if (port == HSR_PT_SLAVE_B) node->san_b = true; } /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; * seq_out is used to initialize filtering of outgoing duplicate frames * originating from the newly added node. */ static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, struct list_head *node_db, unsigned char addr[], u16 seq_out, bool san, enum hsr_port_type rx_port) { struct hsr_node *new_node, *node; unsigned long now; int i; new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); if (!new_node) return NULL; ether_addr_copy(new_node->macaddress_A, addr); spin_lock_init(&new_node->seq_out_lock); /* We are only interested in time diffs here, so use current jiffies * as initialization. (0 could trigger an spurious ring error warning). */ now = jiffies; for (i = 0; i < HSR_PT_PORTS; i++) { new_node->time_in[i] = now; new_node->time_out[i] = now; } for (i = 0; i < HSR_PT_PORTS; i++) new_node->seq_out[i] = seq_out; if (san && hsr->proto_ops->handle_san_frame) hsr->proto_ops->handle_san_frame(san, rx_port, new_node); spin_lock_bh(&hsr->list_lock); list_for_each_entry_rcu(node, node_db, mac_list, lockdep_is_held(&hsr->list_lock)) { if (ether_addr_equal(node->macaddress_A, addr)) goto out; if (ether_addr_equal(node->macaddress_B, addr)) goto out; } list_add_tail_rcu(&new_node->mac_list, node_db); spin_unlock_bh(&hsr->list_lock); return new_node; out: spin_unlock_bh(&hsr->list_lock); kfree(new_node); return node; } void prp_update_san_info(struct hsr_node *node, bool is_sup) { if (!is_sup) return; node->san_a = false; node->san_b = false; } /* Get the hsr_node from which 'skb' was sent. */ struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db, struct sk_buff *skb, bool is_sup, enum hsr_port_type rx_port) { struct hsr_priv *hsr = port->hsr; struct hsr_node *node; struct ethhdr *ethhdr; struct prp_rct *rct; bool san = false; u16 seq_out; if (!skb_mac_header_was_set(skb)) return NULL; ethhdr = (struct ethhdr *)skb_mac_header(skb); list_for_each_entry_rcu(node, node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } } /* Check if required node is not in proxy nodes table */ list_for_each_entry_rcu(node, &hsr->proxy_node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } } /* Everyone may create a node entry, connected node to a HSR/PRP * device. */ if (ethhdr->h_proto == htons(ETH_P_PRP) || ethhdr->h_proto == htons(ETH_P_HSR)) { /* Check if skb contains hsr_ethhdr */ if (skb->mac_len < sizeof(struct hsr_ethhdr)) return NULL; /* Use the existing sequence_nr from the tag as starting point * for filtering duplicate frames. */ seq_out = hsr_get_skb_sequence_nr(skb) - 1; } else { rct = skb_get_PRP_rct(skb); if (rct && prp_check_lsdu_size(skb, rct, is_sup)) { seq_out = prp_get_skb_sequence_nr(rct); } else { if (rx_port != HSR_PT_MASTER) san = true; seq_out = HSR_SEQNR_START; } } return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out, san, rx_port); } /* Use the Supervision frame's info about an eventual macaddress_B for merging * nodes that has previously had their macaddress_B registered as a separate * node. */ void hsr_handle_sup_frame(struct hsr_frame_info *frame) { struct hsr_node *node_curr = frame->node_src; struct hsr_port *port_rcv = frame->port_rcv; struct hsr_priv *hsr = port_rcv->hsr; struct hsr_sup_payload *hsr_sp; struct hsr_sup_tlv *hsr_sup_tlv; struct hsr_node *node_real; struct sk_buff *skb = NULL; struct list_head *node_db; struct ethhdr *ethhdr; int i; unsigned int pull_size = 0; unsigned int total_pull_size = 0; /* Here either frame->skb_hsr or frame->skb_prp should be * valid as supervision frame always will have protocol * header info. */ if (frame->skb_hsr) skb = frame->skb_hsr; else if (frame->skb_prp) skb = frame->skb_prp; else if (frame->skb_std) skb = frame->skb_std; if (!skb) return; /* Leave the ethernet header. */ pull_size = sizeof(struct ethhdr); skb_pull(skb, pull_size); total_pull_size += pull_size; ethhdr = (struct ethhdr *)skb_mac_header(skb); /* And leave the HSR tag. */ if (ethhdr->h_proto == htons(ETH_P_HSR)) { pull_size = sizeof(struct hsr_tag); skb_pull(skb, pull_size); total_pull_size += pull_size; } /* And leave the HSR sup tag. */ pull_size = sizeof(struct hsr_sup_tag); skb_pull(skb, pull_size); total_pull_size += pull_size; /* get HSR sup payload */ hsr_sp = (struct hsr_sup_payload *)skb->data; /* Merge node_curr (registered on macaddress_B) into node_real */ node_db = &port_rcv->hsr->node_db; node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); if (!node_real) /* No frame received from AddrA of this node yet */ node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A, HSR_SEQNR_START - 1, true, port_rcv->type); if (!node_real) goto done; /* No mem */ if (node_real == node_curr) /* Node has already been merged */ goto done; /* Leave the first HSR sup payload. */ pull_size = sizeof(struct hsr_sup_payload); skb_pull(skb, pull_size); total_pull_size += pull_size; /* Get second supervision tlv */ hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; /* And check if it is a redbox mac TLV */ if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) { /* We could stop here after pushing hsr_sup_payload, * or proceed and allow macaddress_B and for redboxes. */ /* Sanity check length */ if (hsr_sup_tlv->HSR_TLV_length != 6) goto done; /* Leave the second HSR sup tlv. */ pull_size = sizeof(struct hsr_sup_tlv); skb_pull(skb, pull_size); total_pull_size += pull_size; /* Get redbox mac address. */ hsr_sp = (struct hsr_sup_payload *)skb->data; /* Check if redbox mac and node mac are equal. */ if (!ether_addr_equal(node_real->macaddress_A, hsr_sp->macaddress_A)) { /* This is a redbox supervision frame for a VDAN! */ goto done; } } ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); spin_lock_bh(&node_real->seq_out_lock); for (i = 0; i < HSR_PT_PORTS; i++) { if (!node_curr->time_in_stale[i] && time_after(node_curr->time_in[i], node_real->time_in[i])) { node_real->time_in[i] = node_curr->time_in[i]; node_real->time_in_stale[i] = node_curr->time_in_stale[i]; } if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) node_real->seq_out[i] = node_curr->seq_out[i]; } spin_unlock_bh(&node_real->seq_out_lock); node_real->addr_B_port = port_rcv->type; spin_lock_bh(&hsr->list_lock); if (!node_curr->removed) { list_del_rcu(&node_curr->mac_list); node_curr->removed = true; kfree_rcu(node_curr, rcu_head); } spin_unlock_bh(&hsr->list_lock); done: /* Push back here */ skb_push(skb, total_pull_size); } /* 'skb' is a frame meant for this host, that is to be passed to upper layers. * * If the frame was sent by a node's B interface, replace the source * address with that node's "official" address (macaddress_A) so that upper * layers recognize where it came from. */ void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) { if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: Mac header not set\n", __func__); return; } memcpy(&eth_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); } /* 'skb' is a frame meant for another host. * 'port' is the outgoing interface * * Substitute the target (dest) MAC address if necessary, so the it matches the * recipient interface MAC address, regardless of whether that is the * recipient's A or B interface. * This is needed to keep the packets flowing through switches that learn on * which "side" the different interfaces are. */ void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, struct hsr_port *port) { struct hsr_node *node_dst; if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: Mac header not set\n", __func__); return; } if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) return; node_dst = find_node_by_addr_A(&port->hsr->node_db, eth_hdr(skb)->h_dest); if (!node_dst && port->hsr->redbox) node_dst = find_node_by_addr_A(&port->hsr->proxy_node_db, eth_hdr(skb)->h_dest); if (!node_dst) { if (port->hsr->prot_version != PRP_V1 && net_ratelimit()) netdev_err(skb->dev, "%s: Unknown node\n", __func__); return; } if (port->type != node_dst->addr_B_port) return; if (is_valid_ether_addr(node_dst->macaddress_B)) ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); } void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, u16 sequence_nr) { /* Don't register incoming frames without a valid sequence number. This * ensures entries of restarted nodes gets pruned so that they can * re-register and resume communications. */ if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) && seq_nr_before(sequence_nr, node->seq_out[port->type])) return; node->time_in[port->type] = jiffies; node->time_in_stale[port->type] = false; } /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid * ethhdr->h_source address and skb->mac_header set. * * Return: * 1 if frame can be shown to have been sent recently on this interface, * 0 otherwise, or * negative error code on error */ int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, u16 sequence_nr) { spin_lock_bh(&node->seq_out_lock); if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) && time_is_after_jiffies(node->time_out[port->type] + msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) { spin_unlock_bh(&node->seq_out_lock); return 1; } node->time_out[port->type] = jiffies; node->seq_out[port->type] = sequence_nr; spin_unlock_bh(&node->seq_out_lock); return 0; } static struct hsr_port *get_late_port(struct hsr_priv *hsr, struct hsr_node *node) { if (node->time_in_stale[HSR_PT_SLAVE_A]) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (node->time_in_stale[HSR_PT_SLAVE_B]) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); if (time_after(node->time_in[HSR_PT_SLAVE_B], node->time_in[HSR_PT_SLAVE_A] + msecs_to_jiffies(MAX_SLAVE_DIFF))) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (time_after(node->time_in[HSR_PT_SLAVE_A], node->time_in[HSR_PT_SLAVE_B] + msecs_to_jiffies(MAX_SLAVE_DIFF))) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); return NULL; } /* Remove stale sequence_nr records. Called by timer every * HSR_LIFE_CHECK_INTERVAL (two seconds or so). */ void hsr_prune_nodes(struct timer_list *t) { struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); struct hsr_node *node; struct hsr_node *tmp; struct hsr_port *port; unsigned long timestamp; unsigned long time_a, time_b; spin_lock_bh(&hsr->list_lock); list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) { /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] * nor time_in[HSR_PT_SLAVE_B], will ever be updated for * the master port. Thus the master node will be repeatedly * pruned leading to packet loss. */ if (hsr_addr_is_self(hsr, node->macaddress_A)) continue; /* Shorthand */ time_a = node->time_in[HSR_PT_SLAVE_A]; time_b = node->time_in[HSR_PT_SLAVE_B]; /* Check for timestamps old enough to risk wrap-around */ if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) node->time_in_stale[HSR_PT_SLAVE_A] = true; if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) node->time_in_stale[HSR_PT_SLAVE_B] = true; /* Get age of newest frame from node. * At least one time_in is OK here; nodes get pruned long * before both time_ins can get stale */ timestamp = time_a; if (node->time_in_stale[HSR_PT_SLAVE_A] || (!node->time_in_stale[HSR_PT_SLAVE_B] && time_after(time_b, time_a))) timestamp = time_b; /* Warn of ring error only as long as we get frames at all */ if (time_is_after_jiffies(timestamp + msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { rcu_read_lock(); port = get_late_port(hsr, node); if (port) hsr_nl_ringerror(hsr, node->macaddress_A, port); rcu_read_unlock(); } /* Prune old entries */ if (time_is_before_jiffies(timestamp + msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { hsr_nl_nodedown(hsr, node->macaddress_A); if (!node->removed) { list_del_rcu(&node->mac_list); node->removed = true; /* Note that we need to free this entry later: */ kfree_rcu(node, rcu_head); } } } spin_unlock_bh(&hsr->list_lock); /* Restart timer */ mod_timer(&hsr->prune_timer, jiffies + msecs_to_jiffies(PRUNE_PERIOD)); } void hsr_prune_proxy_nodes(struct timer_list *t) { struct hsr_priv *hsr = from_timer(hsr, t, prune_proxy_timer); unsigned long timestamp; struct hsr_node *node; struct hsr_node *tmp; spin_lock_bh(&hsr->list_lock); list_for_each_entry_safe(node, tmp, &hsr->proxy_node_db, mac_list) { /* Don't prune RedBox node. */ if (hsr_addr_is_redbox(hsr, node->macaddress_A)) continue; timestamp = node->time_in[HSR_PT_INTERLINK]; /* Prune old entries */ if (time_is_before_jiffies(timestamp + msecs_to_jiffies(HSR_PROXY_NODE_FORGET_TIME))) { hsr_nl_nodedown(hsr, node->macaddress_A); if (!node->removed) { list_del_rcu(&node->mac_list); node->removed = true; /* Note that we need to free this entry later: */ kfree_rcu(node, rcu_head); } } } spin_unlock_bh(&hsr->list_lock); /* Restart timer */ mod_timer(&hsr->prune_proxy_timer, jiffies + msecs_to_jiffies(PRUNE_PROXY_PERIOD)); } void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, unsigned char addr[ETH_ALEN]) { struct hsr_node *node; if (!_pos) { node = list_first_or_null_rcu(&hsr->node_db, struct hsr_node, mac_list); if (node) ether_addr_copy(addr, node->macaddress_A); return node; } node = _pos; list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { ether_addr_copy(addr, node->macaddress_A); return node; } return NULL; } int hsr_get_node_data(struct hsr_priv *hsr, const unsigned char *addr, unsigned char addr_b[ETH_ALEN], unsigned int *addr_b_ifindex, int *if1_age, u16 *if1_seq, int *if2_age, u16 *if2_seq) { struct hsr_node *node; struct hsr_port *port; unsigned long tdiff; node = find_node_by_addr_A(&hsr->node_db, addr); if (!node) return -ENOENT; ether_addr_copy(addr_b, node->macaddress_B); tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; if (node->time_in_stale[HSR_PT_SLAVE_A]) *if1_age = INT_MAX; #if HZ <= MSEC_PER_SEC else if (tdiff > msecs_to_jiffies(INT_MAX)) *if1_age = INT_MAX; #endif else *if1_age = jiffies_to_msecs(tdiff); tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; if (node->time_in_stale[HSR_PT_SLAVE_B]) *if2_age = INT_MAX; #if HZ <= MSEC_PER_SEC else if (tdiff > msecs_to_jiffies(INT_MAX)) *if2_age = INT_MAX; #endif else *if2_age = jiffies_to_msecs(tdiff); /* Present sequence numbers as if they were incoming on interface */ *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; if (node->addr_B_port != HSR_PT_NONE) { port = hsr_port_get_hsr(hsr, node->addr_B_port); *addr_b_ifindex = port->dev->ifindex; } else { *addr_b_ifindex = -1; } return 0; }
20 20 20 8 3 3 15 9 6 6 6 10 10 7 6 6 9 9 9 22 13 22 22 14 22 22 13 13 22 22 22 7552 8 20 7554 7545 22 20 20 8 20 20 20 20 20 20 20 8 20 20 20 20 20 22 22 22 22 22 20 20 12 12 12 5 22 22 22 22 15 12 15 15 15 10 15 15 9 8 15 6 6 9 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002 Andi Kleen, SuSE Labs. * Thanks to Ben LaHaise for precious feedback. */ #include <linux/highmem.h> #include <linux/memblock.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/debugfs.h> #include <linux/pfn.h> #include <linux/percpu.h> #include <linux/gfp.h> #include <linux/pci.h> #include <linux/vmalloc.h> #include <linux/libnvdimm.h> #include <linux/vmstat.h> #include <linux/kernel.h> #include <linux/cc_platform.h> #include <linux/set_memory.h> #include <linux/memregion.h> #include <asm/e820/api.h> #include <asm/processor.h> #include <asm/tlbflush.h> #include <asm/sections.h> #include <asm/setup.h> #include <linux/uaccess.h> #include <asm/pgalloc.h> #include <asm/proto.h> #include <asm/memtype.h> #include <asm/hyperv-tlfs.h> #include <asm/mshyperv.h> #include "../mm_internal.h" /* * The current flushing context - we pass it instead of 5 arguments: */ struct cpa_data { unsigned long *vaddr; pgd_t *pgd; pgprot_t mask_set; pgprot_t mask_clr; unsigned long numpages; unsigned long curpage; unsigned long pfn; unsigned int flags; unsigned int force_split : 1, force_static_prot : 1, force_flush_all : 1; struct page **pages; }; enum cpa_warn { CPA_CONFLICT, CPA_PROTECT, CPA_DETECT, }; static const int cpa_warn_level = CPA_PROTECT; /* * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) * using cpa_lock. So that we don't allow any other cpu, with stale large tlb * entries change the page attribute in parallel to some other cpu * splitting a large page entry along with changing the attribute. */ static DEFINE_SPINLOCK(cpa_lock); #define CPA_FLUSHTLB 1 #define CPA_ARRAY 2 #define CPA_PAGES_ARRAY 4 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) { return __pgprot(cachemode2protval(pcm)); } #ifdef CONFIG_PROC_FS static unsigned long direct_pages_count[PG_LEVEL_NUM]; void update_page_count(int level, unsigned long pages) { /* Protect against CPA */ spin_lock(&pgd_lock); direct_pages_count[level] += pages; spin_unlock(&pgd_lock); } static void split_page_count(int level) { if (direct_pages_count[level] == 0) return; direct_pages_count[level]--; if (system_state == SYSTEM_RUNNING) { if (level == PG_LEVEL_2M) count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); else if (level == PG_LEVEL_1G) count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); } direct_pages_count[level - 1] += PTRS_PER_PTE; } void arch_report_meminfo(struct seq_file *m) { seq_printf(m, "DirectMap4k: %8lu kB\n", direct_pages_count[PG_LEVEL_4K] << 2); #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) seq_printf(m, "DirectMap2M: %8lu kB\n", direct_pages_count[PG_LEVEL_2M] << 11); #else seq_printf(m, "DirectMap4M: %8lu kB\n", direct_pages_count[PG_LEVEL_2M] << 12); #endif if (direct_gbpages) seq_printf(m, "DirectMap1G: %8lu kB\n", direct_pages_count[PG_LEVEL_1G] << 20); } #else static inline void split_page_count(int level) { } #endif #ifdef CONFIG_X86_CPA_STATISTICS static unsigned long cpa_1g_checked; static unsigned long cpa_1g_sameprot; static unsigned long cpa_1g_preserved; static unsigned long cpa_2m_checked; static unsigned long cpa_2m_sameprot; static unsigned long cpa_2m_preserved; static unsigned long cpa_4k_install; static inline void cpa_inc_1g_checked(void) { cpa_1g_checked++; } static inline void cpa_inc_2m_checked(void) { cpa_2m_checked++; } static inline void cpa_inc_4k_install(void) { data_race(cpa_4k_install++); } static inline void cpa_inc_lp_sameprot(int level) { if (level == PG_LEVEL_1G) cpa_1g_sameprot++; else cpa_2m_sameprot++; } static inline void cpa_inc_lp_preserved(int level) { if (level == PG_LEVEL_1G) cpa_1g_preserved++; else cpa_2m_preserved++; } static int cpastats_show(struct seq_file *m, void *p) { seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); return 0; } static int cpastats_open(struct inode *inode, struct file *file) { return single_open(file, cpastats_show, NULL); } static const struct file_operations cpastats_fops = { .open = cpastats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init cpa_stats_init(void) { debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, &cpastats_fops); return 0; } late_initcall(cpa_stats_init); #else static inline void cpa_inc_1g_checked(void) { } static inline void cpa_inc_2m_checked(void) { } static inline void cpa_inc_4k_install(void) { } static inline void cpa_inc_lp_sameprot(int level) { } static inline void cpa_inc_lp_preserved(int level) { } #endif static inline int within(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr < end; } static inline int within_inclusive(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr <= end; } #ifdef CONFIG_X86_64 /* * The kernel image is mapped into two places in the virtual address space * (addresses without KASLR, of course): * * 1. The kernel direct map (0xffff880000000000) * 2. The "high kernel map" (0xffffffff81000000) * * We actually execute out of #2. If we get the address of a kernel symbol, it * points to #2, but almost all physical-to-virtual translations point to #1. * * This is so that we can have both a directmap of all physical memory *and* * take full advantage of the limited (s32) immediate addressing range (2G) * of x86_64. * * See Documentation/arch/x86/x86_64/mm.rst for more detail. */ static inline unsigned long highmap_start_pfn(void) { return __pa_symbol(_text) >> PAGE_SHIFT; } static inline unsigned long highmap_end_pfn(void) { /* Do not reference physical address outside the kernel. */ return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; } static bool __cpa_pfn_in_highmap(unsigned long pfn) { /* * Kernel text has an alias mapping at a high address, known * here as "highmap". */ return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); } #else static bool __cpa_pfn_in_highmap(unsigned long pfn) { /* There is no highmap on 32-bit */ return false; } #endif /* * See set_mce_nospec(). * * Machine check recovery code needs to change cache mode of poisoned pages to * UC to avoid speculative access logging another error. But passing the * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a * speculative access. So we cheat and flip the top bit of the address. This * works fine for the code that updates the page tables. But at the end of the * process we need to flush the TLB and cache and the non-canonical address * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. * * But in the common case we already have a canonical address. This code * will fix the top bit if needed and is a no-op otherwise. */ static inline unsigned long fix_addr(unsigned long addr) { #ifdef CONFIG_X86_64 return (long)(addr << 1) >> 1; #else return addr; #endif } static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) { if (cpa->flags & CPA_PAGES_ARRAY) { struct page *page = cpa->pages[idx]; if (unlikely(PageHighMem(page))) return 0; return (unsigned long)page_address(page); } if (cpa->flags & CPA_ARRAY) return cpa->vaddr[idx]; return *cpa->vaddr + idx * PAGE_SIZE; } /* * Flushing functions */ static void clflush_cache_range_opt(void *vaddr, unsigned int size) { const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); void *vend = vaddr + size; if (p >= vend) return; for (; p < vend; p += clflush_size) clflushopt(p); } /** * clflush_cache_range - flush a cache range with clflush * @vaddr: virtual start address * @size: number of bytes to flush * * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or * SFENCE to avoid ordering issues. */ void clflush_cache_range(void *vaddr, unsigned int size) { mb(); clflush_cache_range_opt(vaddr, size); mb(); } EXPORT_SYMBOL_GPL(clflush_cache_range); #ifdef CONFIG_ARCH_HAS_PMEM_API void arch_invalidate_pmem(void *addr, size_t size) { clflush_cache_range(addr, size); } EXPORT_SYMBOL_GPL(arch_invalidate_pmem); #endif #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION bool cpu_cache_has_invalidate_memregion(void) { return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR); } EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM); int cpu_cache_invalidate_memregion(int res_desc) { if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion())) return -ENXIO; wbinvd_on_all_cpus(); return 0; } EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM); #endif static void __cpa_flush_all(void *arg) { unsigned long cache = (unsigned long)arg; /* * Flush all to work around Errata in early athlons regarding * large page flushing. */ __flush_tlb_all(); if (cache && boot_cpu_data.x86 >= 4) wbinvd(); } static void cpa_flush_all(unsigned long cache) { BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); on_each_cpu(__cpa_flush_all, (void *) cache, 1); } static void __cpa_flush_tlb(void *data) { struct cpa_data *cpa = data; unsigned int i; for (i = 0; i < cpa->numpages; i++) flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); } static void cpa_flush(struct cpa_data *data, int cache) { struct cpa_data *cpa = data; unsigned int i; BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { cpa_flush_all(cache); return; } if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling) flush_tlb_all(); else on_each_cpu(__cpa_flush_tlb, cpa, 1); if (!cache) return; mb(); for (i = 0; i < cpa->numpages; i++) { unsigned long addr = __cpa_addr(cpa, i); unsigned int level; pte_t *pte = lookup_address(addr, &level); /* * Only flush present addresses: */ if (pte && (pte_val(*pte) & _PAGE_PRESENT)) clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); } mb(); } static bool overlaps(unsigned long r1_start, unsigned long r1_end, unsigned long r2_start, unsigned long r2_end) { return (r1_start <= r2_end && r1_end >= r2_start) || (r2_start <= r1_end && r2_end >= r1_start); } #ifdef CONFIG_PCI_BIOS /* * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS * based config access (CONFIG_PCI_GOBIOS) support. */ #define BIOS_PFN PFN_DOWN(BIOS_BEGIN) #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) { if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) return _PAGE_NX; return 0; } #else static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) { return 0; } #endif /* * The .rodata section needs to be read-only. Using the pfn catches all * aliases. This also includes __ro_after_init, so do not enforce until * kernel_set_to_readonly is true. */ static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) { unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); /* * Note: __end_rodata is at page aligned and not inclusive, so * subtract 1 to get the last enforced PFN in the rodata area. */ epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) return _PAGE_RW; return 0; } /* * Protect kernel text against becoming non executable by forbidding * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) * out of which the kernel actually executes. Do not protect the low * mapping. * * This does not cover __inittext since that is gone after boot. */ static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) { unsigned long t_end = (unsigned long)_etext - 1; unsigned long t_start = (unsigned long)_text; if (overlaps(start, end, t_start, t_end)) return _PAGE_NX; return 0; } #if defined(CONFIG_X86_64) /* * Once the kernel maps the text as RO (kernel_set_to_readonly is set), * kernel text mappings for the large page aligned text, rodata sections * will be always read-only. For the kernel identity mappings covering the * holes caused by this alignment can be anything that user asks. * * This will preserve the large page mappings for kernel text/data at no * extra cost. */ static pgprotval_t protect_kernel_text_ro(unsigned long start, unsigned long end) { unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; unsigned long t_start = (unsigned long)_text; unsigned int level; if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) return 0; /* * Don't enforce the !RW mapping for the kernel text mapping, if * the current mapping is already using small page mapping. No * need to work hard to preserve large page mappings in this case. * * This also fixes the Linux Xen paravirt guest boot failure caused * by unexpected read-only mappings for kernel identity * mappings. In this paravirt guest case, the kernel text mapping * and the kernel identity mapping share the same page-table pages, * so the protections for kernel text and identity mappings have to * be the same. */ if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) return _PAGE_RW; return 0; } #else static pgprotval_t protect_kernel_text_ro(unsigned long start, unsigned long end) { return 0; } #endif static inline bool conflicts(pgprot_t prot, pgprotval_t val) { return (pgprot_val(prot) & ~val) != pgprot_val(prot); } static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, unsigned long start, unsigned long end, unsigned long pfn, const char *txt) { static const char *lvltxt[] = { [CPA_CONFLICT] = "conflict", [CPA_PROTECT] = "protect", [CPA_DETECT] = "detect", }; if (warnlvl > cpa_warn_level || !conflicts(prot, val)) return; pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), (unsigned long long)val); } /* * Certain areas of memory on x86 require very specific protection flags, * for example the BIOS area or kernel text. Callers don't always get this * right (again, ioremap() on BIOS memory is not uncommon) so this function * checks and fixes these known static required protection bits. */ static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, unsigned long pfn, unsigned long npg, unsigned long lpsize, int warnlvl) { pgprotval_t forbidden, res; unsigned long end; /* * There is no point in checking RW/NX conflicts when the requested * mapping is setting the page !PRESENT. */ if (!(pgprot_val(prot) & _PAGE_PRESENT)) return prot; /* Operate on the virtual address */ end = start + npg * PAGE_SIZE - 1; res = protect_kernel_text(start, end); check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); forbidden = res; /* * Special case to preserve a large page. If the change spawns the * full large page mapping then there is no point to split it * up. Happens with ftrace and is going to be removed once ftrace * switched to text_poke(). */ if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { res = protect_kernel_text_ro(start, end); check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); forbidden |= res; } /* Check the PFN directly */ res = protect_pci_bios(pfn, pfn + npg - 1); check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); forbidden |= res; res = protect_rodata(pfn, pfn + npg - 1); check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); forbidden |= res; return __pgprot(pgprot_val(prot) & ~forbidden); } /* * Validate strict W^X semantics. */ static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, unsigned long pfn, unsigned long npg, bool nx, bool rw) { unsigned long end; /* * 32-bit has some unfixable W+X issues, like EFI code * and writeable data being in the same page. Disable * detection and enforcement there. */ if (IS_ENABLED(CONFIG_X86_32)) return new; /* Only verify when NX is supported: */ if (!(__supported_pte_mask & _PAGE_NX)) return new; if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) return new; if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) return new; /* Non-leaf translation entries can disable writing or execution. */ if (!rw || nx) return new; end = start + npg * PAGE_SIZE - 1; WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", (unsigned long long)pgprot_val(old), (unsigned long long)pgprot_val(new), start, end, pfn); /* * For now, allow all permission change attempts by returning the * attempted permissions. This can 'return old' to actively * refuse the permission change at a later time. */ return new; } /* * Lookup the page table entry for a virtual address in a specific pgd. * Return a pointer to the entry (or NULL if the entry does not exist), * the level of the entry, and the effective NX and RW bits of all * page table levels. */ pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address, unsigned int *level, bool *nx, bool *rw) { p4d_t *p4d; pud_t *pud; pmd_t *pmd; *level = PG_LEVEL_256T; *nx = false; *rw = true; if (pgd_none(*pgd)) return NULL; *level = PG_LEVEL_512G; *nx |= pgd_flags(*pgd) & _PAGE_NX; *rw &= pgd_flags(*pgd) & _PAGE_RW; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d)) return NULL; if (p4d_leaf(*p4d) || !p4d_present(*p4d)) return (pte_t *)p4d; *level = PG_LEVEL_1G; *nx |= p4d_flags(*p4d) & _PAGE_NX; *rw &= p4d_flags(*p4d) & _PAGE_RW; pud = pud_offset(p4d, address); if (pud_none(*pud)) return NULL; if (pud_leaf(*pud) || !pud_present(*pud)) return (pte_t *)pud; *level = PG_LEVEL_2M; *nx |= pud_flags(*pud) & _PAGE_NX; *rw &= pud_flags(*pud) & _PAGE_RW; pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) return NULL; if (pmd_leaf(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; *level = PG_LEVEL_4K; *nx |= pmd_flags(*pmd) & _PAGE_NX; *rw &= pmd_flags(*pmd) & _PAGE_RW; return pte_offset_kernel(pmd, address); } /* * Lookup the page table entry for a virtual address in a specific pgd. * Return a pointer to the entry and the level of the mapping. */ pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, unsigned int *level) { bool nx, rw; return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw); } /* * Lookup the page table entry for a virtual address. Return a pointer * to the entry and the level of the mapping. * * Note: the function returns p4d, pud or pmd either when the entry is marked * large or when the present bit is not set. Otherwise it returns NULL. */ pte_t *lookup_address(unsigned long address, unsigned int *level) { return lookup_address_in_pgd(pgd_offset_k(address), address, level); } EXPORT_SYMBOL_GPL(lookup_address); static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, unsigned int *level, bool *nx, bool *rw) { pgd_t *pgd; if (!cpa->pgd) pgd = pgd_offset_k(address); else pgd = cpa->pgd + pgd_index(address); return lookup_address_in_pgd_attr(pgd, address, level, nx, rw); } /* * Lookup the PMD entry for a virtual address. Return a pointer to the entry * or NULL if not present. */ pmd_t *lookup_pmd_address(unsigned long address) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pgd = pgd_offset_k(address); if (pgd_none(*pgd)) return NULL; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d)) return NULL; pud = pud_offset(p4d, address); if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud)) return NULL; return pmd_offset(pud, address); } /* * This is necessary because __pa() does not work on some * kinds of memory, like vmalloc() or the alloc_remap() * areas on 32-bit NUMA systems. The percpu areas can * end up in this kind of memory, for instance. * * Note that as long as the PTEs are well-formed with correct PFNs, this * works without checking the PRESENT bit in the leaf PTE. This is unlike * the similar vmalloc_to_page() and derivatives. Callers may depend on * this behavior. * * This could be optimized, but it is only used in paths that are not perf * sensitive, and keeping it unoptimized should increase the testing coverage * for the more obscure platforms. */ phys_addr_t slow_virt_to_phys(void *__virt_addr) { unsigned long virt_addr = (unsigned long)__virt_addr; phys_addr_t phys_addr; unsigned long offset; enum pg_level level; pte_t *pte; pte = lookup_address(virt_addr, &level); BUG_ON(!pte); /* * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t * before being left-shifted PAGE_SHIFT bits -- this trick is to * make 32-PAE kernel work correctly. */ switch (level) { case PG_LEVEL_1G: phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; offset = virt_addr & ~PUD_MASK; break; case PG_LEVEL_2M: phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; offset = virt_addr & ~PMD_MASK; break; default: phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; offset = virt_addr & ~PAGE_MASK; } return (phys_addr_t)(phys_addr | offset); } EXPORT_SYMBOL_GPL(slow_virt_to_phys); /* * Set the new pmd in all the pgds we know about: */ static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) { /* change init_mm */ set_pte_atomic(kpte, pte); #ifdef CONFIG_X86_32 if (!SHARED_KERNEL_PMD) { struct page *page; list_for_each_entry(page, &pgd_list, lru) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = (pgd_t *)page_address(page) + pgd_index(address); p4d = p4d_offset(pgd, address); pud = pud_offset(p4d, address); pmd = pmd_offset(pud, address); set_pte_atomic((pte_t *)pmd, pte); } } #endif } static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) { /* * _PAGE_GLOBAL means "global page" for present PTEs. * But, it is also used to indicate _PAGE_PROTNONE * for non-present PTEs. * * This ensures that a _PAGE_GLOBAL PTE going from * present to non-present is not confused as * _PAGE_PROTNONE. */ if (!(pgprot_val(prot) & _PAGE_PRESENT)) pgprot_val(prot) &= ~_PAGE_GLOBAL; return prot; } static int __should_split_large_page(pte_t *kpte, unsigned long address, struct cpa_data *cpa) { unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; pgprot_t old_prot, new_prot, req_prot, chk_prot; pte_t new_pte, *tmp; enum pg_level level; bool nx, rw; /* * Check for races, another CPU might have split this page * up already: */ tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); if (tmp != kpte) return 1; switch (level) { case PG_LEVEL_2M: old_prot = pmd_pgprot(*(pmd_t *)kpte); old_pfn = pmd_pfn(*(pmd_t *)kpte); cpa_inc_2m_checked(); break; case PG_LEVEL_1G: old_prot = pud_pgprot(*(pud_t *)kpte); old_pfn = pud_pfn(*(pud_t *)kpte); cpa_inc_1g_checked(); break; default: return -EINVAL; } psize = page_level_size(level); pmask = page_level_mask(level); /* * Calculate the number of pages, which fit into this large * page starting at address: */ lpaddr = (address + psize) & pmask; numpages = (lpaddr - address) >> PAGE_SHIFT; if (numpages < cpa->numpages) cpa->numpages = numpages; /* * We are safe now. Check whether the new pgprot is the same: * Convert protection attributes to 4k-format, as cpa->mask* are set * up accordingly. */ /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ req_prot = pgprot_large_2_4k(old_prot); pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); /* * req_prot is in format of 4k pages. It must be converted to large * page format: the caching mode includes the PAT bit located at * different bit positions in the two formats. */ req_prot = pgprot_4k_2_large(req_prot); req_prot = pgprot_clear_protnone_bits(req_prot); if (pgprot_val(req_prot) & _PAGE_PRESENT) pgprot_val(req_prot) |= _PAGE_PSE; /* * old_pfn points to the large page base pfn. So we need to add the * offset of the virtual address: */ pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); cpa->pfn = pfn; /* * Calculate the large page base address and the number of 4K pages * in the large page */ lpaddr = address & pmask; numpages = psize >> PAGE_SHIFT; /* * Sanity check that the existing mapping is correct versus the static * protections. static_protections() guards against !PRESENT, so no * extra conditional required here. */ chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, psize, CPA_CONFLICT); if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { /* * Split the large page and tell the split code to * enforce static protections. */ cpa->force_static_prot = 1; return 1; } /* * Optimization: If the requested pgprot is the same as the current * pgprot, then the large page can be preserved and no updates are * required independent of alignment and length of the requested * range. The above already established that the current pgprot is * correct, which in consequence makes the requested pgprot correct * as well if it is the same. The static protection scan below will * not come to a different conclusion. */ if (pgprot_val(req_prot) == pgprot_val(old_prot)) { cpa_inc_lp_sameprot(level); return 0; } /* * If the requested range does not cover the full page, split it up */ if (address != lpaddr || cpa->numpages != numpages) return 1; /* * Check whether the requested pgprot is conflicting with a static * protection requirement in the large page. */ new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, psize, CPA_DETECT); new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages, nx, rw); /* * If there is a conflict, split the large page. * * There used to be a 4k wise evaluation trying really hard to * preserve the large pages, but experimentation has shown, that this * does not help at all. There might be corner cases which would * preserve one large page occasionally, but it's really not worth the * extra code and cycles for the common case. */ if (pgprot_val(req_prot) != pgprot_val(new_prot)) return 1; /* All checks passed. Update the large page mapping. */ new_pte = pfn_pte(old_pfn, new_prot); __set_pmd_pte(kpte, address, new_pte); cpa->flags |= CPA_FLUSHTLB; cpa_inc_lp_preserved(level); return 0; } static int should_split_large_page(pte_t *kpte, unsigned long address, struct cpa_data *cpa) { int do_split; if (cpa->force_split) return 1; spin_lock(&pgd_lock); do_split = __should_split_large_page(kpte, address, cpa); spin_unlock(&pgd_lock); return do_split; } static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, pgprot_t ref_prot, unsigned long address, unsigned long size) { unsigned int npg = PFN_DOWN(size); pgprot_t prot; /* * If should_split_large_page() discovered an inconsistent mapping, * remove the invalid protection in the split mapping. */ if (!cpa->force_static_prot) goto set; /* Hand in lpsize = 0 to enforce the protection mechanism */ prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); if (pgprot_val(prot) == pgprot_val(ref_prot)) goto set; /* * If this is splitting a PMD, fix it up. PUD splits cannot be * fixed trivially as that would require to rescan the newly * installed PMD mappings after returning from split_large_page() * so an eventual further split can allocate the necessary PTE * pages. Warn for now and revisit it in case this actually * happens. */ if (size == PAGE_SIZE) ref_prot = prot; else pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); set: set_pte(pte, pfn_pte(pfn, ref_prot)); } static int __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, struct page *base) { unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; pte_t *pbase = (pte_t *)page_address(base); unsigned int i, level; pgprot_t ref_prot; bool nx, rw; pte_t *tmp; spin_lock(&pgd_lock); /* * Check for races, another CPU might have split this page * up for us already: */ tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); if (tmp != kpte) { spin_unlock(&pgd_lock); return 1; } paravirt_alloc_pte(&init_mm, page_to_pfn(base)); switch (level) { case PG_LEVEL_2M: ref_prot = pmd_pgprot(*(pmd_t *)kpte); /* * Clear PSE (aka _PAGE_PAT) and move * PAT bit to correct position. */ ref_prot = pgprot_large_2_4k(ref_prot); ref_pfn = pmd_pfn(*(pmd_t *)kpte); lpaddr = address & PMD_MASK; lpinc = PAGE_SIZE; break; case PG_LEVEL_1G: ref_prot = pud_pgprot(*(pud_t *)kpte); ref_pfn = pud_pfn(*(pud_t *)kpte); pfninc = PMD_SIZE >> PAGE_SHIFT; lpaddr = address & PUD_MASK; lpinc = PMD_SIZE; /* * Clear the PSE flags if the PRESENT flag is not set * otherwise pmd_present() will return true even on a non * present pmd. */ if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) pgprot_val(ref_prot) &= ~_PAGE_PSE; break; default: spin_unlock(&pgd_lock); return 1; } ref_prot = pgprot_clear_protnone_bits(ref_prot); /* * Get the target pfn from the original entry: */ pfn = ref_pfn; for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); if (virt_addr_valid(address)) { unsigned long pfn = PFN_DOWN(__pa(address)); if (pfn_range_is_mapped(pfn, pfn + 1)) split_page_count(level); } /* * Install the new, split up pagetable. * * We use the standard kernel pagetable protections for the new * pagetable protections, the actual ptes set above control the * primary protection behavior: */ __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); /* * Do a global flush tlb after splitting the large page * and before we do the actual change page attribute in the PTE. * * Without this, we violate the TLB application note, that says: * "The TLBs may contain both ordinary and large-page * translations for a 4-KByte range of linear addresses. This * may occur if software modifies the paging structures so that * the page size used for the address range changes. If the two * translations differ with respect to page frame or attributes * (e.g., permissions), processor behavior is undefined and may * be implementation-specific." * * We do this global tlb flush inside the cpa_lock, so that we * don't allow any other cpu, with stale tlb entries change the * page attribute in parallel, that also falls into the * just split large page entry. */ flush_tlb_all(); spin_unlock(&pgd_lock); return 0; } static int split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address) { struct page *base; if (!debug_pagealloc_enabled()) spin_unlock(&cpa_lock); base = alloc_pages(GFP_KERNEL, 0); if (!debug_pagealloc_enabled()) spin_lock(&cpa_lock); if (!base) return -ENOMEM; if (__split_large_page(cpa, kpte, address, base)) __free_page(base); return 0; } static bool try_to_free_pte_page(pte_t *pte) { int i; for (i = 0; i < PTRS_PER_PTE; i++) if (!pte_none(pte[i])) return false; free_page((unsigned long)pte); return true; } static bool try_to_free_pmd_page(pmd_t *pmd) { int i; for (i = 0; i < PTRS_PER_PMD; i++) if (!pmd_none(pmd[i])) return false; free_page((unsigned long)pmd); return true; } static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) { pte_t *pte = pte_offset_kernel(pmd, start); while (start < end) { set_pte(pte, __pte(0)); start += PAGE_SIZE; pte++; } if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { pmd_clear(pmd); return true; } return false; } static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, unsigned long start, unsigned long end) { if (unmap_pte_range(pmd, start, end)) if (try_to_free_pmd_page(pud_pgtable(*pud))) pud_clear(pud); } static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) { pmd_t *pmd = pmd_offset(pud, start); /* * Not on a 2MB page boundary? */ if (start & (PMD_SIZE - 1)) { unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; unsigned long pre_end = min_t(unsigned long, end, next_page); __unmap_pmd_range(pud, pmd, start, pre_end); start = pre_end; pmd++; } /* * Try to unmap in 2M chunks. */ while (end - start >= PMD_SIZE) { if (pmd_leaf(*pmd)) pmd_clear(pmd); else __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); start += PMD_SIZE; pmd++; } /* * 4K leftovers? */ if (start < end) return __unmap_pmd_range(pud, pmd, start, end); /* * Try again to free the PMD page if haven't succeeded above. */ if (!pud_none(*pud)) if (try_to_free_pmd_page(pud_pgtable(*pud))) pud_clear(pud); } static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) { pud_t *pud = pud_offset(p4d, start); /* * Not on a GB page boundary? */ if (start & (PUD_SIZE - 1)) { unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; unsigned long pre_end = min_t(unsigned long, end, next_page); unmap_pmd_range(pud, start, pre_end); start = pre_end; pud++; } /* * Try to unmap in 1G chunks? */ while (end - start >= PUD_SIZE) { if (pud_leaf(*pud)) pud_clear(pud); else unmap_pmd_range(pud, start, start + PUD_SIZE); start += PUD_SIZE; pud++; } /* * 2M leftovers? */ if (start < end) unmap_pmd_range(pud, start, end); /* * No need to try to free the PUD page because we'll free it in * populate_pgd's error path */ } static int alloc_pte_page(pmd_t *pmd) { pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); if (!pte) return -1; set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); return 0; } static int alloc_pmd_page(pud_t *pud) { pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); if (!pmd) return -1; set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); return 0; } static void populate_pte(struct cpa_data *cpa, unsigned long start, unsigned long end, unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) { pte_t *pte; pte = pte_offset_kernel(pmd, start); pgprot = pgprot_clear_protnone_bits(pgprot); while (num_pages-- && start < end) { set_pte(pte, pfn_pte(cpa->pfn, pgprot)); start += PAGE_SIZE; cpa->pfn++; pte++; } } static long populate_pmd(struct cpa_data *cpa, unsigned long start, unsigned long end, unsigned num_pages, pud_t *pud, pgprot_t pgprot) { long cur_pages = 0; pmd_t *pmd; pgprot_t pmd_pgprot; /* * Not on a 2M boundary? */ if (start & (PMD_SIZE - 1)) { unsigned long pre_end = start + (num_pages << PAGE_SHIFT); unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; pre_end = min_t(unsigned long, pre_end, next_page); cur_pages = (pre_end - start) >> PAGE_SHIFT; cur_pages = min_t(unsigned int, num_pages, cur_pages); /* * Need a PTE page? */ pmd = pmd_offset(pud, start); if (pmd_none(*pmd)) if (alloc_pte_page(pmd)) return -1; populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); start = pre_end; } /* * We mapped them all? */ if (num_pages == cur_pages) return cur_pages; pmd_pgprot = pgprot_4k_2_large(pgprot); while (end - start >= PMD_SIZE) { /* * We cannot use a 1G page so allocate a PMD page if needed. */ if (pud_none(*pud)) if (alloc_pmd_page(pud)) return -1; pmd = pmd_offset(pud, start); set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, canon_pgprot(pmd_pgprot)))); start += PMD_SIZE; cpa->pfn += PMD_SIZE >> PAGE_SHIFT; cur_pages += PMD_SIZE >> PAGE_SHIFT; } /* * Map trailing 4K pages. */ if (start < end) { pmd = pmd_offset(pud, start); if (pmd_none(*pmd)) if (alloc_pte_page(pmd)) return -1; populate_pte(cpa, start, end, num_pages - cur_pages, pmd, pgprot); } return num_pages; } static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, pgprot_t pgprot) { pud_t *pud; unsigned long end; long cur_pages = 0; pgprot_t pud_pgprot; end = start + (cpa->numpages << PAGE_SHIFT); /* * Not on a Gb page boundary? => map everything up to it with * smaller pages. */ if (start & (PUD_SIZE - 1)) { unsigned long pre_end; unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; pre_end = min_t(unsigned long, end, next_page); cur_pages = (pre_end - start) >> PAGE_SHIFT; cur_pages = min_t(int, (int)cpa->numpages, cur_pages); pud = pud_offset(p4d, start); /* * Need a PMD page? */ if (pud_none(*pud)) if (alloc_pmd_page(pud)) return -1; cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, pud, pgprot); if (cur_pages < 0) return cur_pages; start = pre_end; } /* We mapped them all? */ if (cpa->numpages == cur_pages) return cur_pages; pud = pud_offset(p4d, start); pud_pgprot = pgprot_4k_2_large(pgprot); /* * Map everything starting from the Gb boundary, possibly with 1G pages */ while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, canon_pgprot(pud_pgprot)))); start += PUD_SIZE; cpa->pfn += PUD_SIZE >> PAGE_SHIFT; cur_pages += PUD_SIZE >> PAGE_SHIFT; pud++; } /* Map trailing leftover */ if (start < end) { long tmp; pud = pud_offset(p4d, start); if (pud_none(*pud)) if (alloc_pmd_page(pud)) return -1; tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, pud, pgprot); if (tmp < 0) return cur_pages; cur_pages += tmp; } return cur_pages; } /* * Restrictions for kernel page table do not necessarily apply when mapping in * an alternate PGD. */ static int populate_pgd(struct cpa_data *cpa, unsigned long addr) { pgprot_t pgprot = __pgprot(_KERNPG_TABLE); pud_t *pud = NULL; /* shut up gcc */ p4d_t *p4d; pgd_t *pgd_entry; long ret; pgd_entry = cpa->pgd + pgd_index(addr); if (pgd_none(*pgd_entry)) { p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); if (!p4d) return -1; set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); } /* * Allocate a PUD page and hand it down for mapping. */ p4d = p4d_offset(pgd_entry, addr); if (p4d_none(*p4d)) { pud = (pud_t *)get_zeroed_page(GFP_KERNEL); if (!pud) return -1; set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); } pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); ret = populate_pud(cpa, addr, p4d, pgprot); if (ret < 0) { /* * Leave the PUD page in place in case some other CPU or thread * already found it, but remove any useless entries we just * added to it. */ unmap_pud_range(p4d, addr, addr + (cpa->numpages << PAGE_SHIFT)); return ret; } cpa->numpages = ret; return 0; } static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, int primary) { if (cpa->pgd) { /* * Right now, we only execute this code path when mapping * the EFI virtual memory map regions, no other users * provide a ->pgd value. This may change in the future. */ return populate_pgd(cpa, vaddr); } /* * Ignore all non primary paths. */ if (!primary) { cpa->numpages = 1; return 0; } /* * Ignore the NULL PTE for kernel identity mapping, as it is expected * to have holes. * Also set numpages to '1' indicating that we processed cpa req for * one virtual address page and its pfn. TBD: numpages can be set based * on the initial value and the level returned by lookup_address(). */ if (within(vaddr, PAGE_OFFSET, PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { cpa->numpages = 1; cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; return 0; } else if (__cpa_pfn_in_highmap(cpa->pfn)) { /* Faults in the highmap are OK, so do not warn: */ return -EFAULT; } else { WARN(1, KERN_WARNING "CPA: called for zero pte. " "vaddr = %lx cpa->vaddr = %lx\n", vaddr, *cpa->vaddr); return -EFAULT; } } static int __change_page_attr(struct cpa_data *cpa, int primary) { unsigned long address; int do_split, err; unsigned int level; pte_t *kpte, old_pte; bool nx, rw; address = __cpa_addr(cpa, cpa->curpage); repeat: kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw); if (!kpte) return __cpa_process_fault(cpa, address, primary); old_pte = *kpte; if (pte_none(old_pte)) return __cpa_process_fault(cpa, address, primary); if (level == PG_LEVEL_4K) { pte_t new_pte; pgprot_t old_prot = pte_pgprot(old_pte); pgprot_t new_prot = pte_pgprot(old_pte); unsigned long pfn = pte_pfn(old_pte); pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); cpa_inc_4k_install(); /* Hand in lpsize = 0 to enforce the protection mechanism */ new_prot = static_protections(new_prot, address, pfn, 1, 0, CPA_PROTECT); new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1, nx, rw); new_prot = pgprot_clear_protnone_bits(new_prot); /* * We need to keep the pfn from the existing PTE, * after all we're only going to change its attributes * not the memory it points to */ new_pte = pfn_pte(pfn, new_prot); cpa->pfn = pfn; /* * Do we really change anything ? */ if (pte_val(old_pte) != pte_val(new_pte)) { set_pte_atomic(kpte, new_pte); cpa->flags |= CPA_FLUSHTLB; } cpa->numpages = 1; return 0; } /* * Check, whether we can keep the large page intact * and just change the pte: */ do_split = should_split_large_page(kpte, address, cpa); /* * When the range fits into the existing large page, * return. cp->numpages and cpa->tlbflush have been updated in * try_large_page: */ if (do_split <= 0) return do_split; /* * We have to split the large page: */ err = split_large_page(cpa, kpte, address); if (!err) goto repeat; return err; } static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary); /* * Check the directmap and "high kernel map" 'aliases'. */ static int cpa_process_alias(struct cpa_data *cpa) { struct cpa_data alias_cpa; unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); unsigned long vaddr; int ret; if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) return 0; /* * No need to redo, when the primary call touched the direct * mapping already: */ vaddr = __cpa_addr(cpa, cpa->curpage); if (!(within(vaddr, PAGE_OFFSET, PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { alias_cpa = *cpa; alias_cpa.vaddr = &laddr; alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); alias_cpa.curpage = 0; /* Directmap always has NX set, do not modify. */ if (__supported_pte_mask & _PAGE_NX) { alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; alias_cpa.mask_set.pgprot &= ~_PAGE_NX; } cpa->force_flush_all = 1; ret = __change_page_attr_set_clr(&alias_cpa, 0); if (ret) return ret; } #ifdef CONFIG_X86_64 /* * If the primary call didn't touch the high mapping already * and the physical address is inside the kernel map, we need * to touch the high mapped kernel as well: */ if (!within(vaddr, (unsigned long)_text, _brk_end) && __cpa_pfn_in_highmap(cpa->pfn)) { unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base; alias_cpa = *cpa; alias_cpa.vaddr = &temp_cpa_vaddr; alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); alias_cpa.curpage = 0; /* * [_text, _brk_end) also covers data, do not modify NX except * in cases where the highmap is the primary target. */ if (__supported_pte_mask & _PAGE_NX) { alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; alias_cpa.mask_set.pgprot &= ~_PAGE_NX; } cpa->force_flush_all = 1; /* * The high mapping range is imprecise, so ignore the * return value. */ __change_page_attr_set_clr(&alias_cpa, 0); } #endif return 0; } static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary) { unsigned long numpages = cpa->numpages; unsigned long rempages = numpages; int ret = 0; /* * No changes, easy! */ if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) && !cpa->force_split) return ret; while (rempages) { /* * Store the remaining nr of pages for the large page * preservation check. */ cpa->numpages = rempages; /* for array changes, we can't use large page */ if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) cpa->numpages = 1; if (!debug_pagealloc_enabled()) spin_lock(&cpa_lock); ret = __change_page_attr(cpa, primary); if (!debug_pagealloc_enabled()) spin_unlock(&cpa_lock); if (ret) goto out; if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) { ret = cpa_process_alias(cpa); if (ret) goto out; } /* * Adjust the number of pages with the result of the * CPA operation. Either a large page has been * preserved or a single page update happened. */ BUG_ON(cpa->numpages > rempages || !cpa->numpages); rempages -= cpa->numpages; cpa->curpage += cpa->numpages; } out: /* Restore the original numpages */ cpa->numpages = numpages; return ret; } static int change_page_attr_set_clr(unsigned long *addr, int numpages, pgprot_t mask_set, pgprot_t mask_clr, int force_split, int in_flag, struct page **pages) { struct cpa_data cpa; int ret, cache; memset(&cpa, 0, sizeof(cpa)); /* * Check, if we are requested to set a not supported * feature. Clearing non-supported features is OK. */ mask_set = canon_pgprot(mask_set); if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) return 0; /* Ensure we are PAGE_SIZE aligned */ if (in_flag & CPA_ARRAY) { int i; for (i = 0; i < numpages; i++) { if (addr[i] & ~PAGE_MASK) { addr[i] &= PAGE_MASK; WARN_ON_ONCE(1); } } } else if (!(in_flag & CPA_PAGES_ARRAY)) { /* * in_flag of CPA_PAGES_ARRAY implies it is aligned. * No need to check in that case */ if (*addr & ~PAGE_MASK) { *addr &= PAGE_MASK; /* * People should not be passing in unaligned addresses: */ WARN_ON_ONCE(1); } } /* Must avoid aliasing mappings in the highmem code */ kmap_flush_unused(); vm_unmap_aliases(); cpa.vaddr = addr; cpa.pages = pages; cpa.numpages = numpages; cpa.mask_set = mask_set; cpa.mask_clr = mask_clr; cpa.flags = in_flag; cpa.curpage = 0; cpa.force_split = force_split; ret = __change_page_attr_set_clr(&cpa, 1); /* * Check whether we really changed something: */ if (!(cpa.flags & CPA_FLUSHTLB)) goto out; /* * No need to flush, when we did not set any of the caching * attributes: */ cache = !!pgprot2cachemode(mask_set); /* * On error; flush everything to be sure. */ if (ret) { cpa_flush_all(cache); goto out; } cpa_flush(&cpa, cache); out: return ret; } static inline int change_page_attr_set(unsigned long *addr, int numpages, pgprot_t mask, int array) { return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, (array ? CPA_ARRAY : 0), NULL); } static inline int change_page_attr_clear(unsigned long *addr, int numpages, pgprot_t mask, int array) { return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, (array ? CPA_ARRAY : 0), NULL); } static inline int cpa_set_pages_array(struct page **pages, int numpages, pgprot_t mask) { return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, CPA_PAGES_ARRAY, pages); } static inline int cpa_clear_pages_array(struct page **pages, int numpages, pgprot_t mask) { return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, CPA_PAGES_ARRAY, pages); } /* * __set_memory_prot is an internal helper for callers that have been passed * a pgprot_t value from upper layers and a reservation has already been taken. * If you want to set the pgprot to a specific page protocol, use the * set_memory_xx() functions. */ int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) { return change_page_attr_set_clr(&addr, numpages, prot, __pgprot(~pgprot_val(prot)), 0, 0, NULL); } int _set_memory_uc(unsigned long addr, int numpages) { /* * for now UC MINUS. see comments in ioremap() * If you really need strong UC use ioremap_uc(), but note * that you cannot override IO areas with set_memory_*() as * these helpers cannot work with IO memory. */ return change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 0); } int set_memory_uc(unsigned long addr, int numpages) { int ret; /* * for now UC MINUS. see comments in ioremap() */ ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, _PAGE_CACHE_MODE_UC_MINUS, NULL); if (ret) goto out_err; ret = _set_memory_uc(addr, numpages); if (ret) goto out_free; return 0; out_free: memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); out_err: return ret; } EXPORT_SYMBOL(set_memory_uc); int _set_memory_wc(unsigned long addr, int numpages) { int ret; ret = change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 0); if (!ret) { ret = change_page_attr_set_clr(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), 0, 0, NULL); } return ret; } int set_memory_wc(unsigned long addr, int numpages) { int ret; ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, _PAGE_CACHE_MODE_WC, NULL); if (ret) return ret; ret = _set_memory_wc(addr, numpages); if (ret) memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); return ret; } EXPORT_SYMBOL(set_memory_wc); int _set_memory_wt(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); } int _set_memory_wb(unsigned long addr, int numpages) { /* WB cache mode is hard wired to all cache attribute bits being 0 */ return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_CACHE_MASK), 0); } int set_memory_wb(unsigned long addr, int numpages) { int ret; ret = _set_memory_wb(addr, numpages); if (ret) return ret; memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); return 0; } EXPORT_SYMBOL(set_memory_wb); /* Prevent speculative access to a page by marking it not-present */ #ifdef CONFIG_X86_64 int set_mce_nospec(unsigned long pfn) { unsigned long decoy_addr; int rc; /* SGX pages are not in the 1:1 map */ if (arch_is_platform_page(pfn << PAGE_SHIFT)) return 0; /* * We would like to just call: * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); * but doing that would radically increase the odds of a * speculative access to the poison page because we'd have * the virtual address of the kernel 1:1 mapping sitting * around in registers. * Instead we get tricky. We create a non-canonical address * that looks just like the one we want, but has bit 63 flipped. * This relies on set_memory_XX() properly sanitizing any __pa() * results with __PHYSICAL_MASK or PTE_PFN_MASK. */ decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); rc = set_memory_np(decoy_addr, 1); if (rc) pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); return rc; } /* Restore full speculative operation to the pfn. */ int clear_mce_nospec(unsigned long pfn) { unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); return set_memory_p(addr, 1); } EXPORT_SYMBOL_GPL(clear_mce_nospec); #endif /* CONFIG_X86_64 */ int set_memory_x(unsigned long addr, int numpages) { if (!(__supported_pte_mask & _PAGE_NX)) return 0; return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); } int set_memory_nx(unsigned long addr, int numpages) { if (!(__supported_pte_mask & _PAGE_NX)) return 0; return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); } int set_memory_ro(unsigned long addr, int numpages) { return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0); } int set_memory_rox(unsigned long addr, int numpages) { pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY); if (__supported_pte_mask & _PAGE_NX) clr.pgprot |= _PAGE_NX; return change_page_attr_clear(&addr, numpages, clr, 0); } int set_memory_rw(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); } int set_memory_np(unsigned long addr, int numpages) { return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); } int set_memory_np_noalias(unsigned long addr, int numpages) { return change_page_attr_set_clr(&addr, numpages, __pgprot(0), __pgprot(_PAGE_PRESENT), 0, CPA_NO_CHECK_ALIAS, NULL); } int set_memory_p(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); } int set_memory_4k(unsigned long addr, int numpages) { return change_page_attr_set_clr(&addr, numpages, __pgprot(0), __pgprot(0), 1, 0, NULL); } int set_memory_nonglobal(unsigned long addr, int numpages) { return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_GLOBAL), 0); } int set_memory_global(unsigned long addr, int numpages) { return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_GLOBAL), 0); } /* * __set_memory_enc_pgtable() is used for the hypervisors that get * informed about "encryption" status via page tables. */ static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) { pgprot_t empty = __pgprot(0); struct cpa_data cpa; int ret; /* Should not be working on unaligned addresses */ if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) addr &= PAGE_MASK; memset(&cpa, 0, sizeof(cpa)); cpa.vaddr = &addr; cpa.numpages = numpages; cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); cpa.pgd = init_mm.pgd; /* Must avoid aliasing mappings in the highmem code */ kmap_flush_unused(); vm_unmap_aliases(); /* Flush the caches as needed before changing the encryption attribute. */ if (x86_platform.guest.enc_tlb_flush_required(enc)) cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); /* Notify hypervisor that we are about to set/clr encryption attribute. */ ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc); if (ret) goto vmm_fail; ret = __change_page_attr_set_clr(&cpa, 1); /* * After changing the encryption attribute, we need to flush TLBs again * in case any speculative TLB caching occurred (but no need to flush * caches again). We could just use cpa_flush_all(), but in case TLB * flushing gets optimized in the cpa_flush() path use the same logic * as above. */ cpa_flush(&cpa, 0); if (ret) return ret; /* Notify hypervisor that we have successfully set/clr encryption attribute. */ ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc); if (ret) goto vmm_fail; return 0; vmm_fail: WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n", (void *)addr, numpages, enc ? "private" : "shared", ret); return ret; } /* * The lock serializes conversions between private and shared memory. * * It is taken for read on conversion. A write lock guarantees that no * concurrent conversions are in progress. */ static DECLARE_RWSEM(mem_enc_lock); /* * Stop new private<->shared conversions. * * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete. * The lock is not released to prevent new conversions from being started. */ bool set_memory_enc_stop_conversion(void) { /* * In a crash scenario, sleep is not allowed. Try to take the lock. * Failure indicates that there is a race with the conversion. */ if (oops_in_progress) return down_write_trylock(&mem_enc_lock); down_write(&mem_enc_lock); return true; } static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) { int ret = 0; if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { if (!down_read_trylock(&mem_enc_lock)) return -EBUSY; ret = __set_memory_enc_pgtable(addr, numpages, enc); up_read(&mem_enc_lock); } return ret; } int set_memory_encrypted(unsigned long addr, int numpages) { return __set_memory_enc_dec(addr, numpages, true); } EXPORT_SYMBOL_GPL(set_memory_encrypted); int set_memory_decrypted(unsigned long addr, int numpages) { return __set_memory_enc_dec(addr, numpages, false); } EXPORT_SYMBOL_GPL(set_memory_decrypted); int set_pages_uc(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_uc(addr, numpages); } EXPORT_SYMBOL(set_pages_uc); static int _set_pages_array(struct page **pages, int numpages, enum page_cache_mode new_type) { unsigned long start; unsigned long end; enum page_cache_mode set_type; int i; int free_idx; int ret; for (i = 0; i < numpages; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; end = start + PAGE_SIZE; if (memtype_reserve(start, end, new_type, NULL)) goto err_out; } /* If WC, set to UC- first and then WC */ set_type = (new_type == _PAGE_CACHE_MODE_WC) ? _PAGE_CACHE_MODE_UC_MINUS : new_type; ret = cpa_set_pages_array(pages, numpages, cachemode2pgprot(set_type)); if (!ret && new_type == _PAGE_CACHE_MODE_WC) ret = change_page_attr_set_clr(NULL, numpages, cachemode2pgprot( _PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), 0, CPA_PAGES_ARRAY, pages); if (ret) goto err_out; return 0; /* Success */ err_out: free_idx = i; for (i = 0; i < free_idx; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; end = start + PAGE_SIZE; memtype_free(start, end); } return -EINVAL; } int set_pages_array_uc(struct page **pages, int numpages) { return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); } EXPORT_SYMBOL(set_pages_array_uc); int set_pages_array_wc(struct page **pages, int numpages) { return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); } EXPORT_SYMBOL(set_pages_array_wc); int set_pages_wb(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_wb(addr, numpages); } EXPORT_SYMBOL(set_pages_wb); int set_pages_array_wb(struct page **pages, int numpages) { int retval; unsigned long start; unsigned long end; int i; /* WB cache mode is hard wired to all cache attribute bits being 0 */ retval = cpa_clear_pages_array(pages, numpages, __pgprot(_PAGE_CACHE_MASK)); if (retval) return retval; for (i = 0; i < numpages; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; end = start + PAGE_SIZE; memtype_free(start, end); } return 0; } EXPORT_SYMBOL(set_pages_array_wb); int set_pages_ro(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_ro(addr, numpages); } int set_pages_rw(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_rw(addr, numpages); } static int __set_pages_p(struct page *page, int numpages) { unsigned long tempaddr = (unsigned long) page_address(page); struct cpa_data cpa = { .vaddr = &tempaddr, .pgd = NULL, .numpages = numpages, .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), .mask_clr = __pgprot(0), .flags = CPA_NO_CHECK_ALIAS }; /* * No alias checking needed for setting present flag. otherwise, * we may need to break large pages for 64-bit kernel text * mappings (this adds to complexity if we want to do this from * atomic context especially). Let's keep it simple! */ return __change_page_attr_set_clr(&cpa, 1); } static int __set_pages_np(struct page *page, int numpages) { unsigned long tempaddr = (unsigned long) page_address(page); struct cpa_data cpa = { .vaddr = &tempaddr, .pgd = NULL, .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), .flags = CPA_NO_CHECK_ALIAS }; /* * No alias checking needed for setting not present flag. otherwise, * we may need to break large pages for 64-bit kernel text * mappings (this adds to complexity if we want to do this from * atomic context especially). Let's keep it simple! */ return __change_page_attr_set_clr(&cpa, 1); } int set_direct_map_invalid_noflush(struct page *page) { return __set_pages_np(page, 1); } int set_direct_map_default_noflush(struct page *page) { return __set_pages_p(page, 1); } #ifdef CONFIG_DEBUG_PAGEALLOC void __kernel_map_pages(struct page *page, int numpages, int enable) { if (PageHighMem(page)) return; if (!enable) { debug_check_no_locks_freed(page_address(page), numpages * PAGE_SIZE); } /* * The return value is ignored as the calls cannot fail. * Large pages for identity mappings are not used at boot time * and hence no memory allocations during large page split. */ if (enable) __set_pages_p(page, numpages); else __set_pages_np(page, numpages); /* * We should perform an IPI and flush all tlbs, * but that can deadlock->flush only current cpu. * Preemption needs to be disabled around __flush_tlb_all() due to * CR3 reload in __native_flush_tlb(). */ preempt_disable(); __flush_tlb_all(); preempt_enable(); arch_flush_lazy_mmu_mode(); } #endif /* CONFIG_DEBUG_PAGEALLOC */ bool kernel_page_present(struct page *page) { unsigned int level; pte_t *pte; if (PageHighMem(page)) return false; pte = lookup_address((unsigned long)page_address(page), &level); return (pte_val(*pte) & _PAGE_PRESENT); } int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, unsigned numpages, unsigned long page_flags) { int retval = -EINVAL; struct cpa_data cpa = { .vaddr = &address, .pfn = pfn, .pgd = pgd, .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), .flags = CPA_NO_CHECK_ALIAS, }; WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); if (!(__supported_pte_mask & _PAGE_NX)) goto out; if (!(page_flags & _PAGE_ENC)) cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); retval = __change_page_attr_set_clr(&cpa, 1); __flush_tlb_all(); out: return retval; } /* * __flush_tlb_all() flushes mappings only on current CPU and hence this * function shouldn't be used in an SMP environment. Presently, it's used only * during boot (way before smp_init()) by EFI subsystem and hence is ok. */ int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, unsigned long numpages) { int retval; /* * The typical sequence for unmapping is to find a pte through * lookup_address_in_pgd() (ideally, it should never return NULL because * the address is already mapped) and change its protections. As pfn is * the *target* of a mapping, it's not useful while unmapping. */ struct cpa_data cpa = { .vaddr = &address, .pfn = 0, .pgd = pgd, .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), .flags = CPA_NO_CHECK_ALIAS, }; WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); retval = __change_page_attr_set_clr(&cpa, 1); __flush_tlb_all(); return retval; } /* * The testcases use internal knowledge of the implementation that shouldn't * be exposed to the rest of the kernel. Include these directly here. */ #ifdef CONFIG_CPA_DEBUG #include "cpa-test.c" #endif
6 1 1 2 1 1 1 6 5 6 6 6 6 3 2 5 5 2 2 3 2 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 // SPDX-License-Identifier: GPL-2.0-only /* * Overlayfs NFS export support. * * Amir Goldstein <amir73il@gmail.com> * * Copyright (C) 2017-2018 CTERA Networks. All Rights Reserved. */ #include <linux/fs.h> #include <linux/cred.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/xattr.h> #include <linux/exportfs.h> #include <linux/ratelimit.h> #include "overlayfs.h" static int ovl_encode_maybe_copy_up(struct dentry *dentry) { int err; if (ovl_dentry_upper(dentry)) return 0; err = ovl_copy_up(dentry); if (err) { pr_warn_ratelimited("failed to copy up on encode (%pd2, err=%i)\n", dentry, err); } return err; } /* * Before encoding a non-upper directory file handle from real layer N, we need * to check if it will be possible to reconnect an overlay dentry from the real * lower decoded dentry. This is done by following the overlay ancestry up to a * "layer N connected" ancestor and verifying that all parents along the way are * "layer N connectable". If an ancestor that is NOT "layer N connectable" is * found, we need to copy up an ancestor, which is "layer N connectable", thus * making that ancestor "layer N connected". For example: * * layer 1: /a * layer 2: /a/b/c * * The overlay dentry /a is NOT "layer 2 connectable", because if dir /a is * copied up and renamed, upper dir /a will be indexed by lower dir /a from * layer 1. The dir /a from layer 2 will never be indexed, so the algorithm (*) * in ovl_lookup_real_ancestor() will not be able to lookup a connected overlay * dentry from the connected lower dentry /a/b/c. * * To avoid this problem on decode time, we need to copy up an ancestor of * /a/b/c, which is "layer 2 connectable", on encode time. That ancestor is * /a/b. After copy up (and index) of /a/b, it will become "layer 2 connected" * and when the time comes to decode the file handle from lower dentry /a/b/c, * ovl_lookup_real_ancestor() will find the indexed ancestor /a/b and decoding * a connected overlay dentry will be accomplished. * * (*) the algorithm in ovl_lookup_real_ancestor() can be improved to lookup an * entry /a in the lower layers above layer N and find the indexed dir /a from * layer 1. If that improvement is made, then the check for "layer N connected" * will need to verify there are no redirects in lower layers above N. In the * example above, /a will be "layer 2 connectable". However, if layer 2 dir /a * is a target of a layer 1 redirect, then /a will NOT be "layer 2 connectable": * * layer 1: /A (redirect = /a) * layer 2: /a/b/c */ /* Return the lowest layer for encoding a connectable file handle */ static int ovl_connectable_layer(struct dentry *dentry) { struct ovl_entry *oe = OVL_E(dentry); /* We can get overlay root from root of any layer */ if (dentry == dentry->d_sb->s_root) return ovl_numlower(oe); /* * If it's an unindexed merge dir, then it's not connectable with any * lower layer */ if (ovl_dentry_upper(dentry) && !ovl_test_flag(OVL_INDEX, d_inode(dentry))) return 0; /* We can get upper/overlay path from indexed/lower dentry */ return ovl_lowerstack(oe)->layer->idx; } /* * @dentry is "connected" if all ancestors up to root or a "connected" ancestor * have the same uppermost lower layer as the origin's layer. We may need to * copy up a "connectable" ancestor to make it "connected". A "connected" dentry * cannot become non "connected", so cache positive result in dentry flags. * * Return the connected origin layer or < 0 on error. */ static int ovl_connect_layer(struct dentry *dentry) { struct dentry *next, *parent = NULL; struct ovl_entry *oe = OVL_E(dentry); int origin_layer; int err = 0; if (WARN_ON(dentry == dentry->d_sb->s_root) || WARN_ON(!ovl_dentry_lower(dentry))) return -EIO; origin_layer = ovl_lowerstack(oe)->layer->idx; if (ovl_dentry_test_flag(OVL_E_CONNECTED, dentry)) return origin_layer; /* Find the topmost origin layer connectable ancestor of @dentry */ next = dget(dentry); for (;;) { parent = dget_parent(next); if (WARN_ON(parent == next)) { err = -EIO; break; } /* * If @parent is not origin layer connectable, then copy up * @next which is origin layer connectable and we are done. */ if (ovl_connectable_layer(parent) < origin_layer) { err = ovl_encode_maybe_copy_up(next); break; } /* If @parent is connected or indexed we are done */ if (ovl_dentry_test_flag(OVL_E_CONNECTED, parent) || ovl_test_flag(OVL_INDEX, d_inode(parent))) break; dput(next); next = parent; } dput(parent); dput(next); if (!err) ovl_dentry_set_flag(OVL_E_CONNECTED, dentry); return err ?: origin_layer; } /* * We only need to encode origin if there is a chance that the same object was * encoded pre copy up and then we need to stay consistent with the same * encoding also after copy up. If non-pure upper is not indexed, then it was * copied up before NFS export was enabled. In that case we don't need to worry * about staying consistent with pre copy up encoding and we encode an upper * file handle. Overlay root dentry is a private case of non-indexed upper. * * The following table summarizes the different file handle encodings used for * different overlay object types: * * Object type | Encoding * -------------------------------- * Pure upper | U * Non-indexed upper | U * Indexed upper | L (*) * Non-upper | L (*) * * U = upper file handle * L = lower file handle * * (*) Decoding a connected overlay dir from real lower dentry is not always * possible when there are redirects in lower layers and non-indexed merge dirs. * To mitigate those case, we may copy up the lower dir ancestor before encode * of a decodable file handle for non-upper dir. * * Return 0 for upper file handle, > 0 for lower file handle or < 0 on error. */ static int ovl_check_encode_origin(struct dentry *dentry) { struct ovl_fs *ofs = OVL_FS(dentry->d_sb); bool decodable = ofs->config.nfs_export; /* No upper layer? */ if (!ovl_upper_mnt(ofs)) return 1; /* Lower file handle for non-upper non-decodable */ if (!ovl_dentry_upper(dentry) && !decodable) return 1; /* Upper file handle for pure upper */ if (!ovl_dentry_lower(dentry)) return 0; /* * Root is never indexed, so if there's an upper layer, encode upper for * root. */ if (dentry == dentry->d_sb->s_root) return 0; /* * Upper decodable file handle for non-indexed upper. */ if (ovl_dentry_upper(dentry) && decodable && !ovl_test_flag(OVL_INDEX, d_inode(dentry))) return 0; /* * Decoding a merge dir, whose origin's ancestor is under a redirected * lower dir or under a non-indexed upper is not always possible. * ovl_connect_layer() will try to make origin's layer "connected" by * copying up a "connectable" ancestor. */ if (d_is_dir(dentry) && decodable) return ovl_connect_layer(dentry); /* Lower file handle for indexed and non-upper dir/non-dir */ return 1; } static int ovl_dentry_to_fid(struct ovl_fs *ofs, struct dentry *dentry, u32 *fid, int buflen) { struct ovl_fh *fh = NULL; int err, enc_lower; int len; /* * Check if we should encode a lower or upper file handle and maybe * copy up an ancestor to make lower file handle connectable. */ err = enc_lower = ovl_check_encode_origin(dentry); if (enc_lower < 0) goto fail; /* Encode an upper or lower file handle */ fh = ovl_encode_real_fh(ofs, enc_lower ? ovl_dentry_lower(dentry) : ovl_dentry_upper(dentry), !enc_lower); if (IS_ERR(fh)) return PTR_ERR(fh); len = OVL_FH_LEN(fh); if (len <= buflen) memcpy(fid, fh, len); err = len; out: kfree(fh); return err; fail: pr_warn_ratelimited("failed to encode file handle (%pd2, err=%i)\n", dentry, err); goto out; } static int ovl_encode_fh(struct inode *inode, u32 *fid, int *max_len, struct inode *parent) { struct ovl_fs *ofs = OVL_FS(inode->i_sb); struct dentry *dentry; int bytes, buflen = *max_len << 2; /* TODO: encode connectable file handles */ if (parent) return FILEID_INVALID; dentry = d_find_any_alias(inode); if (!dentry) return FILEID_INVALID; bytes = ovl_dentry_to_fid(ofs, dentry, fid, buflen); dput(dentry); if (bytes <= 0) return FILEID_INVALID; *max_len = bytes >> 2; if (bytes > buflen) return FILEID_INVALID; return OVL_FILEID_V1; } /* * Find or instantiate an overlay dentry from real dentries and index. */ static struct dentry *ovl_obtain_alias(struct super_block *sb, struct dentry *upper_alias, struct ovl_path *lowerpath, struct dentry *index) { struct dentry *lower = lowerpath ? lowerpath->dentry : NULL; struct dentry *upper = upper_alias ?: index; struct inode *inode = NULL; struct ovl_entry *oe; struct ovl_inode_params oip = { .index = index, }; /* We get overlay directory dentries with ovl_lookup_real() */ if (d_is_dir(upper ?: lower)) return ERR_PTR(-EIO); oe = ovl_alloc_entry(!!lower); if (!oe) return ERR_PTR(-ENOMEM); oip.upperdentry = dget(upper); if (lower) { ovl_lowerstack(oe)->dentry = dget(lower); ovl_lowerstack(oe)->layer = lowerpath->layer; } oip.oe = oe; inode = ovl_get_inode(sb, &oip); if (IS_ERR(inode)) { ovl_free_entry(oe); dput(upper); return ERR_CAST(inode); } if (upper) ovl_set_flag(OVL_UPPERDATA, inode); return d_obtain_alias(inode); } /* Get the upper or lower dentry in stack whose on layer @idx */ static struct dentry *ovl_dentry_real_at(struct dentry *dentry, int idx) { struct ovl_entry *oe = OVL_E(dentry); struct ovl_path *lowerstack = ovl_lowerstack(oe); int i; if (!idx) return ovl_dentry_upper(dentry); for (i = 0; i < ovl_numlower(oe); i++) { if (lowerstack[i].layer->idx == idx) return lowerstack[i].dentry; } return NULL; } /* * Lookup a child overlay dentry to get a connected overlay dentry whose real * dentry is @real. If @real is on upper layer, we lookup a child overlay * dentry with the same name as the real dentry. Otherwise, we need to consult * index for lookup. */ static struct dentry *ovl_lookup_real_one(struct dentry *connected, struct dentry *real, const struct ovl_layer *layer) { struct inode *dir = d_inode(connected); struct dentry *this, *parent = NULL; struct name_snapshot name; int err; /* * Lookup child overlay dentry by real name. The dir mutex protects us * from racing with overlay rename. If the overlay dentry that is above * real has already been moved to a parent that is not under the * connected overlay dir, we return -ECHILD and restart the lookup of * connected real path from the top. */ inode_lock_nested(dir, I_MUTEX_PARENT); err = -ECHILD; parent = dget_parent(real); if (ovl_dentry_real_at(connected, layer->idx) != parent) goto fail; /* * We also need to take a snapshot of real dentry name to protect us * from racing with underlying layer rename. In this case, we don't * care about returning ESTALE, only from dereferencing a free name * pointer because we hold no lock on the real dentry. */ take_dentry_name_snapshot(&name, real); /* * No idmap handling here: it's an internal lookup. Could skip * permission checking altogether, but for now just use non-idmap * transformed ids. */ this = lookup_one_len(name.name.name, connected, name.name.len); release_dentry_name_snapshot(&name); err = PTR_ERR(this); if (IS_ERR(this)) { goto fail; } else if (!this || !this->d_inode) { dput(this); err = -ENOENT; goto fail; } else if (ovl_dentry_real_at(this, layer->idx) != real) { dput(this); err = -ESTALE; goto fail; } out: dput(parent); inode_unlock(dir); return this; fail: pr_warn_ratelimited("failed to lookup one by real (%pd2, layer=%d, connected=%pd2, err=%i)\n", real, layer->idx, connected, err); this = ERR_PTR(err); goto out; } static struct dentry *ovl_lookup_real(struct super_block *sb, struct dentry *real, const struct ovl_layer *layer); /* * Lookup an indexed or hashed overlay dentry by real inode. */ static struct dentry *ovl_lookup_real_inode(struct super_block *sb, struct dentry *real, const struct ovl_layer *layer) { struct ovl_fs *ofs = OVL_FS(sb); struct dentry *index = NULL; struct dentry *this = NULL; struct inode *inode; /* * Decoding upper dir from index is expensive, so first try to lookup * overlay dentry in inode/dcache. */ inode = ovl_lookup_inode(sb, real, !layer->idx); if (IS_ERR(inode)) return ERR_CAST(inode); if (inode) { this = d_find_any_alias(inode); iput(inode); } /* * For decoded lower dir file handle, lookup index by origin to check * if lower dir was copied up and and/or removed. */ if (!this && layer->idx && ovl_indexdir(sb) && !WARN_ON(!d_is_dir(real))) { index = ovl_lookup_index(ofs, NULL, real, false); if (IS_ERR(index)) return index; } /* Get connected upper overlay dir from index */ if (index) { struct dentry *upper = ovl_index_upper(ofs, index, true); dput(index); if (IS_ERR_OR_NULL(upper)) return upper; /* * ovl_lookup_real() in lower layer may call recursively once to * ovl_lookup_real() in upper layer. The first level call walks * back lower parents to the topmost indexed parent. The second * recursive call walks back from indexed upper to the topmost * connected/hashed upper parent (or up to root). */ this = ovl_lookup_real(sb, upper, &ofs->layers[0]); dput(upper); } if (IS_ERR_OR_NULL(this)) return this; if (ovl_dentry_real_at(this, layer->idx) != real) { dput(this); this = ERR_PTR(-EIO); } return this; } /* * Lookup an indexed or hashed overlay dentry, whose real dentry is an * ancestor of @real. */ static struct dentry *ovl_lookup_real_ancestor(struct super_block *sb, struct dentry *real, const struct ovl_layer *layer) { struct dentry *next, *parent = NULL; struct dentry *ancestor = ERR_PTR(-EIO); if (real == layer->mnt->mnt_root) return dget(sb->s_root); /* Find the topmost indexed or hashed ancestor */ next = dget(real); for (;;) { parent = dget_parent(next); /* * Lookup a matching overlay dentry in inode/dentry * cache or in index by real inode. */ ancestor = ovl_lookup_real_inode(sb, next, layer); if (ancestor) break; if (parent == layer->mnt->mnt_root) { ancestor = dget(sb->s_root); break; } /* * If @real has been moved out of the layer root directory, * we will eventully hit the real fs root. This cannot happen * by legit overlay rename, so we return error in that case. */ if (parent == next) { ancestor = ERR_PTR(-EXDEV); break; } dput(next); next = parent; } dput(parent); dput(next); return ancestor; } /* * Lookup a connected overlay dentry whose real dentry is @real. * If @real is on upper layer, we lookup a child overlay dentry with the same * path the real dentry. Otherwise, we need to consult index for lookup. */ static struct dentry *ovl_lookup_real(struct super_block *sb, struct dentry *real, const struct ovl_layer *layer) { struct dentry *connected; int err = 0; connected = ovl_lookup_real_ancestor(sb, real, layer); if (IS_ERR(connected)) return connected; while (!err) { struct dentry *next, *this; struct dentry *parent = NULL; struct dentry *real_connected = ovl_dentry_real_at(connected, layer->idx); if (real_connected == real) break; /* Find the topmost dentry not yet connected */ next = dget(real); for (;;) { parent = dget_parent(next); if (parent == real_connected) break; /* * If real has been moved out of 'real_connected', * we will not find 'real_connected' and hit the layer * root. In that case, we need to restart connecting. * This game can go on forever in the worst case. We * may want to consider taking s_vfs_rename_mutex if * this happens more than once. */ if (parent == layer->mnt->mnt_root) { dput(connected); connected = dget(sb->s_root); break; } /* * If real file has been moved out of the layer root * directory, we will eventully hit the real fs root. * This cannot happen by legit overlay rename, so we * return error in that case. */ if (parent == next) { err = -EXDEV; break; } dput(next); next = parent; } if (!err) { this = ovl_lookup_real_one(connected, next, layer); if (IS_ERR(this)) err = PTR_ERR(this); /* * Lookup of child in overlay can fail when racing with * overlay rename of child away from 'connected' parent. * In this case, we need to restart the lookup from the * top, because we cannot trust that 'real_connected' is * still an ancestor of 'real'. There is a good chance * that the renamed overlay ancestor is now in cache, so * ovl_lookup_real_ancestor() will find it and we can * continue to connect exactly from where lookup failed. */ if (err == -ECHILD) { this = ovl_lookup_real_ancestor(sb, real, layer); err = PTR_ERR_OR_ZERO(this); } if (!err) { dput(connected); connected = this; } } dput(parent); dput(next); } if (err) goto fail; return connected; fail: pr_warn_ratelimited("failed to lookup by real (%pd2, layer=%d, connected=%pd2, err=%i)\n", real, layer->idx, connected, err); dput(connected); return ERR_PTR(err); } /* * Get an overlay dentry from upper/lower real dentries and index. */ static struct dentry *ovl_get_dentry(struct super_block *sb, struct dentry *upper, struct ovl_path *lowerpath, struct dentry *index) { struct ovl_fs *ofs = OVL_FS(sb); const struct ovl_layer *layer = upper ? &ofs->layers[0] : lowerpath->layer; struct dentry *real = upper ?: (index ?: lowerpath->dentry); /* * Obtain a disconnected overlay dentry from a non-dir real dentry * and index. */ if (!d_is_dir(real)) return ovl_obtain_alias(sb, upper, lowerpath, index); /* Removed empty directory? */ if ((real->d_flags & DCACHE_DISCONNECTED) || d_unhashed(real)) return ERR_PTR(-ENOENT); /* * If real dentry is connected and hashed, get a connected overlay * dentry whose real dentry is @real. */ return ovl_lookup_real(sb, real, layer); } static struct dentry *ovl_upper_fh_to_d(struct super_block *sb, struct ovl_fh *fh) { struct ovl_fs *ofs = OVL_FS(sb); struct dentry *dentry; struct dentry *upper; if (!ovl_upper_mnt(ofs)) return ERR_PTR(-EACCES); upper = ovl_decode_real_fh(ofs, fh, ovl_upper_mnt(ofs), true); if (IS_ERR_OR_NULL(upper)) return upper; dentry = ovl_get_dentry(sb, upper, NULL, NULL); dput(upper); return dentry; } static struct dentry *ovl_lower_fh_to_d(struct super_block *sb, struct ovl_fh *fh) { struct ovl_fs *ofs = OVL_FS(sb); struct ovl_path origin = { }; struct ovl_path *stack = &origin; struct dentry *dentry = NULL; struct dentry *index = NULL; struct inode *inode; int err; /* First lookup overlay inode in inode cache by origin fh */ err = ovl_check_origin_fh(ofs, fh, false, NULL, &stack); if (err) return ERR_PTR(err); if (!d_is_dir(origin.dentry) || !(origin.dentry->d_flags & DCACHE_DISCONNECTED)) { inode = ovl_lookup_inode(sb, origin.dentry, false); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_err; if (inode) { dentry = d_find_any_alias(inode); iput(inode); if (dentry) goto out; } } /* Then lookup indexed upper/whiteout by origin fh */ if (ovl_indexdir(sb)) { index = ovl_get_index_fh(ofs, fh); err = PTR_ERR(index); if (IS_ERR(index)) { index = NULL; goto out_err; } } /* Then try to get a connected upper dir by index */ if (index && d_is_dir(index)) { struct dentry *upper = ovl_index_upper(ofs, index, true); err = PTR_ERR(upper); if (IS_ERR_OR_NULL(upper)) goto out_err; dentry = ovl_get_dentry(sb, upper, NULL, NULL); dput(upper); goto out; } /* Find origin.dentry again with ovl_acceptable() layer check */ if (d_is_dir(origin.dentry)) { dput(origin.dentry); origin.dentry = NULL; err = ovl_check_origin_fh(ofs, fh, true, NULL, &stack); if (err) goto out_err; } if (index) { err = ovl_verify_origin(ofs, index, origin.dentry, false); if (err) goto out_err; } /* Get a connected non-upper dir or disconnected non-dir */ dentry = ovl_get_dentry(sb, NULL, &origin, index); out: dput(origin.dentry); dput(index); return dentry; out_err: dentry = ERR_PTR(err); goto out; } static struct ovl_fh *ovl_fid_to_fh(struct fid *fid, int buflen, int fh_type) { struct ovl_fh *fh; /* If on-wire inner fid is aligned - nothing to do */ if (fh_type == OVL_FILEID_V1) return (struct ovl_fh *)fid; if (fh_type != OVL_FILEID_V0) return ERR_PTR(-EINVAL); if (buflen <= OVL_FH_WIRE_OFFSET) return ERR_PTR(-EINVAL); fh = kzalloc(buflen, GFP_KERNEL); if (!fh) return ERR_PTR(-ENOMEM); /* Copy unaligned inner fh into aligned buffer */ memcpy(fh->buf, fid, buflen - OVL_FH_WIRE_OFFSET); return fh; } static struct dentry *ovl_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct dentry *dentry = NULL; struct ovl_fh *fh = NULL; int len = fh_len << 2; unsigned int flags = 0; int err; fh = ovl_fid_to_fh(fid, len, fh_type); err = PTR_ERR(fh); if (IS_ERR(fh)) goto out_err; err = ovl_check_fh_len(fh, len); if (err) goto out_err; flags = fh->fb.flags; dentry = (flags & OVL_FH_FLAG_PATH_UPPER) ? ovl_upper_fh_to_d(sb, fh) : ovl_lower_fh_to_d(sb, fh); err = PTR_ERR(dentry); if (IS_ERR(dentry) && err != -ESTALE) goto out_err; out: /* We may have needed to re-align OVL_FILEID_V0 */ if (!IS_ERR_OR_NULL(fh) && fh != (void *)fid) kfree(fh); return dentry; out_err: pr_warn_ratelimited("failed to decode file handle (len=%d, type=%d, flags=%x, err=%i)\n", fh_len, fh_type, flags, err); dentry = ERR_PTR(err); goto out; } static struct dentry *ovl_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { pr_warn_ratelimited("connectable file handles not supported; use 'no_subtree_check' exportfs option.\n"); return ERR_PTR(-EACCES); } static int ovl_get_name(struct dentry *parent, char *name, struct dentry *child) { /* * ovl_fh_to_dentry() returns connected dir overlay dentries and * ovl_fh_to_parent() is not implemented, so we should not get here. */ WARN_ON_ONCE(1); return -EIO; } static struct dentry *ovl_get_parent(struct dentry *dentry) { /* * ovl_fh_to_dentry() returns connected dir overlay dentries, so we * should not get here. */ WARN_ON_ONCE(1); return ERR_PTR(-EIO); } const struct export_operations ovl_export_operations = { .encode_fh = ovl_encode_fh, .fh_to_dentry = ovl_fh_to_dentry, .fh_to_parent = ovl_fh_to_parent, .get_name = ovl_get_name, .get_parent = ovl_get_parent, }; /* encode_fh() encodes non-decodable file handles with nfs_export=off */ const struct export_operations ovl_export_fid_operations = { .encode_fh = ovl_encode_fh, };
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 1 2 3 3 3 3 3 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 // SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/usb/input/yealink.c * * Copyright (c) 2005 Henk Vergonet <Henk.Vergonet@gmail.com> */ /* * Description: * Driver for the USB-P1K voip usb phone. * This device is produced by Yealink Network Technology Co Ltd * but may be branded under several names: * - Yealink usb-p1k * - Tiptel 115 * - ... * * This driver is based on: * - the usbb2k-api http://savannah.nongnu.org/projects/usbb2k-api/ * - information from http://memeteau.free.fr/usbb2k * - the xpad-driver drivers/input/joystick/xpad.c * * Thanks to: * - Olivier Vandorpe, for providing the usbb2k-api. * - Martin Diehl, for spotting my memory allocation bug. * * History: * 20050527 henk First version, functional keyboard. Keyboard events * will pop-up on the ../input/eventX bus. * 20050531 henk Added led, LCD, dialtone and sysfs interface. * 20050610 henk Cleanups, make it ready for public consumption. * 20050630 henk Cleanups, fixes in response to comments. * 20050701 henk sysfs write serialisation, fix potential unload races * 20050801 henk Added ringtone, restructure USB * 20050816 henk Merge 2.6.13-rc6 */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/usb/input.h> #include <linux/map_to_7segment.h> #include "yealink.h" #define DRIVER_VERSION "yld-20051230" #define YEALINK_POLLING_FREQUENCY 10 /* in [Hz] */ struct yld_status { u8 lcd[24]; u8 led; u8 dialtone; u8 ringtone; u8 keynum; } __attribute__ ((packed)); /* * Register the LCD segment and icon map */ #define _LOC(k,l) { .a = (k), .m = (l) } #define _SEG(t, a, am, b, bm, c, cm, d, dm, e, em, f, fm, g, gm) \ { .type = (t), \ .u = { .s = { _LOC(a, am), _LOC(b, bm), _LOC(c, cm), \ _LOC(d, dm), _LOC(e, em), _LOC(g, gm), \ _LOC(f, fm) } } } #define _PIC(t, h, hm, n) \ { .type = (t), \ .u = { .p = { .name = (n), .a = (h), .m = (hm) } } } static const struct lcd_segment_map { char type; union { struct pictogram_map { u8 a,m; char name[10]; } p; struct segment_map { u8 a,m; } s[7]; } u; } lcdMap[] = { #include "yealink.h" }; struct yealink_dev { struct input_dev *idev; /* input device */ struct usb_device *udev; /* usb device */ struct usb_interface *intf; /* usb interface */ /* irq input channel */ struct yld_ctl_packet *irq_data; dma_addr_t irq_dma; struct urb *urb_irq; /* control output channel */ struct yld_ctl_packet *ctl_data; dma_addr_t ctl_dma; struct usb_ctrlrequest *ctl_req; struct urb *urb_ctl; char phys[64]; /* physical device path */ u8 lcdMap[ARRAY_SIZE(lcdMap)]; /* state of LCD, LED ... */ int key_code; /* last reported key */ struct mutex sysfs_mutex; unsigned int shutdown:1; int stat_ix; union { struct yld_status s; u8 b[sizeof(struct yld_status)]; } master, copy; }; /******************************************************************************* * Yealink lcd interface ******************************************************************************/ /* * Register a default 7 segment character set */ static SEG7_DEFAULT_MAP(map_seg7); /* Display a char, * char '\9' and '\n' are placeholders and do not overwrite the original text. * A space will always hide an icon. */ static int setChar(struct yealink_dev *yld, int el, int chr) { int i, a, m, val; if (el >= ARRAY_SIZE(lcdMap)) return -EINVAL; if (chr == '\t' || chr == '\n') return 0; yld->lcdMap[el] = chr; if (lcdMap[el].type == '.') { a = lcdMap[el].u.p.a; m = lcdMap[el].u.p.m; if (chr != ' ') yld->master.b[a] |= m; else yld->master.b[a] &= ~m; return 0; } val = map_to_seg7(&map_seg7, chr); for (i = 0; i < ARRAY_SIZE(lcdMap[0].u.s); i++) { m = lcdMap[el].u.s[i].m; if (m == 0) continue; a = lcdMap[el].u.s[i].a; if (val & 1) yld->master.b[a] |= m; else yld->master.b[a] &= ~m; val = val >> 1; } return 0; }; /******************************************************************************* * Yealink key interface ******************************************************************************/ /* Map device buttons to internal key events. * * USB-P1K button layout: * * up * IN OUT * down * * pickup C hangup * 1 2 3 * 4 5 6 * 7 8 9 * * 0 # * * The "up" and "down" keys, are symbolised by arrows on the button. * The "pickup" and "hangup" keys are symbolised by a green and red phone * on the button. */ static int map_p1k_to_key(int scancode) { switch(scancode) { /* phone key: */ case 0x23: return KEY_LEFT; /* IN */ case 0x33: return KEY_UP; /* up */ case 0x04: return KEY_RIGHT; /* OUT */ case 0x24: return KEY_DOWN; /* down */ case 0x03: return KEY_ENTER; /* pickup */ case 0x14: return KEY_BACKSPACE; /* C */ case 0x13: return KEY_ESC; /* hangup */ case 0x00: return KEY_1; /* 1 */ case 0x01: return KEY_2; /* 2 */ case 0x02: return KEY_3; /* 3 */ case 0x10: return KEY_4; /* 4 */ case 0x11: return KEY_5; /* 5 */ case 0x12: return KEY_6; /* 6 */ case 0x20: return KEY_7; /* 7 */ case 0x21: return KEY_8; /* 8 */ case 0x22: return KEY_9; /* 9 */ case 0x30: return KEY_KPASTERISK; /* * */ case 0x31: return KEY_0; /* 0 */ case 0x32: return KEY_LEFTSHIFT | KEY_3 << 8; /* # */ } return -EINVAL; } /* Completes a request by converting the data into events for the * input subsystem. * * The key parameter can be cascaded: key2 << 8 | key1 */ static void report_key(struct yealink_dev *yld, int key) { struct input_dev *idev = yld->idev; if (yld->key_code >= 0) { /* old key up */ input_report_key(idev, yld->key_code & 0xff, 0); if (yld->key_code >> 8) input_report_key(idev, yld->key_code >> 8, 0); } yld->key_code = key; if (key >= 0) { /* new valid key */ input_report_key(idev, key & 0xff, 1); if (key >> 8) input_report_key(idev, key >> 8, 1); } input_sync(idev); } /******************************************************************************* * Yealink usb communication interface ******************************************************************************/ static int yealink_cmd(struct yealink_dev *yld, struct yld_ctl_packet *p) { u8 *buf = (u8 *)p; int i; u8 sum = 0; for(i=0; i<USB_PKT_LEN-1; i++) sum -= buf[i]; p->sum = sum; return usb_control_msg(yld->udev, usb_sndctrlpipe(yld->udev, 0), USB_REQ_SET_CONFIGURATION, USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT, 0x200, 3, p, sizeof(*p), USB_CTRL_SET_TIMEOUT); } static u8 default_ringtone[] = { 0xEF, /* volume [0-255] */ 0xFB, 0x1E, 0x00, 0x0C, /* 1250 [hz], 12/100 [s] */ 0xFC, 0x18, 0x00, 0x0C, /* 1000 [hz], 12/100 [s] */ 0xFB, 0x1E, 0x00, 0x0C, 0xFC, 0x18, 0x00, 0x0C, 0xFB, 0x1E, 0x00, 0x0C, 0xFC, 0x18, 0x00, 0x0C, 0xFB, 0x1E, 0x00, 0x0C, 0xFC, 0x18, 0x00, 0x0C, 0xFF, 0xFF, 0x01, 0x90, /* silent, 400/100 [s] */ 0x00, 0x00 /* end of sequence */ }; static int yealink_set_ringtone(struct yealink_dev *yld, u8 *buf, size_t size) { struct yld_ctl_packet *p = yld->ctl_data; int ix, len; if (size <= 0) return -EINVAL; /* Set the ringtone volume */ memset(yld->ctl_data, 0, sizeof(*(yld->ctl_data))); yld->ctl_data->cmd = CMD_RING_VOLUME; yld->ctl_data->size = 1; yld->ctl_data->data[0] = buf[0]; yealink_cmd(yld, p); buf++; size--; p->cmd = CMD_RING_NOTE; ix = 0; while (size != ix) { len = size - ix; if (len > sizeof(p->data)) len = sizeof(p->data); p->size = len; p->offset = cpu_to_be16(ix); memcpy(p->data, &buf[ix], len); yealink_cmd(yld, p); ix += len; } return 0; } /* keep stat_master & stat_copy in sync. */ static int yealink_do_idle_tasks(struct yealink_dev *yld) { u8 val; int i, ix, len; ix = yld->stat_ix; memset(yld->ctl_data, 0, sizeof(*(yld->ctl_data))); yld->ctl_data->cmd = CMD_KEYPRESS; yld->ctl_data->size = 1; yld->ctl_data->sum = 0xff - CMD_KEYPRESS; /* If state update pointer wraps do a KEYPRESS first. */ if (ix >= sizeof(yld->master)) { yld->stat_ix = 0; return 0; } /* find update candidates: copy != master */ do { val = yld->master.b[ix]; if (val != yld->copy.b[ix]) goto send_update; } while (++ix < sizeof(yld->master)); /* nothing todo, wait a bit and poll for a KEYPRESS */ yld->stat_ix = 0; /* TODO how can we wait abit. ?? * msleep_interruptible(1000 / YEALINK_POLLING_FREQUENCY); */ return 0; send_update: /* Setup an appropriate update request */ yld->copy.b[ix] = val; yld->ctl_data->data[0] = val; switch(ix) { case offsetof(struct yld_status, led): yld->ctl_data->cmd = CMD_LED; yld->ctl_data->sum = -1 - CMD_LED - val; break; case offsetof(struct yld_status, dialtone): yld->ctl_data->cmd = CMD_DIALTONE; yld->ctl_data->sum = -1 - CMD_DIALTONE - val; break; case offsetof(struct yld_status, ringtone): yld->ctl_data->cmd = CMD_RINGTONE; yld->ctl_data->sum = -1 - CMD_RINGTONE - val; break; case offsetof(struct yld_status, keynum): val--; val &= 0x1f; yld->ctl_data->cmd = CMD_SCANCODE; yld->ctl_data->offset = cpu_to_be16(val); yld->ctl_data->data[0] = 0; yld->ctl_data->sum = -1 - CMD_SCANCODE - val; break; default: len = sizeof(yld->master.s.lcd) - ix; if (len > sizeof(yld->ctl_data->data)) len = sizeof(yld->ctl_data->data); /* Combine up to <len> consecutive LCD bytes in a singe request */ yld->ctl_data->cmd = CMD_LCD; yld->ctl_data->offset = cpu_to_be16(ix); yld->ctl_data->size = len; yld->ctl_data->sum = -CMD_LCD - ix - val - len; for(i=1; i<len; i++) { ix++; val = yld->master.b[ix]; yld->copy.b[ix] = val; yld->ctl_data->data[i] = val; yld->ctl_data->sum -= val; } } yld->stat_ix = ix + 1; return 1; } /* Decide on how to handle responses * * The state transition diagram is somethhing like: * * syncState<--+ * | | * | idle * \|/ | * init --ok--> waitForKey --ok--> getKey * ^ ^ | * | +-------ok-------+ * error,start * */ static void urb_irq_callback(struct urb *urb) { struct yealink_dev *yld = urb->context; int ret, status = urb->status; if (status) dev_err(&yld->intf->dev, "%s - urb status %d\n", __func__, status); switch (yld->irq_data->cmd) { case CMD_KEYPRESS: yld->master.s.keynum = yld->irq_data->data[0]; break; case CMD_SCANCODE: dev_dbg(&yld->intf->dev, "get scancode %x\n", yld->irq_data->data[0]); report_key(yld, map_p1k_to_key(yld->irq_data->data[0])); break; default: dev_err(&yld->intf->dev, "unexpected response %x\n", yld->irq_data->cmd); } yealink_do_idle_tasks(yld); if (!yld->shutdown) { ret = usb_submit_urb(yld->urb_ctl, GFP_ATOMIC); if (ret && ret != -EPERM) dev_err(&yld->intf->dev, "%s - usb_submit_urb failed %d\n", __func__, ret); } } static void urb_ctl_callback(struct urb *urb) { struct yealink_dev *yld = urb->context; int ret = 0, status = urb->status; if (status) dev_err(&yld->intf->dev, "%s - urb status %d\n", __func__, status); switch (yld->ctl_data->cmd) { case CMD_KEYPRESS: case CMD_SCANCODE: /* ask for a response */ if (!yld->shutdown) ret = usb_submit_urb(yld->urb_irq, GFP_ATOMIC); break; default: /* send new command */ yealink_do_idle_tasks(yld); if (!yld->shutdown) ret = usb_submit_urb(yld->urb_ctl, GFP_ATOMIC); break; } if (ret && ret != -EPERM) dev_err(&yld->intf->dev, "%s - usb_submit_urb failed %d\n", __func__, ret); } /******************************************************************************* * input event interface ******************************************************************************/ /* TODO should we issue a ringtone on a SND_BELL event? static int input_ev(struct input_dev *dev, unsigned int type, unsigned int code, int value) { if (type != EV_SND) return -EINVAL; switch (code) { case SND_BELL: case SND_TONE: break; default: return -EINVAL; } return 0; } */ static int input_open(struct input_dev *dev) { struct yealink_dev *yld = input_get_drvdata(dev); int i, ret; dev_dbg(&yld->intf->dev, "%s\n", __func__); /* force updates to device */ for (i = 0; i<sizeof(yld->master); i++) yld->copy.b[i] = ~yld->master.b[i]; yld->key_code = -1; /* no keys pressed */ yealink_set_ringtone(yld, default_ringtone, sizeof(default_ringtone)); /* issue INIT */ memset(yld->ctl_data, 0, sizeof(*(yld->ctl_data))); yld->ctl_data->cmd = CMD_INIT; yld->ctl_data->size = 10; yld->ctl_data->sum = 0x100-CMD_INIT-10; if ((ret = usb_submit_urb(yld->urb_ctl, GFP_KERNEL)) != 0) { dev_dbg(&yld->intf->dev, "%s - usb_submit_urb failed with result %d\n", __func__, ret); return ret; } return 0; } static void input_close(struct input_dev *dev) { struct yealink_dev *yld = input_get_drvdata(dev); yld->shutdown = 1; /* * Make sure the flag is seen by other CPUs before we start * killing URBs so new URBs won't be submitted */ smp_wmb(); usb_kill_urb(yld->urb_ctl); usb_kill_urb(yld->urb_irq); yld->shutdown = 0; smp_wmb(); } /******************************************************************************* * sysfs interface ******************************************************************************/ /* Interface to the 7-segments translation table aka. char set. */ static ssize_t show_map(struct device *dev, struct device_attribute *attr, char *buf) { memcpy(buf, &map_seg7, sizeof(map_seg7)); return sizeof(map_seg7); } static ssize_t store_map(struct device *dev, struct device_attribute *attr, const char *buf, size_t cnt) { if (cnt != sizeof(map_seg7)) return -EINVAL; memcpy(&map_seg7, buf, sizeof(map_seg7)); return sizeof(map_seg7); } /* Interface to the LCD. */ /* Reading /sys/../lineX will return the format string with its settings: * * Example: * cat ./line3 * 888888888888 * Linux Rocks! */ static ssize_t show_line(struct device *dev, char *buf, int a, int b) { struct yealink_dev *yld = dev_get_drvdata(dev); int i; guard(mutex)(&yld->sysfs_mutex); for (i = a; i < b; i++) *buf++ = lcdMap[i].type; *buf++ = '\n'; for (i = a; i < b; i++) *buf++ = yld->lcdMap[i]; *buf++ = '\n'; *buf = 0; return 3 + ((b - a) << 1); } static ssize_t show_line1(struct device *dev, struct device_attribute *attr, char *buf) { return show_line(dev, buf, LCD_LINE1_OFFSET, LCD_LINE2_OFFSET); } static ssize_t show_line2(struct device *dev, struct device_attribute *attr, char *buf) { return show_line(dev, buf, LCD_LINE2_OFFSET, LCD_LINE3_OFFSET); } static ssize_t show_line3(struct device *dev, struct device_attribute *attr, char *buf) { return show_line(dev, buf, LCD_LINE3_OFFSET, LCD_LINE4_OFFSET); } /* Writing to /sys/../lineX will set the coresponding LCD line. * - Excess characters are ignored. * - If less characters are written than allowed, the remaining digits are * unchanged. * - The '\n' or '\t' char is a placeholder, it does not overwrite the * original content. */ static ssize_t store_line(struct device *dev, const char *buf, size_t count, int el, size_t len) { struct yealink_dev *yld = dev_get_drvdata(dev); int i; guard(mutex)(&yld->sysfs_mutex); if (len > count) len = count; for (i = 0; i < len; i++) setChar(yld, el++, buf[i]); return count; } static ssize_t store_line1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return store_line(dev, buf, count, LCD_LINE1_OFFSET, LCD_LINE1_SIZE); } static ssize_t store_line2(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return store_line(dev, buf, count, LCD_LINE2_OFFSET, LCD_LINE2_SIZE); } static ssize_t store_line3(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return store_line(dev, buf, count, LCD_LINE3_OFFSET, LCD_LINE3_SIZE); } /* Interface to visible and audible "icons", these include: * pictures on the LCD, the LED, and the dialtone signal. */ /* Get a list of "switchable elements" with their current state. */ static ssize_t get_icons(struct device *dev, struct device_attribute *attr, char *buf) { struct yealink_dev *yld = dev_get_drvdata(dev); int i, ret = 1; guard(mutex)(&yld->sysfs_mutex); for (i = 0; i < ARRAY_SIZE(lcdMap); i++) { if (lcdMap[i].type != '.') continue; ret += sprintf(&buf[ret], "%s %s\n", yld->lcdMap[i] == ' ' ? " " : "on", lcdMap[i].u.p.name); } return ret; } /* Change the visibility of a particular element. */ static ssize_t set_icon(struct device *dev, const char *buf, size_t count, int chr) { struct yealink_dev *yld = dev_get_drvdata(dev); int i; guard(mutex)(&yld->sysfs_mutex); for (i = 0; i < ARRAY_SIZE(lcdMap); i++) { if (lcdMap[i].type != '.') continue; if (strncmp(buf, lcdMap[i].u.p.name, count) == 0) { setChar(yld, i, chr); break; } } return count; } static ssize_t show_icon(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return set_icon(dev, buf, count, buf[0]); } static ssize_t hide_icon(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return set_icon(dev, buf, count, ' '); } /* Upload a ringtone to the device. */ /* Stores raw ringtone data in the phone */ static ssize_t store_ringtone(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct yealink_dev *yld = dev_get_drvdata(dev); guard(mutex)(&yld->sysfs_mutex); /* TODO locking with async usb control interface??? */ yealink_set_ringtone(yld, (char *)buf, count); return count; } #define _M444 S_IRUGO #define _M664 S_IRUGO|S_IWUSR|S_IWGRP #define _M220 S_IWUSR|S_IWGRP static DEVICE_ATTR(map_seg7 , _M664, show_map , store_map ); static DEVICE_ATTR(line1 , _M664, show_line1 , store_line1 ); static DEVICE_ATTR(line2 , _M664, show_line2 , store_line2 ); static DEVICE_ATTR(line3 , _M664, show_line3 , store_line3 ); static DEVICE_ATTR(get_icons , _M444, get_icons , NULL ); static DEVICE_ATTR(show_icon , _M220, NULL , show_icon ); static DEVICE_ATTR(hide_icon , _M220, NULL , hide_icon ); static DEVICE_ATTR(ringtone , _M220, NULL , store_ringtone); static struct attribute *yld_attrs[] = { &dev_attr_line1.attr, &dev_attr_line2.attr, &dev_attr_line3.attr, &dev_attr_get_icons.attr, &dev_attr_show_icon.attr, &dev_attr_hide_icon.attr, &dev_attr_map_seg7.attr, &dev_attr_ringtone.attr, NULL }; ATTRIBUTE_GROUPS(yld); /******************************************************************************* * Linux interface and usb initialisation ******************************************************************************/ struct driver_info { char *name; }; static const struct driver_info info_P1K = { .name = "Yealink usb-p1k", }; static const struct usb_device_id usb_table [] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = 0x6993, .idProduct = 0xb001, .bInterfaceClass = USB_CLASS_HID, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, .driver_info = (kernel_ulong_t)&info_P1K }, { } }; static int usb_cleanup(struct yealink_dev *yld, int err) { if (yld == NULL) return err; if (yld->idev) { if (err) input_free_device(yld->idev); else input_unregister_device(yld->idev); } usb_free_urb(yld->urb_irq); usb_free_urb(yld->urb_ctl); kfree(yld->ctl_req); usb_free_coherent(yld->udev, USB_PKT_LEN, yld->ctl_data, yld->ctl_dma); usb_free_coherent(yld->udev, USB_PKT_LEN, yld->irq_data, yld->irq_dma); kfree(yld); return err; } static void usb_disconnect(struct usb_interface *intf) { struct yealink_dev *yld = usb_get_intfdata(intf); usb_cleanup(yld, 0); usb_set_intfdata(intf, NULL); } static int usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev (intf); struct driver_info *nfo = (struct driver_info *)id->driver_info; struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct yealink_dev *yld; struct input_dev *input_dev; int ret, pipe, i; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 1) return -ENODEV; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -ENODEV; yld = kzalloc(sizeof(*yld), GFP_KERNEL); if (!yld) return -ENOMEM; yld->udev = udev; yld->intf = intf; mutex_init(&yld->sysfs_mutex); yld->idev = input_dev = input_allocate_device(); if (!input_dev) return usb_cleanup(yld, -ENOMEM); /* allocate usb buffers */ yld->irq_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &yld->irq_dma); if (yld->irq_data == NULL) return usb_cleanup(yld, -ENOMEM); yld->ctl_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &yld->ctl_dma); if (!yld->ctl_data) return usb_cleanup(yld, -ENOMEM); yld->ctl_req = kmalloc(sizeof(*(yld->ctl_req)), GFP_KERNEL); if (yld->ctl_req == NULL) return usb_cleanup(yld, -ENOMEM); /* allocate urb structures */ yld->urb_irq = usb_alloc_urb(0, GFP_KERNEL); if (yld->urb_irq == NULL) return usb_cleanup(yld, -ENOMEM); yld->urb_ctl = usb_alloc_urb(0, GFP_KERNEL); if (yld->urb_ctl == NULL) return usb_cleanup(yld, -ENOMEM); /* get a handle to the interrupt data pipe */ pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); ret = usb_maxpacket(udev, pipe); if (ret != USB_PKT_LEN) dev_err(&intf->dev, "invalid payload size %d, expected %zd\n", ret, USB_PKT_LEN); /* initialise irq urb */ usb_fill_int_urb(yld->urb_irq, udev, pipe, yld->irq_data, USB_PKT_LEN, urb_irq_callback, yld, endpoint->bInterval); yld->urb_irq->transfer_dma = yld->irq_dma; yld->urb_irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; yld->urb_irq->dev = udev; /* initialise ctl urb */ yld->ctl_req->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT; yld->ctl_req->bRequest = USB_REQ_SET_CONFIGURATION; yld->ctl_req->wValue = cpu_to_le16(0x200); yld->ctl_req->wIndex = cpu_to_le16(interface->desc.bInterfaceNumber); yld->ctl_req->wLength = cpu_to_le16(USB_PKT_LEN); usb_fill_control_urb(yld->urb_ctl, udev, usb_sndctrlpipe(udev, 0), (void *)yld->ctl_req, yld->ctl_data, USB_PKT_LEN, urb_ctl_callback, yld); yld->urb_ctl->transfer_dma = yld->ctl_dma; yld->urb_ctl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; yld->urb_ctl->dev = udev; /* find out the physical bus location */ usb_make_path(udev, yld->phys, sizeof(yld->phys)); strlcat(yld->phys, "/input0", sizeof(yld->phys)); /* register settings for the input device */ input_dev->name = nfo->name; input_dev->phys = yld->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, yld); input_dev->open = input_open; input_dev->close = input_close; /* input_dev->event = input_ev; TODO */ /* register available key events */ input_dev->evbit[0] = BIT_MASK(EV_KEY); for (i = 0; i < 256; i++) { int k = map_p1k_to_key(i); if (k >= 0) { set_bit(k & 0xff, input_dev->keybit); if (k >> 8) set_bit(k >> 8, input_dev->keybit); } } ret = input_register_device(yld->idev); if (ret) return usb_cleanup(yld, ret); usb_set_intfdata(intf, yld); /* clear visible elements */ for (i = 0; i < ARRAY_SIZE(lcdMap); i++) setChar(yld, i, ' '); /* display driver version on LCD line 3 */ store_line3(&intf->dev, NULL, DRIVER_VERSION, sizeof(DRIVER_VERSION)); return 0; } static struct usb_driver yealink_driver = { .name = "yealink", .probe = usb_probe, .disconnect = usb_disconnect, .id_table = usb_table, .dev_groups = yld_groups, }; module_usb_driver(yealink_driver); MODULE_DEVICE_TABLE (usb, usb_table); MODULE_AUTHOR("Henk Vergonet"); MODULE_DESCRIPTION("Yealink phone driver"); MODULE_LICENSE("GPL");
111 25 1 5 2 78 102 100 3 1 3 4 9 1 1 1 1 7 74 75 6 73 3 3 3 68 4 6 1 5 36 1 1 21 55 4 4 7 7 33 8 20 5 24 11 6 1 1 7 10 1 6 17 20 5 36 3 32 38 2 27 56 1 6 46 4 7 43 4 7 39 39 39 36 1 2 2 1 16 18 4 31 31 45 4 63 6 35 22 18 44 4 4 1 3 6 5 1 69 70 69 3 66 2 1 3 59 65 2 1 62 3 3 8 8 7 7 7 7 7 7 7 1 113 114 115 115 110 25 13 3 1 2 5 5 2 2 4 4 3 5 11 7 9 15 4 9 2 12 2 1 5 4 4 5 2 1 12 12 2 10 1 9 1 8 3 3 10 5 10 5 5 7 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 // SPDX-License-Identifier: GPL-2.0-or-later /* * V4L2 controls framework uAPI implementation: * * Copyright (C) 2010-2021 Hans Verkuil <hverkuil-cisco@xs4all.nl> */ #define pr_fmt(fmt) "v4l2-ctrls: " fmt #include <linux/export.h> #include <linux/mm.h> #include <linux/slab.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-dev.h> #include <media/v4l2-device.h> #include <media/v4l2-event.h> #include <media/v4l2-ioctl.h> #include "v4l2-ctrls-priv.h" /* Internal temporary helper struct, one for each v4l2_ext_control */ struct v4l2_ctrl_helper { /* Pointer to the control reference of the master control */ struct v4l2_ctrl_ref *mref; /* The control ref corresponding to the v4l2_ext_control ID field. */ struct v4l2_ctrl_ref *ref; /* * v4l2_ext_control index of the next control belonging to the * same cluster, or 0 if there isn't any. */ u32 next; }; /* * Helper functions to copy control payload data from kernel space to * user space and vice versa. */ /* Helper function: copy the given control value back to the caller */ static int ptr_to_user(struct v4l2_ext_control *c, struct v4l2_ctrl *ctrl, union v4l2_ctrl_ptr ptr) { u32 len; if (ctrl->is_ptr && !ctrl->is_string) return copy_to_user(c->ptr, ptr.p_const, c->size) ? -EFAULT : 0; switch (ctrl->type) { case V4L2_CTRL_TYPE_STRING: len = strlen(ptr.p_char); if (c->size < len + 1) { c->size = ctrl->elem_size; return -ENOSPC; } return copy_to_user(c->string, ptr.p_char, len + 1) ? -EFAULT : 0; case V4L2_CTRL_TYPE_INTEGER64: c->value64 = *ptr.p_s64; break; default: c->value = *ptr.p_s32; break; } return 0; } /* Helper function: copy the current control value back to the caller */ static int cur_to_user(struct v4l2_ext_control *c, struct v4l2_ctrl *ctrl) { return ptr_to_user(c, ctrl, ctrl->p_cur); } /* Helper function: copy the new control value back to the caller */ static int new_to_user(struct v4l2_ext_control *c, struct v4l2_ctrl *ctrl) { return ptr_to_user(c, ctrl, ctrl->p_new); } /* Helper function: copy the request value back to the caller */ static int req_to_user(struct v4l2_ext_control *c, struct v4l2_ctrl_ref *ref) { return ptr_to_user(c, ref->ctrl, ref->p_req); } /* Helper function: copy the initial control value back to the caller */ static int def_to_user(struct v4l2_ext_control *c, struct v4l2_ctrl *ctrl) { ctrl->type_ops->init(ctrl, 0, ctrl->p_new); return ptr_to_user(c, ctrl, ctrl->p_new); } /* Helper function: copy the caller-provider value as the new control value */ static int user_to_new(struct v4l2_ext_control *c, struct v4l2_ctrl *ctrl) { int ret; u32 size; ctrl->is_new = 0; if (ctrl->is_dyn_array && c->size > ctrl->p_array_alloc_elems * ctrl->elem_size) { void *old = ctrl->p_array; void *tmp = kvzalloc(2 * c->size, GFP_KERNEL); if (!tmp) return -ENOMEM; memcpy(tmp, ctrl->p_new.p, ctrl->elems * ctrl->elem_size); memcpy(tmp + c->size, ctrl->p_cur.p, ctrl->elems * ctrl->elem_size); ctrl->p_new.p = tmp; ctrl->p_cur.p = tmp + c->size; ctrl->p_array = tmp; ctrl->p_array_alloc_elems = c->size / ctrl->elem_size; kvfree(old); } if (ctrl->is_ptr && !ctrl->is_string) { unsigned int elems = c->size / ctrl->elem_size; if (copy_from_user(ctrl->p_new.p, c->ptr, c->size)) return -EFAULT; ctrl->is_new = 1; if (ctrl->is_dyn_array) ctrl->new_elems = elems; else if (ctrl->is_array) ctrl->type_ops->init(ctrl, elems, ctrl->p_new); return 0; } switch (ctrl->type) { case V4L2_CTRL_TYPE_INTEGER64: *ctrl->p_new.p_s64 = c->value64; break; case V4L2_CTRL_TYPE_STRING: size = c->size; if (size == 0) return -ERANGE; if (size > ctrl->maximum + 1) size = ctrl->maximum + 1; ret = copy_from_user(ctrl->p_new.p_char, c->string, size) ? -EFAULT : 0; if (!ret) { char last = ctrl->p_new.p_char[size - 1]; ctrl->p_new.p_char[size - 1] = 0; /* * If the string was longer than ctrl->maximum, * then return an error. */ if (strlen(ctrl->p_new.p_char) == ctrl->maximum && last) return -ERANGE; ctrl->is_new = 1; } return ret; default: *ctrl->p_new.p_s32 = c->value; break; } ctrl->is_new = 1; return 0; } /* * VIDIOC_G/TRY/S_EXT_CTRLS implementation */ /* * Some general notes on the atomic requirements of VIDIOC_G/TRY/S_EXT_CTRLS: * * It is not a fully atomic operation, just best-effort only. After all, if * multiple controls have to be set through multiple i2c writes (for example) * then some initial writes may succeed while others fail. Thus leaving the * system in an inconsistent state. The question is how much effort you are * willing to spend on trying to make something atomic that really isn't. * * From the point of view of an application the main requirement is that * when you call VIDIOC_S_EXT_CTRLS and some values are invalid then an * error should be returned without actually affecting any controls. * * If all the values are correct, then it is acceptable to just give up * in case of low-level errors. * * It is important though that the application can tell when only a partial * configuration was done. The way we do that is through the error_idx field * of struct v4l2_ext_controls: if that is equal to the count field then no * controls were affected. Otherwise all controls before that index were * successful in performing their 'get' or 'set' operation, the control at * the given index failed, and you don't know what happened with the controls * after the failed one. Since if they were part of a control cluster they * could have been successfully processed (if a cluster member was encountered * at index < error_idx), they could have failed (if a cluster member was at * error_idx), or they may not have been processed yet (if the first cluster * member appeared after error_idx). * * It is all fairly theoretical, though. In practice all you can do is to * bail out. If error_idx == count, then it is an application bug. If * error_idx < count then it is only an application bug if the error code was * EBUSY. That usually means that something started streaming just when you * tried to set the controls. In all other cases it is a driver/hardware * problem and all you can do is to retry or bail out. * * Note that these rules do not apply to VIDIOC_TRY_EXT_CTRLS: since that * never modifies controls the error_idx is just set to whatever control * has an invalid value. */ /* * Prepare for the extended g/s/try functions. * Find the controls in the control array and do some basic checks. */ static int prepare_ext_ctrls(struct v4l2_ctrl_handler *hdl, struct v4l2_ext_controls *cs, struct v4l2_ctrl_helper *helpers, struct video_device *vdev, bool get) { struct v4l2_ctrl_helper *h; bool have_clusters = false; u32 i; for (i = 0, h = helpers; i < cs->count; i++, h++) { struct v4l2_ext_control *c = &cs->controls[i]; struct v4l2_ctrl_ref *ref; struct v4l2_ctrl *ctrl; u32 id = c->id & V4L2_CTRL_ID_MASK; cs->error_idx = i; if (cs->which && cs->which != V4L2_CTRL_WHICH_DEF_VAL && cs->which != V4L2_CTRL_WHICH_REQUEST_VAL && V4L2_CTRL_ID2WHICH(id) != cs->which) { dprintk(vdev, "invalid which 0x%x or control id 0x%x\n", cs->which, id); return -EINVAL; } /* * Old-style private controls are not allowed for * extended controls. */ if (id >= V4L2_CID_PRIVATE_BASE) { dprintk(vdev, "old-style private controls not allowed\n"); return -EINVAL; } ref = find_ref_lock(hdl, id); if (!ref) { dprintk(vdev, "cannot find control id 0x%x\n", id); return -EINVAL; } h->ref = ref; ctrl = ref->ctrl; if (ctrl->flags & V4L2_CTRL_FLAG_DISABLED) { dprintk(vdev, "control id 0x%x is disabled\n", id); return -EINVAL; } if (ctrl->cluster[0]->ncontrols > 1) have_clusters = true; if (ctrl->cluster[0] != ctrl) ref = find_ref_lock(hdl, ctrl->cluster[0]->id); if (ctrl->is_dyn_array) { unsigned int max_size = ctrl->dims[0] * ctrl->elem_size; unsigned int tot_size = ctrl->elem_size; if (cs->which == V4L2_CTRL_WHICH_REQUEST_VAL) tot_size *= ref->p_req_elems; else tot_size *= ctrl->elems; c->size = ctrl->elem_size * (c->size / ctrl->elem_size); if (get) { if (c->size < tot_size) { c->size = tot_size; return -ENOSPC; } c->size = tot_size; } else { if (c->size > max_size) { c->size = max_size; return -ENOSPC; } if (!c->size) return -EFAULT; } } else if (ctrl->is_ptr && !ctrl->is_string) { unsigned int tot_size = ctrl->elems * ctrl->elem_size; if (c->size < tot_size) { /* * In the get case the application first * queries to obtain the size of the control. */ if (get) { c->size = tot_size; return -ENOSPC; } dprintk(vdev, "pointer control id 0x%x size too small, %d bytes but %d bytes needed\n", id, c->size, tot_size); return -EFAULT; } c->size = tot_size; } /* Store the ref to the master control of the cluster */ h->mref = ref; /* * Initially set next to 0, meaning that there is no other * control in this helper array belonging to the same * cluster. */ h->next = 0; } /* * We are done if there were no controls that belong to a multi- * control cluster. */ if (!have_clusters) return 0; /* * The code below figures out in O(n) time which controls in the list * belong to the same cluster. */ /* This has to be done with the handler lock taken. */ mutex_lock(hdl->lock); /* First zero the helper field in the master control references */ for (i = 0; i < cs->count; i++) helpers[i].mref->helper = NULL; for (i = 0, h = helpers; i < cs->count; i++, h++) { struct v4l2_ctrl_ref *mref = h->mref; /* * If the mref->helper is set, then it points to an earlier * helper that belongs to the same cluster. */ if (mref->helper) { /* * Set the next field of mref->helper to the current * index: this means that the earlier helper now * points to the next helper in the same cluster. */ mref->helper->next = i; /* * mref should be set only for the first helper in the * cluster, clear the others. */ h->mref = NULL; } /* Point the mref helper to the current helper struct. */ mref->helper = h; } mutex_unlock(hdl->lock); return 0; } /* * Handles the corner case where cs->count == 0. It checks whether the * specified control class exists. If that class ID is 0, then it checks * whether there are any controls at all. */ static int class_check(struct v4l2_ctrl_handler *hdl, u32 which) { if (which == 0 || which == V4L2_CTRL_WHICH_DEF_VAL || which == V4L2_CTRL_WHICH_REQUEST_VAL) return 0; return find_ref_lock(hdl, which | 1) ? 0 : -EINVAL; } /* * Get extended controls. Allocates the helpers array if needed. * * Note that v4l2_g_ext_ctrls_common() with 'which' set to * V4L2_CTRL_WHICH_REQUEST_VAL is only called if the request was * completed, and in that case p_req_valid is true for all controls. */ int v4l2_g_ext_ctrls_common(struct v4l2_ctrl_handler *hdl, struct v4l2_ext_controls *cs, struct video_device *vdev) { struct v4l2_ctrl_helper helper[4]; struct v4l2_ctrl_helper *helpers = helper; int ret; int i, j; bool is_default, is_request; is_default = (cs->which == V4L2_CTRL_WHICH_DEF_VAL); is_request = (cs->which == V4L2_CTRL_WHICH_REQUEST_VAL); cs->error_idx = cs->count; cs->which = V4L2_CTRL_ID2WHICH(cs->which); if (!hdl) return -EINVAL; if (cs->count == 0) return class_check(hdl, cs->which); if (cs->count > ARRAY_SIZE(helper)) { helpers = kvmalloc_array(cs->count, sizeof(helper[0]), GFP_KERNEL); if (!helpers) return -ENOMEM; } ret = prepare_ext_ctrls(hdl, cs, helpers, vdev, true); cs->error_idx = cs->count; for (i = 0; !ret && i < cs->count; i++) if (helpers[i].ref->ctrl->flags & V4L2_CTRL_FLAG_WRITE_ONLY) ret = -EACCES; for (i = 0; !ret && i < cs->count; i++) { struct v4l2_ctrl *master; bool is_volatile = false; u32 idx = i; if (!helpers[i].mref) continue; master = helpers[i].mref->ctrl; cs->error_idx = i; v4l2_ctrl_lock(master); /* * g_volatile_ctrl will update the new control values. * This makes no sense for V4L2_CTRL_WHICH_DEF_VAL and * V4L2_CTRL_WHICH_REQUEST_VAL. In the case of requests * it is v4l2_ctrl_request_complete() that copies the * volatile controls at the time of request completion * to the request, so you don't want to do that again. */ if (!is_default && !is_request && ((master->flags & V4L2_CTRL_FLAG_VOLATILE) || (master->has_volatiles && !is_cur_manual(master)))) { for (j = 0; j < master->ncontrols; j++) cur_to_new(master->cluster[j]); ret = call_op(master, g_volatile_ctrl); is_volatile = true; } if (ret) { v4l2_ctrl_unlock(master); break; } /* * Copy the default value (if is_default is true), the * request value (if is_request is true and p_req is valid), * the new volatile value (if is_volatile is true) or the * current value. */ do { struct v4l2_ctrl_ref *ref = helpers[idx].ref; if (is_default) ret = def_to_user(cs->controls + idx, ref->ctrl); else if (is_request && ref->p_req_array_enomem) ret = -ENOMEM; else if (is_request && ref->p_req_valid) ret = req_to_user(cs->controls + idx, ref); else if (is_volatile) ret = new_to_user(cs->controls + idx, ref->ctrl); else ret = cur_to_user(cs->controls + idx, ref->ctrl); idx = helpers[idx].next; } while (!ret && idx); v4l2_ctrl_unlock(master); } if (cs->count > ARRAY_SIZE(helper)) kvfree(helpers); return ret; } int v4l2_g_ext_ctrls(struct v4l2_ctrl_handler *hdl, struct video_device *vdev, struct media_device *mdev, struct v4l2_ext_controls *cs) { if (cs->which == V4L2_CTRL_WHICH_REQUEST_VAL) return v4l2_g_ext_ctrls_request(hdl, vdev, mdev, cs); return v4l2_g_ext_ctrls_common(hdl, cs, vdev); } EXPORT_SYMBOL(v4l2_g_ext_ctrls); /* Validate a new control */ static int validate_new(const struct v4l2_ctrl *ctrl, union v4l2_ctrl_ptr p_new) { return ctrl->type_ops->validate(ctrl, p_new); } /* Validate controls. */ static int validate_ctrls(struct v4l2_ext_controls *cs, struct v4l2_ctrl_helper *helpers, struct video_device *vdev, bool set) { unsigned int i; int ret = 0; cs->error_idx = cs->count; for (i = 0; i < cs->count; i++) { struct v4l2_ctrl *ctrl = helpers[i].ref->ctrl; union v4l2_ctrl_ptr p_new; cs->error_idx = i; if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY) { dprintk(vdev, "control id 0x%x is read-only\n", ctrl->id); return -EACCES; } /* * This test is also done in try_set_control_cluster() which * is called in atomic context, so that has the final say, * but it makes sense to do an up-front check as well. Once * an error occurs in try_set_control_cluster() some other * controls may have been set already and we want to do a * best-effort to avoid that. */ if (set && (ctrl->flags & V4L2_CTRL_FLAG_GRABBED)) { dprintk(vdev, "control id 0x%x is grabbed, cannot set\n", ctrl->id); return -EBUSY; } /* * Skip validation for now if the payload needs to be copied * from userspace into kernelspace. We'll validate those later. */ if (ctrl->is_ptr) continue; if (ctrl->type == V4L2_CTRL_TYPE_INTEGER64) p_new.p_s64 = &cs->controls[i].value64; else p_new.p_s32 = &cs->controls[i].value; ret = validate_new(ctrl, p_new); if (ret) return ret; } return 0; } /* Try or try-and-set controls */ int try_set_ext_ctrls_common(struct v4l2_fh *fh, struct v4l2_ctrl_handler *hdl, struct v4l2_ext_controls *cs, struct video_device *vdev, bool set) { struct v4l2_ctrl_helper helper[4]; struct v4l2_ctrl_helper *helpers = helper; unsigned int i, j; int ret; cs->error_idx = cs->count; /* Default value cannot be changed */ if (cs->which == V4L2_CTRL_WHICH_DEF_VAL) { dprintk(vdev, "%s: cannot change default value\n", video_device_node_name(vdev)); return -EINVAL; } cs->which = V4L2_CTRL_ID2WHICH(cs->which); if (!hdl) { dprintk(vdev, "%s: invalid null control handler\n", video_device_node_name(vdev)); return -EINVAL; } if (cs->count == 0) return class_check(hdl, cs->which); if (cs->count > ARRAY_SIZE(helper)) { helpers = kvmalloc_array(cs->count, sizeof(helper[0]), GFP_KERNEL); if (!helpers) return -ENOMEM; } ret = prepare_ext_ctrls(hdl, cs, helpers, vdev, false); if (!ret) ret = validate_ctrls(cs, helpers, vdev, set); if (ret && set) cs->error_idx = cs->count; for (i = 0; !ret && i < cs->count; i++) { struct v4l2_ctrl *master; u32 idx = i; if (!helpers[i].mref) continue; cs->error_idx = i; master = helpers[i].mref->ctrl; v4l2_ctrl_lock(master); /* Reset the 'is_new' flags of the cluster */ for (j = 0; j < master->ncontrols; j++) if (master->cluster[j]) master->cluster[j]->is_new = 0; /* * For volatile autoclusters that are currently in auto mode * we need to discover if it will be set to manual mode. * If so, then we have to copy the current volatile values * first since those will become the new manual values (which * may be overwritten by explicit new values from this set * of controls). */ if (master->is_auto && master->has_volatiles && !is_cur_manual(master)) { /* Pick an initial non-manual value */ s32 new_auto_val = master->manual_mode_value + 1; u32 tmp_idx = idx; do { /* * Check if the auto control is part of the * list, and remember the new value. */ if (helpers[tmp_idx].ref->ctrl == master) new_auto_val = cs->controls[tmp_idx].value; tmp_idx = helpers[tmp_idx].next; } while (tmp_idx); /* * If the new value == the manual value, then copy * the current volatile values. */ if (new_auto_val == master->manual_mode_value) update_from_auto_cluster(master); } /* * Copy the new caller-supplied control values. * user_to_new() sets 'is_new' to 1. */ do { struct v4l2_ctrl *ctrl = helpers[idx].ref->ctrl; ret = user_to_new(cs->controls + idx, ctrl); if (!ret && ctrl->is_ptr) { ret = validate_new(ctrl, ctrl->p_new); if (ret) dprintk(vdev, "failed to validate control %s (%d)\n", v4l2_ctrl_get_name(ctrl->id), ret); } idx = helpers[idx].next; } while (!ret && idx); if (!ret) ret = try_or_set_cluster(fh, master, !hdl->req_obj.req && set, 0); if (!ret && hdl->req_obj.req && set) { for (j = 0; j < master->ncontrols; j++) { struct v4l2_ctrl_ref *ref = find_ref(hdl, master->cluster[j]->id); new_to_req(ref); } } /* Copy the new values back to userspace. */ if (!ret) { idx = i; do { ret = new_to_user(cs->controls + idx, helpers[idx].ref->ctrl); idx = helpers[idx].next; } while (!ret && idx); } v4l2_ctrl_unlock(master); } if (cs->count > ARRAY_SIZE(helper)) kvfree(helpers); return ret; } static int try_set_ext_ctrls(struct v4l2_fh *fh, struct v4l2_ctrl_handler *hdl, struct video_device *vdev, struct media_device *mdev, struct v4l2_ext_controls *cs, bool set) { int ret; if (cs->which == V4L2_CTRL_WHICH_REQUEST_VAL) return try_set_ext_ctrls_request(fh, hdl, vdev, mdev, cs, set); ret = try_set_ext_ctrls_common(fh, hdl, cs, vdev, set); if (ret) dprintk(vdev, "%s: try_set_ext_ctrls_common failed (%d)\n", video_device_node_name(vdev), ret); return ret; } int v4l2_try_ext_ctrls(struct v4l2_ctrl_handler *hdl, struct video_device *vdev, struct media_device *mdev, struct v4l2_ext_controls *cs) { return try_set_ext_ctrls(NULL, hdl, vdev, mdev, cs, false); } EXPORT_SYMBOL(v4l2_try_ext_ctrls); int v4l2_s_ext_ctrls(struct v4l2_fh *fh, struct v4l2_ctrl_handler *hdl, struct video_device *vdev, struct media_device *mdev, struct v4l2_ext_controls *cs) { return try_set_ext_ctrls(fh, hdl, vdev, mdev, cs, true); } EXPORT_SYMBOL(v4l2_s_ext_ctrls); /* * VIDIOC_G/S_CTRL implementation */ /* Helper function to get a single control */ static int get_ctrl(struct v4l2_ctrl *ctrl, struct v4l2_ext_control *c) { struct v4l2_ctrl *master = ctrl->cluster[0]; int ret = 0; int i; /* Compound controls are not supported. The new_to_user() and * cur_to_user() calls below would need to be modified not to access * userspace memory when called from get_ctrl(). */ if (!ctrl->is_int && ctrl->type != V4L2_CTRL_TYPE_INTEGER64) return -EINVAL; if (ctrl->flags & V4L2_CTRL_FLAG_WRITE_ONLY) return -EACCES; v4l2_ctrl_lock(master); /* g_volatile_ctrl will update the current control values */ if (ctrl->flags & V4L2_CTRL_FLAG_VOLATILE) { for (i = 0; i < master->ncontrols; i++) cur_to_new(master->cluster[i]); ret = call_op(master, g_volatile_ctrl); new_to_user(c, ctrl); } else { cur_to_user(c, ctrl); } v4l2_ctrl_unlock(master); return ret; } int v4l2_g_ctrl(struct v4l2_ctrl_handler *hdl, struct v4l2_control *control) { struct v4l2_ctrl *ctrl = v4l2_ctrl_find(hdl, control->id); struct v4l2_ext_control c; int ret; if (!ctrl || !ctrl->is_int) return -EINVAL; ret = get_ctrl(ctrl, &c); control->value = c.value; return ret; } EXPORT_SYMBOL(v4l2_g_ctrl); /* Helper function for VIDIOC_S_CTRL compatibility */ static int set_ctrl(struct v4l2_fh *fh, struct v4l2_ctrl *ctrl, u32 ch_flags) { struct v4l2_ctrl *master = ctrl->cluster[0]; int ret; int i; /* Reset the 'is_new' flags of the cluster */ for (i = 0; i < master->ncontrols; i++) if (master->cluster[i]) master->cluster[i]->is_new = 0; ret = validate_new(ctrl, ctrl->p_new); if (ret) return ret; /* * For autoclusters with volatiles that are switched from auto to * manual mode we have to update the current volatile values since * those will become the initial manual values after such a switch. */ if (master->is_auto && master->has_volatiles && ctrl == master && !is_cur_manual(master) && ctrl->val == master->manual_mode_value) update_from_auto_cluster(master); ctrl->is_new = 1; return try_or_set_cluster(fh, master, true, ch_flags); } /* Helper function for VIDIOC_S_CTRL compatibility */ static int set_ctrl_lock(struct v4l2_fh *fh, struct v4l2_ctrl *ctrl, struct v4l2_ext_control *c) { int ret; v4l2_ctrl_lock(ctrl); user_to_new(c, ctrl); ret = set_ctrl(fh, ctrl, 0); if (!ret) cur_to_user(c, ctrl); v4l2_ctrl_unlock(ctrl); return ret; } int v4l2_s_ctrl(struct v4l2_fh *fh, struct v4l2_ctrl_handler *hdl, struct v4l2_control *control) { struct v4l2_ctrl *ctrl = v4l2_ctrl_find(hdl, control->id); struct v4l2_ext_control c = { control->id }; int ret; if (!ctrl || !ctrl->is_int) return -EINVAL; if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY) return -EACCES; c.value = control->value; ret = set_ctrl_lock(fh, ctrl, &c); control->value = c.value; return ret; } EXPORT_SYMBOL(v4l2_s_ctrl); /* * Helper functions for drivers to get/set controls. */ s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_ext_control c; /* It's a driver bug if this happens. */ if (WARN_ON(!ctrl->is_int)) return 0; c.value = 0; get_ctrl(ctrl, &c); return c.value; } EXPORT_SYMBOL(v4l2_ctrl_g_ctrl); s64 v4l2_ctrl_g_ctrl_int64(struct v4l2_ctrl *ctrl) { struct v4l2_ext_control c; /* It's a driver bug if this happens. */ if (WARN_ON(ctrl->is_ptr || ctrl->type != V4L2_CTRL_TYPE_INTEGER64)) return 0; c.value64 = 0; get_ctrl(ctrl, &c); return c.value64; } EXPORT_SYMBOL(v4l2_ctrl_g_ctrl_int64); int __v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val) { lockdep_assert_held(ctrl->handler->lock); /* It's a driver bug if this happens. */ if (WARN_ON(!ctrl->is_int)) return -EINVAL; ctrl->val = val; return set_ctrl(NULL, ctrl, 0); } EXPORT_SYMBOL(__v4l2_ctrl_s_ctrl); int __v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl *ctrl, s64 val) { lockdep_assert_held(ctrl->handler->lock); /* It's a driver bug if this happens. */ if (WARN_ON(ctrl->is_ptr || ctrl->type != V4L2_CTRL_TYPE_INTEGER64)) return -EINVAL; *ctrl->p_new.p_s64 = val; return set_ctrl(NULL, ctrl, 0); } EXPORT_SYMBOL(__v4l2_ctrl_s_ctrl_int64); int __v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl *ctrl, const char *s) { lockdep_assert_held(ctrl->handler->lock); /* It's a driver bug if this happens. */ if (WARN_ON(ctrl->type != V4L2_CTRL_TYPE_STRING)) return -EINVAL; strscpy(ctrl->p_new.p_char, s, ctrl->maximum + 1); return set_ctrl(NULL, ctrl, 0); } EXPORT_SYMBOL(__v4l2_ctrl_s_ctrl_string); int __v4l2_ctrl_s_ctrl_compound(struct v4l2_ctrl *ctrl, enum v4l2_ctrl_type type, const void *p) { lockdep_assert_held(ctrl->handler->lock); /* It's a driver bug if this happens. */ if (WARN_ON(ctrl->type != type)) return -EINVAL; /* Setting dynamic arrays is not (yet?) supported. */ if (WARN_ON(ctrl->is_dyn_array)) return -EINVAL; memcpy(ctrl->p_new.p, p, ctrl->elems * ctrl->elem_size); return set_ctrl(NULL, ctrl, 0); } EXPORT_SYMBOL(__v4l2_ctrl_s_ctrl_compound); /* * Modify the range of a control. */ int __v4l2_ctrl_modify_range(struct v4l2_ctrl *ctrl, s64 min, s64 max, u64 step, s64 def) { bool value_changed; bool range_changed = false; int ret; lockdep_assert_held(ctrl->handler->lock); switch (ctrl->type) { case V4L2_CTRL_TYPE_INTEGER: case V4L2_CTRL_TYPE_INTEGER64: case V4L2_CTRL_TYPE_BOOLEAN: case V4L2_CTRL_TYPE_MENU: case V4L2_CTRL_TYPE_INTEGER_MENU: case V4L2_CTRL_TYPE_BITMASK: case V4L2_CTRL_TYPE_U8: case V4L2_CTRL_TYPE_U16: case V4L2_CTRL_TYPE_U32: if (ctrl->is_array) return -EINVAL; ret = check_range(ctrl->type, min, max, step, def); if (ret) return ret; break; default: return -EINVAL; } if (ctrl->minimum != min || ctrl->maximum != max || ctrl->step != step || ctrl->default_value != def) { range_changed = true; ctrl->minimum = min; ctrl->maximum = max; ctrl->step = step; ctrl->default_value = def; } cur_to_new(ctrl); if (validate_new(ctrl, ctrl->p_new)) { if (ctrl->type == V4L2_CTRL_TYPE_INTEGER64) *ctrl->p_new.p_s64 = def; else *ctrl->p_new.p_s32 = def; } if (ctrl->type == V4L2_CTRL_TYPE_INTEGER64) value_changed = *ctrl->p_new.p_s64 != *ctrl->p_cur.p_s64; else value_changed = *ctrl->p_new.p_s32 != *ctrl->p_cur.p_s32; if (value_changed) ret = set_ctrl(NULL, ctrl, V4L2_EVENT_CTRL_CH_RANGE); else if (range_changed) send_event(NULL, ctrl, V4L2_EVENT_CTRL_CH_RANGE); return ret; } EXPORT_SYMBOL(__v4l2_ctrl_modify_range); int __v4l2_ctrl_modify_dimensions(struct v4l2_ctrl *ctrl, u32 dims[V4L2_CTRL_MAX_DIMS]) { unsigned int elems = 1; unsigned int i; void *p_array; lockdep_assert_held(ctrl->handler->lock); if (!ctrl->is_array || ctrl->is_dyn_array) return -EINVAL; for (i = 0; i < ctrl->nr_of_dims; i++) elems *= dims[i]; if (elems == 0) return -EINVAL; p_array = kvzalloc(2 * elems * ctrl->elem_size, GFP_KERNEL); if (!p_array) return -ENOMEM; kvfree(ctrl->p_array); ctrl->p_array_alloc_elems = elems; ctrl->elems = elems; ctrl->new_elems = elems; ctrl->p_array = p_array; ctrl->p_new.p = p_array; ctrl->p_cur.p = p_array + elems * ctrl->elem_size; for (i = 0; i < ctrl->nr_of_dims; i++) ctrl->dims[i] = dims[i]; ctrl->type_ops->init(ctrl, 0, ctrl->p_cur); cur_to_new(ctrl); send_event(NULL, ctrl, V4L2_EVENT_CTRL_CH_VALUE | V4L2_EVENT_CTRL_CH_DIMENSIONS); return 0; } EXPORT_SYMBOL(__v4l2_ctrl_modify_dimensions); /* Implement VIDIOC_QUERY_EXT_CTRL */ int v4l2_query_ext_ctrl(struct v4l2_ctrl_handler *hdl, struct v4l2_query_ext_ctrl *qc) { const unsigned int next_flags = V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_COMPOUND; u32 id = qc->id & V4L2_CTRL_ID_MASK; struct v4l2_ctrl_ref *ref; struct v4l2_ctrl *ctrl; if (!hdl) return -EINVAL; mutex_lock(hdl->lock); /* Try to find it */ ref = find_ref(hdl, id); if ((qc->id & next_flags) && !list_empty(&hdl->ctrl_refs)) { bool is_compound; /* Match any control that is not hidden */ unsigned int mask = 1; bool match = false; if ((qc->id & next_flags) == V4L2_CTRL_FLAG_NEXT_COMPOUND) { /* Match any hidden control */ match = true; } else if ((qc->id & next_flags) == next_flags) { /* Match any control, compound or not */ mask = 0; } /* Find the next control with ID > qc->id */ /* Did we reach the end of the control list? */ if (id >= node2id(hdl->ctrl_refs.prev)) { ref = NULL; /* Yes, so there is no next control */ } else if (ref) { struct v4l2_ctrl_ref *pos = ref; /* * We found a control with the given ID, so just get * the next valid one in the list. */ ref = NULL; list_for_each_entry_continue(pos, &hdl->ctrl_refs, node) { is_compound = pos->ctrl->is_array || pos->ctrl->type >= V4L2_CTRL_COMPOUND_TYPES; if (id < pos->ctrl->id && (is_compound & mask) == match) { ref = pos; break; } } } else { struct v4l2_ctrl_ref *pos; /* * No control with the given ID exists, so start * searching for the next largest ID. We know there * is one, otherwise the first 'if' above would have * been true. */ list_for_each_entry(pos, &hdl->ctrl_refs, node) { is_compound = pos->ctrl->is_array || pos->ctrl->type >= V4L2_CTRL_COMPOUND_TYPES; if (id < pos->ctrl->id && (is_compound & mask) == match) { ref = pos; break; } } } } mutex_unlock(hdl->lock); if (!ref) return -EINVAL; ctrl = ref->ctrl; memset(qc, 0, sizeof(*qc)); if (id >= V4L2_CID_PRIVATE_BASE) qc->id = id; else qc->id = ctrl->id; strscpy(qc->name, ctrl->name, sizeof(qc->name)); qc->flags = user_flags(ctrl); qc->type = ctrl->type; qc->elem_size = ctrl->elem_size; qc->elems = ctrl->elems; qc->nr_of_dims = ctrl->nr_of_dims; memcpy(qc->dims, ctrl->dims, qc->nr_of_dims * sizeof(qc->dims[0])); qc->minimum = ctrl->minimum; qc->maximum = ctrl->maximum; qc->default_value = ctrl->default_value; if (ctrl->type == V4L2_CTRL_TYPE_MENU || ctrl->type == V4L2_CTRL_TYPE_INTEGER_MENU) qc->step = 1; else qc->step = ctrl->step; return 0; } EXPORT_SYMBOL(v4l2_query_ext_ctrl); /* Implement VIDIOC_QUERYCTRL */ int v4l2_queryctrl(struct v4l2_ctrl_handler *hdl, struct v4l2_queryctrl *qc) { struct v4l2_query_ext_ctrl qec = { qc->id }; int rc; rc = v4l2_query_ext_ctrl(hdl, &qec); if (rc) return rc; qc->id = qec.id; qc->type = qec.type; qc->flags = qec.flags; strscpy(qc->name, qec.name, sizeof(qc->name)); switch (qc->type) { case V4L2_CTRL_TYPE_INTEGER: case V4L2_CTRL_TYPE_BOOLEAN: case V4L2_CTRL_TYPE_MENU: case V4L2_CTRL_TYPE_INTEGER_MENU: case V4L2_CTRL_TYPE_STRING: case V4L2_CTRL_TYPE_BITMASK: qc->minimum = qec.minimum; qc->maximum = qec.maximum; qc->step = qec.step; qc->default_value = qec.default_value; break; default: qc->minimum = 0; qc->maximum = 0; qc->step = 0; qc->default_value = 0; break; } return 0; } EXPORT_SYMBOL(v4l2_queryctrl); /* Implement VIDIOC_QUERYMENU */ int v4l2_querymenu(struct v4l2_ctrl_handler *hdl, struct v4l2_querymenu *qm) { struct v4l2_ctrl *ctrl; u32 i = qm->index; ctrl = v4l2_ctrl_find(hdl, qm->id); if (!ctrl) return -EINVAL; qm->reserved = 0; /* Sanity checks */ switch (ctrl->type) { case V4L2_CTRL_TYPE_MENU: if (!ctrl->qmenu) return -EINVAL; break; case V4L2_CTRL_TYPE_INTEGER_MENU: if (!ctrl->qmenu_int) return -EINVAL; break; default: return -EINVAL; } if (i < ctrl->minimum || i > ctrl->maximum) return -EINVAL; /* Use mask to see if this menu item should be skipped */ if (i < BITS_PER_LONG_LONG && (ctrl->menu_skip_mask & BIT_ULL(i))) return -EINVAL; /* Empty menu items should also be skipped */ if (ctrl->type == V4L2_CTRL_TYPE_MENU) { if (!ctrl->qmenu[i] || ctrl->qmenu[i][0] == '\0') return -EINVAL; strscpy(qm->name, ctrl->qmenu[i], sizeof(qm->name)); } else { qm->value = ctrl->qmenu_int[i]; } return 0; } EXPORT_SYMBOL(v4l2_querymenu); /* * VIDIOC_LOG_STATUS helpers */ int v4l2_ctrl_log_status(struct file *file, void *fh) { struct video_device *vfd = video_devdata(file); struct v4l2_fh *vfh = file->private_data; if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) && vfd->v4l2_dev) v4l2_ctrl_handler_log_status(vfh->ctrl_handler, vfd->v4l2_dev->name); return 0; } EXPORT_SYMBOL(v4l2_ctrl_log_status); int v4l2_ctrl_subdev_log_status(struct v4l2_subdev *sd) { v4l2_ctrl_handler_log_status(sd->ctrl_handler, sd->name); return 0; } EXPORT_SYMBOL(v4l2_ctrl_subdev_log_status); /* * VIDIOC_(UN)SUBSCRIBE_EVENT implementation */ static int v4l2_ctrl_add_event(struct v4l2_subscribed_event *sev, unsigned int elems) { struct v4l2_ctrl *ctrl = v4l2_ctrl_find(sev->fh->ctrl_handler, sev->id); if (!ctrl) return -EINVAL; v4l2_ctrl_lock(ctrl); list_add_tail(&sev->node, &ctrl->ev_subs); if (ctrl->type != V4L2_CTRL_TYPE_CTRL_CLASS && (sev->flags & V4L2_EVENT_SUB_FL_SEND_INITIAL)) send_initial_event(sev->fh, ctrl); v4l2_ctrl_unlock(ctrl); return 0; } static void v4l2_ctrl_del_event(struct v4l2_subscribed_event *sev) { struct v4l2_ctrl *ctrl = v4l2_ctrl_find(sev->fh->ctrl_handler, sev->id); if (!ctrl) return; v4l2_ctrl_lock(ctrl); list_del(&sev->node); v4l2_ctrl_unlock(ctrl); } void v4l2_ctrl_replace(struct v4l2_event *old, const struct v4l2_event *new) { u32 old_changes = old->u.ctrl.changes; old->u.ctrl = new->u.ctrl; old->u.ctrl.changes |= old_changes; } EXPORT_SYMBOL(v4l2_ctrl_replace); void v4l2_ctrl_merge(const struct v4l2_event *old, struct v4l2_event *new) { new->u.ctrl.changes |= old->u.ctrl.changes; } EXPORT_SYMBOL(v4l2_ctrl_merge); const struct v4l2_subscribed_event_ops v4l2_ctrl_sub_ev_ops = { .add = v4l2_ctrl_add_event, .del = v4l2_ctrl_del_event, .replace = v4l2_ctrl_replace, .merge = v4l2_ctrl_merge, }; EXPORT_SYMBOL(v4l2_ctrl_sub_ev_ops); int v4l2_ctrl_subscribe_event(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub) { if (sub->type == V4L2_EVENT_CTRL) return v4l2_event_subscribe(fh, sub, 0, &v4l2_ctrl_sub_ev_ops); return -EINVAL; } EXPORT_SYMBOL(v4l2_ctrl_subscribe_event); int v4l2_ctrl_subdev_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { if (!sd->ctrl_handler) return -EINVAL; return v4l2_ctrl_subscribe_event(fh, sub); } EXPORT_SYMBOL(v4l2_ctrl_subdev_subscribe_event); /* * poll helper */ __poll_t v4l2_ctrl_poll(struct file *file, struct poll_table_struct *wait) { struct v4l2_fh *fh = file->private_data; poll_wait(file, &fh->wait, wait); if (v4l2_event_pending(fh)) return EPOLLPRI; return 0; } EXPORT_SYMBOL(v4l2_ctrl_poll);
574 125 125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 #include <linux/notifier.h> #include <linux/socket.h> #include <linux/kernel.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/fib_notifier.h> #include <net/netns/ipv6.h> #include <net/ip6_fib.h> int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET6; return call_fib_notifier(nb, event_type, info); } int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET6; return call_fib_notifiers(net, event_type, info); } static unsigned int fib6_seq_read(struct net *net) { return fib6_tables_seq_read(net) + fib6_rules_seq_read(net); } static int fib6_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { int err; err = fib6_rules_dump(net, nb, extack); if (err) return err; return fib6_tables_dump(net, nb, extack); } static const struct fib_notifier_ops fib6_notifier_ops_template = { .family = AF_INET6, .fib_seq_read = fib6_seq_read, .fib_dump = fib6_dump, .owner = THIS_MODULE, }; int __net_init fib6_notifier_init(struct net *net) { struct fib_notifier_ops *ops; ops = fib_notifier_ops_register(&fib6_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv6.notifier_ops = ops; return 0; } void __net_exit fib6_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv6.notifier_ops); }
76 79 37 36 2 37 9 37 37 37 36 1 1 36 34 34 2 33 34 34 30 29 31 33 32 27 9 27 5 4 34 34 34 31 32 36 6 1 1 2 1 1 10 6 4 1 10 10 4 2 2 4 3 3 3 4 9 3 1 1 4 4 2 4 4 2 2 1 1 1 1 1 1 1 3 1 1 2 1 6 1 2 1 1 63 5 59 49 10 6 51 2 2 6 53 47 6 51 2 53 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Matthias Schiffer */ #include "netlink.h" #include "main.h" #include <linux/array_size.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/byteorder/generic.h> #include <linux/cache.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/init.h> #include <linux/limits.h> #include <linux/list.h> #include <linux/minmax.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/printk.h> #include <linux/rtnetlink.h> #include <linux/skbuff.h> #include <linux/stddef.h> #include <linux/types.h> #include <net/genetlink.h> #include <net/net_namespace.h> #include <net/netlink.h> #include <net/sock.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "bat_algo.h" #include "bridge_loop_avoidance.h" #include "distributed-arp-table.h" #include "gateway_client.h" #include "gateway_common.h" #include "hard-interface.h" #include "log.h" #include "multicast.h" #include "network-coding.h" #include "originator.h" #include "soft-interface.h" #include "tp_meter.h" #include "translation-table.h" struct genl_family batadv_netlink_family; /* multicast groups */ enum batadv_netlink_multicast_groups { BATADV_NL_MCGRP_CONFIG, BATADV_NL_MCGRP_TPMETER, }; /** * enum batadv_genl_ops_flags - flags for genl_ops's internal_flags */ enum batadv_genl_ops_flags { /** * @BATADV_FLAG_NEED_MESH: request requires valid soft interface in * attribute BATADV_ATTR_MESH_IFINDEX and expects a pointer to it to be * saved in info->user_ptr[0] */ BATADV_FLAG_NEED_MESH = BIT(0), /** * @BATADV_FLAG_NEED_HARDIF: request requires valid hard interface in * attribute BATADV_ATTR_HARD_IFINDEX and expects a pointer to it to be * saved in info->user_ptr[1] */ BATADV_FLAG_NEED_HARDIF = BIT(1), /** * @BATADV_FLAG_NEED_VLAN: request requires valid vlan in * attribute BATADV_ATTR_VLANID and expects a pointer to it to be * saved in info->user_ptr[1] */ BATADV_FLAG_NEED_VLAN = BIT(2), }; static const struct genl_multicast_group batadv_netlink_mcgrps[] = { [BATADV_NL_MCGRP_CONFIG] = { .name = BATADV_NL_MCAST_GROUP_CONFIG }, [BATADV_NL_MCGRP_TPMETER] = { .name = BATADV_NL_MCAST_GROUP_TPMETER }, }; static const struct nla_policy batadv_netlink_policy[NUM_BATADV_ATTR] = { [BATADV_ATTR_VERSION] = { .type = NLA_STRING }, [BATADV_ATTR_ALGO_NAME] = { .type = NLA_STRING }, [BATADV_ATTR_MESH_IFINDEX] = { .type = NLA_U32 }, [BATADV_ATTR_MESH_IFNAME] = { .type = NLA_STRING }, [BATADV_ATTR_MESH_ADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_HARD_IFINDEX] = { .type = NLA_U32 }, [BATADV_ATTR_HARD_IFNAME] = { .type = NLA_STRING }, [BATADV_ATTR_HARD_ADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_ORIG_ADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_TPMETER_RESULT] = { .type = NLA_U8 }, [BATADV_ATTR_TPMETER_TEST_TIME] = { .type = NLA_U32 }, [BATADV_ATTR_TPMETER_BYTES] = { .type = NLA_U64 }, [BATADV_ATTR_TPMETER_COOKIE] = { .type = NLA_U32 }, [BATADV_ATTR_ACTIVE] = { .type = NLA_FLAG }, [BATADV_ATTR_TT_ADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_TT_TTVN] = { .type = NLA_U8 }, [BATADV_ATTR_TT_LAST_TTVN] = { .type = NLA_U8 }, [BATADV_ATTR_TT_CRC32] = { .type = NLA_U32 }, [BATADV_ATTR_TT_VID] = { .type = NLA_U16 }, [BATADV_ATTR_TT_FLAGS] = { .type = NLA_U32 }, [BATADV_ATTR_FLAG_BEST] = { .type = NLA_FLAG }, [BATADV_ATTR_LAST_SEEN_MSECS] = { .type = NLA_U32 }, [BATADV_ATTR_NEIGH_ADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_TQ] = { .type = NLA_U8 }, [BATADV_ATTR_THROUGHPUT] = { .type = NLA_U32 }, [BATADV_ATTR_BANDWIDTH_UP] = { .type = NLA_U32 }, [BATADV_ATTR_BANDWIDTH_DOWN] = { .type = NLA_U32 }, [BATADV_ATTR_ROUTER] = { .len = ETH_ALEN }, [BATADV_ATTR_BLA_OWN] = { .type = NLA_FLAG }, [BATADV_ATTR_BLA_ADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_BLA_VID] = { .type = NLA_U16 }, [BATADV_ATTR_BLA_BACKBONE] = { .len = ETH_ALEN }, [BATADV_ATTR_BLA_CRC] = { .type = NLA_U16 }, [BATADV_ATTR_DAT_CACHE_IP4ADDRESS] = { .type = NLA_U32 }, [BATADV_ATTR_DAT_CACHE_HWADDRESS] = { .len = ETH_ALEN }, [BATADV_ATTR_DAT_CACHE_VID] = { .type = NLA_U16 }, [BATADV_ATTR_MCAST_FLAGS] = { .type = NLA_U32 }, [BATADV_ATTR_MCAST_FLAGS_PRIV] = { .type = NLA_U32 }, [BATADV_ATTR_VLANID] = { .type = NLA_U16 }, [BATADV_ATTR_AGGREGATED_OGMS_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_AP_ISOLATION_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_ISOLATION_MARK] = { .type = NLA_U32 }, [BATADV_ATTR_ISOLATION_MASK] = { .type = NLA_U32 }, [BATADV_ATTR_BONDING_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_BRIDGE_LOOP_AVOIDANCE_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_DISTRIBUTED_ARP_TABLE_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_FRAGMENTATION_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_GW_BANDWIDTH_DOWN] = { .type = NLA_U32 }, [BATADV_ATTR_GW_BANDWIDTH_UP] = { .type = NLA_U32 }, [BATADV_ATTR_GW_MODE] = { .type = NLA_U8 }, [BATADV_ATTR_GW_SEL_CLASS] = { .type = NLA_U32 }, [BATADV_ATTR_HOP_PENALTY] = { .type = NLA_U8 }, [BATADV_ATTR_LOG_LEVEL] = { .type = NLA_U32 }, [BATADV_ATTR_MULTICAST_FORCEFLOOD_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_MULTICAST_FANOUT] = { .type = NLA_U32 }, [BATADV_ATTR_NETWORK_CODING_ENABLED] = { .type = NLA_U8 }, [BATADV_ATTR_ORIG_INTERVAL] = { .type = NLA_U32 }, [BATADV_ATTR_ELP_INTERVAL] = { .type = NLA_U32 }, [BATADV_ATTR_THROUGHPUT_OVERRIDE] = { .type = NLA_U32 }, }; /** * batadv_netlink_get_ifindex() - Extract an interface index from a message * @nlh: Message header * @attrtype: Attribute which holds an interface index * * Return: interface index, or 0. */ int batadv_netlink_get_ifindex(const struct nlmsghdr *nlh, int attrtype) { struct nlattr *attr = nlmsg_find_attr(nlh, GENL_HDRLEN, attrtype); return (attr && nla_len(attr) == sizeof(u32)) ? nla_get_u32(attr) : 0; } /** * batadv_netlink_mesh_fill_ap_isolation() - Add ap_isolation softif attribute * @msg: Netlink message to dump into * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_mesh_fill_ap_isolation(struct sk_buff *msg, struct batadv_priv *bat_priv) { struct batadv_softif_vlan *vlan; u8 ap_isolation; vlan = batadv_softif_vlan_get(bat_priv, BATADV_NO_FLAGS); if (!vlan) return 0; ap_isolation = atomic_read(&vlan->ap_isolation); batadv_softif_vlan_put(vlan); return nla_put_u8(msg, BATADV_ATTR_AP_ISOLATION_ENABLED, !!ap_isolation); } /** * batadv_netlink_set_mesh_ap_isolation() - Set ap_isolation from genl msg * @attr: parsed BATADV_ATTR_AP_ISOLATION_ENABLED attribute * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_set_mesh_ap_isolation(struct nlattr *attr, struct batadv_priv *bat_priv) { struct batadv_softif_vlan *vlan; vlan = batadv_softif_vlan_get(bat_priv, BATADV_NO_FLAGS); if (!vlan) return -ENOENT; atomic_set(&vlan->ap_isolation, !!nla_get_u8(attr)); batadv_softif_vlan_put(vlan); return 0; } /** * batadv_netlink_mesh_fill() - Fill message with mesh attributes * @msg: Netlink message to dump into * @bat_priv: the bat priv with all the soft interface information * @cmd: type of message to generate * @portid: Port making netlink request * @seq: sequence number for message * @flags: Additional flags for message * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_mesh_fill(struct sk_buff *msg, struct batadv_priv *bat_priv, enum batadv_nl_commands cmd, u32 portid, u32 seq, int flags) { struct net_device *soft_iface = bat_priv->soft_iface; struct batadv_hard_iface *primary_if = NULL; struct net_device *hard_iface; void *hdr; hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_string(msg, BATADV_ATTR_VERSION, BATADV_SOURCE_VERSION) || nla_put_string(msg, BATADV_ATTR_ALGO_NAME, bat_priv->algo_ops->name) || nla_put_u32(msg, BATADV_ATTR_MESH_IFINDEX, soft_iface->ifindex) || nla_put_string(msg, BATADV_ATTR_MESH_IFNAME, soft_iface->name) || nla_put(msg, BATADV_ATTR_MESH_ADDRESS, ETH_ALEN, soft_iface->dev_addr) || nla_put_u8(msg, BATADV_ATTR_TT_TTVN, (u8)atomic_read(&bat_priv->tt.vn))) goto nla_put_failure; #ifdef CONFIG_BATMAN_ADV_BLA if (nla_put_u16(msg, BATADV_ATTR_BLA_CRC, ntohs(bat_priv->bla.claim_dest.group))) goto nla_put_failure; #endif if (batadv_mcast_mesh_info_put(msg, bat_priv)) goto nla_put_failure; primary_if = batadv_primary_if_get_selected(bat_priv); if (primary_if && primary_if->if_status == BATADV_IF_ACTIVE) { hard_iface = primary_if->net_dev; if (nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, hard_iface->ifindex) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, hard_iface->name) || nla_put(msg, BATADV_ATTR_HARD_ADDRESS, ETH_ALEN, hard_iface->dev_addr)) goto nla_put_failure; } if (nla_put_u8(msg, BATADV_ATTR_AGGREGATED_OGMS_ENABLED, !!atomic_read(&bat_priv->aggregated_ogms))) goto nla_put_failure; if (batadv_netlink_mesh_fill_ap_isolation(msg, bat_priv)) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_ISOLATION_MARK, bat_priv->isolation_mark)) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_ISOLATION_MASK, bat_priv->isolation_mark_mask)) goto nla_put_failure; if (nla_put_u8(msg, BATADV_ATTR_BONDING_ENABLED, !!atomic_read(&bat_priv->bonding))) goto nla_put_failure; #ifdef CONFIG_BATMAN_ADV_BLA if (nla_put_u8(msg, BATADV_ATTR_BRIDGE_LOOP_AVOIDANCE_ENABLED, !!atomic_read(&bat_priv->bridge_loop_avoidance))) goto nla_put_failure; #endif /* CONFIG_BATMAN_ADV_BLA */ #ifdef CONFIG_BATMAN_ADV_DAT if (nla_put_u8(msg, BATADV_ATTR_DISTRIBUTED_ARP_TABLE_ENABLED, !!atomic_read(&bat_priv->distributed_arp_table))) goto nla_put_failure; #endif /* CONFIG_BATMAN_ADV_DAT */ if (nla_put_u8(msg, BATADV_ATTR_FRAGMENTATION_ENABLED, !!atomic_read(&bat_priv->fragmentation))) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_GW_BANDWIDTH_DOWN, atomic_read(&bat_priv->gw.bandwidth_down))) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_GW_BANDWIDTH_UP, atomic_read(&bat_priv->gw.bandwidth_up))) goto nla_put_failure; if (nla_put_u8(msg, BATADV_ATTR_GW_MODE, atomic_read(&bat_priv->gw.mode))) goto nla_put_failure; if (bat_priv->algo_ops->gw.get_best_gw_node && bat_priv->algo_ops->gw.is_eligible) { /* GW selection class is not available if the routing algorithm * in use does not implement the GW API */ if (nla_put_u32(msg, BATADV_ATTR_GW_SEL_CLASS, atomic_read(&bat_priv->gw.sel_class))) goto nla_put_failure; } if (nla_put_u8(msg, BATADV_ATTR_HOP_PENALTY, atomic_read(&bat_priv->hop_penalty))) goto nla_put_failure; #ifdef CONFIG_BATMAN_ADV_DEBUG if (nla_put_u32(msg, BATADV_ATTR_LOG_LEVEL, atomic_read(&bat_priv->log_level))) goto nla_put_failure; #endif /* CONFIG_BATMAN_ADV_DEBUG */ #ifdef CONFIG_BATMAN_ADV_MCAST if (nla_put_u8(msg, BATADV_ATTR_MULTICAST_FORCEFLOOD_ENABLED, !atomic_read(&bat_priv->multicast_mode))) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_MULTICAST_FANOUT, atomic_read(&bat_priv->multicast_fanout))) goto nla_put_failure; #endif /* CONFIG_BATMAN_ADV_MCAST */ #ifdef CONFIG_BATMAN_ADV_NC if (nla_put_u8(msg, BATADV_ATTR_NETWORK_CODING_ENABLED, !!atomic_read(&bat_priv->network_coding))) goto nla_put_failure; #endif /* CONFIG_BATMAN_ADV_NC */ if (nla_put_u32(msg, BATADV_ATTR_ORIG_INTERVAL, atomic_read(&bat_priv->orig_interval))) goto nla_put_failure; batadv_hardif_put(primary_if); genlmsg_end(msg, hdr); return 0; nla_put_failure: batadv_hardif_put(primary_if); genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_netlink_notify_mesh() - send softif attributes to listener * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success, < 0 on error */ static int batadv_netlink_notify_mesh(struct batadv_priv *bat_priv) { struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = batadv_netlink_mesh_fill(msg, bat_priv, BATADV_CMD_SET_MESH, 0, 0, 0); if (ret < 0) { nlmsg_free(msg); return ret; } genlmsg_multicast_netns(&batadv_netlink_family, dev_net(bat_priv->soft_iface), msg, 0, BATADV_NL_MCGRP_CONFIG, GFP_KERNEL); return 0; } /** * batadv_netlink_get_mesh() - Get softif attributes * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_get_mesh(struct sk_buff *skb, struct genl_info *info) { struct batadv_priv *bat_priv = info->user_ptr[0]; struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = batadv_netlink_mesh_fill(msg, bat_priv, BATADV_CMD_GET_MESH, info->snd_portid, info->snd_seq, 0); if (ret < 0) { nlmsg_free(msg); return ret; } ret = genlmsg_reply(msg, info); return ret; } /** * batadv_netlink_set_mesh() - Set softif attributes * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_set_mesh(struct sk_buff *skb, struct genl_info *info) { struct batadv_priv *bat_priv = info->user_ptr[0]; struct nlattr *attr; if (info->attrs[BATADV_ATTR_AGGREGATED_OGMS_ENABLED]) { attr = info->attrs[BATADV_ATTR_AGGREGATED_OGMS_ENABLED]; atomic_set(&bat_priv->aggregated_ogms, !!nla_get_u8(attr)); } if (info->attrs[BATADV_ATTR_AP_ISOLATION_ENABLED]) { attr = info->attrs[BATADV_ATTR_AP_ISOLATION_ENABLED]; batadv_netlink_set_mesh_ap_isolation(attr, bat_priv); } if (info->attrs[BATADV_ATTR_ISOLATION_MARK]) { attr = info->attrs[BATADV_ATTR_ISOLATION_MARK]; bat_priv->isolation_mark = nla_get_u32(attr); } if (info->attrs[BATADV_ATTR_ISOLATION_MASK]) { attr = info->attrs[BATADV_ATTR_ISOLATION_MASK]; bat_priv->isolation_mark_mask = nla_get_u32(attr); } if (info->attrs[BATADV_ATTR_BONDING_ENABLED]) { attr = info->attrs[BATADV_ATTR_BONDING_ENABLED]; atomic_set(&bat_priv->bonding, !!nla_get_u8(attr)); } #ifdef CONFIG_BATMAN_ADV_BLA if (info->attrs[BATADV_ATTR_BRIDGE_LOOP_AVOIDANCE_ENABLED]) { attr = info->attrs[BATADV_ATTR_BRIDGE_LOOP_AVOIDANCE_ENABLED]; atomic_set(&bat_priv->bridge_loop_avoidance, !!nla_get_u8(attr)); batadv_bla_status_update(bat_priv->soft_iface); } #endif /* CONFIG_BATMAN_ADV_BLA */ #ifdef CONFIG_BATMAN_ADV_DAT if (info->attrs[BATADV_ATTR_DISTRIBUTED_ARP_TABLE_ENABLED]) { attr = info->attrs[BATADV_ATTR_DISTRIBUTED_ARP_TABLE_ENABLED]; atomic_set(&bat_priv->distributed_arp_table, !!nla_get_u8(attr)); batadv_dat_status_update(bat_priv->soft_iface); } #endif /* CONFIG_BATMAN_ADV_DAT */ if (info->attrs[BATADV_ATTR_FRAGMENTATION_ENABLED]) { attr = info->attrs[BATADV_ATTR_FRAGMENTATION_ENABLED]; atomic_set(&bat_priv->fragmentation, !!nla_get_u8(attr)); rtnl_lock(); batadv_update_min_mtu(bat_priv->soft_iface); rtnl_unlock(); } if (info->attrs[BATADV_ATTR_GW_BANDWIDTH_DOWN]) { attr = info->attrs[BATADV_ATTR_GW_BANDWIDTH_DOWN]; atomic_set(&bat_priv->gw.bandwidth_down, nla_get_u32(attr)); batadv_gw_tvlv_container_update(bat_priv); } if (info->attrs[BATADV_ATTR_GW_BANDWIDTH_UP]) { attr = info->attrs[BATADV_ATTR_GW_BANDWIDTH_UP]; atomic_set(&bat_priv->gw.bandwidth_up, nla_get_u32(attr)); batadv_gw_tvlv_container_update(bat_priv); } if (info->attrs[BATADV_ATTR_GW_MODE]) { u8 gw_mode; attr = info->attrs[BATADV_ATTR_GW_MODE]; gw_mode = nla_get_u8(attr); if (gw_mode <= BATADV_GW_MODE_SERVER) { /* Invoking batadv_gw_reselect() is not enough to really * de-select the current GW. It will only instruct the * gateway client code to perform a re-election the next * time that this is needed. * * When gw client mode is being switched off the current * GW must be de-selected explicitly otherwise no GW_ADD * uevent is thrown on client mode re-activation. This * is operation is performed in * batadv_gw_check_client_stop(). */ batadv_gw_reselect(bat_priv); /* always call batadv_gw_check_client_stop() before * changing the gateway state */ batadv_gw_check_client_stop(bat_priv); atomic_set(&bat_priv->gw.mode, gw_mode); batadv_gw_tvlv_container_update(bat_priv); } } if (info->attrs[BATADV_ATTR_GW_SEL_CLASS] && bat_priv->algo_ops->gw.get_best_gw_node && bat_priv->algo_ops->gw.is_eligible) { /* setting the GW selection class is allowed only if the routing * algorithm in use implements the GW API */ u32 sel_class_max = bat_priv->algo_ops->gw.sel_class_max; u32 sel_class; attr = info->attrs[BATADV_ATTR_GW_SEL_CLASS]; sel_class = nla_get_u32(attr); if (sel_class >= 1 && sel_class <= sel_class_max) { atomic_set(&bat_priv->gw.sel_class, sel_class); batadv_gw_reselect(bat_priv); } } if (info->attrs[BATADV_ATTR_HOP_PENALTY]) { attr = info->attrs[BATADV_ATTR_HOP_PENALTY]; atomic_set(&bat_priv->hop_penalty, nla_get_u8(attr)); } #ifdef CONFIG_BATMAN_ADV_DEBUG if (info->attrs[BATADV_ATTR_LOG_LEVEL]) { attr = info->attrs[BATADV_ATTR_LOG_LEVEL]; atomic_set(&bat_priv->log_level, nla_get_u32(attr) & BATADV_DBG_ALL); } #endif /* CONFIG_BATMAN_ADV_DEBUG */ #ifdef CONFIG_BATMAN_ADV_MCAST if (info->attrs[BATADV_ATTR_MULTICAST_FORCEFLOOD_ENABLED]) { attr = info->attrs[BATADV_ATTR_MULTICAST_FORCEFLOOD_ENABLED]; atomic_set(&bat_priv->multicast_mode, !nla_get_u8(attr)); } if (info->attrs[BATADV_ATTR_MULTICAST_FANOUT]) { attr = info->attrs[BATADV_ATTR_MULTICAST_FANOUT]; atomic_set(&bat_priv->multicast_fanout, nla_get_u32(attr)); } #endif /* CONFIG_BATMAN_ADV_MCAST */ #ifdef CONFIG_BATMAN_ADV_NC if (info->attrs[BATADV_ATTR_NETWORK_CODING_ENABLED]) { attr = info->attrs[BATADV_ATTR_NETWORK_CODING_ENABLED]; atomic_set(&bat_priv->network_coding, !!nla_get_u8(attr)); batadv_nc_status_update(bat_priv->soft_iface); } #endif /* CONFIG_BATMAN_ADV_NC */ if (info->attrs[BATADV_ATTR_ORIG_INTERVAL]) { u32 orig_interval; attr = info->attrs[BATADV_ATTR_ORIG_INTERVAL]; orig_interval = nla_get_u32(attr); orig_interval = min_t(u32, orig_interval, INT_MAX); orig_interval = max_t(u32, orig_interval, 2 * BATADV_JITTER); atomic_set(&bat_priv->orig_interval, orig_interval); } batadv_netlink_notify_mesh(bat_priv); return 0; } /** * batadv_netlink_tp_meter_put() - Fill information of started tp_meter session * @msg: netlink message to be sent back * @cookie: tp meter session cookie * * Return: 0 on success, < 0 on error */ static int batadv_netlink_tp_meter_put(struct sk_buff *msg, u32 cookie) { if (nla_put_u32(msg, BATADV_ATTR_TPMETER_COOKIE, cookie)) return -ENOBUFS; return 0; } /** * batadv_netlink_tpmeter_notify() - send tp_meter result via netlink to client * @bat_priv: the bat priv with all the soft interface information * @dst: destination of tp_meter session * @result: reason for tp meter session stop * @test_time: total time of the tp_meter session * @total_bytes: bytes acked to the receiver * @cookie: cookie of tp_meter session * * Return: 0 on success, < 0 on error */ int batadv_netlink_tpmeter_notify(struct batadv_priv *bat_priv, const u8 *dst, u8 result, u32 test_time, u64 total_bytes, u32 cookie) { struct sk_buff *msg; void *hdr; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = genlmsg_put(msg, 0, 0, &batadv_netlink_family, 0, BATADV_CMD_TP_METER); if (!hdr) { ret = -ENOBUFS; goto err_genlmsg; } if (nla_put_u32(msg, BATADV_ATTR_TPMETER_COOKIE, cookie)) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_TPMETER_TEST_TIME, test_time)) goto nla_put_failure; if (nla_put_u64_64bit(msg, BATADV_ATTR_TPMETER_BYTES, total_bytes, BATADV_ATTR_PAD)) goto nla_put_failure; if (nla_put_u8(msg, BATADV_ATTR_TPMETER_RESULT, result)) goto nla_put_failure; if (nla_put(msg, BATADV_ATTR_ORIG_ADDRESS, ETH_ALEN, dst)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&batadv_netlink_family, dev_net(bat_priv->soft_iface), msg, 0, BATADV_NL_MCGRP_TPMETER, GFP_KERNEL); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); ret = -EMSGSIZE; err_genlmsg: nlmsg_free(msg); return ret; } /** * batadv_netlink_tp_meter_start() - Start a new tp_meter session * @skb: received netlink message * @info: receiver information * * Return: 0 on success, < 0 on error */ static int batadv_netlink_tp_meter_start(struct sk_buff *skb, struct genl_info *info) { struct batadv_priv *bat_priv = info->user_ptr[0]; struct sk_buff *msg = NULL; u32 test_length; void *msg_head; u32 cookie; u8 *dst; int ret; if (!info->attrs[BATADV_ATTR_ORIG_ADDRESS]) return -EINVAL; if (!info->attrs[BATADV_ATTR_TPMETER_TEST_TIME]) return -EINVAL; dst = nla_data(info->attrs[BATADV_ATTR_ORIG_ADDRESS]); test_length = nla_get_u32(info->attrs[BATADV_ATTR_TPMETER_TEST_TIME]); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto out; } msg_head = genlmsg_put(msg, info->snd_portid, info->snd_seq, &batadv_netlink_family, 0, BATADV_CMD_TP_METER); if (!msg_head) { ret = -ENOBUFS; goto out; } batadv_tp_start(bat_priv, dst, test_length, &cookie); ret = batadv_netlink_tp_meter_put(msg, cookie); out: if (ret) { if (msg) nlmsg_free(msg); return ret; } genlmsg_end(msg, msg_head); return genlmsg_reply(msg, info); } /** * batadv_netlink_tp_meter_cancel() - Cancel a running tp_meter session * @skb: received netlink message * @info: receiver information * * Return: 0 on success, < 0 on error */ static int batadv_netlink_tp_meter_cancel(struct sk_buff *skb, struct genl_info *info) { struct batadv_priv *bat_priv = info->user_ptr[0]; u8 *dst; int ret = 0; if (!info->attrs[BATADV_ATTR_ORIG_ADDRESS]) return -EINVAL; dst = nla_data(info->attrs[BATADV_ATTR_ORIG_ADDRESS]); batadv_tp_stop(bat_priv, dst, BATADV_TP_REASON_CANCEL); return ret; } /** * batadv_netlink_hardif_fill() - Fill message with hardif attributes * @msg: Netlink message to dump into * @bat_priv: the bat priv with all the soft interface information * @hard_iface: hard interface which was modified * @cmd: type of message to generate * @portid: Port making netlink request * @seq: sequence number for message * @flags: Additional flags for message * @cb: Control block containing additional options * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_hardif_fill(struct sk_buff *msg, struct batadv_priv *bat_priv, struct batadv_hard_iface *hard_iface, enum batadv_nl_commands cmd, u32 portid, u32 seq, int flags, struct netlink_callback *cb) { struct net_device *net_dev = hard_iface->net_dev; void *hdr; hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, flags, cmd); if (!hdr) return -ENOBUFS; if (cb) genl_dump_check_consistent(cb, hdr); if (nla_put_u32(msg, BATADV_ATTR_MESH_IFINDEX, bat_priv->soft_iface->ifindex)) goto nla_put_failure; if (nla_put_string(msg, BATADV_ATTR_MESH_IFNAME, bat_priv->soft_iface->name)) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, net_dev->ifindex) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, net_dev->name) || nla_put(msg, BATADV_ATTR_HARD_ADDRESS, ETH_ALEN, net_dev->dev_addr)) goto nla_put_failure; if (hard_iface->if_status == BATADV_IF_ACTIVE) { if (nla_put_flag(msg, BATADV_ATTR_ACTIVE)) goto nla_put_failure; } if (nla_put_u8(msg, BATADV_ATTR_HOP_PENALTY, atomic_read(&hard_iface->hop_penalty))) goto nla_put_failure; #ifdef CONFIG_BATMAN_ADV_BATMAN_V if (nla_put_u32(msg, BATADV_ATTR_ELP_INTERVAL, atomic_read(&hard_iface->bat_v.elp_interval))) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_THROUGHPUT_OVERRIDE, atomic_read(&hard_iface->bat_v.throughput_override))) goto nla_put_failure; #endif /* CONFIG_BATMAN_ADV_BATMAN_V */ genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_netlink_notify_hardif() - send hardif attributes to listener * @bat_priv: the bat priv with all the soft interface information * @hard_iface: hard interface which was modified * * Return: 0 on success, < 0 on error */ static int batadv_netlink_notify_hardif(struct batadv_priv *bat_priv, struct batadv_hard_iface *hard_iface) { struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = batadv_netlink_hardif_fill(msg, bat_priv, hard_iface, BATADV_CMD_SET_HARDIF, 0, 0, 0, NULL); if (ret < 0) { nlmsg_free(msg); return ret; } genlmsg_multicast_netns(&batadv_netlink_family, dev_net(bat_priv->soft_iface), msg, 0, BATADV_NL_MCGRP_CONFIG, GFP_KERNEL); return 0; } /** * batadv_netlink_get_hardif() - Get hardif attributes * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_get_hardif(struct sk_buff *skb, struct genl_info *info) { struct batadv_hard_iface *hard_iface = info->user_ptr[1]; struct batadv_priv *bat_priv = info->user_ptr[0]; struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = batadv_netlink_hardif_fill(msg, bat_priv, hard_iface, BATADV_CMD_GET_HARDIF, info->snd_portid, info->snd_seq, 0, NULL); if (ret < 0) { nlmsg_free(msg); return ret; } ret = genlmsg_reply(msg, info); return ret; } /** * batadv_netlink_set_hardif() - Set hardif attributes * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_set_hardif(struct sk_buff *skb, struct genl_info *info) { struct batadv_hard_iface *hard_iface = info->user_ptr[1]; struct batadv_priv *bat_priv = info->user_ptr[0]; struct nlattr *attr; if (info->attrs[BATADV_ATTR_HOP_PENALTY]) { attr = info->attrs[BATADV_ATTR_HOP_PENALTY]; atomic_set(&hard_iface->hop_penalty, nla_get_u8(attr)); } #ifdef CONFIG_BATMAN_ADV_BATMAN_V if (info->attrs[BATADV_ATTR_ELP_INTERVAL]) { attr = info->attrs[BATADV_ATTR_ELP_INTERVAL]; atomic_set(&hard_iface->bat_v.elp_interval, nla_get_u32(attr)); } if (info->attrs[BATADV_ATTR_THROUGHPUT_OVERRIDE]) { attr = info->attrs[BATADV_ATTR_THROUGHPUT_OVERRIDE]; atomic_set(&hard_iface->bat_v.throughput_override, nla_get_u32(attr)); } #endif /* CONFIG_BATMAN_ADV_BATMAN_V */ batadv_netlink_notify_hardif(bat_priv, hard_iface); return 0; } /** * batadv_netlink_dump_hardif() - Dump all hard interface into a messages * @msg: Netlink message to dump into * @cb: Parameters from query * * Return: error code, or length of reply message on success */ static int batadv_netlink_dump_hardif(struct sk_buff *msg, struct netlink_callback *cb) { struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct batadv_hard_iface *hard_iface; struct batadv_priv *bat_priv; int ifindex; int portid = NETLINK_CB(cb->skb).portid; int skip = cb->args[0]; int i = 0; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface) return -ENODEV; if (!batadv_softif_is_valid(soft_iface)) { dev_put(soft_iface); return -ENODEV; } bat_priv = netdev_priv(soft_iface); rtnl_lock(); cb->seq = batadv_hardif_generation << 1 | 1; list_for_each_entry(hard_iface, &batadv_hardif_list, list) { if (hard_iface->soft_iface != soft_iface) continue; if (i++ < skip) continue; if (batadv_netlink_hardif_fill(msg, bat_priv, hard_iface, BATADV_CMD_GET_HARDIF, portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, cb)) { i--; break; } } rtnl_unlock(); dev_put(soft_iface); cb->args[0] = i; return msg->len; } /** * batadv_netlink_vlan_fill() - Fill message with vlan attributes * @msg: Netlink message to dump into * @bat_priv: the bat priv with all the soft interface information * @vlan: vlan which was modified * @cmd: type of message to generate * @portid: Port making netlink request * @seq: sequence number for message * @flags: Additional flags for message * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_vlan_fill(struct sk_buff *msg, struct batadv_priv *bat_priv, struct batadv_softif_vlan *vlan, enum batadv_nl_commands cmd, u32 portid, u32 seq, int flags) { void *hdr; hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, BATADV_ATTR_MESH_IFINDEX, bat_priv->soft_iface->ifindex)) goto nla_put_failure; if (nla_put_string(msg, BATADV_ATTR_MESH_IFNAME, bat_priv->soft_iface->name)) goto nla_put_failure; if (nla_put_u32(msg, BATADV_ATTR_VLANID, vlan->vid & VLAN_VID_MASK)) goto nla_put_failure; if (nla_put_u8(msg, BATADV_ATTR_AP_ISOLATION_ENABLED, !!atomic_read(&vlan->ap_isolation))) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_netlink_notify_vlan() - send vlan attributes to listener * @bat_priv: the bat priv with all the soft interface information * @vlan: vlan which was modified * * Return: 0 on success, < 0 on error */ static int batadv_netlink_notify_vlan(struct batadv_priv *bat_priv, struct batadv_softif_vlan *vlan) { struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = batadv_netlink_vlan_fill(msg, bat_priv, vlan, BATADV_CMD_SET_VLAN, 0, 0, 0); if (ret < 0) { nlmsg_free(msg); return ret; } genlmsg_multicast_netns(&batadv_netlink_family, dev_net(bat_priv->soft_iface), msg, 0, BATADV_NL_MCGRP_CONFIG, GFP_KERNEL); return 0; } /** * batadv_netlink_get_vlan() - Get vlan attributes * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_get_vlan(struct sk_buff *skb, struct genl_info *info) { struct batadv_softif_vlan *vlan = info->user_ptr[1]; struct batadv_priv *bat_priv = info->user_ptr[0]; struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = batadv_netlink_vlan_fill(msg, bat_priv, vlan, BATADV_CMD_GET_VLAN, info->snd_portid, info->snd_seq, 0); if (ret < 0) { nlmsg_free(msg); return ret; } ret = genlmsg_reply(msg, info); return ret; } /** * batadv_netlink_set_vlan() - Get vlan attributes * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_netlink_set_vlan(struct sk_buff *skb, struct genl_info *info) { struct batadv_softif_vlan *vlan = info->user_ptr[1]; struct batadv_priv *bat_priv = info->user_ptr[0]; struct nlattr *attr; if (info->attrs[BATADV_ATTR_AP_ISOLATION_ENABLED]) { attr = info->attrs[BATADV_ATTR_AP_ISOLATION_ENABLED]; atomic_set(&vlan->ap_isolation, !!nla_get_u8(attr)); } batadv_netlink_notify_vlan(bat_priv, vlan); return 0; } /** * batadv_get_softif_from_info() - Retrieve soft interface from genl attributes * @net: the applicable net namespace * @info: receiver information * * Return: Pointer to soft interface (with increased refcnt) on success, error * pointer on error */ static struct net_device * batadv_get_softif_from_info(struct net *net, struct genl_info *info) { struct net_device *soft_iface; int ifindex; if (!info->attrs[BATADV_ATTR_MESH_IFINDEX]) return ERR_PTR(-EINVAL); ifindex = nla_get_u32(info->attrs[BATADV_ATTR_MESH_IFINDEX]); soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface) return ERR_PTR(-ENODEV); if (!batadv_softif_is_valid(soft_iface)) goto err_put_softif; return soft_iface; err_put_softif: dev_put(soft_iface); return ERR_PTR(-EINVAL); } /** * batadv_get_hardif_from_info() - Retrieve hardif from genl attributes * @bat_priv: the bat priv with all the soft interface information * @net: the applicable net namespace * @info: receiver information * * Return: Pointer to hard interface (with increased refcnt) on success, error * pointer on error */ static struct batadv_hard_iface * batadv_get_hardif_from_info(struct batadv_priv *bat_priv, struct net *net, struct genl_info *info) { struct batadv_hard_iface *hard_iface; struct net_device *hard_dev; unsigned int hardif_index; if (!info->attrs[BATADV_ATTR_HARD_IFINDEX]) return ERR_PTR(-EINVAL); hardif_index = nla_get_u32(info->attrs[BATADV_ATTR_HARD_IFINDEX]); hard_dev = dev_get_by_index(net, hardif_index); if (!hard_dev) return ERR_PTR(-ENODEV); hard_iface = batadv_hardif_get_by_netdev(hard_dev); if (!hard_iface) goto err_put_harddev; if (hard_iface->soft_iface != bat_priv->soft_iface) goto err_put_hardif; /* hard_dev is referenced by hard_iface and not needed here */ dev_put(hard_dev); return hard_iface; err_put_hardif: batadv_hardif_put(hard_iface); err_put_harddev: dev_put(hard_dev); return ERR_PTR(-EINVAL); } /** * batadv_get_vlan_from_info() - Retrieve vlan from genl attributes * @bat_priv: the bat priv with all the soft interface information * @net: the applicable net namespace * @info: receiver information * * Return: Pointer to vlan on success (with increased refcnt), error pointer * on error */ static struct batadv_softif_vlan * batadv_get_vlan_from_info(struct batadv_priv *bat_priv, struct net *net, struct genl_info *info) { struct batadv_softif_vlan *vlan; u16 vid; if (!info->attrs[BATADV_ATTR_VLANID]) return ERR_PTR(-EINVAL); vid = nla_get_u16(info->attrs[BATADV_ATTR_VLANID]); vlan = batadv_softif_vlan_get(bat_priv, vid | BATADV_VLAN_HAS_TAG); if (!vlan) return ERR_PTR(-ENOENT); return vlan; } /** * batadv_pre_doit() - Prepare batman-adv genl doit request * @ops: requested netlink operation * @skb: Netlink message with request data * @info: receiver information * * Return: 0 on success or negative error number in case of failure */ static int batadv_pre_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct batadv_hard_iface *hard_iface; struct batadv_priv *bat_priv = NULL; struct batadv_softif_vlan *vlan; struct net_device *soft_iface; u8 user_ptr1_flags; u8 mesh_dep_flags; int ret; user_ptr1_flags = BATADV_FLAG_NEED_HARDIF | BATADV_FLAG_NEED_VLAN; if (WARN_ON(hweight8(ops->internal_flags & user_ptr1_flags) > 1)) return -EINVAL; mesh_dep_flags = BATADV_FLAG_NEED_HARDIF | BATADV_FLAG_NEED_VLAN; if (WARN_ON((ops->internal_flags & mesh_dep_flags) && (~ops->internal_flags & BATADV_FLAG_NEED_MESH))) return -EINVAL; if (ops->internal_flags & BATADV_FLAG_NEED_MESH) { soft_iface = batadv_get_softif_from_info(net, info); if (IS_ERR(soft_iface)) return PTR_ERR(soft_iface); bat_priv = netdev_priv(soft_iface); info->user_ptr[0] = bat_priv; } if (ops->internal_flags & BATADV_FLAG_NEED_HARDIF) { hard_iface = batadv_get_hardif_from_info(bat_priv, net, info); if (IS_ERR(hard_iface)) { ret = PTR_ERR(hard_iface); goto err_put_softif; } info->user_ptr[1] = hard_iface; } if (ops->internal_flags & BATADV_FLAG_NEED_VLAN) { vlan = batadv_get_vlan_from_info(bat_priv, net, info); if (IS_ERR(vlan)) { ret = PTR_ERR(vlan); goto err_put_softif; } info->user_ptr[1] = vlan; } return 0; err_put_softif: if (bat_priv) dev_put(bat_priv->soft_iface); return ret; } /** * batadv_post_doit() - End batman-adv genl doit request * @ops: requested netlink operation * @skb: Netlink message with request data * @info: receiver information */ static void batadv_post_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { struct batadv_hard_iface *hard_iface; struct batadv_softif_vlan *vlan; struct batadv_priv *bat_priv; if (ops->internal_flags & BATADV_FLAG_NEED_HARDIF && info->user_ptr[1]) { hard_iface = info->user_ptr[1]; batadv_hardif_put(hard_iface); } if (ops->internal_flags & BATADV_FLAG_NEED_VLAN && info->user_ptr[1]) { vlan = info->user_ptr[1]; batadv_softif_vlan_put(vlan); } if (ops->internal_flags & BATADV_FLAG_NEED_MESH && info->user_ptr[0]) { bat_priv = info->user_ptr[0]; dev_put(bat_priv->soft_iface); } } static const struct genl_small_ops batadv_netlink_ops[] = { { .cmd = BATADV_CMD_GET_MESH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, /* can be retrieved by unprivileged users */ .doit = batadv_netlink_get_mesh, .internal_flags = BATADV_FLAG_NEED_MESH, }, { .cmd = BATADV_CMD_TP_METER, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = batadv_netlink_tp_meter_start, .internal_flags = BATADV_FLAG_NEED_MESH, }, { .cmd = BATADV_CMD_TP_METER_CANCEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = batadv_netlink_tp_meter_cancel, .internal_flags = BATADV_FLAG_NEED_MESH, }, { .cmd = BATADV_CMD_GET_ROUTING_ALGOS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_algo_dump, }, { .cmd = BATADV_CMD_GET_HARDIF, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, /* can be retrieved by unprivileged users */ .dumpit = batadv_netlink_dump_hardif, .doit = batadv_netlink_get_hardif, .internal_flags = BATADV_FLAG_NEED_MESH | BATADV_FLAG_NEED_HARDIF, }, { .cmd = BATADV_CMD_GET_TRANSTABLE_LOCAL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_tt_local_dump, }, { .cmd = BATADV_CMD_GET_TRANSTABLE_GLOBAL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_tt_global_dump, }, { .cmd = BATADV_CMD_GET_ORIGINATORS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_orig_dump, }, { .cmd = BATADV_CMD_GET_NEIGHBORS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_hardif_neigh_dump, }, { .cmd = BATADV_CMD_GET_GATEWAYS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_gw_dump, }, { .cmd = BATADV_CMD_GET_BLA_CLAIM, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_bla_claim_dump, }, { .cmd = BATADV_CMD_GET_BLA_BACKBONE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_bla_backbone_dump, }, { .cmd = BATADV_CMD_GET_DAT_CACHE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_dat_cache_dump, }, { .cmd = BATADV_CMD_GET_MCAST_FLAGS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .dumpit = batadv_mcast_flags_dump, }, { .cmd = BATADV_CMD_SET_MESH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = batadv_netlink_set_mesh, .internal_flags = BATADV_FLAG_NEED_MESH, }, { .cmd = BATADV_CMD_SET_HARDIF, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = batadv_netlink_set_hardif, .internal_flags = BATADV_FLAG_NEED_MESH | BATADV_FLAG_NEED_HARDIF, }, { .cmd = BATADV_CMD_GET_VLAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, /* can be retrieved by unprivileged users */ .doit = batadv_netlink_get_vlan, .internal_flags = BATADV_FLAG_NEED_MESH | BATADV_FLAG_NEED_VLAN, }, { .cmd = BATADV_CMD_SET_VLAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = batadv_netlink_set_vlan, .internal_flags = BATADV_FLAG_NEED_MESH | BATADV_FLAG_NEED_VLAN, }, }; struct genl_family batadv_netlink_family __ro_after_init = { .hdrsize = 0, .name = BATADV_NL_NAME, .version = 1, .maxattr = BATADV_ATTR_MAX, .policy = batadv_netlink_policy, .netnsok = true, .pre_doit = batadv_pre_doit, .post_doit = batadv_post_doit, .module = THIS_MODULE, .small_ops = batadv_netlink_ops, .n_small_ops = ARRAY_SIZE(batadv_netlink_ops), .resv_start_op = BATADV_CMD_SET_VLAN + 1, .mcgrps = batadv_netlink_mcgrps, .n_mcgrps = ARRAY_SIZE(batadv_netlink_mcgrps), }; /** * batadv_netlink_register() - register batadv genl netlink family */ void __init batadv_netlink_register(void) { int ret; ret = genl_register_family(&batadv_netlink_family); if (ret) pr_warn("unable to register netlink family"); } /** * batadv_netlink_unregister() - unregister batadv genl netlink family */ void batadv_netlink_unregister(void) { genl_unregister_family(&batadv_netlink_family); }
36 36 28 28 36 13 22 28 36 25 25 9 31 10 10 36 65 4 1 2 4 1 25 103 103 24 26 89 89 86 89 83 82 103 103 36 36 83 4 83 4 22370 22368 22359 22433 134 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/audit.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/slab.h> /** * tomoyo_print_bprm - Print "struct linux_binprm" for auditing. * * @bprm: Pointer to "struct linux_binprm". * @dump: Pointer to "struct tomoyo_page_dump". * * Returns the contents of @bprm on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ static char *tomoyo_print_bprm(struct linux_binprm *bprm, struct tomoyo_page_dump *dump) { static const int tomoyo_buffer_len = 4096 * 2; char *buffer = kzalloc(tomoyo_buffer_len, GFP_NOFS); char *cp; char *last_start; int len; unsigned long pos = bprm->p; int offset = pos % PAGE_SIZE; int argv_count = bprm->argc; int envp_count = bprm->envc; bool truncated = false; if (!buffer) return NULL; len = snprintf(buffer, tomoyo_buffer_len - 1, "argv[]={ "); cp = buffer + len; if (!argv_count) { memmove(cp, "} envp[]={ ", 11); cp += 11; } last_start = cp; while (argv_count || envp_count) { if (!tomoyo_dump_page(bprm, pos, dump)) goto out; pos += PAGE_SIZE - offset; /* Read. */ while (offset < PAGE_SIZE) { const char *kaddr = dump->data; const unsigned char c = kaddr[offset++]; if (cp == last_start) *cp++ = '"'; if (cp >= buffer + tomoyo_buffer_len - 32) { /* Reserve some room for "..." string. */ truncated = true; } else if (c == '\\') { *cp++ = '\\'; *cp++ = '\\'; } else if (c > ' ' && c < 127) { *cp++ = c; } else if (!c) { *cp++ = '"'; *cp++ = ' '; last_start = cp; } else { *cp++ = '\\'; *cp++ = (c >> 6) + '0'; *cp++ = ((c >> 3) & 7) + '0'; *cp++ = (c & 7) + '0'; } if (c) continue; if (argv_count) { if (--argv_count == 0) { if (truncated) { cp = last_start; memmove(cp, "... ", 4); cp += 4; } memmove(cp, "} envp[]={ ", 11); cp += 11; last_start = cp; truncated = false; } } else if (envp_count) { if (--envp_count == 0) { if (truncated) { cp = last_start; memmove(cp, "... ", 4); cp += 4; } } } if (!argv_count && !envp_count) break; } offset = 0; } *cp++ = '}'; *cp = '\0'; return buffer; out: snprintf(buffer, tomoyo_buffer_len - 1, "argv[]={ ... } envp[]= { ... }"); return buffer; } /** * tomoyo_filetype - Get string representation of file type. * * @mode: Mode value for stat(). * * Returns file type string. */ static inline const char *tomoyo_filetype(const umode_t mode) { switch (mode & S_IFMT) { case S_IFREG: case 0: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_FILE]; case S_IFDIR: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_DIRECTORY]; case S_IFLNK: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_SYMLINK]; case S_IFIFO: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_FIFO]; case S_IFSOCK: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_SOCKET]; case S_IFBLK: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_BLOCK_DEV]; case S_IFCHR: return tomoyo_condition_keyword[TOMOYO_TYPE_IS_CHAR_DEV]; } return "unknown"; /* This should not happen. */ } /** * tomoyo_print_header - Get header line of audit log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns string representation. * * This function uses kmalloc(), so caller must kfree() if this function * didn't return NULL. */ static char *tomoyo_print_header(struct tomoyo_request_info *r) { struct tomoyo_time stamp; const pid_t gpid = task_pid_nr(current); struct tomoyo_obj_info *obj = r->obj; static const int tomoyo_buffer_len = 4096; char *buffer = kmalloc(tomoyo_buffer_len, GFP_NOFS); int pos; u8 i; if (!buffer) return NULL; tomoyo_convert_time(ktime_get_real_seconds(), &stamp); pos = snprintf(buffer, tomoyo_buffer_len - 1, "#%04u/%02u/%02u %02u:%02u:%02u# profile=%u mode=%s granted=%s (global-pid=%u) task={ pid=%u ppid=%u uid=%u gid=%u euid=%u egid=%u suid=%u sgid=%u fsuid=%u fsgid=%u }", stamp.year, stamp.month, stamp.day, stamp.hour, stamp.min, stamp.sec, r->profile, tomoyo_mode[r->mode], str_yes_no(r->granted), gpid, tomoyo_sys_getpid(), tomoyo_sys_getppid(), from_kuid(&init_user_ns, current_uid()), from_kgid(&init_user_ns, current_gid()), from_kuid(&init_user_ns, current_euid()), from_kgid(&init_user_ns, current_egid()), from_kuid(&init_user_ns, current_suid()), from_kgid(&init_user_ns, current_sgid()), from_kuid(&init_user_ns, current_fsuid()), from_kgid(&init_user_ns, current_fsgid())); if (!obj) goto no_obj_info; if (!obj->validate_done) { tomoyo_get_attributes(obj); obj->validate_done = true; } for (i = 0; i < TOMOYO_MAX_PATH_STAT; i++) { struct tomoyo_mini_stat *stat; unsigned int dev; umode_t mode; if (!obj->stat_valid[i]) continue; stat = &obj->stat[i]; dev = stat->dev; mode = stat->mode; if (i & 1) { pos += snprintf(buffer + pos, tomoyo_buffer_len - 1 - pos, " path%u.parent={ uid=%u gid=%u ino=%lu perm=0%o }", (i >> 1) + 1, from_kuid(&init_user_ns, stat->uid), from_kgid(&init_user_ns, stat->gid), (unsigned long)stat->ino, stat->mode & S_IALLUGO); continue; } pos += snprintf(buffer + pos, tomoyo_buffer_len - 1 - pos, " path%u={ uid=%u gid=%u ino=%lu major=%u minor=%u perm=0%o type=%s", (i >> 1) + 1, from_kuid(&init_user_ns, stat->uid), from_kgid(&init_user_ns, stat->gid), (unsigned long)stat->ino, MAJOR(dev), MINOR(dev), mode & S_IALLUGO, tomoyo_filetype(mode)); if (S_ISCHR(mode) || S_ISBLK(mode)) { dev = stat->rdev; pos += snprintf(buffer + pos, tomoyo_buffer_len - 1 - pos, " dev_major=%u dev_minor=%u", MAJOR(dev), MINOR(dev)); } pos += snprintf(buffer + pos, tomoyo_buffer_len - 1 - pos, " }"); } no_obj_info: if (pos < tomoyo_buffer_len - 1) return buffer; kfree(buffer); return NULL; } /** * tomoyo_init_log - Allocate buffer for audit logs. * * @r: Pointer to "struct tomoyo_request_info". * @len: Buffer size needed for @fmt and @args. * @fmt: The printf()'s format string. * @args: va_list structure for @fmt. * * Returns pointer to allocated memory. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_init_log(struct tomoyo_request_info *r, int len, const char *fmt, va_list args) { char *buf = NULL; char *bprm_info = NULL; const char *header = NULL; char *realpath = NULL; const char *symlink = NULL; int pos; const char *domainname = r->domain->domainname->name; header = tomoyo_print_header(r); if (!header) return NULL; /* +10 is for '\n' etc. and '\0'. */ len += strlen(domainname) + strlen(header) + 10; if (r->ee) { struct file *file = r->ee->bprm->file; realpath = tomoyo_realpath_from_path(&file->f_path); bprm_info = tomoyo_print_bprm(r->ee->bprm, &r->ee->dump); if (!realpath || !bprm_info) goto out; /* +80 is for " exec={ realpath=\"%s\" argc=%d envc=%d %s }" */ len += strlen(realpath) + 80 + strlen(bprm_info); } else if (r->obj && r->obj->symlink_target) { symlink = r->obj->symlink_target->name; /* +18 is for " symlink.target=\"%s\"" */ len += 18 + strlen(symlink); } len = kmalloc_size_roundup(len); buf = kzalloc(len, GFP_NOFS); if (!buf) goto out; len--; pos = snprintf(buf, len, "%s", header); if (realpath) { struct linux_binprm *bprm = r->ee->bprm; pos += snprintf(buf + pos, len - pos, " exec={ realpath=\"%s\" argc=%d envc=%d %s }", realpath, bprm->argc, bprm->envc, bprm_info); } else if (symlink) pos += snprintf(buf + pos, len - pos, " symlink.target=\"%s\"", symlink); pos += snprintf(buf + pos, len - pos, "\n%s\n", domainname); vsnprintf(buf + pos, len - pos, fmt, args); out: kfree(realpath); kfree(bprm_info); kfree(header); return buf; } /* Wait queue for /sys/kernel/security/tomoyo/audit. */ static DECLARE_WAIT_QUEUE_HEAD(tomoyo_log_wait); /* Structure for audit log. */ struct tomoyo_log { struct list_head list; char *log; int size; }; /* The list for "struct tomoyo_log". */ static LIST_HEAD(tomoyo_log); /* Lock for "struct list_head tomoyo_log". */ static DEFINE_SPINLOCK(tomoyo_log_lock); /* Length of "struct list_head tomoyo_log". */ static unsigned int tomoyo_log_count; /** * tomoyo_get_audit - Get audit mode. * * @ns: Pointer to "struct tomoyo_policy_namespace". * @profile: Profile number. * @index: Index number of functionality. * @matched_acl: Pointer to "struct tomoyo_acl_info". * @is_granted: True if granted log, false otherwise. * * Returns true if this request should be audited, false otherwise. */ static bool tomoyo_get_audit(const struct tomoyo_policy_namespace *ns, const u8 profile, const u8 index, const struct tomoyo_acl_info *matched_acl, const bool is_granted) { u8 mode; const u8 category = tomoyo_index2category[index] + TOMOYO_MAX_MAC_INDEX; struct tomoyo_profile *p; if (!tomoyo_policy_loaded) return false; p = tomoyo_profile(ns, profile); if (tomoyo_log_count >= p->pref[TOMOYO_PREF_MAX_AUDIT_LOG]) return false; if (is_granted && matched_acl && matched_acl->cond && matched_acl->cond->grant_log != TOMOYO_GRANTLOG_AUTO) return matched_acl->cond->grant_log == TOMOYO_GRANTLOG_YES; mode = p->config[index]; if (mode == TOMOYO_CONFIG_USE_DEFAULT) mode = p->config[category]; if (mode == TOMOYO_CONFIG_USE_DEFAULT) mode = p->default_config; if (is_granted) return mode & TOMOYO_CONFIG_WANT_GRANT_LOG; return mode & TOMOYO_CONFIG_WANT_REJECT_LOG; } /** * tomoyo_write_log2 - Write an audit log. * * @r: Pointer to "struct tomoyo_request_info". * @len: Buffer size needed for @fmt and @args. * @fmt: The printf()'s format string. * @args: va_list structure for @fmt. * * Returns nothing. */ void tomoyo_write_log2(struct tomoyo_request_info *r, int len, const char *fmt, va_list args) { char *buf; struct tomoyo_log *entry; bool quota_exceeded = false; if (!tomoyo_get_audit(r->domain->ns, r->profile, r->type, r->matched_acl, r->granted)) goto out; buf = tomoyo_init_log(r, len, fmt, args); if (!buf) goto out; entry = kzalloc(sizeof(*entry), GFP_NOFS); if (!entry) { kfree(buf); goto out; } entry->log = buf; len = kmalloc_size_roundup(strlen(buf) + 1); /* * The entry->size is used for memory quota checks. * Don't go beyond strlen(entry->log). */ entry->size = len + kmalloc_size_roundup(sizeof(*entry)); spin_lock(&tomoyo_log_lock); if (tomoyo_memory_quota[TOMOYO_MEMORY_AUDIT] && tomoyo_memory_used[TOMOYO_MEMORY_AUDIT] + entry->size >= tomoyo_memory_quota[TOMOYO_MEMORY_AUDIT]) { quota_exceeded = true; } else { tomoyo_memory_used[TOMOYO_MEMORY_AUDIT] += entry->size; list_add_tail(&entry->list, &tomoyo_log); tomoyo_log_count++; } spin_unlock(&tomoyo_log_lock); if (quota_exceeded) { kfree(buf); kfree(entry); goto out; } wake_up(&tomoyo_log_wait); out: return; } /** * tomoyo_write_log - Write an audit log. * * @r: Pointer to "struct tomoyo_request_info". * @fmt: The printf()'s format string, followed by parameters. * * Returns nothing. */ void tomoyo_write_log(struct tomoyo_request_info *r, const char *fmt, ...) { va_list args; int len; va_start(args, fmt); len = vsnprintf(NULL, 0, fmt, args) + 1; va_end(args); va_start(args, fmt); tomoyo_write_log2(r, len, fmt, args); va_end(args); } /** * tomoyo_read_log - Read an audit log. * * @head: Pointer to "struct tomoyo_io_buffer". * * Returns nothing. */ void tomoyo_read_log(struct tomoyo_io_buffer *head) { struct tomoyo_log *ptr = NULL; if (head->r.w_pos) return; kfree(head->read_buf); head->read_buf = NULL; spin_lock(&tomoyo_log_lock); if (!list_empty(&tomoyo_log)) { ptr = list_entry(tomoyo_log.next, typeof(*ptr), list); list_del(&ptr->list); tomoyo_log_count--; tomoyo_memory_used[TOMOYO_MEMORY_AUDIT] -= ptr->size; } spin_unlock(&tomoyo_log_lock); if (ptr) { head->read_buf = ptr->log; head->r.w[head->r.w_pos++] = head->read_buf; kfree(ptr); } } /** * tomoyo_poll_log - Wait for an audit log. * * @file: Pointer to "struct file". * @wait: Pointer to "poll_table". Maybe NULL. * * Returns EPOLLIN | EPOLLRDNORM when ready to read an audit log. */ __poll_t tomoyo_poll_log(struct file *file, poll_table *wait) { if (tomoyo_log_count) return EPOLLIN | EPOLLRDNORM; poll_wait(file, &tomoyo_log_wait, wait); if (tomoyo_log_count) return EPOLLIN | EPOLLRDNORM; return 0; }
17 17 16 16 16 17 17 17 16 16 16 16 16 16 17 17 5 5 5 2422 2193 235 17 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 // SPDX-License-Identifier: GPL-2.0-or-later /* * LAPB release 002 * * This code REQUIRES 2.1.15 or higher/ NET3.038 * * History * LAPB 001 Jonathan Naylor Started Coding * LAPB 002 Jonathan Naylor New timer architecture. * 2000-10-29 Henner Eisen lapb_data_indication() return status. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/inet.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/uaccess.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/stat.h> #include <linux/init.h> #include <net/lapb.h> static LIST_HEAD(lapb_list); static DEFINE_RWLOCK(lapb_list_lock); /* * Free an allocated lapb control block. */ static void lapb_free_cb(struct lapb_cb *lapb) { kfree(lapb); } static __inline__ void lapb_hold(struct lapb_cb *lapb) { refcount_inc(&lapb->refcnt); } static __inline__ void lapb_put(struct lapb_cb *lapb) { if (refcount_dec_and_test(&lapb->refcnt)) lapb_free_cb(lapb); } /* * Socket removal during an interrupt is now safe. */ static void __lapb_remove_cb(struct lapb_cb *lapb) { if (lapb->node.next) { list_del(&lapb->node); lapb_put(lapb); } } /* * Add a socket to the bound sockets list. */ static void __lapb_insert_cb(struct lapb_cb *lapb) { list_add(&lapb->node, &lapb_list); lapb_hold(lapb); } static struct lapb_cb *__lapb_devtostruct(struct net_device *dev) { struct lapb_cb *lapb, *use = NULL; list_for_each_entry(lapb, &lapb_list, node) { if (lapb->dev == dev) { use = lapb; break; } } if (use) lapb_hold(use); return use; } static struct lapb_cb *lapb_devtostruct(struct net_device *dev) { struct lapb_cb *rc; read_lock_bh(&lapb_list_lock); rc = __lapb_devtostruct(dev); read_unlock_bh(&lapb_list_lock); return rc; } /* * Create an empty LAPB control block. */ static struct lapb_cb *lapb_create_cb(void) { struct lapb_cb *lapb = kzalloc(sizeof(*lapb), GFP_ATOMIC); if (!lapb) goto out; skb_queue_head_init(&lapb->write_queue); skb_queue_head_init(&lapb->ack_queue); timer_setup(&lapb->t1timer, NULL, 0); timer_setup(&lapb->t2timer, NULL, 0); lapb->t1timer_running = false; lapb->t2timer_running = false; lapb->t1 = LAPB_DEFAULT_T1; lapb->t2 = LAPB_DEFAULT_T2; lapb->n2 = LAPB_DEFAULT_N2; lapb->mode = LAPB_DEFAULT_MODE; lapb->window = LAPB_DEFAULT_WINDOW; lapb->state = LAPB_STATE_0; spin_lock_init(&lapb->lock); refcount_set(&lapb->refcnt, 1); out: return lapb; } int lapb_register(struct net_device *dev, const struct lapb_register_struct *callbacks) { struct lapb_cb *lapb; int rc = LAPB_BADTOKEN; write_lock_bh(&lapb_list_lock); lapb = __lapb_devtostruct(dev); if (lapb) { lapb_put(lapb); goto out; } lapb = lapb_create_cb(); rc = LAPB_NOMEM; if (!lapb) goto out; lapb->dev = dev; lapb->callbacks = callbacks; __lapb_insert_cb(lapb); lapb_start_t1timer(lapb); rc = LAPB_OK; out: write_unlock_bh(&lapb_list_lock); return rc; } EXPORT_SYMBOL(lapb_register); int lapb_unregister(struct net_device *dev) { struct lapb_cb *lapb; int rc = LAPB_BADTOKEN; write_lock_bh(&lapb_list_lock); lapb = __lapb_devtostruct(dev); if (!lapb) goto out; lapb_put(lapb); /* Wait for other refs to "lapb" to drop */ while (refcount_read(&lapb->refcnt) > 2) usleep_range(1, 10); spin_lock_bh(&lapb->lock); lapb_stop_t1timer(lapb); lapb_stop_t2timer(lapb); lapb_clear_queues(lapb); spin_unlock_bh(&lapb->lock); /* Wait for running timers to stop */ del_timer_sync(&lapb->t1timer); del_timer_sync(&lapb->t2timer); __lapb_remove_cb(lapb); lapb_put(lapb); rc = LAPB_OK; out: write_unlock_bh(&lapb_list_lock); return rc; } EXPORT_SYMBOL(lapb_unregister); int lapb_getparms(struct net_device *dev, struct lapb_parms_struct *parms) { int rc = LAPB_BADTOKEN; struct lapb_cb *lapb = lapb_devtostruct(dev); if (!lapb) goto out; spin_lock_bh(&lapb->lock); parms->t1 = lapb->t1 / HZ; parms->t2 = lapb->t2 / HZ; parms->n2 = lapb->n2; parms->n2count = lapb->n2count; parms->state = lapb->state; parms->window = lapb->window; parms->mode = lapb->mode; if (!timer_pending(&lapb->t1timer)) parms->t1timer = 0; else parms->t1timer = (lapb->t1timer.expires - jiffies) / HZ; if (!timer_pending(&lapb->t2timer)) parms->t2timer = 0; else parms->t2timer = (lapb->t2timer.expires - jiffies) / HZ; spin_unlock_bh(&lapb->lock); lapb_put(lapb); rc = LAPB_OK; out: return rc; } EXPORT_SYMBOL(lapb_getparms); int lapb_setparms(struct net_device *dev, struct lapb_parms_struct *parms) { int rc = LAPB_BADTOKEN; struct lapb_cb *lapb = lapb_devtostruct(dev); if (!lapb) goto out; spin_lock_bh(&lapb->lock); rc = LAPB_INVALUE; if (parms->t1 < 1 || parms->t2 < 1 || parms->n2 < 1) goto out_put; if (lapb->state == LAPB_STATE_0) { if (parms->mode & LAPB_EXTENDED) { if (parms->window < 1 || parms->window > 127) goto out_put; } else { if (parms->window < 1 || parms->window > 7) goto out_put; } lapb->mode = parms->mode; lapb->window = parms->window; } lapb->t1 = parms->t1 * HZ; lapb->t2 = parms->t2 * HZ; lapb->n2 = parms->n2; rc = LAPB_OK; out_put: spin_unlock_bh(&lapb->lock); lapb_put(lapb); out: return rc; } EXPORT_SYMBOL(lapb_setparms); int lapb_connect_request(struct net_device *dev) { struct lapb_cb *lapb = lapb_devtostruct(dev); int rc = LAPB_BADTOKEN; if (!lapb) goto out; spin_lock_bh(&lapb->lock); rc = LAPB_OK; if (lapb->state == LAPB_STATE_1) goto out_put; rc = LAPB_CONNECTED; if (lapb->state == LAPB_STATE_3 || lapb->state == LAPB_STATE_4) goto out_put; lapb_establish_data_link(lapb); lapb_dbg(0, "(%p) S0 -> S1\n", lapb->dev); lapb->state = LAPB_STATE_1; rc = LAPB_OK; out_put: spin_unlock_bh(&lapb->lock); lapb_put(lapb); out: return rc; } EXPORT_SYMBOL(lapb_connect_request); static int __lapb_disconnect_request(struct lapb_cb *lapb) { switch (lapb->state) { case LAPB_STATE_0: return LAPB_NOTCONNECTED; case LAPB_STATE_1: lapb_dbg(1, "(%p) S1 TX DISC(1)\n", lapb->dev); lapb_dbg(0, "(%p) S1 -> S0\n", lapb->dev); lapb_send_control(lapb, LAPB_DISC, LAPB_POLLON, LAPB_COMMAND); lapb->state = LAPB_STATE_0; lapb_start_t1timer(lapb); return LAPB_NOTCONNECTED; case LAPB_STATE_2: return LAPB_OK; } lapb_clear_queues(lapb); lapb->n2count = 0; lapb_send_control(lapb, LAPB_DISC, LAPB_POLLON, LAPB_COMMAND); lapb_start_t1timer(lapb); lapb_stop_t2timer(lapb); lapb->state = LAPB_STATE_2; lapb_dbg(1, "(%p) S3 DISC(1)\n", lapb->dev); lapb_dbg(0, "(%p) S3 -> S2\n", lapb->dev); return LAPB_OK; } int lapb_disconnect_request(struct net_device *dev) { struct lapb_cb *lapb = lapb_devtostruct(dev); int rc = LAPB_BADTOKEN; if (!lapb) goto out; spin_lock_bh(&lapb->lock); rc = __lapb_disconnect_request(lapb); spin_unlock_bh(&lapb->lock); lapb_put(lapb); out: return rc; } EXPORT_SYMBOL(lapb_disconnect_request); int lapb_data_request(struct net_device *dev, struct sk_buff *skb) { struct lapb_cb *lapb = lapb_devtostruct(dev); int rc = LAPB_BADTOKEN; if (!lapb) goto out; spin_lock_bh(&lapb->lock); rc = LAPB_NOTCONNECTED; if (lapb->state != LAPB_STATE_3 && lapb->state != LAPB_STATE_4) goto out_put; skb_queue_tail(&lapb->write_queue, skb); lapb_kick(lapb); rc = LAPB_OK; out_put: spin_unlock_bh(&lapb->lock); lapb_put(lapb); out: return rc; } EXPORT_SYMBOL(lapb_data_request); int lapb_data_received(struct net_device *dev, struct sk_buff *skb) { struct lapb_cb *lapb = lapb_devtostruct(dev); int rc = LAPB_BADTOKEN; if (lapb) { spin_lock_bh(&lapb->lock); lapb_data_input(lapb, skb); spin_unlock_bh(&lapb->lock); lapb_put(lapb); rc = LAPB_OK; } return rc; } EXPORT_SYMBOL(lapb_data_received); void lapb_connect_confirmation(struct lapb_cb *lapb, int reason) { if (lapb->callbacks->connect_confirmation) lapb->callbacks->connect_confirmation(lapb->dev, reason); } void lapb_connect_indication(struct lapb_cb *lapb, int reason) { if (lapb->callbacks->connect_indication) lapb->callbacks->connect_indication(lapb->dev, reason); } void lapb_disconnect_confirmation(struct lapb_cb *lapb, int reason) { if (lapb->callbacks->disconnect_confirmation) lapb->callbacks->disconnect_confirmation(lapb->dev, reason); } void lapb_disconnect_indication(struct lapb_cb *lapb, int reason) { if (lapb->callbacks->disconnect_indication) lapb->callbacks->disconnect_indication(lapb->dev, reason); } int lapb_data_indication(struct lapb_cb *lapb, struct sk_buff *skb) { if (lapb->callbacks->data_indication) return lapb->callbacks->data_indication(lapb->dev, skb); kfree_skb(skb); return NET_RX_SUCCESS; /* For now; must be != NET_RX_DROP */ } int lapb_data_transmit(struct lapb_cb *lapb, struct sk_buff *skb) { int used = 0; if (lapb->callbacks->data_transmit) { lapb->callbacks->data_transmit(lapb->dev, skb); used = 1; } return used; } /* Handle device status changes. */ static int lapb_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct lapb_cb *lapb; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; if (dev->type != ARPHRD_X25) return NOTIFY_DONE; lapb = lapb_devtostruct(dev); if (!lapb) return NOTIFY_DONE; spin_lock_bh(&lapb->lock); switch (event) { case NETDEV_UP: lapb_dbg(0, "(%p) Interface up: %s\n", dev, dev->name); if (netif_carrier_ok(dev)) { lapb_dbg(0, "(%p): Carrier is already up: %s\n", dev, dev->name); if (lapb->mode & LAPB_DCE) { lapb_start_t1timer(lapb); } else { if (lapb->state == LAPB_STATE_0) { lapb->state = LAPB_STATE_1; lapb_establish_data_link(lapb); } } } break; case NETDEV_GOING_DOWN: if (netif_carrier_ok(dev)) __lapb_disconnect_request(lapb); break; case NETDEV_DOWN: lapb_dbg(0, "(%p) Interface down: %s\n", dev, dev->name); lapb_dbg(0, "(%p) S%d -> S0\n", dev, lapb->state); lapb_clear_queues(lapb); lapb->state = LAPB_STATE_0; lapb->n2count = 0; lapb_stop_t1timer(lapb); lapb_stop_t2timer(lapb); break; case NETDEV_CHANGE: if (netif_carrier_ok(dev)) { lapb_dbg(0, "(%p): Carrier detected: %s\n", dev, dev->name); if (lapb->mode & LAPB_DCE) { lapb_start_t1timer(lapb); } else { if (lapb->state == LAPB_STATE_0) { lapb->state = LAPB_STATE_1; lapb_establish_data_link(lapb); } } } else { lapb_dbg(0, "(%p) Carrier lost: %s\n", dev, dev->name); lapb_dbg(0, "(%p) S%d -> S0\n", dev, lapb->state); lapb_clear_queues(lapb); lapb->state = LAPB_STATE_0; lapb->n2count = 0; lapb_stop_t1timer(lapb); lapb_stop_t2timer(lapb); } break; } spin_unlock_bh(&lapb->lock); lapb_put(lapb); return NOTIFY_DONE; } static struct notifier_block lapb_dev_notifier = { .notifier_call = lapb_device_event, }; static int __init lapb_init(void) { return register_netdevice_notifier(&lapb_dev_notifier); } static void __exit lapb_exit(void) { WARN_ON(!list_empty(&lapb_list)); unregister_netdevice_notifier(&lapb_dev_notifier); } MODULE_AUTHOR("Jonathan Naylor <g4klx@g4klx.demon.co.uk>"); MODULE_DESCRIPTION("The X.25 Link Access Procedure B link layer protocol"); MODULE_LICENSE("GPL"); module_init(lapb_init); module_exit(lapb_exit);
369 4 3 625 624 625 2 2 103 103 5 5 5 3 3 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 // SPDX-License-Identifier: GPL-2.0-only /* * kvm asynchronous fault support * * Copyright 2010 Red Hat, Inc. * * Author: * Gleb Natapov <gleb@redhat.com> */ #include <linux/kvm_host.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mmu_context.h> #include <linux/sched/mm.h> #include "async_pf.h" #include <trace/events/kvm.h> static struct kmem_cache *async_pf_cache; int kvm_async_pf_init(void) { async_pf_cache = KMEM_CACHE(kvm_async_pf, 0); if (!async_pf_cache) return -ENOMEM; return 0; } void kvm_async_pf_deinit(void) { kmem_cache_destroy(async_pf_cache); async_pf_cache = NULL; } void kvm_async_pf_vcpu_init(struct kvm_vcpu *vcpu) { INIT_LIST_HEAD(&vcpu->async_pf.done); INIT_LIST_HEAD(&vcpu->async_pf.queue); spin_lock_init(&vcpu->async_pf.lock); } static void async_pf_execute(struct work_struct *work) { struct kvm_async_pf *apf = container_of(work, struct kvm_async_pf, work); struct kvm_vcpu *vcpu = apf->vcpu; struct mm_struct *mm = vcpu->kvm->mm; unsigned long addr = apf->addr; gpa_t cr2_or_gpa = apf->cr2_or_gpa; int locked = 1; bool first; might_sleep(); /* * Attempt to pin the VM's host address space, and simply skip gup() if * acquiring a pin fail, i.e. if the process is exiting. Note, KVM * holds a reference to its associated mm_struct until the very end of * kvm_destroy_vm(), i.e. the struct itself won't be freed before this * work item is fully processed. */ if (mmget_not_zero(mm)) { mmap_read_lock(mm); get_user_pages_remote(mm, addr, 1, FOLL_WRITE, NULL, &locked); if (locked) mmap_read_unlock(mm); mmput(mm); } /* * Notify and kick the vCPU even if faulting in the page failed, e.g. * so that the vCPU can retry the fault synchronously. */ if (IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC)) kvm_arch_async_page_present(vcpu, apf); spin_lock(&vcpu->async_pf.lock); first = list_empty(&vcpu->async_pf.done); list_add_tail(&apf->link, &vcpu->async_pf.done); spin_unlock(&vcpu->async_pf.lock); /* * The apf struct may be freed by kvm_check_async_pf_completion() as * soon as the lock is dropped. Nullify it to prevent improper usage. */ apf = NULL; if (!IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC) && first) kvm_arch_async_page_present_queued(vcpu); trace_kvm_async_pf_completed(addr, cr2_or_gpa); __kvm_vcpu_wake_up(vcpu); } static void kvm_flush_and_free_async_pf_work(struct kvm_async_pf *work) { /* * The async #PF is "done", but KVM must wait for the work item itself, * i.e. async_pf_execute(), to run to completion. If KVM is a module, * KVM must ensure *no* code owned by the KVM (the module) can be run * after the last call to module_put(). Note, flushing the work item * is always required when the item is taken off the completion queue. * E.g. even if the vCPU handles the item in the "normal" path, the VM * could be terminated before async_pf_execute() completes. * * Wake all events skip the queue and go straight done, i.e. don't * need to be flushed (but sanity check that the work wasn't queued). */ if (work->wakeup_all) WARN_ON_ONCE(work->work.func); else flush_work(&work->work); kmem_cache_free(async_pf_cache, work); } void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu) { /* cancel outstanding work queue item */ while (!list_empty(&vcpu->async_pf.queue)) { struct kvm_async_pf *work = list_first_entry(&vcpu->async_pf.queue, typeof(*work), queue); list_del(&work->queue); #ifdef CONFIG_KVM_ASYNC_PF_SYNC flush_work(&work->work); #else if (cancel_work_sync(&work->work)) kmem_cache_free(async_pf_cache, work); #endif } spin_lock(&vcpu->async_pf.lock); while (!list_empty(&vcpu->async_pf.done)) { struct kvm_async_pf *work = list_first_entry(&vcpu->async_pf.done, typeof(*work), link); list_del(&work->link); spin_unlock(&vcpu->async_pf.lock); kvm_flush_and_free_async_pf_work(work); spin_lock(&vcpu->async_pf.lock); } spin_unlock(&vcpu->async_pf.lock); vcpu->async_pf.queued = 0; } void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu) { struct kvm_async_pf *work; while (!list_empty_careful(&vcpu->async_pf.done) && kvm_arch_can_dequeue_async_page_present(vcpu)) { spin_lock(&vcpu->async_pf.lock); work = list_first_entry(&vcpu->async_pf.done, typeof(*work), link); list_del(&work->link); spin_unlock(&vcpu->async_pf.lock); kvm_arch_async_page_ready(vcpu, work); if (!IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC)) kvm_arch_async_page_present(vcpu, work); list_del(&work->queue); vcpu->async_pf.queued--; kvm_flush_and_free_async_pf_work(work); } } /* * Try to schedule a job to handle page fault asynchronously. Returns 'true' on * success, 'false' on failure (page fault has to be handled synchronously). */ bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, unsigned long hva, struct kvm_arch_async_pf *arch) { struct kvm_async_pf *work; if (vcpu->async_pf.queued >= ASYNC_PF_PER_VCPU) return false; /* Arch specific code should not do async PF in this case */ if (unlikely(kvm_is_error_hva(hva))) return false; /* * do alloc nowait since if we are going to sleep anyway we * may as well sleep faulting in page */ work = kmem_cache_zalloc(async_pf_cache, GFP_NOWAIT | __GFP_NOWARN); if (!work) return false; work->wakeup_all = false; work->vcpu = vcpu; work->cr2_or_gpa = cr2_or_gpa; work->addr = hva; work->arch = *arch; INIT_WORK(&work->work, async_pf_execute); list_add_tail(&work->queue, &vcpu->async_pf.queue); vcpu->async_pf.queued++; work->notpresent_injected = kvm_arch_async_page_not_present(vcpu, work); schedule_work(&work->work); return true; } int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu) { struct kvm_async_pf *work; bool first; if (!list_empty_careful(&vcpu->async_pf.done)) return 0; work = kmem_cache_zalloc(async_pf_cache, GFP_ATOMIC); if (!work) return -ENOMEM; work->wakeup_all = true; INIT_LIST_HEAD(&work->queue); /* for list_del to work */ spin_lock(&vcpu->async_pf.lock); first = list_empty(&vcpu->async_pf.done); list_add_tail(&work->link, &vcpu->async_pf.done); spin_unlock(&vcpu->async_pf.lock); if (!IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC) && first) kvm_arch_async_page_present_queued(vcpu); vcpu->async_pf.queued++; return 0; }
60097 37778 19542 2707 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_JUMP_LABEL_H #define _ASM_X86_JUMP_LABEL_H #define HAVE_JUMP_LABEL_BATCH #include <asm/asm.h> #include <asm/nops.h> #ifndef __ASSEMBLY__ #include <linux/stringify.h> #include <linux/types.h> #define JUMP_TABLE_ENTRY \ ".pushsection __jump_table, \"aw\" \n\t" \ _ASM_ALIGN "\n\t" \ ".long 1b - . \n\t" \ ".long %l[l_yes] - . \n\t" \ _ASM_PTR "%c0 + %c1 - .\n\t" \ ".popsection \n\t" #ifdef CONFIG_HAVE_JUMP_LABEL_HACK static __always_inline bool arch_static_branch(struct static_key *key, bool branch) { asm goto("1:" "jmp %l[l_yes] # objtool NOPs this \n\t" JUMP_TABLE_ENTRY : : "i" (key), "i" (2 | branch) : : l_yes); return false; l_yes: return true; } #else /* !CONFIG_HAVE_JUMP_LABEL_HACK */ static __always_inline bool arch_static_branch(struct static_key * const key, const bool branch) { asm goto("1:" ".byte " __stringify(BYTES_NOP5) "\n\t" JUMP_TABLE_ENTRY : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } #endif /* CONFIG_HAVE_JUMP_LABEL_HACK */ static __always_inline bool arch_static_branch_jump(struct static_key * const key, const bool branch) { asm goto("1:" "jmp %l[l_yes]\n\t" JUMP_TABLE_ENTRY : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } extern int arch_jump_entry_size(struct jump_entry *entry); #endif /* __ASSEMBLY__ */ #endif
2 2 19 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2020 Facebook */ #include <linux/fs.h> #include <linux/anon_inodes.h> #include <linux/filter.h> #include <linux/bpf.h> #include <linux/rcupdate_trace.h> struct bpf_iter_target_info { struct list_head list; const struct bpf_iter_reg *reg_info; u32 btf_id; /* cached value */ }; struct bpf_iter_link { struct bpf_link link; struct bpf_iter_aux_info aux; struct bpf_iter_target_info *tinfo; }; struct bpf_iter_priv_data { struct bpf_iter_target_info *tinfo; const struct bpf_iter_seq_info *seq_info; struct bpf_prog *prog; u64 session_id; u64 seq_num; bool done_stop; u8 target_private[] __aligned(8); }; static struct list_head targets = LIST_HEAD_INIT(targets); static DEFINE_MUTEX(targets_mutex); /* protect bpf_iter_link changes */ static DEFINE_MUTEX(link_mutex); /* incremented on every opened seq_file */ static atomic64_t session_id; static int prepare_seq_file(struct file *file, struct bpf_iter_link *link, const struct bpf_iter_seq_info *seq_info); static void bpf_iter_inc_seq_num(struct seq_file *seq) { struct bpf_iter_priv_data *iter_priv; iter_priv = container_of(seq->private, struct bpf_iter_priv_data, target_private); iter_priv->seq_num++; } static void bpf_iter_dec_seq_num(struct seq_file *seq) { struct bpf_iter_priv_data *iter_priv; iter_priv = container_of(seq->private, struct bpf_iter_priv_data, target_private); iter_priv->seq_num--; } static void bpf_iter_done_stop(struct seq_file *seq) { struct bpf_iter_priv_data *iter_priv; iter_priv = container_of(seq->private, struct bpf_iter_priv_data, target_private); iter_priv->done_stop = true; } static inline bool bpf_iter_target_support_resched(const struct bpf_iter_target_info *tinfo) { return tinfo->reg_info->feature & BPF_ITER_RESCHED; } static bool bpf_iter_support_resched(struct seq_file *seq) { struct bpf_iter_priv_data *iter_priv; iter_priv = container_of(seq->private, struct bpf_iter_priv_data, target_private); return bpf_iter_target_support_resched(iter_priv->tinfo); } /* maximum visited objects before bailing out */ #define MAX_ITER_OBJECTS 1000000 /* bpf_seq_read, a customized and simpler version for bpf iterator. * The following are differences from seq_read(): * . fixed buffer size (PAGE_SIZE) * . assuming NULL ->llseek() * . stop() may call bpf program, handling potential overflow there */ static ssize_t bpf_seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; size_t n, offs, copied = 0; int err = 0, num_objs = 0; bool can_resched; void *p; mutex_lock(&seq->lock); if (!seq->buf) { seq->size = PAGE_SIZE << 3; seq->buf = kvmalloc(seq->size, GFP_KERNEL); if (!seq->buf) { err = -ENOMEM; goto done; } } if (seq->count) { n = min(seq->count, size); err = copy_to_user(buf, seq->buf + seq->from, n); if (err) { err = -EFAULT; goto done; } seq->count -= n; seq->from += n; copied = n; goto done; } seq->from = 0; p = seq->op->start(seq, &seq->index); if (!p) goto stop; if (IS_ERR(p)) { err = PTR_ERR(p); seq->op->stop(seq, p); seq->count = 0; goto done; } err = seq->op->show(seq, p); if (err > 0) { /* object is skipped, decrease seq_num, so next * valid object can reuse the same seq_num. */ bpf_iter_dec_seq_num(seq); seq->count = 0; } else if (err < 0 || seq_has_overflowed(seq)) { if (!err) err = -E2BIG; seq->op->stop(seq, p); seq->count = 0; goto done; } can_resched = bpf_iter_support_resched(seq); while (1) { loff_t pos = seq->index; num_objs++; offs = seq->count; p = seq->op->next(seq, p, &seq->index); if (pos == seq->index) { pr_info_ratelimited("buggy seq_file .next function %ps " "did not updated position index\n", seq->op->next); seq->index++; } if (IS_ERR_OR_NULL(p)) break; /* got a valid next object, increase seq_num */ bpf_iter_inc_seq_num(seq); if (seq->count >= size) break; if (num_objs >= MAX_ITER_OBJECTS) { if (offs == 0) { err = -EAGAIN; seq->op->stop(seq, p); goto done; } break; } err = seq->op->show(seq, p); if (err > 0) { bpf_iter_dec_seq_num(seq); seq->count = offs; } else if (err < 0 || seq_has_overflowed(seq)) { seq->count = offs; if (offs == 0) { if (!err) err = -E2BIG; seq->op->stop(seq, p); goto done; } break; } if (can_resched) cond_resched(); } stop: offs = seq->count; if (IS_ERR(p)) { seq->op->stop(seq, NULL); err = PTR_ERR(p); goto done; } /* bpf program called if !p */ seq->op->stop(seq, p); if (!p) { if (!seq_has_overflowed(seq)) { bpf_iter_done_stop(seq); } else { seq->count = offs; if (offs == 0) { err = -E2BIG; goto done; } } } n = min(seq->count, size); err = copy_to_user(buf, seq->buf, n); if (err) { err = -EFAULT; goto done; } copied = n; seq->count -= n; seq->from = n; done: if (!copied) copied = err; else *ppos += copied; mutex_unlock(&seq->lock); return copied; } static const struct bpf_iter_seq_info * __get_seq_info(struct bpf_iter_link *link) { const struct bpf_iter_seq_info *seq_info; if (link->aux.map) { seq_info = link->aux.map->ops->iter_seq_info; if (seq_info) return seq_info; } return link->tinfo->reg_info->seq_info; } static int iter_open(struct inode *inode, struct file *file) { struct bpf_iter_link *link = inode->i_private; return prepare_seq_file(file, link, __get_seq_info(link)); } static int iter_release(struct inode *inode, struct file *file) { struct bpf_iter_priv_data *iter_priv; struct seq_file *seq; seq = file->private_data; if (!seq) return 0; iter_priv = container_of(seq->private, struct bpf_iter_priv_data, target_private); if (iter_priv->seq_info->fini_seq_private) iter_priv->seq_info->fini_seq_private(seq->private); bpf_prog_put(iter_priv->prog); seq->private = iter_priv; return seq_release_private(inode, file); } const struct file_operations bpf_iter_fops = { .open = iter_open, .llseek = no_llseek, .read = bpf_seq_read, .release = iter_release, }; /* The argument reg_info will be cached in bpf_iter_target_info. * The common practice is to declare target reg_info as * a const static variable and passed as an argument to * bpf_iter_reg_target(). */ int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info) { struct bpf_iter_target_info *tinfo; tinfo = kzalloc(sizeof(*tinfo), GFP_KERNEL); if (!tinfo) return -ENOMEM; tinfo->reg_info = reg_info; INIT_LIST_HEAD(&tinfo->list); mutex_lock(&targets_mutex); list_add(&tinfo->list, &targets); mutex_unlock(&targets_mutex); return 0; } void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info) { struct bpf_iter_target_info *tinfo; bool found = false; mutex_lock(&targets_mutex); list_for_each_entry(tinfo, &targets, list) { if (reg_info == tinfo->reg_info) { list_del(&tinfo->list); kfree(tinfo); found = true; break; } } mutex_unlock(&targets_mutex); WARN_ON(found == false); } static void cache_btf_id(struct bpf_iter_target_info *tinfo, struct bpf_prog *prog) { tinfo->btf_id = prog->aux->attach_btf_id; } bool bpf_iter_prog_supported(struct bpf_prog *prog) { const char *attach_fname = prog->aux->attach_func_name; struct bpf_iter_target_info *tinfo = NULL, *iter; u32 prog_btf_id = prog->aux->attach_btf_id; const char *prefix = BPF_ITER_FUNC_PREFIX; int prefix_len = strlen(prefix); if (strncmp(attach_fname, prefix, prefix_len)) return false; mutex_lock(&targets_mutex); list_for_each_entry(iter, &targets, list) { if (iter->btf_id && iter->btf_id == prog_btf_id) { tinfo = iter; break; } if (!strcmp(attach_fname + prefix_len, iter->reg_info->target)) { cache_btf_id(iter, prog); tinfo = iter; break; } } mutex_unlock(&targets_mutex); if (tinfo) { prog->aux->ctx_arg_info_size = tinfo->reg_info->ctx_arg_info_size; prog->aux->ctx_arg_info = tinfo->reg_info->ctx_arg_info; } return tinfo != NULL; } const struct bpf_func_proto * bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { const struct bpf_iter_target_info *tinfo; const struct bpf_func_proto *fn = NULL; mutex_lock(&targets_mutex); list_for_each_entry(tinfo, &targets, list) { if (tinfo->btf_id == prog->aux->attach_btf_id) { const struct bpf_iter_reg *reg_info; reg_info = tinfo->reg_info; if (reg_info->get_func_proto) fn = reg_info->get_func_proto(func_id, prog); break; } } mutex_unlock(&targets_mutex); return fn; } static void bpf_iter_link_release(struct bpf_link *link) { struct bpf_iter_link *iter_link = container_of(link, struct bpf_iter_link, link); if (iter_link->tinfo->reg_info->detach_target) iter_link->tinfo->reg_info->detach_target(&iter_link->aux); } static void bpf_iter_link_dealloc(struct bpf_link *link) { struct bpf_iter_link *iter_link = container_of(link, struct bpf_iter_link, link); kfree(iter_link); } static int bpf_iter_link_replace(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog) { int ret = 0; mutex_lock(&link_mutex); if (old_prog && link->prog != old_prog) { ret = -EPERM; goto out_unlock; } if (link->prog->type != new_prog->type || link->prog->expected_attach_type != new_prog->expected_attach_type || link->prog->aux->attach_btf_id != new_prog->aux->attach_btf_id) { ret = -EINVAL; goto out_unlock; } old_prog = xchg(&link->prog, new_prog); bpf_prog_put(old_prog); out_unlock: mutex_unlock(&link_mutex); return ret; } static void bpf_iter_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq) { struct bpf_iter_link *iter_link = container_of(link, struct bpf_iter_link, link); bpf_iter_show_fdinfo_t show_fdinfo; seq_printf(seq, "target_name:\t%s\n", iter_link->tinfo->reg_info->target); show_fdinfo = iter_link->tinfo->reg_info->show_fdinfo; if (show_fdinfo) show_fdinfo(&iter_link->aux, seq); } static int bpf_iter_link_fill_link_info(const struct bpf_link *link, struct bpf_link_info *info) { struct bpf_iter_link *iter_link = container_of(link, struct bpf_iter_link, link); char __user *ubuf = u64_to_user_ptr(info->iter.target_name); bpf_iter_fill_link_info_t fill_link_info; u32 ulen = info->iter.target_name_len; const char *target_name; u32 target_len; if (!ulen ^ !ubuf) return -EINVAL; target_name = iter_link->tinfo->reg_info->target; target_len = strlen(target_name); info->iter.target_name_len = target_len + 1; if (ubuf) { if (ulen >= target_len + 1) { if (copy_to_user(ubuf, target_name, target_len + 1)) return -EFAULT; } else { char zero = '\0'; if (copy_to_user(ubuf, target_name, ulen - 1)) return -EFAULT; if (put_user(zero, ubuf + ulen - 1)) return -EFAULT; return -ENOSPC; } } fill_link_info = iter_link->tinfo->reg_info->fill_link_info; if (fill_link_info) return fill_link_info(&iter_link->aux, info); return 0; } static const struct bpf_link_ops bpf_iter_link_lops = { .release = bpf_iter_link_release, .dealloc = bpf_iter_link_dealloc, .update_prog = bpf_iter_link_replace, .show_fdinfo = bpf_iter_link_show_fdinfo, .fill_link_info = bpf_iter_link_fill_link_info, }; bool bpf_link_is_iter(struct bpf_link *link) { return link->ops == &bpf_iter_link_lops; } int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog) { struct bpf_iter_target_info *tinfo = NULL, *iter; struct bpf_link_primer link_primer; union bpf_iter_link_info linfo; struct bpf_iter_link *link; u32 prog_btf_id, linfo_len; bpfptr_t ulinfo; int err; if (attr->link_create.target_fd || attr->link_create.flags) return -EINVAL; memset(&linfo, 0, sizeof(union bpf_iter_link_info)); ulinfo = make_bpfptr(attr->link_create.iter_info, uattr.is_kernel); linfo_len = attr->link_create.iter_info_len; if (bpfptr_is_null(ulinfo) ^ !linfo_len) return -EINVAL; if (!bpfptr_is_null(ulinfo)) { err = bpf_check_uarg_tail_zero(ulinfo, sizeof(linfo), linfo_len); if (err) return err; linfo_len = min_t(u32, linfo_len, sizeof(linfo)); if (copy_from_bpfptr(&linfo, ulinfo, linfo_len)) return -EFAULT; } prog_btf_id = prog->aux->attach_btf_id; mutex_lock(&targets_mutex); list_for_each_entry(iter, &targets, list) { if (iter->btf_id == prog_btf_id) { tinfo = iter; break; } } mutex_unlock(&targets_mutex); if (!tinfo) return -ENOENT; /* Only allow sleepable program for resched-able iterator */ if (prog->sleepable && !bpf_iter_target_support_resched(tinfo)) return -EINVAL; link = kzalloc(sizeof(*link), GFP_USER | __GFP_NOWARN); if (!link) return -ENOMEM; bpf_link_init(&link->link, BPF_LINK_TYPE_ITER, &bpf_iter_link_lops, prog); link->tinfo = tinfo; err = bpf_link_prime(&link->link, &link_primer); if (err) { kfree(link); return err; } if (tinfo->reg_info->attach_target) { err = tinfo->reg_info->attach_target(prog, &linfo, &link->aux); if (err) { bpf_link_cleanup(&link_primer); return err; } } return bpf_link_settle(&link_primer); } static void init_seq_meta(struct bpf_iter_priv_data *priv_data, struct bpf_iter_target_info *tinfo, const struct bpf_iter_seq_info *seq_info, struct bpf_prog *prog) { priv_data->tinfo = tinfo; priv_data->seq_info = seq_info; priv_data->prog = prog; priv_data->session_id = atomic64_inc_return(&session_id); priv_data->seq_num = 0; priv_data->done_stop = false; } static int prepare_seq_file(struct file *file, struct bpf_iter_link *link, const struct bpf_iter_seq_info *seq_info) { struct bpf_iter_priv_data *priv_data; struct bpf_iter_target_info *tinfo; struct bpf_prog *prog; u32 total_priv_dsize; struct seq_file *seq; int err = 0; mutex_lock(&link_mutex); prog = link->link.prog; bpf_prog_inc(prog); mutex_unlock(&link_mutex); tinfo = link->tinfo; total_priv_dsize = offsetof(struct bpf_iter_priv_data, target_private) + seq_info->seq_priv_size; priv_data = __seq_open_private(file, seq_info->seq_ops, total_priv_dsize); if (!priv_data) { err = -ENOMEM; goto release_prog; } if (seq_info->init_seq_private) { err = seq_info->init_seq_private(priv_data->target_private, &link->aux); if (err) goto release_seq_file; } init_seq_meta(priv_data, tinfo, seq_info, prog); seq = file->private_data; seq->private = priv_data->target_private; return 0; release_seq_file: seq_release_private(file->f_inode, file); file->private_data = NULL; release_prog: bpf_prog_put(prog); return err; } int bpf_iter_new_fd(struct bpf_link *link) { struct bpf_iter_link *iter_link; struct file *file; unsigned int flags; int err, fd; if (link->ops != &bpf_iter_link_lops) return -EINVAL; flags = O_RDONLY | O_CLOEXEC; fd = get_unused_fd_flags(flags); if (fd < 0) return fd; file = anon_inode_getfile("bpf_iter", &bpf_iter_fops, NULL, flags); if (IS_ERR(file)) { err = PTR_ERR(file); goto free_fd; } iter_link = container_of(link, struct bpf_iter_link, link); err = prepare_seq_file(file, iter_link, __get_seq_info(iter_link)); if (err) goto free_file; fd_install(fd, file); return fd; free_file: fput(file); free_fd: put_unused_fd(fd); return err; } struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop) { struct bpf_iter_priv_data *iter_priv; struct seq_file *seq; void *seq_priv; seq = meta->seq; if (seq->file->f_op != &bpf_iter_fops) return NULL; seq_priv = seq->private; iter_priv = container_of(seq_priv, struct bpf_iter_priv_data, target_private); if (in_stop && iter_priv->done_stop) return NULL; meta->session_id = iter_priv->session_id; meta->seq_num = iter_priv->seq_num; return iter_priv->prog; } int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx) { struct bpf_run_ctx run_ctx, *old_run_ctx; int ret; if (prog->sleepable) { rcu_read_lock_trace(); migrate_disable(); might_fault(); old_run_ctx = bpf_set_run_ctx(&run_ctx); ret = bpf_prog_run(prog, ctx); bpf_reset_run_ctx(old_run_ctx); migrate_enable(); rcu_read_unlock_trace(); } else { rcu_read_lock(); migrate_disable(); old_run_ctx = bpf_set_run_ctx(&run_ctx); ret = bpf_prog_run(prog, ctx); bpf_reset_run_ctx(old_run_ctx); migrate_enable(); rcu_read_unlock(); } /* bpf program can only return 0 or 1: * 0 : okay * 1 : retry the same object * The bpf_iter_run_prog() return value * will be seq_ops->show() return value. */ return ret == 0 ? 0 : -EAGAIN; } BPF_CALL_4(bpf_for_each_map_elem, struct bpf_map *, map, void *, callback_fn, void *, callback_ctx, u64, flags) { return map->ops->map_for_each_callback(map, callback_fn, callback_ctx, flags); } const struct bpf_func_proto bpf_for_each_map_elem_proto = { .func = bpf_for_each_map_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_FUNC, .arg3_type = ARG_PTR_TO_STACK_OR_NULL, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_loop, u32, nr_loops, void *, callback_fn, void *, callback_ctx, u64, flags) { bpf_callback_t callback = (bpf_callback_t)callback_fn; u64 ret; u32 i; /* Note: these safety checks are also verified when bpf_loop * is inlined, be careful to modify this code in sync. See * function verifier.c:inline_bpf_loop. */ if (flags) return -EINVAL; if (nr_loops > BPF_MAX_LOOPS) return -E2BIG; for (i = 0; i < nr_loops; i++) { ret = callback((u64)i, (u64)(long)callback_ctx, 0, 0, 0); /* return value: 0 - continue, 1 - stop and return */ if (ret) return i + 1; } return i; } const struct bpf_func_proto bpf_loop_proto = { .func = bpf_loop, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_PTR_TO_FUNC, .arg3_type = ARG_PTR_TO_STACK_OR_NULL, .arg4_type = ARG_ANYTHING, }; struct bpf_iter_num_kern { int cur; /* current value, inclusive */ int end; /* final value, exclusive */ } __aligned(8); __bpf_kfunc_start_defs(); __bpf_kfunc int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) { struct bpf_iter_num_kern *s = (void *)it; BUILD_BUG_ON(sizeof(struct bpf_iter_num_kern) != sizeof(struct bpf_iter_num)); BUILD_BUG_ON(__alignof__(struct bpf_iter_num_kern) != __alignof__(struct bpf_iter_num)); /* start == end is legit, it's an empty range and we'll just get NULL * on first (and any subsequent) bpf_iter_num_next() call */ if (start > end) { s->cur = s->end = 0; return -EINVAL; } /* avoid overflows, e.g., if start == INT_MIN and end == INT_MAX */ if ((s64)end - (s64)start > BPF_MAX_LOOPS) { s->cur = s->end = 0; return -E2BIG; } /* user will call bpf_iter_num_next() first, * which will set s->cur to exactly start value; * underflow shouldn't matter */ s->cur = start - 1; s->end = end; return 0; } __bpf_kfunc int *bpf_iter_num_next(struct bpf_iter_num* it) { struct bpf_iter_num_kern *s = (void *)it; /* check failed initialization or if we are done (same behavior); * need to be careful about overflow, so convert to s64 for checks, * e.g., if s->cur == s->end == INT_MAX, we can't just do * s->cur + 1 >= s->end */ if ((s64)(s->cur + 1) >= s->end) { s->cur = s->end = 0; return NULL; } s->cur++; return &s->cur; } __bpf_kfunc void bpf_iter_num_destroy(struct bpf_iter_num *it) { struct bpf_iter_num_kern *s = (void *)it; s->cur = s->end = 0; } __bpf_kfunc_end_defs();
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 1 8 7 7 7 7 7 1 7 7 7 1 7 5 2 6 1 21 18 3 18 3 2 12 7 7 7 7 4 4 5 5 1 3 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 // SPDX-License-Identifier: GPL-2.0-or-later /* * IPV4 GSO/GRO offload support * Linux INET implementation * * UDPv4 GSO support */ #include <linux/skbuff.h> #include <net/gro.h> #include <net/gso.h> #include <net/udp.h> #include <net/protocol.h> #include <net/inet_common.h> static struct sk_buff *__skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features), __be16 new_protocol, bool is_ipv6) { int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb); bool remcsum, need_csum, offload_csum, gso_partial; struct sk_buff *segs = ERR_PTR(-EINVAL); struct udphdr *uh = udp_hdr(skb); u16 mac_offset = skb->mac_header; __be16 protocol = skb->protocol; u16 mac_len = skb->mac_len; int udp_offset, outer_hlen; __wsum partial; bool need_ipsec; if (unlikely(!pskb_may_pull(skb, tnl_hlen))) goto out; /* Adjust partial header checksum to negate old length. * We cannot rely on the value contained in uh->len as it is * possible that the actual value exceeds the boundaries of the * 16 bit length field due to the header being added outside of an * IP or IPv6 frame that was already limited to 64K - 1. */ if (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) partial = (__force __wsum)uh->len; else partial = (__force __wsum)htonl(skb->len); partial = csum_sub(csum_unfold(uh->check), partial); /* setup inner skb. */ skb->encapsulation = 0; SKB_GSO_CB(skb)->encap_level = 0; __skb_pull(skb, tnl_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, skb_inner_network_offset(skb)); skb_set_transport_header(skb, skb_inner_transport_offset(skb)); skb->mac_len = skb_inner_network_offset(skb); skb->protocol = new_protocol; need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM); skb->encap_hdr_csum = need_csum; remcsum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TUNNEL_REMCSUM); skb->remcsum_offload = remcsum; need_ipsec = skb_dst(skb) && dst_xfrm(skb_dst(skb)); /* Try to offload checksum if possible */ offload_csum = !!(need_csum && !need_ipsec && (skb->dev->features & (is_ipv6 ? (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM) : (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)))); features &= skb->dev->hw_enc_features; if (need_csum) features &= ~NETIF_F_SCTP_CRC; /* The only checksum offload we care about from here on out is the * outer one so strip the existing checksum feature flags and * instead set the flag based on our outer checksum offload value. */ if (remcsum) { features &= ~NETIF_F_CSUM_MASK; if (!need_csum || offload_csum) features |= NETIF_F_HW_CSUM; } /* segment inner packet. */ segs = gso_inner_segment(skb, features); if (IS_ERR_OR_NULL(segs)) { skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset, mac_len); goto out; } gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); outer_hlen = skb_tnl_header_len(skb); udp_offset = outer_hlen - tnl_hlen; skb = segs; do { unsigned int len; if (remcsum) skb->ip_summed = CHECKSUM_NONE; /* Set up inner headers if we are offloading inner checksum */ if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_reset_inner_headers(skb); skb->encapsulation = 1; } skb->mac_len = mac_len; skb->protocol = protocol; __skb_push(skb, outer_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); skb_set_transport_header(skb, udp_offset); len = skb->len - udp_offset; uh = udp_hdr(skb); /* If we are only performing partial GSO the inner header * will be using a length value equal to only one MSS sized * segment instead of the entire frame. */ if (gso_partial && skb_is_gso(skb)) { uh->len = htons(skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)uh); } else { uh->len = htons(len); } if (!need_csum) continue; uh->check = ~csum_fold(csum_add(partial, (__force __wsum)htonl(len))); if (skb->encapsulation || !offload_csum) { uh->check = gso_make_checksum(skb, ~uh->check); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); } } while ((skb = skb->next)); out: return segs; } struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, bool is_ipv6) { const struct net_offload __rcu **offloads; __be16 protocol = skb->protocol; const struct net_offload *ops; struct sk_buff *segs = ERR_PTR(-EINVAL); struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features); rcu_read_lock(); switch (skb->inner_protocol_type) { case ENCAP_TYPE_ETHER: protocol = skb->inner_protocol; gso_inner_segment = skb_mac_gso_segment; break; case ENCAP_TYPE_IPPROTO: offloads = is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[skb->inner_ipproto]); if (!ops || !ops->callbacks.gso_segment) goto out_unlock; gso_inner_segment = ops->callbacks.gso_segment; break; default: goto out_unlock; } segs = __skb_udp_tunnel_segment(skb, features, gso_inner_segment, protocol, is_ipv6); out_unlock: rcu_read_unlock(); return segs; } EXPORT_SYMBOL(skb_udp_tunnel_segment); static void __udpv4_gso_segment_csum(struct sk_buff *seg, __be32 *oldip, __be32 *newip, __be16 *oldport, __be16 *newport) { struct udphdr *uh; struct iphdr *iph; if (*oldip == *newip && *oldport == *newport) return; uh = udp_hdr(seg); iph = ip_hdr(seg); if (uh->check) { inet_proto_csum_replace4(&uh->check, seg, *oldip, *newip, true); inet_proto_csum_replace2(&uh->check, seg, *oldport, *newport, false); if (!uh->check) uh->check = CSUM_MANGLED_0; } *oldport = *newport; csum_replace4(&iph->check, *oldip, *newip); *oldip = *newip; } static struct sk_buff *__udpv4_gso_segment_list_csum(struct sk_buff *segs) { struct sk_buff *seg; struct udphdr *uh, *uh2; struct iphdr *iph, *iph2; seg = segs; uh = udp_hdr(seg); iph = ip_hdr(seg); if ((udp_hdr(seg)->dest == udp_hdr(seg->next)->dest) && (udp_hdr(seg)->source == udp_hdr(seg->next)->source) && (ip_hdr(seg)->daddr == ip_hdr(seg->next)->daddr) && (ip_hdr(seg)->saddr == ip_hdr(seg->next)->saddr)) return segs; while ((seg = seg->next)) { uh2 = udp_hdr(seg); iph2 = ip_hdr(seg); __udpv4_gso_segment_csum(seg, &iph2->saddr, &iph->saddr, &uh2->source, &uh->source); __udpv4_gso_segment_csum(seg, &iph2->daddr, &iph->daddr, &uh2->dest, &uh->dest); } return segs; } static struct sk_buff *__udp_gso_segment_list(struct sk_buff *skb, netdev_features_t features, bool is_ipv6) { unsigned int mss = skb_shinfo(skb)->gso_size; skb = skb_segment_list(skb, features, skb_mac_header_len(skb)); if (IS_ERR(skb)) return skb; udp_hdr(skb)->len = htons(sizeof(struct udphdr) + mss); return is_ipv6 ? skb : __udpv4_gso_segment_list_csum(skb); } struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb, netdev_features_t features, bool is_ipv6) { struct sock *sk = gso_skb->sk; unsigned int sum_truesize = 0; struct sk_buff *segs, *seg; struct udphdr *uh; unsigned int mss; bool copy_dtor; __sum16 check; __be16 newlen; mss = skb_shinfo(gso_skb)->gso_size; if (gso_skb->len <= sizeof(*uh) + mss) return ERR_PTR(-EINVAL); if (unlikely(skb_checksum_start(gso_skb) != skb_transport_header(gso_skb) && !(skb_shinfo(gso_skb)->gso_type & SKB_GSO_FRAGLIST))) return ERR_PTR(-EINVAL); /* We don't know if egress device can segment and checksum the packet * when IPv6 extension headers are present. Fall back to software GSO. */ if (gso_skb->ip_summed != CHECKSUM_PARTIAL) features &= ~(NETIF_F_GSO_UDP_L4 | NETIF_F_CSUM_MASK); if (skb_gso_ok(gso_skb, features | NETIF_F_GSO_ROBUST)) { /* Packet is from an untrusted source, reset gso_segs. */ skb_shinfo(gso_skb)->gso_segs = DIV_ROUND_UP(gso_skb->len - sizeof(*uh), mss); return NULL; } if (skb_shinfo(gso_skb)->gso_type & SKB_GSO_FRAGLIST) return __udp_gso_segment_list(gso_skb, features, is_ipv6); skb_pull(gso_skb, sizeof(*uh)); /* clear destructor to avoid skb_segment assigning it to tail */ copy_dtor = gso_skb->destructor == sock_wfree; if (copy_dtor) gso_skb->destructor = NULL; segs = skb_segment(gso_skb, features); if (IS_ERR_OR_NULL(segs)) { if (copy_dtor) gso_skb->destructor = sock_wfree; return segs; } /* GSO partial and frag_list segmentation only requires splitting * the frame into an MSS multiple and possibly a remainder, both * cases return a GSO skb. So update the mss now. */ if (skb_is_gso(segs)) mss *= skb_shinfo(segs)->gso_segs; seg = segs; uh = udp_hdr(seg); /* preserve TX timestamp flags and TS key for first segment */ skb_shinfo(seg)->tskey = skb_shinfo(gso_skb)->tskey; skb_shinfo(seg)->tx_flags |= (skb_shinfo(gso_skb)->tx_flags & SKBTX_ANY_TSTAMP); /* compute checksum adjustment based on old length versus new */ newlen = htons(sizeof(*uh) + mss); check = csum16_add(csum16_sub(uh->check, uh->len), newlen); for (;;) { if (copy_dtor) { seg->destructor = sock_wfree; seg->sk = sk; sum_truesize += seg->truesize; } if (!seg->next) break; uh->len = newlen; uh->check = check; if (seg->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(seg, ~check); else uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0; seg = seg->next; uh = udp_hdr(seg); } /* last packet can be partial gso_size, account for that in checksum */ newlen = htons(skb_tail_pointer(seg) - skb_transport_header(seg) + seg->data_len); check = csum16_add(csum16_sub(uh->check, uh->len), newlen); uh->len = newlen; uh->check = check; if (seg->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(seg, ~check); else uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0; /* On the TX path, CHECKSUM_NONE and CHECKSUM_UNNECESSARY have the same * meaning. However, check for bad offloads in the GSO stack expects the * latter, if the checksum was calculated in software. To vouch for the * segment skbs we actually need to set it on the gso_skb. */ if (gso_skb->ip_summed == CHECKSUM_NONE) gso_skb->ip_summed = CHECKSUM_UNNECESSARY; /* update refcount for the packet */ if (copy_dtor) { int delta = sum_truesize - gso_skb->truesize; /* In some pathological cases, delta can be negative. * We need to either use refcount_add() or refcount_sub_and_test() */ if (likely(delta >= 0)) refcount_add(delta, &sk->sk_wmem_alloc); else WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); } return segs; } EXPORT_SYMBOL_GPL(__udp_gso_segment); static struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); unsigned int mss; __wsum csum; struct udphdr *uh; struct iphdr *iph; if (skb->encapsulation && (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL|SKB_GSO_UDP_TUNNEL_CSUM))) { segs = skb_udp_tunnel_segment(skb, features, false); goto out; } if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_UDP | SKB_GSO_UDP_L4))) goto out; if (!pskb_may_pull(skb, sizeof(struct udphdr))) goto out; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) return __udp_gso_segment(skb, features, false); mss = skb_shinfo(skb)->gso_size; if (unlikely(skb->len <= mss)) goto out; /* Do software UFO. Complete and fill in the UDP checksum as * HW cannot do checksum of UDP packets sent as multiple * IP fragments. */ uh = udp_hdr(skb); iph = ip_hdr(skb); uh->check = 0; csum = skb_checksum(skb, 0, skb->len, 0); uh->check = udp_v4_check(skb->len, iph->saddr, iph->daddr, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; skb->ip_summed = CHECKSUM_UNNECESSARY; /* If there is no outer header we can fake a checksum offload * due to the fact that we have already done the checksum in * software prior to segmenting the frame. */ if (!skb->encap_hdr_csum) features |= NETIF_F_HW_CSUM; /* Fragment the skb. IP headers of the fragments are updated in * inet_gso_segment() */ segs = skb_segment(skb, features); out: return segs; } #define UDP_GRO_CNT_MAX 64 static struct sk_buff *udp_gro_receive_segment(struct list_head *head, struct sk_buff *skb) { struct udphdr *uh = udp_gro_udphdr(skb); struct sk_buff *pp = NULL; struct udphdr *uh2; struct sk_buff *p; unsigned int ulen; int ret = 0; int flush; /* requires non zero csum, for symmetry with GSO */ if (!uh->check) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } /* Do not deal with padded or malicious packets, sorry ! */ ulen = ntohs(uh->len); if (ulen <= sizeof(*uh) || ulen != skb_gro_len(skb)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } /* pull encapsulating udp header */ skb_gro_pull(skb, sizeof(struct udphdr)); list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; uh2 = udp_hdr(p); /* Match ports only, as csum is always non zero */ if ((*(u32 *)&uh->source != *(u32 *)&uh2->source)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } if (NAPI_GRO_CB(skb)->is_flist != NAPI_GRO_CB(p)->is_flist) { NAPI_GRO_CB(skb)->flush = 1; return p; } flush = gro_receive_network_flush(uh, uh2, p); /* Terminate the flow on len mismatch or if it grow "too much". * Under small packet flood GRO count could elsewhere grow a lot * leading to excessive truesize values. * On len mismatch merge the first packet shorter than gso_size, * otherwise complete the GRO packet. */ if (ulen > ntohs(uh2->len) || flush) { pp = p; } else { if (NAPI_GRO_CB(skb)->is_flist) { if (!pskb_may_pull(skb, skb_gro_offset(skb))) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } if ((skb->ip_summed != p->ip_summed) || (skb->csum_level != p->csum_level)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } ret = skb_gro_receive_list(p, skb); } else { skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr)); ret = skb_gro_receive(p, skb); } } if (ret || ulen != ntohs(uh2->len) || NAPI_GRO_CB(p)->count >= UDP_GRO_CNT_MAX) pp = p; return pp; } /* mismatch, but we never need to flush */ return NULL; } struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb, struct udphdr *uh, struct sock *sk) { struct sk_buff *pp = NULL; struct sk_buff *p; struct udphdr *uh2; unsigned int off = skb_gro_offset(skb); int flush = 1; /* We can do L4 aggregation only if the packet can't land in a tunnel * otherwise we could corrupt the inner stream. Detecting such packets * cannot be foolproof and the aggregation might still happen in some * cases. Such packets should be caught in udp_unexpected_gso later. */ NAPI_GRO_CB(skb)->is_flist = 0; if (!sk || !udp_sk(sk)->gro_receive) { /* If the packet was locally encapsulated in a UDP tunnel that * wasn't detected above, do not GRO. */ if (skb->encapsulation) goto out; if (skb->dev->features & NETIF_F_GRO_FRAGLIST) NAPI_GRO_CB(skb)->is_flist = sk ? !udp_test_bit(GRO_ENABLED, sk) : 1; if ((!sk && (skb->dev->features & NETIF_F_GRO_UDP_FWD)) || (sk && udp_test_bit(GRO_ENABLED, sk)) || NAPI_GRO_CB(skb)->is_flist) return call_gro_receive(udp_gro_receive_segment, head, skb); /* no GRO, be sure flush the current packet */ goto out; } if (NAPI_GRO_CB(skb)->encap_mark || (uh->check && skb->ip_summed != CHECKSUM_PARTIAL && NAPI_GRO_CB(skb)->csum_cnt == 0 && !NAPI_GRO_CB(skb)->csum_valid)) goto out; /* mark that this skb passed once through the tunnel gro layer */ NAPI_GRO_CB(skb)->encap_mark = 1; flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; uh2 = (struct udphdr *)(p->data + off); /* Match ports and either checksums are either both zero * or nonzero. */ if ((*(u32 *)&uh->source != *(u32 *)&uh2->source) || (!uh->check ^ !uh2->check)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } skb_gro_pull(skb, sizeof(struct udphdr)); /* pull encapsulating udp header */ skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr)); pp = call_gro_receive_sk(udp_sk(sk)->gro_receive, sk, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(udp_gro_receive); static struct sock *udp4_gro_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport) { const struct iphdr *iph = skb_gro_network_header(skb); struct net *net = dev_net(skb->dev); int iif, sdif; inet_get_iif_sdif(skb, &iif, &sdif); return __udp4_lib_lookup(net, iph->saddr, sport, iph->daddr, dport, iif, sdif, net->ipv4.udp_table, NULL); } INDIRECT_CALLABLE_SCOPE struct sk_buff *udp4_gro_receive(struct list_head *head, struct sk_buff *skb) { struct udphdr *uh = udp_gro_udphdr(skb); struct sock *sk = NULL; struct sk_buff *pp; if (unlikely(!uh)) goto flush; /* Don't bother verifying checksum if we're going to flush anyway. */ if (NAPI_GRO_CB(skb)->flush) goto skip; if (skb_gro_checksum_validate_zero_check(skb, IPPROTO_UDP, uh->check, inet_gro_compute_pseudo)) goto flush; else if (uh->check) skb_gro_checksum_try_convert(skb, IPPROTO_UDP, inet_gro_compute_pseudo); skip: NAPI_GRO_CB(skb)->is_ipv6 = 0; if (static_branch_unlikely(&udp_encap_needed_key)) sk = udp4_gro_lookup_skb(skb, uh->source, uh->dest); pp = udp_gro_receive(head, skb, uh, sk); return pp; flush: NAPI_GRO_CB(skb)->flush = 1; return NULL; } static int udp_gro_complete_segment(struct sk_buff *skb) { struct udphdr *uh = udp_hdr(skb); skb->csum_start = (unsigned char *)uh - skb->head; skb->csum_offset = offsetof(struct udphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_L4; if (skb->encapsulation) skb->inner_transport_header = skb->transport_header; return 0; } int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup) { __be16 newlen = htons(skb->len - nhoff); struct udphdr *uh = (struct udphdr *)(skb->data + nhoff); struct sock *sk; int err; uh->len = newlen; sk = INDIRECT_CALL_INET(lookup, udp6_lib_lookup_skb, udp4_lib_lookup_skb, skb, uh->source, uh->dest); if (sk && udp_sk(sk)->gro_complete) { skb_shinfo(skb)->gso_type = uh->check ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; /* clear the encap mark, so that inner frag_list gro_complete * can take place */ NAPI_GRO_CB(skb)->encap_mark = 0; /* Set encapsulation before calling into inner gro_complete() * functions to make them set up the inner offsets. */ skb->encapsulation = 1; err = udp_sk(sk)->gro_complete(sk, skb, nhoff + sizeof(struct udphdr)); } else { err = udp_gro_complete_segment(skb); } if (skb->remcsum_offload) skb_shinfo(skb)->gso_type |= SKB_GSO_TUNNEL_REMCSUM; return err; } EXPORT_SYMBOL(udp_gro_complete); INDIRECT_CALLABLE_SCOPE int udp4_gro_complete(struct sk_buff *skb, int nhoff) { const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; const struct iphdr *iph = (struct iphdr *)(skb->data + offset); struct udphdr *uh = (struct udphdr *)(skb->data + nhoff); /* do fraglist only if there is no outer UDP encap (or we already processed it) */ if (NAPI_GRO_CB(skb)->is_flist && !NAPI_GRO_CB(skb)->encap_mark) { uh->len = htons(skb->len - nhoff); skb_shinfo(skb)->gso_type |= (SKB_GSO_FRAGLIST|SKB_GSO_UDP_L4); skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; __skb_incr_checksum_unnecessary(skb); return 0; } if (uh->check) uh->check = ~udp_v4_check(skb->len - nhoff, iph->saddr, iph->daddr, 0); return udp_gro_complete(skb, nhoff, udp4_lib_lookup_skb); } int __init udpv4_offload_init(void) { net_hotdata.udpv4_offload = (struct net_offload) { .callbacks = { .gso_segment = udp4_ufo_fragment, .gro_receive = udp4_gro_receive, .gro_complete = udp4_gro_complete, }, }; return inet_add_offload(&net_hotdata.udpv4_offload, IPPROTO_UDP); }
8 8 8 6 6 6 6 5 6 6 9 2 9 3 9 9 3 9 9 2 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 3 3 3 3 2 3 2 3 9 6 8 8 9 9 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 9 8 9 9 9 9 9 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 // SPDX-License-Identifier: GPL-2.0-only /* * linux/net/sunrpc/xprt.c * * This is a generic RPC call interface supporting congestion avoidance, * and asynchronous calls. * * The interface works like this: * * - When a process places a call, it allocates a request slot if * one is available. Otherwise, it sleeps on the backlog queue * (xprt_reserve). * - Next, the caller puts together the RPC message, stuffs it into * the request struct, and calls xprt_transmit(). * - xprt_transmit sends the message and installs the caller on the * transport's wait list. At the same time, if a reply is expected, * it installs a timer that is run after the packet's timeout has * expired. * - When a packet arrives, the data_ready handler walks the list of * pending requests for that transport. If a matching XID is found, the * caller is woken up, and the timer removed. * - When no reply arrives within the timeout interval, the timer is * fired by the kernel and runs xprt_timer(). It either adjusts the * timeout values (minor timeout) or wakes up the caller with a status * of -ETIMEDOUT. * - When the caller receives a notification from RPC that a reply arrived, * it should release the RPC slot, and process the reply. * If the call timed out, it may choose to retry the operation by * adjusting the initial timeout value, and simply calling rpc_call * again. * * Support for async RPC is done through a set of RPC-specific scheduling * primitives that `transparently' work for processes as well as async * tasks that rely on callbacks. * * Copyright (C) 1995-1997, Olaf Kirch <okir@monad.swb.de> * * Transport switch API copyright (C) 2005, Chuck Lever <cel@netapp.com> */ #include <linux/module.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/workqueue.h> #include <linux/net.h> #include <linux/ktime.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/metrics.h> #include <linux/sunrpc/bc_xprt.h> #include <linux/rcupdate.h> #include <linux/sched/mm.h> #include <trace/events/sunrpc.h> #include "sunrpc.h" #include "sysfs.h" #include "fail.h" /* * Local variables */ #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_XPRT #endif /* * Local functions */ static void xprt_init(struct rpc_xprt *xprt, struct net *net); static __be32 xprt_alloc_xid(struct rpc_xprt *xprt); static void xprt_destroy(struct rpc_xprt *xprt); static void xprt_request_init(struct rpc_task *task); static int xprt_request_prepare(struct rpc_rqst *req, struct xdr_buf *buf); static DEFINE_SPINLOCK(xprt_list_lock); static LIST_HEAD(xprt_list); static unsigned long xprt_request_timeout(const struct rpc_rqst *req) { unsigned long timeout = jiffies + req->rq_timeout; if (time_before(timeout, req->rq_majortimeo)) return timeout; return req->rq_majortimeo; } /** * xprt_register_transport - register a transport implementation * @transport: transport to register * * If a transport implementation is loaded as a kernel module, it can * call this interface to make itself known to the RPC client. * * Returns: * 0: transport successfully registered * -EEXIST: transport already registered * -EINVAL: transport module being unloaded */ int xprt_register_transport(struct xprt_class *transport) { struct xprt_class *t; int result; result = -EEXIST; spin_lock(&xprt_list_lock); list_for_each_entry(t, &xprt_list, list) { /* don't register the same transport class twice */ if (t->ident == transport->ident) goto out; } list_add_tail(&transport->list, &xprt_list); printk(KERN_INFO "RPC: Registered %s transport module.\n", transport->name); result = 0; out: spin_unlock(&xprt_list_lock); return result; } EXPORT_SYMBOL_GPL(xprt_register_transport); /** * xprt_unregister_transport - unregister a transport implementation * @transport: transport to unregister * * Returns: * 0: transport successfully unregistered * -ENOENT: transport never registered */ int xprt_unregister_transport(struct xprt_class *transport) { struct xprt_class *t; int result; result = 0; spin_lock(&xprt_list_lock); list_for_each_entry(t, &xprt_list, list) { if (t == transport) { printk(KERN_INFO "RPC: Unregistered %s transport module.\n", transport->name); list_del_init(&transport->list); goto out; } } result = -ENOENT; out: spin_unlock(&xprt_list_lock); return result; } EXPORT_SYMBOL_GPL(xprt_unregister_transport); static void xprt_class_release(const struct xprt_class *t) { module_put(t->owner); } static const struct xprt_class * xprt_class_find_by_ident_locked(int ident) { const struct xprt_class *t; list_for_each_entry(t, &xprt_list, list) { if (t->ident != ident) continue; if (!try_module_get(t->owner)) continue; return t; } return NULL; } static const struct xprt_class * xprt_class_find_by_ident(int ident) { const struct xprt_class *t; spin_lock(&xprt_list_lock); t = xprt_class_find_by_ident_locked(ident); spin_unlock(&xprt_list_lock); return t; } static const struct xprt_class * xprt_class_find_by_netid_locked(const char *netid) { const struct xprt_class *t; unsigned int i; list_for_each_entry(t, &xprt_list, list) { for (i = 0; t->netid[i][0] != '\0'; i++) { if (strcmp(t->netid[i], netid) != 0) continue; if (!try_module_get(t->owner)) continue; return t; } } return NULL; } static const struct xprt_class * xprt_class_find_by_netid(const char *netid) { const struct xprt_class *t; spin_lock(&xprt_list_lock); t = xprt_class_find_by_netid_locked(netid); if (!t) { spin_unlock(&xprt_list_lock); request_module("rpc%s", netid); spin_lock(&xprt_list_lock); t = xprt_class_find_by_netid_locked(netid); } spin_unlock(&xprt_list_lock); return t; } /** * xprt_find_transport_ident - convert a netid into a transport identifier * @netid: transport to load * * Returns: * > 0: transport identifier * -ENOENT: transport module not available */ int xprt_find_transport_ident(const char *netid) { const struct xprt_class *t; int ret; t = xprt_class_find_by_netid(netid); if (!t) return -ENOENT; ret = t->ident; xprt_class_release(t); return ret; } EXPORT_SYMBOL_GPL(xprt_find_transport_ident); static void xprt_clear_locked(struct rpc_xprt *xprt) { xprt->snd_task = NULL; if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state)) clear_bit_unlock(XPRT_LOCKED, &xprt->state); else queue_work(xprtiod_workqueue, &xprt->task_cleanup); } /** * xprt_reserve_xprt - serialize write access to transports * @task: task that is requesting access to the transport * @xprt: pointer to the target transport * * This prevents mixing the payload of separate requests, and prevents * transport connects from colliding with writes. No congestion control * is provided. */ int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { if (task == xprt->snd_task) goto out_locked; goto out_sleep; } if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; xprt->snd_task = task; out_locked: trace_xprt_reserve_xprt(xprt, task); return 1; out_unlock: xprt_clear_locked(xprt); out_sleep: task->tk_status = -EAGAIN; if (RPC_IS_SOFT(task) || RPC_IS_SOFTCONN(task)) rpc_sleep_on_timeout(&xprt->sending, task, NULL, xprt_request_timeout(req)); else rpc_sleep_on(&xprt->sending, task, NULL); return 0; } EXPORT_SYMBOL_GPL(xprt_reserve_xprt); static bool xprt_need_congestion_window_wait(struct rpc_xprt *xprt) { return test_bit(XPRT_CWND_WAIT, &xprt->state); } static void xprt_set_congestion_window_wait(struct rpc_xprt *xprt) { if (!list_empty(&xprt->xmit_queue)) { /* Peek at head of queue to see if it can make progress */ if (list_first_entry(&xprt->xmit_queue, struct rpc_rqst, rq_xmit)->rq_cong) return; } set_bit(XPRT_CWND_WAIT, &xprt->state); } static void xprt_test_and_clear_congestion_window_wait(struct rpc_xprt *xprt) { if (!RPCXPRT_CONGESTED(xprt)) clear_bit(XPRT_CWND_WAIT, &xprt->state); } /* * xprt_reserve_xprt_cong - serialize write access to transports * @task: task that is requesting access to the transport * * Same as xprt_reserve_xprt, but Van Jacobson congestion control is * integrated into the decision of whether a request is allowed to be * woken up and given access to the transport. * Note that the lock is only granted if we know there are free slots. */ int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { if (task == xprt->snd_task) goto out_locked; goto out_sleep; } if (req == NULL) { xprt->snd_task = task; goto out_locked; } if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; if (!xprt_need_congestion_window_wait(xprt)) { xprt->snd_task = task; goto out_locked; } out_unlock: xprt_clear_locked(xprt); out_sleep: task->tk_status = -EAGAIN; if (RPC_IS_SOFT(task) || RPC_IS_SOFTCONN(task)) rpc_sleep_on_timeout(&xprt->sending, task, NULL, xprt_request_timeout(req)); else rpc_sleep_on(&xprt->sending, task, NULL); return 0; out_locked: trace_xprt_reserve_cong(xprt, task); return 1; } EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong); static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) { int retval; if (test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == task) return 1; spin_lock(&xprt->transport_lock); retval = xprt->ops->reserve_xprt(xprt, task); spin_unlock(&xprt->transport_lock); return retval; } static bool __xprt_lock_write_func(struct rpc_task *task, void *data) { struct rpc_xprt *xprt = data; xprt->snd_task = task; return true; } static void __xprt_lock_write_next(struct rpc_xprt *xprt) { if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) return; if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending, __xprt_lock_write_func, xprt)) return; out_unlock: xprt_clear_locked(xprt); } static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt) { if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) return; if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) goto out_unlock; if (xprt_need_congestion_window_wait(xprt)) goto out_unlock; if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending, __xprt_lock_write_func, xprt)) return; out_unlock: xprt_clear_locked(xprt); } /** * xprt_release_xprt - allow other requests to use a transport * @xprt: transport with other tasks potentially waiting * @task: task that is releasing access to the transport * * Note that "task" can be NULL. No congestion control is provided. */ void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task == task) { xprt_clear_locked(xprt); __xprt_lock_write_next(xprt); } trace_xprt_release_xprt(xprt, task); } EXPORT_SYMBOL_GPL(xprt_release_xprt); /** * xprt_release_xprt_cong - allow other requests to use a transport * @xprt: transport with other tasks potentially waiting * @task: task that is releasing access to the transport * * Note that "task" can be NULL. Another task is awoken to use the * transport if the transport's congestion window allows it. */ void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task == task) { xprt_clear_locked(xprt); __xprt_lock_write_next_cong(xprt); } trace_xprt_release_cong(xprt, task); } EXPORT_SYMBOL_GPL(xprt_release_xprt_cong); void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task != task) return; spin_lock(&xprt->transport_lock); xprt->ops->release_xprt(xprt, task); spin_unlock(&xprt->transport_lock); } /* * Van Jacobson congestion avoidance. Check if the congestion window * overflowed. Put the task to sleep if this is the case. */ static int __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (req->rq_cong) return 1; trace_xprt_get_cong(xprt, req->rq_task); if (RPCXPRT_CONGESTED(xprt)) { xprt_set_congestion_window_wait(xprt); return 0; } req->rq_cong = 1; xprt->cong += RPC_CWNDSCALE; return 1; } /* * Adjust the congestion window, and wake up the next task * that has been sleeping due to congestion */ static void __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (!req->rq_cong) return; req->rq_cong = 0; xprt->cong -= RPC_CWNDSCALE; xprt_test_and_clear_congestion_window_wait(xprt); trace_xprt_put_cong(xprt, req->rq_task); __xprt_lock_write_next_cong(xprt); } /** * xprt_request_get_cong - Request congestion control credits * @xprt: pointer to transport * @req: pointer to RPC request * * Useful for transports that require congestion control. */ bool xprt_request_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { bool ret = false; if (req->rq_cong) return true; spin_lock(&xprt->transport_lock); ret = __xprt_get_cong(xprt, req) != 0; spin_unlock(&xprt->transport_lock); return ret; } EXPORT_SYMBOL_GPL(xprt_request_get_cong); /** * xprt_release_rqst_cong - housekeeping when request is complete * @task: RPC request that recently completed * * Useful for transports that require congestion control. */ void xprt_release_rqst_cong(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; __xprt_put_cong(req->rq_xprt, req); } EXPORT_SYMBOL_GPL(xprt_release_rqst_cong); static void xprt_clear_congestion_window_wait_locked(struct rpc_xprt *xprt) { if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) __xprt_lock_write_next_cong(xprt); } /* * Clear the congestion window wait flag and wake up the next * entry on xprt->sending */ static void xprt_clear_congestion_window_wait(struct rpc_xprt *xprt) { if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) { spin_lock(&xprt->transport_lock); __xprt_lock_write_next_cong(xprt); spin_unlock(&xprt->transport_lock); } } /** * xprt_adjust_cwnd - adjust transport congestion window * @xprt: pointer to xprt * @task: recently completed RPC request used to adjust window * @result: result code of completed RPC request * * The transport code maintains an estimate on the maximum number of out- * standing RPC requests, using a smoothed version of the congestion * avoidance implemented in 44BSD. This is basically the Van Jacobson * congestion algorithm: If a retransmit occurs, the congestion window is * halved; otherwise, it is incremented by 1/cwnd when * * - a reply is received and * - a full number of requests are outstanding and * - the congestion window hasn't been updated recently. */ void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result) { struct rpc_rqst *req = task->tk_rqstp; unsigned long cwnd = xprt->cwnd; if (result >= 0 && cwnd <= xprt->cong) { /* The (cwnd >> 1) term makes sure * the result gets rounded properly. */ cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd; if (cwnd > RPC_MAXCWND(xprt)) cwnd = RPC_MAXCWND(xprt); __xprt_lock_write_next_cong(xprt); } else if (result == -ETIMEDOUT) { cwnd >>= 1; if (cwnd < RPC_CWNDSCALE) cwnd = RPC_CWNDSCALE; } dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n", xprt->cong, xprt->cwnd, cwnd); xprt->cwnd = cwnd; __xprt_put_cong(xprt, req); } EXPORT_SYMBOL_GPL(xprt_adjust_cwnd); /** * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue * @xprt: transport with waiting tasks * @status: result code to plant in each task before waking it * */ void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status) { if (status < 0) rpc_wake_up_status(&xprt->pending, status); else rpc_wake_up(&xprt->pending); } EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks); /** * xprt_wait_for_buffer_space - wait for transport output buffer to clear * @xprt: transport * * Note that we only set the timer for the case of RPC_IS_SOFT(), since * we don't in general want to force a socket disconnection due to * an incomplete RPC call transmission. */ void xprt_wait_for_buffer_space(struct rpc_xprt *xprt) { set_bit(XPRT_WRITE_SPACE, &xprt->state); } EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space); static bool xprt_clear_write_space_locked(struct rpc_xprt *xprt) { if (test_and_clear_bit(XPRT_WRITE_SPACE, &xprt->state)) { __xprt_lock_write_next(xprt); dprintk("RPC: write space: waking waiting task on " "xprt %p\n", xprt); return true; } return false; } /** * xprt_write_space - wake the task waiting for transport output buffer space * @xprt: transport with waiting tasks * * Can be called in a soft IRQ context, so xprt_write_space never sleeps. */ bool xprt_write_space(struct rpc_xprt *xprt) { bool ret; if (!test_bit(XPRT_WRITE_SPACE, &xprt->state)) return false; spin_lock(&xprt->transport_lock); ret = xprt_clear_write_space_locked(xprt); spin_unlock(&xprt->transport_lock); return ret; } EXPORT_SYMBOL_GPL(xprt_write_space); static unsigned long xprt_abs_ktime_to_jiffies(ktime_t abstime) { s64 delta = ktime_to_ns(ktime_get() - abstime); return likely(delta >= 0) ? jiffies - nsecs_to_jiffies(delta) : jiffies + nsecs_to_jiffies(-delta); } static unsigned long xprt_calc_majortimeo(struct rpc_rqst *req, const struct rpc_timeout *to) { unsigned long majortimeo = req->rq_timeout; if (to->to_exponential) majortimeo <<= to->to_retries; else majortimeo += to->to_increment * to->to_retries; if (majortimeo > to->to_maxval || majortimeo == 0) majortimeo = to->to_maxval; return majortimeo; } static void xprt_reset_majortimeo(struct rpc_rqst *req, const struct rpc_timeout *to) { req->rq_majortimeo += xprt_calc_majortimeo(req, to); } static void xprt_reset_minortimeo(struct rpc_rqst *req) { req->rq_minortimeo += req->rq_timeout; } static void xprt_init_majortimeo(struct rpc_task *task, struct rpc_rqst *req, const struct rpc_timeout *to) { unsigned long time_init; struct rpc_xprt *xprt = req->rq_xprt; if (likely(xprt && xprt_connected(xprt))) time_init = jiffies; else time_init = xprt_abs_ktime_to_jiffies(task->tk_start); req->rq_timeout = to->to_initval; req->rq_majortimeo = time_init + xprt_calc_majortimeo(req, to); req->rq_minortimeo = time_init + req->rq_timeout; } /** * xprt_adjust_timeout - adjust timeout values for next retransmit * @req: RPC request containing parameters to use for the adjustment * */ int xprt_adjust_timeout(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; int status = 0; if (time_before(jiffies, req->rq_majortimeo)) { if (time_before(jiffies, req->rq_minortimeo)) return status; if (to->to_exponential) req->rq_timeout <<= 1; else req->rq_timeout += to->to_increment; if (to->to_maxval && req->rq_timeout >= to->to_maxval) req->rq_timeout = to->to_maxval; req->rq_retries++; } else { req->rq_timeout = to->to_initval; req->rq_retries = 0; xprt_reset_majortimeo(req, to); /* Reset the RTT counters == "slow start" */ spin_lock(&xprt->transport_lock); rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval); spin_unlock(&xprt->transport_lock); status = -ETIMEDOUT; } xprt_reset_minortimeo(req); if (req->rq_timeout == 0) { printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n"); req->rq_timeout = 5 * HZ; } return status; } static void xprt_autoclose(struct work_struct *work) { struct rpc_xprt *xprt = container_of(work, struct rpc_xprt, task_cleanup); unsigned int pflags = memalloc_nofs_save(); trace_xprt_disconnect_auto(xprt); xprt->connect_cookie++; smp_mb__before_atomic(); clear_bit(XPRT_CLOSE_WAIT, &xprt->state); xprt->ops->close(xprt); xprt_release_write(xprt, NULL); wake_up_bit(&xprt->state, XPRT_LOCKED); memalloc_nofs_restore(pflags); } /** * xprt_disconnect_done - mark a transport as disconnected * @xprt: transport to flag for disconnect * */ void xprt_disconnect_done(struct rpc_xprt *xprt) { trace_xprt_disconnect_done(xprt); spin_lock(&xprt->transport_lock); xprt_clear_connected(xprt); xprt_clear_write_space_locked(xprt); xprt_clear_congestion_window_wait_locked(xprt); xprt_wake_pending_tasks(xprt, -ENOTCONN); spin_unlock(&xprt->transport_lock); } EXPORT_SYMBOL_GPL(xprt_disconnect_done); /** * xprt_schedule_autoclose_locked - Try to schedule an autoclose RPC call * @xprt: transport to disconnect */ static void xprt_schedule_autoclose_locked(struct rpc_xprt *xprt) { if (test_and_set_bit(XPRT_CLOSE_WAIT, &xprt->state)) return; if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0) queue_work(xprtiod_workqueue, &xprt->task_cleanup); else if (xprt->snd_task && !test_bit(XPRT_SND_IS_COOKIE, &xprt->state)) rpc_wake_up_queued_task_set_status(&xprt->pending, xprt->snd_task, -ENOTCONN); } /** * xprt_force_disconnect - force a transport to disconnect * @xprt: transport to disconnect * */ void xprt_force_disconnect(struct rpc_xprt *xprt) { trace_xprt_disconnect_force(xprt); /* Don't race with the test_bit() in xprt_clear_locked() */ spin_lock(&xprt->transport_lock); xprt_schedule_autoclose_locked(xprt); spin_unlock(&xprt->transport_lock); } EXPORT_SYMBOL_GPL(xprt_force_disconnect); static unsigned int xprt_connect_cookie(struct rpc_xprt *xprt) { return READ_ONCE(xprt->connect_cookie); } static bool xprt_request_retransmit_after_disconnect(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; return req->rq_connect_cookie != xprt_connect_cookie(xprt) || !xprt_connected(xprt); } /** * xprt_conditional_disconnect - force a transport to disconnect * @xprt: transport to disconnect * @cookie: 'connection cookie' * * This attempts to break the connection if and only if 'cookie' matches * the current transport 'connection cookie'. It ensures that we don't * try to break the connection more than once when we need to retransmit * a batch of RPC requests. * */ void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie) { /* Don't race with the test_bit() in xprt_clear_locked() */ spin_lock(&xprt->transport_lock); if (cookie != xprt->connect_cookie) goto out; if (test_bit(XPRT_CLOSING, &xprt->state)) goto out; xprt_schedule_autoclose_locked(xprt); out: spin_unlock(&xprt->transport_lock); } static bool xprt_has_timer(const struct rpc_xprt *xprt) { return xprt->idle_timeout != 0; } static void xprt_schedule_autodisconnect(struct rpc_xprt *xprt) __must_hold(&xprt->transport_lock) { xprt->last_used = jiffies; if (RB_EMPTY_ROOT(&xprt->recv_queue) && xprt_has_timer(xprt)) mod_timer(&xprt->timer, xprt->last_used + xprt->idle_timeout); } static void xprt_init_autodisconnect(struct timer_list *t) { struct rpc_xprt *xprt = from_timer(xprt, t, timer); if (!RB_EMPTY_ROOT(&xprt->recv_queue)) return; /* Reset xprt->last_used to avoid connect/autodisconnect cycling */ xprt->last_used = jiffies; if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) return; queue_work(xprtiod_workqueue, &xprt->task_cleanup); } #if IS_ENABLED(CONFIG_FAIL_SUNRPC) static void xprt_inject_disconnect(struct rpc_xprt *xprt) { if (!fail_sunrpc.ignore_client_disconnect && should_fail(&fail_sunrpc.attr, 1)) xprt->ops->inject_disconnect(xprt); } #else static inline void xprt_inject_disconnect(struct rpc_xprt *xprt) { } #endif bool xprt_lock_connect(struct rpc_xprt *xprt, struct rpc_task *task, void *cookie) { bool ret = false; spin_lock(&xprt->transport_lock); if (!test_bit(XPRT_LOCKED, &xprt->state)) goto out; if (xprt->snd_task != task) goto out; set_bit(XPRT_SND_IS_COOKIE, &xprt->state); xprt->snd_task = cookie; ret = true; out: spin_unlock(&xprt->transport_lock); return ret; } EXPORT_SYMBOL_GPL(xprt_lock_connect); void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie) { spin_lock(&xprt->transport_lock); if (xprt->snd_task != cookie) goto out; if (!test_bit(XPRT_LOCKED, &xprt->state)) goto out; xprt->snd_task =NULL; clear_bit(XPRT_SND_IS_COOKIE, &xprt->state); xprt->ops->release_xprt(xprt, NULL); xprt_schedule_autodisconnect(xprt); out: spin_unlock(&xprt->transport_lock); wake_up_bit(&xprt->state, XPRT_LOCKED); } EXPORT_SYMBOL_GPL(xprt_unlock_connect); /** * xprt_connect - schedule a transport connect operation * @task: RPC task that is requesting the connect * */ void xprt_connect(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; trace_xprt_connect(xprt); if (!xprt_bound(xprt)) { task->tk_status = -EAGAIN; return; } if (!xprt_lock_write(xprt, task)) return; if (!xprt_connected(xprt) && !test_bit(XPRT_CLOSE_WAIT, &xprt->state)) { task->tk_rqstp->rq_connect_cookie = xprt->connect_cookie; rpc_sleep_on_timeout(&xprt->pending, task, NULL, xprt_request_timeout(task->tk_rqstp)); if (test_bit(XPRT_CLOSING, &xprt->state)) return; if (xprt_test_and_set_connecting(xprt)) return; /* Race breaker */ if (!xprt_connected(xprt)) { xprt->stat.connect_start = jiffies; xprt->ops->connect(xprt, task); } else { xprt_clear_connecting(xprt); task->tk_status = 0; rpc_wake_up_queued_task(&xprt->pending, task); } } xprt_release_write(xprt, task); } /** * xprt_reconnect_delay - compute the wait before scheduling a connect * @xprt: transport instance * */ unsigned long xprt_reconnect_delay(const struct rpc_xprt *xprt) { unsigned long start, now = jiffies; start = xprt->stat.connect_start + xprt->reestablish_timeout; if (time_after(start, now)) return start - now; return 0; } EXPORT_SYMBOL_GPL(xprt_reconnect_delay); /** * xprt_reconnect_backoff - compute the new re-establish timeout * @xprt: transport instance * @init_to: initial reestablish timeout * */ void xprt_reconnect_backoff(struct rpc_xprt *xprt, unsigned long init_to) { xprt->reestablish_timeout <<= 1; if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) xprt->reestablish_timeout = xprt->max_reconnect_timeout; if (xprt->reestablish_timeout < init_to) xprt->reestablish_timeout = init_to; } EXPORT_SYMBOL_GPL(xprt_reconnect_backoff); enum xprt_xid_rb_cmp { XID_RB_EQUAL, XID_RB_LEFT, XID_RB_RIGHT, }; static enum xprt_xid_rb_cmp xprt_xid_cmp(__be32 xid1, __be32 xid2) { if (xid1 == xid2) return XID_RB_EQUAL; if ((__force u32)xid1 < (__force u32)xid2) return XID_RB_LEFT; return XID_RB_RIGHT; } static struct rpc_rqst * xprt_request_rb_find(struct rpc_xprt *xprt, __be32 xid) { struct rb_node *n = xprt->recv_queue.rb_node; struct rpc_rqst *req; while (n != NULL) { req = rb_entry(n, struct rpc_rqst, rq_recv); switch (xprt_xid_cmp(xid, req->rq_xid)) { case XID_RB_LEFT: n = n->rb_left; break; case XID_RB_RIGHT: n = n->rb_right; break; case XID_RB_EQUAL: return req; } } return NULL; } static void xprt_request_rb_insert(struct rpc_xprt *xprt, struct rpc_rqst *new) { struct rb_node **p = &xprt->recv_queue.rb_node; struct rb_node *n = NULL; struct rpc_rqst *req; while (*p != NULL) { n = *p; req = rb_entry(n, struct rpc_rqst, rq_recv); switch(xprt_xid_cmp(new->rq_xid, req->rq_xid)) { case XID_RB_LEFT: p = &n->rb_left; break; case XID_RB_RIGHT: p = &n->rb_right; break; case XID_RB_EQUAL: WARN_ON_ONCE(new != req); return; } } rb_link_node(&new->rq_recv, n, p); rb_insert_color(&new->rq_recv, &xprt->recv_queue); } static void xprt_request_rb_remove(struct rpc_xprt *xprt, struct rpc_rqst *req) { rb_erase(&req->rq_recv, &xprt->recv_queue); } /** * xprt_lookup_rqst - find an RPC request corresponding to an XID * @xprt: transport on which the original request was transmitted * @xid: RPC XID of incoming reply * * Caller holds xprt->queue_lock. */ struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid) { struct rpc_rqst *entry; entry = xprt_request_rb_find(xprt, xid); if (entry != NULL) { trace_xprt_lookup_rqst(xprt, xid, 0); entry->rq_rtt = ktime_sub(ktime_get(), entry->rq_xtime); return entry; } dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n", ntohl(xid)); trace_xprt_lookup_rqst(xprt, xid, -ENOENT); xprt->stat.bad_xids++; return NULL; } EXPORT_SYMBOL_GPL(xprt_lookup_rqst); static bool xprt_is_pinned_rqst(struct rpc_rqst *req) { return atomic_read(&req->rq_pin) != 0; } /** * xprt_pin_rqst - Pin a request on the transport receive list * @req: Request to pin * * Caller must ensure this is atomic with the call to xprt_lookup_rqst() * so should be holding xprt->queue_lock. */ void xprt_pin_rqst(struct rpc_rqst *req) { atomic_inc(&req->rq_pin); } EXPORT_SYMBOL_GPL(xprt_pin_rqst); /** * xprt_unpin_rqst - Unpin a request on the transport receive list * @req: Request to pin * * Caller should be holding xprt->queue_lock. */ void xprt_unpin_rqst(struct rpc_rqst *req) { if (!test_bit(RPC_TASK_MSG_PIN_WAIT, &req->rq_task->tk_runstate)) { atomic_dec(&req->rq_pin); return; } if (atomic_dec_and_test(&req->rq_pin)) wake_up_var(&req->rq_pin); } EXPORT_SYMBOL_GPL(xprt_unpin_rqst); static void xprt_wait_on_pinned_rqst(struct rpc_rqst *req) { wait_var_event(&req->rq_pin, !xprt_is_pinned_rqst(req)); } static bool xprt_request_data_received(struct rpc_task *task) { return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) && READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) != 0; } static bool xprt_request_need_enqueue_receive(struct rpc_task *task, struct rpc_rqst *req) { return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) && READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) == 0; } /** * xprt_request_enqueue_receive - Add an request to the receive queue * @task: RPC task * */ int xprt_request_enqueue_receive(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int ret; if (!xprt_request_need_enqueue_receive(task, req)) return 0; ret = xprt_request_prepare(task->tk_rqstp, &req->rq_rcv_buf); if (ret) return ret; spin_lock(&xprt->queue_lock); /* Update the softirq receive buffer */ memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(req->rq_private_buf)); /* Add request to the receive list */ xprt_request_rb_insert(xprt, req); set_bit(RPC_TASK_NEED_RECV, &task->tk_runstate); spin_unlock(&xprt->queue_lock); /* Turn off autodisconnect */ del_timer_sync(&xprt->timer); return 0; } /** * xprt_request_dequeue_receive_locked - Remove a request from the receive queue * @task: RPC task * * Caller must hold xprt->queue_lock. */ static void xprt_request_dequeue_receive_locked(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_clear_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) xprt_request_rb_remove(req->rq_xprt, req); } /** * xprt_update_rtt - Update RPC RTT statistics * @task: RPC request that recently completed * * Caller holds xprt->queue_lock. */ void xprt_update_rtt(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_rtt *rtt = task->tk_client->cl_rtt; unsigned int timer = task->tk_msg.rpc_proc->p_timer; long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt)); if (timer) { if (req->rq_ntrans == 1) rpc_update_rtt(rtt, timer, m); rpc_set_timeo(rtt, timer, req->rq_ntrans - 1); } } EXPORT_SYMBOL_GPL(xprt_update_rtt); /** * xprt_complete_rqst - called when reply processing is complete * @task: RPC request that recently completed * @copied: actual number of bytes received from the transport * * Caller holds xprt->queue_lock. */ void xprt_complete_rqst(struct rpc_task *task, int copied) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; xprt->stat.recvs++; xdr_free_bvec(&req->rq_rcv_buf); req->rq_private_buf.bvec = NULL; req->rq_private_buf.len = copied; /* Ensure all writes are done before we update */ /* req->rq_reply_bytes_recvd */ smp_wmb(); req->rq_reply_bytes_recvd = copied; xprt_request_dequeue_receive_locked(task); rpc_wake_up_queued_task(&xprt->pending, task); } EXPORT_SYMBOL_GPL(xprt_complete_rqst); static void xprt_timer(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (task->tk_status != -ETIMEDOUT) return; trace_xprt_timer(xprt, req->rq_xid, task->tk_status); if (!req->rq_reply_bytes_recvd) { if (xprt->ops->timer) xprt->ops->timer(xprt, task); } else task->tk_status = 0; } /** * xprt_wait_for_reply_request_def - wait for reply * @task: pointer to rpc_task * * Set a request's retransmit timeout based on the transport's * default timeout parameters. Used by transports that don't adjust * the retransmit timeout based on round-trip time estimation, * and put the task to sleep on the pending queue. */ void xprt_wait_for_reply_request_def(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer, xprt_request_timeout(req)); } EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_def); /** * xprt_wait_for_reply_request_rtt - wait for reply using RTT estimator * @task: pointer to rpc_task * * Set a request's retransmit timeout using the RTT estimator, * and put the task to sleep on the pending queue. */ void xprt_wait_for_reply_request_rtt(struct rpc_task *task) { int timer = task->tk_msg.rpc_proc->p_timer; struct rpc_clnt *clnt = task->tk_client; struct rpc_rtt *rtt = clnt->cl_rtt; struct rpc_rqst *req = task->tk_rqstp; unsigned long max_timeout = clnt->cl_timeout->to_maxval; unsigned long timeout; timeout = rpc_calc_rto(rtt, timer); timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries; if (timeout > max_timeout || timeout == 0) timeout = max_timeout; rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer, jiffies + timeout); } EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_rtt); /** * xprt_request_wait_receive - wait for the reply to an RPC request * @task: RPC task about to send a request * */ void xprt_request_wait_receive(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (!test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) return; /* * Sleep on the pending queue if we're expecting a reply. * The spinlock ensures atomicity between the test of * req->rq_reply_bytes_recvd, and the call to rpc_sleep_on(). */ spin_lock(&xprt->queue_lock); if (test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) { xprt->ops->wait_for_reply_request(task); /* * Send an extra queue wakeup call if the * connection was dropped in case the call to * rpc_sleep_on() raced. */ if (xprt_request_retransmit_after_disconnect(task)) rpc_wake_up_queued_task_set_status(&xprt->pending, task, -ENOTCONN); } spin_unlock(&xprt->queue_lock); } static bool xprt_request_need_enqueue_transmit(struct rpc_task *task, struct rpc_rqst *req) { return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); } /** * xprt_request_enqueue_transmit - queue a task for transmission * @task: pointer to rpc_task * * Add a task to the transmission queue. */ void xprt_request_enqueue_transmit(struct rpc_task *task) { struct rpc_rqst *pos, *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int ret; if (xprt_request_need_enqueue_transmit(task, req)) { ret = xprt_request_prepare(task->tk_rqstp, &req->rq_snd_buf); if (ret) { task->tk_status = ret; return; } req->rq_bytes_sent = 0; spin_lock(&xprt->queue_lock); /* * Requests that carry congestion control credits are added * to the head of the list to avoid starvation issues. */ if (req->rq_cong) { xprt_clear_congestion_window_wait(xprt); list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { if (pos->rq_cong) continue; /* Note: req is added _before_ pos */ list_add_tail(&req->rq_xmit, &pos->rq_xmit); INIT_LIST_HEAD(&req->rq_xmit2); goto out; } } else if (!req->rq_seqno) { list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { if (pos->rq_task->tk_owner != task->tk_owner) continue; list_add_tail(&req->rq_xmit2, &pos->rq_xmit2); INIT_LIST_HEAD(&req->rq_xmit); goto out; } } list_add_tail(&req->rq_xmit, &xprt->xmit_queue); INIT_LIST_HEAD(&req->rq_xmit2); out: atomic_long_inc(&xprt->xmit_queuelen); set_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); spin_unlock(&xprt->queue_lock); } } /** * xprt_request_dequeue_transmit_locked - remove a task from the transmission queue * @task: pointer to rpc_task * * Remove a task from the transmission queue * Caller must hold xprt->queue_lock */ static void xprt_request_dequeue_transmit_locked(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (!test_and_clear_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) return; if (!list_empty(&req->rq_xmit)) { struct rpc_xprt *xprt = req->rq_xprt; if (list_is_first(&req->rq_xmit, &xprt->xmit_queue) && xprt->ops->abort_send_request) xprt->ops->abort_send_request(req); list_del(&req->rq_xmit); if (!list_empty(&req->rq_xmit2)) { struct rpc_rqst *next = list_first_entry(&req->rq_xmit2, struct rpc_rqst, rq_xmit2); list_del(&req->rq_xmit2); list_add_tail(&next->rq_xmit, &next->rq_xprt->xmit_queue); } } else list_del(&req->rq_xmit2); atomic_long_dec(&req->rq_xprt->xmit_queuelen); xdr_free_bvec(&req->rq_snd_buf); } /** * xprt_request_dequeue_transmit - remove a task from the transmission queue * @task: pointer to rpc_task * * Remove a task from the transmission queue */ static void xprt_request_dequeue_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; spin_lock(&xprt->queue_lock); xprt_request_dequeue_transmit_locked(task); spin_unlock(&xprt->queue_lock); } /** * xprt_request_dequeue_xprt - remove a task from the transmit+receive queue * @task: pointer to rpc_task * * Remove a task from the transmit and receive queues, and ensure that * it is not pinned by the receive work item. */ void xprt_request_dequeue_xprt(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) || test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) || xprt_is_pinned_rqst(req)) { spin_lock(&xprt->queue_lock); while (xprt_is_pinned_rqst(req)) { set_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate); spin_unlock(&xprt->queue_lock); xprt_wait_on_pinned_rqst(req); spin_lock(&xprt->queue_lock); clear_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate); } xprt_request_dequeue_transmit_locked(task); xprt_request_dequeue_receive_locked(task); spin_unlock(&xprt->queue_lock); xdr_free_bvec(&req->rq_rcv_buf); } } /** * xprt_request_prepare - prepare an encoded request for transport * @req: pointer to rpc_rqst * @buf: pointer to send/rcv xdr_buf * * Calls into the transport layer to do whatever is needed to prepare * the request for transmission or receive. * Returns error, or zero. */ static int xprt_request_prepare(struct rpc_rqst *req, struct xdr_buf *buf) { struct rpc_xprt *xprt = req->rq_xprt; if (xprt->ops->prepare_request) return xprt->ops->prepare_request(req, buf); return 0; } /** * xprt_request_need_retransmit - Test if a task needs retransmission * @task: pointer to rpc_task * * Test for whether a connection breakage requires the task to retransmit */ bool xprt_request_need_retransmit(struct rpc_task *task) { return xprt_request_retransmit_after_disconnect(task); } /** * xprt_prepare_transmit - reserve the transport before sending a request * @task: RPC task about to send a request * */ bool xprt_prepare_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; if (!xprt_lock_write(xprt, task)) { /* Race breaker: someone may have transmitted us */ if (!test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) rpc_wake_up_queued_task_set_status(&xprt->sending, task, 0); return false; } if (atomic_read(&xprt->swapper)) /* This will be clear in __rpc_execute */ current->flags |= PF_MEMALLOC; return true; } void xprt_end_transmit(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; xprt_inject_disconnect(xprt); xprt_release_write(xprt, task); } /** * xprt_request_transmit - send an RPC request on a transport * @req: pointer to request to transmit * @snd_task: RPC task that owns the transport lock * * This performs the transmission of a single request. * Note that if the request is not the same as snd_task, then it * does need to be pinned. * Returns '0' on success. */ static int xprt_request_transmit(struct rpc_rqst *req, struct rpc_task *snd_task) { struct rpc_xprt *xprt = req->rq_xprt; struct rpc_task *task = req->rq_task; unsigned int connect_cookie; int is_retrans = RPC_WAS_SENT(task); int status; if (test_bit(XPRT_CLOSE_WAIT, &xprt->state)) return -ENOTCONN; if (!req->rq_bytes_sent) { if (xprt_request_data_received(task)) { status = 0; goto out_dequeue; } /* Verify that our message lies in the RPCSEC_GSS window */ if (rpcauth_xmit_need_reencode(task)) { status = -EBADMSG; goto out_dequeue; } if (RPC_SIGNALLED(task)) { status = -ERESTARTSYS; goto out_dequeue; } } /* * Update req->rq_ntrans before transmitting to avoid races with * xprt_update_rtt(), which needs to know that it is recording a * reply to the first transmission. */ req->rq_ntrans++; trace_rpc_xdr_sendto(task, &req->rq_snd_buf); connect_cookie = xprt->connect_cookie; status = xprt->ops->send_request(req); if (status != 0) { req->rq_ntrans--; trace_xprt_transmit(req, status); return status; } if (is_retrans) { task->tk_client->cl_stats->rpcretrans++; trace_xprt_retransmit(req); } xprt_inject_disconnect(xprt); task->tk_flags |= RPC_TASK_SENT; spin_lock(&xprt->transport_lock); xprt->stat.sends++; xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs; xprt->stat.bklog_u += xprt->backlog.qlen; xprt->stat.sending_u += xprt->sending.qlen; xprt->stat.pending_u += xprt->pending.qlen; spin_unlock(&xprt->transport_lock); req->rq_connect_cookie = connect_cookie; out_dequeue: trace_xprt_transmit(req, status); xprt_request_dequeue_transmit(task); rpc_wake_up_queued_task_set_status(&xprt->sending, task, status); return status; } /** * xprt_transmit - send an RPC request on a transport * @task: controlling RPC task * * Attempts to drain the transmit queue. On exit, either the transport * signalled an error that needs to be handled before transmission can * resume, or @task finished transmitting, and detected that it already * received a reply. */ void xprt_transmit(struct rpc_task *task) { struct rpc_rqst *next, *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int status; spin_lock(&xprt->queue_lock); for (;;) { next = list_first_entry_or_null(&xprt->xmit_queue, struct rpc_rqst, rq_xmit); if (!next) break; xprt_pin_rqst(next); spin_unlock(&xprt->queue_lock); status = xprt_request_transmit(next, task); if (status == -EBADMSG && next != req) status = 0; spin_lock(&xprt->queue_lock); xprt_unpin_rqst(next); if (status < 0) { if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) task->tk_status = status; break; } /* Was @task transmitted, and has it received a reply? */ if (xprt_request_data_received(task) && !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) break; cond_resched_lock(&xprt->queue_lock); } spin_unlock(&xprt->queue_lock); } static void xprt_complete_request_init(struct rpc_task *task) { if (task->tk_rqstp) xprt_request_init(task); } void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task) { set_bit(XPRT_CONGESTED, &xprt->state); rpc_sleep_on(&xprt->backlog, task, xprt_complete_request_init); } EXPORT_SYMBOL_GPL(xprt_add_backlog); static bool __xprt_set_rq(struct rpc_task *task, void *data) { struct rpc_rqst *req = data; if (task->tk_rqstp == NULL) { memset(req, 0, sizeof(*req)); /* mark unused */ task->tk_rqstp = req; return true; } return false; } bool xprt_wake_up_backlog(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (rpc_wake_up_first(&xprt->backlog, __xprt_set_rq, req) == NULL) { clear_bit(XPRT_CONGESTED, &xprt->state); return false; } return true; } EXPORT_SYMBOL_GPL(xprt_wake_up_backlog); static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task) { bool ret = false; if (!test_bit(XPRT_CONGESTED, &xprt->state)) goto out; spin_lock(&xprt->reserve_lock); if (test_bit(XPRT_CONGESTED, &xprt->state)) { xprt_add_backlog(xprt, task); ret = true; } spin_unlock(&xprt->reserve_lock); out: return ret; } static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt) { struct rpc_rqst *req = ERR_PTR(-EAGAIN); if (xprt->num_reqs >= xprt->max_reqs) goto out; ++xprt->num_reqs; spin_unlock(&xprt->reserve_lock); req = kzalloc(sizeof(*req), rpc_task_gfp_mask()); spin_lock(&xprt->reserve_lock); if (req != NULL) goto out; --xprt->num_reqs; req = ERR_PTR(-ENOMEM); out: return req; } static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (xprt->num_reqs > xprt->min_reqs) { --xprt->num_reqs; kfree(req); return true; } return false; } void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req; spin_lock(&xprt->reserve_lock); if (!list_empty(&xprt->free)) { req = list_entry(xprt->free.next, struct rpc_rqst, rq_list); list_del(&req->rq_list); goto out_init_req; } req = xprt_dynamic_alloc_slot(xprt); if (!IS_ERR(req)) goto out_init_req; switch (PTR_ERR(req)) { case -ENOMEM: dprintk("RPC: dynamic allocation of request slot " "failed! Retrying\n"); task->tk_status = -ENOMEM; break; case -EAGAIN: xprt_add_backlog(xprt, task); dprintk("RPC: waiting for request slot\n"); fallthrough; default: task->tk_status = -EAGAIN; } spin_unlock(&xprt->reserve_lock); return; out_init_req: xprt->stat.max_slots = max_t(unsigned int, xprt->stat.max_slots, xprt->num_reqs); spin_unlock(&xprt->reserve_lock); task->tk_status = 0; task->tk_rqstp = req; } EXPORT_SYMBOL_GPL(xprt_alloc_slot); void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) { spin_lock(&xprt->reserve_lock); if (!xprt_wake_up_backlog(xprt, req) && !xprt_dynamic_free_slot(xprt, req)) { memset(req, 0, sizeof(*req)); /* mark unused */ list_add(&req->rq_list, &xprt->free); } spin_unlock(&xprt->reserve_lock); } EXPORT_SYMBOL_GPL(xprt_free_slot); static void xprt_free_all_slots(struct rpc_xprt *xprt) { struct rpc_rqst *req; while (!list_empty(&xprt->free)) { req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list); list_del(&req->rq_list); kfree(req); } } static DEFINE_IDA(rpc_xprt_ids); void xprt_cleanup_ids(void) { ida_destroy(&rpc_xprt_ids); } static int xprt_alloc_id(struct rpc_xprt *xprt) { int id; id = ida_alloc(&rpc_xprt_ids, GFP_KERNEL); if (id < 0) return id; xprt->id = id; return 0; } static void xprt_free_id(struct rpc_xprt *xprt) { ida_free(&rpc_xprt_ids, xprt->id); } struct rpc_xprt *xprt_alloc(struct net *net, size_t size, unsigned int num_prealloc, unsigned int max_alloc) { struct rpc_xprt *xprt; struct rpc_rqst *req; int i; xprt = kzalloc(size, GFP_KERNEL); if (xprt == NULL) goto out; xprt_alloc_id(xprt); xprt_init(xprt, net); for (i = 0; i < num_prealloc; i++) { req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL); if (!req) goto out_free; list_add(&req->rq_list, &xprt->free); } xprt->max_reqs = max_t(unsigned int, max_alloc, num_prealloc); xprt->min_reqs = num_prealloc; xprt->num_reqs = num_prealloc; return xprt; out_free: xprt_free(xprt); out: return NULL; } EXPORT_SYMBOL_GPL(xprt_alloc); void xprt_free(struct rpc_xprt *xprt) { put_net_track(xprt->xprt_net, &xprt->ns_tracker); xprt_free_all_slots(xprt); xprt_free_id(xprt); rpc_sysfs_xprt_destroy(xprt); kfree_rcu(xprt, rcu); } EXPORT_SYMBOL_GPL(xprt_free); static void xprt_init_connect_cookie(struct rpc_rqst *req, struct rpc_xprt *xprt) { req->rq_connect_cookie = xprt_connect_cookie(xprt) - 1; } static __be32 xprt_alloc_xid(struct rpc_xprt *xprt) { __be32 xid; spin_lock(&xprt->reserve_lock); xid = (__force __be32)xprt->xid++; spin_unlock(&xprt->reserve_lock); return xid; } static void xprt_init_xid(struct rpc_xprt *xprt) { xprt->xid = get_random_u32(); } static void xprt_request_init(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; struct rpc_rqst *req = task->tk_rqstp; req->rq_task = task; req->rq_xprt = xprt; req->rq_buffer = NULL; req->rq_xid = xprt_alloc_xid(xprt); xprt_init_connect_cookie(req, xprt); req->rq_snd_buf.len = 0; req->rq_snd_buf.buflen = 0; req->rq_rcv_buf.len = 0; req->rq_rcv_buf.buflen = 0; req->rq_snd_buf.bvec = NULL; req->rq_rcv_buf.bvec = NULL; req->rq_release_snd_buf = NULL; xprt_init_majortimeo(task, req, task->tk_client->cl_timeout); trace_xprt_reserve(req); } static void xprt_do_reserve(struct rpc_xprt *xprt, struct rpc_task *task) { xprt->ops->alloc_slot(xprt, task); if (task->tk_rqstp != NULL) xprt_request_init(task); } /** * xprt_reserve - allocate an RPC request slot * @task: RPC task requesting a slot allocation * * If the transport is marked as being congested, or if no more * slots are available, place the task on the transport's * backlog queue. */ void xprt_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; task->tk_status = 0; if (task->tk_rqstp != NULL) return; task->tk_status = -EAGAIN; if (!xprt_throttle_congested(xprt, task)) xprt_do_reserve(xprt, task); } /** * xprt_retry_reserve - allocate an RPC request slot * @task: RPC task requesting a slot allocation * * If no more slots are available, place the task on the transport's * backlog queue. * Note that the only difference with xprt_reserve is that we now * ignore the value of the XPRT_CONGESTED flag. */ void xprt_retry_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; task->tk_status = 0; if (task->tk_rqstp != NULL) return; task->tk_status = -EAGAIN; xprt_do_reserve(xprt, task); } /** * xprt_release - release an RPC request slot * @task: task which is finished with the slot * */ void xprt_release(struct rpc_task *task) { struct rpc_xprt *xprt; struct rpc_rqst *req = task->tk_rqstp; if (req == NULL) { if (task->tk_client) { xprt = task->tk_xprt; xprt_release_write(xprt, task); } return; } xprt = req->rq_xprt; xprt_request_dequeue_xprt(task); spin_lock(&xprt->transport_lock); xprt->ops->release_xprt(xprt, task); if (xprt->ops->release_request) xprt->ops->release_request(task); xprt_schedule_autodisconnect(xprt); spin_unlock(&xprt->transport_lock); if (req->rq_buffer) xprt->ops->buf_free(task); if (req->rq_cred != NULL) put_rpccred(req->rq_cred); if (req->rq_release_snd_buf) req->rq_release_snd_buf(req); task->tk_rqstp = NULL; if (likely(!bc_prealloc(req))) xprt->ops->free_slot(xprt, req); else xprt_free_bc_request(req); } #ifdef CONFIG_SUNRPC_BACKCHANNEL void xprt_init_bc_request(struct rpc_rqst *req, struct rpc_task *task, const struct rpc_timeout *to) { struct xdr_buf *xbufp = &req->rq_snd_buf; task->tk_rqstp = req; req->rq_task = task; xprt_init_connect_cookie(req, req->rq_xprt); /* * Set up the xdr_buf length. * This also indicates that the buffer is XDR encoded already. */ xbufp->len = xbufp->head[0].iov_len + xbufp->page_len + xbufp->tail[0].iov_len; /* * Backchannel Replies are sent with !RPC_TASK_SOFT and * RPC_TASK_NO_RETRANS_TIMEOUT. The major timeout setting * affects only how long each Reply waits to be sent when * a transport connection cannot be established. */ xprt_init_majortimeo(task, req, to); } #endif static void xprt_init(struct rpc_xprt *xprt, struct net *net) { kref_init(&xprt->kref); spin_lock_init(&xprt->transport_lock); spin_lock_init(&xprt->reserve_lock); spin_lock_init(&xprt->queue_lock); INIT_LIST_HEAD(&xprt->free); xprt->recv_queue = RB_ROOT; INIT_LIST_HEAD(&xprt->xmit_queue); #if defined(CONFIG_SUNRPC_BACKCHANNEL) spin_lock_init(&xprt->bc_pa_lock); INIT_LIST_HEAD(&xprt->bc_pa_list); #endif /* CONFIG_SUNRPC_BACKCHANNEL */ INIT_LIST_HEAD(&xprt->xprt_switch); xprt->last_used = jiffies; xprt->cwnd = RPC_INITCWND; xprt->bind_index = 0; rpc_init_wait_queue(&xprt->binding, "xprt_binding"); rpc_init_wait_queue(&xprt->pending, "xprt_pending"); rpc_init_wait_queue(&xprt->sending, "xprt_sending"); rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog"); xprt_init_xid(xprt); xprt->xprt_net = get_net_track(net, &xprt->ns_tracker, GFP_KERNEL); } /** * xprt_create_transport - create an RPC transport * @args: rpc transport creation arguments * */ struct rpc_xprt *xprt_create_transport(struct xprt_create *args) { struct rpc_xprt *xprt; const struct xprt_class *t; t = xprt_class_find_by_ident(args->ident); if (!t) { dprintk("RPC: transport (%d) not supported\n", args->ident); return ERR_PTR(-EIO); } xprt = t->setup(args); xprt_class_release(t); if (IS_ERR(xprt)) goto out; if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT) xprt->idle_timeout = 0; INIT_WORK(&xprt->task_cleanup, xprt_autoclose); if (xprt_has_timer(xprt)) timer_setup(&xprt->timer, xprt_init_autodisconnect, 0); else timer_setup(&xprt->timer, NULL, 0); if (strlen(args->servername) > RPC_MAXNETNAMELEN) { xprt_destroy(xprt); return ERR_PTR(-EINVAL); } xprt->servername = kstrdup(args->servername, GFP_KERNEL); if (xprt->servername == NULL) { xprt_destroy(xprt); return ERR_PTR(-ENOMEM); } rpc_xprt_debugfs_register(xprt); trace_xprt_create(xprt); out: return xprt; } static void xprt_destroy_cb(struct work_struct *work) { struct rpc_xprt *xprt = container_of(work, struct rpc_xprt, task_cleanup); trace_xprt_destroy(xprt); rpc_xprt_debugfs_unregister(xprt); rpc_destroy_wait_queue(&xprt->binding); rpc_destroy_wait_queue(&xprt->pending); rpc_destroy_wait_queue(&xprt->sending); rpc_destroy_wait_queue(&xprt->backlog); kfree(xprt->servername); /* * Destroy any existing back channel */ xprt_destroy_backchannel(xprt, UINT_MAX); /* * Tear down transport state and free the rpc_xprt */ xprt->ops->destroy(xprt); } /** * xprt_destroy - destroy an RPC transport, killing off all requests. * @xprt: transport to destroy * */ static void xprt_destroy(struct rpc_xprt *xprt) { /* * Exclude transport connect/disconnect handlers and autoclose */ wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE); /* * xprt_schedule_autodisconnect() can run after XPRT_LOCKED * is cleared. We use ->transport_lock to ensure the mod_timer() * can only run *before* del_time_sync(), never after. */ spin_lock(&xprt->transport_lock); del_timer_sync(&xprt->timer); spin_unlock(&xprt->transport_lock); /* * Destroy sockets etc from the system workqueue so they can * safely flush receive work running on rpciod. */ INIT_WORK(&xprt->task_cleanup, xprt_destroy_cb); schedule_work(&xprt->task_cleanup); } static void xprt_destroy_kref(struct kref *kref) { xprt_destroy(container_of(kref, struct rpc_xprt, kref)); } /** * xprt_get - return a reference to an RPC transport. * @xprt: pointer to the transport * */ struct rpc_xprt *xprt_get(struct rpc_xprt *xprt) { if (xprt != NULL && kref_get_unless_zero(&xprt->kref)) return xprt; return NULL; } EXPORT_SYMBOL_GPL(xprt_get); /** * xprt_put - release a reference to an RPC transport. * @xprt: pointer to the transport * */ void xprt_put(struct rpc_xprt *xprt) { if (xprt != NULL) kref_put(&xprt->kref, xprt_destroy_kref); } EXPORT_SYMBOL_GPL(xprt_put); void xprt_set_offline_locked(struct rpc_xprt *xprt, struct rpc_xprt_switch *xps) { if (!test_and_set_bit(XPRT_OFFLINE, &xprt->state)) { spin_lock(&xps->xps_lock); xps->xps_nactive--; spin_unlock(&xps->xps_lock); } } void xprt_set_online_locked(struct rpc_xprt *xprt, struct rpc_xprt_switch *xps) { if (test_and_clear_bit(XPRT_OFFLINE, &xprt->state)) { spin_lock(&xps->xps_lock); xps->xps_nactive++; spin_unlock(&xps->xps_lock); } } void xprt_delete_locked(struct rpc_xprt *xprt, struct rpc_xprt_switch *xps) { if (test_and_set_bit(XPRT_REMOVE, &xprt->state)) return; xprt_force_disconnect(xprt); if (!test_bit(XPRT_CONNECTED, &xprt->state)) return; if (!xprt->sending.qlen && !xprt->pending.qlen && !xprt->backlog.qlen && !atomic_long_read(&xprt->queuelen)) rpc_xprt_switch_remove_xprt(xps, xprt, true); }
171 4 171 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Landlock LSM - Credential hooks * * Copyright © 2019-2020 Mickaël Salaün <mic@digikod.net> * Copyright © 2019-2020 ANSSI */ #ifndef _SECURITY_LANDLOCK_CRED_H #define _SECURITY_LANDLOCK_CRED_H #include <linux/cred.h> #include <linux/init.h> #include <linux/rcupdate.h> #include "ruleset.h" #include "setup.h" struct landlock_cred_security { struct landlock_ruleset *domain; }; static inline struct landlock_cred_security * landlock_cred(const struct cred *cred) { return cred->security + landlock_blob_sizes.lbs_cred; } static inline const struct landlock_ruleset *landlock_get_current_domain(void) { return landlock_cred(current_cred())->domain; } /* * The call needs to come from an RCU read-side critical section. */ static inline const struct landlock_ruleset * landlock_get_task_domain(const struct task_struct *const task) { return landlock_cred(__task_cred(task))->domain; } static inline bool landlocked(const struct task_struct *const task) { bool has_dom; if (task == current) return !!landlock_get_current_domain(); rcu_read_lock(); has_dom = !!landlock_get_task_domain(task); rcu_read_unlock(); return has_dom; } __init void landlock_add_cred_hooks(void); #endif /* _SECURITY_LANDLOCK_CRED_H */
9 14 13 3 12 12 1 1 1 3 8 8 8 8 8 4 4 4 4 8 14 14 10 4 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/fat/inode.c * * Written 1992,1993 by Werner Almesberger * VFAT extensions by Gordon Chaffee, merged with msdos fs by Henrik Storner * Rewritten for the constant inumbers support by Al Viro * * Fixes: * * Max Cohan: Fixed invalid FSINFO offset when info_sector is 0 */ #include <linux/module.h> #include <linux/pagemap.h> #include <linux/mpage.h> #include <linux/vfs.h> #include <linux/seq_file.h> #include <linux/uio.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <asm/unaligned.h> #include <linux/random.h> #include <linux/iversion.h> #include "fat.h" #ifndef CONFIG_FAT_DEFAULT_IOCHARSET /* if user don't select VFAT, this is undefined. */ #define CONFIG_FAT_DEFAULT_IOCHARSET "" #endif #define KB_IN_SECTORS 2 /* DOS dates from 1980/1/1 through 2107/12/31 */ #define FAT_DATE_MIN (0<<9 | 1<<5 | 1) #define FAT_DATE_MAX (127<<9 | 12<<5 | 31) #define FAT_TIME_MAX (23<<11 | 59<<5 | 29) /* * A deserialized copy of the on-disk structure laid out in struct * fat_boot_sector. */ struct fat_bios_param_block { u16 fat_sector_size; u8 fat_sec_per_clus; u16 fat_reserved; u8 fat_fats; u16 fat_dir_entries; u16 fat_sectors; u16 fat_fat_length; u32 fat_total_sect; u8 fat16_state; u32 fat16_vol_id; u32 fat32_length; u32 fat32_root_cluster; u16 fat32_info_sector; u8 fat32_state; u32 fat32_vol_id; }; static int fat_default_codepage = CONFIG_FAT_DEFAULT_CODEPAGE; static char fat_default_iocharset[] = CONFIG_FAT_DEFAULT_IOCHARSET; static struct fat_floppy_defaults { unsigned nr_sectors; unsigned sec_per_clus; unsigned dir_entries; unsigned media; unsigned fat_length; } floppy_defaults[] = { { .nr_sectors = 160 * KB_IN_SECTORS, .sec_per_clus = 1, .dir_entries = 64, .media = 0xFE, .fat_length = 1, }, { .nr_sectors = 180 * KB_IN_SECTORS, .sec_per_clus = 1, .dir_entries = 64, .media = 0xFC, .fat_length = 2, }, { .nr_sectors = 320 * KB_IN_SECTORS, .sec_per_clus = 2, .dir_entries = 112, .media = 0xFF, .fat_length = 1, }, { .nr_sectors = 360 * KB_IN_SECTORS, .sec_per_clus = 2, .dir_entries = 112, .media = 0xFD, .fat_length = 2, }, }; int fat_add_cluster(struct inode *inode) { int err, cluster; err = fat_alloc_clusters(inode, &cluster, 1); if (err) return err; /* FIXME: this cluster should be added after data of this * cluster is writed */ err = fat_chain_add(inode, cluster, 1); if (err) fat_free_clusters(inode, cluster); return err; } static inline int __fat_get_block(struct inode *inode, sector_t iblock, unsigned long *max_blocks, struct buffer_head *bh_result, int create) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); unsigned long mapped_blocks; sector_t phys, last_block; int err, offset; err = fat_bmap(inode, iblock, &phys, &mapped_blocks, create, false); if (err) return err; if (phys) { map_bh(bh_result, sb, phys); *max_blocks = min(mapped_blocks, *max_blocks); return 0; } if (!create) return 0; if (iblock != MSDOS_I(inode)->mmu_private >> sb->s_blocksize_bits) { fat_fs_error(sb, "corrupted file size (i_pos %lld, %lld)", MSDOS_I(inode)->i_pos, MSDOS_I(inode)->mmu_private); return -EIO; } last_block = inode->i_blocks >> (sb->s_blocksize_bits - 9); offset = (unsigned long)iblock & (sbi->sec_per_clus - 1); /* * allocate a cluster according to the following. * 1) no more available blocks * 2) not part of fallocate region */ if (!offset && !(iblock < last_block)) { /* TODO: multiple cluster allocation would be desirable. */ err = fat_add_cluster(inode); if (err) return err; } /* available blocks on this cluster */ mapped_blocks = sbi->sec_per_clus - offset; *max_blocks = min(mapped_blocks, *max_blocks); MSDOS_I(inode)->mmu_private += *max_blocks << sb->s_blocksize_bits; err = fat_bmap(inode, iblock, &phys, &mapped_blocks, create, false); if (err) return err; if (!phys) { fat_fs_error(sb, "invalid FAT chain (i_pos %lld, last_block %llu)", MSDOS_I(inode)->i_pos, (unsigned long long)last_block); return -EIO; } BUG_ON(*max_blocks != mapped_blocks); set_buffer_new(bh_result); map_bh(bh_result, sb, phys); return 0; } static int fat_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { struct super_block *sb = inode->i_sb; unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; int err; err = __fat_get_block(inode, iblock, &max_blocks, bh_result, create); if (err) return err; bh_result->b_size = max_blocks << sb->s_blocksize_bits; return 0; } static int fat_writepages(struct address_space *mapping, struct writeback_control *wbc) { return mpage_writepages(mapping, wbc, fat_get_block); } static int fat_read_folio(struct file *file, struct folio *folio) { return mpage_read_folio(folio, fat_get_block); } static void fat_readahead(struct readahead_control *rac) { mpage_readahead(rac, fat_get_block); } static void fat_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); fat_truncate_blocks(inode, inode->i_size); } } static int fat_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { int err; *pagep = NULL; err = cont_write_begin(file, mapping, pos, len, pagep, fsdata, fat_get_block, &MSDOS_I(mapping->host)->mmu_private); if (err < 0) fat_write_failed(mapping, pos + len); return err; } static int fat_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *pagep, void *fsdata) { struct inode *inode = mapping->host; int err; err = generic_write_end(file, mapping, pos, len, copied, pagep, fsdata); if (err < len) fat_write_failed(mapping, pos + len); if (!(err < 0) && !(MSDOS_I(inode)->i_attrs & ATTR_ARCH)) { fat_truncate_time(inode, NULL, S_CTIME|S_MTIME); MSDOS_I(inode)->i_attrs |= ATTR_ARCH; mark_inode_dirty(inode); } return err; } static ssize_t fat_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; size_t count = iov_iter_count(iter); loff_t offset = iocb->ki_pos; ssize_t ret; if (iov_iter_rw(iter) == WRITE) { /* * FIXME: blockdev_direct_IO() doesn't use ->write_begin(), * so we need to update the ->mmu_private to block boundary. * * But we must fill the remaining area or hole by nul for * updating ->mmu_private. * * Return 0, and fallback to normal buffered write. */ loff_t size = offset + count; if (MSDOS_I(inode)->mmu_private < size) return 0; } /* * FAT need to use the DIO_LOCKING for avoiding the race * condition of fat_get_block() and ->truncate(). */ ret = blockdev_direct_IO(iocb, inode, iter, fat_get_block); if (ret < 0 && iov_iter_rw(iter) == WRITE) fat_write_failed(mapping, offset + count); return ret; } static int fat_get_block_bmap(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { struct super_block *sb = inode->i_sb; unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; int err; sector_t bmap; unsigned long mapped_blocks; BUG_ON(create != 0); err = fat_bmap(inode, iblock, &bmap, &mapped_blocks, create, true); if (err) return err; if (bmap) { map_bh(bh_result, sb, bmap); max_blocks = min(mapped_blocks, max_blocks); } bh_result->b_size = max_blocks << sb->s_blocksize_bits; return 0; } static sector_t _fat_bmap(struct address_space *mapping, sector_t block) { sector_t blocknr; /* fat_get_cluster() assumes the requested blocknr isn't truncated. */ down_read(&MSDOS_I(mapping->host)->truncate_lock); blocknr = generic_block_bmap(mapping, block, fat_get_block_bmap); up_read(&MSDOS_I(mapping->host)->truncate_lock); return blocknr; } /* * fat_block_truncate_page() zeroes out a mapping from file offset `from' * up to the end of the block which corresponds to `from'. * This is required during truncate to physically zeroout the tail end * of that block so it doesn't yield old data if the file is later grown. * Also, avoid causing failure from fsx for cases of "data past EOF" */ int fat_block_truncate_page(struct inode *inode, loff_t from) { return block_truncate_page(inode->i_mapping, from, fat_get_block); } static const struct address_space_operations fat_aops = { .dirty_folio = block_dirty_folio, .invalidate_folio = block_invalidate_folio, .read_folio = fat_read_folio, .readahead = fat_readahead, .writepages = fat_writepages, .write_begin = fat_write_begin, .write_end = fat_write_end, .direct_IO = fat_direct_IO, .bmap = _fat_bmap, .migrate_folio = buffer_migrate_folio, }; /* * New FAT inode stuff. We do the following: * a) i_ino is constant and has nothing with on-disk location. * b) FAT manages its own cache of directory entries. * c) *This* cache is indexed by on-disk location. * d) inode has an associated directory entry, all right, but * it may be unhashed. * e) currently entries are stored within struct inode. That should * change. * f) we deal with races in the following way: * 1. readdir() and lookup() do FAT-dir-cache lookup. * 2. rename() unhashes the F-d-c entry and rehashes it in * a new place. * 3. unlink() and rmdir() unhash F-d-c entry. * 4. fat_write_inode() checks whether the thing is unhashed. * If it is we silently return. If it isn't we do bread(), * check if the location is still valid and retry if it * isn't. Otherwise we do changes. * 5. Spinlock is used to protect hash/unhash/location check/lookup * 6. fat_evict_inode() unhashes the F-d-c entry. * 7. lookup() and readdir() do igrab() if they find a F-d-c entry * and consider negative result as cache miss. */ static void fat_hash_init(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); int i; spin_lock_init(&sbi->inode_hash_lock); for (i = 0; i < FAT_HASH_SIZE; i++) INIT_HLIST_HEAD(&sbi->inode_hashtable[i]); } static inline unsigned long fat_hash(loff_t i_pos) { return hash_32(i_pos, FAT_HASH_BITS); } static void dir_hash_init(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); int i; spin_lock_init(&sbi->dir_hash_lock); for (i = 0; i < FAT_HASH_SIZE; i++) INIT_HLIST_HEAD(&sbi->dir_hashtable[i]); } void fat_attach(struct inode *inode, loff_t i_pos) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); if (inode->i_ino != MSDOS_ROOT_INO) { struct hlist_head *head = sbi->inode_hashtable + fat_hash(i_pos); spin_lock(&sbi->inode_hash_lock); MSDOS_I(inode)->i_pos = i_pos; hlist_add_head(&MSDOS_I(inode)->i_fat_hash, head); spin_unlock(&sbi->inode_hash_lock); } /* If NFS support is enabled, cache the mapping of start cluster * to directory inode. This is used during reconnection of * dentries to the filesystem root. */ if (S_ISDIR(inode->i_mode) && sbi->options.nfs) { struct hlist_head *d_head = sbi->dir_hashtable; d_head += fat_dir_hash(MSDOS_I(inode)->i_logstart); spin_lock(&sbi->dir_hash_lock); hlist_add_head(&MSDOS_I(inode)->i_dir_hash, d_head); spin_unlock(&sbi->dir_hash_lock); } } EXPORT_SYMBOL_GPL(fat_attach); void fat_detach(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); spin_lock(&sbi->inode_hash_lock); MSDOS_I(inode)->i_pos = 0; hlist_del_init(&MSDOS_I(inode)->i_fat_hash); spin_unlock(&sbi->inode_hash_lock); if (S_ISDIR(inode->i_mode) && sbi->options.nfs) { spin_lock(&sbi->dir_hash_lock); hlist_del_init(&MSDOS_I(inode)->i_dir_hash); spin_unlock(&sbi->dir_hash_lock); } } EXPORT_SYMBOL_GPL(fat_detach); struct inode *fat_iget(struct super_block *sb, loff_t i_pos) { struct msdos_sb_info *sbi = MSDOS_SB(sb); struct hlist_head *head = sbi->inode_hashtable + fat_hash(i_pos); struct msdos_inode_info *i; struct inode *inode = NULL; spin_lock(&sbi->inode_hash_lock); hlist_for_each_entry(i, head, i_fat_hash) { BUG_ON(i->vfs_inode.i_sb != sb); if (i->i_pos != i_pos) continue; inode = igrab(&i->vfs_inode); if (inode) break; } spin_unlock(&sbi->inode_hash_lock); return inode; } static int is_exec(unsigned char *extension) { unsigned char exe_extensions[] = "EXECOMBAT", *walk; for (walk = exe_extensions; *walk; walk += 3) if (!strncmp(extension, walk, 3)) return 1; return 0; } static int fat_calc_dir_size(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); int ret, fclus, dclus; inode->i_size = 0; if (MSDOS_I(inode)->i_start == 0) return 0; ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus); if (ret < 0) return ret; inode->i_size = (fclus + 1) << sbi->cluster_bits; return 0; } static int fat_validate_dir(struct inode *dir) { struct super_block *sb = dir->i_sb; if (dir->i_nlink < 2) { /* Directory should have "."/".." entries at least. */ fat_fs_error(sb, "corrupted directory (invalid entries)"); return -EIO; } if (MSDOS_I(dir)->i_start == 0 || MSDOS_I(dir)->i_start == MSDOS_SB(sb)->root_cluster) { /* Directory should point valid cluster. */ fat_fs_error(sb, "corrupted directory (invalid i_start)"); return -EIO; } return 0; } /* doesn't deal with root inode */ int fat_fill_inode(struct inode *inode, struct msdos_dir_entry *de) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); struct timespec64 mtime; int error; MSDOS_I(inode)->i_pos = 0; inode->i_uid = sbi->options.fs_uid; inode->i_gid = sbi->options.fs_gid; inode_inc_iversion(inode); inode->i_generation = get_random_u32(); if ((de->attr & ATTR_DIR) && !IS_FREE(de->name)) { inode->i_generation &= ~1; inode->i_mode = fat_make_mode(sbi, de->attr, S_IRWXUGO); inode->i_op = sbi->dir_ops; inode->i_fop = &fat_dir_operations; MSDOS_I(inode)->i_start = fat_get_start(sbi, de); MSDOS_I(inode)->i_logstart = MSDOS_I(inode)->i_start; error = fat_calc_dir_size(inode); if (error < 0) return error; MSDOS_I(inode)->mmu_private = inode->i_size; set_nlink(inode, fat_subdirs(inode)); error = fat_validate_dir(inode); if (error < 0) return error; } else { /* not a directory */ inode->i_generation |= 1; inode->i_mode = fat_make_mode(sbi, de->attr, ((sbi->options.showexec && !is_exec(de->name + 8)) ? S_IRUGO|S_IWUGO : S_IRWXUGO)); MSDOS_I(inode)->i_start = fat_get_start(sbi, de); MSDOS_I(inode)->i_logstart = MSDOS_I(inode)->i_start; inode->i_size = le32_to_cpu(de->size); inode->i_op = &fat_file_inode_operations; inode->i_fop = &fat_file_operations; inode->i_mapping->a_ops = &fat_aops; MSDOS_I(inode)->mmu_private = inode->i_size; } if (de->attr & ATTR_SYS) { if (sbi->options.sys_immutable) inode->i_flags |= S_IMMUTABLE; } fat_save_attrs(inode, de->attr); inode->i_blocks = ((inode->i_size + (sbi->cluster_size - 1)) & ~((loff_t)sbi->cluster_size - 1)) >> 9; fat_time_fat2unix(sbi, &mtime, de->time, de->date, 0); inode_set_mtime_to_ts(inode, mtime); inode_set_ctime_to_ts(inode, mtime); if (sbi->options.isvfat) { struct timespec64 atime; fat_time_fat2unix(sbi, &atime, 0, de->adate, 0); inode_set_atime_to_ts(inode, atime); fat_time_fat2unix(sbi, &MSDOS_I(inode)->i_crtime, de->ctime, de->cdate, de->ctime_cs); } else inode_set_atime_to_ts(inode, fat_truncate_atime(sbi, &mtime)); return 0; } static inline void fat_lock_build_inode(struct msdos_sb_info *sbi) { if (sbi->options.nfs == FAT_NFS_NOSTALE_RO) mutex_lock(&sbi->nfs_build_inode_lock); } static inline void fat_unlock_build_inode(struct msdos_sb_info *sbi) { if (sbi->options.nfs == FAT_NFS_NOSTALE_RO) mutex_unlock(&sbi->nfs_build_inode_lock); } struct inode *fat_build_inode(struct super_block *sb, struct msdos_dir_entry *de, loff_t i_pos) { struct inode *inode; int err; fat_lock_build_inode(MSDOS_SB(sb)); inode = fat_iget(sb, i_pos); if (inode) goto out; inode = new_inode(sb); if (!inode) { inode = ERR_PTR(-ENOMEM); goto out; } inode->i_ino = iunique(sb, MSDOS_ROOT_INO); inode_set_iversion(inode, 1); err = fat_fill_inode(inode, de); if (err) { iput(inode); inode = ERR_PTR(err); goto out; } fat_attach(inode, i_pos); insert_inode_hash(inode); out: fat_unlock_build_inode(MSDOS_SB(sb)); return inode; } EXPORT_SYMBOL_GPL(fat_build_inode); static int __fat_write_inode(struct inode *inode, int wait); static void fat_free_eofblocks(struct inode *inode) { /* Release unwritten fallocated blocks on inode eviction. */ if ((inode->i_blocks << 9) > round_up(MSDOS_I(inode)->mmu_private, MSDOS_SB(inode->i_sb)->cluster_size)) { int err; fat_truncate_blocks(inode, MSDOS_I(inode)->mmu_private); /* Fallocate results in updating the i_start/iogstart * for the zero byte file. So, make it return to * original state during evict and commit it to avoid * any corruption on the next access to the cluster * chain for the file. */ err = __fat_write_inode(inode, inode_needs_sync(inode)); if (err) { fat_msg(inode->i_sb, KERN_WARNING, "Failed to " "update on disk inode for unused " "fallocated blocks, inode could be " "corrupted. Please run fsck"); } } } static void fat_evict_inode(struct inode *inode) { truncate_inode_pages_final(&inode->i_data); if (!inode->i_nlink) { inode->i_size = 0; fat_truncate_blocks(inode, 0); } else fat_free_eofblocks(inode); invalidate_inode_buffers(inode); clear_inode(inode); fat_cache_inval_inode(inode); fat_detach(inode); } static void fat_set_state(struct super_block *sb, unsigned int set, unsigned int force) { struct buffer_head *bh; struct fat_boot_sector *b; struct msdos_sb_info *sbi = MSDOS_SB(sb); /* do not change any thing if mounted read only */ if (sb_rdonly(sb) && !force) return; /* do not change state if fs was dirty */ if (sbi->dirty) { /* warn only on set (mount). */ if (set) fat_msg(sb, KERN_WARNING, "Volume was not properly " "unmounted. Some data may be corrupt. " "Please run fsck."); return; } bh = sb_bread(sb, 0); if (bh == NULL) { fat_msg(sb, KERN_ERR, "unable to read boot sector " "to mark fs as dirty"); return; } b = (struct fat_boot_sector *) bh->b_data; if (is_fat32(sbi)) { if (set) b->fat32.state |= FAT_STATE_DIRTY; else b->fat32.state &= ~FAT_STATE_DIRTY; } else /* fat 16 and 12 */ { if (set) b->fat16.state |= FAT_STATE_DIRTY; else b->fat16.state &= ~FAT_STATE_DIRTY; } mark_buffer_dirty(bh); sync_dirty_buffer(bh); brelse(bh); } static void fat_reset_iocharset(struct fat_mount_options *opts) { if (opts->iocharset != fat_default_iocharset) { /* Note: opts->iocharset can be NULL here */ kfree(opts->iocharset); opts->iocharset = fat_default_iocharset; } } static void delayed_free(struct rcu_head *p) { struct msdos_sb_info *sbi = container_of(p, struct msdos_sb_info, rcu); unload_nls(sbi->nls_disk); unload_nls(sbi->nls_io); fat_reset_iocharset(&sbi->options); kfree(sbi); } static void fat_put_super(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); fat_set_state(sb, 0, 0); iput(sbi->fsinfo_inode); iput(sbi->fat_inode); call_rcu(&sbi->rcu, delayed_free); } static struct kmem_cache *fat_inode_cachep; static struct inode *fat_alloc_inode(struct super_block *sb) { struct msdos_inode_info *ei; ei = alloc_inode_sb(sb, fat_inode_cachep, GFP_NOFS); if (!ei) return NULL; init_rwsem(&ei->truncate_lock); /* Zeroing to allow iput() even if partial initialized inode. */ ei->mmu_private = 0; ei->i_start = 0; ei->i_logstart = 0; ei->i_attrs = 0; ei->i_pos = 0; ei->i_crtime.tv_sec = 0; ei->i_crtime.tv_nsec = 0; return &ei->vfs_inode; } static void fat_free_inode(struct inode *inode) { kmem_cache_free(fat_inode_cachep, MSDOS_I(inode)); } static void init_once(void *foo) { struct msdos_inode_info *ei = (struct msdos_inode_info *)foo; spin_lock_init(&ei->cache_lru_lock); ei->nr_caches = 0; ei->cache_valid_id = FAT_CACHE_VALID + 1; INIT_LIST_HEAD(&ei->cache_lru); INIT_HLIST_NODE(&ei->i_fat_hash); INIT_HLIST_NODE(&ei->i_dir_hash); inode_init_once(&ei->vfs_inode); } static int __init fat_init_inodecache(void) { fat_inode_cachep = kmem_cache_create("fat_inode_cache", sizeof(struct msdos_inode_info), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_ACCOUNT), init_once); if (fat_inode_cachep == NULL) return -ENOMEM; return 0; } static void __exit fat_destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(fat_inode_cachep); } int fat_reconfigure(struct fs_context *fc) { bool new_rdonly; struct super_block *sb = fc->root->d_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); fc->sb_flags |= SB_NODIRATIME | (sbi->options.isvfat ? 0 : SB_NOATIME); sync_filesystem(sb); /* make sure we update state on remount. */ new_rdonly = fc->sb_flags & SB_RDONLY; if (new_rdonly != sb_rdonly(sb)) { if (new_rdonly) fat_set_state(sb, 0, 0); else fat_set_state(sb, 1, 1); } return 0; } EXPORT_SYMBOL_GPL(fat_reconfigure); static int fat_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); u64 id = huge_encode_dev(sb->s_bdev->bd_dev); /* If the count of free cluster is still unknown, counts it here. */ if (sbi->free_clusters == -1 || !sbi->free_clus_valid) { int err = fat_count_free_clusters(dentry->d_sb); if (err) return err; } buf->f_type = dentry->d_sb->s_magic; buf->f_bsize = sbi->cluster_size; buf->f_blocks = sbi->max_cluster - FAT_START_ENT; buf->f_bfree = sbi->free_clusters; buf->f_bavail = sbi->free_clusters; buf->f_fsid = u64_to_fsid(id); buf->f_namelen = (sbi->options.isvfat ? FAT_LFN_LEN : 12) * NLS_MAX_CHARSET_SIZE; return 0; } static int __fat_write_inode(struct inode *inode, int wait) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); struct buffer_head *bh; struct msdos_dir_entry *raw_entry; struct timespec64 mtime; loff_t i_pos; sector_t blocknr; int err, offset; if (inode->i_ino == MSDOS_ROOT_INO) return 0; retry: i_pos = fat_i_pos_read(sbi, inode); if (!i_pos) return 0; fat_get_blknr_offset(sbi, i_pos, &blocknr, &offset); bh = sb_bread(sb, blocknr); if (!bh) { fat_msg(sb, KERN_ERR, "unable to read inode block " "for updating (i_pos %lld)", i_pos); return -EIO; } spin_lock(&sbi->inode_hash_lock); if (i_pos != MSDOS_I(inode)->i_pos) { spin_unlock(&sbi->inode_hash_lock); brelse(bh); goto retry; } raw_entry = &((struct msdos_dir_entry *) (bh->b_data))[offset]; if (S_ISDIR(inode->i_mode)) raw_entry->size = 0; else raw_entry->size = cpu_to_le32(inode->i_size); raw_entry->attr = fat_make_attrs(inode); fat_set_start(raw_entry, MSDOS_I(inode)->i_logstart); mtime = inode_get_mtime(inode); fat_time_unix2fat(sbi, &mtime, &raw_entry->time, &raw_entry->date, NULL); if (sbi->options.isvfat) { struct timespec64 ts = inode_get_atime(inode); __le16 atime; fat_time_unix2fat(sbi, &ts, &atime, &raw_entry->adate, NULL); fat_time_unix2fat(sbi, &MSDOS_I(inode)->i_crtime, &raw_entry->ctime, &raw_entry->cdate, &raw_entry->ctime_cs); } spin_unlock(&sbi->inode_hash_lock); mark_buffer_dirty(bh); err = 0; if (wait) err = sync_dirty_buffer(bh); brelse(bh); return err; } static int fat_write_inode(struct inode *inode, struct writeback_control *wbc) { int err; if (inode->i_ino == MSDOS_FSINFO_INO) { struct super_block *sb = inode->i_sb; mutex_lock(&MSDOS_SB(sb)->s_lock); err = fat_clusters_flush(sb); mutex_unlock(&MSDOS_SB(sb)->s_lock); } else err = __fat_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL); return err; } int fat_sync_inode(struct inode *inode) { return __fat_write_inode(inode, 1); } EXPORT_SYMBOL_GPL(fat_sync_inode); static int fat_show_options(struct seq_file *m, struct dentry *root); static const struct super_operations fat_sops = { .alloc_inode = fat_alloc_inode, .free_inode = fat_free_inode, .write_inode = fat_write_inode, .evict_inode = fat_evict_inode, .put_super = fat_put_super, .statfs = fat_statfs, .show_options = fat_show_options, }; static int fat_show_options(struct seq_file *m, struct dentry *root) { struct msdos_sb_info *sbi = MSDOS_SB(root->d_sb); struct fat_mount_options *opts = &sbi->options; int isvfat = opts->isvfat; if (!uid_eq(opts->fs_uid, GLOBAL_ROOT_UID)) seq_printf(m, ",uid=%u", from_kuid_munged(&init_user_ns, opts->fs_uid)); if (!gid_eq(opts->fs_gid, GLOBAL_ROOT_GID)) seq_printf(m, ",gid=%u", from_kgid_munged(&init_user_ns, opts->fs_gid)); seq_printf(m, ",fmask=%04o", opts->fs_fmask); seq_printf(m, ",dmask=%04o", opts->fs_dmask); if (opts->allow_utime) seq_printf(m, ",allow_utime=%04o", opts->allow_utime); if (sbi->nls_disk) /* strip "cp" prefix from displayed option */ seq_printf(m, ",codepage=%s", &sbi->nls_disk->charset[2]); if (isvfat) { if (sbi->nls_io) seq_printf(m, ",iocharset=%s", sbi->nls_io->charset); switch (opts->shortname) { case VFAT_SFN_DISPLAY_WIN95 | VFAT_SFN_CREATE_WIN95: seq_puts(m, ",shortname=win95"); break; case VFAT_SFN_DISPLAY_WINNT | VFAT_SFN_CREATE_WINNT: seq_puts(m, ",shortname=winnt"); break; case VFAT_SFN_DISPLAY_WINNT | VFAT_SFN_CREATE_WIN95: seq_puts(m, ",shortname=mixed"); break; case VFAT_SFN_DISPLAY_LOWER | VFAT_SFN_CREATE_WIN95: seq_puts(m, ",shortname=lower"); break; default: seq_puts(m, ",shortname=unknown"); break; } } if (opts->name_check != 'n') seq_printf(m, ",check=%c", opts->name_check); if (opts->usefree) seq_puts(m, ",usefree"); if (opts->quiet) seq_puts(m, ",quiet"); if (opts->showexec) seq_puts(m, ",showexec"); if (opts->sys_immutable) seq_puts(m, ",sys_immutable"); if (!isvfat) { if (opts->dotsOK) seq_puts(m, ",dotsOK=yes"); if (opts->nocase) seq_puts(m, ",nocase"); } else { if (opts->utf8) seq_puts(m, ",utf8"); if (opts->unicode_xlate) seq_puts(m, ",uni_xlate"); if (!opts->numtail) seq_puts(m, ",nonumtail"); if (opts->rodir) seq_puts(m, ",rodir"); } if (opts->flush) seq_puts(m, ",flush"); if (opts->tz_set) { if (opts->time_offset) seq_printf(m, ",time_offset=%d", opts->time_offset); else seq_puts(m, ",tz=UTC"); } if (opts->errors == FAT_ERRORS_CONT) seq_puts(m, ",errors=continue"); else if (opts->errors == FAT_ERRORS_PANIC) seq_puts(m, ",errors=panic"); else seq_puts(m, ",errors=remount-ro"); if (opts->nfs == FAT_NFS_NOSTALE_RO) seq_puts(m, ",nfs=nostale_ro"); else if (opts->nfs) seq_puts(m, ",nfs=stale_rw"); if (opts->discard) seq_puts(m, ",discard"); if (opts->dos1xfloppy) seq_puts(m, ",dos1xfloppy"); return 0; } enum { Opt_check, Opt_uid, Opt_gid, Opt_umask, Opt_dmask, Opt_fmask, Opt_allow_utime, Opt_codepage, Opt_usefree, Opt_nocase, Opt_quiet, Opt_showexec, Opt_debug, Opt_immutable, Opt_dots, Opt_dotsOK, Opt_charset, Opt_shortname, Opt_utf8, Opt_utf8_bool, Opt_uni_xl, Opt_uni_xl_bool, Opt_nonumtail, Opt_nonumtail_bool, Opt_obsolete, Opt_flush, Opt_tz, Opt_rodir, Opt_errors, Opt_discard, Opt_nfs, Opt_nfs_enum, Opt_time_offset, Opt_dos1xfloppy, }; static const struct constant_table fat_param_check[] = { {"relaxed", 'r'}, {"r", 'r'}, {"strict", 's'}, {"s", 's'}, {"normal", 'n'}, {"n", 'n'}, {} }; static const struct constant_table fat_param_tz[] = { {"UTC", 0}, {} }; static const struct constant_table fat_param_errors[] = { {"continue", FAT_ERRORS_CONT}, {"panic", FAT_ERRORS_PANIC}, {"remount-ro", FAT_ERRORS_RO}, {} }; static const struct constant_table fat_param_nfs[] = { {"stale_rw", FAT_NFS_STALE_RW}, {"nostale_ro", FAT_NFS_NOSTALE_RO}, {} }; /* * These are all obsolete but we still reject invalid options. * The corresponding values are therefore meaningless. */ static const struct constant_table fat_param_conv[] = { {"binary", 0}, {"text", 0}, {"auto", 0}, {"b", 0}, {"t", 0}, {"a", 0}, {} }; /* Core options. See below for vfat and msdos extras */ const struct fs_parameter_spec fat_param_spec[] = { fsparam_enum ("check", Opt_check, fat_param_check), fsparam_uid ("uid", Opt_uid), fsparam_gid ("gid", Opt_gid), fsparam_u32oct ("umask", Opt_umask), fsparam_u32oct ("dmask", Opt_dmask), fsparam_u32oct ("fmask", Opt_fmask), fsparam_u32oct ("allow_utime", Opt_allow_utime), fsparam_u32 ("codepage", Opt_codepage), fsparam_flag ("usefree", Opt_usefree), fsparam_flag ("nocase", Opt_nocase), fsparam_flag ("quiet", Opt_quiet), fsparam_flag ("showexec", Opt_showexec), fsparam_flag ("debug", Opt_debug), fsparam_flag ("sys_immutable", Opt_immutable), fsparam_flag ("flush", Opt_flush), fsparam_enum ("tz", Opt_tz, fat_param_tz), fsparam_s32 ("time_offset", Opt_time_offset), fsparam_enum ("errors", Opt_errors, fat_param_errors), fsparam_flag ("discard", Opt_discard), fsparam_flag ("nfs", Opt_nfs), fsparam_enum ("nfs", Opt_nfs_enum, fat_param_nfs), fsparam_flag ("dos1xfloppy", Opt_dos1xfloppy), __fsparam(fs_param_is_enum, "conv", Opt_obsolete, fs_param_deprecated, fat_param_conv), __fsparam(fs_param_is_u32, "fat", Opt_obsolete, fs_param_deprecated, NULL), __fsparam(fs_param_is_u32, "blocksize", Opt_obsolete, fs_param_deprecated, NULL), __fsparam(fs_param_is_string, "cvf_format", Opt_obsolete, fs_param_deprecated, NULL), __fsparam(fs_param_is_string, "cvf_options", Opt_obsolete, fs_param_deprecated, NULL), __fsparam(NULL, "posix", Opt_obsolete, fs_param_deprecated, NULL), {} }; EXPORT_SYMBOL_GPL(fat_param_spec); static const struct fs_parameter_spec msdos_param_spec[] = { fsparam_flag_no ("dots", Opt_dots), fsparam_bool ("dotsOK", Opt_dotsOK), {} }; static const struct constant_table fat_param_shortname[] = { {"lower", VFAT_SFN_DISPLAY_LOWER | VFAT_SFN_CREATE_WIN95}, {"win95", VFAT_SFN_DISPLAY_WIN95 | VFAT_SFN_CREATE_WIN95}, {"winnt", VFAT_SFN_DISPLAY_WINNT | VFAT_SFN_CREATE_WINNT}, {"mixed", VFAT_SFN_DISPLAY_WINNT | VFAT_SFN_CREATE_WIN95}, {} }; static const struct fs_parameter_spec vfat_param_spec[] = { fsparam_string ("iocharset", Opt_charset), fsparam_enum ("shortname", Opt_shortname, fat_param_shortname), fsparam_flag ("utf8", Opt_utf8), fsparam_bool ("utf8", Opt_utf8_bool), fsparam_flag ("uni_xlate", Opt_uni_xl), fsparam_bool ("uni_xlate", Opt_uni_xl_bool), fsparam_flag ("nonumtail", Opt_nonumtail), fsparam_bool ("nonumtail", Opt_nonumtail_bool), fsparam_flag ("rodir", Opt_rodir), {} }; int fat_parse_param(struct fs_context *fc, struct fs_parameter *param, bool is_vfat) { struct fat_mount_options *opts = fc->fs_private; struct fs_parse_result result; int opt; /* remount options have traditionally been ignored */ if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) return 0; opt = fs_parse(fc, fat_param_spec, param, &result); /* If option not found in fat_param_spec, try vfat/msdos options */ if (opt == -ENOPARAM) { if (is_vfat) opt = fs_parse(fc, vfat_param_spec, param, &result); else opt = fs_parse(fc, msdos_param_spec, param, &result); } if (opt < 0) return opt; switch (opt) { case Opt_check: opts->name_check = result.uint_32; break; case Opt_usefree: opts->usefree = 1; break; case Opt_nocase: if (!is_vfat) opts->nocase = 1; else { /* for backward compatibility */ opts->shortname = VFAT_SFN_DISPLAY_WIN95 | VFAT_SFN_CREATE_WIN95; } break; case Opt_quiet: opts->quiet = 1; break; case Opt_showexec: opts->showexec = 1; break; case Opt_debug: opts->debug = 1; break; case Opt_immutable: opts->sys_immutable = 1; break; case Opt_uid: opts->fs_uid = result.uid; break; case Opt_gid: opts->fs_gid = result.gid; break; case Opt_umask: opts->fs_fmask = opts->fs_dmask = result.uint_32; break; case Opt_dmask: opts->fs_dmask = result.uint_32; break; case Opt_fmask: opts->fs_fmask = result.uint_32; break; case Opt_allow_utime: opts->allow_utime = result.uint_32 & (S_IWGRP | S_IWOTH); break; case Opt_codepage: opts->codepage = result.uint_32; break; case Opt_flush: opts->flush = 1; break; case Opt_time_offset: /* * GMT+-12 zones may have DST corrections so at least * 13 hours difference is needed. Make the limit 24 * just in case someone invents something unusual. */ if (result.int_32 < -24 * 60 || result.int_32 > 24 * 60) return -EINVAL; opts->tz_set = 1; opts->time_offset = result.int_32; break; case Opt_tz: opts->tz_set = 1; opts->time_offset = result.uint_32; break; case Opt_errors: opts->errors = result.uint_32; break; case Opt_nfs: opts->nfs = FAT_NFS_STALE_RW; break; case Opt_nfs_enum: opts->nfs = result.uint_32; break; case Opt_dos1xfloppy: opts->dos1xfloppy = 1; break; /* msdos specific */ case Opt_dots: /* dots / nodots */ opts->dotsOK = !result.negated; break; case Opt_dotsOK: /* dotsOK = yes/no */ opts->dotsOK = result.boolean; break; /* vfat specific */ case Opt_charset: fat_reset_iocharset(opts); opts->iocharset = param->string; param->string = NULL; /* Steal string */ break; case Opt_shortname: opts->shortname = result.uint_32; break; case Opt_utf8: opts->utf8 = 1; break; case Opt_utf8_bool: opts->utf8 = result.boolean; break; case Opt_uni_xl: opts->unicode_xlate = 1; break; case Opt_uni_xl_bool: opts->unicode_xlate = result.boolean; break; case Opt_nonumtail: opts->numtail = 0; /* negated option */ break; case Opt_nonumtail_bool: opts->numtail = !result.boolean; /* negated option */ break; case Opt_rodir: opts->rodir = 1; break; case Opt_discard: opts->discard = 1; break; /* obsolete mount options */ case Opt_obsolete: printk(KERN_INFO "FAT-fs: \"%s\" option is obsolete, " "not supported now", param->key); break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(fat_parse_param); static int fat_read_root(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); int error; MSDOS_I(inode)->i_pos = MSDOS_ROOT_INO; inode->i_uid = sbi->options.fs_uid; inode->i_gid = sbi->options.fs_gid; inode_inc_iversion(inode); inode->i_generation = 0; inode->i_mode = fat_make_mode(sbi, ATTR_DIR, S_IRWXUGO); inode->i_op = sbi->dir_ops; inode->i_fop = &fat_dir_operations; if (is_fat32(sbi)) { MSDOS_I(inode)->i_start = sbi->root_cluster; error = fat_calc_dir_size(inode); if (error < 0) return error; } else { MSDOS_I(inode)->i_start = 0; inode->i_size = sbi->dir_entries * sizeof(struct msdos_dir_entry); } inode->i_blocks = ((inode->i_size + (sbi->cluster_size - 1)) & ~((loff_t)sbi->cluster_size - 1)) >> 9; MSDOS_I(inode)->i_logstart = 0; MSDOS_I(inode)->mmu_private = inode->i_size; fat_save_attrs(inode, ATTR_DIR); inode_set_mtime_to_ts(inode, inode_set_atime_to_ts(inode, inode_set_ctime(inode, 0, 0))); set_nlink(inode, fat_subdirs(inode)+2); return 0; } static unsigned long calc_fat_clusters(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); /* Divide first to avoid overflow */ if (!is_fat12(sbi)) { unsigned long ent_per_sec = sb->s_blocksize * 8 / sbi->fat_bits; return ent_per_sec * sbi->fat_length; } return sbi->fat_length * sb->s_blocksize * 8 / sbi->fat_bits; } static bool fat_bpb_is_zero(struct fat_boot_sector *b) { if (get_unaligned_le16(&b->sector_size)) return false; if (b->sec_per_clus) return false; if (b->reserved) return false; if (b->fats) return false; if (get_unaligned_le16(&b->dir_entries)) return false; if (get_unaligned_le16(&b->sectors)) return false; if (b->media) return false; if (b->fat_length) return false; if (b->secs_track) return false; if (b->heads) return false; return true; } static int fat_read_bpb(struct super_block *sb, struct fat_boot_sector *b, int silent, struct fat_bios_param_block *bpb) { int error = -EINVAL; /* Read in BPB ... */ memset(bpb, 0, sizeof(*bpb)); bpb->fat_sector_size = get_unaligned_le16(&b->sector_size); bpb->fat_sec_per_clus = b->sec_per_clus; bpb->fat_reserved = le16_to_cpu(b->reserved); bpb->fat_fats = b->fats; bpb->fat_dir_entries = get_unaligned_le16(&b->dir_entries); bpb->fat_sectors = get_unaligned_le16(&b->sectors); bpb->fat_fat_length = le16_to_cpu(b->fat_length); bpb->fat_total_sect = le32_to_cpu(b->total_sect); bpb->fat16_state = b->fat16.state; bpb->fat16_vol_id = get_unaligned_le32(b->fat16.vol_id); bpb->fat32_length = le32_to_cpu(b->fat32.length); bpb->fat32_root_cluster = le32_to_cpu(b->fat32.root_cluster); bpb->fat32_info_sector = le16_to_cpu(b->fat32.info_sector); bpb->fat32_state = b->fat32.state; bpb->fat32_vol_id = get_unaligned_le32(b->fat32.vol_id); /* Validate this looks like a FAT filesystem BPB */ if (!bpb->fat_reserved) { if (!silent) fat_msg(sb, KERN_ERR, "bogus number of reserved sectors"); goto out; } if (!bpb->fat_fats) { if (!silent) fat_msg(sb, KERN_ERR, "bogus number of FAT structure"); goto out; } /* * Earlier we checked here that b->secs_track and b->head are nonzero, * but it turns out valid FAT filesystems can have zero there. */ if (!fat_valid_media(b->media)) { if (!silent) fat_msg(sb, KERN_ERR, "invalid media value (0x%02x)", (unsigned)b->media); goto out; } if (!is_power_of_2(bpb->fat_sector_size) || (bpb->fat_sector_size < 512) || (bpb->fat_sector_size > 4096)) { if (!silent) fat_msg(sb, KERN_ERR, "bogus logical sector size %u", (unsigned)bpb->fat_sector_size); goto out; } if (!is_power_of_2(bpb->fat_sec_per_clus)) { if (!silent) fat_msg(sb, KERN_ERR, "bogus sectors per cluster %u", (unsigned)bpb->fat_sec_per_clus); goto out; } if (bpb->fat_fat_length == 0 && bpb->fat32_length == 0) { if (!silent) fat_msg(sb, KERN_ERR, "bogus number of FAT sectors"); goto out; } error = 0; out: return error; } static int fat_read_static_bpb(struct super_block *sb, struct fat_boot_sector *b, int silent, struct fat_bios_param_block *bpb) { static const char *notdos1x = "This doesn't look like a DOS 1.x volume"; sector_t bd_sects = bdev_nr_sectors(sb->s_bdev); struct fat_floppy_defaults *fdefaults = NULL; int error = -EINVAL; unsigned i; /* 16-bit DOS 1.x reliably wrote bootstrap short-jmp code */ if (b->ignored[0] != 0xeb || b->ignored[2] != 0x90) { if (!silent) fat_msg(sb, KERN_ERR, "%s; no bootstrapping code", notdos1x); goto out; } /* * If any value in this region is non-zero, it isn't archaic * DOS. */ if (!fat_bpb_is_zero(b)) { if (!silent) fat_msg(sb, KERN_ERR, "%s; DOS 2.x BPB is non-zero", notdos1x); goto out; } for (i = 0; i < ARRAY_SIZE(floppy_defaults); i++) { if (floppy_defaults[i].nr_sectors == bd_sects) { fdefaults = &floppy_defaults[i]; break; } } if (fdefaults == NULL) { if (!silent) fat_msg(sb, KERN_WARNING, "This looks like a DOS 1.x volume, but isn't a recognized floppy size (%llu sectors)", (u64)bd_sects); goto out; } if (!silent) fat_msg(sb, KERN_INFO, "This looks like a DOS 1.x volume; assuming default BPB values"); memset(bpb, 0, sizeof(*bpb)); bpb->fat_sector_size = SECTOR_SIZE; bpb->fat_sec_per_clus = fdefaults->sec_per_clus; bpb->fat_reserved = 1; bpb->fat_fats = 2; bpb->fat_dir_entries = fdefaults->dir_entries; bpb->fat_sectors = fdefaults->nr_sectors; bpb->fat_fat_length = fdefaults->fat_length; error = 0; out: return error; } /* * Read the super block of an MS-DOS FS. */ int fat_fill_super(struct super_block *sb, struct fs_context *fc, void (*setup)(struct super_block *)) { struct fat_mount_options *opts = fc->fs_private; int silent = fc->sb_flags & SB_SILENT; struct inode *root_inode = NULL, *fat_inode = NULL; struct inode *fsinfo_inode = NULL; struct buffer_head *bh; struct fat_bios_param_block bpb; struct msdos_sb_info *sbi; u16 logical_sector_size; u32 total_sectors, total_clusters, fat_clusters, rootdir_sectors; long error; char buf[50]; struct timespec64 ts; /* * GFP_KERNEL is ok here, because while we do hold the * superblock lock, memory pressure can't call back into * the filesystem, since we're only just about to mount * it and have no inodes etc active! */ sbi = kzalloc(sizeof(struct msdos_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; sb->s_flags |= SB_NODIRATIME; sb->s_magic = MSDOS_SUPER_MAGIC; sb->s_op = &fat_sops; sb->s_export_op = &fat_export_ops; /* * fat timestamps are complex and truncated by fat itself, so * we set 1 here to be fast */ sb->s_time_gran = 1; mutex_init(&sbi->nfs_build_inode_lock); ratelimit_state_init(&sbi->ratelimit, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); /* UTF-8 doesn't provide FAT semantics */ if (!strcmp(opts->iocharset, "utf8")) { fat_msg(sb, KERN_WARNING, "utf8 is not a recommended IO charset" " for FAT filesystems, filesystem will be" " case sensitive!"); } /* If user doesn't specify allow_utime, it's initialized from dmask. */ if (opts->allow_utime == (unsigned short)-1) opts->allow_utime = ~opts->fs_dmask & (S_IWGRP | S_IWOTH); if (opts->unicode_xlate) opts->utf8 = 0; if (opts->nfs == FAT_NFS_NOSTALE_RO) { sb->s_flags |= SB_RDONLY; sb->s_export_op = &fat_export_ops_nostale; } /* Apply parsed options to sbi (structure copy) */ sbi->options = *opts; /* Transfer ownership of iocharset to sbi->options */ opts->iocharset = NULL; setup(sb); /* flavour-specific stuff that needs options */ error = -EIO; sb_min_blocksize(sb, 512); bh = sb_bread(sb, 0); if (bh == NULL) { fat_msg(sb, KERN_ERR, "unable to read boot sector"); goto out_fail; } error = fat_read_bpb(sb, (struct fat_boot_sector *)bh->b_data, silent, &bpb); if (error == -EINVAL && sbi->options.dos1xfloppy) error = fat_read_static_bpb(sb, (struct fat_boot_sector *)bh->b_data, silent, &bpb); brelse(bh); if (error == -EINVAL) goto out_invalid; else if (error) goto out_fail; logical_sector_size = bpb.fat_sector_size; sbi->sec_per_clus = bpb.fat_sec_per_clus; error = -EIO; if (logical_sector_size < sb->s_blocksize) { fat_msg(sb, KERN_ERR, "logical sector size too small for device" " (logical sector size = %u)", logical_sector_size); goto out_fail; } if (logical_sector_size > sb->s_blocksize) { struct buffer_head *bh_resize; if (!sb_set_blocksize(sb, logical_sector_size)) { fat_msg(sb, KERN_ERR, "unable to set blocksize %u", logical_sector_size); goto out_fail; } /* Verify that the larger boot sector is fully readable */ bh_resize = sb_bread(sb, 0); if (bh_resize == NULL) { fat_msg(sb, KERN_ERR, "unable to read boot sector" " (logical sector size = %lu)", sb->s_blocksize); goto out_fail; } brelse(bh_resize); } mutex_init(&sbi->s_lock); sbi->cluster_size = sb->s_blocksize * sbi->sec_per_clus; sbi->cluster_bits = ffs(sbi->cluster_size) - 1; sbi->fats = bpb.fat_fats; sbi->fat_bits = 0; /* Don't know yet */ sbi->fat_start = bpb.fat_reserved; sbi->fat_length = bpb.fat_fat_length; sbi->root_cluster = 0; sbi->free_clusters = -1; /* Don't know yet */ sbi->free_clus_valid = 0; sbi->prev_free = FAT_START_ENT; sb->s_maxbytes = 0xffffffff; fat_time_fat2unix(sbi, &ts, 0, cpu_to_le16(FAT_DATE_MIN), 0); sb->s_time_min = ts.tv_sec; fat_time_fat2unix(sbi, &ts, cpu_to_le16(FAT_TIME_MAX), cpu_to_le16(FAT_DATE_MAX), 0); sb->s_time_max = ts.tv_sec; if (!sbi->fat_length && bpb.fat32_length) { struct fat_boot_fsinfo *fsinfo; struct buffer_head *fsinfo_bh; /* Must be FAT32 */ sbi->fat_bits = 32; sbi->fat_length = bpb.fat32_length; sbi->root_cluster = bpb.fat32_root_cluster; /* MC - if info_sector is 0, don't multiply by 0 */ sbi->fsinfo_sector = bpb.fat32_info_sector; if (sbi->fsinfo_sector == 0) sbi->fsinfo_sector = 1; fsinfo_bh = sb_bread(sb, sbi->fsinfo_sector); if (fsinfo_bh == NULL) { fat_msg(sb, KERN_ERR, "bread failed, FSINFO block" " (sector = %lu)", sbi->fsinfo_sector); goto out_fail; } fsinfo = (struct fat_boot_fsinfo *)fsinfo_bh->b_data; if (!IS_FSINFO(fsinfo)) { fat_msg(sb, KERN_WARNING, "Invalid FSINFO signature: " "0x%08x, 0x%08x (sector = %lu)", le32_to_cpu(fsinfo->signature1), le32_to_cpu(fsinfo->signature2), sbi->fsinfo_sector); } else { if (sbi->options.usefree) sbi->free_clus_valid = 1; sbi->free_clusters = le32_to_cpu(fsinfo->free_clusters); sbi->prev_free = le32_to_cpu(fsinfo->next_cluster); } brelse(fsinfo_bh); } /* interpret volume ID as a little endian 32 bit integer */ if (is_fat32(sbi)) sbi->vol_id = bpb.fat32_vol_id; else /* fat 16 or 12 */ sbi->vol_id = bpb.fat16_vol_id; __le32 vol_id_le = cpu_to_le32(sbi->vol_id); super_set_uuid(sb, (void *) &vol_id_le, sizeof(vol_id_le)); sbi->dir_per_block = sb->s_blocksize / sizeof(struct msdos_dir_entry); sbi->dir_per_block_bits = ffs(sbi->dir_per_block) - 1; sbi->dir_start = sbi->fat_start + sbi->fats * sbi->fat_length; sbi->dir_entries = bpb.fat_dir_entries; if (sbi->dir_entries & (sbi->dir_per_block - 1)) { if (!silent) fat_msg(sb, KERN_ERR, "bogus number of directory entries" " (%u)", sbi->dir_entries); goto out_invalid; } rootdir_sectors = sbi->dir_entries * sizeof(struct msdos_dir_entry) / sb->s_blocksize; sbi->data_start = sbi->dir_start + rootdir_sectors; total_sectors = bpb.fat_sectors; if (total_sectors == 0) total_sectors = bpb.fat_total_sect; total_clusters = (total_sectors - sbi->data_start) / sbi->sec_per_clus; if (!is_fat32(sbi)) sbi->fat_bits = (total_clusters > MAX_FAT12) ? 16 : 12; /* some OSes set FAT_STATE_DIRTY and clean it on unmount. */ if (is_fat32(sbi)) sbi->dirty = bpb.fat32_state & FAT_STATE_DIRTY; else /* fat 16 or 12 */ sbi->dirty = bpb.fat16_state & FAT_STATE_DIRTY; /* check that FAT table does not overflow */ fat_clusters = calc_fat_clusters(sb); total_clusters = min(total_clusters, fat_clusters - FAT_START_ENT); if (total_clusters > max_fat(sb)) { if (!silent) fat_msg(sb, KERN_ERR, "count of clusters too big (%u)", total_clusters); goto out_invalid; } sbi->max_cluster = total_clusters + FAT_START_ENT; /* check the free_clusters, it's not necessarily correct */ if (sbi->free_clusters != -1 && sbi->free_clusters > total_clusters) sbi->free_clusters = -1; /* check the prev_free, it's not necessarily correct */ sbi->prev_free %= sbi->max_cluster; if (sbi->prev_free < FAT_START_ENT) sbi->prev_free = FAT_START_ENT; /* set up enough so that it can read an inode */ fat_hash_init(sb); dir_hash_init(sb); fat_ent_access_init(sb); /* * The low byte of the first FAT entry must have the same value as * the media field of the boot sector. But in real world, too many * devices are writing wrong values. So, removed that validity check. * * The removed check compared the first FAT entry to a value dependent * on the media field like this: * == (0x0F00 | media), for FAT12 * == (0XFF00 | media), for FAT16 * == (0x0FFFFF | media), for FAT32 */ error = -EINVAL; sprintf(buf, "cp%d", sbi->options.codepage); sbi->nls_disk = load_nls(buf); if (!sbi->nls_disk) { fat_msg(sb, KERN_ERR, "codepage %s not found", buf); goto out_fail; } /* FIXME: utf8 is using iocharset for upper/lower conversion */ if (sbi->options.isvfat) { sbi->nls_io = load_nls(sbi->options.iocharset); if (!sbi->nls_io) { fat_msg(sb, KERN_ERR, "IO charset %s not found", sbi->options.iocharset); goto out_fail; } } error = -ENOMEM; fat_inode = new_inode(sb); if (!fat_inode) goto out_fail; sbi->fat_inode = fat_inode; fsinfo_inode = new_inode(sb); if (!fsinfo_inode) goto out_fail; fsinfo_inode->i_ino = MSDOS_FSINFO_INO; sbi->fsinfo_inode = fsinfo_inode; insert_inode_hash(fsinfo_inode); root_inode = new_inode(sb); if (!root_inode) goto out_fail; root_inode->i_ino = MSDOS_ROOT_INO; inode_set_iversion(root_inode, 1); error = fat_read_root(root_inode); if (error < 0) { iput(root_inode); goto out_fail; } error = -ENOMEM; insert_inode_hash(root_inode); fat_attach(root_inode, 0); sb->s_root = d_make_root(root_inode); if (!sb->s_root) { fat_msg(sb, KERN_ERR, "get root inode failed"); goto out_fail; } if (sbi->options.discard && !bdev_max_discard_sectors(sb->s_bdev)) fat_msg(sb, KERN_WARNING, "mounting with \"discard\" option, but the device does not support discard"); fat_set_state(sb, 1, 0); return 0; out_invalid: error = -EINVAL; if (!silent) fat_msg(sb, KERN_INFO, "Can't find a valid FAT filesystem"); out_fail: iput(fsinfo_inode); iput(fat_inode); unload_nls(sbi->nls_io); unload_nls(sbi->nls_disk); fat_reset_iocharset(&sbi->options); sb->s_fs_info = NULL; kfree(sbi); return error; } EXPORT_SYMBOL_GPL(fat_fill_super); /* * helper function for fat_flush_inodes. This writes both the inode * and the file data blocks, waiting for in flight data blocks before * the start of the call. It does not wait for any io started * during the call */ static int writeback_inode(struct inode *inode) { int ret; /* if we used wait=1, sync_inode_metadata waits for the io for the * inode to finish. So wait=0 is sent down to sync_inode_metadata * and filemap_fdatawrite is used for the data blocks */ ret = sync_inode_metadata(inode, 0); if (!ret) ret = filemap_fdatawrite(inode->i_mapping); return ret; } /* * write data and metadata corresponding to i1 and i2. The io is * started but we do not wait for any of it to finish. * * filemap_flush is used for the block device, so if there is a dirty * page for a block already in flight, we will not wait and start the * io over again */ int fat_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2) { int ret = 0; if (!MSDOS_SB(sb)->options.flush) return 0; if (i1) ret = writeback_inode(i1); if (!ret && i2) ret = writeback_inode(i2); if (!ret) ret = sync_blockdev_nowait(sb->s_bdev); return ret; } EXPORT_SYMBOL_GPL(fat_flush_inodes); int fat_init_fs_context(struct fs_context *fc, bool is_vfat) { struct fat_mount_options *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return -ENOMEM; opts->isvfat = is_vfat; opts->fs_uid = current_uid(); opts->fs_gid = current_gid(); opts->fs_fmask = opts->fs_dmask = current_umask(); opts->allow_utime = -1; opts->codepage = fat_default_codepage; fat_reset_iocharset(opts); if (is_vfat) { opts->shortname = VFAT_SFN_DISPLAY_WINNT|VFAT_SFN_CREATE_WIN95; opts->rodir = 0; } else { opts->shortname = 0; opts->rodir = 1; } opts->name_check = 'n'; opts->quiet = opts->showexec = opts->sys_immutable = opts->dotsOK = 0; opts->unicode_xlate = 0; opts->numtail = 1; opts->usefree = opts->nocase = 0; opts->tz_set = 0; opts->nfs = 0; opts->errors = FAT_ERRORS_RO; opts->debug = 0; opts->utf8 = IS_ENABLED(CONFIG_FAT_DEFAULT_UTF8) && is_vfat; fc->fs_private = opts; /* fc->ops assigned by caller */ return 0; } EXPORT_SYMBOL_GPL(fat_init_fs_context); void fat_free_fc(struct fs_context *fc) { struct fat_mount_options *opts = fc->fs_private; if (opts->iocharset != fat_default_iocharset) kfree(opts->iocharset); kfree(fc->fs_private); } EXPORT_SYMBOL_GPL(fat_free_fc); static int __init init_fat_fs(void) { int err; err = fat_cache_init(); if (err) return err; err = fat_init_inodecache(); if (err) goto failed; return 0; failed: fat_cache_destroy(); return err; } static void __exit exit_fat_fs(void) { fat_cache_destroy(); fat_destroy_inodecache(); } module_init(init_fat_fs) module_exit(exit_fat_fs) MODULE_DESCRIPTION("Core FAT filesystem support"); MODULE_LICENSE("GPL");
5905 5904 106 106 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 // SPDX-License-Identifier: GPL-2.0-only /* * ACPI device specific properties support. * * Copyright (C) 2014 - 2023, Intel Corporation * All rights reserved. * * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> * Darren Hart <dvhart@linux.intel.com> * Rafael J. Wysocki <rafael.j.wysocki@intel.com> * Sakari Ailus <sakari.ailus@linux.intel.com> */ #define pr_fmt(fmt) "ACPI: " fmt #include <linux/acpi.h> #include <linux/device.h> #include <linux/export.h> #include "internal.h" static int acpi_data_get_property_array(const struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj); /* * The GUIDs here are made equivalent to each other in order to avoid extra * complexity in the properties handling code, with the caveat that the * kernel will accept certain combinations of GUID and properties that are * not defined without a warning. For instance if any of the properties * from different GUID appear in a property list of another, it will be * accepted by the kernel. Firmware validation tools should catch these. * * References: * * [1] UEFI DSD Guide. * https://github.com/UEFI/DSD-Guide/blob/main/src/dsd-guide.adoc */ static const guid_t prp_guids[] = { /* ACPI _DSD device properties GUID [1]: daffd814-6eba-4d8c-8a91-bc9bbf4aa301 */ GUID_INIT(0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91, 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01), /* Hotplug in D3 GUID: 6211e2c0-58a3-4af3-90e1-927a4e0c55a4 */ GUID_INIT(0x6211e2c0, 0x58a3, 0x4af3, 0x90, 0xe1, 0x92, 0x7a, 0x4e, 0x0c, 0x55, 0xa4), /* External facing port GUID: efcc06cc-73ac-4bc3-bff0-76143807c389 */ GUID_INIT(0xefcc06cc, 0x73ac, 0x4bc3, 0xbf, 0xf0, 0x76, 0x14, 0x38, 0x07, 0xc3, 0x89), /* Thunderbolt GUID for IMR_VALID: c44d002f-69f9-4e7d-a904-a7baabdf43f7 */ GUID_INIT(0xc44d002f, 0x69f9, 0x4e7d, 0xa9, 0x04, 0xa7, 0xba, 0xab, 0xdf, 0x43, 0xf7), /* Thunderbolt GUID for WAKE_SUPPORTED: 6c501103-c189-4296-ba72-9bf5a26ebe5d */ GUID_INIT(0x6c501103, 0xc189, 0x4296, 0xba, 0x72, 0x9b, 0xf5, 0xa2, 0x6e, 0xbe, 0x5d), /* Storage device needs D3 GUID: 5025030f-842f-4ab4-a561-99a5189762d0 */ GUID_INIT(0x5025030f, 0x842f, 0x4ab4, 0xa5, 0x61, 0x99, 0xa5, 0x18, 0x97, 0x62, 0xd0), }; /* ACPI _DSD data subnodes GUID [1]: dbb8e3e6-5886-4ba6-8795-1319f52a966b */ static const guid_t ads_guid = GUID_INIT(0xdbb8e3e6, 0x5886, 0x4ba6, 0x87, 0x95, 0x13, 0x19, 0xf5, 0x2a, 0x96, 0x6b); /* ACPI _DSD data buffer GUID [1]: edb12dd0-363d-4085-a3d2-49522ca160c4 */ static const guid_t buffer_prop_guid = GUID_INIT(0xedb12dd0, 0x363d, 0x4085, 0xa3, 0xd2, 0x49, 0x52, 0x2c, 0xa1, 0x60, 0xc4); static bool acpi_enumerate_nondev_subnodes(acpi_handle scope, union acpi_object *desc, struct acpi_device_data *data, struct fwnode_handle *parent); static bool acpi_extract_properties(acpi_handle handle, union acpi_object *desc, struct acpi_device_data *data); static bool acpi_nondev_subnode_extract(union acpi_object *desc, acpi_handle handle, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { struct acpi_data_node *dn; bool result; if (acpi_graph_ignore_port(handle)) return false; dn = kzalloc(sizeof(*dn), GFP_KERNEL); if (!dn) return false; dn->name = link->package.elements[0].string.pointer; fwnode_init(&dn->fwnode, &acpi_data_fwnode_ops); dn->parent = parent; INIT_LIST_HEAD(&dn->data.properties); INIT_LIST_HEAD(&dn->data.subnodes); result = acpi_extract_properties(handle, desc, &dn->data); if (handle) { acpi_handle scope; acpi_status status; /* * The scope for the subnode object lookup is the one of the * namespace node (device) containing the object that has * returned the package. That is, it's the scope of that * object's parent. */ status = acpi_get_parent(handle, &scope); if (ACPI_SUCCESS(status) && acpi_enumerate_nondev_subnodes(scope, desc, &dn->data, &dn->fwnode)) result = true; } else if (acpi_enumerate_nondev_subnodes(NULL, desc, &dn->data, &dn->fwnode)) { result = true; } if (result) { dn->handle = handle; dn->data.pointer = desc; list_add_tail(&dn->sibling, list); return true; } kfree(dn); acpi_handle_debug(handle, "Invalid properties/subnodes data, skipping\n"); return false; } static bool acpi_nondev_subnode_data_ok(acpi_handle handle, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; acpi_status status; status = acpi_evaluate_object_typed(handle, NULL, NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) return false; if (acpi_nondev_subnode_extract(buf.pointer, handle, link, list, parent)) return true; ACPI_FREE(buf.pointer); return false; } static bool acpi_nondev_subnode_ok(acpi_handle scope, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { acpi_handle handle; acpi_status status; if (!scope) return false; status = acpi_get_handle(scope, link->package.elements[1].string.pointer, &handle); if (ACPI_FAILURE(status)) return false; return acpi_nondev_subnode_data_ok(handle, link, list, parent); } static bool acpi_add_nondev_subnodes(acpi_handle scope, union acpi_object *links, struct list_head *list, struct fwnode_handle *parent) { bool ret = false; int i; for (i = 0; i < links->package.count; i++) { union acpi_object *link, *desc; acpi_handle handle; bool result; link = &links->package.elements[i]; /* Only two elements allowed. */ if (link->package.count != 2) continue; /* The first one must be a string. */ if (link->package.elements[0].type != ACPI_TYPE_STRING) continue; /* The second one may be a string, a reference or a package. */ switch (link->package.elements[1].type) { case ACPI_TYPE_STRING: result = acpi_nondev_subnode_ok(scope, link, list, parent); break; case ACPI_TYPE_LOCAL_REFERENCE: handle = link->package.elements[1].reference.handle; result = acpi_nondev_subnode_data_ok(handle, link, list, parent); break; case ACPI_TYPE_PACKAGE: desc = &link->package.elements[1]; result = acpi_nondev_subnode_extract(desc, NULL, link, list, parent); break; default: result = false; break; } ret = ret || result; } return ret; } static bool acpi_enumerate_nondev_subnodes(acpi_handle scope, union acpi_object *desc, struct acpi_device_data *data, struct fwnode_handle *parent) { int i; /* Look for the ACPI data subnodes GUID. */ for (i = 0; i < desc->package.count; i += 2) { const union acpi_object *guid; union acpi_object *links; guid = &desc->package.elements[i]; links = &desc->package.elements[i + 1]; /* * The first element must be a GUID and the second one must be * a package. */ if (guid->type != ACPI_TYPE_BUFFER || guid->buffer.length != 16 || links->type != ACPI_TYPE_PACKAGE) break; if (!guid_equal((guid_t *)guid->buffer.pointer, &ads_guid)) continue; return acpi_add_nondev_subnodes(scope, links, &data->subnodes, parent); } return false; } static bool acpi_property_value_ok(const union acpi_object *value) { int j; /* * The value must be an integer, a string, a reference, or a package * whose every element must be an integer, a string, or a reference. */ switch (value->type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_LOCAL_REFERENCE: return true; case ACPI_TYPE_PACKAGE: for (j = 0; j < value->package.count; j++) switch (value->package.elements[j].type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_LOCAL_REFERENCE: continue; default: return false; } return true; } return false; } static bool acpi_properties_format_valid(const union acpi_object *properties) { int i; for (i = 0; i < properties->package.count; i++) { const union acpi_object *property; property = &properties->package.elements[i]; /* * Only two elements allowed, the first one must be a string and * the second one has to satisfy certain conditions. */ if (property->package.count != 2 || property->package.elements[0].type != ACPI_TYPE_STRING || !acpi_property_value_ok(&property->package.elements[1])) return false; } return true; } static void acpi_init_of_compatible(struct acpi_device *adev) { const union acpi_object *of_compatible; int ret; ret = acpi_data_get_property_array(&adev->data, "compatible", ACPI_TYPE_STRING, &of_compatible); if (ret) { ret = acpi_dev_get_property(adev, "compatible", ACPI_TYPE_STRING, &of_compatible); if (ret) { struct acpi_device *parent; parent = acpi_dev_parent(adev); if (parent && parent->flags.of_compatible_ok) goto out; return; } } adev->data.of_compatible = of_compatible; out: adev->flags.of_compatible_ok = 1; } static bool acpi_is_property_guid(const guid_t *guid) { int i; for (i = 0; i < ARRAY_SIZE(prp_guids); i++) { if (guid_equal(guid, &prp_guids[i])) return true; } return false; } struct acpi_device_properties * acpi_data_add_props(struct acpi_device_data *data, const guid_t *guid, union acpi_object *properties) { struct acpi_device_properties *props; props = kzalloc(sizeof(*props), GFP_KERNEL); if (props) { INIT_LIST_HEAD(&props->list); props->guid = guid; props->properties = properties; list_add_tail(&props->list, &data->properties); } return props; } static void acpi_nondev_subnode_tag(acpi_handle handle, void *context) { } static void acpi_untie_nondev_subnodes(struct acpi_device_data *data) { struct acpi_data_node *dn; list_for_each_entry(dn, &data->subnodes, sibling) { acpi_detach_data(dn->handle, acpi_nondev_subnode_tag); acpi_untie_nondev_subnodes(&dn->data); } } static bool acpi_tie_nondev_subnodes(struct acpi_device_data *data) { struct acpi_data_node *dn; list_for_each_entry(dn, &data->subnodes, sibling) { acpi_status status; bool ret; status = acpi_attach_data(dn->handle, acpi_nondev_subnode_tag, dn); if (ACPI_FAILURE(status) && status != AE_ALREADY_EXISTS) { acpi_handle_err(dn->handle, "Can't tag data node\n"); return false; } ret = acpi_tie_nondev_subnodes(&dn->data); if (!ret) return ret; } return true; } static void acpi_data_add_buffer_props(acpi_handle handle, struct acpi_device_data *data, union acpi_object *properties) { struct acpi_device_properties *props; union acpi_object *package; size_t alloc_size; unsigned int i; u32 *count; if (check_mul_overflow((size_t)properties->package.count, sizeof(*package) + sizeof(void *), &alloc_size) || check_add_overflow(sizeof(*props) + sizeof(*package), alloc_size, &alloc_size)) { acpi_handle_warn(handle, "can't allocate memory for %u buffer props", properties->package.count); return; } props = kvzalloc(alloc_size, GFP_KERNEL); if (!props) return; props->guid = &buffer_prop_guid; props->bufs = (void *)(props + 1); props->properties = (void *)(props->bufs + properties->package.count); /* Outer package */ package = props->properties; package->type = ACPI_TYPE_PACKAGE; package->package.elements = package + 1; count = &package->package.count; *count = 0; /* Inner packages */ package++; for (i = 0; i < properties->package.count; i++) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; union acpi_object *property = &properties->package.elements[i]; union acpi_object *prop, *obj, *buf_obj; acpi_status status; if (property->type != ACPI_TYPE_PACKAGE || property->package.count != 2) { acpi_handle_warn(handle, "buffer property %u has %u entries\n", i, property->package.count); continue; } prop = &property->package.elements[0]; obj = &property->package.elements[1]; if (prop->type != ACPI_TYPE_STRING || obj->type != ACPI_TYPE_STRING) { acpi_handle_warn(handle, "wrong object types %u and %u\n", prop->type, obj->type); continue; } status = acpi_evaluate_object_typed(handle, obj->string.pointer, NULL, &buf, ACPI_TYPE_BUFFER); if (ACPI_FAILURE(status)) { acpi_handle_warn(handle, "can't evaluate \"%*pE\" as buffer\n", obj->string.length, obj->string.pointer); continue; } package->type = ACPI_TYPE_PACKAGE; package->package.elements = prop; package->package.count = 2; buf_obj = buf.pointer; /* Replace the string object with a buffer object */ obj->type = ACPI_TYPE_BUFFER; obj->buffer.length = buf_obj->buffer.length; obj->buffer.pointer = buf_obj->buffer.pointer; props->bufs[i] = buf.pointer; package++; (*count)++; } if (*count) list_add(&props->list, &data->properties); else kvfree(props); } static bool acpi_extract_properties(acpi_handle scope, union acpi_object *desc, struct acpi_device_data *data) { int i; if (desc->package.count % 2) return false; /* Look for the device properties GUID. */ for (i = 0; i < desc->package.count; i += 2) { const union acpi_object *guid; union acpi_object *properties; guid = &desc->package.elements[i]; properties = &desc->package.elements[i + 1]; /* * The first element must be a GUID and the second one must be * a package. */ if (guid->type != ACPI_TYPE_BUFFER || guid->buffer.length != 16 || properties->type != ACPI_TYPE_PACKAGE) break; if (guid_equal((guid_t *)guid->buffer.pointer, &buffer_prop_guid)) { acpi_data_add_buffer_props(scope, data, properties); continue; } if (!acpi_is_property_guid((guid_t *)guid->buffer.pointer)) continue; /* * We found the matching GUID. Now validate the format of the * package immediately following it. */ if (!acpi_properties_format_valid(properties)) continue; acpi_data_add_props(data, (const guid_t *)guid->buffer.pointer, properties); } return !list_empty(&data->properties); } void acpi_init_properties(struct acpi_device *adev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; struct acpi_hardware_id *hwid; acpi_status status; bool acpi_of = false; INIT_LIST_HEAD(&adev->data.properties); INIT_LIST_HEAD(&adev->data.subnodes); if (!adev->handle) return; /* * Check if ACPI_DT_NAMESPACE_HID is present and inthat case we fill in * Device Tree compatible properties for this device. */ list_for_each_entry(hwid, &adev->pnp.ids, list) { if (!strcmp(hwid->id, ACPI_DT_NAMESPACE_HID)) { acpi_of = true; break; } } status = acpi_evaluate_object_typed(adev->handle, "_DSD", NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) goto out; if (acpi_extract_properties(adev->handle, buf.pointer, &adev->data)) { adev->data.pointer = buf.pointer; if (acpi_of) acpi_init_of_compatible(adev); } if (acpi_enumerate_nondev_subnodes(adev->handle, buf.pointer, &adev->data, acpi_fwnode_handle(adev))) adev->data.pointer = buf.pointer; if (!adev->data.pointer) { acpi_handle_debug(adev->handle, "Invalid _DSD data, skipping\n"); ACPI_FREE(buf.pointer); } else { if (!acpi_tie_nondev_subnodes(&adev->data)) acpi_untie_nondev_subnodes(&adev->data); } out: if (acpi_of && !adev->flags.of_compatible_ok) acpi_handle_info(adev->handle, ACPI_DT_NAMESPACE_HID " requires 'compatible' property\n"); if (!adev->data.pointer) acpi_extract_apple_properties(adev); } static void acpi_free_device_properties(struct list_head *list) { struct acpi_device_properties *props, *tmp; list_for_each_entry_safe(props, tmp, list, list) { u32 i; list_del(&props->list); /* Buffer data properties were separately allocated */ if (props->bufs) for (i = 0; i < props->properties->package.count; i++) ACPI_FREE(props->bufs[i]); kvfree(props); } } static void acpi_destroy_nondev_subnodes(struct list_head *list) { struct acpi_data_node *dn, *next; if (list_empty(list)) return; list_for_each_entry_safe_reverse(dn, next, list, sibling) { acpi_destroy_nondev_subnodes(&dn->data.subnodes); wait_for_completion(&dn->kobj_done); list_del(&dn->sibling); ACPI_FREE((void *)dn->data.pointer); acpi_free_device_properties(&dn->data.properties); kfree(dn); } } void acpi_free_properties(struct acpi_device *adev) { acpi_untie_nondev_subnodes(&adev->data); acpi_destroy_nondev_subnodes(&adev->data.subnodes); ACPI_FREE((void *)adev->data.pointer); adev->data.of_compatible = NULL; adev->data.pointer = NULL; acpi_free_device_properties(&adev->data.properties); } /** * acpi_data_get_property - return an ACPI property with given name * @data: ACPI device deta object to get the property from * @name: Name of the property * @type: Expected property type * @obj: Location to store the property value (if not %NULL) * * Look up a property with @name and store a pointer to the resulting ACPI * object at the location pointed to by @obj if found. * * Callers must not attempt to free the returned objects. These objects will be * freed by the ACPI core automatically during the removal of @data. * * Return: %0 if property with @name has been found (success), * %-EINVAL if the arguments are invalid, * %-EINVAL if the property doesn't exist, * %-EPROTO if the property value type doesn't match @type. */ static int acpi_data_get_property(const struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj) { const struct acpi_device_properties *props; if (!data || !name) return -EINVAL; if (!data->pointer || list_empty(&data->properties)) return -EINVAL; list_for_each_entry(props, &data->properties, list) { const union acpi_object *properties; unsigned int i; properties = props->properties; for (i = 0; i < properties->package.count; i++) { const union acpi_object *propname, *propvalue; const union acpi_object *property; property = &properties->package.elements[i]; propname = &property->package.elements[0]; propvalue = &property->package.elements[1]; if (!strcmp(name, propname->string.pointer)) { if (type != ACPI_TYPE_ANY && propvalue->type != type) return -EPROTO; if (obj) *obj = propvalue; return 0; } } } return -EINVAL; } /** * acpi_dev_get_property - return an ACPI property with given name. * @adev: ACPI device to get the property from. * @name: Name of the property. * @type: Expected property type. * @obj: Location to store the property value (if not %NULL). */ int acpi_dev_get_property(const struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj) { return adev ? acpi_data_get_property(&adev->data, name, type, obj) : -EINVAL; } EXPORT_SYMBOL_GPL(acpi_dev_get_property); static const struct acpi_device_data * acpi_device_data_of_node(const struct fwnode_handle *fwnode) { if (is_acpi_device_node(fwnode)) { const struct acpi_device *adev = to_acpi_device_node(fwnode); return &adev->data; } if (is_acpi_data_node(fwnode)) { const struct acpi_data_node *dn = to_acpi_data_node(fwnode); return &dn->data; } return NULL; } /** * acpi_node_prop_get - return an ACPI property with given name. * @fwnode: Firmware node to get the property from. * @propname: Name of the property. * @valptr: Location to store a pointer to the property value (if not %NULL). */ int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr) { return acpi_data_get_property(acpi_device_data_of_node(fwnode), propname, ACPI_TYPE_ANY, (const union acpi_object **)valptr); } /** * acpi_data_get_property_array - return an ACPI array property with given name * @data: ACPI data object to get the property from * @name: Name of the property * @type: Expected type of array elements * @obj: Location to store a pointer to the property value (if not NULL) * * Look up an array property with @name and store a pointer to the resulting * ACPI object at the location pointed to by @obj if found. * * Callers must not attempt to free the returned objects. Those objects will be * freed by the ACPI core automatically during the removal of @data. * * Return: %0 if array property (package) with @name has been found (success), * %-EINVAL if the arguments are invalid, * %-EINVAL if the property doesn't exist, * %-EPROTO if the property is not a package or the type of its elements * doesn't match @type. */ static int acpi_data_get_property_array(const struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj) { const union acpi_object *prop; int ret, i; ret = acpi_data_get_property(data, name, ACPI_TYPE_PACKAGE, &prop); if (ret) return ret; if (type != ACPI_TYPE_ANY) { /* Check that all elements are of correct type. */ for (i = 0; i < prop->package.count; i++) if (prop->package.elements[i].type != type) return -EPROTO; } if (obj) *obj = prop; return 0; } static struct fwnode_handle * acpi_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, const char *childname) { struct fwnode_handle *child; fwnode_for_each_child_node(fwnode, child) { if (is_acpi_data_node(child)) { if (acpi_data_node_match(child, childname)) return child; continue; } if (!strncmp(acpi_device_bid(to_acpi_device_node(child)), childname, ACPI_NAMESEG_SIZE)) return child; } return NULL; } static int acpi_get_ref_args(struct fwnode_reference_args *args, struct fwnode_handle *ref_fwnode, const union acpi_object **element, const union acpi_object *end, size_t num_args) { u32 nargs = 0, i; /* * Assume the following integer elements are all args. Stop counting on * the first reference (possibly represented as a string) or end of the * package arguments. In case of neither reference, nor integer, return * an error, we can't parse it. */ for (i = 0; (*element) + i < end && i < num_args; i++) { acpi_object_type type = (*element)[i].type; if (type == ACPI_TYPE_LOCAL_REFERENCE || type == ACPI_TYPE_STRING) break; if (type == ACPI_TYPE_INTEGER) nargs++; else return -EINVAL; } if (nargs > NR_FWNODE_REFERENCE_ARGS) return -EINVAL; if (args) { args->fwnode = ref_fwnode; args->nargs = nargs; for (i = 0; i < nargs; i++) args->args[i] = (*element)[i].integer.value; } (*element) += nargs; return 0; } static struct fwnode_handle *acpi_parse_string_ref(const struct fwnode_handle *fwnode, const char *refstring) { acpi_handle scope, handle; struct acpi_data_node *dn; struct acpi_device *device; acpi_status status; if (is_acpi_device_node(fwnode)) { scope = to_acpi_device_node(fwnode)->handle; } else if (is_acpi_data_node(fwnode)) { scope = to_acpi_data_node(fwnode)->handle; } else { pr_debug("Bad node type for node %pfw\n", fwnode); return NULL; } status = acpi_get_handle(scope, refstring, &handle); if (ACPI_FAILURE(status)) { acpi_handle_debug(scope, "Unable to get an ACPI handle for %s\n", refstring); return NULL; } device = acpi_fetch_acpi_dev(handle); if (device) return acpi_fwnode_handle(device); status = acpi_get_data_full(handle, acpi_nondev_subnode_tag, (void **)&dn, NULL); if (ACPI_FAILURE(status) || !dn) { acpi_handle_debug(handle, "Subnode not found\n"); return NULL; } return &dn->fwnode; } /** * __acpi_node_get_property_reference - returns handle to the referenced object * @fwnode: Firmware node to get the property from * @propname: Name of the property * @index: Index of the reference to return * @num_args: Maximum number of arguments after each reference * @args: Location to store the returned reference with optional arguments * (may be NULL) * * Find property with @name, verifify that it is a package containing at least * one object reference and if so, store the ACPI device object pointer to the * target object in @args->adev. If the reference includes arguments, store * them in the @args->args[] array. * * If there's more than one reference in the property value package, @index is * used to select the one to return. * * It is possible to leave holes in the property value set like in the * example below: * * Package () { * "cs-gpios", * Package () { * ^GPIO, 19, 0, 0, * ^GPIO, 20, 0, 0, * 0, * ^GPIO, 21, 0, 0, * } * } * * Calling this function with index %2 or index %3 return %-ENOENT. If the * property does not contain any more values %-ENOENT is returned. The NULL * entry must be single integer and preferably contain value %0. * * Return: %0 on success, negative error code on failure. */ int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *propname, size_t index, size_t num_args, struct fwnode_reference_args *args) { const union acpi_object *element, *end; const union acpi_object *obj; const struct acpi_device_data *data; struct fwnode_handle *ref_fwnode; struct acpi_device *device; int ret, idx = 0; data = acpi_device_data_of_node(fwnode); if (!data) return -ENOENT; ret = acpi_data_get_property(data, propname, ACPI_TYPE_ANY, &obj); if (ret) return ret == -EINVAL ? -ENOENT : -EINVAL; switch (obj->type) { case ACPI_TYPE_LOCAL_REFERENCE: /* Plain single reference without arguments. */ if (index) return -ENOENT; device = acpi_fetch_acpi_dev(obj->reference.handle); if (!device) return -EINVAL; if (!args) return 0; args->fwnode = acpi_fwnode_handle(device); args->nargs = 0; return 0; case ACPI_TYPE_STRING: if (index) return -ENOENT; ref_fwnode = acpi_parse_string_ref(fwnode, obj->string.pointer); if (!ref_fwnode) return -EINVAL; args->fwnode = ref_fwnode; args->nargs = 0; return 0; case ACPI_TYPE_PACKAGE: /* * If it is not a single reference, then it is a package of * references, followed by number of ints as follows: * * Package () { REF, INT, REF, INT, INT } * * Here, REF may be either a local reference or a string. The * index argument is then used to determine which reference the * caller wants (along with the arguments). */ break; default: return -EINVAL; } if (index >= obj->package.count) return -ENOENT; element = obj->package.elements; end = element + obj->package.count; while (element < end) { switch (element->type) { case ACPI_TYPE_LOCAL_REFERENCE: device = acpi_fetch_acpi_dev(element->reference.handle); if (!device) return -EINVAL; element++; ret = acpi_get_ref_args(idx == index ? args : NULL, acpi_fwnode_handle(device), &element, end, num_args); if (ret < 0) return ret; if (idx == index) return 0; break; case ACPI_TYPE_STRING: ref_fwnode = acpi_parse_string_ref(fwnode, element->string.pointer); if (!ref_fwnode) return -EINVAL; element++; ret = acpi_get_ref_args(idx == index ? args : NULL, ref_fwnode, &element, end, num_args); if (ret < 0) return ret; if (idx == index) return 0; break; case ACPI_TYPE_INTEGER: if (idx == index) return -ENOENT; element++; break; default: return -EINVAL; } idx++; } return -ENOENT; } EXPORT_SYMBOL_GPL(__acpi_node_get_property_reference); static int acpi_data_prop_read_single(const struct acpi_device_data *data, const char *propname, enum dev_prop_type proptype, void *val) { const union acpi_object *obj; int ret = 0; if (proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64) ret = acpi_data_get_property(data, propname, ACPI_TYPE_INTEGER, &obj); else if (proptype == DEV_PROP_STRING) ret = acpi_data_get_property(data, propname, ACPI_TYPE_STRING, &obj); if (ret) return ret; switch (proptype) { case DEV_PROP_U8: if (obj->integer.value > U8_MAX) return -EOVERFLOW; if (val) *(u8 *)val = obj->integer.value; break; case DEV_PROP_U16: if (obj->integer.value > U16_MAX) return -EOVERFLOW; if (val) *(u16 *)val = obj->integer.value; break; case DEV_PROP_U32: if (obj->integer.value > U32_MAX) return -EOVERFLOW; if (val) *(u32 *)val = obj->integer.value; break; case DEV_PROP_U64: if (val) *(u64 *)val = obj->integer.value; break; case DEV_PROP_STRING: if (val) *(char **)val = obj->string.pointer; return 1; default: return -EINVAL; } /* When no storage provided return number of available values */ return val ? 0 : 1; } #define acpi_copy_property_array_uint(items, val, nval) \ ({ \ typeof(items) __items = items; \ typeof(val) __val = val; \ typeof(nval) __nval = nval; \ size_t i; \ int ret = 0; \ \ for (i = 0; i < __nval; i++) { \ if (__items->type == ACPI_TYPE_BUFFER) { \ __val[i] = __items->buffer.pointer[i]; \ continue; \ } \ if (__items[i].type != ACPI_TYPE_INTEGER) { \ ret = -EPROTO; \ break; \ } \ if (__items[i].integer.value > _Generic(__val, \ u8 *: U8_MAX, \ u16 *: U16_MAX, \ u32 *: U32_MAX, \ u64 *: U64_MAX)) { \ ret = -EOVERFLOW; \ break; \ } \ \ __val[i] = __items[i].integer.value; \ } \ ret; \ }) static int acpi_copy_property_array_string(const union acpi_object *items, char **val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_STRING) return -EPROTO; val[i] = items[i].string.pointer; } return nval; } static int acpi_data_prop_read(const struct acpi_device_data *data, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { const union acpi_object *obj; const union acpi_object *items; int ret; if (nval == 1 || !val) { ret = acpi_data_prop_read_single(data, propname, proptype, val); /* * The overflow error means that the property is there and it is * single-value, but its type does not match, so return. */ if (ret >= 0 || ret == -EOVERFLOW) return ret; /* * Reading this property as a single-value one failed, but its * value may still be represented as one-element array, so * continue. */ } ret = acpi_data_get_property_array(data, propname, ACPI_TYPE_ANY, &obj); if (ret && proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64) ret = acpi_data_get_property(data, propname, ACPI_TYPE_BUFFER, &obj); if (ret) return ret; if (!val) { if (obj->type == ACPI_TYPE_BUFFER) return obj->buffer.length; return obj->package.count; } switch (proptype) { case DEV_PROP_STRING: break; default: if (obj->type == ACPI_TYPE_BUFFER) { if (nval > obj->buffer.length) return -EOVERFLOW; } else { if (nval > obj->package.count) return -EOVERFLOW; } break; } if (nval == 0) return -EINVAL; if (obj->type == ACPI_TYPE_BUFFER) { if (proptype != DEV_PROP_U8) return -EPROTO; items = obj; } else { items = obj->package.elements; } switch (proptype) { case DEV_PROP_U8: ret = acpi_copy_property_array_uint(items, (u8 *)val, nval); break; case DEV_PROP_U16: ret = acpi_copy_property_array_uint(items, (u16 *)val, nval); break; case DEV_PROP_U32: ret = acpi_copy_property_array_uint(items, (u32 *)val, nval); break; case DEV_PROP_U64: ret = acpi_copy_property_array_uint(items, (u64 *)val, nval); break; case DEV_PROP_STRING: ret = acpi_copy_property_array_string( items, (char **)val, min_t(u32, nval, obj->package.count)); break; default: ret = -EINVAL; break; } return ret; } /** * acpi_node_prop_read - retrieve the value of an ACPI property with given name. * @fwnode: Firmware node to get the property from. * @propname: Name of the property. * @proptype: Expected property type. * @val: Location to store the property value (if not %NULL). * @nval: Size of the array pointed to by @val. * * If @val is %NULL, return the number of array elements comprising the value * of the property. Otherwise, read at most @nval values to the array at the * location pointed to by @val. */ static int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return acpi_data_prop_read(acpi_device_data_of_node(fwnode), propname, proptype, val, nval); } static int stop_on_next(struct acpi_device *adev, void *data) { struct acpi_device **ret_p = data; if (!*ret_p) { *ret_p = adev; return 1; } /* Skip until the "previous" object is found. */ if (*ret_p == adev) *ret_p = NULL; return 0; } /** * acpi_get_next_subnode - Return the next child node handle for a fwnode * @fwnode: Firmware node to find the next child node for. * @child: Handle to one of the device's child nodes or a null handle. */ struct fwnode_handle *acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { struct acpi_device *adev = to_acpi_device_node(fwnode); if ((!child || is_acpi_device_node(child)) && adev) { struct acpi_device *child_adev = to_acpi_device_node(child); acpi_dev_for_each_child(adev, stop_on_next, &child_adev); if (child_adev) return acpi_fwnode_handle(child_adev); child = NULL; } if (!child || is_acpi_data_node(child)) { const struct acpi_data_node *data = to_acpi_data_node(fwnode); const struct list_head *head; struct list_head *next; struct acpi_data_node *dn; /* * We can have a combination of device and data nodes, e.g. with * hierarchical _DSD properties. Make sure the adev pointer is * restored before going through data nodes, otherwise we will * be looking for data_nodes below the last device found instead * of the common fwnode shared by device_nodes and data_nodes. */ adev = to_acpi_device_node(fwnode); if (adev) head = &adev->data.subnodes; else if (data) head = &data->data.subnodes; else return NULL; if (list_empty(head)) return NULL; if (child) { dn = to_acpi_data_node(child); next = dn->sibling.next; if (next == head) return NULL; dn = list_entry(next, struct acpi_data_node, sibling); } else { dn = list_first_entry(head, struct acpi_data_node, sibling); } return &dn->fwnode; } return NULL; } /** * acpi_node_get_parent - Return parent fwnode of this fwnode * @fwnode: Firmware node whose parent to get * * Returns parent node of an ACPI device or data firmware node or %NULL if * not available. */ static struct fwnode_handle * acpi_node_get_parent(const struct fwnode_handle *fwnode) { if (is_acpi_data_node(fwnode)) { /* All data nodes have parent pointer so just return that */ return to_acpi_data_node(fwnode)->parent; } if (is_acpi_device_node(fwnode)) { struct acpi_device *parent; parent = acpi_dev_parent(to_acpi_device_node(fwnode)); if (parent) return acpi_fwnode_handle(parent); } return NULL; } /* * Return true if the node is an ACPI graph node. Called on either ports * or endpoints. */ static bool is_acpi_graph_node(struct fwnode_handle *fwnode, const char *str) { unsigned int len = strlen(str); const char *name; if (!len || !is_acpi_data_node(fwnode)) return false; name = to_acpi_data_node(fwnode)->name; return (fwnode_property_present(fwnode, "reg") && !strncmp(name, str, len) && name[len] == '@') || fwnode_property_present(fwnode, str); } /** * acpi_graph_get_next_endpoint - Get next endpoint ACPI firmware node * @fwnode: Pointer to the parent firmware node * @prev: Previous endpoint node or %NULL to get the first * * Looks up next endpoint ACPI firmware node below a given @fwnode. Returns * %NULL if there is no next endpoint or in case of error. In case of success * the next endpoint is returned. */ static struct fwnode_handle *acpi_graph_get_next_endpoint( const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { struct fwnode_handle *port = NULL; struct fwnode_handle *endpoint; if (!prev) { do { port = fwnode_get_next_child_node(fwnode, port); /* * The names of the port nodes begin with "port@" * followed by the number of the port node and they also * have a "reg" property that also has the number of the * port node. For compatibility reasons a node is also * recognised as a port node from the "port" property. */ if (is_acpi_graph_node(port, "port")) break; } while (port); } else { port = fwnode_get_parent(prev); } if (!port) return NULL; endpoint = fwnode_get_next_child_node(port, prev); while (!endpoint) { port = fwnode_get_next_child_node(fwnode, port); if (!port) break; if (is_acpi_graph_node(port, "port")) endpoint = fwnode_get_next_child_node(port, NULL); } /* * The names of the endpoint nodes begin with "endpoint@" followed by * the number of the endpoint node and they also have a "reg" property * that also has the number of the endpoint node. For compatibility * reasons a node is also recognised as an endpoint node from the * "endpoint" property. */ if (!is_acpi_graph_node(endpoint, "endpoint")) return NULL; return endpoint; } /** * acpi_graph_get_child_prop_value - Return a child with a given property value * @fwnode: device fwnode * @prop_name: The name of the property to look for * @val: the desired property value * * Return the port node corresponding to a given port number. Returns * the child node on success, NULL otherwise. */ static struct fwnode_handle *acpi_graph_get_child_prop_value( const struct fwnode_handle *fwnode, const char *prop_name, unsigned int val) { struct fwnode_handle *child; fwnode_for_each_child_node(fwnode, child) { u32 nr; if (fwnode_property_read_u32(child, prop_name, &nr)) continue; if (val == nr) return child; } return NULL; } /** * acpi_graph_get_remote_endpoint - Parses and returns remote end of an endpoint * @__fwnode: Endpoint firmware node pointing to a remote device * * Returns the remote endpoint corresponding to @__fwnode. NULL on error. */ static struct fwnode_handle * acpi_graph_get_remote_endpoint(const struct fwnode_handle *__fwnode) { struct fwnode_handle *fwnode; unsigned int port_nr, endpoint_nr; struct fwnode_reference_args args; int ret; memset(&args, 0, sizeof(args)); ret = acpi_node_get_property_reference(__fwnode, "remote-endpoint", 0, &args); if (ret) return NULL; /* Direct endpoint reference? */ if (!is_acpi_device_node(args.fwnode)) return args.nargs ? NULL : args.fwnode; /* * Always require two arguments with the reference: port and * endpoint indices. */ if (args.nargs != 2) return NULL; fwnode = args.fwnode; port_nr = args.args[0]; endpoint_nr = args.args[1]; fwnode = acpi_graph_get_child_prop_value(fwnode, "port", port_nr); return acpi_graph_get_child_prop_value(fwnode, "endpoint", endpoint_nr); } static bool acpi_fwnode_device_is_available(const struct fwnode_handle *fwnode) { if (!is_acpi_device_node(fwnode)) return false; return acpi_device_is_present(to_acpi_device_node(fwnode)); } static const void * acpi_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, const struct device *dev) { return acpi_device_get_match_data(dev); } static bool acpi_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) { return acpi_dma_supported(to_acpi_device_node(fwnode)); } static enum dev_dma_attr acpi_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) { return acpi_get_dma_attr(to_acpi_device_node(fwnode)); } static bool acpi_fwnode_property_present(const struct fwnode_handle *fwnode, const char *propname) { return !acpi_node_prop_get(fwnode, propname, NULL); } static int acpi_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, const char *propname, unsigned int elem_size, void *val, size_t nval) { enum dev_prop_type type; switch (elem_size) { case sizeof(u8): type = DEV_PROP_U8; break; case sizeof(u16): type = DEV_PROP_U16; break; case sizeof(u32): type = DEV_PROP_U32; break; case sizeof(u64): type = DEV_PROP_U64; break; default: return -ENXIO; } return acpi_node_prop_read(fwnode, propname, type, val, nval); } static int acpi_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, const char *propname, const char **val, size_t nval) { return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING, val, nval); } static int acpi_fwnode_get_reference_args(const struct fwnode_handle *fwnode, const char *prop, const char *nargs_prop, unsigned int args_count, unsigned int index, struct fwnode_reference_args *args) { return __acpi_node_get_property_reference(fwnode, prop, index, args_count, args); } static const char *acpi_fwnode_get_name(const struct fwnode_handle *fwnode) { const struct acpi_device *adev; struct fwnode_handle *parent; /* Is this the root node? */ parent = fwnode_get_parent(fwnode); if (!parent) return "\\"; fwnode_handle_put(parent); if (is_acpi_data_node(fwnode)) { const struct acpi_data_node *dn = to_acpi_data_node(fwnode); return dn->name; } adev = to_acpi_device_node(fwnode); if (WARN_ON(!adev)) return NULL; return acpi_device_bid(adev); } static const char * acpi_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) { struct fwnode_handle *parent; /* Is this the root node? */ parent = fwnode_get_parent(fwnode); if (!parent) return ""; /* Is this 2nd node from the root? */ parent = fwnode_get_next_parent(parent); if (!parent) return ""; fwnode_handle_put(parent); /* ACPI device or data node. */ return "."; } static struct fwnode_handle * acpi_fwnode_get_parent(struct fwnode_handle *fwnode) { return acpi_node_get_parent(fwnode); } static int acpi_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, struct fwnode_endpoint *endpoint) { struct fwnode_handle *port_fwnode = fwnode_get_parent(fwnode); endpoint->local_fwnode = fwnode; if (fwnode_property_read_u32(port_fwnode, "reg", &endpoint->port)) fwnode_property_read_u32(port_fwnode, "port", &endpoint->port); if (fwnode_property_read_u32(fwnode, "reg", &endpoint->id)) fwnode_property_read_u32(fwnode, "endpoint", &endpoint->id); return 0; } static int acpi_fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) { struct resource res; int ret; ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res); if (ret) return ret; return res.start; } #define DECLARE_ACPI_FWNODE_OPS(ops) \ const struct fwnode_operations ops = { \ .device_is_available = acpi_fwnode_device_is_available, \ .device_get_match_data = acpi_fwnode_device_get_match_data, \ .device_dma_supported = \ acpi_fwnode_device_dma_supported, \ .device_get_dma_attr = acpi_fwnode_device_get_dma_attr, \ .property_present = acpi_fwnode_property_present, \ .property_read_int_array = \ acpi_fwnode_property_read_int_array, \ .property_read_string_array = \ acpi_fwnode_property_read_string_array, \ .get_parent = acpi_node_get_parent, \ .get_next_child_node = acpi_get_next_subnode, \ .get_named_child_node = acpi_fwnode_get_named_child_node, \ .get_name = acpi_fwnode_get_name, \ .get_name_prefix = acpi_fwnode_get_name_prefix, \ .get_reference_args = acpi_fwnode_get_reference_args, \ .graph_get_next_endpoint = \ acpi_graph_get_next_endpoint, \ .graph_get_remote_endpoint = \ acpi_graph_get_remote_endpoint, \ .graph_get_port_parent = acpi_fwnode_get_parent, \ .graph_parse_endpoint = acpi_fwnode_graph_parse_endpoint, \ .irq_get = acpi_fwnode_irq_get, \ }; \ EXPORT_SYMBOL_GPL(ops) DECLARE_ACPI_FWNODE_OPS(acpi_device_fwnode_ops); DECLARE_ACPI_FWNODE_OPS(acpi_data_fwnode_ops); const struct fwnode_operations acpi_static_fwnode_ops; bool is_acpi_device_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_device_fwnode_ops; } EXPORT_SYMBOL(is_acpi_device_node); bool is_acpi_data_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_data_fwnode_ops; } EXPORT_SYMBOL(is_acpi_data_node);
3 3 3 2 2 2 2 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 3 1 1 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 // SPDX-License-Identifier: GPL-2.0-or-later /* * HackRF driver * * Copyright (C) 2014 Antti Palosaari <crope@iki.fi> */ #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <media/v4l2-device.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-event.h> #include <media/videobuf2-v4l2.h> #include <media/videobuf2-vmalloc.h> /* * Used Avago MGA-81563 RF amplifier could be destroyed pretty easily with too * strong signal or transmitting to bad antenna. * Set RF gain control to 'grabbed' state by default for sure. */ static bool hackrf_enable_rf_gain_ctrl; module_param_named(enable_rf_gain_ctrl, hackrf_enable_rf_gain_ctrl, bool, 0644); MODULE_PARM_DESC(enable_rf_gain_ctrl, "enable RX/TX RF amplifier control (warn: could damage amplifier)"); /* HackRF USB API commands (from HackRF Library) */ enum { CMD_SET_TRANSCEIVER_MODE = 0x01, CMD_SAMPLE_RATE_SET = 0x06, CMD_BASEBAND_FILTER_BANDWIDTH_SET = 0x07, CMD_BOARD_ID_READ = 0x0e, CMD_VERSION_STRING_READ = 0x0f, CMD_SET_FREQ = 0x10, CMD_AMP_ENABLE = 0x11, CMD_SET_LNA_GAIN = 0x13, CMD_SET_VGA_GAIN = 0x14, CMD_SET_TXVGA_GAIN = 0x15, }; /* * bEndpointAddress 0x81 EP 1 IN * Transfer Type Bulk * wMaxPacketSize 0x0200 1x 512 bytes */ #define MAX_BULK_BUFS (6) #define BULK_BUFFER_SIZE (128 * 512) static const struct v4l2_frequency_band bands_adc_dac[] = { { .tuner = 0, .type = V4L2_TUNER_SDR, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 200000, .rangehigh = 24000000, }, }; static const struct v4l2_frequency_band bands_rx_tx[] = { { .tuner = 1, .type = V4L2_TUNER_RF, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 1, .rangehigh = 4294967294LL, /* max u32, hw goes over 7GHz */ }, }; /* stream formats */ struct hackrf_format { u32 pixelformat; u32 buffersize; }; /* format descriptions for capture and preview */ static struct hackrf_format formats[] = { { .pixelformat = V4L2_SDR_FMT_CS8, .buffersize = BULK_BUFFER_SIZE, }, }; static const unsigned int NUM_FORMATS = ARRAY_SIZE(formats); /* intermediate buffers with raw data from the USB device */ struct hackrf_buffer { struct vb2_v4l2_buffer vb; struct list_head list; }; struct hackrf_dev { #define USB_STATE_URB_BUF 1 /* XXX: set manually */ #define RX_ON 4 #define TX_ON 5 #define RX_ADC_FREQUENCY 11 #define TX_DAC_FREQUENCY 12 #define RX_BANDWIDTH 13 #define TX_BANDWIDTH 14 #define RX_RF_FREQUENCY 15 #define TX_RF_FREQUENCY 16 #define RX_RF_GAIN 17 #define TX_RF_GAIN 18 #define RX_IF_GAIN 19 #define RX_LNA_GAIN 20 #define TX_LNA_GAIN 21 unsigned long flags; struct usb_interface *intf; struct device *dev; struct usb_device *udev; struct video_device rx_vdev; struct video_device tx_vdev; struct v4l2_device v4l2_dev; /* videobuf2 queue and queued buffers list */ struct vb2_queue rx_vb2_queue; struct vb2_queue tx_vb2_queue; struct list_head rx_buffer_list; struct list_head tx_buffer_list; spinlock_t buffer_list_lock; /* Protects buffer_list */ unsigned int sequence; /* Buffer sequence counter */ unsigned int vb_full; /* vb is full and packets dropped */ unsigned int vb_empty; /* vb is empty and packets dropped */ /* Note if taking both locks v4l2_lock must always be locked first! */ struct mutex v4l2_lock; /* Protects everything else */ struct mutex vb_queue_lock; /* Protects vb_queue */ struct urb *urb_list[MAX_BULK_BUFS]; int buf_num; unsigned long buf_size; u8 *buf_list[MAX_BULK_BUFS]; dma_addr_t dma_addr[MAX_BULK_BUFS]; int urbs_initialized; int urbs_submitted; /* USB control message buffer */ #define BUF_SIZE 24 u8 buf[BUF_SIZE]; /* Current configuration */ unsigned int f_adc; unsigned int f_dac; unsigned int f_rx; unsigned int f_tx; u32 pixelformat; u32 buffersize; /* Controls */ struct v4l2_ctrl_handler rx_ctrl_handler; struct v4l2_ctrl *rx_bandwidth_auto; struct v4l2_ctrl *rx_bandwidth; struct v4l2_ctrl *rx_rf_gain; struct v4l2_ctrl *rx_lna_gain; struct v4l2_ctrl *rx_if_gain; struct v4l2_ctrl_handler tx_ctrl_handler; struct v4l2_ctrl *tx_bandwidth_auto; struct v4l2_ctrl *tx_bandwidth; struct v4l2_ctrl *tx_rf_gain; struct v4l2_ctrl *tx_lna_gain; /* Sample rate calc */ unsigned long jiffies_next; unsigned int sample; unsigned int sample_measured; }; #define hackrf_dbg_usb_control_msg(_dev, _r, _t, _v, _i, _b, _l) { \ char *_direction; \ if (_t & USB_DIR_IN) \ _direction = "<<<"; \ else \ _direction = ">>>"; \ dev_dbg(_dev, "%02x %02x %02x %02x %02x %02x %02x %02x %s %*ph\n", \ _t, _r, _v & 0xff, _v >> 8, _i & 0xff, \ _i >> 8, _l & 0xff, _l >> 8, _direction, _l, _b); \ } /* execute firmware command */ static int hackrf_ctrl_msg(struct hackrf_dev *dev, u8 request, u16 value, u16 index, u8 *data, u16 size) { int ret; unsigned int pipe; u8 requesttype; switch (request) { case CMD_SET_TRANSCEIVER_MODE: case CMD_SET_FREQ: case CMD_AMP_ENABLE: case CMD_SAMPLE_RATE_SET: case CMD_BASEBAND_FILTER_BANDWIDTH_SET: pipe = usb_sndctrlpipe(dev->udev, 0); requesttype = (USB_TYPE_VENDOR | USB_DIR_OUT); break; case CMD_BOARD_ID_READ: case CMD_VERSION_STRING_READ: case CMD_SET_LNA_GAIN: case CMD_SET_VGA_GAIN: case CMD_SET_TXVGA_GAIN: pipe = usb_rcvctrlpipe(dev->udev, 0); requesttype = (USB_TYPE_VENDOR | USB_DIR_IN); break; default: dev_err(dev->dev, "Unknown command %02x\n", request); ret = -EINVAL; goto err; } /* write request */ if (!(requesttype & USB_DIR_IN)) memcpy(dev->buf, data, size); ret = usb_control_msg(dev->udev, pipe, request, requesttype, value, index, dev->buf, size, 1000); hackrf_dbg_usb_control_msg(dev->dev, request, requesttype, value, index, dev->buf, size); if (ret < 0) { dev_err(dev->dev, "usb_control_msg() failed %d request %02x\n", ret, request); goto err; } /* read request */ if (requesttype & USB_DIR_IN) memcpy(data, dev->buf, size); return 0; err: return ret; } static int hackrf_set_params(struct hackrf_dev *dev) { struct usb_interface *intf = dev->intf; int ret, i; u8 buf[8], u8tmp; unsigned int uitmp, uitmp1, uitmp2; const bool rx = test_bit(RX_ON, &dev->flags); const bool tx = test_bit(TX_ON, &dev->flags); static const struct { u32 freq; } bandwidth_lut[] = { { 1750000}, /* 1.75 MHz */ { 2500000}, /* 2.5 MHz */ { 3500000}, /* 3.5 MHz */ { 5000000}, /* 5 MHz */ { 5500000}, /* 5.5 MHz */ { 6000000}, /* 6 MHz */ { 7000000}, /* 7 MHz */ { 8000000}, /* 8 MHz */ { 9000000}, /* 9 MHz */ {10000000}, /* 10 MHz */ {12000000}, /* 12 MHz */ {14000000}, /* 14 MHz */ {15000000}, /* 15 MHz */ {20000000}, /* 20 MHz */ {24000000}, /* 24 MHz */ {28000000}, /* 28 MHz */ }; if (!rx && !tx) { dev_dbg(&intf->dev, "device is sleeping\n"); return 0; } /* ADC / DAC frequency */ if (rx && test_and_clear_bit(RX_ADC_FREQUENCY, &dev->flags)) { dev_dbg(&intf->dev, "RX ADC frequency=%u Hz\n", dev->f_adc); uitmp1 = dev->f_adc; uitmp2 = 1; set_bit(TX_DAC_FREQUENCY, &dev->flags); } else if (tx && test_and_clear_bit(TX_DAC_FREQUENCY, &dev->flags)) { dev_dbg(&intf->dev, "TX DAC frequency=%u Hz\n", dev->f_dac); uitmp1 = dev->f_dac; uitmp2 = 1; set_bit(RX_ADC_FREQUENCY, &dev->flags); } else { uitmp1 = uitmp2 = 0; } if (uitmp1 || uitmp2) { buf[0] = (uitmp1 >> 0) & 0xff; buf[1] = (uitmp1 >> 8) & 0xff; buf[2] = (uitmp1 >> 16) & 0xff; buf[3] = (uitmp1 >> 24) & 0xff; buf[4] = (uitmp2 >> 0) & 0xff; buf[5] = (uitmp2 >> 8) & 0xff; buf[6] = (uitmp2 >> 16) & 0xff; buf[7] = (uitmp2 >> 24) & 0xff; ret = hackrf_ctrl_msg(dev, CMD_SAMPLE_RATE_SET, 0, 0, buf, 8); if (ret) goto err; } /* bandwidth */ if (rx && test_and_clear_bit(RX_BANDWIDTH, &dev->flags)) { if (dev->rx_bandwidth_auto->val == true) uitmp = dev->f_adc; else uitmp = dev->rx_bandwidth->val; for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) { if (uitmp <= bandwidth_lut[i].freq) { uitmp = bandwidth_lut[i].freq; break; } } dev->rx_bandwidth->val = uitmp; dev->rx_bandwidth->cur.val = uitmp; dev_dbg(&intf->dev, "RX bandwidth selected=%u\n", uitmp); set_bit(TX_BANDWIDTH, &dev->flags); } else if (tx && test_and_clear_bit(TX_BANDWIDTH, &dev->flags)) { if (dev->tx_bandwidth_auto->val == true) uitmp = dev->f_dac; else uitmp = dev->tx_bandwidth->val; for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) { if (uitmp <= bandwidth_lut[i].freq) { uitmp = bandwidth_lut[i].freq; break; } } dev->tx_bandwidth->val = uitmp; dev->tx_bandwidth->cur.val = uitmp; dev_dbg(&intf->dev, "TX bandwidth selected=%u\n", uitmp); set_bit(RX_BANDWIDTH, &dev->flags); } else { uitmp = 0; } if (uitmp) { uitmp1 = uitmp2 = 0; uitmp1 |= ((uitmp >> 0) & 0xff) << 0; uitmp1 |= ((uitmp >> 8) & 0xff) << 8; uitmp2 |= ((uitmp >> 16) & 0xff) << 0; uitmp2 |= ((uitmp >> 24) & 0xff) << 8; ret = hackrf_ctrl_msg(dev, CMD_BASEBAND_FILTER_BANDWIDTH_SET, uitmp1, uitmp2, NULL, 0); if (ret) goto err; } /* RX / TX RF frequency */ if (rx && test_and_clear_bit(RX_RF_FREQUENCY, &dev->flags)) { dev_dbg(&intf->dev, "RX RF frequency=%u Hz\n", dev->f_rx); uitmp1 = dev->f_rx / 1000000; uitmp2 = dev->f_rx % 1000000; set_bit(TX_RF_FREQUENCY, &dev->flags); } else if (tx && test_and_clear_bit(TX_RF_FREQUENCY, &dev->flags)) { dev_dbg(&intf->dev, "TX RF frequency=%u Hz\n", dev->f_tx); uitmp1 = dev->f_tx / 1000000; uitmp2 = dev->f_tx % 1000000; set_bit(RX_RF_FREQUENCY, &dev->flags); } else { uitmp1 = uitmp2 = 0; } if (uitmp1 || uitmp2) { buf[0] = (uitmp1 >> 0) & 0xff; buf[1] = (uitmp1 >> 8) & 0xff; buf[2] = (uitmp1 >> 16) & 0xff; buf[3] = (uitmp1 >> 24) & 0xff; buf[4] = (uitmp2 >> 0) & 0xff; buf[5] = (uitmp2 >> 8) & 0xff; buf[6] = (uitmp2 >> 16) & 0xff; buf[7] = (uitmp2 >> 24) & 0xff; ret = hackrf_ctrl_msg(dev, CMD_SET_FREQ, 0, 0, buf, 8); if (ret) goto err; } /* RX RF gain */ if (rx && test_and_clear_bit(RX_RF_GAIN, &dev->flags)) { dev_dbg(&intf->dev, "RX RF gain val=%d->%d\n", dev->rx_rf_gain->cur.val, dev->rx_rf_gain->val); u8tmp = (dev->rx_rf_gain->val) ? 1 : 0; ret = hackrf_ctrl_msg(dev, CMD_AMP_ENABLE, u8tmp, 0, NULL, 0); if (ret) goto err; set_bit(TX_RF_GAIN, &dev->flags); } /* TX RF gain */ if (tx && test_and_clear_bit(TX_RF_GAIN, &dev->flags)) { dev_dbg(&intf->dev, "TX RF gain val=%d->%d\n", dev->tx_rf_gain->cur.val, dev->tx_rf_gain->val); u8tmp = (dev->tx_rf_gain->val) ? 1 : 0; ret = hackrf_ctrl_msg(dev, CMD_AMP_ENABLE, u8tmp, 0, NULL, 0); if (ret) goto err; set_bit(RX_RF_GAIN, &dev->flags); } /* RX LNA gain */ if (rx && test_and_clear_bit(RX_LNA_GAIN, &dev->flags)) { dev_dbg(dev->dev, "RX LNA gain val=%d->%d\n", dev->rx_lna_gain->cur.val, dev->rx_lna_gain->val); ret = hackrf_ctrl_msg(dev, CMD_SET_LNA_GAIN, 0, dev->rx_lna_gain->val, &u8tmp, 1); if (ret) goto err; } /* RX IF gain */ if (rx && test_and_clear_bit(RX_IF_GAIN, &dev->flags)) { dev_dbg(&intf->dev, "IF gain val=%d->%d\n", dev->rx_if_gain->cur.val, dev->rx_if_gain->val); ret = hackrf_ctrl_msg(dev, CMD_SET_VGA_GAIN, 0, dev->rx_if_gain->val, &u8tmp, 1); if (ret) goto err; } /* TX LNA gain */ if (tx && test_and_clear_bit(TX_LNA_GAIN, &dev->flags)) { dev_dbg(&intf->dev, "TX LNA gain val=%d->%d\n", dev->tx_lna_gain->cur.val, dev->tx_lna_gain->val); ret = hackrf_ctrl_msg(dev, CMD_SET_TXVGA_GAIN, 0, dev->tx_lna_gain->val, &u8tmp, 1); if (ret) goto err; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } /* Private functions */ static struct hackrf_buffer *hackrf_get_next_buffer(struct hackrf_dev *dev, struct list_head *buffer_list) { unsigned long flags; struct hackrf_buffer *buffer = NULL; spin_lock_irqsave(&dev->buffer_list_lock, flags); if (list_empty(buffer_list)) goto leave; buffer = list_entry(buffer_list->next, struct hackrf_buffer, list); list_del(&buffer->list); leave: spin_unlock_irqrestore(&dev->buffer_list_lock, flags); return buffer; } static void hackrf_copy_stream(struct hackrf_dev *dev, void *dst, void *src, unsigned int src_len) { memcpy(dst, src, src_len); /* calculate sample rate and output it in 10 seconds intervals */ if (unlikely(time_is_before_jiffies(dev->jiffies_next))) { #define MSECS 10000UL unsigned int msecs = jiffies_to_msecs(jiffies - dev->jiffies_next + msecs_to_jiffies(MSECS)); unsigned int samples = dev->sample - dev->sample_measured; dev->jiffies_next = jiffies + msecs_to_jiffies(MSECS); dev->sample_measured = dev->sample; dev_dbg(dev->dev, "slen=%u samples=%u msecs=%u sample rate=%lu\n", src_len, samples, msecs, samples * 1000UL / msecs); } /* total number of samples */ dev->sample += src_len / 2; } /* * This gets called for the bulk stream pipe. This is done in interrupt * time, so it has to be fast, not crash, and not stall. Neat. */ static void hackrf_urb_complete_in(struct urb *urb) { struct hackrf_dev *dev = urb->context; struct usb_interface *intf = dev->intf; struct hackrf_buffer *buffer; unsigned int len; dev_dbg_ratelimited(&intf->dev, "status=%d length=%u/%u\n", urb->status, urb->actual_length, urb->transfer_buffer_length); switch (urb->status) { case 0: /* success */ case -ETIMEDOUT: /* NAK */ break; case -ECONNRESET: /* kill */ case -ENOENT: case -ESHUTDOWN: return; default: /* error */ dev_err_ratelimited(&intf->dev, "URB failed %d\n", urb->status); goto exit_usb_submit_urb; } /* get buffer to write */ buffer = hackrf_get_next_buffer(dev, &dev->rx_buffer_list); if (unlikely(buffer == NULL)) { dev->vb_full++; dev_notice_ratelimited(&intf->dev, "buffer is full - %u packets dropped\n", dev->vb_full); goto exit_usb_submit_urb; } len = min_t(unsigned long, vb2_plane_size(&buffer->vb.vb2_buf, 0), urb->actual_length); hackrf_copy_stream(dev, vb2_plane_vaddr(&buffer->vb.vb2_buf, 0), urb->transfer_buffer, len); vb2_set_plane_payload(&buffer->vb.vb2_buf, 0, len); buffer->vb.sequence = dev->sequence++; buffer->vb.vb2_buf.timestamp = ktime_get_ns(); vb2_buffer_done(&buffer->vb.vb2_buf, VB2_BUF_STATE_DONE); exit_usb_submit_urb: usb_submit_urb(urb, GFP_ATOMIC); } static void hackrf_urb_complete_out(struct urb *urb) { struct hackrf_dev *dev = urb->context; struct usb_interface *intf = dev->intf; struct hackrf_buffer *buffer; unsigned int len; dev_dbg_ratelimited(&intf->dev, "status=%d length=%u/%u\n", urb->status, urb->actual_length, urb->transfer_buffer_length); switch (urb->status) { case 0: /* success */ case -ETIMEDOUT: /* NAK */ break; case -ECONNRESET: /* kill */ case -ENOENT: case -ESHUTDOWN: return; default: /* error */ dev_err_ratelimited(&intf->dev, "URB failed %d\n", urb->status); } /* get buffer to read */ buffer = hackrf_get_next_buffer(dev, &dev->tx_buffer_list); if (unlikely(buffer == NULL)) { dev->vb_empty++; dev_notice_ratelimited(&intf->dev, "buffer is empty - %u packets dropped\n", dev->vb_empty); urb->actual_length = 0; goto exit_usb_submit_urb; } len = min_t(unsigned long, urb->transfer_buffer_length, vb2_get_plane_payload(&buffer->vb.vb2_buf, 0)); hackrf_copy_stream(dev, urb->transfer_buffer, vb2_plane_vaddr(&buffer->vb.vb2_buf, 0), len); urb->actual_length = len; buffer->vb.sequence = dev->sequence++; buffer->vb.vb2_buf.timestamp = ktime_get_ns(); vb2_buffer_done(&buffer->vb.vb2_buf, VB2_BUF_STATE_DONE); exit_usb_submit_urb: usb_submit_urb(urb, GFP_ATOMIC); } static int hackrf_kill_urbs(struct hackrf_dev *dev) { int i; for (i = dev->urbs_submitted - 1; i >= 0; i--) { dev_dbg(dev->dev, "kill urb=%d\n", i); /* stop the URB */ usb_kill_urb(dev->urb_list[i]); } dev->urbs_submitted = 0; return 0; } static int hackrf_submit_urbs(struct hackrf_dev *dev) { int i, ret; for (i = 0; i < dev->urbs_initialized; i++) { dev_dbg(dev->dev, "submit urb=%d\n", i); ret = usb_submit_urb(dev->urb_list[i], GFP_KERNEL); if (ret) { dev_err(dev->dev, "Could not submit URB no. %d - get them all back\n", i); hackrf_kill_urbs(dev); return ret; } dev->urbs_submitted++; } return 0; } static int hackrf_free_stream_bufs(struct hackrf_dev *dev) { if (dev->flags & USB_STATE_URB_BUF) { while (dev->buf_num) { dev->buf_num--; dev_dbg(dev->dev, "free buf=%d\n", dev->buf_num); usb_free_coherent(dev->udev, dev->buf_size, dev->buf_list[dev->buf_num], dev->dma_addr[dev->buf_num]); } } dev->flags &= ~USB_STATE_URB_BUF; return 0; } static int hackrf_alloc_stream_bufs(struct hackrf_dev *dev) { dev->buf_num = 0; dev->buf_size = BULK_BUFFER_SIZE; dev_dbg(dev->dev, "all in all I will use %u bytes for streaming\n", MAX_BULK_BUFS * BULK_BUFFER_SIZE); for (dev->buf_num = 0; dev->buf_num < MAX_BULK_BUFS; dev->buf_num++) { dev->buf_list[dev->buf_num] = usb_alloc_coherent(dev->udev, BULK_BUFFER_SIZE, GFP_KERNEL, &dev->dma_addr[dev->buf_num]); if (!dev->buf_list[dev->buf_num]) { dev_dbg(dev->dev, "alloc buf=%d failed\n", dev->buf_num); hackrf_free_stream_bufs(dev); return -ENOMEM; } dev_dbg(dev->dev, "alloc buf=%d %p (dma %llu)\n", dev->buf_num, dev->buf_list[dev->buf_num], (long long)dev->dma_addr[dev->buf_num]); dev->flags |= USB_STATE_URB_BUF; } return 0; } static int hackrf_free_urbs(struct hackrf_dev *dev) { int i; hackrf_kill_urbs(dev); for (i = dev->urbs_initialized - 1; i >= 0; i--) { if (dev->urb_list[i]) { dev_dbg(dev->dev, "free urb=%d\n", i); /* free the URBs */ usb_free_urb(dev->urb_list[i]); } } dev->urbs_initialized = 0; return 0; } static int hackrf_alloc_urbs(struct hackrf_dev *dev, bool rcv) { int i, j; unsigned int pipe; usb_complete_t complete; if (rcv) { pipe = usb_rcvbulkpipe(dev->udev, 0x81); complete = &hackrf_urb_complete_in; } else { pipe = usb_sndbulkpipe(dev->udev, 0x02); complete = &hackrf_urb_complete_out; } /* allocate the URBs */ for (i = 0; i < MAX_BULK_BUFS; i++) { dev_dbg(dev->dev, "alloc urb=%d\n", i); dev->urb_list[i] = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb_list[i]) { for (j = 0; j < i; j++) usb_free_urb(dev->urb_list[j]); return -ENOMEM; } usb_fill_bulk_urb(dev->urb_list[i], dev->udev, pipe, dev->buf_list[i], BULK_BUFFER_SIZE, complete, dev); dev->urb_list[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; dev->urb_list[i]->transfer_dma = dev->dma_addr[i]; dev->urbs_initialized++; } return 0; } /* The user yanked out the cable... */ static void hackrf_disconnect(struct usb_interface *intf) { struct v4l2_device *v = usb_get_intfdata(intf); struct hackrf_dev *dev = container_of(v, struct hackrf_dev, v4l2_dev); dev_dbg(dev->dev, "\n"); mutex_lock(&dev->vb_queue_lock); mutex_lock(&dev->v4l2_lock); /* No need to keep the urbs around after disconnection */ dev->udev = NULL; v4l2_device_disconnect(&dev->v4l2_dev); video_unregister_device(&dev->tx_vdev); video_unregister_device(&dev->rx_vdev); mutex_unlock(&dev->v4l2_lock); mutex_unlock(&dev->vb_queue_lock); v4l2_device_put(&dev->v4l2_dev); } /* Videobuf2 operations */ static void hackrf_return_all_buffers(struct vb2_queue *vq, enum vb2_buffer_state state) { struct hackrf_dev *dev = vb2_get_drv_priv(vq); struct usb_interface *intf = dev->intf; struct hackrf_buffer *buffer, *node; struct list_head *buffer_list; unsigned long flags; dev_dbg(&intf->dev, "\n"); if (vq->type == V4L2_BUF_TYPE_SDR_CAPTURE) buffer_list = &dev->rx_buffer_list; else buffer_list = &dev->tx_buffer_list; spin_lock_irqsave(&dev->buffer_list_lock, flags); list_for_each_entry_safe(buffer, node, buffer_list, list) { dev_dbg(&intf->dev, "list_for_each_entry_safe\n"); vb2_buffer_done(&buffer->vb.vb2_buf, state); list_del(&buffer->list); } spin_unlock_irqrestore(&dev->buffer_list_lock, flags); } static int hackrf_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct hackrf_dev *dev = vb2_get_drv_priv(vq); unsigned int q_num_bufs = vb2_get_num_buffers(vq); dev_dbg(dev->dev, "nbuffers=%d\n", *nbuffers); /* Need at least 8 buffers */ if (q_num_bufs + *nbuffers < 8) *nbuffers = 8 - q_num_bufs; *nplanes = 1; sizes[0] = PAGE_ALIGN(dev->buffersize); dev_dbg(dev->dev, "nbuffers=%d sizes[0]=%d\n", *nbuffers, sizes[0]); return 0; } static void hackrf_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vb2_queue *vq = vb->vb2_queue; struct hackrf_dev *dev = vb2_get_drv_priv(vq); struct hackrf_buffer *buffer = container_of(vbuf, struct hackrf_buffer, vb); struct list_head *buffer_list; unsigned long flags; dev_dbg_ratelimited(&dev->intf->dev, "\n"); if (vq->type == V4L2_BUF_TYPE_SDR_CAPTURE) buffer_list = &dev->rx_buffer_list; else buffer_list = &dev->tx_buffer_list; spin_lock_irqsave(&dev->buffer_list_lock, flags); list_add_tail(&buffer->list, buffer_list); spin_unlock_irqrestore(&dev->buffer_list_lock, flags); } static int hackrf_start_streaming(struct vb2_queue *vq, unsigned int count) { struct hackrf_dev *dev = vb2_get_drv_priv(vq); struct usb_interface *intf = dev->intf; int ret; unsigned int mode; dev_dbg(&intf->dev, "count=%i\n", count); mutex_lock(&dev->v4l2_lock); /* Allow only RX or TX, not both same time */ if (vq->type == V4L2_BUF_TYPE_SDR_CAPTURE) { if (test_bit(TX_ON, &dev->flags)) { ret = -EBUSY; goto err_hackrf_return_all_buffers; } mode = 1; set_bit(RX_ON, &dev->flags); } else { if (test_bit(RX_ON, &dev->flags)) { ret = -EBUSY; goto err_hackrf_return_all_buffers; } mode = 2; set_bit(TX_ON, &dev->flags); } dev->sequence = 0; ret = hackrf_alloc_stream_bufs(dev); if (ret) goto err; ret = hackrf_alloc_urbs(dev, (mode == 1)); if (ret) goto err; ret = hackrf_submit_urbs(dev); if (ret) goto err; ret = hackrf_set_params(dev); if (ret) goto err; /* start hardware streaming */ ret = hackrf_ctrl_msg(dev, CMD_SET_TRANSCEIVER_MODE, mode, 0, NULL, 0); if (ret) goto err; mutex_unlock(&dev->v4l2_lock); return 0; err: hackrf_kill_urbs(dev); hackrf_free_urbs(dev); hackrf_free_stream_bufs(dev); clear_bit(RX_ON, &dev->flags); clear_bit(TX_ON, &dev->flags); err_hackrf_return_all_buffers: hackrf_return_all_buffers(vq, VB2_BUF_STATE_QUEUED); mutex_unlock(&dev->v4l2_lock); dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static void hackrf_stop_streaming(struct vb2_queue *vq) { struct hackrf_dev *dev = vb2_get_drv_priv(vq); struct usb_interface *intf = dev->intf; dev_dbg(&intf->dev, "\n"); mutex_lock(&dev->v4l2_lock); /* stop hardware streaming */ hackrf_ctrl_msg(dev, CMD_SET_TRANSCEIVER_MODE, 0, 0, NULL, 0); hackrf_kill_urbs(dev); hackrf_free_urbs(dev); hackrf_free_stream_bufs(dev); hackrf_return_all_buffers(vq, VB2_BUF_STATE_ERROR); if (vq->type == V4L2_BUF_TYPE_SDR_CAPTURE) clear_bit(RX_ON, &dev->flags); else clear_bit(TX_ON, &dev->flags); mutex_unlock(&dev->v4l2_lock); } static const struct vb2_ops hackrf_vb2_ops = { .queue_setup = hackrf_queue_setup, .buf_queue = hackrf_buf_queue, .start_streaming = hackrf_start_streaming, .stop_streaming = hackrf_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int hackrf_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct hackrf_dev *dev = video_drvdata(file); struct usb_interface *intf = dev->intf; dev_dbg(&intf->dev, "\n"); cap->capabilities = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER | V4L2_CAP_SDR_OUTPUT | V4L2_CAP_MODULATOR | V4L2_CAP_STREAMING | V4L2_CAP_READWRITE | V4L2_CAP_DEVICE_CAPS; strscpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver)); strscpy(cap->card, dev->rx_vdev.name, sizeof(cap->card)); usb_make_path(dev->udev, cap->bus_info, sizeof(cap->bus_info)); return 0; } static int hackrf_s_fmt_sdr(struct file *file, void *priv, struct v4l2_format *f) { struct hackrf_dev *dev = video_drvdata(file); struct video_device *vdev = video_devdata(file); struct vb2_queue *q; int i; dev_dbg(dev->dev, "pixelformat fourcc %4.4s\n", (char *)&f->fmt.sdr.pixelformat); if (vdev->vfl_dir == VFL_DIR_RX) q = &dev->rx_vb2_queue; else q = &dev->tx_vb2_queue; if (vb2_is_busy(q)) return -EBUSY; for (i = 0; i < NUM_FORMATS; i++) { if (f->fmt.sdr.pixelformat == formats[i].pixelformat) { dev->pixelformat = formats[i].pixelformat; dev->buffersize = formats[i].buffersize; f->fmt.sdr.buffersize = formats[i].buffersize; return 0; } } dev->pixelformat = formats[0].pixelformat; dev->buffersize = formats[0].buffersize; f->fmt.sdr.pixelformat = formats[0].pixelformat; f->fmt.sdr.buffersize = formats[0].buffersize; return 0; } static int hackrf_g_fmt_sdr(struct file *file, void *priv, struct v4l2_format *f) { struct hackrf_dev *dev = video_drvdata(file); dev_dbg(dev->dev, "pixelformat fourcc %4.4s\n", (char *)&dev->pixelformat); f->fmt.sdr.pixelformat = dev->pixelformat; f->fmt.sdr.buffersize = dev->buffersize; return 0; } static int hackrf_try_fmt_sdr(struct file *file, void *priv, struct v4l2_format *f) { struct hackrf_dev *dev = video_drvdata(file); int i; dev_dbg(dev->dev, "pixelformat fourcc %4.4s\n", (char *)&f->fmt.sdr.pixelformat); for (i = 0; i < NUM_FORMATS; i++) { if (formats[i].pixelformat == f->fmt.sdr.pixelformat) { f->fmt.sdr.buffersize = formats[i].buffersize; return 0; } } f->fmt.sdr.pixelformat = formats[0].pixelformat; f->fmt.sdr.buffersize = formats[0].buffersize; return 0; } static int hackrf_enum_fmt_sdr(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct hackrf_dev *dev = video_drvdata(file); dev_dbg(dev->dev, "index=%d\n", f->index); if (f->index >= NUM_FORMATS) return -EINVAL; f->pixelformat = formats[f->index].pixelformat; return 0; } static int hackrf_s_tuner(struct file *file, void *priv, const struct v4l2_tuner *v) { struct hackrf_dev *dev = video_drvdata(file); int ret; dev_dbg(dev->dev, "index=%d\n", v->index); if (v->index == 0) ret = 0; else if (v->index == 1) ret = 0; else ret = -EINVAL; return ret; } static int hackrf_g_tuner(struct file *file, void *priv, struct v4l2_tuner *v) { struct hackrf_dev *dev = video_drvdata(file); int ret; dev_dbg(dev->dev, "index=%d\n", v->index); if (v->index == 0) { strscpy(v->name, "HackRF ADC", sizeof(v->name)); v->type = V4L2_TUNER_SDR; v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; v->rangelow = bands_adc_dac[0].rangelow; v->rangehigh = bands_adc_dac[0].rangehigh; ret = 0; } else if (v->index == 1) { strscpy(v->name, "HackRF RF", sizeof(v->name)); v->type = V4L2_TUNER_RF; v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; v->rangelow = bands_rx_tx[0].rangelow; v->rangehigh = bands_rx_tx[0].rangehigh; ret = 0; } else { ret = -EINVAL; } return ret; } static int hackrf_s_modulator(struct file *file, void *fh, const struct v4l2_modulator *a) { struct hackrf_dev *dev = video_drvdata(file); dev_dbg(dev->dev, "index=%d\n", a->index); return a->index > 1 ? -EINVAL : 0; } static int hackrf_g_modulator(struct file *file, void *fh, struct v4l2_modulator *a) { struct hackrf_dev *dev = video_drvdata(file); int ret; dev_dbg(dev->dev, "index=%d\n", a->index); if (a->index == 0) { strscpy(a->name, "HackRF DAC", sizeof(a->name)); a->type = V4L2_TUNER_SDR; a->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; a->rangelow = bands_adc_dac[0].rangelow; a->rangehigh = bands_adc_dac[0].rangehigh; ret = 0; } else if (a->index == 1) { strscpy(a->name, "HackRF RF", sizeof(a->name)); a->type = V4L2_TUNER_RF; a->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; a->rangelow = bands_rx_tx[0].rangelow; a->rangehigh = bands_rx_tx[0].rangehigh; ret = 0; } else { ret = -EINVAL; } return ret; } static int hackrf_s_frequency(struct file *file, void *priv, const struct v4l2_frequency *f) { struct hackrf_dev *dev = video_drvdata(file); struct usb_interface *intf = dev->intf; struct video_device *vdev = video_devdata(file); int ret; unsigned int uitmp; dev_dbg(&intf->dev, "tuner=%d type=%d frequency=%u\n", f->tuner, f->type, f->frequency); if (f->tuner == 0) { uitmp = clamp(f->frequency, bands_adc_dac[0].rangelow, bands_adc_dac[0].rangehigh); if (vdev->vfl_dir == VFL_DIR_RX) { dev->f_adc = uitmp; set_bit(RX_ADC_FREQUENCY, &dev->flags); } else { dev->f_dac = uitmp; set_bit(TX_DAC_FREQUENCY, &dev->flags); } } else if (f->tuner == 1) { uitmp = clamp(f->frequency, bands_rx_tx[0].rangelow, bands_rx_tx[0].rangehigh); if (vdev->vfl_dir == VFL_DIR_RX) { dev->f_rx = uitmp; set_bit(RX_RF_FREQUENCY, &dev->flags); } else { dev->f_tx = uitmp; set_bit(TX_RF_FREQUENCY, &dev->flags); } } else { ret = -EINVAL; goto err; } ret = hackrf_set_params(dev); if (ret) goto err; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int hackrf_g_frequency(struct file *file, void *priv, struct v4l2_frequency *f) { struct hackrf_dev *dev = video_drvdata(file); struct usb_interface *intf = dev->intf; struct video_device *vdev = video_devdata(file); int ret; dev_dbg(dev->dev, "tuner=%d type=%d\n", f->tuner, f->type); if (f->tuner == 0) { f->type = V4L2_TUNER_SDR; if (vdev->vfl_dir == VFL_DIR_RX) f->frequency = dev->f_adc; else f->frequency = dev->f_dac; } else if (f->tuner == 1) { f->type = V4L2_TUNER_RF; if (vdev->vfl_dir == VFL_DIR_RX) f->frequency = dev->f_rx; else f->frequency = dev->f_tx; } else { ret = -EINVAL; goto err; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int hackrf_enum_freq_bands(struct file *file, void *priv, struct v4l2_frequency_band *band) { struct hackrf_dev *dev = video_drvdata(file); int ret; dev_dbg(dev->dev, "tuner=%d type=%d index=%d\n", band->tuner, band->type, band->index); if (band->tuner == 0) { if (band->index >= ARRAY_SIZE(bands_adc_dac)) { ret = -EINVAL; } else { *band = bands_adc_dac[band->index]; ret = 0; } } else if (band->tuner == 1) { if (band->index >= ARRAY_SIZE(bands_rx_tx)) { ret = -EINVAL; } else { *band = bands_rx_tx[band->index]; ret = 0; } } else { ret = -EINVAL; } return ret; } static const struct v4l2_ioctl_ops hackrf_ioctl_ops = { .vidioc_querycap = hackrf_querycap, .vidioc_s_fmt_sdr_cap = hackrf_s_fmt_sdr, .vidioc_g_fmt_sdr_cap = hackrf_g_fmt_sdr, .vidioc_enum_fmt_sdr_cap = hackrf_enum_fmt_sdr, .vidioc_try_fmt_sdr_cap = hackrf_try_fmt_sdr, .vidioc_s_fmt_sdr_out = hackrf_s_fmt_sdr, .vidioc_g_fmt_sdr_out = hackrf_g_fmt_sdr, .vidioc_enum_fmt_sdr_out = hackrf_enum_fmt_sdr, .vidioc_try_fmt_sdr_out = hackrf_try_fmt_sdr, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_s_tuner = hackrf_s_tuner, .vidioc_g_tuner = hackrf_g_tuner, .vidioc_s_modulator = hackrf_s_modulator, .vidioc_g_modulator = hackrf_g_modulator, .vidioc_s_frequency = hackrf_s_frequency, .vidioc_g_frequency = hackrf_g_frequency, .vidioc_enum_freq_bands = hackrf_enum_freq_bands, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, .vidioc_log_status = v4l2_ctrl_log_status, }; static const struct v4l2_file_operations hackrf_fops = { .owner = THIS_MODULE, .open = v4l2_fh_open, .release = vb2_fop_release, .read = vb2_fop_read, .write = vb2_fop_write, .poll = vb2_fop_poll, .mmap = vb2_fop_mmap, .unlocked_ioctl = video_ioctl2, }; static const struct video_device hackrf_template = { .name = "HackRF One", .release = video_device_release_empty, .fops = &hackrf_fops, .ioctl_ops = &hackrf_ioctl_ops, }; static void hackrf_video_release(struct v4l2_device *v) { struct hackrf_dev *dev = container_of(v, struct hackrf_dev, v4l2_dev); dev_dbg(dev->dev, "\n"); v4l2_ctrl_handler_free(&dev->rx_ctrl_handler); v4l2_ctrl_handler_free(&dev->tx_ctrl_handler); v4l2_device_unregister(&dev->v4l2_dev); kfree(dev); } static int hackrf_s_ctrl_rx(struct v4l2_ctrl *ctrl) { struct hackrf_dev *dev = container_of(ctrl->handler, struct hackrf_dev, rx_ctrl_handler); struct usb_interface *intf = dev->intf; int ret; switch (ctrl->id) { case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: case V4L2_CID_RF_TUNER_BANDWIDTH: set_bit(RX_BANDWIDTH, &dev->flags); break; case V4L2_CID_RF_TUNER_RF_GAIN: set_bit(RX_RF_GAIN, &dev->flags); break; case V4L2_CID_RF_TUNER_LNA_GAIN: set_bit(RX_LNA_GAIN, &dev->flags); break; case V4L2_CID_RF_TUNER_IF_GAIN: set_bit(RX_IF_GAIN, &dev->flags); break; default: dev_dbg(&intf->dev, "unknown ctrl: id=%d name=%s\n", ctrl->id, ctrl->name); ret = -EINVAL; goto err; } ret = hackrf_set_params(dev); if (ret) goto err; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int hackrf_s_ctrl_tx(struct v4l2_ctrl *ctrl) { struct hackrf_dev *dev = container_of(ctrl->handler, struct hackrf_dev, tx_ctrl_handler); struct usb_interface *intf = dev->intf; int ret; switch (ctrl->id) { case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: case V4L2_CID_RF_TUNER_BANDWIDTH: set_bit(TX_BANDWIDTH, &dev->flags); break; case V4L2_CID_RF_TUNER_LNA_GAIN: set_bit(TX_LNA_GAIN, &dev->flags); break; case V4L2_CID_RF_TUNER_RF_GAIN: set_bit(TX_RF_GAIN, &dev->flags); break; default: dev_dbg(&intf->dev, "unknown ctrl: id=%d name=%s\n", ctrl->id, ctrl->name); ret = -EINVAL; goto err; } ret = hackrf_set_params(dev); if (ret) goto err; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static const struct v4l2_ctrl_ops hackrf_ctrl_ops_rx = { .s_ctrl = hackrf_s_ctrl_rx, }; static const struct v4l2_ctrl_ops hackrf_ctrl_ops_tx = { .s_ctrl = hackrf_s_ctrl_tx, }; static int hackrf_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct hackrf_dev *dev; int ret; u8 u8tmp, buf[BUF_SIZE]; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } mutex_init(&dev->v4l2_lock); mutex_init(&dev->vb_queue_lock); spin_lock_init(&dev->buffer_list_lock); INIT_LIST_HEAD(&dev->rx_buffer_list); INIT_LIST_HEAD(&dev->tx_buffer_list); dev->intf = intf; dev->dev = &intf->dev; dev->udev = interface_to_usbdev(intf); dev->pixelformat = formats[0].pixelformat; dev->buffersize = formats[0].buffersize; dev->f_adc = bands_adc_dac[0].rangelow; dev->f_dac = bands_adc_dac[0].rangelow; dev->f_rx = bands_rx_tx[0].rangelow; dev->f_tx = bands_rx_tx[0].rangelow; set_bit(RX_ADC_FREQUENCY, &dev->flags); set_bit(TX_DAC_FREQUENCY, &dev->flags); set_bit(RX_RF_FREQUENCY, &dev->flags); set_bit(TX_RF_FREQUENCY, &dev->flags); /* Detect device */ ret = hackrf_ctrl_msg(dev, CMD_BOARD_ID_READ, 0, 0, &u8tmp, 1); if (ret == 0) ret = hackrf_ctrl_msg(dev, CMD_VERSION_STRING_READ, 0, 0, buf, BUF_SIZE); if (ret) { dev_err(dev->dev, "Could not detect board\n"); goto err_kfree; } buf[BUF_SIZE - 1] = '\0'; dev_info(dev->dev, "Board ID: %02x\n", u8tmp); dev_info(dev->dev, "Firmware version: %s\n", buf); /* Init vb2 queue structure for receiver */ dev->rx_vb2_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE; dev->rx_vb2_queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ; dev->rx_vb2_queue.ops = &hackrf_vb2_ops; dev->rx_vb2_queue.mem_ops = &vb2_vmalloc_memops; dev->rx_vb2_queue.drv_priv = dev; dev->rx_vb2_queue.buf_struct_size = sizeof(struct hackrf_buffer); dev->rx_vb2_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; ret = vb2_queue_init(&dev->rx_vb2_queue); if (ret) { dev_err(dev->dev, "Could not initialize rx vb2 queue\n"); goto err_kfree; } /* Init vb2 queue structure for transmitter */ dev->tx_vb2_queue.type = V4L2_BUF_TYPE_SDR_OUTPUT; dev->tx_vb2_queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_WRITE; dev->tx_vb2_queue.ops = &hackrf_vb2_ops; dev->tx_vb2_queue.mem_ops = &vb2_vmalloc_memops; dev->tx_vb2_queue.drv_priv = dev; dev->tx_vb2_queue.buf_struct_size = sizeof(struct hackrf_buffer); dev->tx_vb2_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; ret = vb2_queue_init(&dev->tx_vb2_queue); if (ret) { dev_err(dev->dev, "Could not initialize tx vb2 queue\n"); goto err_kfree; } /* Register controls for receiver */ v4l2_ctrl_handler_init(&dev->rx_ctrl_handler, 5); dev->rx_bandwidth_auto = v4l2_ctrl_new_std(&dev->rx_ctrl_handler, &hackrf_ctrl_ops_rx, V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 0, 1); dev->rx_bandwidth = v4l2_ctrl_new_std(&dev->rx_ctrl_handler, &hackrf_ctrl_ops_rx, V4L2_CID_RF_TUNER_BANDWIDTH, 1750000, 28000000, 50000, 1750000); v4l2_ctrl_auto_cluster(2, &dev->rx_bandwidth_auto, 0, false); dev->rx_rf_gain = v4l2_ctrl_new_std(&dev->rx_ctrl_handler, &hackrf_ctrl_ops_rx, V4L2_CID_RF_TUNER_RF_GAIN, 0, 12, 12, 0); dev->rx_lna_gain = v4l2_ctrl_new_std(&dev->rx_ctrl_handler, &hackrf_ctrl_ops_rx, V4L2_CID_RF_TUNER_LNA_GAIN, 0, 40, 8, 0); dev->rx_if_gain = v4l2_ctrl_new_std(&dev->rx_ctrl_handler, &hackrf_ctrl_ops_rx, V4L2_CID_RF_TUNER_IF_GAIN, 0, 62, 2, 0); if (dev->rx_ctrl_handler.error) { ret = dev->rx_ctrl_handler.error; dev_err(dev->dev, "Could not initialize controls\n"); goto err_v4l2_ctrl_handler_free_rx; } v4l2_ctrl_grab(dev->rx_rf_gain, !hackrf_enable_rf_gain_ctrl); v4l2_ctrl_handler_setup(&dev->rx_ctrl_handler); /* Register controls for transmitter */ v4l2_ctrl_handler_init(&dev->tx_ctrl_handler, 4); dev->tx_bandwidth_auto = v4l2_ctrl_new_std(&dev->tx_ctrl_handler, &hackrf_ctrl_ops_tx, V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 0, 1); dev->tx_bandwidth = v4l2_ctrl_new_std(&dev->tx_ctrl_handler, &hackrf_ctrl_ops_tx, V4L2_CID_RF_TUNER_BANDWIDTH, 1750000, 28000000, 50000, 1750000); v4l2_ctrl_auto_cluster(2, &dev->tx_bandwidth_auto, 0, false); dev->tx_lna_gain = v4l2_ctrl_new_std(&dev->tx_ctrl_handler, &hackrf_ctrl_ops_tx, V4L2_CID_RF_TUNER_LNA_GAIN, 0, 47, 1, 0); dev->tx_rf_gain = v4l2_ctrl_new_std(&dev->tx_ctrl_handler, &hackrf_ctrl_ops_tx, V4L2_CID_RF_TUNER_RF_GAIN, 0, 15, 15, 0); if (dev->tx_ctrl_handler.error) { ret = dev->tx_ctrl_handler.error; dev_err(dev->dev, "Could not initialize controls\n"); goto err_v4l2_ctrl_handler_free_tx; } v4l2_ctrl_grab(dev->tx_rf_gain, !hackrf_enable_rf_gain_ctrl); v4l2_ctrl_handler_setup(&dev->tx_ctrl_handler); /* Register the v4l2_device structure */ dev->v4l2_dev.release = hackrf_video_release; ret = v4l2_device_register(&intf->dev, &dev->v4l2_dev); if (ret) { dev_err(dev->dev, "Failed to register v4l2-device (%d)\n", ret); goto err_v4l2_ctrl_handler_free_tx; } /* Init video_device structure for receiver */ dev->rx_vdev = hackrf_template; dev->rx_vdev.queue = &dev->rx_vb2_queue; dev->rx_vdev.queue->lock = &dev->vb_queue_lock; dev->rx_vdev.v4l2_dev = &dev->v4l2_dev; dev->rx_vdev.ctrl_handler = &dev->rx_ctrl_handler; dev->rx_vdev.lock = &dev->v4l2_lock; dev->rx_vdev.vfl_dir = VFL_DIR_RX; dev->rx_vdev.device_caps = V4L2_CAP_STREAMING | V4L2_CAP_READWRITE | V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER; video_set_drvdata(&dev->rx_vdev, dev); ret = video_register_device(&dev->rx_vdev, VFL_TYPE_SDR, -1); if (ret) { dev_err(dev->dev, "Failed to register as video device (%d)\n", ret); goto err_v4l2_device_unregister; } dev_info(dev->dev, "Registered as %s\n", video_device_node_name(&dev->rx_vdev)); /* Init video_device structure for transmitter */ dev->tx_vdev = hackrf_template; dev->tx_vdev.queue = &dev->tx_vb2_queue; dev->tx_vdev.queue->lock = &dev->vb_queue_lock; dev->tx_vdev.v4l2_dev = &dev->v4l2_dev; dev->tx_vdev.ctrl_handler = &dev->tx_ctrl_handler; dev->tx_vdev.lock = &dev->v4l2_lock; dev->tx_vdev.vfl_dir = VFL_DIR_TX; dev->tx_vdev.device_caps = V4L2_CAP_STREAMING | V4L2_CAP_READWRITE | V4L2_CAP_SDR_OUTPUT | V4L2_CAP_MODULATOR; video_set_drvdata(&dev->tx_vdev, dev); ret = video_register_device(&dev->tx_vdev, VFL_TYPE_SDR, -1); if (ret) { dev_err(dev->dev, "Failed to register as video device (%d)\n", ret); goto err_video_unregister_device_rx; } dev_info(dev->dev, "Registered as %s\n", video_device_node_name(&dev->tx_vdev)); dev_notice(dev->dev, "SDR API is still slightly experimental and functionality changes may follow\n"); return 0; err_video_unregister_device_rx: video_unregister_device(&dev->rx_vdev); err_v4l2_device_unregister: v4l2_device_unregister(&dev->v4l2_dev); err_v4l2_ctrl_handler_free_tx: v4l2_ctrl_handler_free(&dev->tx_ctrl_handler); err_v4l2_ctrl_handler_free_rx: v4l2_ctrl_handler_free(&dev->rx_ctrl_handler); err_kfree: kfree(dev); err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } /* USB device ID list */ static const struct usb_device_id hackrf_id_table[] = { { USB_DEVICE(0x1d50, 0x6089) }, /* HackRF One */ { } }; MODULE_DEVICE_TABLE(usb, hackrf_id_table); /* USB subsystem interface */ static struct usb_driver hackrf_driver = { .name = KBUILD_MODNAME, .probe = hackrf_probe, .disconnect = hackrf_disconnect, .id_table = hackrf_id_table, }; module_usb_driver(hackrf_driver); MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); MODULE_DESCRIPTION("HackRF"); MODULE_LICENSE("GPL");
1 3 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 // SPDX-License-Identifier: GPL-2.0-only /* DVB USB compliant linux driver for MSI Mega Sky 580 DVB-T USB2.0 receiver * * Copyright (C) 2006 Aapo Tahkola (aet@rasterburn.org) * * see Documentation/driver-api/media/drivers/dvb-usb.rst for more information */ #include "m920x.h" #include "mt352.h" #include "mt352_priv.h" #include "qt1010.h" #include "tda1004x.h" #include "tda827x.h" #include "mt2060.h" #include <media/tuner.h> #include "tuner-simple.h" #include <asm/unaligned.h> /* debug */ static int dvb_usb_m920x_debug; module_param_named(debug,dvb_usb_m920x_debug, int, 0644); MODULE_PARM_DESC(debug, "set debugging level (1=rc (or-able))." DVB_USB_DEBUG_STATUS); DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static int m920x_set_filter(struct dvb_usb_device *d, int type, int idx, int pid); static inline int m920x_read(struct usb_device *udev, u8 request, u16 value, u16 index, void *data, int size) { int ret; ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), request, USB_TYPE_VENDOR | USB_DIR_IN, value, index, data, size, 2000); if (ret < 0) { printk(KERN_INFO "m920x_read = error: %d\n", ret); return ret; } if (ret != size) { deb("m920x_read = no data\n"); return -EIO; } return 0; } static inline int m920x_write(struct usb_device *udev, u8 request, u16 value, u16 index) { return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), request, USB_TYPE_VENDOR | USB_DIR_OUT, value, index, NULL, 0, 2000); } static inline int m920x_write_seq(struct usb_device *udev, u8 request, struct m920x_inits *seq) { int ret; do { ret = m920x_write(udev, request, seq->data, seq->address); if (ret != 0) return ret; seq++; } while (seq->address); return 0; } static int m920x_init(struct dvb_usb_device *d, struct m920x_inits *rc_seq) { int ret, i, epi, flags = 0; int adap_enabled[M9206_MAX_ADAPTERS] = { 0 }; /* Remote controller init. */ if (d->props.rc.legacy.rc_query || d->props.rc.core.rc_query) { deb("Initialising remote control\n"); ret = m920x_write_seq(d->udev, M9206_CORE, rc_seq); if (ret != 0) { deb("Initialising remote control failed\n"); return ret; } deb("Initialising remote control success\n"); } for (i = 0; i < d->props.num_adapters; i++) flags |= d->adapter[i].props.fe[0].caps; /* Some devices(Dposh) might crash if we attempt touch at all. */ if (flags & DVB_USB_ADAP_HAS_PID_FILTER) { for (i = 0; i < d->props.num_adapters; i++) { epi = d->adapter[i].props.fe[0].stream.endpoint - 0x81; if (epi < 0 || epi >= M9206_MAX_ADAPTERS) { printk(KERN_INFO "m920x: Unexpected adapter endpoint!\n"); return -EINVAL; } adap_enabled[epi] = 1; } for (i = 0; i < M9206_MAX_ADAPTERS; i++) { if (adap_enabled[i]) continue; if ((ret = m920x_set_filter(d, 0x81 + i, 0, 0x0)) != 0) return ret; if ((ret = m920x_set_filter(d, 0x81 + i, 0, 0x02f5)) != 0) return ret; } } return 0; } static int m920x_init_ep(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_host_interface *alt; if ((alt = usb_altnum_to_altsetting(intf, 1)) == NULL) { deb("No alt found!\n"); return -ENODEV; } return usb_set_interface(udev, alt->desc.bInterfaceNumber, alt->desc.bAlternateSetting); } static inline void m920x_parse_rc_state(struct dvb_usb_device *d, u8 rc_state, int *state) { struct m920x_state *m = d->priv; switch (rc_state) { case 0x80: *state = REMOTE_NO_KEY_PRESSED; break; case 0x88: /* framing error or "invalid code" */ case 0x99: case 0xc0: case 0xd8: *state = REMOTE_NO_KEY_PRESSED; m->rep_count = 0; break; case 0x93: case 0x92: case 0x83: /* pinnacle PCTV310e */ case 0x82: m->rep_count = 0; *state = REMOTE_KEY_PRESSED; break; case 0x91: case 0x81: /* pinnacle PCTV310e */ /* prevent immediate auto-repeat */ if (++m->rep_count > 2) *state = REMOTE_KEY_REPEAT; else *state = REMOTE_NO_KEY_PRESSED; break; default: deb("Unexpected rc state %02x\n", rc_state); *state = REMOTE_NO_KEY_PRESSED; break; } } static int m920x_rc_query(struct dvb_usb_device *d, u32 *event, int *state) { int i, ret = 0; u8 *rc_state; rc_state = kmalloc(2, GFP_KERNEL); if (!rc_state) return -ENOMEM; ret = m920x_read(d->udev, M9206_CORE, 0x0, M9206_RC_STATE, rc_state, 1); if (ret != 0) goto out; ret = m920x_read(d->udev, M9206_CORE, 0x0, M9206_RC_KEY, rc_state + 1, 1); if (ret != 0) goto out; m920x_parse_rc_state(d, rc_state[0], state); for (i = 0; i < d->props.rc.legacy.rc_map_size; i++) if (rc5_data(&d->props.rc.legacy.rc_map_table[i]) == rc_state[1]) { *event = d->props.rc.legacy.rc_map_table[i].keycode; goto out; } if (rc_state[1] != 0) deb("Unknown rc key %02x\n", rc_state[1]); *state = REMOTE_NO_KEY_PRESSED; out: kfree(rc_state); return ret; } static int m920x_rc_core_query(struct dvb_usb_device *d) { int ret = 0; u8 *rc_state; int state; rc_state = kmalloc(2, GFP_KERNEL); if (!rc_state) return -ENOMEM; if ((ret = m920x_read(d->udev, M9206_CORE, 0x0, M9206_RC_STATE, &rc_state[0], 1)) != 0) goto out; if ((ret = m920x_read(d->udev, M9206_CORE, 0x0, M9206_RC_KEY, &rc_state[1], 1)) != 0) goto out; deb("state=0x%02x keycode=0x%02x\n", rc_state[0], rc_state[1]); m920x_parse_rc_state(d, rc_state[0], &state); if (state == REMOTE_NO_KEY_PRESSED) rc_keyup(d->rc_dev); else if (state == REMOTE_KEY_REPEAT) rc_repeat(d->rc_dev); else rc_keydown(d->rc_dev, RC_PROTO_UNKNOWN, rc_state[1], 0); out: kfree(rc_state); return ret; } /* I2C */ static int m920x_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); int i, j; int ret = 0; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; for (i = 0; i < num; i++) { if (msg[i].flags & (I2C_M_NO_RD_ACK | I2C_M_IGNORE_NAK | I2C_M_TEN) || msg[i].len == 0) { /* For a 0 byte message, I think sending the address * to index 0x80|0x40 would be the correct thing to * do. However, zero byte messages are only used for * probing, and since we don't know how to get the * slave's ack, we can't probe. */ ret = -ENOTSUPP; goto unlock; } /* Send START & address/RW bit */ if (!(msg[i].flags & I2C_M_NOSTART)) { if ((ret = m920x_write(d->udev, M9206_I2C, (msg[i].addr << 1) | (msg[i].flags & I2C_M_RD ? 0x01 : 0), 0x80)) != 0) goto unlock; /* Should check for ack here, if we knew how. */ } if (msg[i].flags & I2C_M_RD) { char *read = kmalloc(1, GFP_KERNEL); if (!read) { ret = -ENOMEM; goto unlock; } for (j = 0; j < msg[i].len; j++) { /* Last byte of transaction? * Send STOP, otherwise send ACK. */ int stop = (i+1 == num && j+1 == msg[i].len) ? 0x40 : 0x01; if ((ret = m920x_read(d->udev, M9206_I2C, 0x0, 0x20 | stop, read, 1)) != 0) { kfree(read); goto unlock; } msg[i].buf[j] = read[0]; } kfree(read); } else { for (j = 0; j < msg[i].len; j++) { /* Last byte of transaction? Then send STOP. */ int stop = (i+1 == num && j+1 == msg[i].len) ? 0x40 : 0x00; if ((ret = m920x_write(d->udev, M9206_I2C, msg[i].buf[j], stop)) != 0) goto unlock; /* Should check for ack here too. */ } } } ret = num; unlock: mutex_unlock(&d->i2c_mutex); return ret; } static u32 m920x_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm m920x_i2c_algo = { .master_xfer = m920x_i2c_xfer, .functionality = m920x_i2c_func, }; /* pid filter */ static int m920x_set_filter(struct dvb_usb_device *d, int type, int idx, int pid) { int ret = 0; if (pid >= 0x8000) return -EINVAL; pid |= 0x8000; if ((ret = m920x_write(d->udev, M9206_FILTER, pid, (type << 8) | (idx * 4) )) != 0) return ret; if ((ret = m920x_write(d->udev, M9206_FILTER, 0, (type << 8) | (idx * 4) )) != 0) return ret; return ret; } static int m920x_update_filters(struct dvb_usb_adapter *adap) { struct m920x_state *m = adap->dev->priv; int enabled = m->filtering_enabled[adap->id]; int i, ret = 0, filter = 0; int ep = adap->props.fe[0].stream.endpoint; for (i = 0; i < M9206_MAX_FILTERS; i++) if (m->filters[adap->id][i] == 8192) enabled = 0; /* Disable all filters */ if ((ret = m920x_set_filter(adap->dev, ep, 1, enabled)) != 0) return ret; for (i = 0; i < M9206_MAX_FILTERS; i++) if ((ret = m920x_set_filter(adap->dev, ep, i + 2, 0)) != 0) return ret; /* Set */ if (enabled) { for (i = 0; i < M9206_MAX_FILTERS; i++) { if (m->filters[adap->id][i] == 0) continue; if ((ret = m920x_set_filter(adap->dev, ep, filter + 2, m->filters[adap->id][i])) != 0) return ret; filter++; } } return ret; } static int m920x_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff) { struct m920x_state *m = adap->dev->priv; m->filtering_enabled[adap->id] = onoff ? 1 : 0; return m920x_update_filters(adap); } static int m920x_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid, int onoff) { struct m920x_state *m = adap->dev->priv; m->filters[adap->id][index] = onoff ? pid : 0; return m920x_update_filters(adap); } static int m920x_firmware_download(struct usb_device *udev, const struct firmware *fw) { u16 value, index, size; u8 *read, *buff; int i, pass, ret = 0; buff = kmalloc(65536, GFP_KERNEL); if (buff == NULL) return -ENOMEM; read = kmalloc(4, GFP_KERNEL); if (!read) { kfree(buff); return -ENOMEM; } if ((ret = m920x_read(udev, M9206_FILTER, 0x0, 0x8000, read, 4)) != 0) goto done; deb("%*ph\n", 4, read); if ((ret = m920x_read(udev, M9206_FW, 0x0, 0x0, read, 1)) != 0) goto done; deb("%x\n", read[0]); for (pass = 0; pass < 2; pass++) { for (i = 0; i + (sizeof(u16) * 3) < fw->size;) { value = get_unaligned_le16(fw->data + i); i += sizeof(u16); index = get_unaligned_le16(fw->data + i); i += sizeof(u16); size = get_unaligned_le16(fw->data + i); i += sizeof(u16); if (pass == 1) { /* Will stall if using fw->data ... */ memcpy(buff, fw->data + i, size); ret = usb_control_msg(udev, usb_sndctrlpipe(udev,0), M9206_FW, USB_TYPE_VENDOR | USB_DIR_OUT, value, index, buff, size, 20); if (ret != size) { deb("error while uploading fw!\n"); ret = -EIO; goto done; } msleep(3); } i += size; } if (i != fw->size) { deb("bad firmware file!\n"); ret = -EINVAL; goto done; } } msleep(36); /* m920x will disconnect itself from the bus after this. */ (void) m920x_write(udev, M9206_CORE, 0x01, M9206_FW_GO); deb("firmware uploaded!\n"); done: kfree(read); kfree(buff); return ret; } /* Callbacks for DVB USB */ static int m920x_identify_state(struct usb_device *udev, const struct dvb_usb_device_properties *props, const struct dvb_usb_device_description **desc, int *cold) { struct usb_host_interface *alt; alt = usb_altnum_to_altsetting(usb_ifnum_to_if(udev, 0), 1); *cold = (alt == NULL) ? 1 : 0; return 0; } /* demod configurations */ static int m920x_mt352_demod_init(struct dvb_frontend *fe) { int ret; static const u8 config[] = { CONFIG, 0x3d }; static const u8 clock[] = { CLOCK_CTL, 0x30 }; static const u8 reset[] = { RESET, 0x80 }; static const u8 adc_ctl[] = { ADC_CTL_1, 0x40 }; static const u8 agc[] = { AGC_TARGET, 0x1c, 0x20 }; static const u8 sec_agc[] = { 0x69, 0x00, 0xff, 0xff, 0x40, 0xff, 0x00, 0x40, 0x40 }; static const u8 unk1[] = { 0x93, 0x1a }; static const u8 unk2[] = { 0xb5, 0x7a }; deb("Demod init!\n"); if ((ret = mt352_write(fe, config, ARRAY_SIZE(config))) != 0) return ret; if ((ret = mt352_write(fe, clock, ARRAY_SIZE(clock))) != 0) return ret; if ((ret = mt352_write(fe, reset, ARRAY_SIZE(reset))) != 0) return ret; if ((ret = mt352_write(fe, adc_ctl, ARRAY_SIZE(adc_ctl))) != 0) return ret; if ((ret = mt352_write(fe, agc, ARRAY_SIZE(agc))) != 0) return ret; if ((ret = mt352_write(fe, sec_agc, ARRAY_SIZE(sec_agc))) != 0) return ret; if ((ret = mt352_write(fe, unk1, ARRAY_SIZE(unk1))) != 0) return ret; if ((ret = mt352_write(fe, unk2, ARRAY_SIZE(unk2))) != 0) return ret; return 0; } static struct mt352_config m920x_mt352_config = { .demod_address = 0x0f, .no_tuner = 1, .demod_init = m920x_mt352_demod_init, }; static struct tda1004x_config m920x_tda10046_08_config = { .demod_address = 0x08, .invert = 0, .invert_oclk = 0, .ts_mode = TDA10046_TS_SERIAL, .xtal_freq = TDA10046_XTAL_16M, .if_freq = TDA10046_FREQ_045, .agc_config = TDA10046_AGC_TDA827X, .gpio_config = TDA10046_GPTRI, .request_firmware = NULL, }; static struct tda1004x_config m920x_tda10046_0b_config = { .demod_address = 0x0b, .invert = 0, .invert_oclk = 0, .ts_mode = TDA10046_TS_SERIAL, .xtal_freq = TDA10046_XTAL_16M, .if_freq = TDA10046_FREQ_045, .agc_config = TDA10046_AGC_TDA827X, .gpio_config = TDA10046_GPTRI, .request_firmware = NULL, /* uses firmware EEPROM */ }; /* tuner configurations */ static struct qt1010_config m920x_qt1010_config = { .i2c_address = 0x62 }; static struct mt2060_config m920x_mt2060_config = { .i2c_address = 0x60, /* 0xc0 */ .clock_out = 0, }; /* Callbacks for DVB USB */ static int m920x_mt352_frontend_attach(struct dvb_usb_adapter *adap) { deb("%s\n",__func__); adap->fe_adap[0].fe = dvb_attach(mt352_attach, &m920x_mt352_config, &adap->dev->i2c_adap); if ((adap->fe_adap[0].fe) == NULL) return -EIO; return 0; } static int m920x_mt352_frontend_attach_vp7049(struct dvb_usb_adapter *adap) { struct m920x_inits vp7049_fe_init_seq[] = { /* XXX without these commands the frontend cannot be detected, * they must be sent BEFORE the frontend is attached */ { 0xff28, 0x00 }, { 0xff23, 0x00 }, { 0xff28, 0x00 }, { 0xff23, 0x00 }, { 0xff21, 0x20 }, { 0xff21, 0x60 }, { 0xff28, 0x00 }, { 0xff22, 0x00 }, { 0xff20, 0x30 }, { 0xff20, 0x20 }, { 0xff20, 0x30 }, { } /* terminating entry */ }; int ret; deb("%s\n", __func__); ret = m920x_write_seq(adap->dev->udev, M9206_CORE, vp7049_fe_init_seq); if (ret != 0) { deb("Initialization of vp7049 frontend failed."); return ret; } return m920x_mt352_frontend_attach(adap); } static int m920x_tda10046_08_frontend_attach(struct dvb_usb_adapter *adap) { deb("%s\n",__func__); adap->fe_adap[0].fe = dvb_attach(tda10046_attach, &m920x_tda10046_08_config, &adap->dev->i2c_adap); if ((adap->fe_adap[0].fe) == NULL) return -EIO; return 0; } static int m920x_tda10046_0b_frontend_attach(struct dvb_usb_adapter *adap) { deb("%s\n",__func__); adap->fe_adap[0].fe = dvb_attach(tda10046_attach, &m920x_tda10046_0b_config, &adap->dev->i2c_adap); if ((adap->fe_adap[0].fe) == NULL) return -EIO; return 0; } static int m920x_qt1010_tuner_attach(struct dvb_usb_adapter *adap) { deb("%s\n",__func__); if (dvb_attach(qt1010_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, &m920x_qt1010_config) == NULL) return -ENODEV; return 0; } static int m920x_tda8275_60_tuner_attach(struct dvb_usb_adapter *adap) { deb("%s\n",__func__); if (dvb_attach(tda827x_attach, adap->fe_adap[0].fe, 0x60, &adap->dev->i2c_adap, NULL) == NULL) return -ENODEV; return 0; } static int m920x_tda8275_61_tuner_attach(struct dvb_usb_adapter *adap) { deb("%s\n",__func__); if (dvb_attach(tda827x_attach, adap->fe_adap[0].fe, 0x61, &adap->dev->i2c_adap, NULL) == NULL) return -ENODEV; return 0; } static int m920x_fmd1216me_tuner_attach(struct dvb_usb_adapter *adap) { dvb_attach(simple_tuner_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, 0x61, TUNER_PHILIPS_FMD1216ME_MK3); return 0; } static int m920x_mt2060_tuner_attach(struct dvb_usb_adapter *adap) { deb("%s\n", __func__); if (dvb_attach(mt2060_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, &m920x_mt2060_config, 1220) == NULL) return -ENODEV; return 0; } /* device-specific initialization */ static struct m920x_inits megasky_rc_init [] = { { M9206_RC_INIT2, 0xa8 }, { M9206_RC_INIT1, 0x51 }, { } /* terminating entry */ }; static struct m920x_inits tvwalkertwin_rc_init [] = { { M9206_RC_INIT2, 0x00 }, { M9206_RC_INIT1, 0xef }, { 0xff28, 0x00 }, { 0xff23, 0x00 }, { 0xff21, 0x30 }, { } /* terminating entry */ }; static struct m920x_inits pinnacle310e_init[] = { /* without these the tuner doesn't work */ { 0xff20, 0x9b }, { 0xff22, 0x70 }, /* rc settings */ { 0xff50, 0x80 }, { M9206_RC_INIT1, 0x00 }, { M9206_RC_INIT2, 0xff }, { } /* terminating entry */ }; static struct m920x_inits vp7049_rc_init[] = { { 0xff28, 0x00 }, { 0xff23, 0x00 }, { 0xff21, 0x70 }, { M9206_RC_INIT2, 0x00 }, { M9206_RC_INIT1, 0xff }, { } /* terminating entry */ }; /* ir keymaps */ static struct rc_map_table rc_map_megasky_table[] = { { 0x0012, KEY_POWER }, { 0x001e, KEY_CYCLEWINDOWS }, /* min/max */ { 0x0002, KEY_CHANNELUP }, { 0x0005, KEY_CHANNELDOWN }, { 0x0003, KEY_VOLUMEUP }, { 0x0006, KEY_VOLUMEDOWN }, { 0x0004, KEY_MUTE }, { 0x0007, KEY_OK }, /* TS */ { 0x0008, KEY_STOP }, { 0x0009, KEY_MENU }, /* swap */ { 0x000a, KEY_REWIND }, { 0x001b, KEY_PAUSE }, { 0x001f, KEY_FASTFORWARD }, { 0x000c, KEY_RECORD }, { 0x000d, KEY_CAMERA }, /* screenshot */ { 0x000e, KEY_COFFEE }, /* "MTS" */ }; static struct rc_map_table rc_map_tvwalkertwin_table[] = { { 0x0001, KEY_ZOOM }, /* Full Screen */ { 0x0002, KEY_CAMERA }, /* snapshot */ { 0x0003, KEY_MUTE }, { 0x0004, KEY_REWIND }, { 0x0005, KEY_PLAYPAUSE }, /* Play/Pause */ { 0x0006, KEY_FASTFORWARD }, { 0x0007, KEY_RECORD }, { 0x0008, KEY_STOP }, { 0x0009, KEY_TIME }, /* Timeshift */ { 0x000c, KEY_COFFEE }, /* Recall */ { 0x000e, KEY_CHANNELUP }, { 0x0012, KEY_POWER }, { 0x0015, KEY_MENU }, /* source */ { 0x0018, KEY_CYCLEWINDOWS }, /* TWIN PIP */ { 0x001a, KEY_CHANNELDOWN }, { 0x001b, KEY_VOLUMEDOWN }, { 0x001e, KEY_VOLUMEUP }, }; static struct rc_map_table rc_map_pinnacle310e_table[] = { { 0x16, KEY_POWER }, { 0x17, KEY_FAVORITES }, { 0x0f, KEY_TEXT }, { 0x48, KEY_PROGRAM }, /* preview */ { 0x1c, KEY_EPG }, { 0x04, KEY_LIST }, /* record list */ { 0x03, KEY_1 }, { 0x01, KEY_2 }, { 0x06, KEY_3 }, { 0x09, KEY_4 }, { 0x1d, KEY_5 }, { 0x1f, KEY_6 }, { 0x0d, KEY_7 }, { 0x19, KEY_8 }, { 0x1b, KEY_9 }, { 0x15, KEY_0 }, { 0x0c, KEY_CANCEL }, { 0x4a, KEY_CLEAR }, { 0x13, KEY_BACK }, { 0x00, KEY_TAB }, { 0x4b, KEY_UP }, { 0x4e, KEY_LEFT }, { 0x52, KEY_RIGHT }, { 0x51, KEY_DOWN }, { 0x4f, KEY_ENTER }, /* could also be KEY_OK */ { 0x1e, KEY_VOLUMEUP }, { 0x0a, KEY_VOLUMEDOWN }, { 0x05, KEY_CHANNELUP }, { 0x02, KEY_CHANNELDOWN }, { 0x11, KEY_RECORD }, { 0x14, KEY_PLAY }, { 0x4c, KEY_PAUSE }, { 0x1a, KEY_STOP }, { 0x40, KEY_REWIND }, { 0x12, KEY_FASTFORWARD }, { 0x41, KEY_PREVIOUSSONG }, /* Replay */ { 0x42, KEY_NEXTSONG }, /* Skip */ { 0x54, KEY_CAMERA }, /* Capture */ /* { 0x50, KEY_SAP }, */ /* Sap */ { 0x47, KEY_CYCLEWINDOWS }, /* Pip */ { 0x4d, KEY_SCREEN }, /* FullScreen */ { 0x08, KEY_SUBTITLE }, { 0x0e, KEY_MUTE }, /* { 0x49, KEY_LR }, */ /* L/R */ { 0x07, KEY_SLEEP }, /* Hibernate */ { 0x08, KEY_VIDEO }, /* A/V */ { 0x0e, KEY_MENU }, /* Recall */ { 0x45, KEY_ZOOMIN }, { 0x46, KEY_ZOOMOUT }, { 0x18, KEY_RED }, /* Red */ { 0x53, KEY_GREEN }, /* Green */ { 0x5e, KEY_YELLOW }, /* Yellow */ { 0x5f, KEY_BLUE }, /* Blue */ }; /* DVB USB Driver stuff */ static struct dvb_usb_device_properties megasky_properties; static struct dvb_usb_device_properties digivox_mini_ii_properties; static struct dvb_usb_device_properties tvwalkertwin_properties; static struct dvb_usb_device_properties dposh_properties; static struct dvb_usb_device_properties pinnacle_pctv310e_properties; static struct dvb_usb_device_properties vp7049_properties; static int m920x_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct dvb_usb_device *d = NULL; int ret; struct m920x_inits *rc_init_seq = NULL; int bInterfaceNumber = intf->cur_altsetting->desc.bInterfaceNumber; deb("Probing for m920x device at interface %d\n", bInterfaceNumber); if (bInterfaceNumber == 0) { /* Single-tuner device, or first interface on * multi-tuner device */ ret = dvb_usb_device_init(intf, &megasky_properties, THIS_MODULE, &d, adapter_nr); if (ret == 0) { rc_init_seq = megasky_rc_init; goto found; } ret = dvb_usb_device_init(intf, &digivox_mini_ii_properties, THIS_MODULE, &d, adapter_nr); if (ret == 0) { /* No remote control, so no rc_init_seq */ goto found; } /* This configures both tuners on the TV Walker Twin */ ret = dvb_usb_device_init(intf, &tvwalkertwin_properties, THIS_MODULE, &d, adapter_nr); if (ret == 0) { rc_init_seq = tvwalkertwin_rc_init; goto found; } ret = dvb_usb_device_init(intf, &dposh_properties, THIS_MODULE, &d, adapter_nr); if (ret == 0) { /* Remote controller not supported yet. */ goto found; } ret = dvb_usb_device_init(intf, &pinnacle_pctv310e_properties, THIS_MODULE, &d, adapter_nr); if (ret == 0) { rc_init_seq = pinnacle310e_init; goto found; } ret = dvb_usb_device_init(intf, &vp7049_properties, THIS_MODULE, &d, adapter_nr); if (ret == 0) { rc_init_seq = vp7049_rc_init; goto found; } return ret; } else { /* Another interface on a multi-tuner device */ /* The LifeView TV Walker Twin gets here, but struct * tvwalkertwin_properties already configured both * tuners, so there is nothing for us to do here */ } found: if ((ret = m920x_init_ep(intf)) < 0) return ret; if (d && (ret = m920x_init(d, rc_init_seq)) != 0) return ret; return ret; } enum { MSI_MEGASKY580, ANUBIS_MSI_DIGI_VOX_MINI_II, ANUBIS_LIFEVIEW_TV_WALKER_TWIN_COLD, ANUBIS_LIFEVIEW_TV_WALKER_TWIN_WARM, DPOSH_M9206_COLD, DPOSH_M9206_WARM, VISIONPLUS_PINNACLE_PCTV310E, AZUREWAVE_TWINHAN_VP7049, }; static struct usb_device_id m920x_table[] = { DVB_USB_DEV(MSI, MSI_MEGASKY580), DVB_USB_DEV(ANUBIS_ELECTRONIC, ANUBIS_MSI_DIGI_VOX_MINI_II), DVB_USB_DEV(ANUBIS_ELECTRONIC, ANUBIS_LIFEVIEW_TV_WALKER_TWIN_COLD), DVB_USB_DEV(ANUBIS_ELECTRONIC, ANUBIS_LIFEVIEW_TV_WALKER_TWIN_WARM), DVB_USB_DEV(DPOSH, DPOSH_M9206_COLD), DVB_USB_DEV(DPOSH, DPOSH_M9206_WARM), DVB_USB_DEV(VISIONPLUS, VISIONPLUS_PINNACLE_PCTV310E), DVB_USB_DEV(AZUREWAVE, AZUREWAVE_TWINHAN_VP7049), { } }; MODULE_DEVICE_TABLE (usb, m920x_table); static struct dvb_usb_device_properties megasky_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = "dvb-usb-megasky-02.fw", .download_firmware = m920x_firmware_download, .rc.legacy = { .rc_interval = 100, .rc_map_table = rc_map_megasky_table, .rc_map_size = ARRAY_SIZE(rc_map_megasky_table), .rc_query = m920x_rc_query, }, .size_of_priv = sizeof(struct m920x_state), .identify_state = m920x_identify_state, .num_adapters = 1, .adapter = {{ .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 8, .pid_filter = m920x_pid_filter, .pid_filter_ctrl = m920x_pid_filter_ctrl, .frontend_attach = m920x_mt352_frontend_attach, .tuner_attach = m920x_qt1010_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x81, .u = { .bulk = { .buffersize = 512, } } }, }}, }}, .i2c_algo = &m920x_i2c_algo, .num_device_descs = 1, .devices = { { "MSI Mega Sky 580 DVB-T USB2.0", { &m920x_table[MSI_MEGASKY580], NULL }, { NULL }, } } }; static struct dvb_usb_device_properties digivox_mini_ii_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = "dvb-usb-digivox-02.fw", .download_firmware = m920x_firmware_download, .size_of_priv = sizeof(struct m920x_state), .identify_state = m920x_identify_state, .num_adapters = 1, .adapter = {{ .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 8, .pid_filter = m920x_pid_filter, .pid_filter_ctrl = m920x_pid_filter_ctrl, .frontend_attach = m920x_tda10046_08_frontend_attach, .tuner_attach = m920x_tda8275_60_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x81, .u = { .bulk = { .buffersize = 0x4000, } } }, }}, }}, .i2c_algo = &m920x_i2c_algo, .num_device_descs = 1, .devices = { { "MSI DIGI VOX mini II DVB-T USB2.0", { &m920x_table[ANUBIS_MSI_DIGI_VOX_MINI_II], NULL }, { NULL }, }, } }; /* LifeView TV Walker Twin support by Nick Andrew <nick@nick-andrew.net> * * LifeView TV Walker Twin has 1 x M9206, 2 x TDA10046, 2 x TDA8275A * TDA10046 #0 is located at i2c address 0x08 * TDA10046 #1 is located at i2c address 0x0b * TDA8275A #0 is located at i2c address 0x60 * TDA8275A #1 is located at i2c address 0x61 */ static struct dvb_usb_device_properties tvwalkertwin_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = "dvb-usb-tvwalkert.fw", .download_firmware = m920x_firmware_download, .rc.legacy = { .rc_interval = 100, .rc_map_table = rc_map_tvwalkertwin_table, .rc_map_size = ARRAY_SIZE(rc_map_tvwalkertwin_table), .rc_query = m920x_rc_query, }, .size_of_priv = sizeof(struct m920x_state), .identify_state = m920x_identify_state, .num_adapters = 2, .adapter = {{ .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 8, .pid_filter = m920x_pid_filter, .pid_filter_ctrl = m920x_pid_filter_ctrl, .frontend_attach = m920x_tda10046_08_frontend_attach, .tuner_attach = m920x_tda8275_60_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x81, .u = { .bulk = { .buffersize = 512, } } }}, }},{ .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 8, .pid_filter = m920x_pid_filter, .pid_filter_ctrl = m920x_pid_filter_ctrl, .frontend_attach = m920x_tda10046_0b_frontend_attach, .tuner_attach = m920x_tda8275_61_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 512, } } }}, }, }}, .i2c_algo = &m920x_i2c_algo, .num_device_descs = 1, .devices = { { .name = "LifeView TV Walker Twin DVB-T USB2.0", .cold_ids = { &m920x_table[ANUBIS_LIFEVIEW_TV_WALKER_TWIN_COLD], NULL }, .warm_ids = { &m920x_table[ANUBIS_LIFEVIEW_TV_WALKER_TWIN_WARM], NULL }, }, } }; static struct dvb_usb_device_properties dposh_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = "dvb-usb-dposh-01.fw", .download_firmware = m920x_firmware_download, .size_of_priv = sizeof(struct m920x_state), .identify_state = m920x_identify_state, .num_adapters = 1, .adapter = {{ .num_frontends = 1, .fe = {{ /* Hardware pid filters don't work with this device/firmware */ .frontend_attach = m920x_mt352_frontend_attach, .tuner_attach = m920x_qt1010_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x81, .u = { .bulk = { .buffersize = 512, } } }, }}, }}, .i2c_algo = &m920x_i2c_algo, .num_device_descs = 1, .devices = { { .name = "Dposh DVB-T USB2.0", .cold_ids = { &m920x_table[DPOSH_M9206_COLD], NULL }, .warm_ids = { &m920x_table[DPOSH_M9206_WARM], NULL }, }, } }; static struct dvb_usb_device_properties pinnacle_pctv310e_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .download_firmware = NULL, .rc.legacy = { .rc_interval = 100, .rc_map_table = rc_map_pinnacle310e_table, .rc_map_size = ARRAY_SIZE(rc_map_pinnacle310e_table), .rc_query = m920x_rc_query, }, .size_of_priv = sizeof(struct m920x_state), .identify_state = m920x_identify_state, .num_adapters = 1, .adapter = {{ .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 8, .pid_filter = m920x_pid_filter, .pid_filter_ctrl = m920x_pid_filter_ctrl, .frontend_attach = m920x_mt352_frontend_attach, .tuner_attach = m920x_fmd1216me_tuner_attach, .stream = { .type = USB_ISOC, .count = 5, .endpoint = 0x84, .u = { .isoc = { .framesperurb = 128, .framesize = 564, .interval = 1, } } }, }}, } }, .i2c_algo = &m920x_i2c_algo, .num_device_descs = 1, .devices = { { "Pinnacle PCTV 310e", { &m920x_table[VISIONPLUS_PINNACLE_PCTV310E], NULL }, { NULL }, } } }; static struct dvb_usb_device_properties vp7049_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = "dvb-usb-vp7049-0.95.fw", .download_firmware = m920x_firmware_download, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_TWINHAN_VP1027_DVBS, .rc_query = m920x_rc_core_query, .allowed_protos = RC_PROTO_BIT_UNKNOWN, }, .size_of_priv = sizeof(struct m920x_state), .identify_state = m920x_identify_state, .num_adapters = 1, .adapter = {{ .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 8, .pid_filter = m920x_pid_filter, .pid_filter_ctrl = m920x_pid_filter_ctrl, .frontend_attach = m920x_mt352_frontend_attach_vp7049, .tuner_attach = m920x_mt2060_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x81, .u = { .bulk = { .buffersize = 512, } } }, } }, } }, .i2c_algo = &m920x_i2c_algo, .num_device_descs = 1, .devices = { { "DTV-DVB UDTT7049", { &m920x_table[AZUREWAVE_TWINHAN_VP7049], NULL }, { NULL }, } } }; static struct usb_driver m920x_driver = { .name = "dvb_usb_m920x", .probe = m920x_probe, .disconnect = dvb_usb_device_exit, .id_table = m920x_table, }; module_usb_driver(m920x_driver); MODULE_AUTHOR("Aapo Tahkola <aet@rasterburn.org>"); MODULE_DESCRIPTION("DVB Driver for ULI M920x"); MODULE_VERSION("0.1"); MODULE_LICENSE("GPL");
46 3170 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_LABELS_H #define _NF_CONNTRACK_LABELS_H #include <linux/netfilter/nf_conntrack_common.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <linux/types.h> #include <net/net_namespace.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_extend.h> #include <uapi/linux/netfilter/xt_connlabel.h> #define NF_CT_LABELS_MAX_SIZE ((XT_CONNLABEL_MAXBIT + 1) / BITS_PER_BYTE) struct nf_conn_labels { unsigned long bits[NF_CT_LABELS_MAX_SIZE / sizeof(long)]; }; /* Can't use nf_ct_ext_find(), flow dissector cannot use symbols * exported by nf_conntrack module. */ static inline struct nf_conn_labels *nf_ct_labels_find(const struct nf_conn *ct) { #ifdef CONFIG_NF_CONNTRACK_LABELS struct nf_ct_ext *ext = ct->ext; if (!ext || !__nf_ct_ext_exist(ext, NF_CT_EXT_LABELS)) return NULL; return (void *)ct->ext + ct->ext->offset[NF_CT_EXT_LABELS]; #else return NULL; #endif } static inline struct nf_conn_labels *nf_ct_labels_ext_add(struct nf_conn *ct) { #ifdef CONFIG_NF_CONNTRACK_LABELS struct net *net = nf_ct_net(ct); if (atomic_read(&net->ct.labels_used) == 0) return NULL; return nf_ct_ext_add(ct, NF_CT_EXT_LABELS, GFP_ATOMIC); #else return NULL; #endif } int nf_connlabels_replace(struct nf_conn *ct, const u32 *data, const u32 *mask, unsigned int words); #ifdef CONFIG_NF_CONNTRACK_LABELS int nf_connlabels_get(struct net *net, unsigned int bit); void nf_connlabels_put(struct net *net); #else static inline int nf_connlabels_get(struct net *net, unsigned int bit) { return 0; } static inline void nf_connlabels_put(struct net *net) {} #endif #endif /* _NF_CONNTRACK_LABELS_H */
3223 3224 3225 3226 3225 3226 820 807 93 807 808 808 760 14 90 820 28 808 820 819 820 93 93 93 93 3223 3206 3225 3225 3225 3224 3224 3226 3226 3224 3226 3226 3226 193 3190 3226 3224 3225 3225 3226 3225 3226 3226 3226 832 3225 3224 3225 818 3225 3225 3226 832 3198 93 820 3222 3223 832 3226 3222 833 3225 820 3226 818 2 3225 3223 3226 3226 3226 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 // SPDX-License-Identifier: GPL-2.0 /* * Generic ring buffer * * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> */ #include <linux/trace_recursion.h> #include <linux/trace_events.h> #include <linux/ring_buffer.h> #include <linux/trace_clock.h> #include <linux/sched/clock.h> #include <linux/cacheflush.h> #include <linux/trace_seq.h> #include <linux/spinlock.h> #include <linux/irq_work.h> #include <linux/security.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include <linux/kthread.h> /* for self test */ #include <linux/module.h> #include <linux/percpu.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/hash.h> #include <linux/list.h> #include <linux/cpu.h> #include <linux/oom.h> #include <linux/mm.h> #include <asm/local64.h> #include <asm/local.h> /* * The "absolute" timestamp in the buffer is only 59 bits. * If a clock has the 5 MSBs set, it needs to be saved and * reinserted. */ #define TS_MSB (0xf8ULL << 56) #define ABS_TS_MASK (~TS_MSB) static void update_pages_handler(struct work_struct *work); /* * The ring buffer header is special. We must manually up keep it. */ int ring_buffer_print_entry_header(struct trace_seq *s) { trace_seq_puts(s, "# compressed entry header\n"); trace_seq_puts(s, "\ttype_len : 5 bits\n"); trace_seq_puts(s, "\ttime_delta : 27 bits\n"); trace_seq_puts(s, "\tarray : 32 bits\n"); trace_seq_putc(s, '\n'); trace_seq_printf(s, "\tpadding : type == %d\n", RINGBUF_TYPE_PADDING); trace_seq_printf(s, "\ttime_extend : type == %d\n", RINGBUF_TYPE_TIME_EXTEND); trace_seq_printf(s, "\ttime_stamp : type == %d\n", RINGBUF_TYPE_TIME_STAMP); trace_seq_printf(s, "\tdata max type_len == %d\n", RINGBUF_TYPE_DATA_TYPE_LEN_MAX); return !trace_seq_has_overflowed(s); } /* * The ring buffer is made up of a list of pages. A separate list of pages is * allocated for each CPU. A writer may only write to a buffer that is * associated with the CPU it is currently executing on. A reader may read * from any per cpu buffer. * * The reader is special. For each per cpu buffer, the reader has its own * reader page. When a reader has read the entire reader page, this reader * page is swapped with another page in the ring buffer. * * Now, as long as the writer is off the reader page, the reader can do what * ever it wants with that page. The writer will never write to that page * again (as long as it is out of the ring buffer). * * Here's some silly ASCII art. * * +------+ * |reader| RING BUFFER * |page | * +------+ +---+ +---+ +---+ * | |-->| |-->| | * +---+ +---+ +---+ * ^ | * | | * +---------------+ * * * +------+ * |reader| RING BUFFER * |page |------------------v * +------+ +---+ +---+ +---+ * | |-->| |-->| | * +---+ +---+ +---+ * ^ | * | | * +---------------+ * * * +------+ * |reader| RING BUFFER * |page |------------------v * +------+ +---+ +---+ +---+ * ^ | |-->| |-->| | * | +---+ +---+ +---+ * | | * | | * +------------------------------+ * * * +------+ * |buffer| RING BUFFER * |page |------------------v * +------+ +---+ +---+ +---+ * ^ | | | |-->| | * | New +---+ +---+ +---+ * | Reader------^ | * | page | * +------------------------------+ * * * After we make this swap, the reader can hand this page off to the splice * code and be done with it. It can even allocate a new page if it needs to * and swap that into the ring buffer. * * We will be using cmpxchg soon to make all this lockless. * */ /* Used for individual buffers (after the counter) */ #define RB_BUFFER_OFF (1 << 20) #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) #define RB_ALIGNMENT 4U #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS # define RB_FORCE_8BYTE_ALIGNMENT 0 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT #else # define RB_FORCE_8BYTE_ALIGNMENT 1 # define RB_ARCH_ALIGNMENT 8U #endif #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX enum { RB_LEN_TIME_EXTEND = 8, RB_LEN_TIME_STAMP = 8, }; #define skip_time_extend(event) \ ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) #define extended_time(event) \ (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) static inline bool rb_null_event(struct ring_buffer_event *event) { return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; } static void rb_event_set_padding(struct ring_buffer_event *event) { /* padding has a NULL time_delta */ event->type_len = RINGBUF_TYPE_PADDING; event->time_delta = 0; } static unsigned rb_event_data_length(struct ring_buffer_event *event) { unsigned length; if (event->type_len) length = event->type_len * RB_ALIGNMENT; else length = event->array[0]; return length + RB_EVNT_HDR_SIZE; } /* * Return the length of the given event. Will return * the length of the time extend if the event is a * time extend. */ static inline unsigned rb_event_length(struct ring_buffer_event *event) { switch (event->type_len) { case RINGBUF_TYPE_PADDING: if (rb_null_event(event)) /* undefined */ return -1; return event->array[0] + RB_EVNT_HDR_SIZE; case RINGBUF_TYPE_TIME_EXTEND: return RB_LEN_TIME_EXTEND; case RINGBUF_TYPE_TIME_STAMP: return RB_LEN_TIME_STAMP; case RINGBUF_TYPE_DATA: return rb_event_data_length(event); default: WARN_ON_ONCE(1); } /* not hit */ return 0; } /* * Return total length of time extend and data, * or just the event length for all other events. */ static inline unsigned rb_event_ts_length(struct ring_buffer_event *event) { unsigned len = 0; if (extended_time(event)) { /* time extends include the data event after it */ len = RB_LEN_TIME_EXTEND; event = skip_time_extend(event); } return len + rb_event_length(event); } /** * ring_buffer_event_length - return the length of the event * @event: the event to get the length of * * Returns the size of the data load of a data event. * If the event is something other than a data event, it * returns the size of the event itself. With the exception * of a TIME EXTEND, where it still returns the size of the * data load of the data event after it. */ unsigned ring_buffer_event_length(struct ring_buffer_event *event) { unsigned length; if (extended_time(event)) event = skip_time_extend(event); length = rb_event_length(event); if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) return length; length -= RB_EVNT_HDR_SIZE; if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) length -= sizeof(event->array[0]); return length; } EXPORT_SYMBOL_GPL(ring_buffer_event_length); /* inline for ring buffer fast paths */ static __always_inline void * rb_event_data(struct ring_buffer_event *event) { if (extended_time(event)) event = skip_time_extend(event); WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); /* If length is in len field, then array[0] has the data */ if (event->type_len) return (void *)&event->array[0]; /* Otherwise length is in array[0] and array[1] has the data */ return (void *)&event->array[1]; } /** * ring_buffer_event_data - return the data of the event * @event: the event to get the data from */ void *ring_buffer_event_data(struct ring_buffer_event *event) { return rb_event_data(event); } EXPORT_SYMBOL_GPL(ring_buffer_event_data); #define for_each_buffer_cpu(buffer, cpu) \ for_each_cpu(cpu, buffer->cpumask) #define for_each_online_buffer_cpu(buffer, cpu) \ for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) #define TS_SHIFT 27 #define TS_MASK ((1ULL << TS_SHIFT) - 1) #define TS_DELTA_TEST (~TS_MASK) static u64 rb_event_time_stamp(struct ring_buffer_event *event) { u64 ts; ts = event->array[0]; ts <<= TS_SHIFT; ts += event->time_delta; return ts; } /* Flag when events were overwritten */ #define RB_MISSED_EVENTS (1 << 31) /* Missed count stored at end */ #define RB_MISSED_STORED (1 << 30) #define RB_MISSED_MASK (3 << 30) struct buffer_data_page { u64 time_stamp; /* page time stamp */ local_t commit; /* write committed index */ unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ }; struct buffer_data_read_page { unsigned order; /* order of the page */ struct buffer_data_page *data; /* actual data, stored in this page */ }; /* * Note, the buffer_page list must be first. The buffer pages * are allocated in cache lines, which means that each buffer * page will be at the beginning of a cache line, and thus * the least significant bits will be zero. We use this to * add flags in the list struct pointers, to make the ring buffer * lockless. */ struct buffer_page { struct list_head list; /* list of buffer pages */ local_t write; /* index for next write */ unsigned read; /* index for next read */ local_t entries; /* entries on this page */ unsigned long real_end; /* real end of data */ unsigned order; /* order of the page */ u32 id; /* ID for external mapping */ struct buffer_data_page *page; /* Actual data page */ }; /* * The buffer page counters, write and entries, must be reset * atomically when crossing page boundaries. To synchronize this * update, two counters are inserted into the number. One is * the actual counter for the write position or count on the page. * * The other is a counter of updaters. Before an update happens * the update partition of the counter is incremented. This will * allow the updater to update the counter atomically. * * The counter is 20 bits, and the state data is 12. */ #define RB_WRITE_MASK 0xfffff #define RB_WRITE_INTCNT (1 << 20) static void rb_init_page(struct buffer_data_page *bpage) { local_set(&bpage->commit, 0); } static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) { return local_read(&bpage->page->commit); } static void free_buffer_page(struct buffer_page *bpage) { free_pages((unsigned long)bpage->page, bpage->order); kfree(bpage); } /* * We need to fit the time_stamp delta into 27 bits. */ static inline bool test_time_stamp(u64 delta) { return !!(delta & TS_DELTA_TEST); } struct rb_irq_work { struct irq_work work; wait_queue_head_t waiters; wait_queue_head_t full_waiters; atomic_t seq; bool waiters_pending; bool full_waiters_pending; bool wakeup_full; }; /* * Structure to hold event state and handle nested events. */ struct rb_event_info { u64 ts; u64 delta; u64 before; u64 after; unsigned long length; struct buffer_page *tail_page; int add_timestamp; }; /* * Used for the add_timestamp * NONE * EXTEND - wants a time extend * ABSOLUTE - the buffer requests all events to have absolute time stamps * FORCE - force a full time stamp. */ enum { RB_ADD_STAMP_NONE = 0, RB_ADD_STAMP_EXTEND = BIT(1), RB_ADD_STAMP_ABSOLUTE = BIT(2), RB_ADD_STAMP_FORCE = BIT(3) }; /* * Used for which event context the event is in. * TRANSITION = 0 * NMI = 1 * IRQ = 2 * SOFTIRQ = 3 * NORMAL = 4 * * See trace_recursive_lock() comment below for more details. */ enum { RB_CTX_TRANSITION, RB_CTX_NMI, RB_CTX_IRQ, RB_CTX_SOFTIRQ, RB_CTX_NORMAL, RB_CTX_MAX }; struct rb_time_struct { local64_t time; }; typedef struct rb_time_struct rb_time_t; #define MAX_NEST 5 /* * head_page == tail_page && head == tail then buffer is empty. */ struct ring_buffer_per_cpu { int cpu; atomic_t record_disabled; atomic_t resize_disabled; struct trace_buffer *buffer; raw_spinlock_t reader_lock; /* serialize readers */ arch_spinlock_t lock; struct lock_class_key lock_key; struct buffer_data_page *free_page; unsigned long nr_pages; unsigned int current_context; struct list_head *pages; struct buffer_page *head_page; /* read from head */ struct buffer_page *tail_page; /* write to tail */ struct buffer_page *commit_page; /* committed pages */ struct buffer_page *reader_page; unsigned long lost_events; unsigned long last_overrun; unsigned long nest; local_t entries_bytes; local_t entries; local_t overrun; local_t commit_overrun; local_t dropped_events; local_t committing; local_t commits; local_t pages_touched; local_t pages_lost; local_t pages_read; long last_pages_touch; size_t shortest_full; unsigned long read; unsigned long read_bytes; rb_time_t write_stamp; rb_time_t before_stamp; u64 event_stamp[MAX_NEST]; u64 read_stamp; /* pages removed since last reset */ unsigned long pages_removed; unsigned int mapped; struct mutex mapping_lock; unsigned long *subbuf_ids; /* ID to subbuf VA */ struct trace_buffer_meta *meta_page; /* ring buffer pages to update, > 0 to add, < 0 to remove */ long nr_pages_to_update; struct list_head new_pages; /* new pages to add */ struct work_struct update_pages_work; struct completion update_done; struct rb_irq_work irq_work; }; struct trace_buffer { unsigned flags; int cpus; atomic_t record_disabled; atomic_t resizing; cpumask_var_t cpumask; struct lock_class_key *reader_lock_key; struct mutex mutex; struct ring_buffer_per_cpu **buffers; struct hlist_node node; u64 (*clock)(void); struct rb_irq_work irq_work; bool time_stamp_abs; unsigned int subbuf_size; unsigned int subbuf_order; unsigned int max_data_size; }; struct ring_buffer_iter { struct ring_buffer_per_cpu *cpu_buffer; unsigned long head; unsigned long next_event; struct buffer_page *head_page; struct buffer_page *cache_reader_page; unsigned long cache_read; unsigned long cache_pages_removed; u64 read_stamp; u64 page_stamp; struct ring_buffer_event *event; size_t event_size; int missed_events; }; int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) { struct buffer_data_page field; trace_seq_printf(s, "\tfield: u64 timestamp;\t" "offset:0;\tsize:%u;\tsigned:%u;\n", (unsigned int)sizeof(field.time_stamp), (unsigned int)is_signed_type(u64)); trace_seq_printf(s, "\tfield: local_t commit;\t" "offset:%u;\tsize:%u;\tsigned:%u;\n", (unsigned int)offsetof(typeof(field), commit), (unsigned int)sizeof(field.commit), (unsigned int)is_signed_type(long)); trace_seq_printf(s, "\tfield: int overwrite;\t" "offset:%u;\tsize:%u;\tsigned:%u;\n", (unsigned int)offsetof(typeof(field), commit), 1, (unsigned int)is_signed_type(long)); trace_seq_printf(s, "\tfield: char data;\t" "offset:%u;\tsize:%u;\tsigned:%u;\n", (unsigned int)offsetof(typeof(field), data), (unsigned int)buffer->subbuf_size, (unsigned int)is_signed_type(char)); return !trace_seq_has_overflowed(s); } static inline void rb_time_read(rb_time_t *t, u64 *ret) { *ret = local64_read(&t->time); } static void rb_time_set(rb_time_t *t, u64 val) { local64_set(&t->time, val); } /* * Enable this to make sure that the event passed to * ring_buffer_event_time_stamp() is not committed and also * is on the buffer that it passed in. */ //#define RB_VERIFY_EVENT #ifdef RB_VERIFY_EVENT static struct list_head *rb_list_head(struct list_head *list); static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, void *event) { struct buffer_page *page = cpu_buffer->commit_page; struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); struct list_head *next; long commit, write; unsigned long addr = (unsigned long)event; bool done = false; int stop = 0; /* Make sure the event exists and is not committed yet */ do { if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) done = true; commit = local_read(&page->page->commit); write = local_read(&page->write); if (addr >= (unsigned long)&page->page->data[commit] && addr < (unsigned long)&page->page->data[write]) return; next = rb_list_head(page->list.next); page = list_entry(next, struct buffer_page, list); } while (!done); WARN_ON_ONCE(1); } #else static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, void *event) { } #endif /* * The absolute time stamp drops the 5 MSBs and some clocks may * require them. The rb_fix_abs_ts() will take a previous full * time stamp, and add the 5 MSB of that time stamp on to the * saved absolute time stamp. Then they are compared in case of * the unlikely event that the latest time stamp incremented * the 5 MSB. */ static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) { if (save_ts & TS_MSB) { abs |= save_ts & TS_MSB; /* Check for overflow */ if (unlikely(abs < save_ts)) abs += 1ULL << 59; } return abs; } static inline u64 rb_time_stamp(struct trace_buffer *buffer); /** * ring_buffer_event_time_stamp - return the event's current time stamp * @buffer: The buffer that the event is on * @event: the event to get the time stamp of * * Note, this must be called after @event is reserved, and before it is * committed to the ring buffer. And must be called from the same * context where the event was reserved (normal, softirq, irq, etc). * * Returns the time stamp associated with the current event. * If the event has an extended time stamp, then that is used as * the time stamp to return. * In the highly unlikely case that the event was nested more than * the max nesting, then the write_stamp of the buffer is returned, * otherwise current time is returned, but that really neither of * the last two cases should ever happen. */ u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, struct ring_buffer_event *event) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; unsigned int nest; u64 ts; /* If the event includes an absolute time, then just use that */ if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { ts = rb_event_time_stamp(event); return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); } nest = local_read(&cpu_buffer->committing); verify_event(cpu_buffer, event); if (WARN_ON_ONCE(!nest)) goto fail; /* Read the current saved nesting level time stamp */ if (likely(--nest < MAX_NEST)) return cpu_buffer->event_stamp[nest]; /* Shouldn't happen, warn if it does */ WARN_ONCE(1, "nest (%d) greater than max", nest); fail: rb_time_read(&cpu_buffer->write_stamp, &ts); return ts; } /** * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer * @buffer: The ring_buffer to get the number of pages from * @cpu: The cpu of the ring_buffer to get the number of pages from * * Returns the number of pages that have content in the ring buffer. */ size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) { size_t read; size_t lost; size_t cnt; read = local_read(&buffer->buffers[cpu]->pages_read); lost = local_read(&buffer->buffers[cpu]->pages_lost); cnt = local_read(&buffer->buffers[cpu]->pages_touched); if (WARN_ON_ONCE(cnt < lost)) return 0; cnt -= lost; /* The reader can read an empty page, but not more than that */ if (cnt < read) { WARN_ON_ONCE(read > cnt + 1); return 0; } return cnt - read; } static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; size_t nr_pages; size_t dirty; nr_pages = cpu_buffer->nr_pages; if (!nr_pages || !full) return true; /* * Add one as dirty will never equal nr_pages, as the sub-buffer * that the writer is on is not counted as dirty. * This is needed if "buffer_percent" is set to 100. */ dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; return (dirty * 100) >= (full * nr_pages); } /* * rb_wake_up_waiters - wake up tasks waiting for ring buffer input * * Schedules a delayed work to wake up any task that is blocked on the * ring buffer waiters queue. */ static void rb_wake_up_waiters(struct irq_work *work) { struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); /* For waiters waiting for the first wake up */ (void)atomic_fetch_inc_release(&rbwork->seq); wake_up_all(&rbwork->waiters); if (rbwork->full_waiters_pending || rbwork->wakeup_full) { /* Only cpu_buffer sets the above flags */ struct ring_buffer_per_cpu *cpu_buffer = container_of(rbwork, struct ring_buffer_per_cpu, irq_work); /* Called from interrupt context */ raw_spin_lock(&cpu_buffer->reader_lock); rbwork->wakeup_full = false; rbwork->full_waiters_pending = false; /* Waking up all waiters, they will reset the shortest full */ cpu_buffer->shortest_full = 0; raw_spin_unlock(&cpu_buffer->reader_lock); wake_up_all(&rbwork->full_waiters); } } /** * ring_buffer_wake_waiters - wake up any waiters on this ring buffer * @buffer: The ring buffer to wake waiters on * @cpu: The CPU buffer to wake waiters on * * In the case of a file that represents a ring buffer is closing, * it is prudent to wake up any waiters that are on this. */ void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct rb_irq_work *rbwork; if (!buffer) return; if (cpu == RING_BUFFER_ALL_CPUS) { /* Wake up individual ones too. One level recursion */ for_each_buffer_cpu(buffer, cpu) ring_buffer_wake_waiters(buffer, cpu); rbwork = &buffer->irq_work; } else { if (WARN_ON_ONCE(!buffer->buffers)) return; if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) return; cpu_buffer = buffer->buffers[cpu]; /* The CPU buffer may not have been initialized yet */ if (!cpu_buffer) return; rbwork = &cpu_buffer->irq_work; } /* This can be called in any context */ irq_work_queue(&rbwork->work); } static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer; bool ret = false; /* Reads of all CPUs always waits for any data */ if (cpu == RING_BUFFER_ALL_CPUS) return !ring_buffer_empty(buffer); cpu_buffer = buffer->buffers[cpu]; if (!ring_buffer_empty_cpu(buffer, cpu)) { unsigned long flags; bool pagebusy; if (!full) return true; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; ret = !pagebusy && full_hit(buffer, cpu, full); if (!ret && (!cpu_buffer->shortest_full || cpu_buffer->shortest_full > full)) { cpu_buffer->shortest_full = full; } raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } return ret; } static inline bool rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, int cpu, int full, ring_buffer_cond_fn cond, void *data) { if (rb_watermark_hit(buffer, cpu, full)) return true; if (cond(data)) return true; /* * The events can happen in critical sections where * checking a work queue can cause deadlocks. * After adding a task to the queue, this flag is set * only to notify events to try to wake up the queue * using irq_work. * * We don't clear it even if the buffer is no longer * empty. The flag only causes the next event to run * irq_work to do the work queue wake up. The worse * that can happen if we race with !trace_empty() is that * an event will cause an irq_work to try to wake up * an empty queue. * * There's no reason to protect this flag either, as * the work queue and irq_work logic will do the necessary * synchronization for the wake ups. The only thing * that is necessary is that the wake up happens after * a task has been queued. It's OK for spurious wake ups. */ if (full) rbwork->full_waiters_pending = true; else rbwork->waiters_pending = true; return false; } struct rb_wait_data { struct rb_irq_work *irq_work; int seq; }; /* * The default wait condition for ring_buffer_wait() is to just to exit the * wait loop the first time it is woken up. */ static bool rb_wait_once(void *data) { struct rb_wait_data *rdata = data; struct rb_irq_work *rbwork = rdata->irq_work; return atomic_read_acquire(&rbwork->seq) != rdata->seq; } /** * ring_buffer_wait - wait for input to the ring buffer * @buffer: buffer to wait on * @cpu: the cpu buffer to wait on * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS * @cond: condition function to break out of wait (NULL to run once) * @data: the data to pass to @cond. * * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon * as data is added to any of the @buffer's cpu buffers. Otherwise * it will wait for data to be added to a specific cpu buffer. */ int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, ring_buffer_cond_fn cond, void *data) { struct ring_buffer_per_cpu *cpu_buffer; struct wait_queue_head *waitq; struct rb_irq_work *rbwork; struct rb_wait_data rdata; int ret = 0; /* * Depending on what the caller is waiting for, either any * data in any cpu buffer, or a specific buffer, put the * caller on the appropriate wait queue. */ if (cpu == RING_BUFFER_ALL_CPUS) { rbwork = &buffer->irq_work; /* Full only makes sense on per cpu reads */ full = 0; } else { if (!cpumask_test_cpu(cpu, buffer->cpumask)) return -ENODEV; cpu_buffer = buffer->buffers[cpu]; rbwork = &cpu_buffer->irq_work; } if (full) waitq = &rbwork->full_waiters; else waitq = &rbwork->waiters; /* Set up to exit loop as soon as it is woken */ if (!cond) { cond = rb_wait_once; rdata.irq_work = rbwork; rdata.seq = atomic_read_acquire(&rbwork->seq); data = &rdata; } ret = wait_event_interruptible((*waitq), rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); return ret; } /** * ring_buffer_poll_wait - poll on buffer input * @buffer: buffer to wait on * @cpu: the cpu buffer to wait on * @filp: the file descriptor * @poll_table: The poll descriptor * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS * * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon * as data is added to any of the @buffer's cpu buffers. Otherwise * it will wait for data to be added to a specific cpu buffer. * * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, * zero otherwise. */ __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, struct file *filp, poll_table *poll_table, int full) { struct ring_buffer_per_cpu *cpu_buffer; struct rb_irq_work *rbwork; if (cpu == RING_BUFFER_ALL_CPUS) { rbwork = &buffer->irq_work; full = 0; } else { if (!cpumask_test_cpu(cpu, buffer->cpumask)) return EPOLLERR; cpu_buffer = buffer->buffers[cpu]; rbwork = &cpu_buffer->irq_work; } if (full) { poll_wait(filp, &rbwork->full_waiters, poll_table); if (rb_watermark_hit(buffer, cpu, full)) return EPOLLIN | EPOLLRDNORM; /* * Only allow full_waiters_pending update to be seen after * the shortest_full is set (in rb_watermark_hit). If the * writer sees the full_waiters_pending flag set, it will * compare the amount in the ring buffer to shortest_full. * If the amount in the ring buffer is greater than the * shortest_full percent, it will call the irq_work handler * to wake up this list. The irq_handler will reset shortest_full * back to zero. That's done under the reader_lock, but * the below smp_mb() makes sure that the update to * full_waiters_pending doesn't leak up into the above. */ smp_mb(); rbwork->full_waiters_pending = true; return 0; } poll_wait(filp, &rbwork->waiters, poll_table); rbwork->waiters_pending = true; /* * There's a tight race between setting the waiters_pending and * checking if the ring buffer is empty. Once the waiters_pending bit * is set, the next event will wake the task up, but we can get stuck * if there's only a single event in. * * FIXME: Ideally, we need a memory barrier on the writer side as well, * but adding a memory barrier to all events will cause too much of a * performance hit in the fast path. We only need a memory barrier when * the buffer goes from empty to having content. But as this race is * extremely small, and it's not a problem if another event comes in, we * will fix it later. */ smp_mb(); if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) return EPOLLIN | EPOLLRDNORM; return 0; } /* buffer may be either ring_buffer or ring_buffer_per_cpu */ #define RB_WARN_ON(b, cond) \ ({ \ int _____ret = unlikely(cond); \ if (_____ret) { \ if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ struct ring_buffer_per_cpu *__b = \ (void *)b; \ atomic_inc(&__b->buffer->record_disabled); \ } else \ atomic_inc(&b->record_disabled); \ WARN_ON(1); \ } \ _____ret; \ }) /* Up this if you want to test the TIME_EXTENTS and normalization */ #define DEBUG_SHIFT 0 static inline u64 rb_time_stamp(struct trace_buffer *buffer) { u64 ts; /* Skip retpolines :-( */ if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) ts = trace_clock_local(); else ts = buffer->clock(); /* shift to debug/test normalization and TIME_EXTENTS */ return ts << DEBUG_SHIFT; } u64 ring_buffer_time_stamp(struct trace_buffer *buffer) { u64 time; preempt_disable_notrace(); time = rb_time_stamp(buffer); preempt_enable_notrace(); return time; } EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, int cpu, u64 *ts) { /* Just stupid testing the normalize function and deltas */ *ts >>= DEBUG_SHIFT; } EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); /* * Making the ring buffer lockless makes things tricky. * Although writes only happen on the CPU that they are on, * and they only need to worry about interrupts. Reads can * happen on any CPU. * * The reader page is always off the ring buffer, but when the * reader finishes with a page, it needs to swap its page with * a new one from the buffer. The reader needs to take from * the head (writes go to the tail). But if a writer is in overwrite * mode and wraps, it must push the head page forward. * * Here lies the problem. * * The reader must be careful to replace only the head page, and * not another one. As described at the top of the file in the * ASCII art, the reader sets its old page to point to the next * page after head. It then sets the page after head to point to * the old reader page. But if the writer moves the head page * during this operation, the reader could end up with the tail. * * We use cmpxchg to help prevent this race. We also do something * special with the page before head. We set the LSB to 1. * * When the writer must push the page forward, it will clear the * bit that points to the head page, move the head, and then set * the bit that points to the new head page. * * We also don't want an interrupt coming in and moving the head * page on another writer. Thus we use the second LSB to catch * that too. Thus: * * head->list->prev->next bit 1 bit 0 * ------- ------- * Normal page 0 0 * Points to head page 0 1 * New head page 1 0 * * Note we can not trust the prev pointer of the head page, because: * * +----+ +-----+ +-----+ * | |------>| T |---X--->| N | * | |<------| | | | * +----+ +-----+ +-----+ * ^ ^ | * | +-----+ | | * +----------| R |----------+ | * | |<-----------+ * +-----+ * * Key: ---X--> HEAD flag set in pointer * T Tail page * R Reader page * N Next page * * (see __rb_reserve_next() to see where this happens) * * What the above shows is that the reader just swapped out * the reader page with a page in the buffer, but before it * could make the new header point back to the new page added * it was preempted by a writer. The writer moved forward onto * the new page added by the reader and is about to move forward * again. * * You can see, it is legitimate for the previous pointer of * the head (or any page) not to point back to itself. But only * temporarily. */ #define RB_PAGE_NORMAL 0UL #define RB_PAGE_HEAD 1UL #define RB_PAGE_UPDATE 2UL #define RB_FLAG_MASK 3UL /* PAGE_MOVED is not part of the mask */ #define RB_PAGE_MOVED 4UL /* * rb_list_head - remove any bit */ static struct list_head *rb_list_head(struct list_head *list) { unsigned long val = (unsigned long)list; return (struct list_head *)(val & ~RB_FLAG_MASK); } /* * rb_is_head_page - test if the given page is the head page * * Because the reader may move the head_page pointer, we can * not trust what the head page is (it may be pointing to * the reader page). But if the next page is a header page, * its flags will be non zero. */ static inline int rb_is_head_page(struct buffer_page *page, struct list_head *list) { unsigned long val; val = (unsigned long)list->next; if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) return RB_PAGE_MOVED; return val & RB_FLAG_MASK; } /* * rb_is_reader_page * * The unique thing about the reader page, is that, if the * writer is ever on it, the previous pointer never points * back to the reader page. */ static bool rb_is_reader_page(struct buffer_page *page) { struct list_head *list = page->list.prev; return rb_list_head(list->next) != &page->list; } /* * rb_set_list_to_head - set a list_head to be pointing to head. */ static void rb_set_list_to_head(struct list_head *list) { unsigned long *ptr; ptr = (unsigned long *)&list->next; *ptr |= RB_PAGE_HEAD; *ptr &= ~RB_PAGE_UPDATE; } /* * rb_head_page_activate - sets up head page */ static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *head; head = cpu_buffer->head_page; if (!head) return; /* * Set the previous list pointer to have the HEAD flag. */ rb_set_list_to_head(head->list.prev); } static void rb_list_head_clear(struct list_head *list) { unsigned long *ptr = (unsigned long *)&list->next; *ptr &= ~RB_FLAG_MASK; } /* * rb_head_page_deactivate - clears head page ptr (for free list) */ static void rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *hd; /* Go through the whole list and clear any pointers found. */ rb_list_head_clear(cpu_buffer->pages); list_for_each(hd, cpu_buffer->pages) rb_list_head_clear(hd); } static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag, int new_flag) { struct list_head *list; unsigned long val = (unsigned long)&head->list; unsigned long ret; list = &prev->list; val &= ~RB_FLAG_MASK; ret = cmpxchg((unsigned long *)&list->next, val | old_flag, val | new_flag); /* check if the reader took the page */ if ((ret & ~RB_FLAG_MASK) != val) return RB_PAGE_MOVED; return ret & RB_FLAG_MASK; } static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag) { return rb_head_page_set(cpu_buffer, head, prev, old_flag, RB_PAGE_UPDATE); } static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag) { return rb_head_page_set(cpu_buffer, head, prev, old_flag, RB_PAGE_HEAD); } static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag) { return rb_head_page_set(cpu_buffer, head, prev, old_flag, RB_PAGE_NORMAL); } static inline void rb_inc_page(struct buffer_page **bpage) { struct list_head *p = rb_list_head((*bpage)->list.next); *bpage = list_entry(p, struct buffer_page, list); } static struct buffer_page * rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *head; struct buffer_page *page; struct list_head *list; int i; if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) return NULL; /* sanity check */ list = cpu_buffer->pages; if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) return NULL; page = head = cpu_buffer->head_page; /* * It is possible that the writer moves the header behind * where we started, and we miss in one loop. * A second loop should grab the header, but we'll do * three loops just because I'm paranoid. */ for (i = 0; i < 3; i++) { do { if (rb_is_head_page(page, page->list.prev)) { cpu_buffer->head_page = page; return page; } rb_inc_page(&page); } while (page != head); } RB_WARN_ON(cpu_buffer, 1); return NULL; } static bool rb_head_page_replace(struct buffer_page *old, struct buffer_page *new) { unsigned long *ptr = (unsigned long *)&old->list.prev->next; unsigned long val; val = *ptr & ~RB_FLAG_MASK; val |= RB_PAGE_HEAD; return try_cmpxchg(ptr, &val, (unsigned long)&new->list); } /* * rb_tail_page_update - move the tail page forward */ static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *tail_page, struct buffer_page *next_page) { unsigned long old_entries; unsigned long old_write; /* * The tail page now needs to be moved forward. * * We need to reset the tail page, but without messing * with possible erasing of data brought in by interrupts * that have moved the tail page and are currently on it. * * We add a counter to the write field to denote this. */ old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); /* * Just make sure we have seen our old_write and synchronize * with any interrupts that come in. */ barrier(); /* * If the tail page is still the same as what we think * it is, then it is up to us to update the tail * pointer. */ if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { /* Zero the write counter */ unsigned long val = old_write & ~RB_WRITE_MASK; unsigned long eval = old_entries & ~RB_WRITE_MASK; /* * This will only succeed if an interrupt did * not come in and change it. In which case, we * do not want to modify it. * * We add (void) to let the compiler know that we do not care * about the return value of these functions. We use the * cmpxchg to only update if an interrupt did not already * do it for us. If the cmpxchg fails, we don't care. */ (void)local_cmpxchg(&next_page->write, old_write, val); (void)local_cmpxchg(&next_page->entries, old_entries, eval); /* * No need to worry about races with clearing out the commit. * it only can increment when a commit takes place. But that * only happens in the outer most nested commit. */ local_set(&next_page->page->commit, 0); /* Either we update tail_page or an interrupt does */ if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) local_inc(&cpu_buffer->pages_touched); } } static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *bpage) { unsigned long val = (unsigned long)bpage; RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); } /** * rb_check_pages - integrity check of buffer pages * @cpu_buffer: CPU buffer with pages to test * * As a safety measure we check to make sure the data pages have not * been corrupted. * * Callers of this function need to guarantee that the list of pages doesn't get * modified during the check. In particular, if it's possible that the function * is invoked with concurrent readers which can swap in a new reader page then * the caller should take cpu_buffer->reader_lock. */ static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *head = rb_list_head(cpu_buffer->pages); struct list_head *tmp; if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(head->next)->prev) != head)) return; if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(head->prev)->next) != head)) return; for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) return; if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) return; } } static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, long nr_pages, struct list_head *pages) { struct buffer_page *bpage, *tmp; bool user_thread = current->mm != NULL; gfp_t mflags; long i; /* * Check if the available memory is there first. * Note, si_mem_available() only gives us a rough estimate of available * memory. It may not be accurate. But we don't care, we just want * to prevent doing any allocation when it is obvious that it is * not going to succeed. */ i = si_mem_available(); if (i < nr_pages) return -ENOMEM; /* * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails * gracefully without invoking oom-killer and the system is not * destabilized. */ mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; /* * If a user thread allocates too much, and si_mem_available() * reports there's enough memory, even though there is not. * Make sure the OOM killer kills this thread. This can happen * even with RETRY_MAYFAIL because another task may be doing * an allocation after this task has taken all memory. * This is the task the OOM killer needs to take out during this * loop, even if it was triggered by an allocation somewhere else. */ if (user_thread) set_current_oom_origin(); for (i = 0; i < nr_pages; i++) { struct page *page; bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), mflags, cpu_to_node(cpu_buffer->cpu)); if (!bpage) goto free_pages; rb_check_bpage(cpu_buffer, bpage); list_add(&bpage->list, pages); page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags | __GFP_COMP | __GFP_ZERO, cpu_buffer->buffer->subbuf_order); if (!page) goto free_pages; bpage->page = page_address(page); bpage->order = cpu_buffer->buffer->subbuf_order; rb_init_page(bpage->page); if (user_thread && fatal_signal_pending(current)) goto free_pages; } if (user_thread) clear_current_oom_origin(); return 0; free_pages: list_for_each_entry_safe(bpage, tmp, pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } if (user_thread) clear_current_oom_origin(); return -ENOMEM; } static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) { LIST_HEAD(pages); WARN_ON(!nr_pages); if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) return -ENOMEM; /* * The ring buffer page list is a circular list that does not * start and end with a list head. All page list items point to * other pages. */ cpu_buffer->pages = pages.next; list_del(&pages); cpu_buffer->nr_pages = nr_pages; rb_check_pages(cpu_buffer); return 0; } static struct ring_buffer_per_cpu * rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *bpage; struct page *page; int ret; cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), GFP_KERNEL, cpu_to_node(cpu)); if (!cpu_buffer) return NULL; cpu_buffer->cpu = cpu; cpu_buffer->buffer = buffer; raw_spin_lock_init(&cpu_buffer->reader_lock); lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); init_completion(&cpu_buffer->update_done); init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); init_waitqueue_head(&cpu_buffer->irq_work.waiters); init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); mutex_init(&cpu_buffer->mapping_lock); bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), GFP_KERNEL, cpu_to_node(cpu)); if (!bpage) goto fail_free_buffer; rb_check_bpage(cpu_buffer, bpage); cpu_buffer->reader_page = bpage; page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_COMP | __GFP_ZERO, cpu_buffer->buffer->subbuf_order); if (!page) goto fail_free_reader; bpage->page = page_address(page); rb_init_page(bpage->page); INIT_LIST_HEAD(&cpu_buffer->reader_page->list); INIT_LIST_HEAD(&cpu_buffer->new_pages); ret = rb_allocate_pages(cpu_buffer, nr_pages); if (ret < 0) goto fail_free_reader; cpu_buffer->head_page = list_entry(cpu_buffer->pages, struct buffer_page, list); cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; rb_head_page_activate(cpu_buffer); return cpu_buffer; fail_free_reader: free_buffer_page(cpu_buffer->reader_page); fail_free_buffer: kfree(cpu_buffer); return NULL; } static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *head = cpu_buffer->pages; struct buffer_page *bpage, *tmp; irq_work_sync(&cpu_buffer->irq_work.work); free_buffer_page(cpu_buffer->reader_page); if (head) { rb_head_page_deactivate(cpu_buffer); list_for_each_entry_safe(bpage, tmp, head, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } bpage = list_entry(head, struct buffer_page, list); free_buffer_page(bpage); } free_page((unsigned long)cpu_buffer->free_page); kfree(cpu_buffer); } /** * __ring_buffer_alloc - allocate a new ring_buffer * @size: the size in bytes per cpu that is needed. * @flags: attributes to set for the ring buffer. * @key: ring buffer reader_lock_key. * * Currently the only flag that is available is the RB_FL_OVERWRITE * flag. This flag means that the buffer will overwrite old data * when the buffer wraps. If this flag is not set, the buffer will * drop data when the tail hits the head. */ struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, struct lock_class_key *key) { struct trace_buffer *buffer; long nr_pages; int bsize; int cpu; int ret; /* keep it in its own cache line */ buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), GFP_KERNEL); if (!buffer) return NULL; if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) goto fail_free_buffer; /* Default buffer page size - one system page */ buffer->subbuf_order = 0; buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE; /* Max payload is buffer page size - header (8bytes) */ buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); buffer->flags = flags; buffer->clock = trace_clock_local; buffer->reader_lock_key = key; init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); init_waitqueue_head(&buffer->irq_work.waiters); /* need at least two pages */ if (nr_pages < 2) nr_pages = 2; buffer->cpus = nr_cpu_ids; bsize = sizeof(void *) * nr_cpu_ids; buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), GFP_KERNEL); if (!buffer->buffers) goto fail_free_cpumask; cpu = raw_smp_processor_id(); cpumask_set_cpu(cpu, buffer->cpumask); buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); if (!buffer->buffers[cpu]) goto fail_free_buffers; ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); if (ret < 0) goto fail_free_buffers; mutex_init(&buffer->mutex); return buffer; fail_free_buffers: for_each_buffer_cpu(buffer, cpu) { if (buffer->buffers[cpu]) rb_free_cpu_buffer(buffer->buffers[cpu]); } kfree(buffer->buffers); fail_free_cpumask: free_cpumask_var(buffer->cpumask); fail_free_buffer: kfree(buffer); return NULL; } EXPORT_SYMBOL_GPL(__ring_buffer_alloc); /** * ring_buffer_free - free a ring buffer. * @buffer: the buffer to free. */ void ring_buffer_free(struct trace_buffer *buffer) { int cpu; cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); irq_work_sync(&buffer->irq_work.work); for_each_buffer_cpu(buffer, cpu) rb_free_cpu_buffer(buffer->buffers[cpu]); kfree(buffer->buffers); free_cpumask_var(buffer->cpumask); kfree(buffer); } EXPORT_SYMBOL_GPL(ring_buffer_free); void ring_buffer_set_clock(struct trace_buffer *buffer, u64 (*clock)(void)) { buffer->clock = clock; } void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) { buffer->time_stamp_abs = abs; } bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) { return buffer->time_stamp_abs; } static inline unsigned long rb_page_entries(struct buffer_page *bpage) { return local_read(&bpage->entries) & RB_WRITE_MASK; } static inline unsigned long rb_page_write(struct buffer_page *bpage) { return local_read(&bpage->write) & RB_WRITE_MASK; } static bool rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) { struct list_head *tail_page, *to_remove, *next_page; struct buffer_page *to_remove_page, *tmp_iter_page; struct buffer_page *last_page, *first_page; unsigned long nr_removed; unsigned long head_bit; int page_entries; head_bit = 0; raw_spin_lock_irq(&cpu_buffer->reader_lock); atomic_inc(&cpu_buffer->record_disabled); /* * We don't race with the readers since we have acquired the reader * lock. We also don't race with writers after disabling recording. * This makes it easy to figure out the first and the last page to be * removed from the list. We unlink all the pages in between including * the first and last pages. This is done in a busy loop so that we * lose the least number of traces. * The pages are freed after we restart recording and unlock readers. */ tail_page = &cpu_buffer->tail_page->list; /* * tail page might be on reader page, we remove the next page * from the ring buffer */ if (cpu_buffer->tail_page == cpu_buffer->reader_page) tail_page = rb_list_head(tail_page->next); to_remove = tail_page; /* start of pages to remove */ first_page = list_entry(rb_list_head(to_remove->next), struct buffer_page, list); for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { to_remove = rb_list_head(to_remove)->next; head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; } /* Read iterators need to reset themselves when some pages removed */ cpu_buffer->pages_removed += nr_removed; next_page = rb_list_head(to_remove)->next; /* * Now we remove all pages between tail_page and next_page. * Make sure that we have head_bit value preserved for the * next page */ tail_page->next = (struct list_head *)((unsigned long)next_page | head_bit); next_page = rb_list_head(next_page); next_page->prev = tail_page; /* make sure pages points to a valid page in the ring buffer */ cpu_buffer->pages = next_page; /* update head page */ if (head_bit) cpu_buffer->head_page = list_entry(next_page, struct buffer_page, list); /* pages are removed, resume tracing and then free the pages */ atomic_dec(&cpu_buffer->record_disabled); raw_spin_unlock_irq(&cpu_buffer->reader_lock); RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); /* last buffer page to remove */ last_page = list_entry(rb_list_head(to_remove), struct buffer_page, list); tmp_iter_page = first_page; do { cond_resched(); to_remove_page = tmp_iter_page; rb_inc_page(&tmp_iter_page); /* update the counters */ page_entries = rb_page_entries(to_remove_page); if (page_entries) { /* * If something was added to this page, it was full * since it is not the tail page. So we deduct the * bytes consumed in ring buffer from here. * Increment overrun to account for the lost events. */ local_add(page_entries, &cpu_buffer->overrun); local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); local_inc(&cpu_buffer->pages_lost); } /* * We have already removed references to this list item, just * free up the buffer_page and its page */ free_buffer_page(to_remove_page); nr_removed--; } while (to_remove_page != last_page); RB_WARN_ON(cpu_buffer, nr_removed); return nr_removed == 0; } static bool rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *pages = &cpu_buffer->new_pages; unsigned long flags; bool success; int retries; /* Can be called at early boot up, where interrupts must not been enabled */ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); /* * We are holding the reader lock, so the reader page won't be swapped * in the ring buffer. Now we are racing with the writer trying to * move head page and the tail page. * We are going to adapt the reader page update process where: * 1. We first splice the start and end of list of new pages between * the head page and its previous page. * 2. We cmpxchg the prev_page->next to point from head page to the * start of new pages list. * 3. Finally, we update the head->prev to the end of new list. * * We will try this process 10 times, to make sure that we don't keep * spinning. */ retries = 10; success = false; while (retries--) { struct list_head *head_page, *prev_page; struct list_head *last_page, *first_page; struct list_head *head_page_with_bit; struct buffer_page *hpage = rb_set_head_page(cpu_buffer); if (!hpage) break; head_page = &hpage->list; prev_page = head_page->prev; first_page = pages->next; last_page = pages->prev; head_page_with_bit = (struct list_head *) ((unsigned long)head_page | RB_PAGE_HEAD); last_page->next = head_page_with_bit; first_page->prev = prev_page; /* caution: head_page_with_bit gets updated on cmpxchg failure */ if (try_cmpxchg(&prev_page->next, &head_page_with_bit, first_page)) { /* * yay, we replaced the page pointer to our new list, * now, we just have to update to head page's prev * pointer to point to end of list */ head_page->prev = last_page; success = true; break; } } if (success) INIT_LIST_HEAD(pages); /* * If we weren't successful in adding in new pages, warn and stop * tracing */ RB_WARN_ON(cpu_buffer, !success); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); /* free pages if they weren't inserted */ if (!success) { struct buffer_page *bpage, *tmp; list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } } return success; } static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) { bool success; if (cpu_buffer->nr_pages_to_update > 0) success = rb_insert_pages(cpu_buffer); else success = rb_remove_pages(cpu_buffer, -cpu_buffer->nr_pages_to_update); if (success) cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; } static void update_pages_handler(struct work_struct *work) { struct ring_buffer_per_cpu *cpu_buffer = container_of(work, struct ring_buffer_per_cpu, update_pages_work); rb_update_pages(cpu_buffer); complete(&cpu_buffer->update_done); } /** * ring_buffer_resize - resize the ring buffer * @buffer: the buffer to resize. * @size: the new size. * @cpu_id: the cpu buffer to resize * * Minimum size is 2 * buffer->subbuf_size. * * Returns 0 on success and < 0 on failure. */ int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long nr_pages; int cpu, err; /* * Always succeed at resizing a non-existent buffer: */ if (!buffer) return 0; /* Make sure the requested buffer exists */ if (cpu_id != RING_BUFFER_ALL_CPUS && !cpumask_test_cpu(cpu_id, buffer->cpumask)) return 0; nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); /* we need a minimum of two pages */ if (nr_pages < 2) nr_pages = 2; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); atomic_inc(&buffer->resizing); if (cpu_id == RING_BUFFER_ALL_CPUS) { /* * Don't succeed if resizing is disabled, as a reader might be * manipulating the ring buffer and is expecting a sane state while * this is true. */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (atomic_read(&cpu_buffer->resize_disabled)) { err = -EBUSY; goto out_err_unlock; } } /* calculate the pages to update */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; cpu_buffer->nr_pages_to_update = nr_pages - cpu_buffer->nr_pages; /* * nothing more to do for removing pages or no update */ if (cpu_buffer->nr_pages_to_update <= 0) continue; /* * to add pages, make sure all new pages can be * allocated without receiving ENOMEM */ INIT_LIST_HEAD(&cpu_buffer->new_pages); if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, &cpu_buffer->new_pages)) { /* not enough memory for new pages */ err = -ENOMEM; goto out_err; } cond_resched(); } cpus_read_lock(); /* * Fire off all the required work handlers * We can't schedule on offline CPUs, but it's not necessary * since we can change their buffer sizes without any race. */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (!cpu_buffer->nr_pages_to_update) continue; /* Can't run something on an offline CPU. */ if (!cpu_online(cpu)) { rb_update_pages(cpu_buffer); cpu_buffer->nr_pages_to_update = 0; } else { /* Run directly if possible. */ migrate_disable(); if (cpu != smp_processor_id()) { migrate_enable(); schedule_work_on(cpu, &cpu_buffer->update_pages_work); } else { update_pages_handler(&cpu_buffer->update_pages_work); migrate_enable(); } } } /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } cpus_read_unlock(); } else { cpu_buffer = buffer->buffers[cpu_id]; if (nr_pages == cpu_buffer->nr_pages) goto out; /* * Don't succeed if resizing is disabled, as a reader might be * manipulating the ring buffer and is expecting a sane state while * this is true. */ if (atomic_read(&cpu_buffer->resize_disabled)) { err = -EBUSY; goto out_err_unlock; } cpu_buffer->nr_pages_to_update = nr_pages - cpu_buffer->nr_pages; INIT_LIST_HEAD(&cpu_buffer->new_pages); if (cpu_buffer->nr_pages_to_update > 0 && __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, &cpu_buffer->new_pages)) { err = -ENOMEM; goto out_err; } cpus_read_lock(); /* Can't run something on an offline CPU. */ if (!cpu_online(cpu_id)) rb_update_pages(cpu_buffer); else { /* Run directly if possible. */ migrate_disable(); if (cpu_id == smp_processor_id()) { rb_update_pages(cpu_buffer); migrate_enable(); } else { migrate_enable(); schedule_work_on(cpu_id, &cpu_buffer->update_pages_work); wait_for_completion(&cpu_buffer->update_done); } } cpu_buffer->nr_pages_to_update = 0; cpus_read_unlock(); } out: /* * The ring buffer resize can happen with the ring buffer * enabled, so that the update disturbs the tracing as little * as possible. But if the buffer is disabled, we do not need * to worry about that, and we can take the time to verify * that the buffer is not corrupt. */ if (atomic_read(&buffer->record_disabled)) { atomic_inc(&buffer->record_disabled); /* * Even though the buffer was disabled, we must make sure * that it is truly disabled before calling rb_check_pages. * There could have been a race between checking * record_disable and incrementing it. */ synchronize_rcu(); for_each_buffer_cpu(buffer, cpu) { unsigned long flags; cpu_buffer = buffer->buffers[cpu]; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_check_pages(cpu_buffer); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } atomic_dec(&buffer->record_disabled); } atomic_dec(&buffer->resizing); mutex_unlock(&buffer->mutex); return 0; out_err: for_each_buffer_cpu(buffer, cpu) { struct buffer_page *bpage, *tmp; cpu_buffer = buffer->buffers[cpu]; cpu_buffer->nr_pages_to_update = 0; if (list_empty(&cpu_buffer->new_pages)) continue; list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } } out_err_unlock: atomic_dec(&buffer->resizing); mutex_unlock(&buffer->mutex); return err; } EXPORT_SYMBOL_GPL(ring_buffer_resize); void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) { mutex_lock(&buffer->mutex); if (val) buffer->flags |= RB_FL_OVERWRITE; else buffer->flags &= ~RB_FL_OVERWRITE; mutex_unlock(&buffer->mutex); } EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) { return bpage->page->data + index; } static __always_inline struct ring_buffer_event * rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) { return __rb_page_index(cpu_buffer->reader_page, cpu_buffer->reader_page->read); } static struct ring_buffer_event * rb_iter_head_event(struct ring_buffer_iter *iter) { struct ring_buffer_event *event; struct buffer_page *iter_head_page = iter->head_page; unsigned long commit; unsigned length; if (iter->head != iter->next_event) return iter->event; /* * When the writer goes across pages, it issues a cmpxchg which * is a mb(), which will synchronize with the rmb here. * (see rb_tail_page_update() and __rb_reserve_next()) */ commit = rb_page_commit(iter_head_page); smp_rmb(); /* An event needs to be at least 8 bytes in size */ if (iter->head > commit - 8) goto reset; event = __rb_page_index(iter_head_page, iter->head); length = rb_event_length(event); /* * READ_ONCE() doesn't work on functions and we don't want the * compiler doing any crazy optimizations with length. */ barrier(); if ((iter->head + length) > commit || length > iter->event_size) /* Writer corrupted the read? */ goto reset; memcpy(iter->event, event, length); /* * If the page stamp is still the same after this rmb() then the * event was safely copied without the writer entering the page. */ smp_rmb(); /* Make sure the page didn't change since we read this */ if (iter->page_stamp != iter_head_page->page->time_stamp || commit > rb_page_commit(iter_head_page)) goto reset; iter->next_event = iter->head + length; return iter->event; reset: /* Reset to the beginning */ iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; iter->head = 0; iter->next_event = 0; iter->missed_events = 1; return NULL; } /* Size is determined by what has been committed */ static __always_inline unsigned rb_page_size(struct buffer_page *bpage) { return rb_page_commit(bpage) & ~RB_MISSED_MASK; } static __always_inline unsigned rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) { return rb_page_commit(cpu_buffer->commit_page); } static __always_inline unsigned rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { unsigned long addr = (unsigned long)event; addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; return addr - BUF_PAGE_HDR_SIZE; } static void rb_inc_iter(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; /* * The iterator could be on the reader page (it starts there). * But the head could have moved, since the reader was * found. Check for this case and assign the iterator * to the head page instead of next. */ if (iter->head_page == cpu_buffer->reader_page) iter->head_page = rb_set_head_page(cpu_buffer); else rb_inc_page(&iter->head_page); iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; iter->head = 0; iter->next_event = 0; } /* * rb_handle_head_page - writer hit the head page * * Returns: +1 to retry page * 0 to continue * -1 on error */ static int rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *tail_page, struct buffer_page *next_page) { struct buffer_page *new_head; int entries; int type; int ret; entries = rb_page_entries(next_page); /* * The hard part is here. We need to move the head * forward, and protect against both readers on * other CPUs and writers coming in via interrupts. */ type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, RB_PAGE_HEAD); /* * type can be one of four: * NORMAL - an interrupt already moved it for us * HEAD - we are the first to get here. * UPDATE - we are the interrupt interrupting * a current move. * MOVED - a reader on another CPU moved the next * pointer to its reader page. Give up * and try again. */ switch (type) { case RB_PAGE_HEAD: /* * We changed the head to UPDATE, thus * it is our responsibility to update * the counters. */ local_add(entries, &cpu_buffer->overrun); local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); local_inc(&cpu_buffer->pages_lost); /* * The entries will be zeroed out when we move the * tail page. */ /* still more to do */ break; case RB_PAGE_UPDATE: /* * This is an interrupt that interrupt the * previous update. Still more to do. */ break; case RB_PAGE_NORMAL: /* * An interrupt came in before the update * and processed this for us. * Nothing left to do. */ return 1; case RB_PAGE_MOVED: /* * The reader is on another CPU and just did * a swap with our next_page. * Try again. */ return 1; default: RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ return -1; } /* * Now that we are here, the old head pointer is * set to UPDATE. This will keep the reader from * swapping the head page with the reader page. * The reader (on another CPU) will spin till * we are finished. * * We just need to protect against interrupts * doing the job. We will set the next pointer * to HEAD. After that, we set the old pointer * to NORMAL, but only if it was HEAD before. * otherwise we are an interrupt, and only * want the outer most commit to reset it. */ new_head = next_page; rb_inc_page(&new_head); ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, RB_PAGE_NORMAL); /* * Valid returns are: * HEAD - an interrupt came in and already set it. * NORMAL - One of two things: * 1) We really set it. * 2) A bunch of interrupts came in and moved * the page forward again. */ switch (ret) { case RB_PAGE_HEAD: case RB_PAGE_NORMAL: /* OK */ break; default: RB_WARN_ON(cpu_buffer, 1); return -1; } /* * It is possible that an interrupt came in, * set the head up, then more interrupts came in * and moved it again. When we get back here, * the page would have been set to NORMAL but we * just set it back to HEAD. * * How do you detect this? Well, if that happened * the tail page would have moved. */ if (ret == RB_PAGE_NORMAL) { struct buffer_page *buffer_tail_page; buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); /* * If the tail had moved passed next, then we need * to reset the pointer. */ if (buffer_tail_page != tail_page && buffer_tail_page != next_page) rb_head_page_set_normal(cpu_buffer, new_head, next_page, RB_PAGE_HEAD); } /* * If this was the outer most commit (the one that * changed the original pointer from HEAD to UPDATE), * then it is up to us to reset it to NORMAL. */ if (type == RB_PAGE_HEAD) { ret = rb_head_page_set_normal(cpu_buffer, next_page, tail_page, RB_PAGE_UPDATE); if (RB_WARN_ON(cpu_buffer, ret != RB_PAGE_UPDATE)) return -1; } return 0; } static inline void rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, unsigned long tail, struct rb_event_info *info) { unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); struct buffer_page *tail_page = info->tail_page; struct ring_buffer_event *event; unsigned long length = info->length; /* * Only the event that crossed the page boundary * must fill the old tail_page with padding. */ if (tail >= bsize) { /* * If the page was filled, then we still need * to update the real_end. Reset it to zero * and the reader will ignore it. */ if (tail == bsize) tail_page->real_end = 0; local_sub(length, &tail_page->write); return; } event = __rb_page_index(tail_page, tail); /* * Save the original length to the meta data. * This will be used by the reader to add lost event * counter. */ tail_page->real_end = tail; /* * If this event is bigger than the minimum size, then * we need to be careful that we don't subtract the * write counter enough to allow another writer to slip * in on this page. * We put in a discarded commit instead, to make sure * that this space is not used again, and this space will * not be accounted into 'entries_bytes'. * * If we are less than the minimum size, we don't need to * worry about it. */ if (tail > (bsize - RB_EVNT_MIN_SIZE)) { /* No room for any events */ /* Mark the rest of the page with padding */ rb_event_set_padding(event); /* Make sure the padding is visible before the write update */ smp_wmb(); /* Set the write back to the previous setting */ local_sub(length, &tail_page->write); return; } /* Put in a discarded event */ event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; event->type_len = RINGBUF_TYPE_PADDING; /* time delta must be non zero */ event->time_delta = 1; /* account for padding bytes */ local_add(bsize - tail, &cpu_buffer->entries_bytes); /* Make sure the padding is visible before the tail_page->write update */ smp_wmb(); /* Set write to end of buffer */ length = (tail + length) - bsize; local_sub(length, &tail_page->write); } static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); /* * This is the slow path, force gcc not to inline it. */ static noinline struct ring_buffer_event * rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, unsigned long tail, struct rb_event_info *info) { struct buffer_page *tail_page = info->tail_page; struct buffer_page *commit_page = cpu_buffer->commit_page; struct trace_buffer *buffer = cpu_buffer->buffer; struct buffer_page *next_page; int ret; next_page = tail_page; rb_inc_page(&next_page); /* * If for some reason, we had an interrupt storm that made * it all the way around the buffer, bail, and warn * about it. */ if (unlikely(next_page == commit_page)) { local_inc(&cpu_buffer->commit_overrun); goto out_reset; } /* * This is where the fun begins! * * We are fighting against races between a reader that * could be on another CPU trying to swap its reader * page with the buffer head. * * We are also fighting against interrupts coming in and * moving the head or tail on us as well. * * If the next page is the head page then we have filled * the buffer, unless the commit page is still on the * reader page. */ if (rb_is_head_page(next_page, &tail_page->list)) { /* * If the commit is not on the reader page, then * move the header page. */ if (!rb_is_reader_page(cpu_buffer->commit_page)) { /* * If we are not in overwrite mode, * this is easy, just stop here. */ if (!(buffer->flags & RB_FL_OVERWRITE)) { local_inc(&cpu_buffer->dropped_events); goto out_reset; } ret = rb_handle_head_page(cpu_buffer, tail_page, next_page); if (ret < 0) goto out_reset; if (ret) goto out_again; } else { /* * We need to be careful here too. The * commit page could still be on the reader * page. We could have a small buffer, and * have filled up the buffer with events * from interrupts and such, and wrapped. * * Note, if the tail page is also on the * reader_page, we let it move out. */ if (unlikely((cpu_buffer->commit_page != cpu_buffer->tail_page) && (cpu_buffer->commit_page == cpu_buffer->reader_page))) { local_inc(&cpu_buffer->commit_overrun); goto out_reset; } } } rb_tail_page_update(cpu_buffer, tail_page, next_page); out_again: rb_reset_tail(cpu_buffer, tail, info); /* Commit what we have for now. */ rb_end_commit(cpu_buffer); /* rb_end_commit() decs committing */ local_inc(&cpu_buffer->committing); /* fail and let the caller try again */ return ERR_PTR(-EAGAIN); out_reset: /* reset write */ rb_reset_tail(cpu_buffer, tail, info); return NULL; } /* Slow path */ static struct ring_buffer_event * rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event, u64 delta, bool abs) { if (abs) event->type_len = RINGBUF_TYPE_TIME_STAMP; else event->type_len = RINGBUF_TYPE_TIME_EXTEND; /* Not the first event on the page, or not delta? */ if (abs || rb_event_index(cpu_buffer, event)) { event->time_delta = delta & TS_MASK; event->array[0] = delta >> TS_SHIFT; } else { /* nope, just zero it */ event->time_delta = 0; event->array[0] = 0; } return skip_time_extend(event); } #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK static inline bool sched_clock_stable(void) { return true; } #endif static void rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info) { u64 write_stamp; WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", (unsigned long long)info->delta, (unsigned long long)info->ts, (unsigned long long)info->before, (unsigned long long)info->after, (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), sched_clock_stable() ? "" : "If you just came from a suspend/resume,\n" "please switch to the trace global clock:\n" " echo global > /sys/kernel/tracing/trace_clock\n" "or add trace_clock=global to the kernel command line\n"); } static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event **event, struct rb_event_info *info, u64 *delta, unsigned int *length) { bool abs = info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); if (unlikely(info->delta > (1ULL << 59))) { /* * Some timers can use more than 59 bits, and when a timestamp * is added to the buffer, it will lose those bits. */ if (abs && (info->ts & TS_MSB)) { info->delta &= ABS_TS_MASK; /* did the clock go backwards */ } else if (info->before == info->after && info->before > info->ts) { /* not interrupted */ static int once; /* * This is possible with a recalibrating of the TSC. * Do not produce a call stack, but just report it. */ if (!once) { once++; pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", info->before, info->ts); } } else rb_check_timestamp(cpu_buffer, info); if (!abs) info->delta = 0; } *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); *length -= RB_LEN_TIME_EXTEND; *delta = 0; } /** * rb_update_event - update event type and data * @cpu_buffer: The per cpu buffer of the @event * @event: the event to update * @info: The info to update the @event with (contains length and delta) * * Update the type and data fields of the @event. The length * is the actual size that is written to the ring buffer, * and with this, we can determine what to place into the * data field. */ static void rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event, struct rb_event_info *info) { unsigned length = info->length; u64 delta = info->delta; unsigned int nest = local_read(&cpu_buffer->committing) - 1; if (!WARN_ON_ONCE(nest >= MAX_NEST)) cpu_buffer->event_stamp[nest] = info->ts; /* * If we need to add a timestamp, then we * add it to the start of the reserved space. */ if (unlikely(info->add_timestamp)) rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); event->time_delta = delta; length -= RB_EVNT_HDR_SIZE; if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { event->type_len = 0; event->array[0] = length; } else event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); } static unsigned rb_calculate_event_length(unsigned length) { struct ring_buffer_event event; /* Used only for sizeof array */ /* zero length can cause confusions */ if (!length) length++; if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) length += sizeof(event.array[0]); length += RB_EVNT_HDR_SIZE; length = ALIGN(length, RB_ARCH_ALIGNMENT); /* * In case the time delta is larger than the 27 bits for it * in the header, we need to add a timestamp. If another * event comes in when trying to discard this one to increase * the length, then the timestamp will be added in the allocated * space of this event. If length is bigger than the size needed * for the TIME_EXTEND, then padding has to be used. The events * length must be either RB_LEN_TIME_EXTEND, or greater than or equal * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. * As length is a multiple of 4, we only need to worry if it * is 12 (RB_LEN_TIME_EXTEND + 4). */ if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) length += RB_ALIGNMENT; return length; } static inline bool rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { unsigned long new_index, old_index; struct buffer_page *bpage; unsigned long addr; new_index = rb_event_index(cpu_buffer, event); old_index = new_index + rb_event_ts_length(event); addr = (unsigned long)event; addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); bpage = READ_ONCE(cpu_buffer->tail_page); /* * Make sure the tail_page is still the same and * the next write location is the end of this event */ if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { unsigned long write_mask = local_read(&bpage->write) & ~RB_WRITE_MASK; unsigned long event_length = rb_event_length(event); /* * For the before_stamp to be different than the write_stamp * to make sure that the next event adds an absolute * value and does not rely on the saved write stamp, which * is now going to be bogus. * * By setting the before_stamp to zero, the next event * is not going to use the write_stamp and will instead * create an absolute timestamp. This means there's no * reason to update the wirte_stamp! */ rb_time_set(&cpu_buffer->before_stamp, 0); /* * If an event were to come in now, it would see that the * write_stamp and the before_stamp are different, and assume * that this event just added itself before updating * the write stamp. The interrupting event will fix the * write stamp for us, and use an absolute timestamp. */ /* * This is on the tail page. It is possible that * a write could come in and move the tail page * and write to the next page. That is fine * because we just shorten what is on this page. */ old_index += write_mask; new_index += write_mask; /* caution: old_index gets updated on cmpxchg failure */ if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { /* update counters */ local_sub(event_length, &cpu_buffer->entries_bytes); return true; } } /* could not discard */ return false; } static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) { local_inc(&cpu_buffer->committing); local_inc(&cpu_buffer->commits); } static __always_inline void rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long max_count; /* * We only race with interrupts and NMIs on this CPU. * If we own the commit event, then we can commit * all others that interrupted us, since the interruptions * are in stack format (they finish before they come * back to us). This allows us to do a simple loop to * assign the commit to the tail. */ again: max_count = cpu_buffer->nr_pages * 100; while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { if (RB_WARN_ON(cpu_buffer, !(--max_count))) return; if (RB_WARN_ON(cpu_buffer, rb_is_reader_page(cpu_buffer->tail_page))) return; /* * No need for a memory barrier here, as the update * of the tail_page did it for this page. */ local_set(&cpu_buffer->commit_page->page->commit, rb_page_write(cpu_buffer->commit_page)); rb_inc_page(&cpu_buffer->commit_page); /* add barrier to keep gcc from optimizing too much */ barrier(); } while (rb_commit_index(cpu_buffer) != rb_page_write(cpu_buffer->commit_page)) { /* Make sure the readers see the content of what is committed. */ smp_wmb(); local_set(&cpu_buffer->commit_page->page->commit, rb_page_write(cpu_buffer->commit_page)); RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->commit_page->page->commit) & ~RB_WRITE_MASK); barrier(); } /* again, keep gcc from optimizing */ barrier(); /* * If an interrupt came in just after the first while loop * and pushed the tail page forward, we will be left with * a dangling commit that will never go forward. */ if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) goto again; } static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long commits; if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) return; again: commits = local_read(&cpu_buffer->commits); /* synchronize with interrupts */ barrier(); if (local_read(&cpu_buffer->committing) == 1) rb_set_commit_to_write(cpu_buffer); local_dec(&cpu_buffer->committing); /* synchronize with interrupts */ barrier(); /* * Need to account for interrupts coming in between the * updating of the commit page and the clearing of the * committing counter. */ if (unlikely(local_read(&cpu_buffer->commits) != commits) && !local_read(&cpu_buffer->committing)) { local_inc(&cpu_buffer->committing); goto again; } } static inline void rb_event_discard(struct ring_buffer_event *event) { if (extended_time(event)) event = skip_time_extend(event); /* array[0] holds the actual length for the discarded event */ event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; event->type_len = RINGBUF_TYPE_PADDING; /* time delta must be non zero */ if (!event->time_delta) event->time_delta = 1; } static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) { local_inc(&cpu_buffer->entries); rb_end_commit(cpu_buffer); } static __always_inline void rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) { if (buffer->irq_work.waiters_pending) { buffer->irq_work.waiters_pending = false; /* irq_work_queue() supplies it's own memory barriers */ irq_work_queue(&buffer->irq_work.work); } if (cpu_buffer->irq_work.waiters_pending) { cpu_buffer->irq_work.waiters_pending = false; /* irq_work_queue() supplies it's own memory barriers */ irq_work_queue(&cpu_buffer->irq_work.work); } if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) return; if (cpu_buffer->reader_page == cpu_buffer->commit_page) return; if (!cpu_buffer->irq_work.full_waiters_pending) return; cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) return; cpu_buffer->irq_work.wakeup_full = true; cpu_buffer->irq_work.full_waiters_pending = false; /* irq_work_queue() supplies it's own memory barriers */ irq_work_queue(&cpu_buffer->irq_work.work); } #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION # define do_ring_buffer_record_recursion() \ do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) #else # define do_ring_buffer_record_recursion() do { } while (0) #endif /* * The lock and unlock are done within a preempt disable section. * The current_context per_cpu variable can only be modified * by the current task between lock and unlock. But it can * be modified more than once via an interrupt. To pass this * information from the lock to the unlock without having to * access the 'in_interrupt()' functions again (which do show * a bit of overhead in something as critical as function tracing, * we use a bitmask trick. * * bit 1 = NMI context * bit 2 = IRQ context * bit 3 = SoftIRQ context * bit 4 = normal context. * * This works because this is the order of contexts that can * preempt other contexts. A SoftIRQ never preempts an IRQ * context. * * When the context is determined, the corresponding bit is * checked and set (if it was set, then a recursion of that context * happened). * * On unlock, we need to clear this bit. To do so, just subtract * 1 from the current_context and AND it to itself. * * (binary) * 101 - 1 = 100 * 101 & 100 = 100 (clearing bit zero) * * 1010 - 1 = 1001 * 1010 & 1001 = 1000 (clearing bit 1) * * The least significant bit can be cleared this way, and it * just so happens that it is the same bit corresponding to * the current context. * * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit * is set when a recursion is detected at the current context, and if * the TRANSITION bit is already set, it will fail the recursion. * This is needed because there's a lag between the changing of * interrupt context and updating the preempt count. In this case, * a false positive will be found. To handle this, one extra recursion * is allowed, and this is done by the TRANSITION bit. If the TRANSITION * bit is already set, then it is considered a recursion and the function * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. * * On the trace_recursive_unlock(), the TRANSITION bit will be the first * to be cleared. Even if it wasn't the context that set it. That is, * if an interrupt comes in while NORMAL bit is set and the ring buffer * is called before preempt_count() is updated, since the check will * be on the NORMAL bit, the TRANSITION bit will then be set. If an * NMI then comes in, it will set the NMI bit, but when the NMI code * does the trace_recursive_unlock() it will clear the TRANSITION bit * and leave the NMI bit set. But this is fine, because the interrupt * code that set the TRANSITION bit will then clear the NMI bit when it * calls trace_recursive_unlock(). If another NMI comes in, it will * set the TRANSITION bit and continue. * * Note: The TRANSITION bit only handles a single transition between context. */ static __always_inline bool trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) { unsigned int val = cpu_buffer->current_context; int bit = interrupt_context_level(); bit = RB_CTX_NORMAL - bit; if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { /* * It is possible that this was called by transitioning * between interrupt context, and preempt_count() has not * been updated yet. In this case, use the TRANSITION bit. */ bit = RB_CTX_TRANSITION; if (val & (1 << (bit + cpu_buffer->nest))) { do_ring_buffer_record_recursion(); return true; } } val |= (1 << (bit + cpu_buffer->nest)); cpu_buffer->current_context = val; return false; } static __always_inline void trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) { cpu_buffer->current_context &= cpu_buffer->current_context - (1 << cpu_buffer->nest); } /* The recursive locking above uses 5 bits */ #define NESTED_BITS 5 /** * ring_buffer_nest_start - Allow to trace while nested * @buffer: The ring buffer to modify * * The ring buffer has a safety mechanism to prevent recursion. * But there may be a case where a trace needs to be done while * tracing something else. In this case, calling this function * will allow this function to nest within a currently active * ring_buffer_lock_reserve(). * * Call this function before calling another ring_buffer_lock_reserve() and * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). */ void ring_buffer_nest_start(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* Enabled by ring_buffer_nest_end() */ preempt_disable_notrace(); cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; /* This is the shift value for the above recursive locking */ cpu_buffer->nest += NESTED_BITS; } /** * ring_buffer_nest_end - Allow to trace while nested * @buffer: The ring buffer to modify * * Must be called after ring_buffer_nest_start() and after the * ring_buffer_unlock_commit(). */ void ring_buffer_nest_end(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* disabled by ring_buffer_nest_start() */ cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; /* This is the shift value for the above recursive locking */ cpu_buffer->nest -= NESTED_BITS; preempt_enable_notrace(); } /** * ring_buffer_unlock_commit - commit a reserved * @buffer: The buffer to commit to * * This commits the data to the ring buffer, and releases any locks held. * * Must be paired with ring_buffer_lock_reserve. */ int ring_buffer_unlock_commit(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; rb_commit(cpu_buffer); rb_wakeups(buffer, cpu_buffer); trace_recursive_unlock(cpu_buffer); preempt_enable_notrace(); return 0; } EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); /* Special value to validate all deltas on a page. */ #define CHECK_FULL_PAGE 1L #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS static const char *show_irq_str(int bits) { const char *type[] = { ".", // 0 "s", // 1 "h", // 2 "Hs", // 3 "n", // 4 "Ns", // 5 "Nh", // 6 "NHs", // 7 }; return type[bits]; } /* Assume this is an trace event */ static const char *show_flags(struct ring_buffer_event *event) { struct trace_entry *entry; int bits = 0; if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) return "X"; entry = ring_buffer_event_data(event); if (entry->flags & TRACE_FLAG_SOFTIRQ) bits |= 1; if (entry->flags & TRACE_FLAG_HARDIRQ) bits |= 2; if (entry->flags & TRACE_FLAG_NMI) bits |= 4; return show_irq_str(bits); } static const char *show_irq(struct ring_buffer_event *event) { struct trace_entry *entry; if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) return ""; entry = ring_buffer_event_data(event); if (entry->flags & TRACE_FLAG_IRQS_OFF) return "d"; return ""; } static const char *show_interrupt_level(void) { unsigned long pc = preempt_count(); unsigned char level = 0; if (pc & SOFTIRQ_OFFSET) level |= 1; if (pc & HARDIRQ_MASK) level |= 2; if (pc & NMI_MASK) level |= 4; return show_irq_str(level); } static void dump_buffer_page(struct buffer_data_page *bpage, struct rb_event_info *info, unsigned long tail) { struct ring_buffer_event *event; u64 ts, delta; int e; ts = bpage->time_stamp; pr_warn(" [%lld] PAGE TIME STAMP\n", ts); for (e = 0; e < tail; e += rb_event_length(event)) { event = (struct ring_buffer_event *)(bpage->data + e); switch (event->type_len) { case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); ts += delta; pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", e, ts, delta); break; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); ts = rb_fix_abs_ts(delta, ts); pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", e, ts, delta); break; case RINGBUF_TYPE_PADDING: ts += event->time_delta; pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", e, ts, event->time_delta); break; case RINGBUF_TYPE_DATA: ts += event->time_delta; pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", e, ts, event->time_delta, show_flags(event), show_irq(event)); break; default: break; } } pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); } static DEFINE_PER_CPU(atomic_t, checking); static atomic_t ts_dump; #define buffer_warn_return(fmt, ...) \ do { \ /* If another report is happening, ignore this one */ \ if (atomic_inc_return(&ts_dump) != 1) { \ atomic_dec(&ts_dump); \ goto out; \ } \ atomic_inc(&cpu_buffer->record_disabled); \ pr_warn(fmt, ##__VA_ARGS__); \ dump_buffer_page(bpage, info, tail); \ atomic_dec(&ts_dump); \ /* There's some cases in boot up that this can happen */ \ if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ /* Do not re-enable checking */ \ return; \ } while (0) /* * Check if the current event time stamp matches the deltas on * the buffer page. */ static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info, unsigned long tail) { struct ring_buffer_event *event; struct buffer_data_page *bpage; u64 ts, delta; bool full = false; int e; bpage = info->tail_page->page; if (tail == CHECK_FULL_PAGE) { full = true; tail = local_read(&bpage->commit); } else if (info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { /* Ignore events with absolute time stamps */ return; } /* * Do not check the first event (skip possible extends too). * Also do not check if previous events have not been committed. */ if (tail <= 8 || tail > local_read(&bpage->commit)) return; /* * If this interrupted another event, */ if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) goto out; ts = bpage->time_stamp; for (e = 0; e < tail; e += rb_event_length(event)) { event = (struct ring_buffer_event *)(bpage->data + e); switch (event->type_len) { case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); ts += delta; break; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); delta = rb_fix_abs_ts(delta, ts); if (delta < ts) { buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", cpu_buffer->cpu, ts, delta); } ts = delta; break; case RINGBUF_TYPE_PADDING: if (event->time_delta == 1) break; fallthrough; case RINGBUF_TYPE_DATA: ts += event->time_delta; break; default: RB_WARN_ON(cpu_buffer, 1); } } if ((full && ts > info->ts) || (!full && ts + info->delta != info->ts)) { buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", cpu_buffer->cpu, ts + info->delta, info->ts, info->delta, info->before, info->after, full ? " (full)" : "", show_interrupt_level()); } out: atomic_dec(this_cpu_ptr(&checking)); } #else static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info, unsigned long tail) { } #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ static struct ring_buffer_event * __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info) { struct ring_buffer_event *event; struct buffer_page *tail_page; unsigned long tail, write, w; /* Don't let the compiler play games with cpu_buffer->tail_page */ tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; barrier(); rb_time_read(&cpu_buffer->before_stamp, &info->before); rb_time_read(&cpu_buffer->write_stamp, &info->after); barrier(); info->ts = rb_time_stamp(cpu_buffer->buffer); if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { info->delta = info->ts; } else { /* * If interrupting an event time update, we may need an * absolute timestamp. * Don't bother if this is the start of a new page (w == 0). */ if (!w) { /* Use the sub-buffer timestamp */ info->delta = 0; } else if (unlikely(info->before != info->after)) { info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; info->length += RB_LEN_TIME_EXTEND; } else { info->delta = info->ts - info->after; if (unlikely(test_time_stamp(info->delta))) { info->add_timestamp |= RB_ADD_STAMP_EXTEND; info->length += RB_LEN_TIME_EXTEND; } } } /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); /*C*/ write = local_add_return(info->length, &tail_page->write); /* set write to only the index of the write */ write &= RB_WRITE_MASK; tail = write - info->length; /* See if we shot pass the end of this buffer page */ if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); return rb_move_tail(cpu_buffer, tail, info); } if (likely(tail == w)) { /* Nothing interrupted us between A and C */ /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); /* * If something came in between C and D, the write stamp * may now not be in sync. But that's fine as the before_stamp * will be different and then next event will just be forced * to use an absolute timestamp. */ if (likely(!(info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) /* This did not interrupt any time update */ info->delta = info->ts - info->after; else /* Just use full timestamp for interrupting event */ info->delta = info->ts; check_buffer(cpu_buffer, info, tail); } else { u64 ts; /* SLOW PATH - Interrupted between A and C */ /* Save the old before_stamp */ rb_time_read(&cpu_buffer->before_stamp, &info->before); /* * Read a new timestamp and update the before_stamp to make * the next event after this one force using an absolute * timestamp. This is in case an interrupt were to come in * between E and F. */ ts = rb_time_stamp(cpu_buffer->buffer); rb_time_set(&cpu_buffer->before_stamp, ts); barrier(); /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); barrier(); /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && info->after == info->before && info->after < ts) { /* * Nothing came after this event between C and F, it is * safe to use info->after for the delta as it * matched info->before and is still valid. */ info->delta = ts - info->after; } else { /* * Interrupted between C and F: * Lost the previous events time stamp. Just set the * delta to zero, and this will be the same time as * the event this event interrupted. And the events that * came after this will still be correct (as they would * have built their delta on the previous event. */ info->delta = 0; } info->ts = ts; info->add_timestamp &= ~RB_ADD_STAMP_FORCE; } /* * If this is the first commit on the page, then it has the same * timestamp as the page itself. */ if (unlikely(!tail && !(info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) info->delta = 0; /* We reserved something on the buffer */ event = __rb_page_index(tail_page, tail); rb_update_event(cpu_buffer, event, info); local_inc(&tail_page->entries); /* * If this is the first commit on the page, then update * its timestamp. */ if (unlikely(!tail)) tail_page->page->time_stamp = info->ts; /* account for these added bytes */ local_add(info->length, &cpu_buffer->entries_bytes); return event; } static __always_inline struct ring_buffer_event * rb_reserve_next_event(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer, unsigned long length) { struct ring_buffer_event *event; struct rb_event_info info; int nr_loops = 0; int add_ts_default; /* ring buffer does cmpxchg, make sure it is safe in NMI context */ if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && (unlikely(in_nmi()))) { return NULL; } rb_start_commit(cpu_buffer); /* The commit page can not change after this */ #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP /* * Due to the ability to swap a cpu buffer from a buffer * it is possible it was swapped before we committed. * (committing stops a swap). We check for it here and * if it happened, we have to fail the write. */ barrier(); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { local_dec(&cpu_buffer->committing); local_dec(&cpu_buffer->commits); return NULL; } #endif info.length = rb_calculate_event_length(length); if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { add_ts_default = RB_ADD_STAMP_ABSOLUTE; info.length += RB_LEN_TIME_EXTEND; if (info.length > cpu_buffer->buffer->max_data_size) goto out_fail; } else { add_ts_default = RB_ADD_STAMP_NONE; } again: info.add_timestamp = add_ts_default; info.delta = 0; /* * We allow for interrupts to reenter here and do a trace. * If one does, it will cause this original code to loop * back here. Even with heavy interrupts happening, this * should only happen a few times in a row. If this happens * 1000 times in a row, there must be either an interrupt * storm or we have something buggy. * Bail! */ if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) goto out_fail; event = __rb_reserve_next(cpu_buffer, &info); if (unlikely(PTR_ERR(event) == -EAGAIN)) { if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) info.length -= RB_LEN_TIME_EXTEND; goto again; } if (likely(event)) return event; out_fail: rb_end_commit(cpu_buffer); return NULL; } /** * ring_buffer_lock_reserve - reserve a part of the buffer * @buffer: the ring buffer to reserve from * @length: the length of the data to reserve (excluding event header) * * Returns a reserved event on the ring buffer to copy directly to. * The user of this interface will need to get the body to write into * and can use the ring_buffer_event_data() interface. * * The length is the length of the data needed, not the event length * which also includes the event header. * * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. * If NULL is returned, then nothing has been allocated or locked. */ struct ring_buffer_event * ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; int cpu; /* If we are tracing schedule, we don't want to recurse */ preempt_disable_notrace(); if (unlikely(atomic_read(&buffer->record_disabled))) goto out; cpu = raw_smp_processor_id(); if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) goto out; cpu_buffer = buffer->buffers[cpu]; if (unlikely(atomic_read(&cpu_buffer->record_disabled))) goto out; if (unlikely(length > buffer->max_data_size)) goto out; if (unlikely(trace_recursive_lock(cpu_buffer))) goto out; event = rb_reserve_next_event(buffer, cpu_buffer, length); if (!event) goto out_unlock; return event; out_unlock: trace_recursive_unlock(cpu_buffer); out: preempt_enable_notrace(); return NULL; } EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); /* * Decrement the entries to the page that an event is on. * The event does not even need to exist, only the pointer * to the page it is on. This may only be called before the commit * takes place. */ static inline void rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { unsigned long addr = (unsigned long)event; struct buffer_page *bpage = cpu_buffer->commit_page; struct buffer_page *start; addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); /* Do the likely case first */ if (likely(bpage->page == (void *)addr)) { local_dec(&bpage->entries); return; } /* * Because the commit page may be on the reader page we * start with the next page and check the end loop there. */ rb_inc_page(&bpage); start = bpage; do { if (bpage->page == (void *)addr) { local_dec(&bpage->entries); return; } rb_inc_page(&bpage); } while (bpage != start); /* commit not part of this buffer?? */ RB_WARN_ON(cpu_buffer, 1); } /** * ring_buffer_discard_commit - discard an event that has not been committed * @buffer: the ring buffer * @event: non committed event to discard * * Sometimes an event that is in the ring buffer needs to be ignored. * This function lets the user discard an event in the ring buffer * and then that event will not be read later. * * This function only works if it is called before the item has been * committed. It will try to free the event from the ring buffer * if another event has not been added behind it. * * If another event has been added behind it, it will set the event * up as discarded, and perform the commit. * * If this function is called, do not call ring_buffer_unlock_commit on * the event. */ void ring_buffer_discard_commit(struct trace_buffer *buffer, struct ring_buffer_event *event) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* The event is discarded regardless */ rb_event_discard(event); cpu = smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; /* * This must only be called if the event has not been * committed yet. Thus we can assume that preemption * is still disabled. */ RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); rb_decrement_entry(cpu_buffer, event); if (rb_try_to_discard(cpu_buffer, event)) goto out; out: rb_end_commit(cpu_buffer); trace_recursive_unlock(cpu_buffer); preempt_enable_notrace(); } EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); /** * ring_buffer_write - write data to the buffer without reserving * @buffer: The ring buffer to write to. * @length: The length of the data being written (excluding the event header) * @data: The data to write to the buffer. * * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as * one function. If you already have the data to write to the buffer, it * may be easier to simply call this function. * * Note, like ring_buffer_lock_reserve, the length is the length of the data * and not the length of the event which would hold the header. */ int ring_buffer_write(struct trace_buffer *buffer, unsigned long length, void *data) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; void *body; int ret = -EBUSY; int cpu; preempt_disable_notrace(); if (atomic_read(&buffer->record_disabled)) goto out; cpu = raw_smp_processor_id(); if (!cpumask_test_cpu(cpu, buffer->cpumask)) goto out; cpu_buffer = buffer->buffers[cpu]; if (atomic_read(&cpu_buffer->record_disabled)) goto out; if (length > buffer->max_data_size) goto out; if (unlikely(trace_recursive_lock(cpu_buffer))) goto out; event = rb_reserve_next_event(buffer, cpu_buffer, length); if (!event) goto out_unlock; body = rb_event_data(event); memcpy(body, data, length); rb_commit(cpu_buffer); rb_wakeups(buffer, cpu_buffer); ret = 0; out_unlock: trace_recursive_unlock(cpu_buffer); out: preempt_enable_notrace(); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_write); static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *reader = cpu_buffer->reader_page; struct buffer_page *head = rb_set_head_page(cpu_buffer); struct buffer_page *commit = cpu_buffer->commit_page; /* In case of error, head will be NULL */ if (unlikely(!head)) return true; /* Reader should exhaust content in reader page */ if (reader->read != rb_page_size(reader)) return false; /* * If writers are committing on the reader page, knowing all * committed content has been read, the ring buffer is empty. */ if (commit == reader) return true; /* * If writers are committing on a page other than reader page * and head page, there should always be content to read. */ if (commit != head) return false; /* * Writers are committing on the head page, we just need * to care about there're committed data, and the reader will * swap reader page with head page when it is to read data. */ return rb_page_commit(commit) == 0; } /** * ring_buffer_record_disable - stop all writes into the buffer * @buffer: The ring buffer to stop writes to. * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * The caller should call synchronize_rcu() after this. */ void ring_buffer_record_disable(struct trace_buffer *buffer) { atomic_inc(&buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_disable); /** * ring_buffer_record_enable - enable writes to the buffer * @buffer: The ring buffer to enable writes * * Note, multiple disables will need the same number of enables * to truly enable the writing (much like preempt_disable). */ void ring_buffer_record_enable(struct trace_buffer *buffer) { atomic_dec(&buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_enable); /** * ring_buffer_record_off - stop all writes into the buffer * @buffer: The ring buffer to stop writes to. * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * This is different than ring_buffer_record_disable() as * it works like an on/off switch, where as the disable() version * must be paired with a enable(). */ void ring_buffer_record_off(struct trace_buffer *buffer) { unsigned int rd; unsigned int new_rd; rd = atomic_read(&buffer->record_disabled); do { new_rd = rd | RB_BUFFER_OFF; } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); } EXPORT_SYMBOL_GPL(ring_buffer_record_off); /** * ring_buffer_record_on - restart writes into the buffer * @buffer: The ring buffer to start writes to. * * This enables all writes to the buffer that was disabled by * ring_buffer_record_off(). * * This is different than ring_buffer_record_enable() as * it works like an on/off switch, where as the enable() version * must be paired with a disable(). */ void ring_buffer_record_on(struct trace_buffer *buffer) { unsigned int rd; unsigned int new_rd; rd = atomic_read(&buffer->record_disabled); do { new_rd = rd & ~RB_BUFFER_OFF; } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); } EXPORT_SYMBOL_GPL(ring_buffer_record_on); /** * ring_buffer_record_is_on - return true if the ring buffer can write * @buffer: The ring buffer to see if write is enabled * * Returns true if the ring buffer is in a state that it accepts writes. */ bool ring_buffer_record_is_on(struct trace_buffer *buffer) { return !atomic_read(&buffer->record_disabled); } /** * ring_buffer_record_is_set_on - return true if the ring buffer is set writable * @buffer: The ring buffer to see if write is set enabled * * Returns true if the ring buffer is set writable by ring_buffer_record_on(). * Note that this does NOT mean it is in a writable state. * * It may return true when the ring buffer has been disabled by * ring_buffer_record_disable(), as that is a temporary disabling of * the ring buffer. */ bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) { return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); } /** * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer * @buffer: The ring buffer to stop writes to. * @cpu: The CPU buffer to stop * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * The caller should call synchronize_rcu() after this. */ void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return; cpu_buffer = buffer->buffers[cpu]; atomic_inc(&cpu_buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); /** * ring_buffer_record_enable_cpu - enable writes to the buffer * @buffer: The ring buffer to enable writes * @cpu: The CPU to enable. * * Note, multiple disables will need the same number of enables * to truly enable the writing (much like preempt_disable). */ void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return; cpu_buffer = buffer->buffers[cpu]; atomic_dec(&cpu_buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); /* * The total entries in the ring buffer is the running counter * of entries entered into the ring buffer, minus the sum of * the entries read from the ring buffer and the number of * entries that were overwritten. */ static inline unsigned long rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) { return local_read(&cpu_buffer->entries) - (local_read(&cpu_buffer->overrun) + cpu_buffer->read); } /** * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to read from. */ u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) { unsigned long flags; struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *bpage; u64 ret = 0; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); /* * if the tail is on reader_page, oldest time stamp is on the reader * page */ if (cpu_buffer->tail_page == cpu_buffer->reader_page) bpage = cpu_buffer->reader_page; else bpage = rb_set_head_page(cpu_buffer); if (bpage) ret = bpage->page->time_stamp; raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); /** * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to read from. */ unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; return ret; } EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); /** * ring_buffer_entries_cpu - get the number of entries in a cpu buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to get the entries from. */ unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; return rb_num_of_entries(cpu_buffer); } EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); /** * ring_buffer_overrun_cpu - get the number of overruns caused by the ring * buffer wrapping around (only if RB_FL_OVERWRITE is on). * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->overrun); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); /** * ring_buffer_commit_overrun_cpu - get the number of overruns caused by * commits failing due to the buffer wrapping around while there are uncommitted * events, such as during an interrupt storm. * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->commit_overrun); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); /** * ring_buffer_dropped_events_cpu - get the number of dropped events caused by * the ring buffer filling up (only if RB_FL_OVERWRITE is off). * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->dropped_events); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); /** * ring_buffer_read_events_cpu - get the number of events successfully read * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of events read */ unsigned long ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; return cpu_buffer->read; } EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); /** * ring_buffer_entries - get the number of entries in a buffer * @buffer: The ring buffer * * Returns the total number of entries in the ring buffer * (all CPU entries) */ unsigned long ring_buffer_entries(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long entries = 0; int cpu; /* if you care about this being correct, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; entries += rb_num_of_entries(cpu_buffer); } return entries; } EXPORT_SYMBOL_GPL(ring_buffer_entries); /** * ring_buffer_overruns - get the number of overruns in buffer * @buffer: The ring buffer * * Returns the total number of overruns in the ring buffer * (all CPU entries) */ unsigned long ring_buffer_overruns(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long overruns = 0; int cpu; /* if you care about this being correct, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; overruns += local_read(&cpu_buffer->overrun); } return overruns; } EXPORT_SYMBOL_GPL(ring_buffer_overruns); static void rb_iter_reset(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; /* Iterator usage is expected to have record disabled */ iter->head_page = cpu_buffer->reader_page; iter->head = cpu_buffer->reader_page->read; iter->next_event = iter->head; iter->cache_reader_page = iter->head_page; iter->cache_read = cpu_buffer->read; iter->cache_pages_removed = cpu_buffer->pages_removed; if (iter->head) { iter->read_stamp = cpu_buffer->read_stamp; iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; } else { iter->read_stamp = iter->head_page->page->time_stamp; iter->page_stamp = iter->read_stamp; } } /** * ring_buffer_iter_reset - reset an iterator * @iter: The iterator to reset * * Resets the iterator, so that it will start from the beginning * again. */ void ring_buffer_iter_reset(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; if (!iter) return; cpu_buffer = iter->cpu_buffer; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_iter_reset(iter); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); /** * ring_buffer_iter_empty - check if an iterator has no more to read * @iter: The iterator to check */ int ring_buffer_iter_empty(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *reader; struct buffer_page *head_page; struct buffer_page *commit_page; struct buffer_page *curr_commit_page; unsigned commit; u64 curr_commit_ts; u64 commit_ts; cpu_buffer = iter->cpu_buffer; reader = cpu_buffer->reader_page; head_page = cpu_buffer->head_page; commit_page = READ_ONCE(cpu_buffer->commit_page); commit_ts = commit_page->page->time_stamp; /* * When the writer goes across pages, it issues a cmpxchg which * is a mb(), which will synchronize with the rmb here. * (see rb_tail_page_update()) */ smp_rmb(); commit = rb_page_commit(commit_page); /* We want to make sure that the commit page doesn't change */ smp_rmb(); /* Make sure commit page didn't change */ curr_commit_page = READ_ONCE(cpu_buffer->commit_page); curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); /* If the commit page changed, then there's more data */ if (curr_commit_page != commit_page || curr_commit_ts != commit_ts) return 0; /* Still racy, as it may return a false positive, but that's OK */ return ((iter->head_page == commit_page && iter->head >= commit) || (iter->head_page == reader && commit_page == head_page && head_page->read == commit && iter->head == rb_page_size(cpu_buffer->reader_page))); } EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); static void rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { u64 delta; switch (event->type_len) { case RINGBUF_TYPE_PADDING: return; case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); cpu_buffer->read_stamp += delta; return; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); cpu_buffer->read_stamp = delta; return; case RINGBUF_TYPE_DATA: cpu_buffer->read_stamp += event->time_delta; return; default: RB_WARN_ON(cpu_buffer, 1); } } static void rb_update_iter_read_stamp(struct ring_buffer_iter *iter, struct ring_buffer_event *event) { u64 delta; switch (event->type_len) { case RINGBUF_TYPE_PADDING: return; case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); iter->read_stamp += delta; return; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); delta = rb_fix_abs_ts(delta, iter->read_stamp); iter->read_stamp = delta; return; case RINGBUF_TYPE_DATA: iter->read_stamp += event->time_delta; return; default: RB_WARN_ON(iter->cpu_buffer, 1); } } static struct buffer_page * rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *reader = NULL; unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); unsigned long overwrite; unsigned long flags; int nr_loops = 0; bool ret; local_irq_save(flags); arch_spin_lock(&cpu_buffer->lock); again: /* * This should normally only loop twice. But because the * start of the reader inserts an empty page, it causes * a case where we will loop three times. There should be no * reason to loop four times (that I know of). */ if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { reader = NULL; goto out; } reader = cpu_buffer->reader_page; /* If there's more to read, return this page */ if (cpu_buffer->reader_page->read < rb_page_size(reader)) goto out; /* Never should we have an index greater than the size */ if (RB_WARN_ON(cpu_buffer, cpu_buffer->reader_page->read > rb_page_size(reader))) goto out; /* check if we caught up to the tail */ reader = NULL; if (cpu_buffer->commit_page == cpu_buffer->reader_page) goto out; /* Don't bother swapping if the ring buffer is empty */ if (rb_num_of_entries(cpu_buffer) == 0) goto out; /* * Reset the reader page to size zero. */ local_set(&cpu_buffer->reader_page->write, 0); local_set(&cpu_buffer->reader_page->entries, 0); local_set(&cpu_buffer->reader_page->page->commit, 0); cpu_buffer->reader_page->real_end = 0; spin: /* * Splice the empty reader page into the list around the head. */ reader = rb_set_head_page(cpu_buffer); if (!reader) goto out; cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); cpu_buffer->reader_page->list.prev = reader->list.prev; /* * cpu_buffer->pages just needs to point to the buffer, it * has no specific buffer page to point to. Lets move it out * of our way so we don't accidentally swap it. */ cpu_buffer->pages = reader->list.prev; /* The reader page will be pointing to the new head */ rb_set_list_to_head(&cpu_buffer->reader_page->list); /* * We want to make sure we read the overruns after we set up our * pointers to the next object. The writer side does a * cmpxchg to cross pages which acts as the mb on the writer * side. Note, the reader will constantly fail the swap * while the writer is updating the pointers, so this * guarantees that the overwrite recorded here is the one we * want to compare with the last_overrun. */ smp_mb(); overwrite = local_read(&(cpu_buffer->overrun)); /* * Here's the tricky part. * * We need to move the pointer past the header page. * But we can only do that if a writer is not currently * moving it. The page before the header page has the * flag bit '1' set if it is pointing to the page we want. * but if the writer is in the process of moving it * than it will be '2' or already moved '0'. */ ret = rb_head_page_replace(reader, cpu_buffer->reader_page); /* * If we did not convert it, then we must try again. */ if (!ret) goto spin; /* * Yay! We succeeded in replacing the page. * * Now make the new head point back to the reader page. */ rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; rb_inc_page(&cpu_buffer->head_page); local_inc(&cpu_buffer->pages_read); /* Finally update the reader page to the new head */ cpu_buffer->reader_page = reader; cpu_buffer->reader_page->read = 0; if (overwrite != cpu_buffer->last_overrun) { cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; cpu_buffer->last_overrun = overwrite; } goto again; out: /* Update the read_stamp on the first event */ if (reader && reader->read == 0) cpu_buffer->read_stamp = reader->page->time_stamp; arch_spin_unlock(&cpu_buffer->lock); local_irq_restore(flags); /* * The writer has preempt disable, wait for it. But not forever * Although, 1 second is pretty much "forever" */ #define USECS_WAIT 1000000 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { /* If the write is past the end of page, a writer is still updating it */ if (likely(!reader || rb_page_write(reader) <= bsize)) break; udelay(1); /* Get the latest version of the reader write value */ smp_rmb(); } /* The writer is not moving forward? Something is wrong */ if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) reader = NULL; /* * Make sure we see any padding after the write update * (see rb_reset_tail()). * * In addition, a writer may be writing on the reader page * if the page has not been fully filled, so the read barrier * is also needed to make sure we see the content of what is * committed by the writer (see rb_set_commit_to_write()). */ smp_rmb(); return reader; } static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) { struct ring_buffer_event *event; struct buffer_page *reader; unsigned length; reader = rb_get_reader_page(cpu_buffer); /* This function should not be called when buffer is empty */ if (RB_WARN_ON(cpu_buffer, !reader)) return; event = rb_reader_event(cpu_buffer); if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) cpu_buffer->read++; rb_update_read_stamp(cpu_buffer, event); length = rb_event_length(event); cpu_buffer->reader_page->read += length; cpu_buffer->read_bytes += length; } static void rb_advance_iter(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; cpu_buffer = iter->cpu_buffer; /* If head == next_event then we need to jump to the next event */ if (iter->head == iter->next_event) { /* If the event gets overwritten again, there's nothing to do */ if (rb_iter_head_event(iter) == NULL) return; } iter->head = iter->next_event; /* * Check if we are at the end of the buffer. */ if (iter->next_event >= rb_page_size(iter->head_page)) { /* discarded commits can make the page empty */ if (iter->head_page == cpu_buffer->commit_page) return; rb_inc_iter(iter); return; } rb_update_iter_read_stamp(iter, iter->event); } static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) { return cpu_buffer->lost_events; } static struct ring_buffer_event * rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, unsigned long *lost_events) { struct ring_buffer_event *event; struct buffer_page *reader; int nr_loops = 0; if (ts) *ts = 0; again: /* * We repeat when a time extend is encountered. * Since the time extend is always attached to a data event, * we should never loop more than once. * (We never hit the following condition more than twice). */ if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) return NULL; reader = rb_get_reader_page(cpu_buffer); if (!reader) return NULL; event = rb_reader_event(cpu_buffer); switch (event->type_len) { case RINGBUF_TYPE_PADDING: if (rb_null_event(event)) RB_WARN_ON(cpu_buffer, 1); /* * Because the writer could be discarding every * event it creates (which would probably be bad) * if we were to go back to "again" then we may never * catch up, and will trigger the warn on, or lock * the box. Return the padding, and we will release * the current locks, and try again. */ return event; case RINGBUF_TYPE_TIME_EXTEND: /* Internal data, OK to advance */ rb_advance_reader(cpu_buffer); goto again; case RINGBUF_TYPE_TIME_STAMP: if (ts) { *ts = rb_event_time_stamp(event); *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); ring_buffer_normalize_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu, ts); } /* Internal data, OK to advance */ rb_advance_reader(cpu_buffer); goto again; case RINGBUF_TYPE_DATA: if (ts && !(*ts)) { *ts = cpu_buffer->read_stamp + event->time_delta; ring_buffer_normalize_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu, ts); } if (lost_events) *lost_events = rb_lost_events(cpu_buffer); return event; default: RB_WARN_ON(cpu_buffer, 1); } return NULL; } EXPORT_SYMBOL_GPL(ring_buffer_peek); static struct ring_buffer_event * rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) { struct trace_buffer *buffer; struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; int nr_loops = 0; if (ts) *ts = 0; cpu_buffer = iter->cpu_buffer; buffer = cpu_buffer->buffer; /* * Check if someone performed a consuming read to the buffer * or removed some pages from the buffer. In these cases, * iterator was invalidated and we need to reset it. */ if (unlikely(iter->cache_read != cpu_buffer->read || iter->cache_reader_page != cpu_buffer->reader_page || iter->cache_pages_removed != cpu_buffer->pages_removed)) rb_iter_reset(iter); again: if (ring_buffer_iter_empty(iter)) return NULL; /* * As the writer can mess with what the iterator is trying * to read, just give up if we fail to get an event after * three tries. The iterator is not as reliable when reading * the ring buffer with an active write as the consumer is. * Do not warn if the three failures is reached. */ if (++nr_loops > 3) return NULL; if (rb_per_cpu_empty(cpu_buffer)) return NULL; if (iter->head >= rb_page_size(iter->head_page)) { rb_inc_iter(iter); goto again; } event = rb_iter_head_event(iter); if (!event) goto again; switch (event->type_len) { case RINGBUF_TYPE_PADDING: if (rb_null_event(event)) { rb_inc_iter(iter); goto again; } rb_advance_iter(iter); return event; case RINGBUF_TYPE_TIME_EXTEND: /* Internal data, OK to advance */ rb_advance_iter(iter); goto again; case RINGBUF_TYPE_TIME_STAMP: if (ts) { *ts = rb_event_time_stamp(event); *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); ring_buffer_normalize_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu, ts); } /* Internal data, OK to advance */ rb_advance_iter(iter); goto again; case RINGBUF_TYPE_DATA: if (ts && !(*ts)) { *ts = iter->read_stamp + event->time_delta; ring_buffer_normalize_time_stamp(buffer, cpu_buffer->cpu, ts); } return event; default: RB_WARN_ON(cpu_buffer, 1); } return NULL; } EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) { if (likely(!in_nmi())) { raw_spin_lock(&cpu_buffer->reader_lock); return true; } /* * If an NMI die dumps out the content of the ring buffer * trylock must be used to prevent a deadlock if the NMI * preempted a task that holds the ring buffer locks. If * we get the lock then all is fine, if not, then continue * to do the read, but this can corrupt the ring buffer, * so it must be permanently disabled from future writes. * Reading from NMI is a oneshot deal. */ if (raw_spin_trylock(&cpu_buffer->reader_lock)) return true; /* Continue without locking, but disable the ring buffer */ atomic_inc(&cpu_buffer->record_disabled); return false; } static inline void rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) { if (likely(locked)) raw_spin_unlock(&cpu_buffer->reader_lock); } /** * ring_buffer_peek - peek at the next event to be read * @buffer: The ring buffer to read * @cpu: The cpu to peak at * @ts: The timestamp counter of this event. * @lost_events: a variable to store if events were lost (may be NULL) * * This will return the event that will be read next, but does * not consume the data. */ struct ring_buffer_event * ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, unsigned long *lost_events) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; struct ring_buffer_event *event; unsigned long flags; bool dolock; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return NULL; again: local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); event = rb_buffer_peek(cpu_buffer, ts, lost_events); if (event && event->type_len == RINGBUF_TYPE_PADDING) rb_advance_reader(cpu_buffer); rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); if (event && event->type_len == RINGBUF_TYPE_PADDING) goto again; return event; } /** ring_buffer_iter_dropped - report if there are dropped events * @iter: The ring buffer iterator * * Returns true if there was dropped events since the last peek. */ bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) { bool ret = iter->missed_events != 0; iter->missed_events = 0; return ret; } EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); /** * ring_buffer_iter_peek - peek at the next event to be read * @iter: The ring buffer iterator * @ts: The timestamp counter of this event. * * This will return the event that will be read next, but does * not increment the iterator. */ struct ring_buffer_event * ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; struct ring_buffer_event *event; unsigned long flags; again: raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); event = rb_iter_peek(iter, ts); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); if (event && event->type_len == RINGBUF_TYPE_PADDING) goto again; return event; } /** * ring_buffer_consume - return an event and consume it * @buffer: The ring buffer to get the next event from * @cpu: the cpu to read the buffer from * @ts: a variable to store the timestamp (may be NULL) * @lost_events: a variable to store if events were lost (may be NULL) * * Returns the next event in the ring buffer, and that event is consumed. * Meaning, that sequential reads will keep returning a different event, * and eventually empty the ring buffer if the producer is slower. */ struct ring_buffer_event * ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, unsigned long *lost_events) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event = NULL; unsigned long flags; bool dolock; again: /* might be called in atomic */ preempt_disable(); if (!cpumask_test_cpu(cpu, buffer->cpumask)) goto out; cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); event = rb_buffer_peek(cpu_buffer, ts, lost_events); if (event) { cpu_buffer->lost_events = 0; rb_advance_reader(cpu_buffer); } rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); out: preempt_enable(); if (event && event->type_len == RINGBUF_TYPE_PADDING) goto again; return event; } EXPORT_SYMBOL_GPL(ring_buffer_consume); /** * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer * @buffer: The ring buffer to read from * @cpu: The cpu buffer to iterate over * @flags: gfp flags to use for memory allocation * * This performs the initial preparations necessary to iterate * through the buffer. Memory is allocated, buffer resizing * is disabled, and the iterator pointer is returned to the caller. * * After a sequence of ring_buffer_read_prepare calls, the user is * expected to make at least one call to ring_buffer_read_prepare_sync. * Afterwards, ring_buffer_read_start is invoked to get things going * for real. * * This overall must be paired with ring_buffer_read_finish. */ struct ring_buffer_iter * ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_iter *iter; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return NULL; iter = kzalloc(sizeof(*iter), flags); if (!iter) return NULL; /* Holds the entire event: data and meta data */ iter->event_size = buffer->subbuf_size; iter->event = kmalloc(iter->event_size, flags); if (!iter->event) { kfree(iter); return NULL; } cpu_buffer = buffer->buffers[cpu]; iter->cpu_buffer = cpu_buffer; atomic_inc(&cpu_buffer->resize_disabled); return iter; } EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); /** * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls * * All previously invoked ring_buffer_read_prepare calls to prepare * iterators will be synchronized. Afterwards, read_buffer_read_start * calls on those iterators are allowed. */ void ring_buffer_read_prepare_sync(void) { synchronize_rcu(); } EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); /** * ring_buffer_read_start - start a non consuming read of the buffer * @iter: The iterator returned by ring_buffer_read_prepare * * This finalizes the startup of an iteration through the buffer. * The iterator comes from a call to ring_buffer_read_prepare and * an intervening ring_buffer_read_prepare_sync must have been * performed. * * Must be paired with ring_buffer_read_finish. */ void ring_buffer_read_start(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; if (!iter) return; cpu_buffer = iter->cpu_buffer; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); arch_spin_lock(&cpu_buffer->lock); rb_iter_reset(iter); arch_spin_unlock(&cpu_buffer->lock); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } EXPORT_SYMBOL_GPL(ring_buffer_read_start); /** * ring_buffer_read_finish - finish reading the iterator of the buffer * @iter: The iterator retrieved by ring_buffer_start * * This re-enables resizing of the buffer, and frees the iterator. */ void ring_buffer_read_finish(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; unsigned long flags; /* Use this opportunity to check the integrity of the ring buffer. */ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_check_pages(cpu_buffer); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); atomic_dec(&cpu_buffer->resize_disabled); kfree(iter->event); kfree(iter); } EXPORT_SYMBOL_GPL(ring_buffer_read_finish); /** * ring_buffer_iter_advance - advance the iterator to the next location * @iter: The ring buffer iterator * * Move the location of the iterator such that the next read will * be the next location of the iterator. */ void ring_buffer_iter_advance(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; unsigned long flags; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_advance_iter(iter); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); /** * ring_buffer_size - return the size of the ring buffer (in bytes) * @buffer: The ring buffer. * @cpu: The CPU to get ring buffer size from. */ unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) { if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; } EXPORT_SYMBOL_GPL(ring_buffer_size); /** * ring_buffer_max_event_size - return the max data size of an event * @buffer: The ring buffer. * * Returns the maximum size an event can be. */ unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) { /* If abs timestamp is requested, events have a timestamp too */ if (ring_buffer_time_stamp_abs(buffer)) return buffer->max_data_size - RB_LEN_TIME_EXTEND; return buffer->max_data_size; } EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); static void rb_clear_buffer_page(struct buffer_page *page) { local_set(&page->write, 0); local_set(&page->entries, 0); rb_init_page(page->page); page->read = 0; } static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) { struct trace_buffer_meta *meta = cpu_buffer->meta_page; meta->reader.read = cpu_buffer->reader_page->read; meta->reader.id = cpu_buffer->reader_page->id; meta->reader.lost_events = cpu_buffer->lost_events; meta->entries = local_read(&cpu_buffer->entries); meta->overrun = local_read(&cpu_buffer->overrun); meta->read = cpu_buffer->read; /* Some archs do not have data cache coherency between kernel and user-space */ flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page)); } static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *page; rb_head_page_deactivate(cpu_buffer); cpu_buffer->head_page = list_entry(cpu_buffer->pages, struct buffer_page, list); rb_clear_buffer_page(cpu_buffer->head_page); list_for_each_entry(page, cpu_buffer->pages, list) { rb_clear_buffer_page(page); } cpu_buffer->tail_page = cpu_buffer->head_page; cpu_buffer->commit_page = cpu_buffer->head_page; INIT_LIST_HEAD(&cpu_buffer->reader_page->list); INIT_LIST_HEAD(&cpu_buffer->new_pages); rb_clear_buffer_page(cpu_buffer->reader_page); local_set(&cpu_buffer->entries_bytes, 0); local_set(&cpu_buffer->overrun, 0); local_set(&cpu_buffer->commit_overrun, 0); local_set(&cpu_buffer->dropped_events, 0); local_set(&cpu_buffer->entries, 0); local_set(&cpu_buffer->committing, 0); local_set(&cpu_buffer->commits, 0); local_set(&cpu_buffer->pages_touched, 0); local_set(&cpu_buffer->pages_lost, 0); local_set(&cpu_buffer->pages_read, 0); cpu_buffer->last_pages_touch = 0; cpu_buffer->shortest_full = 0; cpu_buffer->read = 0; cpu_buffer->read_bytes = 0; rb_time_set(&cpu_buffer->write_stamp, 0); rb_time_set(&cpu_buffer->before_stamp, 0); memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); cpu_buffer->lost_events = 0; cpu_buffer->last_overrun = 0; if (cpu_buffer->mapped) rb_update_meta_page(cpu_buffer); rb_head_page_activate(cpu_buffer); cpu_buffer->pages_removed = 0; } /* Must have disabled the cpu buffer then done a synchronize_rcu */ static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long flags; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) goto out; arch_spin_lock(&cpu_buffer->lock); rb_reset_cpu(cpu_buffer); arch_spin_unlock(&cpu_buffer->lock); out: raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } /** * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer * @buffer: The ring buffer to reset a per cpu buffer of * @cpu: The CPU buffer to be reset */ void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); atomic_inc(&cpu_buffer->resize_disabled); atomic_inc(&cpu_buffer->record_disabled); /* Make sure all commits have finished */ synchronize_rcu(); reset_disabled_cpu_buffer(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); atomic_dec(&cpu_buffer->resize_disabled); mutex_unlock(&buffer->mutex); } EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); /* Flag to ensure proper resetting of atomic variables */ #define RESET_BIT (1 << 30) /** * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer * @buffer: The ring buffer to reset a per cpu buffer of */ void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); for_each_online_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); atomic_inc(&cpu_buffer->record_disabled); } /* Make sure all commits have finished */ synchronize_rcu(); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; /* * If a CPU came online during the synchronize_rcu(), then * ignore it. */ if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) continue; reset_disabled_cpu_buffer(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); } mutex_unlock(&buffer->mutex); } /** * ring_buffer_reset - reset a ring buffer * @buffer: The ring buffer to reset all cpu buffers */ void ring_buffer_reset(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; atomic_inc(&cpu_buffer->resize_disabled); atomic_inc(&cpu_buffer->record_disabled); } /* Make sure all commits have finished */ synchronize_rcu(); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; reset_disabled_cpu_buffer(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); atomic_dec(&cpu_buffer->resize_disabled); } mutex_unlock(&buffer->mutex); } EXPORT_SYMBOL_GPL(ring_buffer_reset); /** * ring_buffer_empty - is the ring buffer empty? * @buffer: The ring buffer to test */ bool ring_buffer_empty(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; bool dolock; bool ret; int cpu; /* yes this is racy, but if you don't like the race, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); ret = rb_per_cpu_empty(cpu_buffer); rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); if (!ret) return false; } return true; } EXPORT_SYMBOL_GPL(ring_buffer_empty); /** * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? * @buffer: The ring buffer * @cpu: The CPU buffer to test */ bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; bool dolock; bool ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return true; cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); ret = rb_per_cpu_empty(cpu_buffer); rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP /** * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers * @buffer_a: One buffer to swap with * @buffer_b: The other buffer to swap with * @cpu: the CPU of the buffers to swap * * This function is useful for tracers that want to take a "snapshot" * of a CPU buffer and has another back up buffer lying around. * it is expected that the tracer handles the cpu buffer not being * used at the moment. */ int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, struct trace_buffer *buffer_b, int cpu) { struct ring_buffer_per_cpu *cpu_buffer_a; struct ring_buffer_per_cpu *cpu_buffer_b; int ret = -EINVAL; if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || !cpumask_test_cpu(cpu, buffer_b->cpumask)) goto out; cpu_buffer_a = buffer_a->buffers[cpu]; cpu_buffer_b = buffer_b->buffers[cpu]; /* It's up to the callers to not try to swap mapped buffers */ if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { ret = -EBUSY; goto out; } /* At least make sure the two buffers are somewhat the same */ if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) goto out; if (buffer_a->subbuf_order != buffer_b->subbuf_order) goto out; ret = -EAGAIN; if (atomic_read(&buffer_a->record_disabled)) goto out; if (atomic_read(&buffer_b->record_disabled)) goto out; if (atomic_read(&cpu_buffer_a->record_disabled)) goto out; if (atomic_read(&cpu_buffer_b->record_disabled)) goto out; /* * We can't do a synchronize_rcu here because this * function can be called in atomic context. * Normally this will be called from the same CPU as cpu. * If not it's up to the caller to protect this. */ atomic_inc(&cpu_buffer_a->record_disabled); atomic_inc(&cpu_buffer_b->record_disabled); ret = -EBUSY; if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; /* * When resize is in progress, we cannot swap it because * it will mess the state of the cpu buffer. */ if (atomic_read(&buffer_a->resizing)) goto out_dec; if (atomic_read(&buffer_b->resizing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; ret = 0; out_dec: atomic_dec(&cpu_buffer_a->record_disabled); atomic_dec(&cpu_buffer_b->record_disabled); out: return ret; } EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ /** * ring_buffer_alloc_read_page - allocate a page to read from buffer * @buffer: the buffer to allocate for. * @cpu: the cpu buffer to allocate. * * This function is used in conjunction with ring_buffer_read_page. * When reading a full page from the ring buffer, these functions * can be used to speed up the process. The calling function should * allocate a few pages first with this function. Then when it * needs to get pages from the ring buffer, it passes the result * of this function into ring_buffer_read_page, which will swap * the page that was allocated, with the read page of the buffer. * * Returns: * The page allocated, or ERR_PTR */ struct buffer_data_read_page * ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_data_read_page *bpage = NULL; unsigned long flags; struct page *page; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return ERR_PTR(-ENODEV); bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); if (!bpage) return ERR_PTR(-ENOMEM); bpage->order = buffer->subbuf_order; cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); arch_spin_lock(&cpu_buffer->lock); if (cpu_buffer->free_page) { bpage->data = cpu_buffer->free_page; cpu_buffer->free_page = NULL; } arch_spin_unlock(&cpu_buffer->lock); local_irq_restore(flags); if (bpage->data) goto out; page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, cpu_buffer->buffer->subbuf_order); if (!page) { kfree(bpage); return ERR_PTR(-ENOMEM); } bpage->data = page_address(page); out: rb_init_page(bpage->data); return bpage; } EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); /** * ring_buffer_free_read_page - free an allocated read page * @buffer: the buffer the page was allocate for * @cpu: the cpu buffer the page came from * @data_page: the page to free * * Free a page allocated from ring_buffer_alloc_read_page. */ void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, struct buffer_data_read_page *data_page) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_data_page *bpage = data_page->data; struct page *page = virt_to_page(bpage); unsigned long flags; if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) return; cpu_buffer = buffer->buffers[cpu]; /* * If the page is still in use someplace else, or order of the page * is different from the subbuffer order of the buffer - * we can't reuse it */ if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) goto out; local_irq_save(flags); arch_spin_lock(&cpu_buffer->lock); if (!cpu_buffer->free_page) { cpu_buffer->free_page = bpage; bpage = NULL; } arch_spin_unlock(&cpu_buffer->lock); local_irq_restore(flags); out: free_pages((unsigned long)bpage, data_page->order); kfree(data_page); } EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); /** * ring_buffer_read_page - extract a page from the ring buffer * @buffer: buffer to extract from * @data_page: the page to use allocated from ring_buffer_alloc_read_page * @len: amount to extract * @cpu: the cpu of the buffer to extract * @full: should the extraction only happen when the page is full. * * This function will pull out a page from the ring buffer and consume it. * @data_page must be the address of the variable that was returned * from ring_buffer_alloc_read_page. This is because the page might be used * to swap with a page in the ring buffer. * * for example: * rpage = ring_buffer_alloc_read_page(buffer, cpu); * if (IS_ERR(rpage)) * return PTR_ERR(rpage); * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); * if (ret >= 0) * process_page(ring_buffer_read_page_data(rpage), ret); * ring_buffer_free_read_page(buffer, cpu, rpage); * * When @full is set, the function will not return true unless * the writer is off the reader page. * * Note: it is up to the calling functions to handle sleeps and wakeups. * The ring buffer can be used anywhere in the kernel and can not * blindly call wake_up. The layer that uses the ring buffer must be * responsible for that. * * Returns: * >=0 if data has been transferred, returns the offset of consumed data. * <0 if no data has been transferred. */ int ring_buffer_read_page(struct trace_buffer *buffer, struct buffer_data_read_page *data_page, size_t len, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; struct ring_buffer_event *event; struct buffer_data_page *bpage; struct buffer_page *reader; unsigned long missed_events; unsigned long flags; unsigned int commit; unsigned int read; u64 save_timestamp; int ret = -1; if (!cpumask_test_cpu(cpu, buffer->cpumask)) goto out; /* * If len is not big enough to hold the page header, then * we can not copy anything. */ if (len <= BUF_PAGE_HDR_SIZE) goto out; len -= BUF_PAGE_HDR_SIZE; if (!data_page || !data_page->data) goto out; if (data_page->order != buffer->subbuf_order) goto out; bpage = data_page->data; if (!bpage) goto out; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); reader = rb_get_reader_page(cpu_buffer); if (!reader) goto out_unlock; event = rb_reader_event(cpu_buffer); read = reader->read; commit = rb_page_size(reader); /* Check if any events were dropped */ missed_events = cpu_buffer->lost_events; /* * If this page has been partially read or * if len is not big enough to read the rest of the page or * a writer is still on the page, then * we must copy the data from the page to the buffer. * Otherwise, we can simply swap the page with the one passed in. */ if (read || (len < (commit - read)) || cpu_buffer->reader_page == cpu_buffer->commit_page || cpu_buffer->mapped) { struct buffer_data_page *rpage = cpu_buffer->reader_page->page; unsigned int rpos = read; unsigned int pos = 0; unsigned int size; /* * If a full page is expected, this can still be returned * if there's been a previous partial read and the * rest of the page can be read and the commit page is off * the reader page. */ if (full && (!read || (len < (commit - read)) || cpu_buffer->reader_page == cpu_buffer->commit_page)) goto out_unlock; if (len > (commit - read)) len = (commit - read); /* Always keep the time extend and data together */ size = rb_event_ts_length(event); if (len < size) goto out_unlock; /* save the current timestamp, since the user will need it */ save_timestamp = cpu_buffer->read_stamp; /* Need to copy one event at a time */ do { /* We need the size of one event, because * rb_advance_reader only advances by one event, * whereas rb_event_ts_length may include the size of * one or two events. * We have already ensured there's enough space if this * is a time extend. */ size = rb_event_length(event); memcpy(bpage->data + pos, rpage->data + rpos, size); len -= size; rb_advance_reader(cpu_buffer); rpos = reader->read; pos += size; if (rpos >= commit) break; event = rb_reader_event(cpu_buffer); /* Always keep the time extend and data together */ size = rb_event_ts_length(event); } while (len >= size); /* update bpage */ local_set(&bpage->commit, pos); bpage->time_stamp = save_timestamp; /* we copied everything to the beginning */ read = 0; } else { /* update the entry counter */ cpu_buffer->read += rb_page_entries(reader); cpu_buffer->read_bytes += rb_page_size(reader); /* swap the pages */ rb_init_page(bpage); bpage = reader->page; reader->page = data_page->data; local_set(&reader->write, 0); local_set(&reader->entries, 0); reader->read = 0; data_page->data = bpage; /* * Use the real_end for the data size, * This gives us a chance to store the lost events * on the page. */ if (reader->real_end) local_set(&bpage->commit, reader->real_end); } ret = read; cpu_buffer->lost_events = 0; commit = local_read(&bpage->commit); /* * Set a flag in the commit field if we lost events */ if (missed_events) { /* If there is room at the end of the page to save the * missed events, then record it there. */ if (buffer->subbuf_size - commit >= sizeof(missed_events)) { memcpy(&bpage->data[commit], &missed_events, sizeof(missed_events)); local_add(RB_MISSED_STORED, &bpage->commit); commit += sizeof(missed_events); } local_add(RB_MISSED_EVENTS, &bpage->commit); } /* * This page may be off to user land. Zero it out here. */ if (commit < buffer->subbuf_size) memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); out_unlock: raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); out: return ret; } EXPORT_SYMBOL_GPL(ring_buffer_read_page); /** * ring_buffer_read_page_data - get pointer to the data in the page. * @page: the page to get the data from * * Returns pointer to the actual data in this page. */ void *ring_buffer_read_page_data(struct buffer_data_read_page *page) { return page->data; } EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); /** * ring_buffer_subbuf_size_get - get size of the sub buffer. * @buffer: the buffer to get the sub buffer size from * * Returns size of the sub buffer, in bytes. */ int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) { return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; } EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); /** * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. * @buffer: The ring_buffer to get the system sub page order from * * By default, one ring buffer sub page equals to one system page. This parameter * is configurable, per ring buffer. The size of the ring buffer sub page can be * extended, but must be an order of system page size. * * Returns the order of buffer sub page size, in system pages: * 0 means the sub buffer size is 1 system page and so forth. * In case of an error < 0 is returned. */ int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) { if (!buffer) return -EINVAL; return buffer->subbuf_order; } EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); /** * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. * @buffer: The ring_buffer to set the new page size. * @order: Order of the system pages in one sub buffer page * * By default, one ring buffer pages equals to one system page. This API can be * used to set new size of the ring buffer page. The size must be order of * system page size, that's why the input parameter @order is the order of * system pages that are allocated for one ring buffer page: * 0 - 1 system page * 1 - 2 system pages * 3 - 4 system pages * ... * * Returns 0 on success or < 0 in case of an error. */ int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *bpage, *tmp; int old_order, old_size; int nr_pages; int psize; int err; int cpu; if (!buffer || order < 0) return -EINVAL; if (buffer->subbuf_order == order) return 0; psize = (1 << order) * PAGE_SIZE; if (psize <= BUF_PAGE_HDR_SIZE) return -EINVAL; /* Size of a subbuf cannot be greater than the write counter */ if (psize > RB_WRITE_MASK + 1) return -EINVAL; old_order = buffer->subbuf_order; old_size = buffer->subbuf_size; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); atomic_inc(&buffer->record_disabled); /* Make sure all commits have finished */ synchronize_rcu(); buffer->subbuf_order = order; buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; /* Make sure all new buffers are allocated, before deleting the old ones */ for_each_buffer_cpu(buffer, cpu) { if (!cpumask_test_cpu(cpu, buffer->cpumask)) continue; cpu_buffer = buffer->buffers[cpu]; if (cpu_buffer->mapped) { err = -EBUSY; goto error; } /* Update the number of pages to match the new size */ nr_pages = old_size * buffer->buffers[cpu]->nr_pages; nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); /* we need a minimum of two pages */ if (nr_pages < 2) nr_pages = 2; cpu_buffer->nr_pages_to_update = nr_pages; /* Include the reader page */ nr_pages++; /* Allocate the new size buffer */ INIT_LIST_HEAD(&cpu_buffer->new_pages); if (__rb_allocate_pages(cpu_buffer, nr_pages, &cpu_buffer->new_pages)) { /* not enough memory for new pages */ err = -ENOMEM; goto error; } } for_each_buffer_cpu(buffer, cpu) { if (!cpumask_test_cpu(cpu, buffer->cpumask)) continue; cpu_buffer = buffer->buffers[cpu]; /* Clear the head bit to make the link list normal to read */ rb_head_page_deactivate(cpu_buffer); /* Now walk the list and free all the old sub buffers */ list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } /* The above loop stopped an the last page needing to be freed */ bpage = list_entry(cpu_buffer->pages, struct buffer_page, list); free_buffer_page(bpage); /* Free the current reader page */ free_buffer_page(cpu_buffer->reader_page); /* One page was allocated for the reader page */ cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, struct buffer_page, list); list_del_init(&cpu_buffer->reader_page->list); /* The cpu_buffer pages are a link list with no head */ cpu_buffer->pages = cpu_buffer->new_pages.next; cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev; cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next; /* Clear the new_pages list */ INIT_LIST_HEAD(&cpu_buffer->new_pages); cpu_buffer->head_page = list_entry(cpu_buffer->pages, struct buffer_page, list); cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; cpu_buffer->nr_pages_to_update = 0; free_pages((unsigned long)cpu_buffer->free_page, old_order); cpu_buffer->free_page = NULL; rb_head_page_activate(cpu_buffer); rb_check_pages(cpu_buffer); } atomic_dec(&buffer->record_disabled); mutex_unlock(&buffer->mutex); return 0; error: buffer->subbuf_order = old_order; buffer->subbuf_size = old_size; atomic_dec(&buffer->record_disabled); mutex_unlock(&buffer->mutex); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (!cpu_buffer->nr_pages_to_update) continue; list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } } return err; } EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) { struct page *page; if (cpu_buffer->meta_page) return 0; page = alloc_page(GFP_USER | __GFP_ZERO); if (!page) return -ENOMEM; cpu_buffer->meta_page = page_to_virt(page); return 0; } static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long addr = (unsigned long)cpu_buffer->meta_page; free_page(addr); cpu_buffer->meta_page = NULL; } static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, unsigned long *subbuf_ids) { struct trace_buffer_meta *meta = cpu_buffer->meta_page; unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; struct buffer_page *first_subbuf, *subbuf; int id = 0; subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; cpu_buffer->reader_page->id = id++; first_subbuf = subbuf = rb_set_head_page(cpu_buffer); do { if (WARN_ON(id >= nr_subbufs)) break; subbuf_ids[id] = (unsigned long)subbuf->page; subbuf->id = id; rb_inc_page(&subbuf); id++; } while (subbuf != first_subbuf); /* install subbuf ID to kern VA translation */ cpu_buffer->subbuf_ids = subbuf_ids; meta->meta_page_size = PAGE_SIZE; meta->meta_struct_len = sizeof(*meta); meta->nr_subbufs = nr_subbufs; meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; rb_update_meta_page(cpu_buffer); } static struct ring_buffer_per_cpu * rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return ERR_PTR(-EINVAL); cpu_buffer = buffer->buffers[cpu]; mutex_lock(&cpu_buffer->mapping_lock); if (!cpu_buffer->mapped) { mutex_unlock(&cpu_buffer->mapping_lock); return ERR_PTR(-ENODEV); } return cpu_buffer; } static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) { mutex_unlock(&cpu_buffer->mapping_lock); } /* * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need * to be set-up or torn-down. */ static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, bool inc) { unsigned long flags; lockdep_assert_held(&cpu_buffer->mapping_lock); if (inc && cpu_buffer->mapped == UINT_MAX) return -EBUSY; if (WARN_ON(!inc && cpu_buffer->mapped == 0)) return -EINVAL; mutex_lock(&cpu_buffer->buffer->mutex); raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); if (inc) cpu_buffer->mapped++; else cpu_buffer->mapped--; raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); mutex_unlock(&cpu_buffer->buffer->mutex); return 0; } /* * +--------------+ pgoff == 0 * | meta page | * +--------------+ pgoff == 1 * | subbuffer 0 | * | | * +--------------+ pgoff == (1 + (1 << subbuf_order)) * | subbuffer 1 | * | | * ... */ #ifdef CONFIG_MMU static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, struct vm_area_struct *vma) { unsigned long nr_subbufs, nr_pages, vma_pages, pgoff = vma->vm_pgoff; unsigned int subbuf_pages, subbuf_order; struct page **pages; int p = 0, s = 0; int err; /* Refuse MP_PRIVATE or writable mappings */ if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || !(vma->vm_flags & VM_MAYSHARE)) return -EPERM; /* * Make sure the mapping cannot become writable later. Also tell the VM * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). */ vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE); lockdep_assert_held(&cpu_buffer->mapping_lock); subbuf_order = cpu_buffer->buffer->subbuf_order; subbuf_pages = 1 << subbuf_order; nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ nr_pages = ((nr_subbufs) << subbuf_order) - pgoff + 1; /* + meta-page */ vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; if (!vma_pages || vma_pages > nr_pages) return -EINVAL; nr_pages = vma_pages; pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); if (!pages) return -ENOMEM; if (!pgoff) { pages[p++] = virt_to_page(cpu_buffer->meta_page); /* * TODO: Align sub-buffers on their size, once * vm_insert_pages() supports the zero-page. */ } else { /* Skip the meta-page */ pgoff--; if (pgoff % subbuf_pages) { err = -EINVAL; goto out; } s += pgoff / subbuf_pages; } while (p < nr_pages) { struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); int off = 0; if (WARN_ON_ONCE(s >= nr_subbufs)) { err = -EINVAL; goto out; } for (; off < (1 << (subbuf_order)); off++, page++) { if (p >= nr_pages) break; pages[p++] = page; } s++; } err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); out: kfree(pages); return err; } #else static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, struct vm_area_struct *vma) { return -EOPNOTSUPP; } #endif int ring_buffer_map(struct trace_buffer *buffer, int cpu, struct vm_area_struct *vma) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags, *subbuf_ids; int err = 0; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return -EINVAL; cpu_buffer = buffer->buffers[cpu]; mutex_lock(&cpu_buffer->mapping_lock); if (cpu_buffer->mapped) { err = __rb_map_vma(cpu_buffer, vma); if (!err) err = __rb_inc_dec_mapped(cpu_buffer, true); mutex_unlock(&cpu_buffer->mapping_lock); return err; } /* prevent another thread from changing buffer/sub-buffer sizes */ mutex_lock(&buffer->mutex); err = rb_alloc_meta_page(cpu_buffer); if (err) goto unlock; /* subbuf_ids include the reader while nr_pages does not */ subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); if (!subbuf_ids) { rb_free_meta_page(cpu_buffer); err = -ENOMEM; goto unlock; } atomic_inc(&cpu_buffer->resize_disabled); /* * Lock all readers to block any subbuf swap until the subbuf IDs are * assigned. */ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); err = __rb_map_vma(cpu_buffer, vma); if (!err) { raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); cpu_buffer->mapped = 1; raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } else { kfree(cpu_buffer->subbuf_ids); cpu_buffer->subbuf_ids = NULL; rb_free_meta_page(cpu_buffer); } unlock: mutex_unlock(&buffer->mutex); mutex_unlock(&cpu_buffer->mapping_lock); return err; } int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; int err = 0; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return -EINVAL; cpu_buffer = buffer->buffers[cpu]; mutex_lock(&cpu_buffer->mapping_lock); if (!cpu_buffer->mapped) { err = -ENODEV; goto out; } else if (cpu_buffer->mapped > 1) { __rb_inc_dec_mapped(cpu_buffer, false); goto out; } mutex_lock(&buffer->mutex); raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); cpu_buffer->mapped = 0; raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); kfree(cpu_buffer->subbuf_ids); cpu_buffer->subbuf_ids = NULL; rb_free_meta_page(cpu_buffer); atomic_dec(&cpu_buffer->resize_disabled); mutex_unlock(&buffer->mutex); out: mutex_unlock(&cpu_buffer->mapping_lock); return err; } int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *reader; unsigned long missed_events; unsigned long reader_size; unsigned long flags; cpu_buffer = rb_get_mapped_buffer(buffer, cpu); if (IS_ERR(cpu_buffer)) return (int)PTR_ERR(cpu_buffer); raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); consume: if (rb_per_cpu_empty(cpu_buffer)) goto out; reader_size = rb_page_size(cpu_buffer->reader_page); /* * There are data to be read on the current reader page, we can * return to the caller. But before that, we assume the latter will read * everything. Let's update the kernel reader accordingly. */ if (cpu_buffer->reader_page->read < reader_size) { while (cpu_buffer->reader_page->read < reader_size) rb_advance_reader(cpu_buffer); goto out; } reader = rb_get_reader_page(cpu_buffer); if (WARN_ON(!reader)) goto out; /* Check if any events were dropped */ missed_events = cpu_buffer->lost_events; if (cpu_buffer->reader_page != cpu_buffer->commit_page) { if (missed_events) { struct buffer_data_page *bpage = reader->page; unsigned int commit; /* * Use the real_end for the data size, * This gives us a chance to store the lost events * on the page. */ if (reader->real_end) local_set(&bpage->commit, reader->real_end); /* * If there is room at the end of the page to save the * missed events, then record it there. */ commit = rb_page_size(reader); if (buffer->subbuf_size - commit >= sizeof(missed_events)) { memcpy(&bpage->data[commit], &missed_events, sizeof(missed_events)); local_add(RB_MISSED_STORED, &bpage->commit); } local_add(RB_MISSED_EVENTS, &bpage->commit); } } else { /* * There really shouldn't be any missed events if the commit * is on the reader page. */ WARN_ON_ONCE(missed_events); } cpu_buffer->lost_events = 0; goto consume; out: /* Some archs do not have data cache coherency between kernel and user-space */ flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page)); rb_update_meta_page(cpu_buffer); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); rb_put_mapped_buffer(cpu_buffer); return 0; } /* * We only allocate new buffers, never free them if the CPU goes down. * If we were to free the buffer, then the user would lose any trace that was in * the buffer. */ int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) { struct trace_buffer *buffer; long nr_pages_same; int cpu_i; unsigned long nr_pages; buffer = container_of(node, struct trace_buffer, node); if (cpumask_test_cpu(cpu, buffer->cpumask)) return 0; nr_pages = 0; nr_pages_same = 1; /* check if all cpu sizes are same */ for_each_buffer_cpu(buffer, cpu_i) { /* fill in the size from first enabled cpu */ if (nr_pages == 0) nr_pages = buffer->buffers[cpu_i]->nr_pages; if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { nr_pages_same = 0; break; } } /* allocate minimum pages, user can later expand it */ if (!nr_pages_same) nr_pages = 2; buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); if (!buffer->buffers[cpu]) { WARN(1, "failed to allocate ring buffer on CPU %u\n", cpu); return -ENOMEM; } smp_wmb(); cpumask_set_cpu(cpu, buffer->cpumask); return 0; } #ifdef CONFIG_RING_BUFFER_STARTUP_TEST /* * This is a basic integrity check of the ring buffer. * Late in the boot cycle this test will run when configured in. * It will kick off a thread per CPU that will go into a loop * writing to the per cpu ring buffer various sizes of data. * Some of the data will be large items, some small. * * Another thread is created that goes into a spin, sending out * IPIs to the other CPUs to also write into the ring buffer. * this is to test the nesting ability of the buffer. * * Basic stats are recorded and reported. If something in the * ring buffer should happen that's not expected, a big warning * is displayed and all ring buffers are disabled. */ static struct task_struct *rb_threads[NR_CPUS] __initdata; struct rb_test_data { struct trace_buffer *buffer; unsigned long events; unsigned long bytes_written; unsigned long bytes_alloc; unsigned long bytes_dropped; unsigned long events_nested; unsigned long bytes_written_nested; unsigned long bytes_alloc_nested; unsigned long bytes_dropped_nested; int min_size_nested; int max_size_nested; int max_size; int min_size; int cpu; int cnt; }; static struct rb_test_data rb_data[NR_CPUS] __initdata; /* 1 meg per cpu */ #define RB_TEST_BUFFER_SIZE 1048576 static char rb_string[] __initdata = "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; static bool rb_test_started __initdata; struct rb_item { int size; char str[]; }; static __init int rb_write_something(struct rb_test_data *data, bool nested) { struct ring_buffer_event *event; struct rb_item *item; bool started; int event_len; int size; int len; int cnt; /* Have nested writes different that what is written */ cnt = data->cnt + (nested ? 27 : 0); /* Multiply cnt by ~e, to make some unique increment */ size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); len = size + sizeof(struct rb_item); started = rb_test_started; /* read rb_test_started before checking buffer enabled */ smp_rmb(); event = ring_buffer_lock_reserve(data->buffer, len); if (!event) { /* Ignore dropped events before test starts. */ if (started) { if (nested) data->bytes_dropped += len; else data->bytes_dropped_nested += len; } return len; } event_len = ring_buffer_event_length(event); if (RB_WARN_ON(data->buffer, event_len < len)) goto out; item = ring_buffer_event_data(event); item->size = size; memcpy(item->str, rb_string, size); if (nested) { data->bytes_alloc_nested += event_len; data->bytes_written_nested += len; data->events_nested++; if (!data->min_size_nested || len < data->min_size_nested) data->min_size_nested = len; if (len > data->max_size_nested) data->max_size_nested = len; } else { data->bytes_alloc += event_len; data->bytes_written += len; data->events++; if (!data->min_size || len < data->min_size) data->max_size = len; if (len > data->max_size) data->max_size = len; } out: ring_buffer_unlock_commit(data->buffer); return 0; } static __init int rb_test(void *arg) { struct rb_test_data *data = arg; while (!kthread_should_stop()) { rb_write_something(data, false); data->cnt++; set_current_state(TASK_INTERRUPTIBLE); /* Now sleep between a min of 100-300us and a max of 1ms */ usleep_range(((data->cnt % 3) + 1) * 100, 1000); } return 0; } static __init void rb_ipi(void *ignore) { struct rb_test_data *data; int cpu = smp_processor_id(); data = &rb_data[cpu]; rb_write_something(data, true); } static __init int rb_hammer_test(void *arg) { while (!kthread_should_stop()) { /* Send an IPI to all cpus to write data! */ smp_call_function(rb_ipi, NULL, 1); /* No sleep, but for non preempt, let others run */ schedule(); } return 0; } static __init int test_ringbuffer(void) { struct task_struct *rb_hammer; struct trace_buffer *buffer; int cpu; int ret = 0; if (security_locked_down(LOCKDOWN_TRACEFS)) { pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); return 0; } pr_info("Running ring buffer tests...\n"); buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); if (WARN_ON(!buffer)) return 0; /* Disable buffer so that threads can't write to it yet */ ring_buffer_record_off(buffer); for_each_online_cpu(cpu) { rb_data[cpu].buffer = buffer; rb_data[cpu].cpu = cpu; rb_data[cpu].cnt = cpu; rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], cpu, "rbtester/%u"); if (WARN_ON(IS_ERR(rb_threads[cpu]))) { pr_cont("FAILED\n"); ret = PTR_ERR(rb_threads[cpu]); goto out_free; } } /* Now create the rb hammer! */ rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); if (WARN_ON(IS_ERR(rb_hammer))) { pr_cont("FAILED\n"); ret = PTR_ERR(rb_hammer); goto out_free; } ring_buffer_record_on(buffer); /* * Show buffer is enabled before setting rb_test_started. * Yes there's a small race window where events could be * dropped and the thread wont catch it. But when a ring * buffer gets enabled, there will always be some kind of * delay before other CPUs see it. Thus, we don't care about * those dropped events. We care about events dropped after * the threads see that the buffer is active. */ smp_wmb(); rb_test_started = true; set_current_state(TASK_INTERRUPTIBLE); /* Just run for 10 seconds */; schedule_timeout(10 * HZ); kthread_stop(rb_hammer); out_free: for_each_online_cpu(cpu) { if (!rb_threads[cpu]) break; kthread_stop(rb_threads[cpu]); } if (ret) { ring_buffer_free(buffer); return ret; } /* Report! */ pr_info("finished\n"); for_each_online_cpu(cpu) { struct ring_buffer_event *event; struct rb_test_data *data = &rb_data[cpu]; struct rb_item *item; unsigned long total_events; unsigned long total_dropped; unsigned long total_written; unsigned long total_alloc; unsigned long total_read = 0; unsigned long total_size = 0; unsigned long total_len = 0; unsigned long total_lost = 0; unsigned long lost; int big_event_size; int small_event_size; ret = -1; total_events = data->events + data->events_nested; total_written = data->bytes_written + data->bytes_written_nested; total_alloc = data->bytes_alloc + data->bytes_alloc_nested; total_dropped = data->bytes_dropped + data->bytes_dropped_nested; big_event_size = data->max_size + data->max_size_nested; small_event_size = data->min_size + data->min_size_nested; pr_info("CPU %d:\n", cpu); pr_info(" events: %ld\n", total_events); pr_info(" dropped bytes: %ld\n", total_dropped); pr_info(" alloced bytes: %ld\n", total_alloc); pr_info(" written bytes: %ld\n", total_written); pr_info(" biggest event: %d\n", big_event_size); pr_info(" smallest event: %d\n", small_event_size); if (RB_WARN_ON(buffer, total_dropped)) break; ret = 0; while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { total_lost += lost; item = ring_buffer_event_data(event); total_len += ring_buffer_event_length(event); total_size += item->size + sizeof(struct rb_item); if (memcmp(&item->str[0], rb_string, item->size) != 0) { pr_info("FAILED!\n"); pr_info("buffer had: %.*s\n", item->size, item->str); pr_info("expected: %.*s\n", item->size, rb_string); RB_WARN_ON(buffer, 1); ret = -1; break; } total_read++; } if (ret) break; ret = -1; pr_info(" read events: %ld\n", total_read); pr_info(" lost events: %ld\n", total_lost); pr_info(" total events: %ld\n", total_lost + total_read); pr_info(" recorded len bytes: %ld\n", total_len); pr_info(" recorded size bytes: %ld\n", total_size); if (total_lost) { pr_info(" With dropped events, record len and size may not match\n" " alloced and written from above\n"); } else { if (RB_WARN_ON(buffer, total_len != total_alloc || total_size != total_written)) break; } if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) break; ret = 0; } if (!ret) pr_info("Ring buffer PASSED!\n"); ring_buffer_free(buffer); return 0; } late_initcall(test_ringbuffer); #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask_types.h> #include <linux/rcupdate.h> #include <linux/workqueue_types.h> /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum work_bits { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_INACTIVE_BIT, /* work item is inactive */ WORK_STRUCT_PWQ_BIT, /* data points to pwq */ WORK_STRUCT_LINKED_BIT, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT, /* static initializer (debugobjects) */ #endif WORK_STRUCT_FLAG_BITS, /* color for workqueue flushing */ WORK_STRUCT_COLOR_SHIFT = WORK_STRUCT_FLAG_BITS, WORK_STRUCT_COLOR_BITS = 4, /* * When WORK_STRUCT_PWQ is set, reserve 8 bits off of pwq pointer w/ * debugobjects turned off. This makes pwqs aligned to 256 bytes (512 * bytes w/ DEBUG_OBJECTS_WORK) and allows 16 workqueue flush colors. * * MSB * [ pwq pointer ] [ flush color ] [ STRUCT flags ] * 4 bits 4 or 5 bits */ WORK_STRUCT_PWQ_SHIFT = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* * data contains off-queue information when !WORK_STRUCT_PWQ. * * MSB * [ pool ID ] [ disable depth ] [ OFFQ flags ] [ STRUCT flags ] * 16 bits 1 bit 4 or 5 bits */ WORK_OFFQ_FLAG_SHIFT = WORK_STRUCT_FLAG_BITS, WORK_OFFQ_BH_BIT = WORK_OFFQ_FLAG_SHIFT, WORK_OFFQ_FLAG_END, WORK_OFFQ_FLAG_BITS = WORK_OFFQ_FLAG_END - WORK_OFFQ_FLAG_SHIFT, WORK_OFFQ_DISABLE_SHIFT = WORK_OFFQ_FLAG_SHIFT + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_DISABLE_BITS = 16, /* * When a work item is off queue, the high bits encode off-queue flags * and the last pool it was on. Cap pool ID to 31 bits and use the * highest number to indicate that no pool is associated. */ WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_DISABLE_SHIFT + WORK_OFFQ_DISABLE_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, }; enum work_flags { WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_INACTIVE = 1 << WORK_STRUCT_INACTIVE_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif }; enum wq_misc_consts { WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS), /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 32, }; /* Convenience constants - of type 'unsigned long', not 'enum'! */ #define WORK_OFFQ_BH (1ul << WORK_OFFQ_BH_BIT) #define WORK_OFFQ_FLAG_MASK (((1ul << WORK_OFFQ_FLAG_BITS) - 1) << WORK_OFFQ_FLAG_SHIFT) #define WORK_OFFQ_DISABLE_MASK (((1ul << WORK_OFFQ_DISABLE_BITS) - 1) << WORK_OFFQ_DISABLE_SHIFT) #define WORK_OFFQ_POOL_NONE ((1ul << WORK_OFFQ_POOL_BITS) - 1) #define WORK_STRUCT_NO_POOL (WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT) #define WORK_STRUCT_PWQ_MASK (~((1ul << WORK_STRUCT_PWQ_SHIFT) - 1)) #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; enum wq_affn_scope { WQ_AFFN_DFL, /* use system default */ WQ_AFFN_CPU, /* one pod per CPU */ WQ_AFFN_SMT, /* one pod poer SMT */ WQ_AFFN_CACHE, /* one pod per LLC */ WQ_AFFN_NUMA, /* one pod per NUMA node */ WQ_AFFN_SYSTEM, /* one pod across the whole system */ WQ_AFFN_NR_TYPES, }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs * * Work items in this workqueue are affine to these CPUs and not allowed * to execute on other CPUs. A pool serving a workqueue must have the * same @cpumask. */ cpumask_var_t cpumask; /** * @__pod_cpumask: internal attribute used to create per-pod pools * * Internal use only. * * Per-pod unbound worker pools are used to improve locality. Always a * subset of ->cpumask. A workqueue can be associated with multiple * worker pools with disjoint @__pod_cpumask's. Whether the enforcement * of a pool's @__pod_cpumask is strict depends on @affn_strict. */ cpumask_var_t __pod_cpumask; /** * @affn_strict: affinity scope is strict * * If clear, workqueue will make a best-effort attempt at starting the * worker inside @__pod_cpumask but the scheduler is free to migrate it * outside. * * If set, workers are only allowed to run inside @__pod_cpumask. */ bool affn_strict; /* * Below fields aren't properties of a worker_pool. They only modify how * :c:func:`apply_workqueue_attrs` select pools and thus don't * participate in pool hash calculations or equality comparisons. * * If @affn_strict is set, @cpumask isn't a property of a worker_pool * either. */ /** * @affn_scope: unbound CPU affinity scope * * CPU pods are used to improve execution locality of unbound work * items. There are multiple pod types, one for each wq_affn_scope, and * every CPU in the system belongs to one pod in every pod type. CPUs * that belong to the same pod share the worker pool. For example, * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker * pool for each NUMA node. */ enum wq_affn_scope affn_scope; /** * @ordered: work items must be executed one by one in queueing order */ bool ordered; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define __INIT_WORK(_work, _func, _onstack) \ do { \ static __maybe_unused struct lock_class_key __key; \ \ __INIT_WORK_KEY(_work, _func, _onstack, &__key); \ } while (0) #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define INIT_WORK_ONSTACK_KEY(_work, _func, _key) \ __INIT_WORK_KEY((_work), (_func), 1, _key) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum wq_flags { WQ_BH = 1 << 0, /* execute in bottom half (softirq) context */ WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * execute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DESTROYING = 1 << 15, /* internal: workqueue is destroying */ __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ /* BH wq only allows the following flags */ __WQ_BH_ALLOWS = WQ_BH | WQ_HIGHPRI, }; enum wq_consts { WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_UNBOUND_MAX_ACTIVE = WQ_MAX_ACTIVE, WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, /* * Per-node default cap on min_active. Unless explicitly set, min_active * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see * workqueue_struct->min_active definition. */ WQ_DFL_MIN_ACTIVE = 8, }; /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. * * system_bh[_highpri]_wq are convenience interface to softirq. BH work items * are executed in the queueing CPU's BH context in the queueing order. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; extern struct workqueue_struct *system_bh_wq; extern struct workqueue_struct *system_bh_highpri_wq; void workqueue_softirq_action(bool highpri); void workqueue_softirq_dead(unsigned int cpu); /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * @...: args for @fmt * * For a per-cpu workqueue, @max_active limits the number of in-flight work * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be * executing at most one work item for the workqueue. * * For unbound workqueues, @max_active limits the number of in-flight work items * for the whole system. e.g. @max_active of 16 indicates that that there can be * at most 16 work items executing for the workqueue in the whole system. * * As sharing the same active counter for an unbound workqueue across multiple * NUMA nodes can be expensive, @max_active is distributed to each NUMA node * according to the proportion of the number of online CPUs and enforced * independently. * * Depending on online CPU distribution, a node may end up with per-node * max_active which is significantly lower than @max_active, which can lead to * deadlocks if the per-node concurrency limit is lower than the maximum number * of interdependent work items for the workqueue. * * To guarantee forward progress regardless of online CPU distribution, the * concurrency limit on every node is guaranteed to be equal to or greater than * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means * that the sum of per-node max_active's may be larger than @max_active. * * For detailed information on %WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ __printf(1, 4) struct workqueue_struct * alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) #define from_work(var, callback_work, work_fieldname) \ container_of(callback_work, typeof(*var), work_fieldname) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void __flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool disable_work(struct work_struct *work); extern bool disable_work_sync(struct work_struct *work); extern bool enable_work(struct work_struct *work); extern bool disable_delayed_work(struct delayed_work *dwork); extern bool disable_delayed_work_sync(struct delayed_work *dwork); extern bool enable_delayed_work(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern void workqueue_set_min_active(struct workqueue_struct *wq, int min_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_all_workqueues(void); extern void show_freezable_workqueues(void); extern void show_one_workqueue(struct workqueue_struct *wq); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * enable_and_queue_work - Enable and queue a work item on a specific workqueue * @wq: The target workqueue * @work: The work item to be enabled and queued * * This function combines the operations of enable_work() and queue_work(), * providing a convenient way to enable and queue a work item in a single call. * It invokes enable_work() on @work and then queues it if the disable depth * reached 0. Returns %true if the disable depth reached 0 and @work is queued, * and %false otherwise. * * Note that @work is always queued when disable depth reaches zero. If the * desired behavior is queueing only if certain events took place while @work is * disabled, the user should implement the necessary state tracking and perform * explicit conditional queueing after enable_work(). */ static inline bool enable_and_queue_work(struct workqueue_struct *wq, struct work_struct *work) { if (enable_work(work)) { queue_work(wq, work); return true; } return false; } /* * Detect attempt to flush system-wide workqueues at compile time when possible. * Warn attempt to flush system-wide workqueues at runtime. * * See https://lkml.kernel.org/r/49925af7-78a8-a3dd-bce6-cfc02e1a9236@I-love.SAKURA.ne.jp * for reasons and steps for converting system-wide workqueues into local workqueues. */ extern void __warn_flushing_systemwide_wq(void) __compiletime_warning("Please avoid flushing system-wide workqueues."); /* Please stop using this function, for this function will be removed in near future. */ #define flush_scheduled_work() \ ({ \ __warn_flushing_systemwide_wq(); \ __flush_workqueue(system_wq); \ }) #define flush_workqueue(wq) \ ({ \ struct workqueue_struct *_wq = (wq); \ \ if ((__builtin_constant_p(_wq == system_wq) && \ _wq == system_wq) || \ (__builtin_constant_p(_wq == system_highpri_wq) && \ _wq == system_highpri_wq) || \ (__builtin_constant_p(_wq == system_long_wq) && \ _wq == system_long_wq) || \ (__builtin_constant_p(_wq == system_unbound_wq) && \ _wq == system_unbound_wq) || \ (__builtin_constant_p(_wq == system_freezable_wq) && \ _wq == system_freezable_wq) || \ (__builtin_constant_p(_wq == system_power_efficient_wq) && \ _wq == system_power_efficient_wq) || \ (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \ _wq == system_freezable_power_efficient_wq)) \ __warn_flushing_systemwide_wq(); \ __flush_workqueue(_wq); \ }) /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu_key(int cpu, long (*fn)(void *), void *arg, struct lock_class_key *key); /* * A new key is defined for each caller to make sure the work * associated with the function doesn't share its locking class. */ #define work_on_cpu(_cpu, _fn, _arg) \ ({ \ static struct lock_class_key __key; \ \ work_on_cpu_key(_cpu, _fn, _arg, &__key); \ }) long work_on_cpu_safe_key(int cpu, long (*fn)(void *), void *arg, struct lock_class_key *key); /* * A new key is defined for each caller to make sure the work * associated with the function doesn't share its locking class. */ #define work_on_cpu_safe(_cpu, _fn, _arg) \ ({ \ static struct lock_class_key __key; \ \ work_on_cpu_safe_key(_cpu, _fn, _arg, &__key); \ }) #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); void __init workqueue_init_topology(void); #endif
11 11 8 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005-2006 Micronas USA Inc. */ #include <linux/module.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/unistd.h> #include <linux/time.h> #include <linux/mm.h> #include <linux/vmalloc.h> #include <linux/device.h> #include <linux/i2c.h> #include <linux/firmware.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <media/tuner.h> #include <media/v4l2-common.h> #include <media/v4l2-event.h> #include "go7007-priv.h" /* * Wait for an interrupt to be delivered from the GO7007SB and return * the associated value and data. * * Must be called with the hw_lock held. */ int go7007_read_interrupt(struct go7007 *go, u16 *value, u16 *data) { go->interrupt_available = 0; go->hpi_ops->read_interrupt(go); if (wait_event_timeout(go->interrupt_waitq, go->interrupt_available, 5*HZ) < 0) { v4l2_err(&go->v4l2_dev, "timeout waiting for read interrupt\n"); return -1; } if (!go->interrupt_available) return -1; go->interrupt_available = 0; *value = go->interrupt_value & 0xfffe; *data = go->interrupt_data; return 0; } EXPORT_SYMBOL(go7007_read_interrupt); /* * Read a register/address on the GO7007SB. * * Must be called with the hw_lock held. */ int go7007_read_addr(struct go7007 *go, u16 addr, u16 *data) { int count = 100; u16 value; if (go7007_write_interrupt(go, 0x0010, addr) < 0) return -EIO; while (count-- > 0) { if (go7007_read_interrupt(go, &value, data) == 0 && value == 0xa000) return 0; } return -EIO; } EXPORT_SYMBOL(go7007_read_addr); /* * Send the boot firmware to the encoder, which just wakes it up and lets * us talk to the GPIO pins and on-board I2C adapter. * * Must be called with the hw_lock held. */ static int go7007_load_encoder(struct go7007 *go) { const struct firmware *fw_entry; char fw_name[] = "go7007/go7007fw.bin"; void *bounce; int fw_len; u16 intr_val, intr_data; if (go->boot_fw == NULL) { if (request_firmware(&fw_entry, fw_name, go->dev)) { v4l2_err(go, "unable to load firmware from file \"%s\"\n", fw_name); return -1; } if (fw_entry->size < 16 || memcmp(fw_entry->data, "WISGO7007FW", 11)) { v4l2_err(go, "file \"%s\" does not appear to be go7007 firmware\n", fw_name); release_firmware(fw_entry); return -1; } fw_len = fw_entry->size - 16; bounce = kmemdup(fw_entry->data + 16, fw_len, GFP_KERNEL); if (bounce == NULL) { v4l2_err(go, "unable to allocate %d bytes for firmware transfer\n", fw_len); release_firmware(fw_entry); return -1; } release_firmware(fw_entry); go->boot_fw_len = fw_len; go->boot_fw = bounce; } if (go7007_interface_reset(go) < 0 || go7007_send_firmware(go, go->boot_fw, go->boot_fw_len) < 0 || go7007_read_interrupt(go, &intr_val, &intr_data) < 0 || (intr_val & ~0x1) != 0x5a5a) { v4l2_err(go, "error transferring firmware\n"); kfree(go->boot_fw); go->boot_fw = NULL; return -1; } return 0; } MODULE_FIRMWARE("go7007/go7007fw.bin"); /* * Boot the encoder and register the I2C adapter if requested. Do the * minimum initialization necessary, since the board-specific code may * still need to probe the board ID. * * Must NOT be called with the hw_lock held. */ int go7007_boot_encoder(struct go7007 *go, int init_i2c) { int ret; mutex_lock(&go->hw_lock); ret = go7007_load_encoder(go); mutex_unlock(&go->hw_lock); if (ret < 0) return -1; if (!init_i2c) return 0; if (go7007_i2c_init(go) < 0) return -1; go->i2c_adapter_online = 1; return 0; } EXPORT_SYMBOL(go7007_boot_encoder); /* * Configure any hardware-related registers in the GO7007, such as GPIO * pins and bus parameters, which are board-specific. This assumes * the boot firmware has already been downloaded. * * Must be called with the hw_lock held. */ static int go7007_init_encoder(struct go7007 *go) { if (go->board_info->audio_flags & GO7007_AUDIO_I2S_MASTER) { go7007_write_addr(go, 0x1000, 0x0811); go7007_write_addr(go, 0x1000, 0x0c11); } switch (go->board_id) { case GO7007_BOARDID_MATRIX_REV: /* Set GPIO pin 0 to be an output (audio clock control) */ go7007_write_addr(go, 0x3c82, 0x0001); go7007_write_addr(go, 0x3c80, 0x00fe); break; case GO7007_BOARDID_ADLINK_MPG24: /* set GPIO5 to be an output, currently low */ go7007_write_addr(go, 0x3c82, 0x0000); go7007_write_addr(go, 0x3c80, 0x00df); break; case GO7007_BOARDID_ADS_USBAV_709: /* GPIO pin 0: audio clock control */ /* pin 2: TW9906 reset */ /* pin 3: capture LED */ go7007_write_addr(go, 0x3c82, 0x000d); go7007_write_addr(go, 0x3c80, 0x00f2); break; } return 0; } /* * Send the boot firmware to the GO7007 and configure the registers. This * is the only way to stop the encoder once it has started streaming video. * * Must be called with the hw_lock held. */ int go7007_reset_encoder(struct go7007 *go) { if (go7007_load_encoder(go) < 0) return -1; return go7007_init_encoder(go); } /* * Attempt to instantiate an I2C client by ID, probably loading a module. */ static int init_i2c_module(struct i2c_adapter *adapter, const struct go_i2c *const i2c) { struct go7007 *go = i2c_get_adapdata(adapter); struct v4l2_device *v4l2_dev = &go->v4l2_dev; struct v4l2_subdev *sd; struct i2c_board_info info; memset(&info, 0, sizeof(info)); strscpy(info.type, i2c->type, sizeof(info.type)); info.addr = i2c->addr; info.flags = i2c->flags; sd = v4l2_i2c_new_subdev_board(v4l2_dev, adapter, &info, NULL); if (sd) { if (i2c->is_video) go->sd_video = sd; if (i2c->is_audio) go->sd_audio = sd; return 0; } pr_info("go7007: probing for module i2c:%s failed\n", i2c->type); return -EINVAL; } /* * Detach and unregister the encoder. The go7007 struct won't be freed * until v4l2 finishes releasing its resources and all associated fds are * closed by applications. */ static void go7007_remove(struct v4l2_device *v4l2_dev) { struct go7007 *go = container_of(v4l2_dev, struct go7007, v4l2_dev); v4l2_device_unregister(v4l2_dev); if (go->hpi_ops->release) go->hpi_ops->release(go); if (go->i2c_adapter_online) { i2c_del_adapter(&go->i2c_adapter); go->i2c_adapter_online = 0; } kfree(go->boot_fw); go7007_v4l2_remove(go); kfree(go); } /* * Finalize the GO7007 hardware setup, register the on-board I2C adapter * (if used on this board), load the I2C client driver for the sensor * (SAA7115 or whatever) and other devices, and register the ALSA and V4L2 * interfaces. * * Must NOT be called with the hw_lock held. */ int go7007_register_encoder(struct go7007 *go, unsigned num_i2c_devs) { int i, ret; dev_info(go->dev, "go7007: registering new %s\n", go->name); go->v4l2_dev.release = go7007_remove; ret = v4l2_device_register(go->dev, &go->v4l2_dev); if (ret < 0) return ret; mutex_lock(&go->hw_lock); ret = go7007_init_encoder(go); mutex_unlock(&go->hw_lock); if (ret < 0) return ret; ret = go7007_v4l2_ctrl_init(go); if (ret < 0) return ret; if (!go->i2c_adapter_online && go->board_info->flags & GO7007_BOARD_USE_ONBOARD_I2C) { ret = go7007_i2c_init(go); if (ret < 0) return ret; go->i2c_adapter_online = 1; } if (go->i2c_adapter_online) { if (go->board_id == GO7007_BOARDID_ADS_USBAV_709) { /* Reset the TW9906 */ go7007_write_addr(go, 0x3c82, 0x0009); msleep(50); go7007_write_addr(go, 0x3c82, 0x000d); } for (i = 0; i < num_i2c_devs; ++i) init_i2c_module(&go->i2c_adapter, &go->board_info->i2c_devs[i]); if (go->tuner_type >= 0) { struct tuner_setup setup = { .addr = ADDR_UNSET, .type = go->tuner_type, .mode_mask = T_ANALOG_TV, }; v4l2_device_call_all(&go->v4l2_dev, 0, tuner, s_type_addr, &setup); } if (go->board_id == GO7007_BOARDID_ADLINK_MPG24) v4l2_subdev_call(go->sd_video, video, s_routing, 0, 0, go->channel_number + 1); } ret = go7007_v4l2_init(go); if (ret < 0) return ret; if (go->board_info->flags & GO7007_BOARD_HAS_AUDIO) { go->audio_enabled = 1; go7007_snd_init(go); } return 0; } EXPORT_SYMBOL(go7007_register_encoder); /* * Send the encode firmware to the encoder, which will cause it * to immediately start delivering the video and audio streams. * * Must be called with the hw_lock held. */ int go7007_start_encoder(struct go7007 *go) { u8 *fw; int fw_len, rv = 0, i, x, y; u16 intr_val, intr_data; go->modet_enable = 0; for (i = 0; i < 4; i++) go->modet[i].enable = 0; switch (v4l2_ctrl_g_ctrl(go->modet_mode)) { case V4L2_DETECT_MD_MODE_GLOBAL: memset(go->modet_map, 0, sizeof(go->modet_map)); go->modet[0].enable = 1; go->modet_enable = 1; break; case V4L2_DETECT_MD_MODE_REGION_GRID: for (y = 0; y < go->height / 16; y++) { for (x = 0; x < go->width / 16; x++) { int idx = y * go->width / 16 + x; go->modet[go->modet_map[idx]].enable = 1; } } go->modet_enable = 1; break; } if (go->dvd_mode) go->modet_enable = 0; if (go7007_construct_fw_image(go, &fw, &fw_len) < 0) return -1; if (go7007_send_firmware(go, fw, fw_len) < 0 || go7007_read_interrupt(go, &intr_val, &intr_data) < 0) { v4l2_err(&go->v4l2_dev, "error transferring firmware\n"); rv = -1; goto start_error; } go->state = STATE_DATA; go->parse_length = 0; go->seen_frame = 0; if (go7007_stream_start(go) < 0) { v4l2_err(&go->v4l2_dev, "error starting stream transfer\n"); rv = -1; goto start_error; } start_error: kfree(fw); return rv; } /* * Store a byte in the current video buffer, if there is one. */ static inline void store_byte(struct go7007_buffer *vb, u8 byte) { if (vb && vb->vb.vb2_buf.planes[0].bytesused < GO7007_BUF_SIZE) { u8 *ptr = vb2_plane_vaddr(&vb->vb.vb2_buf, 0); ptr[vb->vb.vb2_buf.planes[0].bytesused++] = byte; } } static void go7007_set_motion_regions(struct go7007 *go, struct go7007_buffer *vb, u32 motion_regions) { if (motion_regions != go->modet_event_status) { struct v4l2_event ev = { .type = V4L2_EVENT_MOTION_DET, .u.motion_det = { .flags = V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ, .frame_sequence = vb->vb.sequence, .region_mask = motion_regions, }, }; v4l2_event_queue(&go->vdev, &ev); go->modet_event_status = motion_regions; } } /* * Determine regions with motion and send a motion detection event * in case of changes. */ static void go7007_motion_regions(struct go7007 *go, struct go7007_buffer *vb) { u32 *bytesused = &vb->vb.vb2_buf.planes[0].bytesused; unsigned motion[4] = { 0, 0, 0, 0 }; u32 motion_regions = 0; unsigned stride = (go->width + 7) >> 3; unsigned x, y; int i; for (i = 0; i < 216; ++i) store_byte(vb, go->active_map[i]); for (y = 0; y < go->height / 16; y++) { for (x = 0; x < go->width / 16; x++) { if (!(go->active_map[y * stride + (x >> 3)] & (1 << (x & 7)))) continue; motion[go->modet_map[y * (go->width / 16) + x]]++; } } motion_regions = ((motion[0] > 0) << 0) | ((motion[1] > 0) << 1) | ((motion[2] > 0) << 2) | ((motion[3] > 0) << 3); *bytesused -= 216; go7007_set_motion_regions(go, vb, motion_regions); } /* * Deliver the last video buffer and get a new one to start writing to. */ static struct go7007_buffer *frame_boundary(struct go7007 *go, struct go7007_buffer *vb) { u32 *bytesused; struct go7007_buffer *vb_tmp = NULL; unsigned long flags; if (vb == NULL) { spin_lock_irqsave(&go->spinlock, flags); if (!list_empty(&go->vidq_active)) vb = go->active_buf = list_first_entry(&go->vidq_active, struct go7007_buffer, list); spin_unlock_irqrestore(&go->spinlock, flags); go->next_seq++; return vb; } bytesused = &vb->vb.vb2_buf.planes[0].bytesused; vb->vb.sequence = go->next_seq++; if (vb->modet_active && *bytesused + 216 < GO7007_BUF_SIZE) go7007_motion_regions(go, vb); else go7007_set_motion_regions(go, vb, 0); vb->vb.vb2_buf.timestamp = ktime_get_ns(); vb_tmp = vb; spin_lock_irqsave(&go->spinlock, flags); list_del(&vb->list); if (list_empty(&go->vidq_active)) vb = NULL; else vb = list_first_entry(&go->vidq_active, struct go7007_buffer, list); go->active_buf = vb; spin_unlock_irqrestore(&go->spinlock, flags); vb2_buffer_done(&vb_tmp->vb.vb2_buf, VB2_BUF_STATE_DONE); return vb; } static void write_bitmap_word(struct go7007 *go) { int x, y, i, stride = ((go->width >> 4) + 7) >> 3; for (i = 0; i < 16; ++i) { y = (((go->parse_length - 1) << 3) + i) / (go->width >> 4); x = (((go->parse_length - 1) << 3) + i) % (go->width >> 4); if (stride * y + (x >> 3) < sizeof(go->active_map)) go->active_map[stride * y + (x >> 3)] |= (go->modet_word & 1) << (x & 0x7); go->modet_word >>= 1; } } /* * Parse a chunk of the video stream into frames. The frames are not * delimited by the hardware, so we have to parse the frame boundaries * based on the type of video stream we're receiving. */ void go7007_parse_video_stream(struct go7007 *go, u8 *buf, int length) { struct go7007_buffer *vb = go->active_buf; int i, seq_start_code = -1, gop_start_code = -1, frame_start_code = -1; switch (go->format) { case V4L2_PIX_FMT_MPEG4: seq_start_code = 0xB0; gop_start_code = 0xB3; frame_start_code = 0xB6; break; case V4L2_PIX_FMT_MPEG1: case V4L2_PIX_FMT_MPEG2: seq_start_code = 0xB3; gop_start_code = 0xB8; frame_start_code = 0x00; break; } for (i = 0; i < length; ++i) { if (vb && vb->vb.vb2_buf.planes[0].bytesused >= GO7007_BUF_SIZE - 3) { v4l2_info(&go->v4l2_dev, "dropping oversized frame\n"); vb2_set_plane_payload(&vb->vb.vb2_buf, 0, 0); vb->frame_offset = 0; vb->modet_active = 0; vb = go->active_buf = NULL; } switch (go->state) { case STATE_DATA: switch (buf[i]) { case 0x00: go->state = STATE_00; break; case 0xFF: go->state = STATE_FF; break; default: store_byte(vb, buf[i]); break; } break; case STATE_00: switch (buf[i]) { case 0x00: go->state = STATE_00_00; break; case 0xFF: store_byte(vb, 0x00); go->state = STATE_FF; break; default: store_byte(vb, 0x00); store_byte(vb, buf[i]); go->state = STATE_DATA; break; } break; case STATE_00_00: switch (buf[i]) { case 0x00: store_byte(vb, 0x00); /* go->state remains STATE_00_00 */ break; case 0x01: go->state = STATE_00_00_01; break; case 0xFF: store_byte(vb, 0x00); store_byte(vb, 0x00); go->state = STATE_FF; break; default: store_byte(vb, 0x00); store_byte(vb, 0x00); store_byte(vb, buf[i]); go->state = STATE_DATA; break; } break; case STATE_00_00_01: if (buf[i] == 0xF8 && go->modet_enable == 0) { /* MODET start code, but MODET not enabled */ store_byte(vb, 0x00); store_byte(vb, 0x00); store_byte(vb, 0x01); store_byte(vb, 0xF8); go->state = STATE_DATA; break; } /* If this is the start of a new MPEG frame, * get a new buffer */ if ((go->format == V4L2_PIX_FMT_MPEG1 || go->format == V4L2_PIX_FMT_MPEG2 || go->format == V4L2_PIX_FMT_MPEG4) && (buf[i] == seq_start_code || buf[i] == gop_start_code || buf[i] == frame_start_code)) { if (vb == NULL || go->seen_frame) vb = frame_boundary(go, vb); go->seen_frame = buf[i] == frame_start_code; if (vb && go->seen_frame) vb->frame_offset = vb->vb.vb2_buf.planes[0].bytesused; } /* Handle any special chunk types, or just write the * start code to the (potentially new) buffer */ switch (buf[i]) { case 0xF5: /* timestamp */ go->parse_length = 12; go->state = STATE_UNPARSED; break; case 0xF6: /* vbi */ go->state = STATE_VBI_LEN_A; break; case 0xF8: /* MD map */ go->parse_length = 0; memset(go->active_map, 0, sizeof(go->active_map)); go->state = STATE_MODET_MAP; break; case 0xFF: /* Potential JPEG start code */ store_byte(vb, 0x00); store_byte(vb, 0x00); store_byte(vb, 0x01); go->state = STATE_FF; break; default: store_byte(vb, 0x00); store_byte(vb, 0x00); store_byte(vb, 0x01); store_byte(vb, buf[i]); go->state = STATE_DATA; break; } break; case STATE_FF: switch (buf[i]) { case 0x00: store_byte(vb, 0xFF); go->state = STATE_00; break; case 0xFF: store_byte(vb, 0xFF); /* go->state remains STATE_FF */ break; case 0xD8: if (go->format == V4L2_PIX_FMT_MJPEG) vb = frame_boundary(go, vb); fallthrough; default: store_byte(vb, 0xFF); store_byte(vb, buf[i]); go->state = STATE_DATA; break; } break; case STATE_VBI_LEN_A: go->parse_length = buf[i] << 8; go->state = STATE_VBI_LEN_B; break; case STATE_VBI_LEN_B: go->parse_length |= buf[i]; if (go->parse_length > 0) go->state = STATE_UNPARSED; else go->state = STATE_DATA; break; case STATE_MODET_MAP: if (go->parse_length < 204) { if (go->parse_length & 1) { go->modet_word |= buf[i]; write_bitmap_word(go); } else go->modet_word = buf[i] << 8; } else if (go->parse_length == 207 && vb) { vb->modet_active = buf[i]; } if (++go->parse_length == 208) go->state = STATE_DATA; break; case STATE_UNPARSED: if (--go->parse_length == 0) go->state = STATE_DATA; break; } } } EXPORT_SYMBOL(go7007_parse_video_stream); /* * Allocate a new go7007 struct. Used by the hardware-specific probe. */ struct go7007 *go7007_alloc(const struct go7007_board_info *board, struct device *dev) { struct go7007 *go; go = kzalloc(sizeof(struct go7007), GFP_KERNEL); if (go == NULL) return NULL; go->dev = dev; go->board_info = board; go->tuner_type = -1; mutex_init(&go->hw_lock); init_waitqueue_head(&go->frame_waitq); spin_lock_init(&go->spinlock); go->status = STATUS_INIT; init_waitqueue_head(&go->interrupt_waitq); go7007_update_board(go); go->format = V4L2_PIX_FMT_MJPEG; go->bitrate = 1500000; go->fps_scale = 1; go->aspect_ratio = GO7007_RATIO_1_1; return go; } EXPORT_SYMBOL(go7007_alloc); void go7007_update_board(struct go7007 *go) { const struct go7007_board_info *board = go->board_info; if (board->sensor_flags & GO7007_SENSOR_TV) { go->standard = GO7007_STD_NTSC; go->std = V4L2_STD_NTSC_M; go->width = 720; go->height = 480; go->sensor_framerate = 30000; } else { go->standard = GO7007_STD_OTHER; go->width = board->sensor_width; go->height = board->sensor_height; go->sensor_framerate = board->sensor_framerate; } go->encoder_v_offset = board->sensor_v_offset; go->encoder_h_offset = board->sensor_h_offset; } EXPORT_SYMBOL(go7007_update_board); MODULE_DESCRIPTION("WIS GO7007 MPEG encoder support"); MODULE_LICENSE("GPL v2");
9 9 9 9 6 8 3 5 2 5 1 2 2 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 // SPDX-License-Identifier: GPL-2.0-or-later /* hfcsusb.c * mISDN driver for Colognechip HFC-S USB chip * * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de) * Copyright 2008 by Martin Bachem (info@bachem-it.com) * * module params * debug=<n>, default=0, with n=0xHHHHGGGG * H - l1 driver flags described in hfcsusb.h * G - common mISDN debug flags described at mISDNhw.h * * poll=<n>, default 128 * n : burst size of PH_DATA_IND at transparent rx data * * Revision: 0.3.3 (socket), 2008-11-05 */ #include <linux/module.h> #include <linux/delay.h> #include <linux/usb.h> #include <linux/mISDNhw.h> #include <linux/slab.h> #include "hfcsusb.h" static unsigned int debug; static int poll = DEFAULT_TRANSP_BURST_SZ; static LIST_HEAD(HFClist); static DEFINE_RWLOCK(HFClock); MODULE_AUTHOR("Martin Bachem"); MODULE_DESCRIPTION("mISDN driver for Colognechip HFC-S USB chip"); MODULE_LICENSE("GPL"); module_param(debug, uint, S_IRUGO | S_IWUSR); module_param(poll, int, 0); static int hfcsusb_cnt; /* some function prototypes */ static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command); static void release_hw(struct hfcsusb *hw); static void reset_hfcsusb(struct hfcsusb *hw); static void setPortMode(struct hfcsusb *hw); static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel); static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel); static int hfcsusb_setup_bch(struct bchannel *bch, int protocol); static void deactivate_bchannel(struct bchannel *bch); static int hfcsusb_ph_info(struct hfcsusb *hw); /* start next background transfer for control channel */ static void ctrl_start_transfer(struct hfcsusb *hw) { if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); if (hw->ctrl_cnt) { hw->ctrl_urb->pipe = hw->ctrl_out_pipe; hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write; hw->ctrl_urb->transfer_buffer = NULL; hw->ctrl_urb->transfer_buffer_length = 0; hw->ctrl_write.wIndex = cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg); hw->ctrl_write.wValue = cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val); usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC); } } /* * queue a control transfer request to write HFC-S USB * chip register using CTRL resuest queue */ static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val) { struct ctrl_buf *buf; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n", hw->name, __func__, reg, val); spin_lock(&hw->ctrl_lock); if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) { spin_unlock(&hw->ctrl_lock); return 1; } buf = &hw->ctrl_buff[hw->ctrl_in_idx]; buf->hfcs_reg = reg; buf->reg_val = val; if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE) hw->ctrl_in_idx = 0; if (++hw->ctrl_cnt == 1) ctrl_start_transfer(hw); spin_unlock(&hw->ctrl_lock); return 0; } /* control completion routine handling background control cmds */ static void ctrl_complete(struct urb *urb) { struct hfcsusb *hw = (struct hfcsusb *) urb->context; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); urb->dev = hw->dev; if (hw->ctrl_cnt) { hw->ctrl_cnt--; /* decrement actual count */ if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE) hw->ctrl_out_idx = 0; /* pointer wrap */ ctrl_start_transfer(hw); /* start next transfer */ } } /* handle LED bits */ static void set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on) { if (set_on) { if (led_bits < 0) hw->led_state &= ~abs(led_bits); else hw->led_state |= led_bits; } else { if (led_bits < 0) hw->led_state |= abs(led_bits); else hw->led_state &= ~led_bits; } } /* handle LED requests */ static void handle_led(struct hfcsusb *hw, int event) { struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *) hfcsusb_idtab[hw->vend_idx].driver_info; __u8 tmpled; if (driver_info->led_scheme == LED_OFF) return; tmpled = hw->led_state; switch (event) { case LED_POWER_ON: set_led_bit(hw, driver_info->led_bits[0], 1); set_led_bit(hw, driver_info->led_bits[1], 0); set_led_bit(hw, driver_info->led_bits[2], 0); set_led_bit(hw, driver_info->led_bits[3], 0); break; case LED_POWER_OFF: set_led_bit(hw, driver_info->led_bits[0], 0); set_led_bit(hw, driver_info->led_bits[1], 0); set_led_bit(hw, driver_info->led_bits[2], 0); set_led_bit(hw, driver_info->led_bits[3], 0); break; case LED_S0_ON: set_led_bit(hw, driver_info->led_bits[1], 1); break; case LED_S0_OFF: set_led_bit(hw, driver_info->led_bits[1], 0); break; case LED_B1_ON: set_led_bit(hw, driver_info->led_bits[2], 1); break; case LED_B1_OFF: set_led_bit(hw, driver_info->led_bits[2], 0); break; case LED_B2_ON: set_led_bit(hw, driver_info->led_bits[3], 1); break; case LED_B2_OFF: set_led_bit(hw, driver_info->led_bits[3], 0); break; } if (hw->led_state != tmpled) { if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n", hw->name, __func__, HFCUSB_P_DATA, hw->led_state); write_reg(hw, HFCUSB_P_DATA, hw->led_state); } } /* * Layer2 -> Layer 1 Bchannel data */ static int hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) { struct bchannel *bch = container_of(ch, struct bchannel, ch); struct hfcsusb *hw = bch->hw; int ret = -EINVAL; struct mISDNhead *hh = mISDN_HEAD_P(skb); u_long flags; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); switch (hh->prim) { case PH_DATA_REQ: spin_lock_irqsave(&hw->lock, flags); ret = bchannel_senddata(bch, skb); spin_unlock_irqrestore(&hw->lock, flags); if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n", hw->name, __func__, ret); if (ret > 0) ret = 0; return ret; case PH_ACTIVATE_REQ: if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { hfcsusb_start_endpoint(hw, bch->nr - 1); ret = hfcsusb_setup_bch(bch, ch->protocol); } else ret = 0; if (!ret) _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); break; case PH_DEACTIVATE_REQ: deactivate_bchannel(bch); _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); ret = 0; break; } if (!ret) dev_kfree_skb(skb); return ret; } /* * send full D/B channel status information * as MPH_INFORMATION_IND */ static int hfcsusb_ph_info(struct hfcsusb *hw) { struct ph_info *phi; struct dchannel *dch = &hw->dch; int i; phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC); if (!phi) return -ENOMEM; phi->dch.ch.protocol = hw->protocol; phi->dch.ch.Flags = dch->Flags; phi->dch.state = dch->state; phi->dch.num_bch = dch->dev.nrbchan; for (i = 0; i < dch->dev.nrbchan; i++) { phi->bch[i].protocol = hw->bch[i].ch.protocol; phi->bch[i].Flags = hw->bch[i].Flags; } _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY, struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC); kfree(phi); return 0; } /* * Layer2 -> Layer 1 Dchannel data */ static int hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) { struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); struct dchannel *dch = container_of(dev, struct dchannel, dev); struct mISDNhead *hh = mISDN_HEAD_P(skb); struct hfcsusb *hw = dch->hw; int ret = -EINVAL; u_long flags; switch (hh->prim) { case PH_DATA_REQ: if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n", hw->name, __func__); spin_lock_irqsave(&hw->lock, flags); ret = dchannel_senddata(dch, skb); spin_unlock_irqrestore(&hw->lock, flags); if (ret > 0) { ret = 0; queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); } break; case PH_ACTIVATE_REQ: if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n", hw->name, __func__, (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE"); if (hw->protocol == ISDN_P_NT_S0) { ret = 0; if (test_bit(FLG_ACTIVE, &dch->Flags)) { _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); } else { hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_NT); test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags); } } else { hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE); ret = l1_event(dch->l1, hh->prim); } break; case PH_DEACTIVATE_REQ: if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n", hw->name, __func__); test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); if (hw->protocol == ISDN_P_NT_S0) { struct sk_buff_head free_queue; __skb_queue_head_init(&free_queue); hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT); spin_lock_irqsave(&hw->lock, flags); skb_queue_splice_init(&dch->squeue, &free_queue); if (dch->tx_skb) { __skb_queue_tail(&free_queue, dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { __skb_queue_tail(&free_queue, dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); spin_unlock_irqrestore(&hw->lock, flags); __skb_queue_purge(&free_queue); #ifdef FIXME if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) dchannel_sched_event(&hc->dch, D_CLEARBUSY); #endif ret = 0; } else ret = l1_event(dch->l1, hh->prim); break; case MPH_INFORMATION_REQ: ret = hfcsusb_ph_info(hw); break; } return ret; } /* * Layer 1 callback function */ static int hfc_l1callback(struct dchannel *dch, u_int cmd) { struct hfcsusb *hw = dch->hw; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s cmd 0x%x\n", hw->name, __func__, cmd); switch (cmd) { case INFO3_P8: case INFO3_P10: case HW_RESET_REQ: case HW_POWERUP_REQ: break; case HW_DEACT_REQ: skb_queue_purge(&dch->squeue); if (dch->tx_skb) { dev_kfree_skb(dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { dev_kfree_skb(dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); break; case PH_ACTIVATE_IND: test_and_set_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; case PH_DEACTIVATE_IND: test_and_clear_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; default: if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: unknown cmd %x\n", hw->name, __func__, cmd); return -1; } return hfcsusb_ph_info(hw); } static int open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch, struct channel_req *rq) { int err = 0; if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n", hw->name, __func__, hw->dch.dev.id, rq->adr.channel, __builtin_return_address(0)); if (rq->protocol == ISDN_P_NONE) return -EINVAL; test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags); test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags); hfcsusb_start_endpoint(hw, HFC_CHAN_D); /* E-Channel logging */ if (rq->adr.channel == 1) { if (hw->fifos[HFCUSB_PCM_RX].pipe) { hfcsusb_start_endpoint(hw, HFC_CHAN_E); set_bit(FLG_ACTIVE, &hw->ech.Flags); _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); } else return -EINVAL; } if (!hw->initdone) { hw->protocol = rq->protocol; if (rq->protocol == ISDN_P_TE_S0) { err = create_l1(&hw->dch, hfc_l1callback); if (err) return err; } setPortMode(hw); ch->protocol = rq->protocol; hw->initdone = 1; } else { if (rq->protocol != ch->protocol) return -EPROTONOSUPPORT; } if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) || ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7))) _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); rq->ch = ch; if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s: %s: cannot get module\n", hw->name, __func__); return 0; } static int open_bchannel(struct hfcsusb *hw, struct channel_req *rq) { struct bchannel *bch; if (rq->adr.channel == 0 || rq->adr.channel > 2) return -EINVAL; if (rq->protocol == ISDN_P_NONE) return -EINVAL; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s B%i\n", hw->name, __func__, rq->adr.channel); bch = &hw->bch[rq->adr.channel - 1]; if (test_and_set_bit(FLG_OPEN, &bch->Flags)) return -EBUSY; /* b-channel can be only open once */ bch->ch.protocol = rq->protocol; rq->ch = &bch->ch; if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s: %s:cannot get module\n", hw->name, __func__); return 0; } static int channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq) { int ret = 0; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n", hw->name, __func__, (cq->op), (cq->channel)); switch (cq->op) { case MISDN_CTRL_GETOP: cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | MISDN_CTRL_DISCONNECT; break; default: printk(KERN_WARNING "%s: %s: unknown Op %x\n", hw->name, __func__, cq->op); ret = -EINVAL; break; } return ret; } /* * device control function */ static int hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); struct dchannel *dch = container_of(dev, struct dchannel, dev); struct hfcsusb *hw = dch->hw; struct channel_req *rq; int err = 0; if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: cmd:%x %p\n", hw->name, __func__, cmd, arg); switch (cmd) { case OPEN_CHANNEL: rq = arg; if ((rq->protocol == ISDN_P_TE_S0) || (rq->protocol == ISDN_P_NT_S0)) err = open_dchannel(hw, ch, rq); else err = open_bchannel(hw, rq); if (!err) hw->open++; break; case CLOSE_CHANNEL: hw->open--; if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: %s: dev(%d) close from %p (open %d)\n", hw->name, __func__, hw->dch.dev.id, __builtin_return_address(0), hw->open); if (!hw->open) { hfcsusb_stop_endpoint(hw, HFC_CHAN_D); if (hw->fifos[HFCUSB_PCM_RX].pipe) hfcsusb_stop_endpoint(hw, HFC_CHAN_E); handle_led(hw, LED_POWER_ON); } module_put(THIS_MODULE); break; case CONTROL_CHANNEL: err = channel_ctrl(hw, arg); break; default: if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: unknown command %x\n", hw->name, __func__, cmd); return -EINVAL; } return err; } /* * S0 TE state change event handler */ static void ph_state_te(struct dchannel *dch) { struct hfcsusb *hw = dch->hw; if (debug & DEBUG_HW) { if (dch->state <= HFC_MAX_TE_LAYER1_STATE) printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, HFC_TE_LAYER1_STATES[dch->state]); else printk(KERN_DEBUG "%s: %s: TE F%d\n", hw->name, __func__, dch->state); } switch (dch->state) { case 0: l1_event(dch->l1, HW_RESET_IND); break; case 3: l1_event(dch->l1, HW_DEACT_IND); break; case 5: case 8: l1_event(dch->l1, ANYSIGNAL); break; case 6: l1_event(dch->l1, INFO2); break; case 7: l1_event(dch->l1, INFO4_P8); break; } if (dch->state == 7) handle_led(hw, LED_S0_ON); else handle_led(hw, LED_S0_OFF); } /* * S0 NT state change event handler */ static void ph_state_nt(struct dchannel *dch) { struct hfcsusb *hw = dch->hw; if (debug & DEBUG_HW) { if (dch->state <= HFC_MAX_NT_LAYER1_STATE) printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, HFC_NT_LAYER1_STATES[dch->state]); else printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n", hw->name, __func__, dch->state); } switch (dch->state) { case (1): test_and_clear_bit(FLG_ACTIVE, &dch->Flags); test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; handle_led(hw, LED_S0_OFF); break; case (2): if (hw->nt_timer < 0) { hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT); } else { hw->timers |= NT_ACTIVATION_TIMER; hw->nt_timer = NT_T1_COUNT; /* allow G2 -> G3 transition */ write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3); } break; case (3): hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; test_and_set_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); handle_led(hw, LED_S0_ON); break; case (4): hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; break; default: break; } hfcsusb_ph_info(hw); } static void ph_state(struct dchannel *dch) { struct hfcsusb *hw = dch->hw; if (hw->protocol == ISDN_P_NT_S0) ph_state_nt(dch); else if (hw->protocol == ISDN_P_TE_S0) ph_state_te(dch); } /* * disable/enable BChannel for desired protocol */ static int hfcsusb_setup_bch(struct bchannel *bch, int protocol) { struct hfcsusb *hw = bch->hw; __u8 conhdlc, sctrl, sctrl_r; if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n", hw->name, __func__, bch->state, protocol, bch->nr); /* setup val for CON_HDLC */ conhdlc = 0; if (protocol > ISDN_P_NONE) conhdlc = 8; /* enable FIFO */ switch (protocol) { case (-1): /* used for init */ bch->state = -1; fallthrough; case (ISDN_P_NONE): if (bch->state == ISDN_P_NONE) return 0; /* already in idle state */ bch->state = ISDN_P_NONE; clear_bit(FLG_HDLC, &bch->Flags); clear_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_P_B_RAW): conhdlc |= 2; bch->state = protocol; set_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_P_B_HDLC): bch->state = protocol; set_bit(FLG_HDLC, &bch->Flags); break; default: if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: prot not known %x\n", hw->name, __func__, protocol); return -ENOPROTOOPT; } if (protocol >= ISDN_P_NONE) { write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2); write_reg(hw, HFCUSB_CON_HDLC, conhdlc); write_reg(hw, HFCUSB_INC_RES_F, 2); write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3); write_reg(hw, HFCUSB_CON_HDLC, conhdlc); write_reg(hw, HFCUSB_INC_RES_F, 2); sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04); sctrl_r = 0x0; if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) { sctrl |= 1; sctrl_r |= 1; } if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) { sctrl |= 2; sctrl_r |= 2; } write_reg(hw, HFCUSB_SCTRL, sctrl); write_reg(hw, HFCUSB_SCTRL_R, sctrl_r); if (protocol > ISDN_P_NONE) handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON); else handle_led(hw, (bch->nr == 1) ? LED_B1_OFF : LED_B2_OFF); } return hfcsusb_ph_info(hw); } static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: %x\n", hw->name, __func__, command); switch (command) { case HFC_L1_ACTIVATE_TE: /* force sending sending INFO1 */ write_reg(hw, HFCUSB_STATES, 0x14); /* start l1 activation */ write_reg(hw, HFCUSB_STATES, 0x04); break; case HFC_L1_FORCE_DEACTIVATE_TE: write_reg(hw, HFCUSB_STATES, 0x10); write_reg(hw, HFCUSB_STATES, 0x03); break; case HFC_L1_ACTIVATE_NT: if (hw->dch.state == 3) _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); else write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE | HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3); break; case HFC_L1_DEACTIVATE_NT: write_reg(hw, HFCUSB_STATES, HFCUSB_DO_ACTION); break; } } /* * Layer 1 B-channel hardware access */ static int channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) { return mISDN_ctrl_bchannel(bch, cq); } /* collect data from incoming interrupt or isochron USB data */ static void hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len, int finish) { struct hfcsusb *hw = fifo->hw; struct sk_buff *rx_skb = NULL; int maxlen = 0; int fifon = fifo->fifonum; int i; int hdlc = 0; unsigned long flags; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) " "dch(%p) bch(%p) ech(%p)\n", hw->name, __func__, fifon, len, fifo->dch, fifo->bch, fifo->ech); if (!len) return; if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) { printk(KERN_DEBUG "%s: %s: undefined channel\n", hw->name, __func__); return; } spin_lock_irqsave(&hw->lock, flags); if (fifo->dch) { rx_skb = fifo->dch->rx_skb; maxlen = fifo->dch->maxlen; hdlc = 1; } if (fifo->bch) { if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) { fifo->bch->dropcnt += len; spin_unlock_irqrestore(&hw->lock, flags); return; } maxlen = bchannel_get_rxbuf(fifo->bch, len); rx_skb = fifo->bch->rx_skb; if (maxlen < 0) { if (rx_skb) skb_trim(rx_skb, 0); pr_warn("%s.B%d: No bufferspace for %d bytes\n", hw->name, fifo->bch->nr, len); spin_unlock_irqrestore(&hw->lock, flags); return; } maxlen = fifo->bch->maxlen; hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); } if (fifo->ech) { rx_skb = fifo->ech->rx_skb; maxlen = fifo->ech->maxlen; hdlc = 1; } if (fifo->dch || fifo->ech) { if (!rx_skb) { rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC); if (rx_skb) { if (fifo->dch) fifo->dch->rx_skb = rx_skb; if (fifo->ech) fifo->ech->rx_skb = rx_skb; skb_trim(rx_skb, 0); } else { printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n", hw->name, __func__); spin_unlock_irqrestore(&hw->lock, flags); return; } } /* D/E-Channel SKB range check */ if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) { printk(KERN_DEBUG "%s: %s: sbk mem exceeded " "for fifo(%d) HFCUSB_D_RX\n", hw->name, __func__, fifon); skb_trim(rx_skb, 0); spin_unlock_irqrestore(&hw->lock, flags); return; } } skb_put_data(rx_skb, data, len); if (hdlc) { /* we have a complete hdlc packet */ if (finish) { if ((rx_skb->len > 3) && (!(rx_skb->data[rx_skb->len - 1]))) { if (debug & DBG_HFC_FIFO_VERBOSE) { printk(KERN_DEBUG "%s: %s: fifon(%i)" " new RX len(%i): ", hw->name, __func__, fifon, rx_skb->len); i = 0; while (i < rx_skb->len) printk("%02x ", rx_skb->data[i++]); printk("\n"); } /* remove CRC & status */ skb_trim(rx_skb, rx_skb->len - 3); if (fifo->dch) recv_Dchannel(fifo->dch); if (fifo->bch) recv_Bchannel(fifo->bch, MISDN_ID_ANY, 0); if (fifo->ech) recv_Echannel(fifo->ech, &hw->dch); } else { if (debug & DBG_HFC_FIFO_VERBOSE) { printk(KERN_DEBUG "%s: CRC or minlen ERROR fifon(%i) " "RX len(%i): ", hw->name, fifon, rx_skb->len); i = 0; while (i < rx_skb->len) printk("%02x ", rx_skb->data[i++]); printk("\n"); } skb_trim(rx_skb, 0); } } } else { /* deliver transparent data to layer2 */ recv_Bchannel(fifo->bch, MISDN_ID_ANY, false); } spin_unlock_irqrestore(&hw->lock, flags); } static void fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, void *buf, int num_packets, int packet_size, int interval, usb_complete_t complete, void *context) { int k; usb_fill_bulk_urb(urb, dev, pipe, buf, packet_s