Total coverage: 220443 (12%)of 1885325
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2002 Petko Manolov (petkan@users.sourceforge.net) */ #include <linux/signal.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/usb.h> #include <linux/uaccess.h> /* Version Information */ #define DRIVER_VERSION "v0.6.2 (2004/08/27)" #define DRIVER_AUTHOR "Petko Manolov <petkan@users.sourceforge.net>" #define DRIVER_DESC "rtl8150 based usb-ethernet driver" #define IDR 0x0120 #define MAR 0x0126 #define CR 0x012e #define TCR 0x012f #define RCR 0x0130 #define TSR 0x0132 #define RSR 0x0133 #define CON0 0x0135 #define CON1 0x0136 #define MSR 0x0137 #define PHYADD 0x0138 #define PHYDAT 0x0139 #define PHYCNT 0x013b #define GPPC 0x013d #define BMCR 0x0140 #define BMSR 0x0142 #define ANAR 0x0144 #define ANLP 0x0146 #define AER 0x0148 #define CSCR 0x014C /* This one has the link status */ #define CSCR_LINK_STATUS (1 << 3) #define IDR_EEPROM 0x1202 #define PHY_READ 0 #define PHY_WRITE 0x20 #define PHY_GO 0x40 #define MII_TIMEOUT 10 #define INTBUFSIZE 8 #define RTL8150_REQT_READ 0xc0 #define RTL8150_REQT_WRITE 0x40 #define RTL8150_REQ_GET_REGS 0x05 #define RTL8150_REQ_SET_REGS 0x05 /* Transmit status register errors */ #define TSR_ECOL (1<<5) #define TSR_LCOL (1<<4) #define TSR_LOSS_CRS (1<<3) #define TSR_JBR (1<<2) #define TSR_ERRORS (TSR_ECOL | TSR_LCOL | TSR_LOSS_CRS | TSR_JBR) /* Receive status register errors */ #define RSR_CRC (1<<2) #define RSR_FAE (1<<1) #define RSR_ERRORS (RSR_CRC | RSR_FAE) /* Media status register definitions */ #define MSR_DUPLEX (1<<4) #define MSR_SPEED (1<<3) #define MSR_LINK (1<<2) /* USB endpoints */ enum rtl8150_usb_ep { RTL8150_USB_EP_CONTROL = 0, RTL8150_USB_EP_BULK_IN = 1, RTL8150_USB_EP_BULK_OUT = 2, RTL8150_USB_EP_INT_IN = 3, }; /* Interrupt pipe data */ #define INT_TSR 0x00 #define INT_RSR 0x01 #define INT_MSR 0x02 #define INT_WAKSR 0x03 #define INT_TXOK_CNT 0x04 #define INT_RXLOST_CNT 0x05 #define INT_CRERR_CNT 0x06 #define INT_COL_CNT 0x07 #define RTL8150_MTU 1540 #define RTL8150_TX_TIMEOUT (HZ) #define RX_SKB_POOL_SIZE 4 /* rtl8150 flags */ #define RTL8150_HW_CRC 0 #define RX_REG_SET 1 #define RTL8150_UNPLUG 2 #define RX_URB_FAIL 3 /* Define these values to match your device */ #define VENDOR_ID_REALTEK 0x0bda #define VENDOR_ID_MELCO 0x0411 #define VENDOR_ID_MICRONET 0x3980 #define VENDOR_ID_LONGSHINE 0x07b8 #define VENDOR_ID_OQO 0x1557 #define VENDOR_ID_ZYXEL 0x0586 #define PRODUCT_ID_RTL8150 0x8150 #define PRODUCT_ID_LUAKTX 0x0012 #define PRODUCT_ID_LCS8138TX 0x401a #define PRODUCT_ID_SP128AR 0x0003 #define PRODUCT_ID_PRESTIGE 0x401a #undef EEPROM_WRITE /* table of devices that work with this driver */ static const struct usb_device_id rtl8150_table[] = { {USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150)}, {USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX)}, {USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR)}, {USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX)}, {USB_DEVICE(VENDOR_ID_OQO, PRODUCT_ID_RTL8150)}, {USB_DEVICE(VENDOR_ID_ZYXEL, PRODUCT_ID_PRESTIGE)}, {} }; MODULE_DEVICE_TABLE(usb, rtl8150_table); struct rtl8150 { unsigned long flags; struct usb_device *udev; struct tasklet_struct tl; struct net_device *netdev; struct urb *rx_urb, *tx_urb, *intr_urb; struct sk_buff *tx_skb, *rx_skb; struct sk_buff *rx_skb_pool[RX_SKB_POOL_SIZE]; spinlock_t rx_pool_lock; struct usb_ctrlrequest dr; int intr_interval; u8 *intr_buff; u8 phy; }; typedef struct rtl8150 rtl8150_t; struct async_req { struct usb_ctrlrequest dr; u16 rx_creg; }; static const char driver_name [] = "rtl8150"; /* ** ** device related part of the code ** */ static int get_registers(rtl8150_t * dev, u16 indx, u16 size, void *data) { return usb_control_msg_recv(dev->udev, 0, RTL8150_REQ_GET_REGS, RTL8150_REQT_READ, indx, 0, data, size, 1000, GFP_NOIO); } static int set_registers(rtl8150_t * dev, u16 indx, u16 size, const void *data) { return usb_control_msg_send(dev->udev, 0, RTL8150_REQ_SET_REGS, RTL8150_REQT_WRITE, indx, 0, data, size, 1000, GFP_NOIO); } static void async_set_reg_cb(struct urb *urb) { struct async_req *req = (struct async_req *)urb->context; int status = urb->status; if (status < 0) dev_dbg(&urb->dev->dev, "%s failed with %d", __func__, status); kfree(req); usb_free_urb(urb); } static int async_set_registers(rtl8150_t *dev, u16 indx, u16 size, u16 reg) { int res = -ENOMEM; struct urb *async_urb; struct async_req *req; req = kmalloc(sizeof(struct async_req), GFP_ATOMIC); if (req == NULL) return res; async_urb = usb_alloc_urb(0, GFP_ATOMIC); if (async_urb == NULL) { kfree(req); return res; } req->rx_creg = cpu_to_le16(reg); req->dr.bRequestType = RTL8150_REQT_WRITE; req->dr.bRequest = RTL8150_REQ_SET_REGS; req->dr.wIndex = 0; req->dr.wValue = cpu_to_le16(indx); req->dr.wLength = cpu_to_le16(size); usb_fill_control_urb(async_urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (void *)&req->dr, &req->rx_creg, size, async_set_reg_cb, req); res = usb_submit_urb(async_urb, GFP_ATOMIC); if (res) { if (res == -ENODEV) netif_device_detach(dev->netdev); dev_err(&dev->udev->dev, "%s failed with %d\n", __func__, res); } return res; } static int read_mii_word(rtl8150_t * dev, u8 phy, __u8 indx, u16 * reg) { int i; u8 data[3], tmp; data[0] = phy; data[1] = data[2] = 0; tmp = indx | PHY_READ | PHY_GO; i = 0; set_registers(dev, PHYADD, sizeof(data), data); set_registers(dev, PHYCNT, 1, &tmp); do { get_registers(dev, PHYCNT, 1, data); } while ((data[0] & PHY_GO) && (i++ < MII_TIMEOUT)); if (i <= MII_TIMEOUT) { get_registers(dev, PHYDAT, 2, data); *reg = data[0] | (data[1] << 8); return 0; } else return 1; } static int write_mii_word(rtl8150_t * dev, u8 phy, __u8 indx, u16 reg) { int i; u8 data[3], tmp; data[0] = phy; data[1] = reg & 0xff; data[2] = (reg >> 8) & 0xff; tmp = indx | PHY_WRITE | PHY_GO; i = 0; set_registers(dev, PHYADD, sizeof(data), data); set_registers(dev, PHYCNT, 1, &tmp); do { get_registers(dev, PHYCNT, 1, data); } while ((data[0] & PHY_GO) && (i++ < MII_TIMEOUT)); if (i <= MII_TIMEOUT) return 0; else return 1; } static void set_ethernet_addr(rtl8150_t *dev) { u8 node_id[ETH_ALEN]; int ret; ret = get_registers(dev, IDR, sizeof(node_id), node_id); if (!ret) { eth_hw_addr_set(dev->netdev, node_id); } else { eth_hw_addr_random(dev->netdev); netdev_notice(dev->netdev, "Assigned a random MAC address: %pM\n", dev->netdev->dev_addr); } } static int rtl8150_set_mac_address(struct net_device *netdev, void *p) { struct sockaddr *addr = p; rtl8150_t *dev = netdev_priv(netdev); if (netif_running(netdev)) return -EBUSY; eth_hw_addr_set(netdev, addr->sa_data); netdev_dbg(netdev, "Setting MAC address to %pM\n", netdev->dev_addr); /* Set the IDR registers. */ set_registers(dev, IDR, netdev->addr_len, netdev->dev_addr); #ifdef EEPROM_WRITE { int i; u8 cr; /* Get the CR contents. */ get_registers(dev, CR, 1, &cr); /* Set the WEPROM bit (eeprom write enable). */ cr |= 0x20; set_registers(dev, CR, 1, &cr); /* Write the MAC address into eeprom. Eeprom writes must be word-sized, so we need to split them up. */ for (i = 0; i * 2 < netdev->addr_len; i++) { set_registers(dev, IDR_EEPROM + (i * 2), 2, netdev->dev_addr + (i * 2)); } /* Clear the WEPROM bit (preventing accidental eeprom writes). */ cr &= 0xdf; set_registers(dev, CR, 1, &cr); } #endif return 0; } static int rtl8150_reset(rtl8150_t * dev) { u8 data = 0x10; int i = HZ; set_registers(dev, CR, 1, &data); do { get_registers(dev, CR, 1, &data); } while ((data & 0x10) && --i); return (i > 0) ? 1 : 0; } static int alloc_all_urbs(rtl8150_t * dev) { dev->rx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->rx_urb) return 0; dev->tx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->tx_urb) { usb_free_urb(dev->rx_urb); return 0; } dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->intr_urb) { usb_free_urb(dev->rx_urb); usb_free_urb(dev->tx_urb); return 0; } return 1; } static void free_all_urbs(rtl8150_t * dev) { usb_free_urb(dev->rx_urb); usb_free_urb(dev->tx_urb); usb_free_urb(dev->intr_urb); } static void unlink_all_urbs(rtl8150_t * dev) { usb_kill_urb(dev->rx_urb); usb_kill_urb(dev->tx_urb); usb_kill_urb(dev->intr_urb); } static inline struct sk_buff *pull_skb(rtl8150_t *dev) { struct sk_buff *skb; int i; for (i = 0; i < RX_SKB_POOL_SIZE; i++) { if (dev->rx_skb_pool[i]) { skb = dev->rx_skb_pool[i]; dev->rx_skb_pool[i] = NULL; return skb; } } return NULL; } static void read_bulk_callback(struct urb *urb) { rtl8150_t *dev; unsigned pkt_len, res; struct sk_buff *skb; struct net_device *netdev; int status = urb->status; int result; unsigned long flags; dev = urb->context; if (!dev) return; if (test_bit(RTL8150_UNPLUG, &dev->flags)) return; netdev = dev->netdev; if (!netif_device_present(netdev)) return; switch (status) { case 0: break; case -ENOENT: return; /* the urb is in unlink state */ case -ETIME: if (printk_ratelimit()) dev_warn(&urb->dev->dev, "may be reset is needed?..\n"); goto goon; default: if (printk_ratelimit()) dev_warn(&urb->dev->dev, "Rx status %d\n", status); goto goon; } if (!dev->rx_skb) goto resched; /* protect against short packets (tell me why we got some?!?) */ if (urb->actual_length < 4) goto goon; res = urb->actual_length; pkt_len = res - 4; skb_put(dev->rx_skb, pkt_len); dev->rx_skb->protocol = eth_type_trans(dev->rx_skb, netdev); netif_rx(dev->rx_skb); netdev->stats.rx_packets++; netdev->stats.rx_bytes += pkt_len; spin_lock_irqsave(&dev->rx_pool_lock, flags); skb = pull_skb(dev); spin_unlock_irqrestore(&dev->rx_pool_lock, flags); if (!skb) goto resched; dev->rx_skb = skb; goon: usb_fill_bulk_urb(dev->rx_urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), dev->rx_skb->data, RTL8150_MTU, read_bulk_callback, dev); result = usb_submit_urb(dev->rx_urb, GFP_ATOMIC); if (result == -ENODEV) netif_device_detach(dev->netdev); else if (result) { set_bit(RX_URB_FAIL, &dev->flags); goto resched; } else { clear_bit(RX_URB_FAIL, &dev->flags); } return; resched: tasklet_schedule(&dev->tl); } static void write_bulk_callback(struct urb *urb) { rtl8150_t *dev; int status = urb->status; dev = urb->context; if (!dev) return; dev_kfree_skb_irq(dev->tx_skb); if (!netif_device_present(dev->netdev)) return; if (status) dev_info(&urb->dev->dev, "%s: Tx status %d\n", dev->netdev->name, status); netif_trans_update(dev->netdev); netif_wake_queue(dev->netdev); } static void intr_callback(struct urb *urb) { rtl8150_t *dev; __u8 *d; int status = urb->status; int res; dev = urb->context; if (!dev) return; switch (status) { case 0: /* success */ break; case -ECONNRESET: /* unlink */ case -ENOENT: case -ESHUTDOWN: return; /* -EPIPE: should clear the halt */ default: dev_info(&urb->dev->dev, "%s: intr status %d\n", dev->netdev->name, status); goto resubmit; } d = urb->transfer_buffer; if (d[0] & TSR_ERRORS) { dev->netdev->stats.tx_errors++; if (d[INT_TSR] & (TSR_ECOL | TSR_JBR)) dev->netdev->stats.tx_aborted_errors++; if (d[INT_TSR] & TSR_LCOL) dev->netdev->stats.tx_window_errors++; if (d[INT_TSR] & TSR_LOSS_CRS) dev->netdev->stats.tx_carrier_errors++; } /* Report link status changes to the network stack */ if ((d[INT_MSR] & MSR_LINK) == 0) { if (netif_carrier_ok(dev->netdev)) { netif_carrier_off(dev->netdev); netdev_dbg(dev->netdev, "%s: LINK LOST\n", __func__); } } else { if (!netif_carrier_ok(dev->netdev)) { netif_carrier_on(dev->netdev); netdev_dbg(dev->netdev, "%s: LINK CAME BACK\n", __func__); } } resubmit: res = usb_submit_urb (urb, GFP_ATOMIC); if (res == -ENODEV) netif_device_detach(dev->netdev); else if (res) dev_err(&dev->udev->dev, "can't resubmit intr, %s-%s/input0, status %d\n", dev->udev->bus->bus_name, dev->udev->devpath, res); } static int rtl8150_suspend(struct usb_interface *intf, pm_message_t message) { rtl8150_t *dev = usb_get_intfdata(intf); netif_device_detach(dev->netdev); if (netif_running(dev->netdev)) { usb_kill_urb(dev->rx_urb); usb_kill_urb(dev->intr_urb); } return 0; } static int rtl8150_resume(struct usb_interface *intf) { rtl8150_t *dev = usb_get_intfdata(intf); netif_device_attach(dev->netdev); if (netif_running(dev->netdev)) { dev->rx_urb->status = 0; dev->rx_urb->actual_length = 0; read_bulk_callback(dev->rx_urb); dev->intr_urb->status = 0; dev->intr_urb->actual_length = 0; intr_callback(dev->intr_urb); } return 0; } /* ** ** network related part of the code ** */ static void fill_skb_pool(rtl8150_t *dev) { struct sk_buff *skb; int i; for (i = 0; i < RX_SKB_POOL_SIZE; i++) { if (dev->rx_skb_pool[i]) continue; skb = dev_alloc_skb(RTL8150_MTU + 2); if (!skb) { return; } skb_reserve(skb, 2); dev->rx_skb_pool[i] = skb; } } static void free_skb_pool(rtl8150_t *dev) { int i; for (i = 0; i < RX_SKB_POOL_SIZE; i++) dev_kfree_skb(dev->rx_skb_pool[i]); } static void rx_fixup(struct tasklet_struct *t) { struct rtl8150 *dev = from_tasklet(dev, t, tl); struct sk_buff *skb; int status; spin_lock_irq(&dev->rx_pool_lock); fill_skb_pool(dev); spin_unlock_irq(&dev->rx_pool_lock); if (test_bit(RX_URB_FAIL, &dev->flags)) if (dev->rx_skb) goto try_again; spin_lock_irq(&dev->rx_pool_lock); skb = pull_skb(dev); spin_unlock_irq(&dev->rx_pool_lock); if (skb == NULL) goto tlsched; dev->rx_skb = skb; usb_fill_bulk_urb(dev->rx_urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), dev->rx_skb->data, RTL8150_MTU, read_bulk_callback, dev); try_again: status = usb_submit_urb(dev->rx_urb, GFP_ATOMIC); if (status == -ENODEV) { netif_device_detach(dev->netdev); } else if (status) { set_bit(RX_URB_FAIL, &dev->flags); goto tlsched; } else { clear_bit(RX_URB_FAIL, &dev->flags); } return; tlsched: tasklet_schedule(&dev->tl); } static int enable_net_traffic(rtl8150_t * dev) { u8 cr, tcr, rcr, msr; if (!rtl8150_reset(dev)) { dev_warn(&dev->udev->dev, "device reset failed\n"); } /* RCR bit7=1 attach Rx info at the end; =0 HW CRC (which is broken) */ rcr = 0x9e; tcr = 0xd8; cr = 0x0c; if (!(rcr & 0x80)) set_bit(RTL8150_HW_CRC, &dev->flags); set_registers(dev, RCR, 1, &rcr); set_registers(dev, TCR, 1, &tcr); set_registers(dev, CR, 1, &cr); get_registers(dev, MSR, 1, &msr); return 0; } static void disable_net_traffic(rtl8150_t * dev) { u8 cr; get_registers(dev, CR, 1, &cr); cr &= 0xf3; set_registers(dev, CR, 1, &cr); } static void rtl8150_tx_timeout(struct net_device *netdev, unsigned int txqueue) { rtl8150_t *dev = netdev_priv(netdev); dev_warn(&netdev->dev, "Tx timeout.\n"); usb_unlink_urb(dev->tx_urb); netdev->stats.tx_errors++; } static void rtl8150_set_multicast(struct net_device *netdev) { rtl8150_t *dev = netdev_priv(netdev); u16 rx_creg = 0x9e; netif_stop_queue(netdev); if (netdev->flags & IFF_PROMISC) { rx_creg |= 0x0001; dev_info(&netdev->dev, "%s: promiscuous mode\n", netdev->name); } else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) { rx_creg &= 0xfffe; rx_creg |= 0x0002; dev_dbg(&netdev->dev, "%s: allmulti set\n", netdev->name); } else { /* ~RX_MULTICAST, ~RX_PROMISCUOUS */ rx_creg &= 0x00fc; } async_set_registers(dev, RCR, sizeof(rx_creg), rx_creg); netif_wake_queue(netdev); } static netdev_tx_t rtl8150_start_xmit(struct sk_buff *skb, struct net_device *netdev) { rtl8150_t *dev = netdev_priv(netdev); int count, res; netif_stop_queue(netdev); count = (skb->len < 60) ? 60 : skb->len; count = (count & 0x3f) ? count : count + 1; dev->tx_skb = skb; usb_fill_bulk_urb(dev->tx_urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), skb->data, count, write_bulk_callback, dev); if ((res = usb_submit_urb(dev->tx_urb, GFP_ATOMIC))) { /* Can we get/handle EPIPE here? */ if (res == -ENODEV) netif_device_detach(dev->netdev); else { dev_warn(&netdev->dev, "failed tx_urb %d\n", res); netdev->stats.tx_errors++; netif_start_queue(netdev); } } else { netdev->stats.tx_packets++; netdev->stats.tx_bytes += skb->len; netif_trans_update(netdev); } return NETDEV_TX_OK; } static void set_carrier(struct net_device *netdev) { rtl8150_t *dev = netdev_priv(netdev); short tmp; get_registers(dev, CSCR, 2, &tmp); if (tmp & CSCR_LINK_STATUS) netif_carrier_on(netdev); else netif_carrier_off(netdev); } static int rtl8150_open(struct net_device *netdev) { rtl8150_t *dev = netdev_priv(netdev); int res; if (dev->rx_skb == NULL) dev->rx_skb = pull_skb(dev); if (!dev->rx_skb) return -ENOMEM; set_registers(dev, IDR, 6, netdev->dev_addr); usb_fill_bulk_urb(dev->rx_urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), dev->rx_skb->data, RTL8150_MTU, read_bulk_callback, dev); if ((res = usb_submit_urb(dev->rx_urb, GFP_KERNEL))) { if (res == -ENODEV) netif_device_detach(dev->netdev); dev_warn(&netdev->dev, "rx_urb submit failed: %d\n", res); return res; } usb_fill_int_urb(dev->intr_urb, dev->udev, usb_rcvintpipe(dev->udev, 3), dev->intr_buff, INTBUFSIZE, intr_callback, dev, dev->intr_interval); if ((res = usb_submit_urb(dev->intr_urb, GFP_KERNEL))) { if (res == -ENODEV) netif_device_detach(dev->netdev); dev_warn(&netdev->dev, "intr_urb submit failed: %d\n", res); usb_kill_urb(dev->rx_urb); return res; } enable_net_traffic(dev); set_carrier(netdev); netif_start_queue(netdev); return res; } static int rtl8150_close(struct net_device *netdev) { rtl8150_t *dev = netdev_priv(netdev); netif_stop_queue(netdev); if (!test_bit(RTL8150_UNPLUG, &dev->flags)) disable_net_traffic(dev); unlink_all_urbs(dev); return 0; } static void rtl8150_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { rtl8150_t *dev = netdev_priv(netdev); strscpy(info->driver, driver_name, sizeof(info->driver)); strscpy(info->version, DRIVER_VERSION, sizeof(info->version)); usb_make_path(dev->udev, info->bus_info, sizeof(info->bus_info)); } static int rtl8150_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *ecmd) { rtl8150_t *dev = netdev_priv(netdev); short lpa = 0; short bmcr = 0; u32 supported; supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); ecmd->base.port = PORT_TP; ecmd->base.phy_address = dev->phy; get_registers(dev, BMCR, 2, &bmcr); get_registers(dev, ANLP, 2, &lpa); if (bmcr & BMCR_ANENABLE) { u32 speed = ((lpa & (LPA_100HALF | LPA_100FULL)) ? SPEED_100 : SPEED_10); ecmd->base.speed = speed; ecmd->base.autoneg = AUTONEG_ENABLE; if (speed == SPEED_100) ecmd->base.duplex = (lpa & LPA_100FULL) ? DUPLEX_FULL : DUPLEX_HALF; else ecmd->base.duplex = (lpa & LPA_10FULL) ? DUPLEX_FULL : DUPLEX_HALF; } else { ecmd->base.autoneg = AUTONEG_DISABLE; ecmd->base.speed = ((bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10); ecmd->base.duplex = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; } ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported, supported); return 0; } static const struct ethtool_ops ops = { .get_drvinfo = rtl8150_get_drvinfo, .get_link = ethtool_op_get_link, .get_link_ksettings = rtl8150_get_link_ksettings, }; static int rtl8150_siocdevprivate(struct net_device *netdev, struct ifreq *rq, void __user *udata, int cmd) { rtl8150_t *dev = netdev_priv(netdev); u16 *data = (u16 *) & rq->ifr_ifru; int res = 0; switch (cmd) { case SIOCDEVPRIVATE: data[0] = dev->phy; fallthrough; case SIOCDEVPRIVATE + 1: read_mii_word(dev, dev->phy, (data[1] & 0x1f), &data[3]); break; case SIOCDEVPRIVATE + 2: if (!capable(CAP_NET_ADMIN)) return -EPERM; write_mii_word(dev, dev->phy, (data[1] & 0x1f), data[2]); break; default: res = -EOPNOTSUPP; } return res; } static const struct net_device_ops rtl8150_netdev_ops = { .ndo_open = rtl8150_open, .ndo_stop = rtl8150_close, .ndo_siocdevprivate = rtl8150_siocdevprivate, .ndo_start_xmit = rtl8150_start_xmit, .ndo_tx_timeout = rtl8150_tx_timeout, .ndo_set_rx_mode = rtl8150_set_multicast, .ndo_set_mac_address = rtl8150_set_mac_address, .ndo_validate_addr = eth_validate_addr, }; static int rtl8150_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); rtl8150_t *dev; struct net_device *netdev; static const u8 bulk_ep_addr[] = { RTL8150_USB_EP_BULK_IN | USB_DIR_IN, RTL8150_USB_EP_BULK_OUT | USB_DIR_OUT, 0}; static const u8 int_ep_addr[] = { RTL8150_USB_EP_INT_IN | USB_DIR_IN, 0}; netdev = alloc_etherdev(sizeof(rtl8150_t)); if (!netdev) return -ENOMEM; dev = netdev_priv(netdev); dev->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL); if (!dev->intr_buff) { free_netdev(netdev); return -ENOMEM; } /* Verify that all required endpoints are present */ if (!usb_check_bulk_endpoints(intf, bulk_ep_addr) || !usb_check_int_endpoints(intf, int_ep_addr)) { dev_err(&intf->dev, "couldn't find required endpoints\n"); goto out; } tasklet_setup(&dev->tl, rx_fixup); spin_lock_init(&dev->rx_pool_lock); dev->udev = udev; dev->netdev = netdev; netdev->netdev_ops = &rtl8150_netdev_ops; netdev->watchdog_timeo = RTL8150_TX_TIMEOUT; netdev->ethtool_ops = &ops; dev->intr_interval = 100; /* 100ms */ if (!alloc_all_urbs(dev)) { dev_err(&intf->dev, "out of memory\n"); goto out; } if (!rtl8150_reset(dev)) { dev_err(&intf->dev, "couldn't reset the device\n"); goto out1; } fill_skb_pool(dev); set_ethernet_addr(dev); usb_set_intfdata(intf, dev); SET_NETDEV_DEV(netdev, &intf->dev); if (register_netdev(netdev) != 0) { dev_err(&intf->dev, "couldn't register the device\n"); goto out2; } dev_info(&intf->dev, "%s: rtl8150 is detected\n", netdev->name); return 0; out2: usb_set_intfdata(intf, NULL); free_skb_pool(dev); out1: free_all_urbs(dev); out: kfree(dev->intr_buff); free_netdev(netdev); return -EIO; } static void rtl8150_disconnect(struct usb_interface *intf) { rtl8150_t *dev = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (dev) { set_bit(RTL8150_UNPLUG, &dev->flags); tasklet_kill(&dev->tl); unregister_netdev(dev->netdev); unlink_all_urbs(dev); free_all_urbs(dev); free_skb_pool(dev); dev_kfree_skb(dev->rx_skb); kfree(dev->intr_buff); free_netdev(dev->netdev); } } static struct usb_driver rtl8150_driver = { .name = driver_name, .probe = rtl8150_probe, .disconnect = rtl8150_disconnect, .id_table = rtl8150_table, .suspend = rtl8150_suspend, .resume = rtl8150_resume, .disable_hub_initiated_lpm = 1, }; module_usb_driver(rtl8150_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
9 8 2 8 1 7 1 1 5 1 2 6 3 1 1 4 5 3 2 2 4 3 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 // SPDX-License-Identifier: GPL-2.0 #include <linux/types.h> #include <net/ip.h> #include <net/tcp.h> #include <net/netlink.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_synproxy.h> #include <net/netfilter/nf_synproxy.h> #include <linux/netfilter/nf_tables.h> #include <linux/netfilter/nf_synproxy.h> struct nft_synproxy { struct nf_synproxy_info info; }; static const struct nla_policy nft_synproxy_policy[NFTA_SYNPROXY_MAX + 1] = { [NFTA_SYNPROXY_MSS] = { .type = NLA_U16 }, [NFTA_SYNPROXY_WSCALE] = { .type = NLA_U8 }, [NFTA_SYNPROXY_FLAGS] = { .type = NLA_U32 }, }; static void nft_synproxy_tcp_options(struct synproxy_options *opts, const struct tcphdr *tcp, struct synproxy_net *snet, struct nf_synproxy_info *info, const struct nft_synproxy *priv) { this_cpu_inc(snet->stats->syn_received); if (tcp->ece && tcp->cwr) opts->options |= NF_SYNPROXY_OPT_ECN; opts->options &= priv->info.options; opts->mss_encode = opts->mss_option; opts->mss_option = info->mss; if (opts->options & NF_SYNPROXY_OPT_TIMESTAMP) synproxy_init_timestamp_cookie(info, opts); else opts->options &= ~(NF_SYNPROXY_OPT_WSCALE | NF_SYNPROXY_OPT_SACK_PERM | NF_SYNPROXY_OPT_ECN); } static void nft_synproxy_eval_v4(const struct nft_synproxy *priv, struct nft_regs *regs, const struct nft_pktinfo *pkt, const struct tcphdr *tcp, struct tcphdr *_tcph, struct synproxy_options *opts) { struct nf_synproxy_info info = priv->info; struct net *net = nft_net(pkt); struct synproxy_net *snet = synproxy_pernet(net); struct sk_buff *skb = pkt->skb; if (tcp->syn) { /* Initial SYN from client */ nft_synproxy_tcp_options(opts, tcp, snet, &info, priv); synproxy_send_client_synack(net, skb, tcp, opts); consume_skb(skb); regs->verdict.code = NF_STOLEN; } else if (tcp->ack) { /* ACK from client */ if (synproxy_recv_client_ack(net, skb, tcp, opts, ntohl(tcp->seq))) { consume_skb(skb); regs->verdict.code = NF_STOLEN; } else { regs->verdict.code = NF_DROP; } } } #if IS_ENABLED(CONFIG_NF_TABLES_IPV6) static void nft_synproxy_eval_v6(const struct nft_synproxy *priv, struct nft_regs *regs, const struct nft_pktinfo *pkt, const struct tcphdr *tcp, struct tcphdr *_tcph, struct synproxy_options *opts) { struct nf_synproxy_info info = priv->info; struct net *net = nft_net(pkt); struct synproxy_net *snet = synproxy_pernet(net); struct sk_buff *skb = pkt->skb; if (tcp->syn) { /* Initial SYN from client */ nft_synproxy_tcp_options(opts, tcp, snet, &info, priv); synproxy_send_client_synack_ipv6(net, skb, tcp, opts); consume_skb(skb); regs->verdict.code = NF_STOLEN; } else if (tcp->ack) { /* ACK from client */ if (synproxy_recv_client_ack_ipv6(net, skb, tcp, opts, ntohl(tcp->seq))) { consume_skb(skb); regs->verdict.code = NF_STOLEN; } else { regs->verdict.code = NF_DROP; } } } #endif /* CONFIG_NF_TABLES_IPV6*/ static void nft_synproxy_do_eval(const struct nft_synproxy *priv, struct nft_regs *regs, const struct nft_pktinfo *pkt) { struct synproxy_options opts = {}; struct sk_buff *skb = pkt->skb; int thoff = nft_thoff(pkt); const struct tcphdr *tcp; struct tcphdr _tcph; if (pkt->tprot != IPPROTO_TCP) { regs->verdict.code = NFT_BREAK; return; } if (nf_ip_checksum(skb, nft_hook(pkt), thoff, IPPROTO_TCP)) { regs->verdict.code = NF_DROP; return; } tcp = skb_header_pointer(skb, thoff, sizeof(struct tcphdr), &_tcph); if (!tcp) { regs->verdict.code = NF_DROP; return; } if (!synproxy_parse_options(skb, thoff, tcp, &opts)) { regs->verdict.code = NF_DROP; return; } switch (skb->protocol) { case htons(ETH_P_IP): nft_synproxy_eval_v4(priv, regs, pkt, tcp, &_tcph, &opts); return; #if IS_ENABLED(CONFIG_NF_TABLES_IPV6) case htons(ETH_P_IPV6): nft_synproxy_eval_v6(priv, regs, pkt, tcp, &_tcph, &opts); return; #endif } regs->verdict.code = NFT_BREAK; } static int nft_synproxy_do_init(const struct nft_ctx *ctx, const struct nlattr * const tb[], struct nft_synproxy *priv) { struct synproxy_net *snet = synproxy_pernet(ctx->net); u32 flags; int err; if (tb[NFTA_SYNPROXY_MSS]) priv->info.mss = ntohs(nla_get_be16(tb[NFTA_SYNPROXY_MSS])); if (tb[NFTA_SYNPROXY_WSCALE]) priv->info.wscale = nla_get_u8(tb[NFTA_SYNPROXY_WSCALE]); if (tb[NFTA_SYNPROXY_FLAGS]) { flags = ntohl(nla_get_be32(tb[NFTA_SYNPROXY_FLAGS])); if (flags & ~NF_SYNPROXY_OPT_MASK) return -EOPNOTSUPP; priv->info.options = flags; } err = nf_ct_netns_get(ctx->net, ctx->family); if (err) return err; switch (ctx->family) { case NFPROTO_IPV4: err = nf_synproxy_ipv4_init(snet, ctx->net); if (err) goto nf_ct_failure; break; #if IS_ENABLED(CONFIG_NF_TABLES_IPV6) case NFPROTO_IPV6: err = nf_synproxy_ipv6_init(snet, ctx->net); if (err) goto nf_ct_failure; break; #endif case NFPROTO_INET: err = nf_synproxy_ipv4_init(snet, ctx->net); if (err) goto nf_ct_failure; err = nf_synproxy_ipv6_init(snet, ctx->net); if (err) { nf_synproxy_ipv4_fini(snet, ctx->net); goto nf_ct_failure; } break; } return 0; nf_ct_failure: nf_ct_netns_put(ctx->net, ctx->family); return err; } static void nft_synproxy_do_destroy(const struct nft_ctx *ctx) { struct synproxy_net *snet = synproxy_pernet(ctx->net); switch (ctx->family) { case NFPROTO_IPV4: nf_synproxy_ipv4_fini(snet, ctx->net); break; #if IS_ENABLED(CONFIG_NF_TABLES_IPV6) case NFPROTO_IPV6: nf_synproxy_ipv6_fini(snet, ctx->net); break; #endif case NFPROTO_INET: nf_synproxy_ipv4_fini(snet, ctx->net); nf_synproxy_ipv6_fini(snet, ctx->net); break; } nf_ct_netns_put(ctx->net, ctx->family); } static int nft_synproxy_do_dump(struct sk_buff *skb, struct nft_synproxy *priv) { if (nla_put_be16(skb, NFTA_SYNPROXY_MSS, htons(priv->info.mss)) || nla_put_u8(skb, NFTA_SYNPROXY_WSCALE, priv->info.wscale) || nla_put_be32(skb, NFTA_SYNPROXY_FLAGS, htonl(priv->info.options))) goto nla_put_failure; return 0; nla_put_failure: return -1; } static void nft_synproxy_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_synproxy *priv = nft_expr_priv(expr); nft_synproxy_do_eval(priv, regs, pkt); } static int nft_synproxy_validate(const struct nft_ctx *ctx, const struct nft_expr *expr) { if (ctx->family != NFPROTO_IPV4 && ctx->family != NFPROTO_IPV6 && ctx->family != NFPROTO_INET) return -EOPNOTSUPP; return nft_chain_validate_hooks(ctx->chain, (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD)); } static int nft_synproxy_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_synproxy *priv = nft_expr_priv(expr); return nft_synproxy_do_init(ctx, tb, priv); } static void nft_synproxy_destroy(const struct nft_ctx *ctx, const struct nft_expr *expr) { nft_synproxy_do_destroy(ctx); } static int nft_synproxy_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { struct nft_synproxy *priv = nft_expr_priv(expr); return nft_synproxy_do_dump(skb, priv); } static struct nft_expr_type nft_synproxy_type; static const struct nft_expr_ops nft_synproxy_ops = { .eval = nft_synproxy_eval, .size = NFT_EXPR_SIZE(sizeof(struct nft_synproxy)), .init = nft_synproxy_init, .destroy = nft_synproxy_destroy, .dump = nft_synproxy_dump, .type = &nft_synproxy_type, .validate = nft_synproxy_validate, .reduce = NFT_REDUCE_READONLY, }; static struct nft_expr_type nft_synproxy_type __read_mostly = { .ops = &nft_synproxy_ops, .name = "synproxy", .owner = THIS_MODULE, .policy = nft_synproxy_policy, .maxattr = NFTA_SYNPROXY_MAX, }; static int nft_synproxy_obj_init(const struct nft_ctx *ctx, const struct nlattr * const tb[], struct nft_object *obj) { struct nft_synproxy *priv = nft_obj_data(obj); return nft_synproxy_do_init(ctx, tb, priv); } static void nft_synproxy_obj_destroy(const struct nft_ctx *ctx, struct nft_object *obj) { nft_synproxy_do_destroy(ctx); } static int nft_synproxy_obj_dump(struct sk_buff *skb, struct nft_object *obj, bool reset) { struct nft_synproxy *priv = nft_obj_data(obj); return nft_synproxy_do_dump(skb, priv); } static void nft_synproxy_obj_eval(struct nft_object *obj, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_synproxy *priv = nft_obj_data(obj); nft_synproxy_do_eval(priv, regs, pkt); } static void nft_synproxy_obj_update(struct nft_object *obj, struct nft_object *newobj) { struct nft_synproxy *newpriv = nft_obj_data(newobj); struct nft_synproxy *priv = nft_obj_data(obj); priv->info = newpriv->info; } static struct nft_object_type nft_synproxy_obj_type; static const struct nft_object_ops nft_synproxy_obj_ops = { .type = &nft_synproxy_obj_type, .size = sizeof(struct nft_synproxy), .init = nft_synproxy_obj_init, .destroy = nft_synproxy_obj_destroy, .dump = nft_synproxy_obj_dump, .eval = nft_synproxy_obj_eval, .update = nft_synproxy_obj_update, }; static struct nft_object_type nft_synproxy_obj_type __read_mostly = { .type = NFT_OBJECT_SYNPROXY, .ops = &nft_synproxy_obj_ops, .maxattr = NFTA_SYNPROXY_MAX, .policy = nft_synproxy_policy, .owner = THIS_MODULE, }; static int __init nft_synproxy_module_init(void) { int err; err = nft_register_obj(&nft_synproxy_obj_type); if (err < 0) return err; err = nft_register_expr(&nft_synproxy_type); if (err < 0) goto err; return 0; err: nft_unregister_obj(&nft_synproxy_obj_type); return err; } static void __exit nft_synproxy_module_exit(void) { nft_unregister_expr(&nft_synproxy_type); nft_unregister_obj(&nft_synproxy_obj_type); } module_init(nft_synproxy_module_init); module_exit(nft_synproxy_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Fernando Fernandez <ffmancera@riseup.net>"); MODULE_ALIAS_NFT_EXPR("synproxy"); MODULE_ALIAS_NFT_OBJ(NFT_OBJECT_SYNPROXY); MODULE_DESCRIPTION("nftables SYNPROXY expression support");
24 29 2 23 1 25 6 2 2 2 1 1 1 1 2 2 2 2 4 1 1 2 1 28 27 8 29 28 28 29 29 29 28 29 2 29 31 30 32 1 31 32 1 205 205 1 1 8 8 6 2 4 6 1 2 1 4 1 239 5 2 3 5 5 4 4 4 4 4 1 30 30 2 27 1 3 4 8 8 3 3 3 2 5 1 4 3 1 2 2 2 1 15 17 1 2 2 3 1 2 9 2 1 1 1 1 1 1 1 8 1 1 1 1 10 3 1 1 2 1 1 7 6 6 6 2 2 1 1 2 1 1 3 1 1 1 2 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 7 1 5 1 5 3 4 14 9 1 2 3 1 1 1 1 1 1 2 4 1 1 9 1 1 1 1 1 1 1 98 2 99 101 238 84 239 161 254 257 255 258 239 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 // SPDX-License-Identifier: GPL-2.0-only /* * Event char devices, giving access to raw input device events. * * Copyright (c) 1999-2002 Vojtech Pavlik */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define EVDEV_MINOR_BASE 64 #define EVDEV_MINORS 32 #define EVDEV_MIN_BUFFER_SIZE 64U #define EVDEV_BUF_PACKETS 8 #include <linux/poll.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input/mt.h> #include <linux/major.h> #include <linux/device.h> #include <linux/cdev.h> #include "input-compat.h" struct evdev { int open; struct input_handle handle; struct evdev_client __rcu *grab; struct list_head client_list; spinlock_t client_lock; /* protects client_list */ struct mutex mutex; struct device dev; struct cdev cdev; bool exist; }; struct evdev_client { unsigned int head; unsigned int tail; unsigned int packet_head; /* [future] position of the first element of next packet */ spinlock_t buffer_lock; /* protects access to buffer, head and tail */ wait_queue_head_t wait; struct fasync_struct *fasync; struct evdev *evdev; struct list_head node; enum input_clock_type clk_type; bool revoked; unsigned long *evmasks[EV_CNT]; unsigned int bufsize; struct input_event buffer[] __counted_by(bufsize); }; static size_t evdev_get_mask_cnt(unsigned int type) { static const size_t counts[EV_CNT] = { /* EV_SYN==0 is EV_CNT, _not_ SYN_CNT, see EVIOCGBIT */ [EV_SYN] = EV_CNT, [EV_KEY] = KEY_CNT, [EV_REL] = REL_CNT, [EV_ABS] = ABS_CNT, [EV_MSC] = MSC_CNT, [EV_SW] = SW_CNT, [EV_LED] = LED_CNT, [EV_SND] = SND_CNT, [EV_FF] = FF_CNT, }; return (type < EV_CNT) ? counts[type] : 0; } /* requires the buffer lock to be held */ static bool __evdev_is_filtered(struct evdev_client *client, unsigned int type, unsigned int code) { unsigned long *mask; size_t cnt; /* EV_SYN and unknown codes are never filtered */ if (type == EV_SYN || type >= EV_CNT) return false; /* first test whether the type is filtered */ mask = client->evmasks[0]; if (mask && !test_bit(type, mask)) return true; /* unknown values are never filtered */ cnt = evdev_get_mask_cnt(type); if (!cnt || code >= cnt) return false; mask = client->evmasks[type]; return mask && !test_bit(code, mask); } /* flush queued events of type @type, caller must hold client->buffer_lock */ static void __evdev_flush_queue(struct evdev_client *client, unsigned int type) { unsigned int i, head, num; unsigned int mask = client->bufsize - 1; bool is_report; struct input_event *ev; BUG_ON(type == EV_SYN); head = client->tail; client->packet_head = client->tail; /* init to 1 so a leading SYN_REPORT will not be dropped */ num = 1; for (i = client->tail; i != client->head; i = (i + 1) & mask) { ev = &client->buffer[i]; is_report = ev->type == EV_SYN && ev->code == SYN_REPORT; if (ev->type == type) { /* drop matched entry */ continue; } else if (is_report && !num) { /* drop empty SYN_REPORT groups */ continue; } else if (head != i) { /* move entry to fill the gap */ client->buffer[head] = *ev; } num++; head = (head + 1) & mask; if (is_report) { num = 0; client->packet_head = head; } } client->head = head; } static void __evdev_queue_syn_dropped(struct evdev_client *client) { ktime_t *ev_time = input_get_timestamp(client->evdev->handle.dev); struct timespec64 ts = ktime_to_timespec64(ev_time[client->clk_type]); struct input_event ev; ev.input_event_sec = ts.tv_sec; ev.input_event_usec = ts.tv_nsec / NSEC_PER_USEC; ev.type = EV_SYN; ev.code = SYN_DROPPED; ev.value = 0; client->buffer[client->head++] = ev; client->head &= client->bufsize - 1; if (unlikely(client->head == client->tail)) { /* drop queue but keep our SYN_DROPPED event */ client->tail = (client->head - 1) & (client->bufsize - 1); client->packet_head = client->tail; } } static void evdev_queue_syn_dropped(struct evdev_client *client) { unsigned long flags; spin_lock_irqsave(&client->buffer_lock, flags); __evdev_queue_syn_dropped(client); spin_unlock_irqrestore(&client->buffer_lock, flags); } static int evdev_set_clk_type(struct evdev_client *client, unsigned int clkid) { unsigned long flags; enum input_clock_type clk_type; switch (clkid) { case CLOCK_REALTIME: clk_type = INPUT_CLK_REAL; break; case CLOCK_MONOTONIC: clk_type = INPUT_CLK_MONO; break; case CLOCK_BOOTTIME: clk_type = INPUT_CLK_BOOT; break; default: return -EINVAL; } if (client->clk_type != clk_type) { client->clk_type = clk_type; /* * Flush pending events and queue SYN_DROPPED event, * but only if the queue is not empty. */ spin_lock_irqsave(&client->buffer_lock, flags); if (client->head != client->tail) { client->packet_head = client->head = client->tail; __evdev_queue_syn_dropped(client); } spin_unlock_irqrestore(&client->buffer_lock, flags); } return 0; } static void __pass_event(struct evdev_client *client, const struct input_event *event) { client->buffer[client->head++] = *event; client->head &= client->bufsize - 1; if (unlikely(client->head == client->tail)) { /* * This effectively "drops" all unconsumed events, leaving * EV_SYN/SYN_DROPPED plus the newest event in the queue. */ client->tail = (client->head - 2) & (client->bufsize - 1); client->buffer[client->tail] = (struct input_event) { .input_event_sec = event->input_event_sec, .input_event_usec = event->input_event_usec, .type = EV_SYN, .code = SYN_DROPPED, .value = 0, }; client->packet_head = client->tail; } if (event->type == EV_SYN && event->code == SYN_REPORT) { client->packet_head = client->head; kill_fasync(&client->fasync, SIGIO, POLL_IN); } } static void evdev_pass_values(struct evdev_client *client, const struct input_value *vals, unsigned int count, ktime_t *ev_time) { const struct input_value *v; struct input_event event; struct timespec64 ts; bool wakeup = false; if (client->revoked) return; ts = ktime_to_timespec64(ev_time[client->clk_type]); event.input_event_sec = ts.tv_sec; event.input_event_usec = ts.tv_nsec / NSEC_PER_USEC; /* Interrupts are disabled, just acquire the lock. */ spin_lock(&client->buffer_lock); for (v = vals; v != vals + count; v++) { if (__evdev_is_filtered(client, v->type, v->code)) continue; if (v->type == EV_SYN && v->code == SYN_REPORT) { /* drop empty SYN_REPORT */ if (client->packet_head == client->head) continue; wakeup = true; } event.type = v->type; event.code = v->code; event.value = v->value; __pass_event(client, &event); } spin_unlock(&client->buffer_lock); if (wakeup) wake_up_interruptible_poll(&client->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM); } /* * Pass incoming events to all connected clients. */ static unsigned int evdev_events(struct input_handle *handle, struct input_value *vals, unsigned int count) { struct evdev *evdev = handle->private; struct evdev_client *client; ktime_t *ev_time = input_get_timestamp(handle->dev); rcu_read_lock(); client = rcu_dereference(evdev->grab); if (client) evdev_pass_values(client, vals, count, ev_time); else list_for_each_entry_rcu(client, &evdev->client_list, node) evdev_pass_values(client, vals, count, ev_time); rcu_read_unlock(); return count; } static int evdev_fasync(int fd, struct file *file, int on) { struct evdev_client *client = file->private_data; return fasync_helper(fd, file, on, &client->fasync); } static void evdev_free(struct device *dev) { struct evdev *evdev = container_of(dev, struct evdev, dev); input_put_device(evdev->handle.dev); kfree(evdev); } /* * Grabs an event device (along with underlying input device). * This function is called with evdev->mutex taken. */ static int evdev_grab(struct evdev *evdev, struct evdev_client *client) { int error; if (evdev->grab) return -EBUSY; error = input_grab_device(&evdev->handle); if (error) return error; rcu_assign_pointer(evdev->grab, client); return 0; } static int evdev_ungrab(struct evdev *evdev, struct evdev_client *client) { struct evdev_client *grab = rcu_dereference_protected(evdev->grab, lockdep_is_held(&evdev->mutex)); if (grab != client) return -EINVAL; rcu_assign_pointer(evdev->grab, NULL); synchronize_rcu(); input_release_device(&evdev->handle); return 0; } static void evdev_attach_client(struct evdev *evdev, struct evdev_client *client) { spin_lock(&evdev->client_lock); list_add_tail_rcu(&client->node, &evdev->client_list); spin_unlock(&evdev->client_lock); } static void evdev_detach_client(struct evdev *evdev, struct evdev_client *client) { spin_lock(&evdev->client_lock); list_del_rcu(&client->node); spin_unlock(&evdev->client_lock); synchronize_rcu(); } static int evdev_open_device(struct evdev *evdev) { int retval; retval = mutex_lock_interruptible(&evdev->mutex); if (retval) return retval; if (!evdev->exist) retval = -ENODEV; else if (!evdev->open++) { retval = input_open_device(&evdev->handle); if (retval) evdev->open--; } mutex_unlock(&evdev->mutex); return retval; } static void evdev_close_device(struct evdev *evdev) { mutex_lock(&evdev->mutex); if (evdev->exist && !--evdev->open) input_close_device(&evdev->handle); mutex_unlock(&evdev->mutex); } /* * Wake up users waiting for IO so they can disconnect from * dead device. */ static void evdev_hangup(struct evdev *evdev) { struct evdev_client *client; spin_lock(&evdev->client_lock); list_for_each_entry(client, &evdev->client_list, node) { kill_fasync(&client->fasync, SIGIO, POLL_HUP); wake_up_interruptible_poll(&client->wait, EPOLLHUP | EPOLLERR); } spin_unlock(&evdev->client_lock); } static int evdev_release(struct inode *inode, struct file *file) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; unsigned int i; mutex_lock(&evdev->mutex); if (evdev->exist && !client->revoked) input_flush_device(&evdev->handle, file); evdev_ungrab(evdev, client); mutex_unlock(&evdev->mutex); evdev_detach_client(evdev, client); for (i = 0; i < EV_CNT; ++i) bitmap_free(client->evmasks[i]); kvfree(client); evdev_close_device(evdev); return 0; } static unsigned int evdev_compute_buffer_size(struct input_dev *dev) { unsigned int n_events = max(dev->hint_events_per_packet * EVDEV_BUF_PACKETS, EVDEV_MIN_BUFFER_SIZE); return roundup_pow_of_two(n_events); } static int evdev_open(struct inode *inode, struct file *file) { struct evdev *evdev = container_of(inode->i_cdev, struct evdev, cdev); unsigned int bufsize = evdev_compute_buffer_size(evdev->handle.dev); struct evdev_client *client; int error; client = kvzalloc(struct_size(client, buffer, bufsize), GFP_KERNEL); if (!client) return -ENOMEM; init_waitqueue_head(&client->wait); client->bufsize = bufsize; spin_lock_init(&client->buffer_lock); client->evdev = evdev; evdev_attach_client(evdev, client); error = evdev_open_device(evdev); if (error) goto err_free_client; file->private_data = client; stream_open(inode, file); return 0; err_free_client: evdev_detach_client(evdev, client); kvfree(client); return error; } static ssize_t evdev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; struct input_event event; int retval = 0; /* * Limit amount of data we inject into the input subsystem so that * we do not hold evdev->mutex for too long. 4096 bytes corresponds * to 170 input events. */ count = min(count, 4096); if (count != 0 && count < input_event_size()) return -EINVAL; retval = mutex_lock_interruptible(&evdev->mutex); if (retval) return retval; if (!evdev->exist || client->revoked) { retval = -ENODEV; goto out; } while (retval + input_event_size() <= count) { if (input_event_from_user(buffer + retval, &event)) { retval = -EFAULT; goto out; } retval += input_event_size(); input_inject_event(&evdev->handle, event.type, event.code, event.value); cond_resched(); } out: mutex_unlock(&evdev->mutex); return retval; } static int evdev_fetch_next_event(struct evdev_client *client, struct input_event *event) { int have_event; spin_lock_irq(&client->buffer_lock); have_event = client->packet_head != client->tail; if (have_event) { *event = client->buffer[client->tail++]; client->tail &= client->bufsize - 1; } spin_unlock_irq(&client->buffer_lock); return have_event; } static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; struct input_event event; size_t read = 0; int error; if (count != 0 && count < input_event_size()) return -EINVAL; for (;;) { if (!evdev->exist || client->revoked) return -ENODEV; if (client->packet_head == client->tail && (file->f_flags & O_NONBLOCK)) return -EAGAIN; /* * count == 0 is special - no IO is done but we check * for error conditions (see above). */ if (count == 0) break; while (read + input_event_size() <= count && evdev_fetch_next_event(client, &event)) { if (input_event_to_user(buffer + read, &event)) return -EFAULT; read += input_event_size(); } if (read) break; if (!(file->f_flags & O_NONBLOCK)) { error = wait_event_interruptible(client->wait, client->packet_head != client->tail || !evdev->exist || client->revoked); if (error) return error; } } return read; } /* No kernel lock - fine */ static __poll_t evdev_poll(struct file *file, poll_table *wait) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; __poll_t mask; poll_wait(file, &client->wait, wait); if (evdev->exist && !client->revoked) mask = EPOLLOUT | EPOLLWRNORM; else mask = EPOLLHUP | EPOLLERR; if (client->packet_head != client->tail) mask |= EPOLLIN | EPOLLRDNORM; return mask; } #ifdef CONFIG_COMPAT #define BITS_PER_LONG_COMPAT (sizeof(compat_long_t) * 8) #define BITS_TO_LONGS_COMPAT(x) ((((x) - 1) / BITS_PER_LONG_COMPAT) + 1) #ifdef __BIG_ENDIAN static int bits_to_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int len, i; if (compat) { len = BITS_TO_LONGS_COMPAT(maxbit) * sizeof(compat_long_t); if (len > maxlen) len = maxlen; for (i = 0; i < len / sizeof(compat_long_t); i++) if (copy_to_user((compat_long_t __user *) p + i, (compat_long_t *) bits + i + 1 - ((i % 2) << 1), sizeof(compat_long_t))) return -EFAULT; } else { len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; if (copy_to_user(p, bits, len)) return -EFAULT; } return len; } static int bits_from_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, const void __user *p, int compat) { int len, i; if (compat) { if (maxlen % sizeof(compat_long_t)) return -EINVAL; len = BITS_TO_LONGS_COMPAT(maxbit) * sizeof(compat_long_t); if (len > maxlen) len = maxlen; for (i = 0; i < len / sizeof(compat_long_t); i++) if (copy_from_user((compat_long_t *) bits + i + 1 - ((i % 2) << 1), (compat_long_t __user *) p + i, sizeof(compat_long_t))) return -EFAULT; if (i % 2) *((compat_long_t *) bits + i - 1) = 0; } else { if (maxlen % sizeof(long)) return -EINVAL; len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; if (copy_from_user(bits, p, len)) return -EFAULT; } return len; } #else static int bits_to_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int len = compat ? BITS_TO_LONGS_COMPAT(maxbit) * sizeof(compat_long_t) : BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; return copy_to_user(p, bits, len) ? -EFAULT : len; } static int bits_from_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, const void __user *p, int compat) { size_t chunk_size = compat ? sizeof(compat_long_t) : sizeof(long); int len; if (maxlen % chunk_size) return -EINVAL; len = compat ? BITS_TO_LONGS_COMPAT(maxbit) : BITS_TO_LONGS(maxbit); len *= chunk_size; if (len > maxlen) len = maxlen; return copy_from_user(bits, p, len) ? -EFAULT : len; } #endif /* __BIG_ENDIAN */ #else static int bits_to_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; return copy_to_user(p, bits, len) ? -EFAULT : len; } static int bits_from_user(unsigned long *bits, unsigned int maxbit, unsigned int maxlen, const void __user *p, int compat) { int len; if (maxlen % sizeof(long)) return -EINVAL; len = BITS_TO_LONGS(maxbit) * sizeof(long); if (len > maxlen) len = maxlen; return copy_from_user(bits, p, len) ? -EFAULT : len; } #endif /* CONFIG_COMPAT */ static int str_to_user(const char *str, unsigned int maxlen, void __user *p) { int len; if (!str) return -ENOENT; len = strlen(str) + 1; if (len > maxlen) len = maxlen; return copy_to_user(p, str, len) ? -EFAULT : len; } static int handle_eviocgbit(struct input_dev *dev, unsigned int type, unsigned int size, void __user *p, int compat_mode) { unsigned long *bits; int len; switch (type) { case 0: bits = dev->evbit; len = EV_MAX; break; case EV_KEY: bits = dev->keybit; len = KEY_MAX; break; case EV_REL: bits = dev->relbit; len = REL_MAX; break; case EV_ABS: bits = dev->absbit; len = ABS_MAX; break; case EV_MSC: bits = dev->mscbit; len = MSC_MAX; break; case EV_LED: bits = dev->ledbit; len = LED_MAX; break; case EV_SND: bits = dev->sndbit; len = SND_MAX; break; case EV_FF: bits = dev->ffbit; len = FF_MAX; break; case EV_SW: bits = dev->swbit; len = SW_MAX; break; default: return -EINVAL; } return bits_to_user(bits, len, size, p, compat_mode); } static int evdev_handle_get_keycode(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke = { .len = sizeof(unsigned int), .flags = 0, }; int __user *ip = (int __user *)p; int error; /* legacy case */ if (copy_from_user(ke.scancode, p, sizeof(unsigned int))) return -EFAULT; error = input_get_keycode(dev, &ke); if (error) return error; if (put_user(ke.keycode, ip + 1)) return -EFAULT; return 0; } static int evdev_handle_get_keycode_v2(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke; int error; if (copy_from_user(&ke, p, sizeof(ke))) return -EFAULT; error = input_get_keycode(dev, &ke); if (error) return error; if (copy_to_user(p, &ke, sizeof(ke))) return -EFAULT; return 0; } static int evdev_handle_set_keycode(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke = { .len = sizeof(unsigned int), .flags = 0, }; int __user *ip = (int __user *)p; if (copy_from_user(ke.scancode, p, sizeof(unsigned int))) return -EFAULT; if (get_user(ke.keycode, ip + 1)) return -EFAULT; return input_set_keycode(dev, &ke); } static int evdev_handle_set_keycode_v2(struct input_dev *dev, void __user *p) { struct input_keymap_entry ke; if (copy_from_user(&ke, p, sizeof(ke))) return -EFAULT; if (ke.len > sizeof(ke.scancode)) return -EINVAL; return input_set_keycode(dev, &ke); } /* * If we transfer state to the user, we should flush all pending events * of the same type from the client's queue. Otherwise, they might end up * with duplicate events, which can screw up client's state tracking. * If bits_to_user fails after flushing the queue, we queue a SYN_DROPPED * event so user-space will notice missing events. * * LOCKING: * We need to take event_lock before buffer_lock to avoid dead-locks. But we * need the even_lock only to guarantee consistent state. We can safely release * it while flushing the queue. This allows input-core to handle filters while * we flush the queue. */ static int evdev_handle_get_val(struct evdev_client *client, struct input_dev *dev, unsigned int type, unsigned long *bits, unsigned int maxbit, unsigned int maxlen, void __user *p, int compat) { int ret; unsigned long *mem; mem = bitmap_alloc(maxbit, GFP_KERNEL); if (!mem) return -ENOMEM; spin_lock_irq(&dev->event_lock); spin_lock(&client->buffer_lock); bitmap_copy(mem, bits, maxbit); spin_unlock(&dev->event_lock); __evdev_flush_queue(client, type); spin_unlock_irq(&client->buffer_lock); ret = bits_to_user(mem, maxbit, maxlen, p, compat); if (ret < 0) evdev_queue_syn_dropped(client); bitmap_free(mem); return ret; } static int evdev_handle_mt_request(struct input_dev *dev, unsigned int size, int __user *ip) { const struct input_mt *mt = dev->mt; unsigned int code; int max_slots; int i; if (get_user(code, &ip[0])) return -EFAULT; if (!mt || !input_is_mt_value(code)) return -EINVAL; max_slots = (size - sizeof(__u32)) / sizeof(__s32); for (i = 0; i < mt->num_slots && i < max_slots; i++) { int value = input_mt_get_value(&mt->slots[i], code); if (put_user(value, &ip[1 + i])) return -EFAULT; } return 0; } static int evdev_revoke(struct evdev *evdev, struct evdev_client *client, struct file *file) { client->revoked = true; evdev_ungrab(evdev, client); input_flush_device(&evdev->handle, file); wake_up_interruptible_poll(&client->wait, EPOLLHUP | EPOLLERR); return 0; } /* must be called with evdev-mutex held */ static int evdev_set_mask(struct evdev_client *client, unsigned int type, const void __user *codes, u32 codes_size, int compat) { unsigned long flags, *mask, *oldmask; size_t cnt; int error; /* we allow unknown types and 'codes_size > size' for forward-compat */ cnt = evdev_get_mask_cnt(type); if (!cnt) return 0; mask = bitmap_zalloc(cnt, GFP_KERNEL); if (!mask) return -ENOMEM; error = bits_from_user(mask, cnt - 1, codes_size, codes, compat); if (error < 0) { bitmap_free(mask); return error; } spin_lock_irqsave(&client->buffer_lock, flags); oldmask = client->evmasks[type]; client->evmasks[type] = mask; spin_unlock_irqrestore(&client->buffer_lock, flags); bitmap_free(oldmask); return 0; } /* must be called with evdev-mutex held */ static int evdev_get_mask(struct evdev_client *client, unsigned int type, void __user *codes, u32 codes_size, int compat) { unsigned long *mask; size_t cnt, size, xfer_size; int i; int error; /* we allow unknown types and 'codes_size > size' for forward-compat */ cnt = evdev_get_mask_cnt(type); size = sizeof(unsigned long) * BITS_TO_LONGS(cnt); xfer_size = min_t(size_t, codes_size, size); if (cnt > 0) { mask = client->evmasks[type]; if (mask) { error = bits_to_user(mask, cnt - 1, xfer_size, codes, compat); if (error < 0) return error; } else { /* fake mask with all bits set */ for (i = 0; i < xfer_size; i++) if (put_user(0xffU, (u8 __user *)codes + i)) return -EFAULT; } } if (xfer_size < codes_size) if (clear_user(codes + xfer_size, codes_size - xfer_size)) return -EFAULT; return 0; } static long evdev_do_ioctl(struct file *file, unsigned int cmd, void __user *p, int compat_mode) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; struct input_dev *dev = evdev->handle.dev; struct input_absinfo abs; struct input_mask mask; struct ff_effect effect; int __user *ip = (int __user *)p; unsigned int i, t, u, v; unsigned int size; int error; /* First we check for fixed-length commands */ switch (cmd) { case EVIOCGVERSION: return put_user(EV_VERSION, ip); case EVIOCGID: if (copy_to_user(p, &dev->id, sizeof(struct input_id))) return -EFAULT; return 0; case EVIOCGREP: if (!test_bit(EV_REP, dev->evbit)) return -ENOSYS; if (put_user(dev->rep[REP_DELAY], ip)) return -EFAULT; if (put_user(dev->rep[REP_PERIOD], ip + 1)) return -EFAULT; return 0; case EVIOCSREP: if (!test_bit(EV_REP, dev->evbit)) return -ENOSYS; if (get_user(u, ip)) return -EFAULT; if (get_user(v, ip + 1)) return -EFAULT; input_inject_event(&evdev->handle, EV_REP, REP_DELAY, u); input_inject_event(&evdev->handle, EV_REP, REP_PERIOD, v); return 0; case EVIOCRMFF: return input_ff_erase(dev, (int)(unsigned long) p, file); case EVIOCGEFFECTS: i = test_bit(EV_FF, dev->evbit) ? dev->ff->max_effects : 0; if (put_user(i, ip)) return -EFAULT; return 0; case EVIOCGRAB: if (p) return evdev_grab(evdev, client); else return evdev_ungrab(evdev, client); case EVIOCREVOKE: if (p) return -EINVAL; else return evdev_revoke(evdev, client, file); case EVIOCGMASK: { void __user *codes_ptr; if (copy_from_user(&mask, p, sizeof(mask))) return -EFAULT; codes_ptr = (void __user *)(unsigned long)mask.codes_ptr; return evdev_get_mask(client, mask.type, codes_ptr, mask.codes_size, compat_mode); } case EVIOCSMASK: { const void __user *codes_ptr; if (copy_from_user(&mask, p, sizeof(mask))) return -EFAULT; codes_ptr = (const void __user *)(unsigned long)mask.codes_ptr; return evdev_set_mask(client, mask.type, codes_ptr, mask.codes_size, compat_mode); } case EVIOCSCLOCKID: if (copy_from_user(&i, p, sizeof(unsigned int))) return -EFAULT; return evdev_set_clk_type(client, i); case EVIOCGKEYCODE: return evdev_handle_get_keycode(dev, p); case EVIOCSKEYCODE: return evdev_handle_set_keycode(dev, p); case EVIOCGKEYCODE_V2: return evdev_handle_get_keycode_v2(dev, p); case EVIOCSKEYCODE_V2: return evdev_handle_set_keycode_v2(dev, p); } size = _IOC_SIZE(cmd); /* Now check variable-length commands */ #define EVIOC_MASK_SIZE(nr) ((nr) & ~(_IOC_SIZEMASK << _IOC_SIZESHIFT)) switch (EVIOC_MASK_SIZE(cmd)) { case EVIOCGPROP(0): return bits_to_user(dev->propbit, INPUT_PROP_MAX, size, p, compat_mode); case EVIOCGMTSLOTS(0): return evdev_handle_mt_request(dev, size, ip); case EVIOCGKEY(0): return evdev_handle_get_val(client, dev, EV_KEY, dev->key, KEY_MAX, size, p, compat_mode); case EVIOCGLED(0): return evdev_handle_get_val(client, dev, EV_LED, dev->led, LED_MAX, size, p, compat_mode); case EVIOCGSND(0): return evdev_handle_get_val(client, dev, EV_SND, dev->snd, SND_MAX, size, p, compat_mode); case EVIOCGSW(0): return evdev_handle_get_val(client, dev, EV_SW, dev->sw, SW_MAX, size, p, compat_mode); case EVIOCGNAME(0): return str_to_user(dev->name, size, p); case EVIOCGPHYS(0): return str_to_user(dev->phys, size, p); case EVIOCGUNIQ(0): return str_to_user(dev->uniq, size, p); case EVIOC_MASK_SIZE(EVIOCSFF): if (input_ff_effect_from_user(p, size, &effect)) return -EFAULT; error = input_ff_upload(dev, &effect, file); if (error) return error; if (put_user(effect.id, &(((struct ff_effect __user *)p)->id))) return -EFAULT; return 0; } /* Multi-number variable-length handlers */ if (_IOC_TYPE(cmd) != 'E') return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { if ((_IOC_NR(cmd) & ~EV_MAX) == _IOC_NR(EVIOCGBIT(0, 0))) return handle_eviocgbit(dev, _IOC_NR(cmd) & EV_MAX, size, p, compat_mode); if ((_IOC_NR(cmd) & ~ABS_MAX) == _IOC_NR(EVIOCGABS(0))) { if (!dev->absinfo) return -EINVAL; t = _IOC_NR(cmd) & ABS_MAX; abs = dev->absinfo[t]; if (copy_to_user(p, &abs, min_t(size_t, size, sizeof(struct input_absinfo)))) return -EFAULT; return 0; } } if (_IOC_DIR(cmd) == _IOC_WRITE) { if ((_IOC_NR(cmd) & ~ABS_MAX) == _IOC_NR(EVIOCSABS(0))) { if (!dev->absinfo) return -EINVAL; t = _IOC_NR(cmd) & ABS_MAX; if (copy_from_user(&abs, p, min_t(size_t, size, sizeof(struct input_absinfo)))) return -EFAULT; if (size < sizeof(struct input_absinfo)) abs.resolution = 0; /* We can't change number of reserved MT slots */ if (t == ABS_MT_SLOT) return -EINVAL; /* * Take event lock to ensure that we are not * changing device parameters in the middle * of event. */ spin_lock_irq(&dev->event_lock); dev->absinfo[t] = abs; spin_unlock_irq(&dev->event_lock); return 0; } } return -EINVAL; } static long evdev_ioctl_handler(struct file *file, unsigned int cmd, void __user *p, int compat_mode) { struct evdev_client *client = file->private_data; struct evdev *evdev = client->evdev; int retval; retval = mutex_lock_interruptible(&evdev->mutex); if (retval) return retval; if (!evdev->exist || client->revoked) { retval = -ENODEV; goto out; } retval = evdev_do_ioctl(file, cmd, p, compat_mode); out: mutex_unlock(&evdev->mutex); return retval; } static long evdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return evdev_ioctl_handler(file, cmd, (void __user *)arg, 0); } #ifdef CONFIG_COMPAT static long evdev_ioctl_compat(struct file *file, unsigned int cmd, unsigned long arg) { return evdev_ioctl_handler(file, cmd, compat_ptr(arg), 1); } #endif static const struct file_operations evdev_fops = { .owner = THIS_MODULE, .read = evdev_read, .write = evdev_write, .poll = evdev_poll, .open = evdev_open, .release = evdev_release, .unlocked_ioctl = evdev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = evdev_ioctl_compat, #endif .fasync = evdev_fasync, }; /* * Mark device non-existent. This disables writes, ioctls and * prevents new users from opening the device. Already posted * blocking reads will stay, however new ones will fail. */ static void evdev_mark_dead(struct evdev *evdev) { mutex_lock(&evdev->mutex); evdev->exist = false; mutex_unlock(&evdev->mutex); } static void evdev_cleanup(struct evdev *evdev) { struct input_handle *handle = &evdev->handle; evdev_mark_dead(evdev); evdev_hangup(evdev); /* evdev is marked dead so no one else accesses evdev->open */ if (evdev->open) { input_flush_device(handle, NULL); input_close_device(handle); } } /* * Create new evdev device. Note that input core serializes calls * to connect and disconnect. */ static int evdev_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct evdev *evdev; int minor; int dev_no; int error; minor = input_get_new_minor(EVDEV_MINOR_BASE, EVDEV_MINORS, true); if (minor < 0) { error = minor; pr_err("failed to reserve new minor: %d\n", error); return error; } evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL); if (!evdev) { error = -ENOMEM; goto err_free_minor; } INIT_LIST_HEAD(&evdev->client_list); spin_lock_init(&evdev->client_lock); mutex_init(&evdev->mutex); evdev->exist = true; dev_no = minor; /* Normalize device number if it falls into legacy range */ if (dev_no < EVDEV_MINOR_BASE + EVDEV_MINORS) dev_no -= EVDEV_MINOR_BASE; dev_set_name(&evdev->dev, "event%d", dev_no); evdev->handle.dev = input_get_device(dev); evdev->handle.name = dev_name(&evdev->dev); evdev->handle.handler = handler; evdev->handle.private = evdev; evdev->dev.devt = MKDEV(INPUT_MAJOR, minor); evdev->dev.class = &input_class; evdev->dev.parent = &dev->dev; evdev->dev.release = evdev_free; device_initialize(&evdev->dev); error = input_register_handle(&evdev->handle); if (error) goto err_free_evdev; cdev_init(&evdev->cdev, &evdev_fops); error = cdev_device_add(&evdev->cdev, &evdev->dev); if (error) goto err_cleanup_evdev; return 0; err_cleanup_evdev: evdev_cleanup(evdev); input_unregister_handle(&evdev->handle); err_free_evdev: put_device(&evdev->dev); err_free_minor: input_free_minor(minor); return error; } static void evdev_disconnect(struct input_handle *handle) { struct evdev *evdev = handle->private; cdev_device_del(&evdev->cdev, &evdev->dev); evdev_cleanup(evdev); input_free_minor(MINOR(evdev->dev.devt)); input_unregister_handle(handle); put_device(&evdev->dev); } static const struct input_device_id evdev_ids[] = { { /* Matches all devices */ .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_SYN) }, }, { } /* Terminating zero entry */ }; MODULE_DEVICE_TABLE(input, evdev_ids); static struct input_handler evdev_handler = { .events = evdev_events, .connect = evdev_connect, .disconnect = evdev_disconnect, .legacy_minors = true, .minor = EVDEV_MINOR_BASE, .name = "evdev", .id_table = evdev_ids, }; static int __init evdev_init(void) { return input_register_handler(&evdev_handler); } static void __exit evdev_exit(void) { input_unregister_handler(&evdev_handler); } module_init(evdev_init); module_exit(evdev_exit); MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>"); MODULE_DESCRIPTION("Input driver event char devices"); MODULE_LICENSE("GPL");
4 158 4 4 4 15 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 #include <linux/notifier.h> #include <linux/socket.h> #include <linux/kernel.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/fib_notifier.h> #include <net/netns/ipv6.h> #include <net/ip6_fib.h> int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET6; return call_fib_notifier(nb, event_type, info); } int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET6; return call_fib_notifiers(net, event_type, info); } static unsigned int fib6_seq_read(const struct net *net) { return fib6_tables_seq_read(net) + fib6_rules_seq_read(net); } static int fib6_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { int err; err = fib6_rules_dump(net, nb, extack); if (err) return err; return fib6_tables_dump(net, nb, extack); } static const struct fib_notifier_ops fib6_notifier_ops_template = { .family = AF_INET6, .fib_seq_read = fib6_seq_read, .fib_dump = fib6_dump, .owner = THIS_MODULE, }; int __net_init fib6_notifier_init(struct net *net) { struct fib_notifier_ops *ops; ops = fib_notifier_ops_register(&fib6_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv6.notifier_ops = ops; return 0; } void __net_exit fib6_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv6.notifier_ops); }
2957 2491 1669 15 15 1383 1203 843 841 841 8 75 833 9 840 4 4 4 2 4 825 828 830 525 787 829 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 // SPDX-License-Identifier: GPL-2.0 /* * class.c - basic device class management * * Copyright (c) 2002-3 Patrick Mochel * Copyright (c) 2002-3 Open Source Development Labs * Copyright (c) 2003-2004 Greg Kroah-Hartman * Copyright (c) 2003-2004 IBM Corp. */ #include <linux/device/class.h> #include <linux/device.h> #include <linux/module.h> #include <linux/init.h> #include <linux/string.h> #include <linux/kdev_t.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include "base.h" /* /sys/class */ static struct kset *class_kset; #define to_class_attr(_attr) container_of(_attr, struct class_attribute, attr) /** * class_to_subsys - Turn a struct class into a struct subsys_private * * @class: pointer to the struct bus_type to look up * * The driver core internals need to work on the subsys_private structure, not * the external struct class pointer. This function walks the list of * registered classes in the system and finds the matching one and returns the * internal struct subsys_private that relates to that class. * * Note, the reference count of the return value is INCREMENTED if it is not * NULL. A call to subsys_put() must be done when finished with the pointer in * order for it to be properly freed. */ struct subsys_private *class_to_subsys(const struct class *class) { struct subsys_private *sp = NULL; struct kobject *kobj; if (!class || !class_kset) return NULL; spin_lock(&class_kset->list_lock); if (list_empty(&class_kset->list)) goto done; list_for_each_entry(kobj, &class_kset->list, entry) { struct kset *kset = container_of(kobj, struct kset, kobj); sp = container_of_const(kset, struct subsys_private, subsys); if (sp->class == class) goto done; } sp = NULL; done: sp = subsys_get(sp); spin_unlock(&class_kset->list_lock); return sp; } static ssize_t class_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct class_attribute *class_attr = to_class_attr(attr); struct subsys_private *cp = to_subsys_private(kobj); ssize_t ret = -EIO; if (class_attr->show) ret = class_attr->show(cp->class, class_attr, buf); return ret; } static ssize_t class_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct class_attribute *class_attr = to_class_attr(attr); struct subsys_private *cp = to_subsys_private(kobj); ssize_t ret = -EIO; if (class_attr->store) ret = class_attr->store(cp->class, class_attr, buf, count); return ret; } static void class_release(struct kobject *kobj) { struct subsys_private *cp = to_subsys_private(kobj); const struct class *class = cp->class; pr_debug("class '%s': release.\n", class->name); if (class->class_release) class->class_release(class); else pr_debug("class '%s' does not have a release() function, " "be careful\n", class->name); lockdep_unregister_key(&cp->lock_key); kfree(cp); } static const struct kobj_ns_type_operations *class_child_ns_type(const struct kobject *kobj) { const struct subsys_private *cp = to_subsys_private(kobj); const struct class *class = cp->class; return class->ns_type; } static const struct sysfs_ops class_sysfs_ops = { .show = class_attr_show, .store = class_attr_store, }; static const struct kobj_type class_ktype = { .sysfs_ops = &class_sysfs_ops, .release = class_release, .child_ns_type = class_child_ns_type, }; int class_create_file_ns(const struct class *cls, const struct class_attribute *attr, const void *ns) { struct subsys_private *sp = class_to_subsys(cls); int error; if (!sp) return -EINVAL; error = sysfs_create_file_ns(&sp->subsys.kobj, &attr->attr, ns); subsys_put(sp); return error; } EXPORT_SYMBOL_GPL(class_create_file_ns); void class_remove_file_ns(const struct class *cls, const struct class_attribute *attr, const void *ns) { struct subsys_private *sp = class_to_subsys(cls); if (!sp) return; sysfs_remove_file_ns(&sp->subsys.kobj, &attr->attr, ns); subsys_put(sp); } EXPORT_SYMBOL_GPL(class_remove_file_ns); static struct device *klist_class_to_dev(struct klist_node *n) { struct device_private *p = to_device_private_class(n); return p->device; } static void klist_class_dev_get(struct klist_node *n) { struct device *dev = klist_class_to_dev(n); get_device(dev); } static void klist_class_dev_put(struct klist_node *n) { struct device *dev = klist_class_to_dev(n); put_device(dev); } int class_register(const struct class *cls) { struct subsys_private *cp; struct lock_class_key *key; int error; pr_debug("device class '%s': registering\n", cls->name); if (cls->ns_type && !cls->namespace) { pr_err("%s: class '%s' does not have namespace\n", __func__, cls->name); return -EINVAL; } if (!cls->ns_type && cls->namespace) { pr_err("%s: class '%s' does not have ns_type\n", __func__, cls->name); return -EINVAL; } cp = kzalloc(sizeof(*cp), GFP_KERNEL); if (!cp) return -ENOMEM; klist_init(&cp->klist_devices, klist_class_dev_get, klist_class_dev_put); INIT_LIST_HEAD(&cp->interfaces); kset_init(&cp->glue_dirs); key = &cp->lock_key; lockdep_register_key(key); __mutex_init(&cp->mutex, "subsys mutex", key); error = kobject_set_name(&cp->subsys.kobj, "%s", cls->name); if (error) goto err_out; cp->subsys.kobj.kset = class_kset; cp->subsys.kobj.ktype = &class_ktype; cp->class = cls; error = kset_register(&cp->subsys); if (error) goto err_out; error = sysfs_create_groups(&cp->subsys.kobj, cls->class_groups); if (error) { kobject_del(&cp->subsys.kobj); kfree_const(cp->subsys.kobj.name); goto err_out; } return 0; err_out: lockdep_unregister_key(key); kfree(cp); return error; } EXPORT_SYMBOL_GPL(class_register); void class_unregister(const struct class *cls) { struct subsys_private *sp = class_to_subsys(cls); if (!sp) return; pr_debug("device class '%s': unregistering\n", cls->name); sysfs_remove_groups(&sp->subsys.kobj, cls->class_groups); kset_unregister(&sp->subsys); subsys_put(sp); } EXPORT_SYMBOL_GPL(class_unregister); static void class_create_release(const struct class *cls) { pr_debug("%s called for %s\n", __func__, cls->name); kfree(cls); } /** * class_create - create a struct class structure * @name: pointer to a string for the name of this class. * * This is used to create a struct class pointer that can then be used * in calls to device_create(). * * Returns &struct class pointer on success, or ERR_PTR() on error. * * Note, the pointer created here is to be destroyed when finished by * making a call to class_destroy(). */ struct class *class_create(const char *name) { struct class *cls; int retval; cls = kzalloc(sizeof(*cls), GFP_KERNEL); if (!cls) { retval = -ENOMEM; goto error; } cls->name = name; cls->class_release = class_create_release; retval = class_register(cls); if (retval) goto error; return cls; error: kfree(cls); return ERR_PTR(retval); } EXPORT_SYMBOL_GPL(class_create); /** * class_destroy - destroys a struct class structure * @cls: pointer to the struct class that is to be destroyed * * Note, the pointer to be destroyed must have been created with a call * to class_create(). */ void class_destroy(const struct class *cls) { if (IS_ERR_OR_NULL(cls)) return; class_unregister(cls); } EXPORT_SYMBOL_GPL(class_destroy); /** * class_dev_iter_init - initialize class device iterator * @iter: class iterator to initialize * @class: the class we wanna iterate over * @start: the device to start iterating from, if any * @type: device_type of the devices to iterate over, NULL for all * * Initialize class iterator @iter such that it iterates over devices * of @class. If @start is set, the list iteration will start there, * otherwise if it is NULL, the iteration starts at the beginning of * the list. */ void class_dev_iter_init(struct class_dev_iter *iter, const struct class *class, const struct device *start, const struct device_type *type) { struct subsys_private *sp = class_to_subsys(class); struct klist_node *start_knode = NULL; memset(iter, 0, sizeof(*iter)); if (!sp) { pr_crit("%s: class %p was not registered yet\n", __func__, class); return; } if (start) start_knode = &start->p->knode_class; klist_iter_init_node(&sp->klist_devices, &iter->ki, start_knode); iter->type = type; iter->sp = sp; } EXPORT_SYMBOL_GPL(class_dev_iter_init); /** * class_dev_iter_next - iterate to the next device * @iter: class iterator to proceed * * Proceed @iter to the next device and return it. Returns NULL if * iteration is complete. * * The returned device is referenced and won't be released till * iterator is proceed to the next device or exited. The caller is * free to do whatever it wants to do with the device including * calling back into class code. */ struct device *class_dev_iter_next(struct class_dev_iter *iter) { struct klist_node *knode; struct device *dev; if (!iter->sp) return NULL; while (1) { knode = klist_next(&iter->ki); if (!knode) return NULL; dev = klist_class_to_dev(knode); if (!iter->type || iter->type == dev->type) return dev; } } EXPORT_SYMBOL_GPL(class_dev_iter_next); /** * class_dev_iter_exit - finish iteration * @iter: class iterator to finish * * Finish an iteration. Always call this function after iteration is * complete whether the iteration ran till the end or not. */ void class_dev_iter_exit(struct class_dev_iter *iter) { klist_iter_exit(&iter->ki); subsys_put(iter->sp); } EXPORT_SYMBOL_GPL(class_dev_iter_exit); /** * class_for_each_device - device iterator * @class: the class we're iterating * @start: the device to start with in the list, if any. * @data: data for the callback * @fn: function to be called for each device * * Iterate over @class's list of devices, and call @fn for each, * passing it @data. If @start is set, the list iteration will start * there, otherwise if it is NULL, the iteration starts at the * beginning of the list. * * We check the return of @fn each time. If it returns anything * other than 0, we break out and return that value. * * @fn is allowed to do anything including calling back into class * code. There's no locking restriction. */ int class_for_each_device(const struct class *class, const struct device *start, void *data, device_iter_t fn) { struct subsys_private *sp = class_to_subsys(class); struct class_dev_iter iter; struct device *dev; int error = 0; if (!class) return -EINVAL; if (!sp) { WARN(1, "%s called for class '%s' before it was registered", __func__, class->name); return -EINVAL; } class_dev_iter_init(&iter, class, start, NULL); while ((dev = class_dev_iter_next(&iter))) { error = fn(dev, data); if (error) break; } class_dev_iter_exit(&iter); subsys_put(sp); return error; } EXPORT_SYMBOL_GPL(class_for_each_device); /** * class_find_device - device iterator for locating a particular device * @class: the class we're iterating * @start: Device to begin with * @data: data for the match function * @match: function to check device * * This is similar to the class_for_each_dev() function above, but it * returns a reference to a device that is 'found' for later use, as * determined by the @match callback. * * The callback should return 0 if the device doesn't match and non-zero * if it does. If the callback returns non-zero, this function will * return to the caller and not iterate over any more devices. * * Note, you will need to drop the reference with put_device() after use. * * @match is allowed to do anything including calling back into class * code. There's no locking restriction. */ struct device *class_find_device(const struct class *class, const struct device *start, const void *data, device_match_t match) { struct subsys_private *sp = class_to_subsys(class); struct class_dev_iter iter; struct device *dev; if (!class) return NULL; if (!sp) { WARN(1, "%s called for class '%s' before it was registered", __func__, class->name); return NULL; } class_dev_iter_init(&iter, class, start, NULL); while ((dev = class_dev_iter_next(&iter))) { if (match(dev, data)) { get_device(dev); break; } } class_dev_iter_exit(&iter); subsys_put(sp); return dev; } EXPORT_SYMBOL_GPL(class_find_device); int class_interface_register(struct class_interface *class_intf) { struct subsys_private *sp; const struct class *parent; struct class_dev_iter iter; struct device *dev; if (!class_intf || !class_intf->class) return -ENODEV; parent = class_intf->class; sp = class_to_subsys(parent); if (!sp) return -EINVAL; /* * Reference in sp is now incremented and will be dropped when * the interface is removed in the call to class_interface_unregister() */ mutex_lock(&sp->mutex); list_add_tail(&class_intf->node, &sp->interfaces); if (class_intf->add_dev) { class_dev_iter_init(&iter, parent, NULL, NULL); while ((dev = class_dev_iter_next(&iter))) class_intf->add_dev(dev); class_dev_iter_exit(&iter); } mutex_unlock(&sp->mutex); return 0; } EXPORT_SYMBOL_GPL(class_interface_register); void class_interface_unregister(struct class_interface *class_intf) { struct subsys_private *sp; const struct class *parent = class_intf->class; struct class_dev_iter iter; struct device *dev; if (!parent) return; sp = class_to_subsys(parent); if (!sp) return; mutex_lock(&sp->mutex); list_del_init(&class_intf->node); if (class_intf->remove_dev) { class_dev_iter_init(&iter, parent, NULL, NULL); while ((dev = class_dev_iter_next(&iter))) class_intf->remove_dev(dev); class_dev_iter_exit(&iter); } mutex_unlock(&sp->mutex); /* * Decrement the reference count twice, once for the class_to_subsys() * call in the start of this function, and the second one from the * reference increment in class_interface_register() */ subsys_put(sp); subsys_put(sp); } EXPORT_SYMBOL_GPL(class_interface_unregister); ssize_t show_class_attr_string(const struct class *class, const struct class_attribute *attr, char *buf) { struct class_attribute_string *cs; cs = container_of(attr, struct class_attribute_string, attr); return sysfs_emit(buf, "%s\n", cs->str); } EXPORT_SYMBOL_GPL(show_class_attr_string); struct class_compat { struct kobject *kobj; }; /** * class_compat_register - register a compatibility class * @name: the name of the class * * Compatibility class are meant as a temporary user-space compatibility * workaround when converting a family of class devices to a bus devices. */ struct class_compat *class_compat_register(const char *name) { struct class_compat *cls; cls = kmalloc(sizeof(struct class_compat), GFP_KERNEL); if (!cls) return NULL; cls->kobj = kobject_create_and_add(name, &class_kset->kobj); if (!cls->kobj) { kfree(cls); return NULL; } return cls; } EXPORT_SYMBOL_GPL(class_compat_register); /** * class_compat_unregister - unregister a compatibility class * @cls: the class to unregister */ void class_compat_unregister(struct class_compat *cls) { kobject_put(cls->kobj); kfree(cls); } EXPORT_SYMBOL_GPL(class_compat_unregister); /** * class_compat_create_link - create a compatibility class device link to * a bus device * @cls: the compatibility class * @dev: the target bus device */ int class_compat_create_link(struct class_compat *cls, struct device *dev) { return sysfs_create_link(cls->kobj, &dev->kobj, dev_name(dev)); } EXPORT_SYMBOL_GPL(class_compat_create_link); /** * class_compat_remove_link - remove a compatibility class device link to * a bus device * @cls: the compatibility class * @dev: the target bus device */ void class_compat_remove_link(struct class_compat *cls, struct device *dev) { sysfs_remove_link(cls->kobj, dev_name(dev)); } EXPORT_SYMBOL_GPL(class_compat_remove_link); /** * class_is_registered - determine if at this moment in time, a class is * registered in the driver core or not. * @class: the class to check * * Returns a boolean to state if the class is registered in the driver core * or not. Note that the value could switch right after this call is made, * so only use this in places where you "know" it is safe to do so (usually * to determine if the specific class has been registered yet or not). * * Be careful in using this. */ bool class_is_registered(const struct class *class) { struct subsys_private *sp = class_to_subsys(class); bool is_initialized = false; if (sp) { is_initialized = true; subsys_put(sp); } return is_initialized; } EXPORT_SYMBOL_GPL(class_is_registered); int __init classes_init(void) { class_kset = kset_create_and_add("class", NULL, NULL); if (!class_kset) return -ENOMEM; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 /* SPDX-License-Identifier: GPL-2.0 */ /* * fs/f2fs/segment.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include <linux/blkdev.h> #include <linux/backing-dev.h> /* constant macro */ #define NULL_SEGNO ((unsigned int)(~0)) #define NULL_SECNO ((unsigned int)(~0)) #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */ /* L: Logical segment # in volume, R: Relative segment # in main area */ #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, unsigned short seg_type) { f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); } #define MAIN_BLKADDR(sbi) \ (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) #define SEG0_BLKADDR(sbi) \ (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) #define MAIN_SECS(sbi) ((sbi)->total_sections) #define TOTAL_SEGS(sbi) \ (SM_I(sbi) ? SM_I(sbi)->segment_count : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi))) #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ (sbi)->log_blocks_per_seg)) #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno)))) #define NEXT_FREE_BLKADDR(sbi, curseg) \ (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr))) #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) #define GET_SEGNO(sbi, blk_addr) \ ((!__is_valid_data_blkaddr(blk_addr)) ? \ NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ GET_SEGNO_FROM_SEG0(sbi, blk_addr))) #define CAP_BLKS_PER_SEC(sbi) \ (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec) #define CAP_SEGS_PER_SEC(sbi) \ (SEGS_PER_SEC(sbi) - \ BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec)) #define GET_START_SEG_FROM_SEC(sbi, segno) \ (rounddown(segno, SEGS_PER_SEC(sbi))) #define GET_SEC_FROM_SEG(sbi, segno) \ (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) #define GET_SEG_FROM_SEC(sbi, secno) \ ((secno) * SEGS_PER_SEC(sbi)) #define GET_ZONE_FROM_SEC(sbi, secno) \ (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) #define GET_ZONE_FROM_SEG(sbi, segno) \ GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) #define GET_SUM_BLOCK(sbi, segno) \ ((sbi)->sm_info->ssa_blkaddr + (segno)) #define GET_SUM_TYPE(footer) ((footer)->entry_type) #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) #define SIT_ENTRY_OFFSET(sit_i, segno) \ ((segno) % (sit_i)->sents_per_block) #define SIT_BLOCK_OFFSET(segno) \ ((segno) / SIT_ENTRY_PER_BLOCK) #define START_SEGNO(segno) \ (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) #define SIT_BLK_CNT(sbi) \ DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) #define f2fs_bitmap_size(nr) \ (BITS_TO_LONGS(nr) * sizeof(unsigned long)) #define SECTOR_FROM_BLOCK(blk_addr) \ (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) #define SECTOR_TO_BLOCK(sectors) \ ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) /* * In the victim_sel_policy->alloc_mode, there are three block allocation modes. * LFS writes data sequentially with cleaning operations. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into * fragmented segment which has similar aging degree. */ enum { LFS = 0, SSR, AT_SSR, }; /* * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. * GC_CB is based on cost-benefit algorithm. * GC_GREEDY is based on greedy algorithm. * GC_AT is based on age-threshold algorithm. */ enum { GC_CB = 0, GC_GREEDY, GC_AT, ALLOC_NEXT, FLUSH_DEVICE, MAX_GC_POLICY, }; /* * BG_GC means the background cleaning job. * FG_GC means the on-demand cleaning job. */ enum { BG_GC = 0, FG_GC, }; /* for a function parameter to select a victim segment */ struct victim_sel_policy { int alloc_mode; /* LFS or SSR */ int gc_mode; /* GC_CB or GC_GREEDY */ unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ unsigned int max_search; /* * maximum # of segments/sections * to search */ unsigned int offset; /* last scanned bitmap offset */ unsigned int ofs_unit; /* bitmap search unit */ unsigned int min_cost; /* minimum cost */ unsigned long long oldest_age; /* oldest age of segments having the same min cost */ unsigned int min_segno; /* segment # having min. cost */ unsigned long long age; /* mtime of GCed section*/ unsigned long long age_threshold;/* age threshold */ bool one_time_gc; /* one time GC */ }; struct seg_entry { unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ unsigned int valid_blocks:10; /* # of valid blocks */ unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ unsigned int padding:6; /* padding */ unsigned char *cur_valid_map; /* validity bitmap of blocks */ #ifdef CONFIG_F2FS_CHECK_FS unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ #endif /* * # of valid blocks and the validity bitmap stored in the last * checkpoint pack. This information is used by the SSR mode. */ unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ unsigned char *discard_map; unsigned long long mtime; /* modification time of the segment */ }; struct sec_entry { unsigned int valid_blocks; /* # of valid blocks in a section */ unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */ }; #define MAX_SKIP_GC_COUNT 16 struct revoke_entry { struct list_head list; block_t old_addr; /* for revoking when fail to commit */ pgoff_t index; }; struct sit_info { block_t sit_base_addr; /* start block address of SIT area */ block_t sit_blocks; /* # of blocks used by SIT area */ block_t written_valid_blocks; /* # of valid blocks in main area */ char *bitmap; /* all bitmaps pointer */ char *sit_bitmap; /* SIT bitmap pointer */ #ifdef CONFIG_F2FS_CHECK_FS char *sit_bitmap_mir; /* SIT bitmap mirror */ /* bitmap of segments to be ignored by GC in case of errors */ unsigned long *invalid_segmap; #endif unsigned int bitmap_size; /* SIT bitmap size */ unsigned long *tmp_map; /* bitmap for temporal use */ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ unsigned int dirty_sentries; /* # of dirty sentries */ unsigned int sents_per_block; /* # of SIT entries per block */ struct rw_semaphore sentry_lock; /* to protect SIT cache */ struct seg_entry *sentries; /* SIT segment-level cache */ struct sec_entry *sec_entries; /* SIT section-level cache */ /* for cost-benefit algorithm in cleaning procedure */ unsigned long long elapsed_time; /* elapsed time after mount */ unsigned long long mounted_time; /* mount time */ unsigned long long min_mtime; /* min. modification time */ unsigned long long max_mtime; /* max. modification time */ unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ }; struct free_segmap_info { unsigned int start_segno; /* start segment number logically */ unsigned int free_segments; /* # of free segments */ unsigned int free_sections; /* # of free sections */ spinlock_t segmap_lock; /* free segmap lock */ unsigned long *free_segmap; /* free segment bitmap */ unsigned long *free_secmap; /* free section bitmap */ }; /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ enum dirty_type { DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ DIRTY, /* to count # of dirty segments */ PRE, /* to count # of entirely obsolete segments */ NR_DIRTY_TYPE }; struct dirty_seglist_info { unsigned long *dirty_segmap[NR_DIRTY_TYPE]; unsigned long *dirty_secmap; struct mutex seglist_lock; /* lock for segment bitmaps */ int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ unsigned long *victim_secmap; /* background GC victims */ unsigned long *pinned_secmap; /* pinned victims from foreground GC */ unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ bool enable_pin_section; /* enable pinning section */ }; /* for active log information */ struct curseg_info { struct mutex curseg_mutex; /* lock for consistency */ struct f2fs_summary_block *sum_blk; /* cached summary block */ struct rw_semaphore journal_rwsem; /* protect journal area */ struct f2fs_journal *journal; /* cached journal info */ unsigned char alloc_type; /* current allocation type */ unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ unsigned int segno; /* current segment number */ unsigned short next_blkoff; /* next block offset to write */ unsigned int zone; /* current zone number */ unsigned int next_segno; /* preallocated segment */ int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ bool inited; /* indicate inmem log is inited */ }; struct sit_entry_set { struct list_head set_list; /* link with all sit sets */ unsigned int start_segno; /* start segno of sits in set */ unsigned int entry_cnt; /* the # of sit entries in set */ }; /* * inline functions */ static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) { return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); } static inline bool is_curseg(struct f2fs_sb_info *sbi, unsigned int segno) { int i; for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { if (segno == CURSEG_I(sbi, i)->segno) return true; } return false; } static inline bool is_cursec(struct f2fs_sb_info *sbi, unsigned int secno) { int i; for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { if (secno == GET_SEC_FROM_SEG(sbi, CURSEG_I(sbi, i)->segno)) return true; } return false; } static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sentries[segno]; } static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; } static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno, bool use_section) { /* * In order to get # of valid blocks in a section instantly from many * segments, f2fs manages two counting structures separately. */ if (use_section && __is_large_section(sbi)) return get_sec_entry(sbi, segno)->valid_blocks; else return get_seg_entry(sbi, segno)->valid_blocks; } static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno, bool use_section) { if (use_section && __is_large_section(sbi)) return get_sec_entry(sbi, segno)->ckpt_valid_blocks; else return get_seg_entry(sbi, segno)->ckpt_valid_blocks; } static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int blocks = 0; int i; for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { struct seg_entry *se = get_seg_entry(sbi, start_segno); blocks += se->ckpt_valid_blocks; } get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks; } #ifdef CONFIG_F2FS_CHECK_FS static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int blocks = 0; int i; for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { struct seg_entry *se = get_seg_entry(sbi, start_segno); blocks += se->ckpt_valid_blocks; } if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) { f2fs_err(sbi, "Inconsistent ckpt valid blocks: " "seg entry(%d) vs sec entry(%d) at secno %d", blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno); f2fs_bug_on(sbi, 1); } } #else static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno) { } #endif static inline void seg_info_from_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { se->valid_blocks = GET_SIT_VBLOCKS(rs); se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); #ifdef CONFIG_F2FS_CHECK_FS memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); #endif se->type = GET_SIT_TYPE(rs); se->mtime = le64_to_cpu(rs->mtime); } static inline void __seg_info_to_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | se->valid_blocks; rs->vblocks = cpu_to_le16(raw_vblocks); memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); rs->mtime = cpu_to_le64(se->mtime); } static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi, struct folio *folio, unsigned int start) { struct f2fs_sit_block *raw_sit; struct seg_entry *se; struct f2fs_sit_entry *rs; unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, (unsigned long)MAIN_SEGS(sbi)); int i; raw_sit = folio_address(folio); memset(raw_sit, 0, PAGE_SIZE); for (i = 0; i < end - start; i++) { rs = &raw_sit->entries[i]; se = get_seg_entry(sbi, start + i); __seg_info_to_raw_sit(se, rs); } } static inline void seg_info_to_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { __seg_info_to_raw_sit(se, rs); memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); se->ckpt_valid_blocks = se->valid_blocks; } static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, unsigned int max, unsigned int segno) { unsigned int ret; spin_lock(&free_i->segmap_lock); ret = find_next_bit(free_i->free_segmap, max, segno); spin_unlock(&free_i->segmap_lock); return ret; } static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int next; spin_lock(&free_i->segmap_lock); clear_bit(segno, free_i->free_segmap); free_i->free_segments++; next = find_next_bit(free_i->free_segmap, start_segno + SEGS_PER_SEC(sbi), start_segno); if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) { clear_bit(secno, free_i->free_secmap); free_i->free_sections++; } spin_unlock(&free_i->segmap_lock); } static inline void __set_inuse(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); set_bit(segno, free_i->free_segmap); free_i->free_segments--; if (!test_and_set_bit(secno, free_i->free_secmap)) free_i->free_sections--; } static inline void __set_test_and_free(struct f2fs_sb_info *sbi, unsigned int segno, bool inmem) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int next; bool ret; spin_lock(&free_i->segmap_lock); ret = test_and_clear_bit(segno, free_i->free_segmap); if (!ret) goto unlock_out; free_i->free_segments++; if (!inmem && is_cursec(sbi, secno)) goto unlock_out; /* check large section */ next = find_next_bit(free_i->free_segmap, start_segno + SEGS_PER_SEC(sbi), start_segno); if (next < start_segno + f2fs_usable_segs_in_sec(sbi)) goto unlock_out; ret = test_and_clear_bit(secno, free_i->free_secmap); if (!ret) goto unlock_out; free_i->free_sections++; if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno) sbi->next_victim_seg[BG_GC] = NULL_SEGNO; if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno) sbi->next_victim_seg[FG_GC] = NULL_SEGNO; unlock_out: spin_unlock(&free_i->segmap_lock); } static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); spin_lock(&free_i->segmap_lock); if (!test_and_set_bit(segno, free_i->free_segmap)) { free_i->free_segments--; if (!test_and_set_bit(secno, free_i->free_secmap)) free_i->free_sections--; } spin_unlock(&free_i->segmap_lock); } static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, void *dst_addr) { struct sit_info *sit_i = SIT_I(sbi); #ifdef CONFIG_F2FS_CHECK_FS if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, sit_i->bitmap_size)) f2fs_bug_on(sbi, 1); #endif memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); } static inline block_t written_block_count(struct f2fs_sb_info *sbi) { return SIT_I(sbi)->written_valid_blocks; } static inline unsigned int free_segments(struct f2fs_sb_info *sbi) { return FREE_I(sbi)->free_segments; } static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) { return SM_I(sbi)->reserved_segments; } static inline unsigned int free_sections(struct f2fs_sb_info *sbi) { return FREE_I(sbi)->free_sections; } static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) { return DIRTY_I(sbi)->nr_dirty[PRE]; } static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) { return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; } static inline int overprovision_segments(struct f2fs_sb_info *sbi) { return SM_I(sbi)->ovp_segments; } static inline int reserved_sections(struct f2fs_sb_info *sbi) { return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); } static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, unsigned int node_blocks, unsigned int data_blocks, unsigned int dent_blocks) { unsigned int segno, left_blocks, blocks; int i; /* check current data/node sections in the worst case. */ for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) { segno = CURSEG_I(sbi, i)->segno; if (unlikely(segno == NULL_SEGNO)) return false; if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { left_blocks = CAP_BLKS_PER_SEC(sbi) - SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - CURSEG_I(sbi, i)->next_blkoff; } else { left_blocks = CAP_BLKS_PER_SEC(sbi) - get_ckpt_valid_blocks(sbi, segno, true); } blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks; if (blocks > left_blocks) return false; } /* check current data section for dentry blocks. */ segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; if (unlikely(segno == NULL_SEGNO)) return false; if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { left_blocks = CAP_BLKS_PER_SEC(sbi) - SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - CURSEG_I(sbi, CURSEG_HOT_DATA)->next_blkoff; } else { left_blocks = CAP_BLKS_PER_SEC(sbi) - get_ckpt_valid_blocks(sbi, segno, true); } if (dent_blocks > left_blocks) return false; return true; } /* * calculate needed sections for dirty node/dentry and call * has_curseg_enough_space, please note that, it needs to account * dirty data as well in lfs mode when checkpoint is disabled. */ static inline void __get_secs_required(struct f2fs_sb_info *sbi, unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) { unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + get_pages(sbi, F2FS_DIRTY_DENTS) + get_pages(sbi, F2FS_DIRTY_IMETA); unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); unsigned int total_data_blocks = 0; unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); unsigned int data_secs = 0; unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); unsigned int data_blocks = 0; if (f2fs_lfs_mode(sbi)) { total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA); data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi); data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi); } if (lower_p) *lower_p = node_secs + dent_secs + data_secs; if (upper_p) *upper_p = node_secs + dent_secs + data_secs + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) + (data_blocks ? 1 : 0); if (curseg_p) *curseg_p = has_curseg_enough_space(sbi, node_blocks, data_blocks, dent_blocks); } static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed, int needed) { unsigned int free_secs, lower_secs, upper_secs; bool curseg_space; if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) return false; __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space); free_secs = free_sections(sbi) + freed; lower_secs += needed + reserved_sections(sbi); upper_secs += needed + reserved_sections(sbi); if (free_secs > upper_secs) return false; if (free_secs <= lower_secs) return true; return !curseg_space; } static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, int freed, int needed) { return !has_not_enough_free_secs(sbi, freed, needed); } static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi) { unsigned int total_free_blocks = 0; unsigned int avail_user_block_count; spin_lock(&sbi->stat_lock); avail_user_block_count = get_available_block_count(sbi, NULL, true); total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi); spin_unlock(&sbi->stat_lock); return total_free_blocks > 0; } static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) { if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return true; if (likely(has_enough_free_secs(sbi, 0, 0))) return true; if (!f2fs_lfs_mode(sbi) && likely(has_enough_free_blks(sbi))) return true; return false; } static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) { return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; } static inline int utilization(struct f2fs_sb_info *sbi) { return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count); } /* * Sometimes f2fs may be better to drop out-of-place update policy. * And, users can control the policy through sysfs entries. * There are five policies with triggering conditions as follows. * F2FS_IPU_FORCE - all the time, * F2FS_IPU_SSR - if SSR mode is activated, * F2FS_IPU_UTIL - if FS utilization is over threashold, * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over * threashold, * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash * storages. IPU will be triggered only if the # of dirty * pages over min_fsync_blocks. (=default option) * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. * F2FS_IPU_NOCACHE - disable IPU bio cache. * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has * FI_OPU_WRITE flag. * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) */ #define DEF_MIN_IPU_UTIL 70 #define DEF_MIN_FSYNC_BLOCKS 8 #define DEF_MIN_HOT_BLOCKS 16 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ #define F2FS_IPU_DISABLE 0 /* Modification on enum should be synchronized with ipu_mode_names array */ enum { F2FS_IPU_FORCE, F2FS_IPU_SSR, F2FS_IPU_UTIL, F2FS_IPU_SSR_UTIL, F2FS_IPU_FSYNC, F2FS_IPU_ASYNC, F2FS_IPU_NOCACHE, F2FS_IPU_HONOR_OPU_WRITE, F2FS_IPU_MAX, }; static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) { return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; } #define F2FS_IPU_POLICY(name) \ static inline bool IS_##name(struct f2fs_sb_info *sbi) \ { \ return SM_I(sbi)->ipu_policy & BIT(name); \ } F2FS_IPU_POLICY(F2FS_IPU_FORCE); F2FS_IPU_POLICY(F2FS_IPU_SSR); F2FS_IPU_POLICY(F2FS_IPU_UTIL); F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); F2FS_IPU_POLICY(F2FS_IPU_FSYNC); F2FS_IPU_POLICY(F2FS_IPU_ASYNC); F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->segno; } static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->alloc_type; } static inline bool valid_main_segno(struct f2fs_sb_info *sbi, unsigned int segno) { return segno <= (MAIN_SEGS(sbi) - 1); } static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; if (__is_valid_data_blkaddr(fio->old_blkaddr)) verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC); verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC_ENHANCE); } /* * Summary block is always treated as an invalid block */ static inline int check_block_count(struct f2fs_sb_info *sbi, int segno, struct f2fs_sit_entry *raw_sit) { bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; int valid_blocks = 0; int cur_pos = 0, next_pos; unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); /* check bitmap with valid block count */ do { if (is_valid) { next_pos = find_next_zero_bit_le(&raw_sit->valid_map, usable_blks_per_seg, cur_pos); valid_blocks += next_pos - cur_pos; } else next_pos = find_next_bit_le(&raw_sit->valid_map, usable_blks_per_seg, cur_pos); cur_pos = next_pos; is_valid = !is_valid; } while (cur_pos < usable_blks_per_seg); if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", GET_SIT_VBLOCKS(raw_sit), valid_blocks); set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); return -EFSCORRUPTED; } if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, BLKS_PER_SEG(sbi), usable_blks_per_seg) != BLKS_PER_SEG(sbi)); /* check segment usage, and check boundary of a given segment number */ if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg || !valid_main_segno(sbi, segno))) { f2fs_err(sbi, "Wrong valid blocks %d or segno %u", GET_SIT_VBLOCKS(raw_sit), segno); set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); return -EFSCORRUPTED; } return 0; } static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(start); block_t blk_addr = sit_i->sit_base_addr + offset; f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); #ifdef CONFIG_F2FS_CHECK_FS if (f2fs_test_bit(offset, sit_i->sit_bitmap) != f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) f2fs_bug_on(sbi, 1); #endif /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; return blk_addr; } static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, pgoff_t block_addr) { struct sit_info *sit_i = SIT_I(sbi); block_addr -= sit_i->sit_base_addr; if (block_addr < sit_i->sit_blocks) block_addr += sit_i->sit_blocks; else block_addr -= sit_i->sit_blocks; return block_addr + sit_i->sit_base_addr; } static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) { unsigned int block_off = SIT_BLOCK_OFFSET(start); f2fs_change_bit(block_off, sit_i->sit_bitmap); #ifdef CONFIG_F2FS_CHECK_FS f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); #endif } static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, bool base_time) { struct sit_info *sit_i = SIT_I(sbi); time64_t diff, now = ktime_get_boottime_seconds(); if (now >= sit_i->mounted_time) return sit_i->elapsed_time + now - sit_i->mounted_time; /* system time is set to the past */ if (!base_time) { diff = sit_i->mounted_time - now; if (sit_i->elapsed_time >= diff) return sit_i->elapsed_time - diff; return 0; } return sit_i->elapsed_time; } static inline void set_summary(struct f2fs_summary *sum, nid_t nid, unsigned int ofs_in_node, unsigned char version) { sum->nid = cpu_to_le32(nid); sum->ofs_in_node = cpu_to_le16(ofs_in_node); sum->version = version; } static inline block_t start_sum_block(struct f2fs_sb_info *sbi) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) - (base + 1) + type; } static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) { if (is_cursec(sbi, secno) || (sbi->cur_victim_sec == secno)) return true; return false; } /* * It is very important to gather dirty pages and write at once, so that we can * submit a big bio without interfering other data writes. * By default, 512 pages for directory data, * 512 pages (2MB) * 8 for nodes, and * 256 pages * 8 for meta are set. */ static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) { if (sbi->sb->s_bdi->wb.dirty_exceeded) return 0; if (type == DATA) return BLKS_PER_SEG(sbi); else if (type == NODE) return SEGS_TO_BLKS(sbi, 8); else if (type == META) return 8 * BIO_MAX_VECS; else return 0; } /* * When writing pages, it'd better align nr_to_write for segment size. */ static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, struct writeback_control *wbc) { long nr_to_write, desired; if (wbc->sync_mode != WB_SYNC_NONE) return 0; nr_to_write = wbc->nr_to_write; desired = BIO_MAX_VECS; if (type == NODE) desired <<= 1; wbc->nr_to_write = desired; return desired - nr_to_write; } static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; bool wakeup = false; int i; if (force) goto wake_up; mutex_lock(&dcc->cmd_lock); for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { if (i + 1 < dcc->discard_granularity) break; if (!list_empty(&dcc->pend_list[i])) { wakeup = true; break; } } mutex_unlock(&dcc->cmd_lock); if (!wakeup || !is_idle(sbi, DISCARD_TIME)) return; wake_up: dcc->discard_wake = true; wake_up_interruptible_all(&dcc->discard_wait_queue); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 /* SPDX-License-Identifier: GPL-2.0+ */ /* * MACsec netdev header, used for h/w accelerated implementations. * * Copyright (c) 2015 Sabrina Dubroca <sd@queasysnail.net> */ #ifndef _NET_MACSEC_H_ #define _NET_MACSEC_H_ #include <linux/u64_stats_sync.h> #include <linux/if_vlan.h> #include <uapi/linux/if_link.h> #include <uapi/linux/if_macsec.h> #define MACSEC_DEFAULT_PN_LEN 4 #define MACSEC_XPN_PN_LEN 8 #define MACSEC_NUM_AN 4 /* 2 bits for the association number */ #define MACSEC_SCI_LEN 8 #define MACSEC_PORT_ES (htons(0x0001)) #define MACSEC_TCI_VERSION 0x80 #define MACSEC_TCI_ES 0x40 /* end station */ #define MACSEC_TCI_SC 0x20 /* SCI present */ #define MACSEC_TCI_SCB 0x10 /* epon */ #define MACSEC_TCI_E 0x08 /* encryption */ #define MACSEC_TCI_C 0x04 /* changed text */ #define MACSEC_AN_MASK 0x03 /* association number */ #define MACSEC_TCI_CONFID (MACSEC_TCI_E | MACSEC_TCI_C) #define MACSEC_DEFAULT_ICV_LEN 16 typedef u64 __bitwise sci_t; typedef u32 __bitwise ssci_t; struct metadata_dst; typedef union salt { struct { ssci_t ssci; __be64 pn; } __packed; u8 bytes[MACSEC_SALT_LEN]; } __packed salt_t; typedef union pn { struct { #if defined(__LITTLE_ENDIAN_BITFIELD) u32 lower; u32 upper; #elif defined(__BIG_ENDIAN_BITFIELD) u32 upper; u32 lower; #else #error "Please fix <asm/byteorder.h>" #endif }; u64 full64; } pn_t; /** * struct macsec_key - SA key * @id: user-provided key identifier * @tfm: crypto struct, key storage * @salt: salt used to generate IV in XPN cipher suites */ struct macsec_key { u8 id[MACSEC_KEYID_LEN]; struct crypto_aead *tfm; salt_t salt; }; struct macsec_rx_sc_stats { __u64 InOctetsValidated; __u64 InOctetsDecrypted; __u64 InPktsUnchecked; __u64 InPktsDelayed; __u64 InPktsOK; __u64 InPktsInvalid; __u64 InPktsLate; __u64 InPktsNotValid; __u64 InPktsNotUsingSA; __u64 InPktsUnusedSA; }; struct macsec_rx_sa_stats { __u32 InPktsOK; __u32 InPktsInvalid; __u32 InPktsNotValid; __u32 InPktsNotUsingSA; __u32 InPktsUnusedSA; }; struct macsec_tx_sa_stats { __u32 OutPktsProtected; __u32 OutPktsEncrypted; }; struct macsec_tx_sc_stats { __u64 OutPktsProtected; __u64 OutPktsEncrypted; __u64 OutOctetsProtected; __u64 OutOctetsEncrypted; }; struct macsec_dev_stats { __u64 OutPktsUntagged; __u64 InPktsUntagged; __u64 OutPktsTooLong; __u64 InPktsNoTag; __u64 InPktsBadTag; __u64 InPktsUnknownSCI; __u64 InPktsNoSCI; __u64 InPktsOverrun; }; /** * struct macsec_rx_sa - receive secure association * @active: * @next_pn: packet number expected for the next packet * @lock: protects next_pn manipulations * @key: key structure * @ssci: short secure channel identifier * @stats: per-SA stats */ struct macsec_rx_sa { struct macsec_key key; ssci_t ssci; spinlock_t lock; union { pn_t next_pn_halves; u64 next_pn; }; refcount_t refcnt; bool active; struct macsec_rx_sa_stats __percpu *stats; struct macsec_rx_sc *sc; struct rcu_head rcu; }; struct pcpu_rx_sc_stats { struct macsec_rx_sc_stats stats; struct u64_stats_sync syncp; }; struct pcpu_tx_sc_stats { struct macsec_tx_sc_stats stats; struct u64_stats_sync syncp; }; /** * struct macsec_rx_sc - receive secure channel * @sci: secure channel identifier for this SC * @active: channel is active * @sa: array of secure associations * @stats: per-SC stats */ struct macsec_rx_sc { struct macsec_rx_sc __rcu *next; sci_t sci; bool active; struct macsec_rx_sa __rcu *sa[MACSEC_NUM_AN]; struct pcpu_rx_sc_stats __percpu *stats; refcount_t refcnt; struct rcu_head rcu_head; }; /** * struct macsec_tx_sa - transmit secure association * @active: * @next_pn: packet number to use for the next packet * @lock: protects next_pn manipulations * @key: key structure * @ssci: short secure channel identifier * @stats: per-SA stats */ struct macsec_tx_sa { struct macsec_key key; ssci_t ssci; spinlock_t lock; union { pn_t next_pn_halves; u64 next_pn; }; refcount_t refcnt; bool active; struct macsec_tx_sa_stats __percpu *stats; struct rcu_head rcu; }; /** * struct macsec_tx_sc - transmit secure channel * @active: * @encoding_sa: association number of the SA currently in use * @encrypt: encrypt packets on transmit, or authenticate only * @send_sci: always include the SCI in the SecTAG * @end_station: * @scb: single copy broadcast flag * @sa: array of secure associations * @stats: stats for this TXSC * @md_dst: MACsec offload metadata dst */ struct macsec_tx_sc { bool active; u8 encoding_sa; bool encrypt; bool send_sci; bool end_station; bool scb; struct macsec_tx_sa __rcu *sa[MACSEC_NUM_AN]; struct pcpu_tx_sc_stats __percpu *stats; struct metadata_dst *md_dst; }; /** * struct macsec_secy - MACsec Security Entity * @netdev: netdevice for this SecY * @n_rx_sc: number of receive secure channels configured on this SecY * @sci: secure channel identifier used for tx * @key_len: length of keys used by the cipher suite * @icv_len: length of ICV used by the cipher suite * @validate_frames: validation mode * @xpn: enable XPN for this SecY * @operational: MAC_Operational flag * @protect_frames: enable protection for this SecY * @replay_protect: enable packet number checks on receive * @replay_window: size of the replay window * @tx_sc: transmit secure channel * @rx_sc: linked list of receive secure channels */ struct macsec_secy { struct net_device *netdev; unsigned int n_rx_sc; sci_t sci; u16 key_len; u16 icv_len; enum macsec_validation_type validate_frames; bool xpn; bool operational; bool protect_frames; bool replay_protect; u32 replay_window; struct macsec_tx_sc tx_sc; struct macsec_rx_sc __rcu *rx_sc; }; /** * struct macsec_context - MACsec context for hardware offloading * @netdev: a valid pointer to a struct net_device if @offload == * MACSEC_OFFLOAD_MAC * @phydev: a valid pointer to a struct phy_device if @offload == * MACSEC_OFFLOAD_PHY * @offload: MACsec offload status * @secy: pointer to a MACsec SecY * @rx_sc: pointer to a RX SC * @update_pn: when updating the SA, update the next PN * @assoc_num: association number of the target SA * @key: key of the target SA * @rx_sa: pointer to an RX SA if a RX SA is added/updated/removed * @tx_sa: pointer to an TX SA if a TX SA is added/updated/removed * @tx_sc_stats: pointer to TX SC stats structure * @tx_sa_stats: pointer to TX SA stats structure * @rx_sc_stats: pointer to RX SC stats structure * @rx_sa_stats: pointer to RX SA stats structure * @dev_stats: pointer to dev stats structure */ struct macsec_context { union { struct net_device *netdev; struct phy_device *phydev; }; enum macsec_offload offload; struct macsec_secy *secy; struct macsec_rx_sc *rx_sc; struct { bool update_pn; unsigned char assoc_num; u8 key[MACSEC_MAX_KEY_LEN]; union { struct macsec_rx_sa *rx_sa; struct macsec_tx_sa *tx_sa; }; } sa; union { struct macsec_tx_sc_stats *tx_sc_stats; struct macsec_tx_sa_stats *tx_sa_stats; struct macsec_rx_sc_stats *rx_sc_stats; struct macsec_rx_sa_stats *rx_sa_stats; struct macsec_dev_stats *dev_stats; } stats; }; /** * struct macsec_ops - MACsec offloading operations * @mdo_dev_open: called when the MACsec interface transitions to the up state * @mdo_dev_stop: called when the MACsec interface transitions to the down * state * @mdo_add_secy: called when a new SecY is added * @mdo_upd_secy: called when the SecY flags are changed or the MAC address of * the MACsec interface is changed * @mdo_del_secy: called when the hw offload is disabled or the MACsec * interface is removed * @mdo_add_rxsc: called when a new RX SC is added * @mdo_upd_rxsc: called when a certain RX SC is updated * @mdo_del_rxsc: called when a certain RX SC is removed * @mdo_add_rxsa: called when a new RX SA is added * @mdo_upd_rxsa: called when a certain RX SA is updated * @mdo_del_rxsa: called when a certain RX SA is removed * @mdo_add_txsa: called when a new TX SA is added * @mdo_upd_txsa: called when a certain TX SA is updated * @mdo_del_txsa: called when a certain TX SA is removed * @mdo_get_dev_stats: called when dev stats are read * @mdo_get_tx_sc_stats: called when TX SC stats are read * @mdo_get_tx_sa_stats: called when TX SA stats are read * @mdo_get_rx_sc_stats: called when RX SC stats are read * @mdo_get_rx_sa_stats: called when RX SA stats are read * @mdo_insert_tx_tag: called to insert the TX tag * @needed_headroom: number of bytes reserved at the beginning of the sk_buff * for the TX tag * @needed_tailroom: number of bytes reserved at the end of the sk_buff for the * TX tag * @rx_uses_md_dst: whether MACsec device offload supports sk_buff md_dst */ struct macsec_ops { /* Device wide */ int (*mdo_dev_open)(struct macsec_context *ctx); int (*mdo_dev_stop)(struct macsec_context *ctx); /* SecY */ int (*mdo_add_secy)(struct macsec_context *ctx); int (*mdo_upd_secy)(struct macsec_context *ctx); int (*mdo_del_secy)(struct macsec_context *ctx); /* Security channels */ int (*mdo_add_rxsc)(struct macsec_context *ctx); int (*mdo_upd_rxsc)(struct macsec_context *ctx); int (*mdo_del_rxsc)(struct macsec_context *ctx); /* Security associations */ int (*mdo_add_rxsa)(struct macsec_context *ctx); int (*mdo_upd_rxsa)(struct macsec_context *ctx); int (*mdo_del_rxsa)(struct macsec_context *ctx); int (*mdo_add_txsa)(struct macsec_context *ctx); int (*mdo_upd_txsa)(struct macsec_context *ctx); int (*mdo_del_txsa)(struct macsec_context *ctx); /* Statistics */ int (*mdo_get_dev_stats)(struct macsec_context *ctx); int (*mdo_get_tx_sc_stats)(struct macsec_context *ctx); int (*mdo_get_tx_sa_stats)(struct macsec_context *ctx); int (*mdo_get_rx_sc_stats)(struct macsec_context *ctx); int (*mdo_get_rx_sa_stats)(struct macsec_context *ctx); /* Offload tag */ int (*mdo_insert_tx_tag)(struct phy_device *phydev, struct sk_buff *skb); unsigned int needed_headroom; unsigned int needed_tailroom; bool rx_uses_md_dst; }; void macsec_pn_wrapped(struct macsec_secy *secy, struct macsec_tx_sa *tx_sa); static inline bool macsec_send_sci(const struct macsec_secy *secy) { const struct macsec_tx_sc *tx_sc = &secy->tx_sc; return tx_sc->send_sci || (secy->n_rx_sc > 1 && !tx_sc->end_station && !tx_sc->scb); } struct net_device *macsec_get_real_dev(const struct net_device *dev); bool macsec_netdev_is_offloaded(struct net_device *dev); static inline void *macsec_netdev_priv(const struct net_device *dev) { #if IS_ENABLED(CONFIG_VLAN_8021Q) if (is_vlan_dev(dev)) return netdev_priv(vlan_dev_priv(dev)->real_dev); #endif return netdev_priv(dev); } static inline u64 sci_to_cpu(sci_t sci) { return be64_to_cpu((__force __be64)sci); } #endif /* _NET_MACSEC_H_ */
1 2 1 9 1 1 1 1 1 1 1 1 1 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 // SPDX-License-Identifier: GPL-2.0+ /* * mpc624.c * Hardware driver for a Micro/sys inc. MPC-624 PC/104 board * * COMEDI - Linux Control and Measurement Device Interface * Copyright (C) 2000 David A. Schleef <ds@schleef.org> */ /* * Driver: mpc624 * Description: Micro/sys MPC-624 PC/104 board * Devices: [Micro/sys] MPC-624 (mpc624) * Author: Stanislaw Raczynski <sraczynski@op.pl> * Updated: Thu, 15 Sep 2005 12:01:18 +0200 * Status: working * * The Micro/sys MPC-624 board is based on the LTC2440 24-bit sigma-delta * ADC chip. * * Subdevices supported by the driver: * - Analog In: supported * - Digital I/O: not supported * - LEDs: not supported * - EEPROM: not supported * * Configuration Options: * [0] - I/O base address * [1] - conversion rate * Conversion rate RMS noise Effective Number Of Bits * 0 3.52kHz 23uV 17 * 1 1.76kHz 3.5uV 20 * 2 880Hz 2uV 21.3 * 3 440Hz 1.4uV 21.8 * 4 220Hz 1uV 22.4 * 5 110Hz 750uV 22.9 * 6 55Hz 510nV 23.4 * 7 27.5Hz 375nV 24 * 8 13.75Hz 250nV 24.4 * 9 6.875Hz 200nV 24.6 * [2] - voltage range * 0 -1.01V .. +1.01V * 1 -10.1V .. +10.1V */ #include <linux/module.h> #include <linux/comedi/comedidev.h> #include <linux/delay.h> /* Offsets of different ports */ #define MPC624_MASTER_CONTROL 0 /* not used */ #define MPC624_GNMUXCH 1 /* Gain, Mux, Channel of ADC */ #define MPC624_ADC 2 /* read/write to/from ADC */ #define MPC624_EE 3 /* read/write to/from serial EEPROM via I2C */ #define MPC624_LEDS 4 /* write to LEDs */ #define MPC624_DIO 5 /* read/write to/from digital I/O ports */ #define MPC624_IRQ_MASK 6 /* IRQ masking enable/disable */ /* Register bits' names */ #define MPC624_ADBUSY BIT(5) #define MPC624_ADSDO BIT(4) #define MPC624_ADFO BIT(3) #define MPC624_ADCS BIT(2) #define MPC624_ADSCK BIT(1) #define MPC624_ADSDI BIT(0) /* 32-bit output value bits' names */ #define MPC624_EOC_BIT BIT(31) #define MPC624_DMY_BIT BIT(30) #define MPC624_SGN_BIT BIT(29) /* SDI Speed/Resolution Programming bits */ #define MPC624_OSR(x) (((x) & 0x1f) << 27) #define MPC624_SPEED_3_52_KHZ MPC624_OSR(0x11) #define MPC624_SPEED_1_76_KHZ MPC624_OSR(0x12) #define MPC624_SPEED_880_HZ MPC624_OSR(0x13) #define MPC624_SPEED_440_HZ MPC624_OSR(0x14) #define MPC624_SPEED_220_HZ MPC624_OSR(0x15) #define MPC624_SPEED_110_HZ MPC624_OSR(0x16) #define MPC624_SPEED_55_HZ MPC624_OSR(0x17) #define MPC624_SPEED_27_5_HZ MPC624_OSR(0x18) #define MPC624_SPEED_13_75_HZ MPC624_OSR(0x19) #define MPC624_SPEED_6_875_HZ MPC624_OSR(0x1f) struct mpc624_private { unsigned int ai_speed; }; /* -------------------------------------------------------------------------- */ static const struct comedi_lrange range_mpc624_bipolar1 = { 1, { /* BIP_RANGE(1.01) this is correct, */ /* but my MPC-624 actually seems to have a range of 2.02 */ BIP_RANGE(2.02) } }; static const struct comedi_lrange range_mpc624_bipolar10 = { 1, { /* BIP_RANGE(10.1) this is correct, */ /* but my MPC-624 actually seems to have a range of 20.2 */ BIP_RANGE(20.2) } }; static unsigned int mpc624_ai_get_sample(struct comedi_device *dev, struct comedi_subdevice *s) { struct mpc624_private *devpriv = dev->private; unsigned int data_out = devpriv->ai_speed; unsigned int data_in = 0; unsigned int bit; int i; /* Start reading data */ udelay(1); for (i = 0; i < 32; i++) { /* Set the clock low */ outb(0, dev->iobase + MPC624_ADC); udelay(1); /* Set the ADSDI line for the next bit (send to MPC624) */ bit = (data_out & BIT(31)) ? MPC624_ADSDI : 0; outb(bit, dev->iobase + MPC624_ADC); udelay(1); /* Set the clock high */ outb(MPC624_ADSCK | bit, dev->iobase + MPC624_ADC); udelay(1); /* Read ADSDO on high clock (receive from MPC624) */ data_in <<= 1; data_in |= (inb(dev->iobase + MPC624_ADC) & MPC624_ADSDO) >> 4; udelay(1); data_out <<= 1; } /* * Received 32-bit long value consist of: * 31: EOC - (End Of Transmission) bit - should be 0 * 30: DMY - (Dummy) bit - should be 0 * 29: SIG - (Sign) bit - 1 if positive, 0 if negative * 28: MSB - (Most Significant Bit) - the first bit of the * conversion result * .... * 05: LSB - (Least Significant Bit)- the last bit of the * conversion result * 04-00: sub-LSB - sub-LSBs are basically noise, but when * averaged properly, they can increase * conversion precision up to 29 bits; * they can be discarded without loss of * resolution. */ if (data_in & MPC624_EOC_BIT) dev_dbg(dev->class_dev, "EOC bit is set!"); if (data_in & MPC624_DMY_BIT) dev_dbg(dev->class_dev, "DMY bit is set!"); if (data_in & MPC624_SGN_BIT) { /* * Voltage is positive * * comedi operates on unsigned numbers, so mask off EOC * and DMY and don't clear the SGN bit */ data_in &= 0x3fffffff; } else { /* * The voltage is negative * * data_in contains a number in 30-bit two's complement * code and we must deal with it */ data_in |= MPC624_SGN_BIT; data_in = ~data_in; data_in += 1; /* clear EOC and DMY bits */ data_in &= ~(MPC624_EOC_BIT | MPC624_DMY_BIT); data_in = 0x20000000 - data_in; } return data_in; } static int mpc624_ai_eoc(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned long context) { unsigned char status; status = inb(dev->iobase + MPC624_ADC); if ((status & MPC624_ADBUSY) == 0) return 0; return -EBUSY; } static int mpc624_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int ret; int i; /* * WARNING: * We always write 0 to GNSWA bit, so the channel range is +-/10.1Vdc */ outb(insn->chanspec, dev->iobase + MPC624_GNMUXCH); for (i = 0; i < insn->n; i++) { /* Trigger the conversion */ outb(MPC624_ADSCK, dev->iobase + MPC624_ADC); udelay(1); outb(MPC624_ADCS | MPC624_ADSCK, dev->iobase + MPC624_ADC); udelay(1); outb(0, dev->iobase + MPC624_ADC); udelay(1); /* Wait for the conversion to end */ ret = comedi_timeout(dev, s, insn, mpc624_ai_eoc, 0); if (ret) return ret; data[i] = mpc624_ai_get_sample(dev, s); } return insn->n; } static int mpc624_attach(struct comedi_device *dev, struct comedi_devconfig *it) { struct mpc624_private *devpriv; struct comedi_subdevice *s; int ret; ret = comedi_request_region(dev, it->options[0], 0x10); if (ret) return ret; devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); if (!devpriv) return -ENOMEM; switch (it->options[1]) { case 0: devpriv->ai_speed = MPC624_SPEED_3_52_KHZ; break; case 1: devpriv->ai_speed = MPC624_SPEED_1_76_KHZ; break; case 2: devpriv->ai_speed = MPC624_SPEED_880_HZ; break; case 3: devpriv->ai_speed = MPC624_SPEED_440_HZ; break; case 4: devpriv->ai_speed = MPC624_SPEED_220_HZ; break; case 5: devpriv->ai_speed = MPC624_SPEED_110_HZ; break; case 6: devpriv->ai_speed = MPC624_SPEED_55_HZ; break; case 7: devpriv->ai_speed = MPC624_SPEED_27_5_HZ; break; case 8: devpriv->ai_speed = MPC624_SPEED_13_75_HZ; break; case 9: devpriv->ai_speed = MPC624_SPEED_6_875_HZ; break; default: devpriv->ai_speed = MPC624_SPEED_3_52_KHZ; } ret = comedi_alloc_subdevices(dev, 1); if (ret) return ret; /* Analog Input subdevice */ s = &dev->subdevices[0]; s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_READABLE | SDF_DIFF; s->n_chan = 4; s->maxdata = 0x3fffffff; s->range_table = (it->options[1] == 0) ? &range_mpc624_bipolar1 : &range_mpc624_bipolar10; s->insn_read = mpc624_ai_insn_read; return 0; } static struct comedi_driver mpc624_driver = { .driver_name = "mpc624", .module = THIS_MODULE, .attach = mpc624_attach, .detach = comedi_legacy_detach, }; module_comedi_driver(mpc624_driver); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_DESCRIPTION("Comedi driver for Micro/sys MPC-624 PC/104 board"); MODULE_LICENSE("GPL");
50 50 36 36 50 50 49 50 50 49 50 5 5 5 5 5 34 34 33 21 21 4 21 21 21 21 20 3 3 47 25 36 36 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 // SPDX-License-Identifier: GPL-2.0 /* Multipath TCP token management * Copyright (c) 2017 - 2019, Intel Corporation. * * Note: This code is based on mptcp_ctrl.c from multipath-tcp.org, * authored by: * * Sébastien Barré <sebastien.barre@uclouvain.be> * Christoph Paasch <christoph.paasch@uclouvain.be> * Jaakko Korkeaniemi <jaakko.korkeaniemi@aalto.fi> * Gregory Detal <gregory.detal@uclouvain.be> * Fabien Duchêne <fabien.duchene@uclouvain.be> * Andreas Seelinger <Andreas.Seelinger@rwth-aachen.de> * Lavkesh Lahngir <lavkesh51@gmail.com> * Andreas Ripke <ripke@neclab.eu> * Vlad Dogaru <vlad.dogaru@intel.com> * Octavian Purdila <octavian.purdila@intel.com> * John Ronan <jronan@tssg.org> * Catalin Nicutar <catalin.nicutar@gmail.com> * Brandon Heller <brandonh@stanford.edu> */ #define pr_fmt(fmt) "MPTCP: " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/memblock.h> #include <linux/ip.h> #include <linux/tcp.h> #include <net/sock.h> #include <net/inet_common.h> #include <net/protocol.h> #include <net/mptcp.h> #include "protocol.h" #define TOKEN_MAX_CHAIN_LEN 4 struct token_bucket { spinlock_t lock; int chain_len; struct hlist_nulls_head req_chain; struct hlist_nulls_head msk_chain; }; static struct token_bucket *token_hash __read_mostly; static unsigned int token_mask __read_mostly; static struct token_bucket *token_bucket(u32 token) { return &token_hash[token & token_mask]; } /* called with bucket lock held */ static struct mptcp_subflow_request_sock * __token_lookup_req(struct token_bucket *t, u32 token) { struct mptcp_subflow_request_sock *req; struct hlist_nulls_node *pos; hlist_nulls_for_each_entry_rcu(req, pos, &t->req_chain, token_node) if (req->token == token) return req; return NULL; } /* called with bucket lock held */ static struct mptcp_sock * __token_lookup_msk(struct token_bucket *t, u32 token) { struct hlist_nulls_node *pos; struct sock *sk; sk_nulls_for_each_rcu(sk, pos, &t->msk_chain) if (mptcp_sk(sk)->token == token) return mptcp_sk(sk); return NULL; } static bool __token_bucket_busy(struct token_bucket *t, u32 token) { return !token || t->chain_len >= TOKEN_MAX_CHAIN_LEN || __token_lookup_req(t, token) || __token_lookup_msk(t, token); } static void mptcp_crypto_key_gen_sha(u64 *key, u32 *token, u64 *idsn) { /* we might consider a faster version that computes the key as a * hash of some information available in the MPTCP socket. Use * random data at the moment, as it's probably the safest option * in case multiple sockets are opened in different namespaces at * the same time. */ get_random_bytes(key, sizeof(u64)); mptcp_crypto_key_sha(*key, token, idsn); } /** * mptcp_token_new_request - create new key/idsn/token for subflow_request * @req: the request socket * * This function is called when a new mptcp connection is coming in. * * It creates a unique token to identify the new mptcp connection, * a secret local key and the initial data sequence number (idsn). * * Returns 0 on success. */ int mptcp_token_new_request(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct token_bucket *bucket; u32 token; mptcp_crypto_key_sha(subflow_req->local_key, &subflow_req->token, &subflow_req->idsn); pr_debug("req=%p local_key=%llu, token=%u, idsn=%llu\n", req, subflow_req->local_key, subflow_req->token, subflow_req->idsn); token = subflow_req->token; bucket = token_bucket(token); spin_lock_bh(&bucket->lock); if (__token_bucket_busy(bucket, token)) { spin_unlock_bh(&bucket->lock); return -EBUSY; } hlist_nulls_add_head_rcu(&subflow_req->token_node, &bucket->req_chain); bucket->chain_len++; spin_unlock_bh(&bucket->lock); return 0; } /** * mptcp_token_new_connect - create new key/idsn/token for subflow * @ssk: the socket that will initiate a connection * * This function is called when a new outgoing mptcp connection is * initiated. * * It creates a unique token to identify the new mptcp connection, * a secret local key and the initial data sequence number (idsn). * * On success, the mptcp connection can be found again using * the computed token at a later time, this is needed to process * join requests. * * returns 0 on success. */ int mptcp_token_new_connect(struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct mptcp_sock *msk = mptcp_sk(subflow->conn); int retries = MPTCP_TOKEN_MAX_RETRIES; struct sock *sk = subflow->conn; struct token_bucket *bucket; again: mptcp_crypto_key_gen_sha(&subflow->local_key, &subflow->token, &subflow->idsn); bucket = token_bucket(subflow->token); spin_lock_bh(&bucket->lock); if (__token_bucket_busy(bucket, subflow->token)) { spin_unlock_bh(&bucket->lock); if (!--retries) return -EBUSY; goto again; } pr_debug("ssk=%p, local_key=%llu, token=%u, idsn=%llu\n", ssk, subflow->local_key, subflow->token, subflow->idsn); WRITE_ONCE(msk->token, subflow->token); __sk_nulls_add_node_rcu((struct sock *)msk, &bucket->msk_chain); bucket->chain_len++; spin_unlock_bh(&bucket->lock); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); return 0; } /** * mptcp_token_accept - replace a req sk with full sock in token hash * @req: the request socket to be removed * @msk: the just cloned socket linked to the new connection * * Called when a SYN packet creates a new logical connection, i.e. * is not a join request. */ void mptcp_token_accept(struct mptcp_subflow_request_sock *req, struct mptcp_sock *msk) { struct mptcp_subflow_request_sock *pos; struct sock *sk = (struct sock *)msk; struct token_bucket *bucket; sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); bucket = token_bucket(req->token); spin_lock_bh(&bucket->lock); /* pedantic lookup check for the moved token */ pos = __token_lookup_req(bucket, req->token); if (!WARN_ON_ONCE(pos != req)) hlist_nulls_del_init_rcu(&req->token_node); __sk_nulls_add_node_rcu((struct sock *)msk, &bucket->msk_chain); spin_unlock_bh(&bucket->lock); } bool mptcp_token_exists(u32 token) { struct hlist_nulls_node *pos; struct token_bucket *bucket; struct mptcp_sock *msk; struct sock *sk; rcu_read_lock(); bucket = token_bucket(token); again: sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) { msk = mptcp_sk(sk); if (READ_ONCE(msk->token) == token) goto found; } if (get_nulls_value(pos) != (token & token_mask)) goto again; rcu_read_unlock(); return false; found: rcu_read_unlock(); return true; } /** * mptcp_token_get_sock - retrieve mptcp connection sock using its token * @net: restrict to this namespace * @token: token of the mptcp connection to retrieve * * This function returns the mptcp connection structure with the given token. * A reference count on the mptcp socket returned is taken. * * returns NULL if no connection with the given token value exists. */ struct mptcp_sock *mptcp_token_get_sock(struct net *net, u32 token) { struct hlist_nulls_node *pos; struct token_bucket *bucket; struct mptcp_sock *msk; struct sock *sk; rcu_read_lock(); bucket = token_bucket(token); again: sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) { msk = mptcp_sk(sk); if (READ_ONCE(msk->token) != token || !net_eq(sock_net(sk), net)) continue; if (!refcount_inc_not_zero(&sk->sk_refcnt)) goto not_found; if (READ_ONCE(msk->token) != token || !net_eq(sock_net(sk), net)) { sock_put(sk); goto again; } goto found; } if (get_nulls_value(pos) != (token & token_mask)) goto again; not_found: msk = NULL; found: rcu_read_unlock(); return msk; } EXPORT_SYMBOL_GPL(mptcp_token_get_sock); /** * mptcp_token_iter_next - iterate over the token container from given pos * @net: namespace to be iterated * @s_slot: start slot number * @s_num: start number inside the given lock * * This function returns the first mptcp connection structure found inside the * token container starting from the specified position, or NULL. * * On successful iteration, the iterator is moved to the next position and * a reference to the returned socket is acquired. */ struct mptcp_sock *mptcp_token_iter_next(const struct net *net, long *s_slot, long *s_num) { struct mptcp_sock *ret = NULL; struct hlist_nulls_node *pos; int slot, num = 0; for (slot = *s_slot; slot <= token_mask; *s_num = 0, slot++) { struct token_bucket *bucket = &token_hash[slot]; struct sock *sk; num = 0; if (hlist_nulls_empty(&bucket->msk_chain)) continue; rcu_read_lock(); sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) { ++num; if (!net_eq(sock_net(sk), net)) continue; if (num <= *s_num) continue; if (!refcount_inc_not_zero(&sk->sk_refcnt)) continue; if (!net_eq(sock_net(sk), net)) { sock_put(sk); continue; } ret = mptcp_sk(sk); rcu_read_unlock(); goto out; } rcu_read_unlock(); } out: *s_slot = slot; *s_num = num; return ret; } EXPORT_SYMBOL_GPL(mptcp_token_iter_next); /** * mptcp_token_destroy_request - remove mptcp connection/token * @req: mptcp request socket dropping the token * * Remove the token associated to @req. */ void mptcp_token_destroy_request(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_subflow_request_sock *pos; struct token_bucket *bucket; if (hlist_nulls_unhashed(&subflow_req->token_node)) return; bucket = token_bucket(subflow_req->token); spin_lock_bh(&bucket->lock); pos = __token_lookup_req(bucket, subflow_req->token); if (!WARN_ON_ONCE(pos != subflow_req)) { hlist_nulls_del_init_rcu(&pos->token_node); bucket->chain_len--; } spin_unlock_bh(&bucket->lock); } /** * mptcp_token_destroy - remove mptcp connection/token * @msk: mptcp connection dropping the token * * Remove the token associated to @msk */ void mptcp_token_destroy(struct mptcp_sock *msk) { struct sock *sk = (struct sock *)msk; struct token_bucket *bucket; struct mptcp_sock *pos; if (sk_unhashed((struct sock *)msk)) return; sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); bucket = token_bucket(msk->token); spin_lock_bh(&bucket->lock); pos = __token_lookup_msk(bucket, msk->token); if (!WARN_ON_ONCE(pos != msk)) { __sk_nulls_del_node_init_rcu((struct sock *)pos); bucket->chain_len--; } spin_unlock_bh(&bucket->lock); WRITE_ONCE(msk->token, 0); } void __init mptcp_token_init(void) { int i; token_hash = alloc_large_system_hash("MPTCP token", sizeof(struct token_bucket), 0, 20,/* one slot per 1MB of memory */ HASH_ZERO, NULL, &token_mask, 0, 64 * 1024); for (i = 0; i < token_mask + 1; ++i) { INIT_HLIST_NULLS_HEAD(&token_hash[i].req_chain, i); INIT_HLIST_NULLS_HEAD(&token_hash[i].msk_chain, i); spin_lock_init(&token_hash[i].lock); } } #if IS_MODULE(CONFIG_MPTCP_KUNIT_TEST) EXPORT_SYMBOL_GPL(mptcp_token_new_request); EXPORT_SYMBOL_GPL(mptcp_token_new_connect); EXPORT_SYMBOL_GPL(mptcp_token_accept); EXPORT_SYMBOL_GPL(mptcp_token_destroy_request); EXPORT_SYMBOL_GPL(mptcp_token_destroy); #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 // SPDX-License-Identifier: GPL-2.0-only /* * Line 6 Linux USB driver * * Copyright (C) 2004-2010 Markus Grabner (line6@grabner-graz.at) */ #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include "capture.h" #include "driver.h" #include "pcm.h" /* Find a free URB and submit it. must be called in line6pcm->in.lock context */ static int submit_audio_in_urb(struct snd_line6_pcm *line6pcm) { int index; int i, urb_size; int ret; struct urb *urb_in; index = find_first_zero_bit(&line6pcm->in.active_urbs, line6pcm->line6->iso_buffers); if (index < 0 || index >= line6pcm->line6->iso_buffers) { dev_err(line6pcm->line6->ifcdev, "no free URB found\n"); return -EINVAL; } urb_in = line6pcm->in.urbs[index]; urb_size = 0; for (i = 0; i < LINE6_ISO_PACKETS; ++i) { struct usb_iso_packet_descriptor *fin = &urb_in->iso_frame_desc[i]; fin->offset = urb_size; fin->length = line6pcm->max_packet_size_in; urb_size += line6pcm->max_packet_size_in; } urb_in->transfer_buffer = line6pcm->in.buffer + index * LINE6_ISO_PACKETS * line6pcm->max_packet_size_in; urb_in->transfer_buffer_length = urb_size; urb_in->context = line6pcm; ret = usb_submit_urb(urb_in, GFP_ATOMIC); if (ret == 0) set_bit(index, &line6pcm->in.active_urbs); else dev_err(line6pcm->line6->ifcdev, "URB in #%d submission failed (%d)\n", index, ret); return 0; } /* Submit all currently available capture URBs. must be called in line6pcm->in.lock context */ int line6_submit_audio_in_all_urbs(struct snd_line6_pcm *line6pcm) { int ret = 0, i; for (i = 0; i < line6pcm->line6->iso_buffers; ++i) { ret = submit_audio_in_urb(line6pcm); if (ret < 0) break; } return ret; } /* Copy data into ALSA capture buffer. */ void line6_capture_copy(struct snd_line6_pcm *line6pcm, char *fbuf, int fsize) { struct snd_pcm_substream *substream = get_substream(line6pcm, SNDRV_PCM_STREAM_CAPTURE); struct snd_pcm_runtime *runtime = substream->runtime; const int bytes_per_frame = line6pcm->properties->bytes_per_channel * line6pcm->properties->capture_hw.channels_max; int frames = fsize / bytes_per_frame; if (runtime == NULL) return; if (line6pcm->in.pos_done + frames > runtime->buffer_size) { /* The transferred area goes over buffer boundary, copy two separate chunks. */ int len; len = runtime->buffer_size - line6pcm->in.pos_done; if (len > 0) { memcpy(runtime->dma_area + line6pcm->in.pos_done * bytes_per_frame, fbuf, len * bytes_per_frame); memcpy(runtime->dma_area, fbuf + len * bytes_per_frame, (frames - len) * bytes_per_frame); } else { /* this is somewhat paranoid */ dev_err(line6pcm->line6->ifcdev, "driver bug: len = %d\n", len); } } else { /* copy single chunk */ memcpy(runtime->dma_area + line6pcm->in.pos_done * bytes_per_frame, fbuf, fsize); } line6pcm->in.pos_done += frames; if (line6pcm->in.pos_done >= runtime->buffer_size) line6pcm->in.pos_done -= runtime->buffer_size; } void line6_capture_check_period(struct snd_line6_pcm *line6pcm, int length) { struct snd_pcm_substream *substream = get_substream(line6pcm, SNDRV_PCM_STREAM_CAPTURE); line6pcm->in.bytes += length; if (line6pcm->in.bytes >= line6pcm->in.period) { line6pcm->in.bytes %= line6pcm->in.period; spin_unlock(&line6pcm->in.lock); snd_pcm_period_elapsed(substream); spin_lock(&line6pcm->in.lock); } } /* * Callback for completed capture URB. */ static void audio_in_callback(struct urb *urb) { int i, index, length = 0, shutdown = 0; unsigned long flags; struct snd_line6_pcm *line6pcm = (struct snd_line6_pcm *)urb->context; line6pcm->in.last_frame = urb->start_frame; /* find index of URB */ for (index = 0; index < line6pcm->line6->iso_buffers; ++index) if (urb == line6pcm->in.urbs[index]) break; spin_lock_irqsave(&line6pcm->in.lock, flags); for (i = 0; i < LINE6_ISO_PACKETS; ++i) { char *fbuf; int fsize; struct usb_iso_packet_descriptor *fin = &urb->iso_frame_desc[i]; if (fin->status == -EXDEV) { shutdown = 1; break; } fbuf = urb->transfer_buffer + fin->offset; fsize = fin->actual_length; if (fsize > line6pcm->max_packet_size_in) { dev_err(line6pcm->line6->ifcdev, "driver and/or device bug: packet too large (%d > %d)\n", fsize, line6pcm->max_packet_size_in); } length += fsize; BUILD_BUG_ON_MSG(LINE6_ISO_PACKETS != 1, "The following code assumes LINE6_ISO_PACKETS == 1"); /* TODO: * Also, if iso_buffers != 2, the prev frame is almost random at * playback side. * This needs to be redesigned. It should be "stable", but we may * experience sync problems on such high-speed configs. */ line6pcm->prev_fbuf = fbuf; line6pcm->prev_fsize = fsize / (line6pcm->properties->bytes_per_channel * line6pcm->properties->capture_hw.channels_max); if (!test_bit(LINE6_STREAM_IMPULSE, &line6pcm->in.running) && test_bit(LINE6_STREAM_PCM, &line6pcm->in.running) && fsize > 0) line6_capture_copy(line6pcm, fbuf, fsize); } clear_bit(index, &line6pcm->in.active_urbs); if (test_and_clear_bit(index, &line6pcm->in.unlink_urbs)) shutdown = 1; if (!shutdown) { submit_audio_in_urb(line6pcm); if (!test_bit(LINE6_STREAM_IMPULSE, &line6pcm->in.running) && test_bit(LINE6_STREAM_PCM, &line6pcm->in.running)) line6_capture_check_period(line6pcm, length); } spin_unlock_irqrestore(&line6pcm->in.lock, flags); } /* open capture callback */ static int snd_line6_capture_open(struct snd_pcm_substream *substream) { int err; struct snd_pcm_runtime *runtime = substream->runtime; struct snd_line6_pcm *line6pcm = snd_pcm_substream_chip(substream); err = snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &line6pcm->properties->rates); if (err < 0) return err; line6_pcm_acquire(line6pcm, LINE6_STREAM_CAPTURE_HELPER, false); runtime->hw = line6pcm->properties->capture_hw; return 0; } /* close capture callback */ static int snd_line6_capture_close(struct snd_pcm_substream *substream) { struct snd_line6_pcm *line6pcm = snd_pcm_substream_chip(substream); line6_pcm_release(line6pcm, LINE6_STREAM_CAPTURE_HELPER); return 0; } /* capture operators */ const struct snd_pcm_ops snd_line6_capture_ops = { .open = snd_line6_capture_open, .close = snd_line6_capture_close, .hw_params = snd_line6_hw_params, .hw_free = snd_line6_hw_free, .prepare = snd_line6_prepare, .trigger = snd_line6_trigger, .pointer = snd_line6_pointer, }; int line6_create_audio_in_urbs(struct snd_line6_pcm *line6pcm) { struct usb_line6 *line6 = line6pcm->line6; int i; line6pcm->in.urbs = kcalloc(line6->iso_buffers, sizeof(struct urb *), GFP_KERNEL); if (line6pcm->in.urbs == NULL) return -ENOMEM; /* create audio URBs and fill in constant values: */ for (i = 0; i < line6->iso_buffers; ++i) { struct urb *urb; /* URB for audio in: */ urb = line6pcm->in.urbs[i] = usb_alloc_urb(LINE6_ISO_PACKETS, GFP_KERNEL); if (urb == NULL) return -ENOMEM; urb->dev = line6->usbdev; urb->pipe = usb_rcvisocpipe(line6->usbdev, line6->properties->ep_audio_r & USB_ENDPOINT_NUMBER_MASK); urb->transfer_flags = URB_ISO_ASAP; urb->start_frame = -1; urb->number_of_packets = LINE6_ISO_PACKETS; urb->interval = LINE6_ISO_INTERVAL; urb->error_count = 0; urb->complete = audio_in_callback; if (usb_urb_ep_type_check(urb)) return -EINVAL; } return 0; }
2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 // SPDX-License-Identifier: GPL-2.0 /* net/atm/pvc.c - ATM PVC sockets */ /* Written 1995-2000 by Werner Almesberger, EPFL LRC/ICA */ #include <linux/net.h> /* struct socket, struct proto_ops */ #include <linux/atm.h> /* ATM stuff */ #include <linux/atmdev.h> /* ATM devices */ #include <linux/errno.h> /* error codes */ #include <linux/kernel.h> /* printk */ #include <linux/init.h> #include <linux/skbuff.h> #include <linux/bitops.h> #include <linux/export.h> #include <net/sock.h> /* for sock_no_* */ #include "resources.h" /* devs and vccs */ #include "common.h" /* common for PVCs and SVCs */ static int pvc_shutdown(struct socket *sock, int how) { return 0; } static int pvc_bind(struct socket *sock, struct sockaddr *sockaddr, int sockaddr_len) { struct sock *sk = sock->sk; struct sockaddr_atmpvc *addr; struct atm_vcc *vcc; int error; if (sockaddr_len != sizeof(struct sockaddr_atmpvc)) return -EINVAL; addr = (struct sockaddr_atmpvc *)sockaddr; if (addr->sap_family != AF_ATMPVC) return -EAFNOSUPPORT; lock_sock(sk); vcc = ATM_SD(sock); if (!test_bit(ATM_VF_HASQOS, &vcc->flags)) { error = -EBADFD; goto out; } if (test_bit(ATM_VF_PARTIAL, &vcc->flags)) { if (vcc->vpi != ATM_VPI_UNSPEC) addr->sap_addr.vpi = vcc->vpi; if (vcc->vci != ATM_VCI_UNSPEC) addr->sap_addr.vci = vcc->vci; } error = vcc_connect(sock, addr->sap_addr.itf, addr->sap_addr.vpi, addr->sap_addr.vci); out: release_sock(sk); return error; } static int pvc_connect(struct socket *sock, struct sockaddr *sockaddr, int sockaddr_len, int flags) { return pvc_bind(sock, sockaddr, sockaddr_len); } static int pvc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; int error; lock_sock(sk); error = vcc_setsockopt(sock, level, optname, optval, optlen); release_sock(sk); return error; } static int pvc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; int error; lock_sock(sk); error = vcc_getsockopt(sock, level, optname, optval, optlen); release_sock(sk); return error; } static int pvc_getname(struct socket *sock, struct sockaddr *sockaddr, int peer) { struct sockaddr_atmpvc *addr; struct atm_vcc *vcc = ATM_SD(sock); if (!vcc->dev || !test_bit(ATM_VF_ADDR, &vcc->flags)) return -ENOTCONN; addr = (struct sockaddr_atmpvc *)sockaddr; memset(addr, 0, sizeof(*addr)); addr->sap_family = AF_ATMPVC; addr->sap_addr.itf = vcc->dev->number; addr->sap_addr.vpi = vcc->vpi; addr->sap_addr.vci = vcc->vci; return sizeof(struct sockaddr_atmpvc); } static const struct proto_ops pvc_proto_ops = { .family = PF_ATMPVC, .owner = THIS_MODULE, .release = vcc_release, .bind = pvc_bind, .connect = pvc_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = pvc_getname, .poll = vcc_poll, .ioctl = vcc_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = vcc_compat_ioctl, #endif .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = pvc_shutdown, .setsockopt = pvc_setsockopt, .getsockopt = pvc_getsockopt, .sendmsg = vcc_sendmsg, .recvmsg = vcc_recvmsg, .mmap = sock_no_mmap, }; static int pvc_create(struct net *net, struct socket *sock, int protocol, int kern) { if (net != &init_net) return -EAFNOSUPPORT; sock->ops = &pvc_proto_ops; return vcc_create(net, sock, protocol, PF_ATMPVC, kern); } static const struct net_proto_family pvc_family_ops = { .family = PF_ATMPVC, .create = pvc_create, .owner = THIS_MODULE, }; /* * Initialize the ATM PVC protocol family */ int __init atmpvc_init(void) { return sock_register(&pvc_family_ops); } void atmpvc_exit(void) { sock_unregister(PF_ATMPVC); }
22 21 21 22 22 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 // SPDX-License-Identifier: GPL-2.0-only /* * virtio transport for vsock * * Copyright (C) 2013-2015 Red Hat, Inc. * Author: Asias He <asias@redhat.com> * Stefan Hajnoczi <stefanha@redhat.com> * * Some of the code is take from Gerd Hoffmann <kraxel@redhat.com>'s * early virtio-vsock proof-of-concept bits. */ #include <linux/spinlock.h> #include <linux/module.h> #include <linux/list.h> #include <linux/atomic.h> #include <linux/virtio.h> #include <linux/virtio_ids.h> #include <linux/virtio_config.h> #include <linux/virtio_vsock.h> #include <net/sock.h> #include <linux/mutex.h> #include <net/af_vsock.h> static struct workqueue_struct *virtio_vsock_workqueue; static struct virtio_vsock __rcu *the_virtio_vsock; static DEFINE_MUTEX(the_virtio_vsock_mutex); /* protects the_virtio_vsock */ static struct virtio_transport virtio_transport; /* forward declaration */ struct virtio_vsock { struct virtio_device *vdev; struct virtqueue *vqs[VSOCK_VQ_MAX]; /* Virtqueue processing is deferred to a workqueue */ struct work_struct tx_work; struct work_struct rx_work; struct work_struct event_work; /* The following fields are protected by tx_lock. vqs[VSOCK_VQ_TX] * must be accessed with tx_lock held. */ struct mutex tx_lock; bool tx_run; struct work_struct send_pkt_work; struct sk_buff_head send_pkt_queue; atomic_t queued_replies; /* The following fields are protected by rx_lock. vqs[VSOCK_VQ_RX] * must be accessed with rx_lock held. */ struct mutex rx_lock; bool rx_run; int rx_buf_nr; int rx_buf_max_nr; /* The following fields are protected by event_lock. * vqs[VSOCK_VQ_EVENT] must be accessed with event_lock held. */ struct mutex event_lock; bool event_run; struct virtio_vsock_event event_list[8]; u32 guest_cid; bool seqpacket_allow; /* These fields are used only in tx path in function * 'virtio_transport_send_pkt_work()', so to save * stack space in it, place both of them here. Each * pointer from 'out_sgs' points to the corresponding * element in 'out_bufs' - this is initialized in * 'virtio_vsock_probe()'. Both fields are protected * by 'tx_lock'. +1 is needed for packet header. */ struct scatterlist *out_sgs[MAX_SKB_FRAGS + 1]; struct scatterlist out_bufs[MAX_SKB_FRAGS + 1]; }; static u32 virtio_transport_get_local_cid(void) { struct virtio_vsock *vsock; u32 ret; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (!vsock) { ret = VMADDR_CID_ANY; goto out_rcu; } ret = vsock->guest_cid; out_rcu: rcu_read_unlock(); return ret; } /* Caller need to hold vsock->tx_lock on vq */ static int virtio_transport_send_skb(struct sk_buff *skb, struct virtqueue *vq, struct virtio_vsock *vsock, gfp_t gfp) { int ret, in_sg = 0, out_sg = 0; struct scatterlist **sgs; sgs = vsock->out_sgs; sg_init_one(sgs[out_sg], virtio_vsock_hdr(skb), sizeof(*virtio_vsock_hdr(skb))); out_sg++; if (!skb_is_nonlinear(skb)) { if (skb->len > 0) { sg_init_one(sgs[out_sg], skb->data, skb->len); out_sg++; } } else { struct skb_shared_info *si; int i; /* If skb is nonlinear, then its buffer must contain * only header and nothing more. Data is stored in * the fragged part. */ WARN_ON_ONCE(skb_headroom(skb) != sizeof(*virtio_vsock_hdr(skb))); si = skb_shinfo(skb); for (i = 0; i < si->nr_frags; i++) { skb_frag_t *skb_frag = &si->frags[i]; void *va; /* We will use 'page_to_virt()' for the userspace page * here, because virtio or dma-mapping layers will call * 'virt_to_phys()' later to fill the buffer descriptor. * We don't touch memory at "virtual" address of this page. */ va = page_to_virt(skb_frag_page(skb_frag)); sg_init_one(sgs[out_sg], va + skb_frag_off(skb_frag), skb_frag_size(skb_frag)); out_sg++; } } ret = virtqueue_add_sgs(vq, sgs, out_sg, in_sg, skb, gfp); /* Usually this means that there is no more space available in * the vq */ if (ret < 0) return ret; virtio_transport_deliver_tap_pkt(skb); return 0; } static void virtio_transport_send_pkt_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, send_pkt_work); struct virtqueue *vq; bool added = false; bool restart_rx = false; mutex_lock(&vsock->tx_lock); if (!vsock->tx_run) goto out; vq = vsock->vqs[VSOCK_VQ_TX]; for (;;) { struct sk_buff *skb; bool reply; int ret; skb = virtio_vsock_skb_dequeue(&vsock->send_pkt_queue); if (!skb) break; reply = virtio_vsock_skb_reply(skb); ret = virtio_transport_send_skb(skb, vq, vsock, GFP_KERNEL); if (ret < 0) { virtio_vsock_skb_queue_head(&vsock->send_pkt_queue, skb); break; } if (reply) { struct virtqueue *rx_vq = vsock->vqs[VSOCK_VQ_RX]; int val; val = atomic_dec_return(&vsock->queued_replies); /* Do we now have resources to resume rx processing? */ if (val + 1 == virtqueue_get_vring_size(rx_vq)) restart_rx = true; } added = true; } if (added) virtqueue_kick(vq); out: mutex_unlock(&vsock->tx_lock); if (restart_rx) queue_work(virtio_vsock_workqueue, &vsock->rx_work); } /* Caller need to hold RCU for vsock. * Returns 0 if the packet is successfully put on the vq. */ static int virtio_transport_send_skb_fast_path(struct virtio_vsock *vsock, struct sk_buff *skb) { struct virtqueue *vq = vsock->vqs[VSOCK_VQ_TX]; int ret; /* Inside RCU, can't sleep! */ ret = mutex_trylock(&vsock->tx_lock); if (unlikely(ret == 0)) return -EBUSY; ret = virtio_transport_send_skb(skb, vq, vsock, GFP_ATOMIC); if (ret == 0) virtqueue_kick(vq); mutex_unlock(&vsock->tx_lock); return ret; } static int virtio_transport_send_pkt(struct sk_buff *skb) { struct virtio_vsock_hdr *hdr; struct virtio_vsock *vsock; int len = skb->len; hdr = virtio_vsock_hdr(skb); rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (!vsock) { kfree_skb(skb); len = -ENODEV; goto out_rcu; } if (le64_to_cpu(hdr->dst_cid) == vsock->guest_cid) { kfree_skb(skb); len = -ENODEV; goto out_rcu; } /* If send_pkt_queue is empty, we can safely bypass this queue * because packet order is maintained and (try) to put the packet * on the virtqueue using virtio_transport_send_skb_fast_path. * If this fails we simply put the packet on the intermediate * queue and schedule the worker. */ if (!skb_queue_empty_lockless(&vsock->send_pkt_queue) || virtio_transport_send_skb_fast_path(vsock, skb)) { if (virtio_vsock_skb_reply(skb)) atomic_inc(&vsock->queued_replies); virtio_vsock_skb_queue_tail(&vsock->send_pkt_queue, skb); queue_work(virtio_vsock_workqueue, &vsock->send_pkt_work); } out_rcu: rcu_read_unlock(); return len; } static int virtio_transport_cancel_pkt(struct vsock_sock *vsk) { struct virtio_vsock *vsock; int cnt = 0, ret; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (!vsock) { ret = -ENODEV; goto out_rcu; } cnt = virtio_transport_purge_skbs(vsk, &vsock->send_pkt_queue); if (cnt) { struct virtqueue *rx_vq = vsock->vqs[VSOCK_VQ_RX]; int new_cnt; new_cnt = atomic_sub_return(cnt, &vsock->queued_replies); if (new_cnt + cnt >= virtqueue_get_vring_size(rx_vq) && new_cnt < virtqueue_get_vring_size(rx_vq)) queue_work(virtio_vsock_workqueue, &vsock->rx_work); } ret = 0; out_rcu: rcu_read_unlock(); return ret; } static void virtio_vsock_rx_fill(struct virtio_vsock *vsock) { int total_len = VIRTIO_VSOCK_DEFAULT_RX_BUF_SIZE; struct scatterlist pkt, *p; struct virtqueue *vq; struct sk_buff *skb; int ret; vq = vsock->vqs[VSOCK_VQ_RX]; do { skb = virtio_vsock_alloc_linear_skb(total_len, GFP_KERNEL); if (!skb) break; memset(skb->head, 0, VIRTIO_VSOCK_SKB_HEADROOM); sg_init_one(&pkt, virtio_vsock_hdr(skb), total_len); p = &pkt; ret = virtqueue_add_sgs(vq, &p, 0, 1, skb, GFP_KERNEL); if (ret < 0) { kfree_skb(skb); break; } vsock->rx_buf_nr++; } while (vq->num_free); if (vsock->rx_buf_nr > vsock->rx_buf_max_nr) vsock->rx_buf_max_nr = vsock->rx_buf_nr; virtqueue_kick(vq); } static void virtio_transport_tx_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, tx_work); struct virtqueue *vq; bool added = false; vq = vsock->vqs[VSOCK_VQ_TX]; mutex_lock(&vsock->tx_lock); if (!vsock->tx_run) goto out; do { struct sk_buff *skb; unsigned int len; virtqueue_disable_cb(vq); while ((skb = virtqueue_get_buf(vq, &len)) != NULL) { virtio_transport_consume_skb_sent(skb, true); added = true; } } while (!virtqueue_enable_cb(vq)); out: mutex_unlock(&vsock->tx_lock); if (added) queue_work(virtio_vsock_workqueue, &vsock->send_pkt_work); } /* Is there space left for replies to rx packets? */ static bool virtio_transport_more_replies(struct virtio_vsock *vsock) { struct virtqueue *vq = vsock->vqs[VSOCK_VQ_RX]; int val; smp_rmb(); /* paired with atomic_inc() and atomic_dec_return() */ val = atomic_read(&vsock->queued_replies); return val < virtqueue_get_vring_size(vq); } /* event_lock must be held */ static int virtio_vsock_event_fill_one(struct virtio_vsock *vsock, struct virtio_vsock_event *event) { struct scatterlist sg; struct virtqueue *vq; vq = vsock->vqs[VSOCK_VQ_EVENT]; sg_init_one(&sg, event, sizeof(*event)); return virtqueue_add_inbuf(vq, &sg, 1, event, GFP_KERNEL); } /* event_lock must be held */ static void virtio_vsock_event_fill(struct virtio_vsock *vsock) { size_t i; for (i = 0; i < ARRAY_SIZE(vsock->event_list); i++) { struct virtio_vsock_event *event = &vsock->event_list[i]; virtio_vsock_event_fill_one(vsock, event); } virtqueue_kick(vsock->vqs[VSOCK_VQ_EVENT]); } static void virtio_vsock_reset_sock(struct sock *sk) { /* vmci_transport.c doesn't take sk_lock here either. At least we're * under vsock_table_lock so the sock cannot disappear while we're * executing. */ sk->sk_state = TCP_CLOSE; sk->sk_err = ECONNRESET; sk_error_report(sk); } static void virtio_vsock_update_guest_cid(struct virtio_vsock *vsock) { struct virtio_device *vdev = vsock->vdev; __le64 guest_cid; vdev->config->get(vdev, offsetof(struct virtio_vsock_config, guest_cid), &guest_cid, sizeof(guest_cid)); vsock->guest_cid = le64_to_cpu(guest_cid); } /* event_lock must be held */ static void virtio_vsock_event_handle(struct virtio_vsock *vsock, struct virtio_vsock_event *event) { switch (le32_to_cpu(event->id)) { case VIRTIO_VSOCK_EVENT_TRANSPORT_RESET: virtio_vsock_update_guest_cid(vsock); vsock_for_each_connected_socket(&virtio_transport.transport, virtio_vsock_reset_sock); break; } } static void virtio_transport_event_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, event_work); struct virtqueue *vq; vq = vsock->vqs[VSOCK_VQ_EVENT]; mutex_lock(&vsock->event_lock); if (!vsock->event_run) goto out; do { struct virtio_vsock_event *event; unsigned int len; virtqueue_disable_cb(vq); while ((event = virtqueue_get_buf(vq, &len)) != NULL) { if (len == sizeof(*event)) virtio_vsock_event_handle(vsock, event); virtio_vsock_event_fill_one(vsock, event); } } while (!virtqueue_enable_cb(vq)); virtqueue_kick(vsock->vqs[VSOCK_VQ_EVENT]); out: mutex_unlock(&vsock->event_lock); } static void virtio_vsock_event_done(struct virtqueue *vq) { struct virtio_vsock *vsock = vq->vdev->priv; if (!vsock) return; queue_work(virtio_vsock_workqueue, &vsock->event_work); } static void virtio_vsock_tx_done(struct virtqueue *vq) { struct virtio_vsock *vsock = vq->vdev->priv; if (!vsock) return; queue_work(virtio_vsock_workqueue, &vsock->tx_work); } static void virtio_vsock_rx_done(struct virtqueue *vq) { struct virtio_vsock *vsock = vq->vdev->priv; if (!vsock) return; queue_work(virtio_vsock_workqueue, &vsock->rx_work); } static bool virtio_transport_can_msgzerocopy(int bufs_num) { struct virtio_vsock *vsock; bool res = false; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (vsock) { struct virtqueue *vq = vsock->vqs[VSOCK_VQ_TX]; /* Check that tx queue is large enough to keep whole * data to send. This is needed, because when there is * not enough free space in the queue, current skb to * send will be reinserted to the head of tx list of * the socket to retry transmission later, so if skb * is bigger than whole queue, it will be reinserted * again and again, thus blocking other skbs to be sent. * Each page of the user provided buffer will be added * as a single buffer to the tx virtqueue, so compare * number of pages against maximum capacity of the queue. */ if (bufs_num <= vq->num_max) res = true; } rcu_read_unlock(); return res; } static bool virtio_transport_msgzerocopy_allow(void) { return true; } static bool virtio_transport_seqpacket_allow(u32 remote_cid); static struct virtio_transport virtio_transport = { .transport = { .module = THIS_MODULE, .get_local_cid = virtio_transport_get_local_cid, .init = virtio_transport_do_socket_init, .destruct = virtio_transport_destruct, .release = virtio_transport_release, .connect = virtio_transport_connect, .shutdown = virtio_transport_shutdown, .cancel_pkt = virtio_transport_cancel_pkt, .dgram_bind = virtio_transport_dgram_bind, .dgram_dequeue = virtio_transport_dgram_dequeue, .dgram_enqueue = virtio_transport_dgram_enqueue, .dgram_allow = virtio_transport_dgram_allow, .stream_dequeue = virtio_transport_stream_dequeue, .stream_enqueue = virtio_transport_stream_enqueue, .stream_has_data = virtio_transport_stream_has_data, .stream_has_space = virtio_transport_stream_has_space, .stream_rcvhiwat = virtio_transport_stream_rcvhiwat, .stream_is_active = virtio_transport_stream_is_active, .stream_allow = virtio_transport_stream_allow, .seqpacket_dequeue = virtio_transport_seqpacket_dequeue, .seqpacket_enqueue = virtio_transport_seqpacket_enqueue, .seqpacket_allow = virtio_transport_seqpacket_allow, .seqpacket_has_data = virtio_transport_seqpacket_has_data, .msgzerocopy_allow = virtio_transport_msgzerocopy_allow, .notify_poll_in = virtio_transport_notify_poll_in, .notify_poll_out = virtio_transport_notify_poll_out, .notify_recv_init = virtio_transport_notify_recv_init, .notify_recv_pre_block = virtio_transport_notify_recv_pre_block, .notify_recv_pre_dequeue = virtio_transport_notify_recv_pre_dequeue, .notify_recv_post_dequeue = virtio_transport_notify_recv_post_dequeue, .notify_send_init = virtio_transport_notify_send_init, .notify_send_pre_block = virtio_transport_notify_send_pre_block, .notify_send_pre_enqueue = virtio_transport_notify_send_pre_enqueue, .notify_send_post_enqueue = virtio_transport_notify_send_post_enqueue, .notify_buffer_size = virtio_transport_notify_buffer_size, .notify_set_rcvlowat = virtio_transport_notify_set_rcvlowat, .unsent_bytes = virtio_transport_unsent_bytes, .read_skb = virtio_transport_read_skb, }, .send_pkt = virtio_transport_send_pkt, .can_msgzerocopy = virtio_transport_can_msgzerocopy, }; static bool virtio_transport_seqpacket_allow(u32 remote_cid) { struct virtio_vsock *vsock; bool seqpacket_allow; seqpacket_allow = false; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (vsock) seqpacket_allow = vsock->seqpacket_allow; rcu_read_unlock(); return seqpacket_allow; } static void virtio_transport_rx_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, rx_work); struct virtqueue *vq; vq = vsock->vqs[VSOCK_VQ_RX]; mutex_lock(&vsock->rx_lock); if (!vsock->rx_run) goto out; do { virtqueue_disable_cb(vq); for (;;) { unsigned int len, payload_len; struct virtio_vsock_hdr *hdr; struct sk_buff *skb; if (!virtio_transport_more_replies(vsock)) { /* Stop rx until the device processes already * pending replies. Leave rx virtqueue * callbacks disabled. */ goto out; } skb = virtqueue_get_buf(vq, &len); if (!skb) break; vsock->rx_buf_nr--; /* Drop short/long packets */ if (unlikely(len < sizeof(*hdr) || len > virtio_vsock_skb_len(skb))) { kfree_skb(skb); continue; } hdr = virtio_vsock_hdr(skb); payload_len = le32_to_cpu(hdr->len); if (unlikely(payload_len > len - sizeof(*hdr))) { kfree_skb(skb); continue; } if (payload_len) virtio_vsock_skb_put(skb, payload_len); virtio_transport_deliver_tap_pkt(skb); virtio_transport_recv_pkt(&virtio_transport, skb); } } while (!virtqueue_enable_cb(vq)); out: if (vsock->rx_buf_nr < vsock->rx_buf_max_nr / 2) virtio_vsock_rx_fill(vsock); mutex_unlock(&vsock->rx_lock); } static int virtio_vsock_vqs_init(struct virtio_vsock *vsock) { struct virtio_device *vdev = vsock->vdev; struct virtqueue_info vqs_info[] = { { "rx", virtio_vsock_rx_done }, { "tx", virtio_vsock_tx_done }, { "event", virtio_vsock_event_done }, }; int ret; mutex_lock(&vsock->rx_lock); vsock->rx_buf_nr = 0; vsock->rx_buf_max_nr = 0; mutex_unlock(&vsock->rx_lock); atomic_set(&vsock->queued_replies, 0); ret = virtio_find_vqs(vdev, VSOCK_VQ_MAX, vsock->vqs, vqs_info, NULL); if (ret < 0) return ret; virtio_vsock_update_guest_cid(vsock); virtio_device_ready(vdev); return 0; } static void virtio_vsock_vqs_start(struct virtio_vsock *vsock) { mutex_lock(&vsock->tx_lock); vsock->tx_run = true; mutex_unlock(&vsock->tx_lock); mutex_lock(&vsock->rx_lock); virtio_vsock_rx_fill(vsock); vsock->rx_run = true; mutex_unlock(&vsock->rx_lock); mutex_lock(&vsock->event_lock); virtio_vsock_event_fill(vsock); vsock->event_run = true; mutex_unlock(&vsock->event_lock); /* virtio_transport_send_pkt() can queue packets once * the_virtio_vsock is set, but they won't be processed until * vsock->tx_run is set to true. We queue vsock->send_pkt_work * when initialization finishes to send those packets queued * earlier. * We don't need to queue the other workers (rx, event) because * as long as we don't fill the queues with empty buffers, the * host can't send us any notification. */ queue_work(virtio_vsock_workqueue, &vsock->send_pkt_work); } static void virtio_vsock_vqs_del(struct virtio_vsock *vsock) { struct virtio_device *vdev = vsock->vdev; struct sk_buff *skb; /* Reset all connected sockets when the VQs disappear */ vsock_for_each_connected_socket(&virtio_transport.transport, virtio_vsock_reset_sock); /* Stop all work handlers to make sure no one is accessing the device, * so we can safely call virtio_reset_device(). */ mutex_lock(&vsock->rx_lock); vsock->rx_run = false; mutex_unlock(&vsock->rx_lock); mutex_lock(&vsock->tx_lock); vsock->tx_run = false; mutex_unlock(&vsock->tx_lock); mutex_lock(&vsock->event_lock); vsock->event_run = false; mutex_unlock(&vsock->event_lock); /* Flush all device writes and interrupts, device will not use any * more buffers. */ virtio_reset_device(vdev); mutex_lock(&vsock->rx_lock); while ((skb = virtqueue_detach_unused_buf(vsock->vqs[VSOCK_VQ_RX]))) kfree_skb(skb); mutex_unlock(&vsock->rx_lock); mutex_lock(&vsock->tx_lock); while ((skb = virtqueue_detach_unused_buf(vsock->vqs[VSOCK_VQ_TX]))) kfree_skb(skb); mutex_unlock(&vsock->tx_lock); virtio_vsock_skb_queue_purge(&vsock->send_pkt_queue); /* Delete virtqueues and flush outstanding callbacks if any */ vdev->config->del_vqs(vdev); } static int virtio_vsock_probe(struct virtio_device *vdev) { struct virtio_vsock *vsock = NULL; int ret; int i; ret = mutex_lock_interruptible(&the_virtio_vsock_mutex); if (ret) return ret; /* Only one virtio-vsock device per guest is supported */ if (rcu_dereference_protected(the_virtio_vsock, lockdep_is_held(&the_virtio_vsock_mutex))) { ret = -EBUSY; goto out; } vsock = kzalloc(sizeof(*vsock), GFP_KERNEL); if (!vsock) { ret = -ENOMEM; goto out; } vsock->vdev = vdev; mutex_init(&vsock->tx_lock); mutex_init(&vsock->rx_lock); mutex_init(&vsock->event_lock); skb_queue_head_init(&vsock->send_pkt_queue); INIT_WORK(&vsock->rx_work, virtio_transport_rx_work); INIT_WORK(&vsock->tx_work, virtio_transport_tx_work); INIT_WORK(&vsock->event_work, virtio_transport_event_work); INIT_WORK(&vsock->send_pkt_work, virtio_transport_send_pkt_work); if (virtio_has_feature(vdev, VIRTIO_VSOCK_F_SEQPACKET)) vsock->seqpacket_allow = true; vdev->priv = vsock; ret = virtio_vsock_vqs_init(vsock); if (ret < 0) goto out; for (i = 0; i < ARRAY_SIZE(vsock->out_sgs); i++) vsock->out_sgs[i] = &vsock->out_bufs[i]; rcu_assign_pointer(the_virtio_vsock, vsock); virtio_vsock_vqs_start(vsock); mutex_unlock(&the_virtio_vsock_mutex); return 0; out: kfree(vsock); mutex_unlock(&the_virtio_vsock_mutex); return ret; } static void virtio_vsock_remove(struct virtio_device *vdev) { struct virtio_vsock *vsock = vdev->priv; mutex_lock(&the_virtio_vsock_mutex); vdev->priv = NULL; rcu_assign_pointer(the_virtio_vsock, NULL); synchronize_rcu(); virtio_vsock_vqs_del(vsock); /* Other works can be queued before 'config->del_vqs()', so we flush * all works before to free the vsock object to avoid use after free. */ flush_work(&vsock->rx_work); flush_work(&vsock->tx_work); flush_work(&vsock->event_work); flush_work(&vsock->send_pkt_work); mutex_unlock(&the_virtio_vsock_mutex); kfree(vsock); } #ifdef CONFIG_PM_SLEEP static int virtio_vsock_freeze(struct virtio_device *vdev) { struct virtio_vsock *vsock = vdev->priv; mutex_lock(&the_virtio_vsock_mutex); rcu_assign_pointer(the_virtio_vsock, NULL); synchronize_rcu(); virtio_vsock_vqs_del(vsock); mutex_unlock(&the_virtio_vsock_mutex); return 0; } static int virtio_vsock_restore(struct virtio_device *vdev) { struct virtio_vsock *vsock = vdev->priv; int ret; mutex_lock(&the_virtio_vsock_mutex); /* Only one virtio-vsock device per guest is supported */ if (rcu_dereference_protected(the_virtio_vsock, lockdep_is_held(&the_virtio_vsock_mutex))) { ret = -EBUSY; goto out; } ret = virtio_vsock_vqs_init(vsock); if (ret < 0) goto out; rcu_assign_pointer(the_virtio_vsock, vsock); virtio_vsock_vqs_start(vsock); out: mutex_unlock(&the_virtio_vsock_mutex); return ret; } #endif /* CONFIG_PM_SLEEP */ static struct virtio_device_id id_table[] = { { VIRTIO_ID_VSOCK, VIRTIO_DEV_ANY_ID }, { 0 }, }; static unsigned int features[] = { VIRTIO_VSOCK_F_SEQPACKET }; static struct virtio_driver virtio_vsock_driver = { .feature_table = features, .feature_table_size = ARRAY_SIZE(features), .driver.name = KBUILD_MODNAME, .id_table = id_table, .probe = virtio_vsock_probe, .remove = virtio_vsock_remove, #ifdef CONFIG_PM_SLEEP .freeze = virtio_vsock_freeze, .restore = virtio_vsock_restore, #endif }; static int __init virtio_vsock_init(void) { int ret; virtio_vsock_workqueue = alloc_workqueue("virtio_vsock", 0, 0); if (!virtio_vsock_workqueue) return -ENOMEM; ret = vsock_core_register(&virtio_transport.transport, VSOCK_TRANSPORT_F_G2H); if (ret) goto out_wq; ret = register_virtio_driver(&virtio_vsock_driver); if (ret) goto out_vci; return 0; out_vci: vsock_core_unregister(&virtio_transport.transport); out_wq: destroy_workqueue(virtio_vsock_workqueue); return ret; } static void __exit virtio_vsock_exit(void) { unregister_virtio_driver(&virtio_vsock_driver); vsock_core_unregister(&virtio_transport.transport); destroy_workqueue(virtio_vsock_workqueue); } module_init(virtio_vsock_init); module_exit(virtio_vsock_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Asias He"); MODULE_DESCRIPTION("virtio transport for vsock"); MODULE_DEVICE_TABLE(virtio, id_table);
113 10 114 112 10 10 10 86 88 88 15 14 15 13 10 10 10 10 97 98 15 6 10 5 10 1 1 13 1 11 3 5 9 8 6 11 3 70 1 71 9 2 25 3 2 1 1 1 2 1 1 2 1 1 2 1 1 10 1 7 6 1 2 1 1 5 1 1 3 1 4 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 // SPDX-License-Identifier: GPL-2.0-only /* * vivid-vid-common.c - common video support functions. * * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/videodev2.h> #include <linux/v4l2-dv-timings.h> #include <media/v4l2-common.h> #include <media/v4l2-event.h> #include <media/v4l2-dv-timings.h> #include "vivid-core.h" #include "vivid-vid-common.h" const struct v4l2_dv_timings_cap vivid_dv_timings_cap = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(16, MAX_WIDTH, 16, MAX_HEIGHT, 14000000, 775000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_CVT | V4L2_DV_BT_STD_GTF, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_INTERLACED) }; /* ------------------------------------------------------------------ Basic structures ------------------------------------------------------------------*/ struct vivid_fmt vivid_formats[] = { { .fourcc = V4L2_PIX_FMT_YUYV, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 1, .buffers = 1, .data_offset = { PLANE0_DATA_OFFSET }, }, { .fourcc = V4L2_PIX_FMT_UYVY, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YVYU, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_VYUY, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YUV422P, .vdownsampling = { 1, 1, 1 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YUV420, .vdownsampling = { 1, 2, 2 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YVU420, .vdownsampling = { 1, 2, 2 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_NV12, .vdownsampling = { 1, 2 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_NV21, .vdownsampling = { 1, 2 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_NV16, .vdownsampling = { 1, 1 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_NV61, .vdownsampling = { 1, 1 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_NV24, .vdownsampling = { 1, 1 }, .bit_depth = { 8, 16 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_NV42, .vdownsampling = { 1, 1 }, .bit_depth = { 8, 16 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YUV555, /* uuuvvvvv ayyyyyuu */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0x8000, }, { .fourcc = V4L2_PIX_FMT_YUV565, /* uuuvvvvv yyyyyuuu */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YUV444, /* uuuuvvvv aaaayyyy */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0xf000, }, { .fourcc = V4L2_PIX_FMT_YUV32, /* ayuv */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0x000000ff, }, { .fourcc = V4L2_PIX_FMT_AYUV32, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0x000000ff, }, { .fourcc = V4L2_PIX_FMT_XYUV32, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_VUYA32, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0xff000000, }, { .fourcc = V4L2_PIX_FMT_VUYX32, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_YUVA32, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0xff000000, }, { .fourcc = V4L2_PIX_FMT_YUVX32, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_GREY, .vdownsampling = { 1 }, .bit_depth = { 8 }, .color_enc = TGP_COLOR_ENC_LUMA, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_Y10, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_LUMA, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_Y12, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_LUMA, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_Y16, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_LUMA, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_Y16_BE, .vdownsampling = { 1 }, .bit_depth = { 16 }, .color_enc = TGP_COLOR_ENC_LUMA, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_RGB332, /* rrrgggbb */ .vdownsampling = { 1 }, .bit_depth = { 8 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_RGB444, /* ggggbbbb xxxxrrrr */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_XRGB444, /* ggggbbbb xxxxrrrr */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_ARGB444, /* ggggbbbb aaaarrrr */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0x00f0, }, { .fourcc = V4L2_PIX_FMT_RGBX444, /* bbbbxxxx rrrrgggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_RGBA444, /* bbbbaaaa rrrrgggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0x00f0, }, { .fourcc = V4L2_PIX_FMT_XBGR444, /* ggggrrrr xxxxbbbb */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_ABGR444, /* ggggrrrr aaaabbbb */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0x00f0, }, { .fourcc = V4L2_PIX_FMT_BGRX444, /* rrrrxxxx bbbbgggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_BGRA444, /* rrrraaaa bbbbgggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0x00f0, }, { .fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb xrrrrrgg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_XRGB555, /* gggbbbbb xrrrrrgg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_ARGB555, /* gggbbbbb arrrrrgg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, .alpha_mask = 0x8000, }, { .fourcc = V4L2_PIX_FMT_RGBX555, /* ggbbbbbx rrrrrggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_RGBA555, /* ggbbbbba rrrrrggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, .alpha_mask = 0x8000, }, { .fourcc = V4L2_PIX_FMT_XBGR555, /* gggrrrrr xbbbbbgg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_ABGR555, /* gggrrrrr abbbbbgg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, .alpha_mask = 0x8000, }, { .fourcc = V4L2_PIX_FMT_BGRX555, /* ggrrrrrx bbbbbggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, }, { .fourcc = V4L2_PIX_FMT_BGRA555, /* ggrrrrra bbbbbggg */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .can_do_overlay = true, .alpha_mask = 0x8000, }, { .fourcc = V4L2_PIX_FMT_RGB555X, /* xrrrrrgg gggbbbbb */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_XRGB555X, /* xrrrrrgg gggbbbbb */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_ARGB555X, /* arrrrrgg gggbbbbb */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, .alpha_mask = 0x0080, }, { .fourcc = V4L2_PIX_FMT_RGB24, /* rgb */ .vdownsampling = { 1 }, .bit_depth = { 24 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_BGR24, /* bgr */ .vdownsampling = { 1 }, .bit_depth = { 24 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_BGR666, /* bbbbbbgg ggggrrrr rrxxxxxx */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_RGB32, /* xrgb */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_BGR32, /* bgrx */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_XRGB32, /* xrgb */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_XBGR32, /* bgrx */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_ARGB32, /* argb */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0x000000ff, }, { .fourcc = V4L2_PIX_FMT_ABGR32, /* bgra */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0xff000000, }, { .fourcc = V4L2_PIX_FMT_RGBX32, /* rgbx */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_BGRX32, /* xbgr */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_RGBA32, /* rgba */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0x000000ff, }, { .fourcc = V4L2_PIX_FMT_BGRA32, /* abgr */ .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, .alpha_mask = 0xff000000, }, { .fourcc = V4L2_PIX_FMT_SBGGR8, /* Bayer BG/GR */ .vdownsampling = { 1 }, .bit_depth = { 8 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, /* Bayer GB/RG */ .vdownsampling = { 1 }, .bit_depth = { 8 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, /* Bayer GR/BG */ .vdownsampling = { 1 }, .bit_depth = { 8 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, /* Bayer RG/GB */ .vdownsampling = { 1 }, .bit_depth = { 8 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SBGGR10, /* Bayer BG/GR */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGBRG10, /* Bayer GB/RG */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGRBG10, /* Bayer GR/BG */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SRGGB10, /* Bayer RG/GB */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SBGGR12, /* Bayer BG/GR */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGBRG12, /* Bayer GB/RG */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGRBG12, /* Bayer GR/BG */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SRGGB12, /* Bayer RG/GB */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SBGGR16, /* Bayer BG/GR */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGBRG16, /* Bayer GB/RG */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SGRBG16, /* Bayer GR/BG */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_SRGGB16, /* Bayer RG/GB */ .vdownsampling = { 1 }, .bit_depth = { 16 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_HSV24, /* HSV 24bits */ .color_enc = TGP_COLOR_ENC_HSV, .vdownsampling = { 1 }, .bit_depth = { 24 }, .planes = 1, .buffers = 1, }, { .fourcc = V4L2_PIX_FMT_HSV32, /* HSV 32bits */ .color_enc = TGP_COLOR_ENC_HSV, .vdownsampling = { 1 }, .bit_depth = { 32 }, .planes = 1, .buffers = 1, }, /* Multiplanar formats */ { .fourcc = V4L2_PIX_FMT_NV16M, .vdownsampling = { 1, 1 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 2, .data_offset = { PLANE0_DATA_OFFSET, 0 }, }, { .fourcc = V4L2_PIX_FMT_NV61M, .vdownsampling = { 1, 1 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 2, .data_offset = { 0, PLANE0_DATA_OFFSET }, }, { .fourcc = V4L2_PIX_FMT_YUV420M, .vdownsampling = { 1, 2, 2 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 3, }, { .fourcc = V4L2_PIX_FMT_YVU420M, .vdownsampling = { 1, 2, 2 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 3, }, { .fourcc = V4L2_PIX_FMT_NV12M, .vdownsampling = { 1, 2 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 2, }, { .fourcc = V4L2_PIX_FMT_NV21M, .vdownsampling = { 1, 2 }, .bit_depth = { 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 2, .buffers = 2, }, { .fourcc = V4L2_PIX_FMT_YUV422M, .vdownsampling = { 1, 1, 1 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 3, }, { .fourcc = V4L2_PIX_FMT_YVU422M, .vdownsampling = { 1, 1, 1 }, .bit_depth = { 8, 4, 4 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 3, }, { .fourcc = V4L2_PIX_FMT_YUV444M, .vdownsampling = { 1, 1, 1 }, .bit_depth = { 8, 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 3, }, { .fourcc = V4L2_PIX_FMT_YVU444M, .vdownsampling = { 1, 1, 1 }, .bit_depth = { 8, 8, 8 }, .color_enc = TGP_COLOR_ENC_YCBCR, .planes = 3, .buffers = 3, }, }; /* There are this many multiplanar formats in the list */ #define VIVID_MPLANAR_FORMATS 10 const struct vivid_fmt *vivid_get_format(struct vivid_dev *dev, u32 pixelformat) { const struct vivid_fmt *fmt; unsigned k; for (k = 0; k < ARRAY_SIZE(vivid_formats); k++) { fmt = &vivid_formats[k]; if (fmt->fourcc == pixelformat) if (fmt->buffers == 1 || dev->multiplanar) return fmt; } return NULL; } struct vivid_dev *vivid_output_is_connected_to(struct vivid_dev *dev) { struct vivid_dev *input_inst = dev->output_to_input_instance[dev->output]; if (!input_inst) return NULL; if (input_inst->input != dev->output_to_input_index[dev->output]) return NULL; return input_inst; } struct vivid_dev *vivid_input_is_connected_to(struct vivid_dev *dev) { s32 connected_output = dev->input_is_connected_to_output[dev->input]; if (connected_output < FIXED_MENU_ITEMS) return NULL; struct vivid_dev *output_inst = NULL; if (vivid_is_hdmi_cap(dev)) { output_inst = vivid_ctrl_hdmi_to_output_instance[connected_output]; if (vivid_ctrl_hdmi_to_output_index[connected_output] != output_inst->output) return NULL; return output_inst; } else if (vivid_is_svid_cap(dev)) { output_inst = vivid_ctrl_svid_to_output_instance[connected_output]; if (vivid_ctrl_svid_to_output_index[connected_output] != output_inst->output) return NULL; return output_inst; } else { return NULL; } return output_inst; } bool vivid_vid_can_loop(struct vivid_dev *dev) { struct vivid_dev *output_inst = vivid_input_is_connected_to(dev); if (!output_inst) return false; if (!vb2_is_streaming(&output_inst->vb_vid_out_q)) return false; if (dev->src_rect.width != output_inst->sink_rect.width || dev->src_rect.height != output_inst->sink_rect.height) return false; if (dev->fmt_cap->fourcc != output_inst->fmt_out->fourcc) return false; if (dev->field_cap != output_inst->field_out) return false; /* * While this can be supported, it is just too much work * to actually implement. */ if (dev->field_cap == V4L2_FIELD_SEQ_TB || dev->field_cap == V4L2_FIELD_SEQ_BT) return false; if (vivid_is_hdmi_cap(dev)) return true; if (!(dev->std_cap[dev->input] & V4L2_STD_525_60) != !(output_inst->std_out & V4L2_STD_525_60)) return false; return true; } void vivid_send_input_source_change(struct vivid_dev *dev, unsigned int input_index) { struct v4l2_event ev = { .type = V4L2_EVENT_SOURCE_CHANGE, .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, }; ev.id = input_index; if (video_is_registered(&dev->vid_cap_dev) && dev->has_vid_cap) v4l2_event_queue(&dev->vid_cap_dev, &ev); if (dev->input_type[input_index] == TV || dev->input_type[input_index] == SVID) if (video_is_registered(&dev->vbi_cap_dev) && dev->has_vbi_cap) v4l2_event_queue(&dev->vbi_cap_dev, &ev); } void vivid_send_source_change(struct vivid_dev *dev, unsigned int type) { for (int i = 0; i < dev->num_inputs; i++) if (dev->input_type[i] == type) vivid_send_input_source_change(dev, i); } /* * Conversion function that converts a single-planar format to a * single-plane multiplanar format. */ void fmt_sp2mp(const struct v4l2_format *sp_fmt, struct v4l2_format *mp_fmt) { struct v4l2_pix_format_mplane *mp = &mp_fmt->fmt.pix_mp; struct v4l2_plane_pix_format *ppix = &mp->plane_fmt[0]; const struct v4l2_pix_format *pix = &sp_fmt->fmt.pix; bool is_out = sp_fmt->type == V4L2_BUF_TYPE_VIDEO_OUTPUT; memset(mp->reserved, 0, sizeof(mp->reserved)); mp_fmt->type = is_out ? V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE : V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; mp->width = pix->width; mp->height = pix->height; mp->pixelformat = pix->pixelformat; mp->field = pix->field; mp->colorspace = pix->colorspace; mp->xfer_func = pix->xfer_func; /* Also copies hsv_enc */ mp->ycbcr_enc = pix->ycbcr_enc; mp->quantization = pix->quantization; mp->num_planes = 1; mp->flags = pix->flags; ppix->sizeimage = pix->sizeimage; ppix->bytesperline = pix->bytesperline; memset(ppix->reserved, 0, sizeof(ppix->reserved)); } int fmt_sp2mp_func(struct file *file, void *priv, struct v4l2_format *f, fmtfunc func) { struct v4l2_format fmt; struct v4l2_pix_format_mplane *mp = &fmt.fmt.pix_mp; struct v4l2_plane_pix_format *ppix = &mp->plane_fmt[0]; struct v4l2_pix_format *pix = &f->fmt.pix; int ret; /* Converts to a mplane format */ fmt_sp2mp(f, &fmt); /* Passes it to the generic mplane format function */ ret = func(file, priv, &fmt); /* Copies back the mplane data to the single plane format */ pix->width = mp->width; pix->height = mp->height; pix->pixelformat = mp->pixelformat; pix->field = mp->field; pix->colorspace = mp->colorspace; pix->xfer_func = mp->xfer_func; /* Also copies hsv_enc */ pix->ycbcr_enc = mp->ycbcr_enc; pix->quantization = mp->quantization; pix->sizeimage = ppix->sizeimage; pix->bytesperline = ppix->bytesperline; pix->flags = mp->flags; return ret; } int vivid_vid_adjust_sel(unsigned flags, struct v4l2_rect *r) { unsigned w = r->width; unsigned h = r->height; /* sanitize w and h in case someone passes ~0 as the value */ w &= 0xffff; h &= 0xffff; if (!(flags & V4L2_SEL_FLAG_LE)) { w++; h++; if (w < 2) w = 2; if (h < 2) h = 2; } if (!(flags & V4L2_SEL_FLAG_GE)) { if (w > MAX_WIDTH) w = MAX_WIDTH; if (h > MAX_HEIGHT) h = MAX_HEIGHT; } w = w & ~1; h = h & ~1; if (w < 2 || h < 2) return -ERANGE; if (w > MAX_WIDTH || h > MAX_HEIGHT) return -ERANGE; if (r->top < 0) r->top = 0; if (r->left < 0) r->left = 0; /* sanitize left and top in case someone passes ~0 as the value */ r->left &= 0xfffe; r->top &= 0xfffe; if (r->left + w > MAX_WIDTH) r->left = MAX_WIDTH - w; if (r->top + h > MAX_HEIGHT) r->top = MAX_HEIGHT - h; if ((flags & (V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE)) == (V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE) && (r->width != w || r->height != h)) return -ERANGE; r->width = w; r->height = h; return 0; } int vivid_enum_fmt_vid(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct vivid_dev *dev = video_drvdata(file); const struct vivid_fmt *fmt; if (f->index >= ARRAY_SIZE(vivid_formats) - (dev->multiplanar ? 0 : VIVID_MPLANAR_FORMATS)) return -EINVAL; fmt = &vivid_formats[f->index]; f->pixelformat = fmt->fourcc; if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE && f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) return 0; /* * For capture devices, we support the CSC API. * We allow userspace to: * 1. set the colorspace * 2. set the xfer_func * 3. set the ycbcr_enc on YUV formats * 4. set the hsv_enc on HSV formats * 5. set the quantization on YUV and RGB formats */ f->flags |= V4L2_FMT_FLAG_CSC_COLORSPACE; f->flags |= V4L2_FMT_FLAG_CSC_XFER_FUNC; if (fmt->color_enc == TGP_COLOR_ENC_YCBCR) { f->flags |= V4L2_FMT_FLAG_CSC_YCBCR_ENC; f->flags |= V4L2_FMT_FLAG_CSC_QUANTIZATION; } else if (fmt->color_enc == TGP_COLOR_ENC_HSV) { f->flags |= V4L2_FMT_FLAG_CSC_HSV_ENC; } else if (fmt->color_enc == TGP_COLOR_ENC_RGB) { f->flags |= V4L2_FMT_FLAG_CSC_QUANTIZATION; } return 0; } int vidioc_g_std(struct file *file, void *priv, v4l2_std_id *id) { struct vivid_dev *dev = video_drvdata(file); struct video_device *vdev = video_devdata(file); if (vdev->vfl_dir == VFL_DIR_RX) { if (!vivid_is_sdtv_cap(dev)) return -ENODATA; *id = dev->std_cap[dev->input]; } else { if (!vivid_is_svid_out(dev)) return -ENODATA; *id = dev->std_out; } return 0; } int vidioc_g_dv_timings(struct file *file, void *_fh, struct v4l2_dv_timings *timings) { struct vivid_dev *dev = video_drvdata(file); struct video_device *vdev = video_devdata(file); if (vdev->vfl_dir == VFL_DIR_RX) { if (!vivid_is_hdmi_cap(dev)) return -ENODATA; *timings = dev->dv_timings_cap[dev->input]; } else { if (!vivid_is_hdmi_out(dev)) return -ENODATA; *timings = dev->dv_timings_out; } return 0; } int vidioc_enum_dv_timings(struct file *file, void *_fh, struct v4l2_enum_dv_timings *timings) { struct vivid_dev *dev = video_drvdata(file); struct video_device *vdev = video_devdata(file); if (vdev->vfl_dir == VFL_DIR_RX) { if (!vivid_is_hdmi_cap(dev)) return -ENODATA; } else { if (!vivid_is_hdmi_out(dev)) return -ENODATA; } return v4l2_enum_dv_timings_cap(timings, &vivid_dv_timings_cap, NULL, NULL); } int vidioc_dv_timings_cap(struct file *file, void *_fh, struct v4l2_dv_timings_cap *cap) { struct vivid_dev *dev = video_drvdata(file); struct video_device *vdev = video_devdata(file); if (vdev->vfl_dir == VFL_DIR_RX) { if (!vivid_is_hdmi_cap(dev)) return -ENODATA; } else { if (!vivid_is_hdmi_out(dev)) return -ENODATA; } *cap = vivid_dv_timings_cap; return 0; } int vidioc_g_edid(struct file *file, void *_fh, struct v4l2_edid *edid) { struct vivid_dev *dev = video_drvdata(file); struct vivid_dev *dev_rx = dev; struct video_device *vdev = video_devdata(file); struct cec_adapter *adap; unsigned int loc; memset(edid->reserved, 0, sizeof(edid->reserved)); if (vdev->vfl_dir == VFL_DIR_RX) { if (edid->pad >= dev->num_inputs) return -EINVAL; if (dev->input_type[edid->pad] != HDMI) return -EINVAL; adap = dev->cec_rx_adap; } else { if (edid->pad >= dev->num_outputs) return -EINVAL; if (dev->output_type[edid->pad] != HDMI) return -EINVAL; dev_rx = dev->output_to_input_instance[edid->pad]; if (!dev_rx) return -ENODATA; unsigned int hdmi_output = dev->output_to_iface_index[edid->pad]; adap = dev->cec_tx_adap[hdmi_output]; } if (edid->start_block == 0 && edid->blocks == 0) { edid->blocks = dev_rx->edid_blocks; return 0; } if (dev_rx->edid_blocks == 0) return -ENODATA; if (edid->start_block >= dev_rx->edid_blocks) return -EINVAL; if (edid->blocks > dev_rx->edid_blocks - edid->start_block) edid->blocks = dev_rx->edid_blocks - edid->start_block; memcpy(edid->edid, dev_rx->edid + edid->start_block * 128, edid->blocks * 128); loc = cec_get_edid_spa_location(dev_rx->edid, dev_rx->edid_blocks * 128); if (vdev->vfl_dir == VFL_DIR_TX && adap && loc && loc >= edid->start_block * 128 && loc < (edid->start_block + edid->blocks) * 128) { unsigned int i; u8 sum = 0; loc -= edid->start_block * 128; edid->edid[loc] = adap->phys_addr >> 8; edid->edid[loc + 1] = adap->phys_addr & 0xff; loc &= ~0x7f; /* update the checksum */ for (i = loc; i < loc + 127; i++) sum += edid->edid[i]; edid->edid[i] = 256 - sum; } return 0; }
4 6 2 2 2 2 39 39 2 2 2 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 // SPDX-License-Identifier: GPL-2.0-only /* Expectation handling for nf_conntrack. */ /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org> * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org> * (c) 2005-2012 Patrick McHardy <kaber@trash.net> */ #include <linux/types.h> #include <linux/netfilter.h> #include <linux/skbuff.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stddef.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/percpu.h> #include <linux/kernel.h> #include <linux/siphash.h> #include <linux/moduleparam.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/netns/hash.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_ecache.h> #include <net/netfilter/nf_conntrack_expect.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_tuple.h> #include <net/netfilter/nf_conntrack_zones.h> unsigned int nf_ct_expect_hsize __read_mostly; EXPORT_SYMBOL_GPL(nf_ct_expect_hsize); struct hlist_head *nf_ct_expect_hash __read_mostly; EXPORT_SYMBOL_GPL(nf_ct_expect_hash); unsigned int nf_ct_expect_max __read_mostly; static struct kmem_cache *nf_ct_expect_cachep __read_mostly; static siphash_aligned_key_t nf_ct_expect_hashrnd; /* nf_conntrack_expect helper functions */ void nf_ct_unlink_expect_report(struct nf_conntrack_expect *exp, u32 portid, int report) { struct nf_conn_help *master_help = nfct_help(exp->master); struct net *net = nf_ct_exp_net(exp); struct nf_conntrack_net *cnet; WARN_ON(!master_help); WARN_ON(timer_pending(&exp->timeout)); hlist_del_rcu(&exp->hnode); cnet = nf_ct_pernet(net); cnet->expect_count--; hlist_del_rcu(&exp->lnode); master_help->expecting[exp->class]--; nf_ct_expect_event_report(IPEXP_DESTROY, exp, portid, report); nf_ct_expect_put(exp); NF_CT_STAT_INC(net, expect_delete); } EXPORT_SYMBOL_GPL(nf_ct_unlink_expect_report); static void nf_ct_expectation_timed_out(struct timer_list *t) { struct nf_conntrack_expect *exp = timer_container_of(exp, t, timeout); spin_lock_bh(&nf_conntrack_expect_lock); nf_ct_unlink_expect(exp); spin_unlock_bh(&nf_conntrack_expect_lock); nf_ct_expect_put(exp); } static unsigned int nf_ct_expect_dst_hash(const struct net *n, const struct nf_conntrack_tuple *tuple) { struct { union nf_inet_addr dst_addr; u32 net_mix; u16 dport; u8 l3num; u8 protonum; } __aligned(SIPHASH_ALIGNMENT) combined; u32 hash; get_random_once(&nf_ct_expect_hashrnd, sizeof(nf_ct_expect_hashrnd)); memset(&combined, 0, sizeof(combined)); combined.dst_addr = tuple->dst.u3; combined.net_mix = net_hash_mix(n); combined.dport = (__force __u16)tuple->dst.u.all; combined.l3num = tuple->src.l3num; combined.protonum = tuple->dst.protonum; hash = siphash(&combined, sizeof(combined), &nf_ct_expect_hashrnd); return reciprocal_scale(hash, nf_ct_expect_hsize); } static bool nf_ct_exp_equal(const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_expect *i, const struct nf_conntrack_zone *zone, const struct net *net) { return nf_ct_tuple_mask_cmp(tuple, &i->tuple, &i->mask) && net_eq(net, nf_ct_net(i->master)) && nf_ct_zone_equal_any(i->master, zone); } bool nf_ct_remove_expect(struct nf_conntrack_expect *exp) { if (timer_delete(&exp->timeout)) { nf_ct_unlink_expect(exp); nf_ct_expect_put(exp); return true; } return false; } EXPORT_SYMBOL_GPL(nf_ct_remove_expect); struct nf_conntrack_expect * __nf_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple) { struct nf_conntrack_net *cnet = nf_ct_pernet(net); struct nf_conntrack_expect *i; unsigned int h; if (!cnet->expect_count) return NULL; h = nf_ct_expect_dst_hash(net, tuple); hlist_for_each_entry_rcu(i, &nf_ct_expect_hash[h], hnode) { if (nf_ct_exp_equal(tuple, i, zone, net)) return i; } return NULL; } EXPORT_SYMBOL_GPL(__nf_ct_expect_find); /* Just find a expectation corresponding to a tuple. */ struct nf_conntrack_expect * nf_ct_expect_find_get(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple) { struct nf_conntrack_expect *i; rcu_read_lock(); i = __nf_ct_expect_find(net, zone, tuple); if (i && !refcount_inc_not_zero(&i->use)) i = NULL; rcu_read_unlock(); return i; } EXPORT_SYMBOL_GPL(nf_ct_expect_find_get); /* If an expectation for this connection is found, it gets delete from * global list then returned. */ struct nf_conntrack_expect * nf_ct_find_expectation(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple, bool unlink) { struct nf_conntrack_net *cnet = nf_ct_pernet(net); struct nf_conntrack_expect *i, *exp = NULL; unsigned int h; if (!cnet->expect_count) return NULL; h = nf_ct_expect_dst_hash(net, tuple); hlist_for_each_entry(i, &nf_ct_expect_hash[h], hnode) { if (!(i->flags & NF_CT_EXPECT_INACTIVE) && nf_ct_exp_equal(tuple, i, zone, net)) { exp = i; break; } } if (!exp) return NULL; /* If master is not in hash table yet (ie. packet hasn't left this machine yet), how can other end know about expected? Hence these are not the droids you are looking for (if master ct never got confirmed, we'd hold a reference to it and weird things would happen to future packets). */ if (!nf_ct_is_confirmed(exp->master)) return NULL; /* Avoid race with other CPUs, that for exp->master ct, is * about to invoke ->destroy(), or nf_ct_delete() via timeout * or early_drop(). * * The refcount_inc_not_zero() check tells: If that fails, we * know that the ct is being destroyed. If it succeeds, we * can be sure the ct cannot disappear underneath. */ if (unlikely(nf_ct_is_dying(exp->master) || !refcount_inc_not_zero(&exp->master->ct_general.use))) return NULL; if (exp->flags & NF_CT_EXPECT_PERMANENT || !unlink) { refcount_inc(&exp->use); return exp; } else if (timer_delete(&exp->timeout)) { nf_ct_unlink_expect(exp); return exp; } /* Undo exp->master refcnt increase, if timer_delete() failed */ nf_ct_put(exp->master); return NULL; } /* delete all expectations for this conntrack */ void nf_ct_remove_expectations(struct nf_conn *ct) { struct nf_conn_help *help = nfct_help(ct); struct nf_conntrack_expect *exp; struct hlist_node *next; /* Optimization: most connection never expect any others. */ if (!help) return; spin_lock_bh(&nf_conntrack_expect_lock); hlist_for_each_entry_safe(exp, next, &help->expectations, lnode) { nf_ct_remove_expect(exp); } spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_remove_expectations); /* Would two expected things clash? */ static inline int expect_clash(const struct nf_conntrack_expect *a, const struct nf_conntrack_expect *b) { /* Part covered by intersection of masks must be unequal, otherwise they clash */ struct nf_conntrack_tuple_mask intersect_mask; int count; intersect_mask.src.u.all = a->mask.src.u.all & b->mask.src.u.all; for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++){ intersect_mask.src.u3.all[count] = a->mask.src.u3.all[count] & b->mask.src.u3.all[count]; } return nf_ct_tuple_mask_cmp(&a->tuple, &b->tuple, &intersect_mask) && net_eq(nf_ct_net(a->master), nf_ct_net(b->master)) && nf_ct_zone_equal_any(a->master, nf_ct_zone(b->master)); } static inline int expect_matches(const struct nf_conntrack_expect *a, const struct nf_conntrack_expect *b) { return nf_ct_tuple_equal(&a->tuple, &b->tuple) && nf_ct_tuple_mask_equal(&a->mask, &b->mask) && net_eq(nf_ct_net(a->master), nf_ct_net(b->master)) && nf_ct_zone_equal_any(a->master, nf_ct_zone(b->master)); } static bool master_matches(const struct nf_conntrack_expect *a, const struct nf_conntrack_expect *b, unsigned int flags) { if (flags & NF_CT_EXP_F_SKIP_MASTER) return true; return a->master == b->master; } /* Generally a bad idea to call this: could have matched already. */ void nf_ct_unexpect_related(struct nf_conntrack_expect *exp) { spin_lock_bh(&nf_conntrack_expect_lock); nf_ct_remove_expect(exp); spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_unexpect_related); /* We don't increase the master conntrack refcount for non-fulfilled * conntracks. During the conntrack destruction, the expectations are * always killed before the conntrack itself */ struct nf_conntrack_expect *nf_ct_expect_alloc(struct nf_conn *me) { struct nf_conntrack_expect *new; new = kmem_cache_alloc(nf_ct_expect_cachep, GFP_ATOMIC); if (!new) return NULL; new->master = me; refcount_set(&new->use, 1); return new; } EXPORT_SYMBOL_GPL(nf_ct_expect_alloc); void nf_ct_expect_init(struct nf_conntrack_expect *exp, unsigned int class, u_int8_t family, const union nf_inet_addr *saddr, const union nf_inet_addr *daddr, u_int8_t proto, const __be16 *src, const __be16 *dst) { int len; if (family == AF_INET) len = 4; else len = 16; exp->flags = 0; exp->class = class; exp->expectfn = NULL; exp->helper = NULL; exp->tuple.src.l3num = family; exp->tuple.dst.protonum = proto; if (saddr) { memcpy(&exp->tuple.src.u3, saddr, len); if (sizeof(exp->tuple.src.u3) > len) /* address needs to be cleared for nf_ct_tuple_equal */ memset((void *)&exp->tuple.src.u3 + len, 0x00, sizeof(exp->tuple.src.u3) - len); memset(&exp->mask.src.u3, 0xFF, len); if (sizeof(exp->mask.src.u3) > len) memset((void *)&exp->mask.src.u3 + len, 0x00, sizeof(exp->mask.src.u3) - len); } else { memset(&exp->tuple.src.u3, 0x00, sizeof(exp->tuple.src.u3)); memset(&exp->mask.src.u3, 0x00, sizeof(exp->mask.src.u3)); } if (src) { exp->tuple.src.u.all = *src; exp->mask.src.u.all = htons(0xFFFF); } else { exp->tuple.src.u.all = 0; exp->mask.src.u.all = 0; } memcpy(&exp->tuple.dst.u3, daddr, len); if (sizeof(exp->tuple.dst.u3) > len) /* address needs to be cleared for nf_ct_tuple_equal */ memset((void *)&exp->tuple.dst.u3 + len, 0x00, sizeof(exp->tuple.dst.u3) - len); exp->tuple.dst.u.all = *dst; #if IS_ENABLED(CONFIG_NF_NAT) memset(&exp->saved_addr, 0, sizeof(exp->saved_addr)); memset(&exp->saved_proto, 0, sizeof(exp->saved_proto)); #endif } EXPORT_SYMBOL_GPL(nf_ct_expect_init); static void nf_ct_expect_free_rcu(struct rcu_head *head) { struct nf_conntrack_expect *exp; exp = container_of(head, struct nf_conntrack_expect, rcu); kmem_cache_free(nf_ct_expect_cachep, exp); } void nf_ct_expect_put(struct nf_conntrack_expect *exp) { if (refcount_dec_and_test(&exp->use)) call_rcu(&exp->rcu, nf_ct_expect_free_rcu); } EXPORT_SYMBOL_GPL(nf_ct_expect_put); static void nf_ct_expect_insert(struct nf_conntrack_expect *exp) { struct nf_conntrack_net *cnet; struct nf_conn_help *master_help = nfct_help(exp->master); struct nf_conntrack_helper *helper; struct net *net = nf_ct_exp_net(exp); unsigned int h = nf_ct_expect_dst_hash(net, &exp->tuple); /* two references : one for hash insert, one for the timer */ refcount_add(2, &exp->use); timer_setup(&exp->timeout, nf_ct_expectation_timed_out, 0); helper = rcu_dereference_protected(master_help->helper, lockdep_is_held(&nf_conntrack_expect_lock)); if (helper) { exp->timeout.expires = jiffies + helper->expect_policy[exp->class].timeout * HZ; } add_timer(&exp->timeout); hlist_add_head_rcu(&exp->lnode, &master_help->expectations); master_help->expecting[exp->class]++; hlist_add_head_rcu(&exp->hnode, &nf_ct_expect_hash[h]); cnet = nf_ct_pernet(net); cnet->expect_count++; NF_CT_STAT_INC(net, expect_create); } /* Race with expectations being used means we could have none to find; OK. */ static void evict_oldest_expect(struct nf_conn *master, struct nf_conntrack_expect *new) { struct nf_conn_help *master_help = nfct_help(master); struct nf_conntrack_expect *exp, *last = NULL; hlist_for_each_entry(exp, &master_help->expectations, lnode) { if (exp->class == new->class) last = exp; } if (last) nf_ct_remove_expect(last); } static inline int __nf_ct_expect_check(struct nf_conntrack_expect *expect, unsigned int flags) { const struct nf_conntrack_expect_policy *p; struct nf_conntrack_expect *i; struct nf_conntrack_net *cnet; struct nf_conn *master = expect->master; struct nf_conn_help *master_help = nfct_help(master); struct nf_conntrack_helper *helper; struct net *net = nf_ct_exp_net(expect); struct hlist_node *next; unsigned int h; int ret = 0; if (!master_help) { ret = -ESHUTDOWN; goto out; } h = nf_ct_expect_dst_hash(net, &expect->tuple); hlist_for_each_entry_safe(i, next, &nf_ct_expect_hash[h], hnode) { if (master_matches(i, expect, flags) && expect_matches(i, expect)) { if (i->class != expect->class || i->master != expect->master) return -EALREADY; if (nf_ct_remove_expect(i)) break; } else if (expect_clash(i, expect)) { ret = -EBUSY; goto out; } } /* Will be over limit? */ helper = rcu_dereference_protected(master_help->helper, lockdep_is_held(&nf_conntrack_expect_lock)); if (helper) { p = &helper->expect_policy[expect->class]; if (p->max_expected && master_help->expecting[expect->class] >= p->max_expected) { evict_oldest_expect(master, expect); if (master_help->expecting[expect->class] >= p->max_expected) { ret = -EMFILE; goto out; } } } cnet = nf_ct_pernet(net); if (cnet->expect_count >= nf_ct_expect_max) { net_warn_ratelimited("nf_conntrack: expectation table full\n"); ret = -EMFILE; } out: return ret; } int nf_ct_expect_related_report(struct nf_conntrack_expect *expect, u32 portid, int report, unsigned int flags) { int ret; spin_lock_bh(&nf_conntrack_expect_lock); ret = __nf_ct_expect_check(expect, flags); if (ret < 0) goto out; nf_ct_expect_insert(expect); spin_unlock_bh(&nf_conntrack_expect_lock); nf_ct_expect_event_report(IPEXP_NEW, expect, portid, report); return 0; out: spin_unlock_bh(&nf_conntrack_expect_lock); return ret; } EXPORT_SYMBOL_GPL(nf_ct_expect_related_report); void nf_ct_expect_iterate_destroy(bool (*iter)(struct nf_conntrack_expect *e, void *data), void *data) { struct nf_conntrack_expect *exp; const struct hlist_node *next; unsigned int i; spin_lock_bh(&nf_conntrack_expect_lock); for (i = 0; i < nf_ct_expect_hsize; i++) { hlist_for_each_entry_safe(exp, next, &nf_ct_expect_hash[i], hnode) { if (iter(exp, data) && timer_delete(&exp->timeout)) { nf_ct_unlink_expect(exp); nf_ct_expect_put(exp); } } } spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_expect_iterate_destroy); void nf_ct_expect_iterate_net(struct net *net, bool (*iter)(struct nf_conntrack_expect *e, void *data), void *data, u32 portid, int report) { struct nf_conntrack_expect *exp; const struct hlist_node *next; unsigned int i; spin_lock_bh(&nf_conntrack_expect_lock); for (i = 0; i < nf_ct_expect_hsize; i++) { hlist_for_each_entry_safe(exp, next, &nf_ct_expect_hash[i], hnode) { if (!net_eq(nf_ct_exp_net(exp), net)) continue; if (iter(exp, data) && timer_delete(&exp->timeout)) { nf_ct_unlink_expect_report(exp, portid, report); nf_ct_expect_put(exp); } } } spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_expect_iterate_net); #ifdef CONFIG_NF_CONNTRACK_PROCFS struct ct_expect_iter_state { struct seq_net_private p; unsigned int bucket; }; static struct hlist_node *ct_expect_get_first(struct seq_file *seq) { struct ct_expect_iter_state *st = seq->private; struct hlist_node *n; for (st->bucket = 0; st->bucket < nf_ct_expect_hsize; st->bucket++) { n = rcu_dereference(hlist_first_rcu(&nf_ct_expect_hash[st->bucket])); if (n) return n; } return NULL; } static struct hlist_node *ct_expect_get_next(struct seq_file *seq, struct hlist_node *head) { struct ct_expect_iter_state *st = seq->private; head = rcu_dereference(hlist_next_rcu(head)); while (head == NULL) { if (++st->bucket >= nf_ct_expect_hsize) return NULL; head = rcu_dereference(hlist_first_rcu(&nf_ct_expect_hash[st->bucket])); } return head; } static struct hlist_node *ct_expect_get_idx(struct seq_file *seq, loff_t pos) { struct hlist_node *head = ct_expect_get_first(seq); if (head) while (pos && (head = ct_expect_get_next(seq, head))) pos--; return pos ? NULL : head; } static void *exp_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return ct_expect_get_idx(seq, *pos); } static void *exp_seq_next(struct seq_file *seq, void *v, loff_t *pos) { (*pos)++; return ct_expect_get_next(seq, v); } static void exp_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int exp_seq_show(struct seq_file *s, void *v) { struct nf_conntrack_expect *expect; struct nf_conntrack_helper *helper; struct hlist_node *n = v; char *delim = ""; expect = hlist_entry(n, struct nf_conntrack_expect, hnode); if (expect->timeout.function) seq_printf(s, "%ld ", timer_pending(&expect->timeout) ? (long)(expect->timeout.expires - jiffies)/HZ : 0); else seq_puts(s, "- "); seq_printf(s, "l3proto = %u proto=%u ", expect->tuple.src.l3num, expect->tuple.dst.protonum); print_tuple(s, &expect->tuple, nf_ct_l4proto_find(expect->tuple.dst.protonum)); if (expect->flags & NF_CT_EXPECT_PERMANENT) { seq_puts(s, "PERMANENT"); delim = ","; } if (expect->flags & NF_CT_EXPECT_INACTIVE) { seq_printf(s, "%sINACTIVE", delim); delim = ","; } if (expect->flags & NF_CT_EXPECT_USERSPACE) seq_printf(s, "%sUSERSPACE", delim); helper = rcu_dereference(nfct_help(expect->master)->helper); if (helper) { seq_printf(s, "%s%s", expect->flags ? " " : "", helper->name); if (helper->expect_policy[expect->class].name[0]) seq_printf(s, "/%s", helper->expect_policy[expect->class].name); } seq_putc(s, '\n'); return 0; } static const struct seq_operations exp_seq_ops = { .start = exp_seq_start, .next = exp_seq_next, .stop = exp_seq_stop, .show = exp_seq_show }; #endif /* CONFIG_NF_CONNTRACK_PROCFS */ static int exp_proc_init(struct net *net) { #ifdef CONFIG_NF_CONNTRACK_PROCFS struct proc_dir_entry *proc; kuid_t root_uid; kgid_t root_gid; proc = proc_create_net("nf_conntrack_expect", 0440, net->proc_net, &exp_seq_ops, sizeof(struct ct_expect_iter_state)); if (!proc) return -ENOMEM; root_uid = make_kuid(net->user_ns, 0); root_gid = make_kgid(net->user_ns, 0); if (uid_valid(root_uid) && gid_valid(root_gid)) proc_set_user(proc, root_uid, root_gid); #endif /* CONFIG_NF_CONNTRACK_PROCFS */ return 0; } static void exp_proc_remove(struct net *net) { #ifdef CONFIG_NF_CONNTRACK_PROCFS remove_proc_entry("nf_conntrack_expect", net->proc_net); #endif /* CONFIG_NF_CONNTRACK_PROCFS */ } module_param_named(expect_hashsize, nf_ct_expect_hsize, uint, 0400); int nf_conntrack_expect_pernet_init(struct net *net) { return exp_proc_init(net); } void nf_conntrack_expect_pernet_fini(struct net *net) { exp_proc_remove(net); } int nf_conntrack_expect_init(void) { if (!nf_ct_expect_hsize) { nf_ct_expect_hsize = nf_conntrack_htable_size / 256; if (!nf_ct_expect_hsize) nf_ct_expect_hsize = 1; } nf_ct_expect_max = nf_ct_expect_hsize * 4; nf_ct_expect_cachep = KMEM_CACHE(nf_conntrack_expect, 0); if (!nf_ct_expect_cachep) return -ENOMEM; nf_ct_expect_hash = nf_ct_alloc_hashtable(&nf_ct_expect_hsize, 0); if (!nf_ct_expect_hash) { kmem_cache_destroy(nf_ct_expect_cachep); return -ENOMEM; } return 0; } void nf_conntrack_expect_fini(void) { rcu_barrier(); /* Wait for call_rcu() before destroy */ kmem_cache_destroy(nf_ct_expect_cachep); kvfree(nf_ct_expect_hash); }
2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 // SPDX-License-Identifier: GPL-2.0 /* * quota.c - CephFS quota * * Copyright (C) 2017-2018 SUSE */ #include <linux/statfs.h> #include "super.h" #include "mds_client.h" void ceph_adjust_quota_realms_count(struct inode *inode, bool inc) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); if (inc) atomic64_inc(&mdsc->quotarealms_count); else atomic64_dec(&mdsc->quotarealms_count); } static inline bool ceph_has_realms_with_quotas(struct inode *inode) { struct super_block *sb = inode->i_sb; struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(sb); struct inode *root = d_inode(sb->s_root); if (atomic64_read(&mdsc->quotarealms_count) > 0) return true; /* if root is the real CephFS root, we don't have quota realms */ if (root && ceph_ino(root) == CEPH_INO_ROOT) return false; /* MDS stray dirs have no quota realms */ if (ceph_vino_is_reserved(ceph_inode(inode)->i_vino)) return false; /* otherwise, we can't know for sure */ return true; } void ceph_handle_quota(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg) { struct super_block *sb = mdsc->fsc->sb; struct ceph_mds_quota *h = msg->front.iov_base; struct ceph_client *cl = mdsc->fsc->client; struct ceph_vino vino; struct inode *inode; struct ceph_inode_info *ci; if (!ceph_inc_mds_stopping_blocker(mdsc, session)) return; if (msg->front.iov_len < sizeof(*h)) { pr_err_client(cl, "corrupt message mds%d len %d\n", session->s_mds, (int)msg->front.iov_len); ceph_msg_dump(msg); goto out; } /* lookup inode */ vino.ino = le64_to_cpu(h->ino); vino.snap = CEPH_NOSNAP; inode = ceph_find_inode(sb, vino); if (!inode) { pr_warn_client(cl, "failed to find inode %llx\n", vino.ino); goto out; } ci = ceph_inode(inode); spin_lock(&ci->i_ceph_lock); ci->i_rbytes = le64_to_cpu(h->rbytes); ci->i_rfiles = le64_to_cpu(h->rfiles); ci->i_rsubdirs = le64_to_cpu(h->rsubdirs); __ceph_update_quota(ci, le64_to_cpu(h->max_bytes), le64_to_cpu(h->max_files)); spin_unlock(&ci->i_ceph_lock); iput(inode); out: ceph_dec_mds_stopping_blocker(mdsc); } static struct ceph_quotarealm_inode * find_quotarealm_inode(struct ceph_mds_client *mdsc, u64 ino) { struct ceph_quotarealm_inode *qri = NULL; struct rb_node **node, *parent = NULL; struct ceph_client *cl = mdsc->fsc->client; mutex_lock(&mdsc->quotarealms_inodes_mutex); node = &(mdsc->quotarealms_inodes.rb_node); while (*node) { parent = *node; qri = container_of(*node, struct ceph_quotarealm_inode, node); if (ino < qri->ino) node = &((*node)->rb_left); else if (ino > qri->ino) node = &((*node)->rb_right); else break; } if (!qri || (qri->ino != ino)) { /* Not found, create a new one and insert it */ qri = kmalloc(sizeof(*qri), GFP_KERNEL); if (qri) { qri->ino = ino; qri->inode = NULL; qri->timeout = 0; mutex_init(&qri->mutex); rb_link_node(&qri->node, parent, node); rb_insert_color(&qri->node, &mdsc->quotarealms_inodes); } else pr_warn_client(cl, "Failed to alloc quotarealms_inode\n"); } mutex_unlock(&mdsc->quotarealms_inodes_mutex); return qri; } /* * This function will try to lookup a realm inode which isn't visible in the * filesystem mountpoint. A list of these kind of inodes (not visible) is * maintained in the mdsc and freed only when the filesystem is umounted. * * Note that these inodes are kept in this list even if the lookup fails, which * allows to prevent useless lookup requests. */ static struct inode *lookup_quotarealm_inode(struct ceph_mds_client *mdsc, struct super_block *sb, struct ceph_snap_realm *realm) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_quotarealm_inode *qri; struct inode *in; qri = find_quotarealm_inode(mdsc, realm->ino); if (!qri) return NULL; mutex_lock(&qri->mutex); if (qri->inode && ceph_is_any_caps(qri->inode)) { /* A request has already returned the inode */ mutex_unlock(&qri->mutex); return qri->inode; } /* Check if this inode lookup has failed recently */ if (qri->timeout && time_before_eq(jiffies, qri->timeout)) { mutex_unlock(&qri->mutex); return NULL; } if (qri->inode) { /* get caps */ int ret = __ceph_do_getattr(qri->inode, NULL, CEPH_STAT_CAP_INODE, true); if (ret >= 0) in = qri->inode; else in = ERR_PTR(ret); } else { in = ceph_lookup_inode(sb, realm->ino); } if (IS_ERR(in)) { doutc(cl, "Can't lookup inode %llx (err: %ld)\n", realm->ino, PTR_ERR(in)); qri->timeout = jiffies + secs_to_jiffies(60); /* XXX */ } else { qri->timeout = 0; qri->inode = in; } mutex_unlock(&qri->mutex); return in; } void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc) { struct ceph_quotarealm_inode *qri; struct rb_node *node; /* * It should now be safe to clean quotarealms_inode tree without holding * mdsc->quotarealms_inodes_mutex... */ mutex_lock(&mdsc->quotarealms_inodes_mutex); while (!RB_EMPTY_ROOT(&mdsc->quotarealms_inodes)) { node = rb_first(&mdsc->quotarealms_inodes); qri = rb_entry(node, struct ceph_quotarealm_inode, node); rb_erase(node, &mdsc->quotarealms_inodes); iput(qri->inode); kfree(qri); } mutex_unlock(&mdsc->quotarealms_inodes_mutex); } /* * This function walks through the snaprealm for an inode and set the * realmp with the first snaprealm that has quotas set (max_files, * max_bytes, or any, depending on the 'which_quota' argument). If the root is * reached, set the realmp with the root ceph_snap_realm instead. * * Note that the caller is responsible for calling ceph_put_snap_realm() on the * returned realm. * * Callers of this function need to hold mdsc->snap_rwsem. However, if there's * a need to do an inode lookup, this rwsem will be temporarily dropped. Hence * the 'retry' argument: if rwsem needs to be dropped and 'retry' is 'false' * this function will return -EAGAIN; otherwise, the snaprealms walk-through * will be restarted. */ static int get_quota_realm(struct ceph_mds_client *mdsc, struct inode *inode, enum quota_get_realm which_quota, struct ceph_snap_realm **realmp, bool retry) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_inode_info *ci = NULL; struct ceph_snap_realm *realm, *next; struct inode *in; bool has_quota; if (realmp) *realmp = NULL; if (ceph_snap(inode) != CEPH_NOSNAP) return 0; restart: realm = ceph_inode(inode)->i_snap_realm; if (realm) ceph_get_snap_realm(mdsc, realm); else pr_err_ratelimited_client(cl, "%p %llx.%llx null i_snap_realm\n", inode, ceph_vinop(inode)); while (realm) { bool has_inode; spin_lock(&realm->inodes_with_caps_lock); has_inode = realm->inode; in = has_inode ? igrab(realm->inode) : NULL; spin_unlock(&realm->inodes_with_caps_lock); if (has_inode && !in) break; if (!in) { up_read(&mdsc->snap_rwsem); in = lookup_quotarealm_inode(mdsc, inode->i_sb, realm); down_read(&mdsc->snap_rwsem); if (IS_ERR_OR_NULL(in)) break; ceph_put_snap_realm(mdsc, realm); if (!retry) return -EAGAIN; goto restart; } ci = ceph_inode(in); has_quota = __ceph_has_quota(ci, which_quota); iput(in); next = realm->parent; if (has_quota || !next) { if (realmp) *realmp = realm; return 0; } ceph_get_snap_realm(mdsc, next); ceph_put_snap_realm(mdsc, realm); realm = next; } if (realm) ceph_put_snap_realm(mdsc, realm); return 0; } bool ceph_quota_is_same_realm(struct inode *old, struct inode *new) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(old->i_sb); struct ceph_snap_realm *old_realm, *new_realm; bool is_same; int ret; restart: /* * We need to lookup 2 quota realms atomically, i.e. with snap_rwsem. * However, get_quota_realm may drop it temporarily. By setting the * 'retry' parameter to 'false', we'll get -EAGAIN if the rwsem was * dropped and we can then restart the whole operation. */ down_read(&mdsc->snap_rwsem); get_quota_realm(mdsc, old, QUOTA_GET_ANY, &old_realm, true); ret = get_quota_realm(mdsc, new, QUOTA_GET_ANY, &new_realm, false); if (ret == -EAGAIN) { up_read(&mdsc->snap_rwsem); if (old_realm) ceph_put_snap_realm(mdsc, old_realm); goto restart; } is_same = (old_realm == new_realm); up_read(&mdsc->snap_rwsem); if (old_realm) ceph_put_snap_realm(mdsc, old_realm); if (new_realm) ceph_put_snap_realm(mdsc, new_realm); return is_same; } enum quota_check_op { QUOTA_CHECK_MAX_FILES_OP, /* check quota max_files limit */ QUOTA_CHECK_MAX_BYTES_OP, /* check quota max_files limit */ QUOTA_CHECK_MAX_BYTES_APPROACHING_OP /* check if quota max_files limit is approaching */ }; /* * check_quota_exceeded() will walk up the snaprealm hierarchy and, for each * realm, it will execute quota check operation defined by the 'op' parameter. * The snaprealm walk is interrupted if the quota check detects that the quota * is exceeded or if the root inode is reached. */ static bool check_quota_exceeded(struct inode *inode, enum quota_check_op op, loff_t delta) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_client *cl = mdsc->fsc->client; struct ceph_inode_info *ci; struct ceph_snap_realm *realm, *next; struct inode *in; u64 max, rvalue; bool exceeded = false; if (ceph_snap(inode) != CEPH_NOSNAP) return false; down_read(&mdsc->snap_rwsem); restart: realm = ceph_inode(inode)->i_snap_realm; if (realm) ceph_get_snap_realm(mdsc, realm); else pr_err_ratelimited_client(cl, "%p %llx.%llx null i_snap_realm\n", inode, ceph_vinop(inode)); while (realm) { bool has_inode; spin_lock(&realm->inodes_with_caps_lock); has_inode = realm->inode; in = has_inode ? igrab(realm->inode) : NULL; spin_unlock(&realm->inodes_with_caps_lock); if (has_inode && !in) break; if (!in) { up_read(&mdsc->snap_rwsem); in = lookup_quotarealm_inode(mdsc, inode->i_sb, realm); down_read(&mdsc->snap_rwsem); if (IS_ERR_OR_NULL(in)) break; ceph_put_snap_realm(mdsc, realm); goto restart; } ci = ceph_inode(in); spin_lock(&ci->i_ceph_lock); if (op == QUOTA_CHECK_MAX_FILES_OP) { max = ci->i_max_files; rvalue = ci->i_rfiles + ci->i_rsubdirs; } else { max = ci->i_max_bytes; rvalue = ci->i_rbytes; } spin_unlock(&ci->i_ceph_lock); switch (op) { case QUOTA_CHECK_MAX_FILES_OP: case QUOTA_CHECK_MAX_BYTES_OP: exceeded = (max && (rvalue + delta > max)); break; case QUOTA_CHECK_MAX_BYTES_APPROACHING_OP: if (max) { if (rvalue >= max) exceeded = true; else { /* * when we're writing more that 1/16th * of the available space */ exceeded = (((max - rvalue) >> 4) < delta); } } break; default: /* Shouldn't happen */ pr_warn_client(cl, "Invalid quota check op (%d)\n", op); exceeded = true; /* Just break the loop */ } iput(in); next = realm->parent; if (exceeded || !next) break; ceph_get_snap_realm(mdsc, next); ceph_put_snap_realm(mdsc, realm); realm = next; } if (realm) ceph_put_snap_realm(mdsc, realm); up_read(&mdsc->snap_rwsem); return exceeded; } /* * ceph_quota_is_max_files_exceeded - check if we can create a new file * @inode: directory where a new file is being created * * This functions returns true is max_files quota allows a new file to be * created. It is necessary to walk through the snaprealm hierarchy (until the * FS root) to check all realms with quotas set. */ bool ceph_quota_is_max_files_exceeded(struct inode *inode) { if (!ceph_has_realms_with_quotas(inode)) return false; WARN_ON(!S_ISDIR(inode->i_mode)); return check_quota_exceeded(inode, QUOTA_CHECK_MAX_FILES_OP, 1); } /* * ceph_quota_is_max_bytes_exceeded - check if we can write to a file * @inode: inode being written * @newsize: new size if write succeeds * * This functions returns true is max_bytes quota allows a file size to reach * @newsize; it returns false otherwise. */ bool ceph_quota_is_max_bytes_exceeded(struct inode *inode, loff_t newsize) { loff_t size = i_size_read(inode); if (!ceph_has_realms_with_quotas(inode)) return false; /* return immediately if we're decreasing file size */ if (newsize <= size) return false; return check_quota_exceeded(inode, QUOTA_CHECK_MAX_BYTES_OP, (newsize - size)); } /* * ceph_quota_is_max_bytes_approaching - check if we're reaching max_bytes * @inode: inode being written * @newsize: new size if write succeeds * * This function returns true if the new file size @newsize will be consuming * more than 1/16th of the available quota space; it returns false otherwise. */ bool ceph_quota_is_max_bytes_approaching(struct inode *inode, loff_t newsize) { loff_t size = ceph_inode(inode)->i_reported_size; if (!ceph_has_realms_with_quotas(inode)) return false; /* return immediately if we're decreasing file size */ if (newsize <= size) return false; return check_quota_exceeded(inode, QUOTA_CHECK_MAX_BYTES_APPROACHING_OP, (newsize - size)); } /* * ceph_quota_update_statfs - if root has quota update statfs with quota status * @fsc: filesystem client instance * @buf: statfs to update * * If the mounted filesystem root has max_bytes quota set, update the filesystem * statistics with the quota status. * * This function returns true if the stats have been updated, false otherwise. */ bool ceph_quota_update_statfs(struct ceph_fs_client *fsc, struct kstatfs *buf) { struct ceph_mds_client *mdsc = fsc->mdsc; struct ceph_inode_info *ci; struct ceph_snap_realm *realm; struct inode *in; u64 total = 0, used, free; bool is_updated = false; down_read(&mdsc->snap_rwsem); get_quota_realm(mdsc, d_inode(fsc->sb->s_root), QUOTA_GET_MAX_BYTES, &realm, true); up_read(&mdsc->snap_rwsem); if (!realm) return false; spin_lock(&realm->inodes_with_caps_lock); in = realm->inode ? igrab(realm->inode) : NULL; spin_unlock(&realm->inodes_with_caps_lock); if (in) { ci = ceph_inode(in); spin_lock(&ci->i_ceph_lock); if (ci->i_max_bytes) { total = ci->i_max_bytes >> CEPH_BLOCK_SHIFT; used = ci->i_rbytes >> CEPH_BLOCK_SHIFT; /* For quota size less than 4MB, use 4KB block size */ if (!total) { total = ci->i_max_bytes >> CEPH_4K_BLOCK_SHIFT; used = ci->i_rbytes >> CEPH_4K_BLOCK_SHIFT; buf->f_frsize = 1 << CEPH_4K_BLOCK_SHIFT; } /* It is possible for a quota to be exceeded. * Report 'zero' in that case */ free = total > used ? total - used : 0; /* For quota size less than 4KB, report the * total=used=4KB,free=0 when quota is full * and total=free=4KB, used=0 otherwise */ if (!total) { total = 1; free = ci->i_max_bytes > ci->i_rbytes ? 1 : 0; buf->f_frsize = 1 << CEPH_4K_BLOCK_SHIFT; } } spin_unlock(&ci->i_ceph_lock); if (total) { buf->f_blocks = total; buf->f_bfree = free; buf->f_bavail = free; is_updated = true; } iput(in); } ceph_put_snap_realm(mdsc, realm); return is_updated; }
2 2 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 // SPDX-License-Identifier: GPL-2.0-or-later /* Cache data I/O routines * * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define FSCACHE_DEBUG_LEVEL OPERATION #include <linux/fscache-cache.h> #include <linux/uio.h> #include <linux/bvec.h> #include <linux/slab.h> #include "internal.h" /** * fscache_wait_for_operation - Wait for an object become accessible * @cres: The cache resources for the operation being performed * @want_state: The minimum state the object must be at * * See if the target cache object is at the specified minimum state of * accessibility yet, and if not, wait for it. */ bool fscache_wait_for_operation(struct netfs_cache_resources *cres, enum fscache_want_state want_state) { struct fscache_cookie *cookie = fscache_cres_cookie(cres); enum fscache_cookie_state state; again: if (!fscache_cache_is_live(cookie->volume->cache)) { _leave(" [broken]"); return false; } state = fscache_cookie_state(cookie); _enter("c=%08x{%u},%x", cookie->debug_id, state, want_state); switch (state) { case FSCACHE_COOKIE_STATE_CREATING: case FSCACHE_COOKIE_STATE_INVALIDATING: if (want_state == FSCACHE_WANT_PARAMS) goto ready; /* There can be no content */ fallthrough; case FSCACHE_COOKIE_STATE_LOOKING_UP: case FSCACHE_COOKIE_STATE_LRU_DISCARDING: wait_var_event(&cookie->state, fscache_cookie_state(cookie) != state); goto again; case FSCACHE_COOKIE_STATE_ACTIVE: goto ready; case FSCACHE_COOKIE_STATE_DROPPED: case FSCACHE_COOKIE_STATE_RELINQUISHING: default: _leave(" [not live]"); return false; } ready: if (!cres->cache_priv2) return cookie->volume->cache->ops->begin_operation(cres, want_state); return true; } EXPORT_SYMBOL(fscache_wait_for_operation); /* * Begin an I/O operation on the cache, waiting till we reach the right state. * * Attaches the resources required to the operation resources record. */ static int fscache_begin_operation(struct netfs_cache_resources *cres, struct fscache_cookie *cookie, enum fscache_want_state want_state, enum fscache_access_trace why) { enum fscache_cookie_state state; long timeo; bool once_only = false; cres->ops = NULL; cres->cache_priv = cookie; cres->cache_priv2 = NULL; cres->debug_id = cookie->debug_id; cres->inval_counter = cookie->inval_counter; if (!fscache_begin_cookie_access(cookie, why)) { cres->cache_priv = NULL; return -ENOBUFS; } again: spin_lock(&cookie->lock); state = fscache_cookie_state(cookie); _enter("c=%08x{%u},%x", cookie->debug_id, state, want_state); switch (state) { case FSCACHE_COOKIE_STATE_LOOKING_UP: case FSCACHE_COOKIE_STATE_LRU_DISCARDING: case FSCACHE_COOKIE_STATE_INVALIDATING: goto wait_for_file_wrangling; case FSCACHE_COOKIE_STATE_CREATING: if (want_state == FSCACHE_WANT_PARAMS) goto ready; /* There can be no content */ goto wait_for_file_wrangling; case FSCACHE_COOKIE_STATE_ACTIVE: goto ready; case FSCACHE_COOKIE_STATE_DROPPED: case FSCACHE_COOKIE_STATE_RELINQUISHING: WARN(1, "Can't use cookie in state %u\n", cookie->state); goto not_live; default: goto not_live; } ready: spin_unlock(&cookie->lock); if (!cookie->volume->cache->ops->begin_operation(cres, want_state)) goto failed; return 0; wait_for_file_wrangling: spin_unlock(&cookie->lock); trace_fscache_access(cookie->debug_id, refcount_read(&cookie->ref), atomic_read(&cookie->n_accesses), fscache_access_io_wait); timeo = wait_var_event_timeout(&cookie->state, fscache_cookie_state(cookie) != state, 20 * HZ); if (timeo <= 1 && !once_only) { pr_warn("%s: cookie state change wait timed out: cookie->state=%u state=%u", __func__, fscache_cookie_state(cookie), state); fscache_print_cookie(cookie, 'O'); once_only = true; } goto again; not_live: spin_unlock(&cookie->lock); failed: cres->cache_priv = NULL; cres->ops = NULL; fscache_end_cookie_access(cookie, fscache_access_io_not_live); _leave(" = -ENOBUFS"); return -ENOBUFS; } int __fscache_begin_read_operation(struct netfs_cache_resources *cres, struct fscache_cookie *cookie) { return fscache_begin_operation(cres, cookie, FSCACHE_WANT_PARAMS, fscache_access_io_read); } EXPORT_SYMBOL(__fscache_begin_read_operation); int __fscache_begin_write_operation(struct netfs_cache_resources *cres, struct fscache_cookie *cookie) { return fscache_begin_operation(cres, cookie, FSCACHE_WANT_PARAMS, fscache_access_io_write); } EXPORT_SYMBOL(__fscache_begin_write_operation); struct fscache_write_request { struct netfs_cache_resources cache_resources; struct address_space *mapping; loff_t start; size_t len; bool set_bits; bool using_pgpriv2; netfs_io_terminated_t term_func; void *term_func_priv; }; void __fscache_clear_page_bits(struct address_space *mapping, loff_t start, size_t len) { pgoff_t first = start / PAGE_SIZE; pgoff_t last = (start + len - 1) / PAGE_SIZE; struct page *page; if (len) { XA_STATE(xas, &mapping->i_pages, first); rcu_read_lock(); xas_for_each(&xas, page, last) { folio_end_private_2(page_folio(page)); } rcu_read_unlock(); } } EXPORT_SYMBOL(__fscache_clear_page_bits); /* * Deal with the completion of writing the data to the cache. */ static void fscache_wreq_done(void *priv, ssize_t transferred_or_error) { struct fscache_write_request *wreq = priv; if (wreq->using_pgpriv2) fscache_clear_page_bits(wreq->mapping, wreq->start, wreq->len, wreq->set_bits); if (wreq->term_func) wreq->term_func(wreq->term_func_priv, transferred_or_error); fscache_end_operation(&wreq->cache_resources); kfree(wreq); } void __fscache_write_to_cache(struct fscache_cookie *cookie, struct address_space *mapping, loff_t start, size_t len, loff_t i_size, netfs_io_terminated_t term_func, void *term_func_priv, bool using_pgpriv2, bool cond) { struct fscache_write_request *wreq; struct netfs_cache_resources *cres; struct iov_iter iter; int ret = -ENOBUFS; if (len == 0) goto abandon; _enter("%llx,%zx", start, len); wreq = kzalloc(sizeof(struct fscache_write_request), GFP_NOFS); if (!wreq) goto abandon; wreq->mapping = mapping; wreq->start = start; wreq->len = len; wreq->using_pgpriv2 = using_pgpriv2; wreq->set_bits = cond; wreq->term_func = term_func; wreq->term_func_priv = term_func_priv; cres = &wreq->cache_resources; if (fscache_begin_operation(cres, cookie, FSCACHE_WANT_WRITE, fscache_access_io_write) < 0) goto abandon_free; ret = cres->ops->prepare_write(cres, &start, &len, len, i_size, false); if (ret < 0) goto abandon_end; /* TODO: Consider clearing page bits now for space the write isn't * covering. This is more complicated than it appears when THPs are * taken into account. */ iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len); fscache_write(cres, start, &iter, fscache_wreq_done, wreq); return; abandon_end: return fscache_wreq_done(wreq, ret); abandon_free: kfree(wreq); abandon: if (using_pgpriv2) fscache_clear_page_bits(mapping, start, len, cond); if (term_func) term_func(term_func_priv, ret); } EXPORT_SYMBOL(__fscache_write_to_cache); /* * Change the size of a backing object. */ void __fscache_resize_cookie(struct fscache_cookie *cookie, loff_t new_size) { struct netfs_cache_resources cres; trace_fscache_resize(cookie, new_size); if (fscache_begin_operation(&cres, cookie, FSCACHE_WANT_WRITE, fscache_access_io_resize) == 0) { fscache_stat(&fscache_n_resizes); set_bit(FSCACHE_COOKIE_NEEDS_UPDATE, &cookie->flags); /* We cannot defer a resize as we need to do it inside the * netfs's inode lock so that we're serialised with respect to * writes. */ cookie->volume->cache->ops->resize_cookie(&cres, new_size); fscache_end_operation(&cres); } else { fscache_stat(&fscache_n_resizes_null); } } EXPORT_SYMBOL(__fscache_resize_cookie);
10 10 10 81 76 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 // SPDX-License-Identifier: GPL-2.0-only #include <linux/init.h> #include <linux/scatterlist.h> #include <linux/mempool.h> #include <linux/slab.h> #define SG_MEMPOOL_NR ARRAY_SIZE(sg_pools) #define SG_MEMPOOL_SIZE 2 struct sg_pool { size_t size; char *name; struct kmem_cache *slab; mempool_t *pool; }; #define SP(x) { .size = x, "sgpool-" __stringify(x) } #if (SG_CHUNK_SIZE < 32) #error SG_CHUNK_SIZE is too small (must be 32 or greater) #endif static struct sg_pool sg_pools[] = { SP(8), SP(16), #if (SG_CHUNK_SIZE > 32) SP(32), #if (SG_CHUNK_SIZE > 64) SP(64), #if (SG_CHUNK_SIZE > 128) SP(128), #if (SG_CHUNK_SIZE > 256) #error SG_CHUNK_SIZE is too large (256 MAX) #endif #endif #endif #endif SP(SG_CHUNK_SIZE) }; #undef SP static inline unsigned int sg_pool_index(unsigned short nents) { unsigned int index; BUG_ON(nents > SG_CHUNK_SIZE); if (nents <= 8) index = 0; else index = get_count_order(nents) - 3; return index; } static void sg_pool_free(struct scatterlist *sgl, unsigned int nents) { struct sg_pool *sgp; sgp = sg_pools + sg_pool_index(nents); mempool_free(sgl, sgp->pool); } static struct scatterlist *sg_pool_alloc(unsigned int nents, gfp_t gfp_mask) { struct sg_pool *sgp; sgp = sg_pools + sg_pool_index(nents); return mempool_alloc(sgp->pool, gfp_mask); } /** * sg_free_table_chained - Free a previously mapped sg table * @table: The sg table header to use * @nents_first_chunk: size of the first_chunk SGL passed to * sg_alloc_table_chained * * Description: * Free an sg table previously allocated and setup with * sg_alloc_table_chained(). * * @nents_first_chunk has to be same with that same parameter passed * to sg_alloc_table_chained(). * **/ void sg_free_table_chained(struct sg_table *table, unsigned nents_first_chunk) { if (table->orig_nents <= nents_first_chunk) return; if (nents_first_chunk == 1) nents_first_chunk = 0; __sg_free_table(table, SG_CHUNK_SIZE, nents_first_chunk, sg_pool_free, table->orig_nents); } EXPORT_SYMBOL_GPL(sg_free_table_chained); /** * sg_alloc_table_chained - Allocate and chain SGLs in an sg table * @table: The sg table header to use * @nents: Number of entries in sg list * @first_chunk: first SGL * @nents_first_chunk: number of the SGL of @first_chunk * * Description: * Allocate and chain SGLs in an sg table. If @nents@ is larger than * @nents_first_chunk a chained sg table will be setup. @first_chunk is * ignored if nents_first_chunk <= 1 because user expects the SGL points * non-chain SGL. * **/ int sg_alloc_table_chained(struct sg_table *table, int nents, struct scatterlist *first_chunk, unsigned nents_first_chunk) { int ret; BUG_ON(!nents); if (first_chunk && nents_first_chunk) { if (nents <= nents_first_chunk) { table->nents = table->orig_nents = nents; sg_init_table(table->sgl, nents); return 0; } } /* User supposes that the 1st SGL includes real entry */ if (nents_first_chunk <= 1) { first_chunk = NULL; nents_first_chunk = 0; } ret = __sg_alloc_table(table, nents, SG_CHUNK_SIZE, first_chunk, nents_first_chunk, GFP_ATOMIC, sg_pool_alloc); if (unlikely(ret)) sg_free_table_chained(table, nents_first_chunk); return ret; } EXPORT_SYMBOL_GPL(sg_alloc_table_chained); static __init int sg_pool_init(void) { int i; for (i = 0; i < SG_MEMPOOL_NR; i++) { struct sg_pool *sgp = sg_pools + i; int size = sgp->size * sizeof(struct scatterlist); sgp->slab = kmem_cache_create(sgp->name, size, 0, SLAB_HWCACHE_ALIGN, NULL); if (!sgp->slab) { printk(KERN_ERR "SG_POOL: can't init sg slab %s\n", sgp->name); goto cleanup_sdb; } sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, sgp->slab); if (!sgp->pool) { printk(KERN_ERR "SG_POOL: can't init sg mempool %s\n", sgp->name); goto cleanup_sdb; } } return 0; cleanup_sdb: for (i = 0; i < SG_MEMPOOL_NR; i++) { struct sg_pool *sgp = sg_pools + i; mempool_destroy(sgp->pool); kmem_cache_destroy(sgp->slab); } return -ENOMEM; } subsys_initcall(sg_pool_init);
2 1 3 2 1 5 1 4 2 2 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 // SPDX-License-Identifier: GPL-2.0 /* * pcl816.c * Comedi driver for Advantech PCL-816 cards * * Author: Juan Grigera <juan@grigera.com.ar> * based on pcl818 by Michal Dobes <dobes@tesnet.cz> and bits of pcl812 */ /* * Driver: pcl816 * Description: Advantech PCL-816 cards, PCL-814 * Devices: [Advantech] PCL-816 (pcl816), PCL-814B (pcl814b) * Author: Juan Grigera <juan@grigera.com.ar> * Status: works * Updated: Tue, 2 Apr 2002 23:15:21 -0800 * * PCL 816 and 814B have 16 SE/DIFF ADCs, 16 DACs, 16 DI and 16 DO. * Differences are at resolution (16 vs 12 bits). * * The driver support AI command mode, other subdevices not written. * * Analog output and digital input and output are not supported. * * Configuration Options: * [0] - IO Base * [1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7) * [2] - DMA (0=disable, 1, 3) * [3] - 0, 10=10MHz clock for 8254 * 1= 1MHz clock for 8254 */ #include <linux/module.h> #include <linux/gfp.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/comedi/comedidev.h> #include <linux/comedi/comedi_8254.h> #include <linux/comedi/comedi_isadma.h> /* * Register I/O map */ #define PCL816_DO_DI_LSB_REG 0x00 #define PCL816_DO_DI_MSB_REG 0x01 #define PCL816_TIMER_BASE 0x04 #define PCL816_AI_LSB_REG 0x08 #define PCL816_AI_MSB_REG 0x09 #define PCL816_RANGE_REG 0x09 #define PCL816_CLRINT_REG 0x0a #define PCL816_MUX_REG 0x0b #define PCL816_MUX_SCAN(_first, _last) (((_last) << 4) | (_first)) #define PCL816_CTRL_REG 0x0c #define PCL816_CTRL_SOFT_TRIG BIT(0) #define PCL816_CTRL_PACER_TRIG BIT(1) #define PCL816_CTRL_EXT_TRIG BIT(2) #define PCL816_CTRL_POE BIT(3) #define PCL816_CTRL_DMAEN BIT(4) #define PCL816_CTRL_INTEN BIT(5) #define PCL816_CTRL_DMASRC_SLOT(x) (((x) & 0x3) << 6) #define PCL816_STATUS_REG 0x0d #define PCL816_STATUS_NEXT_CHAN_MASK (0xf << 0) #define PCL816_STATUS_INTSRC_SLOT(x) (((x) & 0x3) << 4) #define PCL816_STATUS_INTSRC_DMA PCL816_STATUS_INTSRC_SLOT(3) #define PCL816_STATUS_INTSRC_MASK PCL816_STATUS_INTSRC_SLOT(3) #define PCL816_STATUS_INTACT BIT(6) #define PCL816_STATUS_DRDY BIT(7) #define MAGIC_DMA_WORD 0x5a5a static const struct comedi_lrange range_pcl816 = { 8, { BIP_RANGE(10), BIP_RANGE(5), BIP_RANGE(2.5), BIP_RANGE(1.25), UNI_RANGE(10), UNI_RANGE(5), UNI_RANGE(2.5), UNI_RANGE(1.25) } }; struct pcl816_board { const char *name; int ai_maxdata; int ai_chanlist; }; static const struct pcl816_board boardtypes[] = { { .name = "pcl816", .ai_maxdata = 0xffff, .ai_chanlist = 1024, }, { .name = "pcl814b", .ai_maxdata = 0x3fff, .ai_chanlist = 1024, }, }; struct pcl816_private { struct comedi_isadma *dma; unsigned int ai_poll_ptr; /* how many sampes transfer poll */ unsigned int ai_cmd_running:1; unsigned int ai_cmd_canceled:1; }; static void pcl816_ai_setup_dma(struct comedi_device *dev, struct comedi_subdevice *s, unsigned int unread_samples) { struct pcl816_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_isadma_desc *desc = &dma->desc[dma->cur_dma]; unsigned int max_samples = comedi_bytes_to_samples(s, desc->maxsize); unsigned int nsamples; comedi_isadma_disable(dma->chan); /* * Determine dma size based on the buffer maxsize plus the number of * unread samples and the number of samples remaining in the command. */ nsamples = comedi_nsamples_left(s, max_samples + unread_samples); if (nsamples > unread_samples) { nsamples -= unread_samples; desc->size = comedi_samples_to_bytes(s, nsamples); comedi_isadma_program(desc); } } static void pcl816_ai_set_chan_range(struct comedi_device *dev, unsigned int chan, unsigned int range) { outb(chan, dev->iobase + PCL816_MUX_REG); outb(range, dev->iobase + PCL816_RANGE_REG); } static void pcl816_ai_set_chan_scan(struct comedi_device *dev, unsigned int first_chan, unsigned int last_chan) { outb(PCL816_MUX_SCAN(first_chan, last_chan), dev->iobase + PCL816_MUX_REG); } static void pcl816_ai_setup_chanlist(struct comedi_device *dev, unsigned int *chanlist, unsigned int seglen) { unsigned int first_chan = CR_CHAN(chanlist[0]); unsigned int last_chan; unsigned int range; unsigned int i; /* store range list to card */ for (i = 0; i < seglen; i++) { last_chan = CR_CHAN(chanlist[i]); range = CR_RANGE(chanlist[i]); pcl816_ai_set_chan_range(dev, last_chan, range); } udelay(1); pcl816_ai_set_chan_scan(dev, first_chan, last_chan); } static void pcl816_ai_clear_eoc(struct comedi_device *dev) { /* writing any value clears the interrupt request */ outb(0, dev->iobase + PCL816_CLRINT_REG); } static void pcl816_ai_soft_trig(struct comedi_device *dev) { /* writing any value triggers a software conversion */ outb(0, dev->iobase + PCL816_AI_LSB_REG); } static unsigned int pcl816_ai_get_sample(struct comedi_device *dev, struct comedi_subdevice *s) { unsigned int val; val = inb(dev->iobase + PCL816_AI_MSB_REG) << 8; val |= inb(dev->iobase + PCL816_AI_LSB_REG); return val & s->maxdata; } static int pcl816_ai_eoc(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned long context) { unsigned int status; status = inb(dev->iobase + PCL816_STATUS_REG); if ((status & PCL816_STATUS_DRDY) == 0) return 0; return -EBUSY; } static bool pcl816_ai_next_chan(struct comedi_device *dev, struct comedi_subdevice *s) { struct comedi_cmd *cmd = &s->async->cmd; if (cmd->stop_src == TRIG_COUNT && s->async->scans_done >= cmd->stop_arg) { s->async->events |= COMEDI_CB_EOA; return false; } return true; } static void transfer_from_dma_buf(struct comedi_device *dev, struct comedi_subdevice *s, unsigned short *ptr, unsigned int bufptr, unsigned int len) { unsigned short val; int i; for (i = 0; i < len; i++) { val = ptr[bufptr++]; comedi_buf_write_samples(s, &val, 1); if (!pcl816_ai_next_chan(dev, s)) return; } } static irqreturn_t pcl816_interrupt(int irq, void *d) { struct comedi_device *dev = d; struct comedi_subdevice *s = dev->read_subdev; struct pcl816_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_isadma_desc *desc = &dma->desc[dma->cur_dma]; unsigned int nsamples; unsigned int bufptr; if (!dev->attached || !devpriv->ai_cmd_running) { pcl816_ai_clear_eoc(dev); return IRQ_HANDLED; } if (devpriv->ai_cmd_canceled) { devpriv->ai_cmd_canceled = 0; pcl816_ai_clear_eoc(dev); return IRQ_HANDLED; } nsamples = comedi_bytes_to_samples(s, desc->size) - devpriv->ai_poll_ptr; bufptr = devpriv->ai_poll_ptr; devpriv->ai_poll_ptr = 0; /* restart dma with the next buffer */ dma->cur_dma = 1 - dma->cur_dma; pcl816_ai_setup_dma(dev, s, nsamples); transfer_from_dma_buf(dev, s, desc->virt_addr, bufptr, nsamples); pcl816_ai_clear_eoc(dev); comedi_handle_events(dev, s); return IRQ_HANDLED; } static int check_channel_list(struct comedi_device *dev, struct comedi_subdevice *s, unsigned int *chanlist, unsigned int chanlen) { unsigned int chansegment[16]; unsigned int i, nowmustbechan, seglen; /* correct channel and range number check itself comedi/range.c */ if (chanlen < 1) { dev_err(dev->class_dev, "range/channel list is empty!\n"); return 0; } if (chanlen > 1) { /* first channel is every time ok */ chansegment[0] = chanlist[0]; for (i = 1, seglen = 1; i < chanlen; i++, seglen++) { /* we detect loop, this must by finish */ if (chanlist[0] == chanlist[i]) break; nowmustbechan = (CR_CHAN(chansegment[i - 1]) + 1) % chanlen; if (nowmustbechan != CR_CHAN(chanlist[i])) { /* channel list isn't continuous :-( */ dev_dbg(dev->class_dev, "channel list must be continuous! chanlist[%i]=%d but must be %d or %d!\n", i, CR_CHAN(chanlist[i]), nowmustbechan, CR_CHAN(chanlist[0])); return 0; } /* well, this is next correct channel in list */ chansegment[i] = chanlist[i]; } /* check whole chanlist */ for (i = 0; i < chanlen; i++) { if (chanlist[i] != chansegment[i % seglen]) { dev_dbg(dev->class_dev, "bad channel or range number! chanlist[%i]=%d,%d,%d and not %d,%d,%d!\n", i, CR_CHAN(chansegment[i]), CR_RANGE(chansegment[i]), CR_AREF(chansegment[i]), CR_CHAN(chanlist[i % seglen]), CR_RANGE(chanlist[i % seglen]), CR_AREF(chansegment[i % seglen])); return 0; /* chan/gain list is strange */ } } } else { seglen = 1; } return seglen; /* we can serve this with MUX logic */ } static int pcl816_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { int err = 0; /* Step 1 : check if triggers are trivially valid */ err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW); err |= comedi_check_trigger_src(&cmd->scan_begin_src, TRIG_FOLLOW); err |= comedi_check_trigger_src(&cmd->convert_src, TRIG_EXT | TRIG_TIMER); err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); if (err) return 1; /* Step 2a : make sure trigger sources are unique */ err |= comedi_check_trigger_is_unique(cmd->convert_src); err |= comedi_check_trigger_is_unique(cmd->stop_src); /* Step 2b : and mutually compatible */ if (err) return 2; /* Step 3: check if arguments are trivially valid */ err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0); err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, 0); if (cmd->convert_src == TRIG_TIMER) err |= comedi_check_trigger_arg_min(&cmd->convert_arg, 10000); else /* TRIG_EXT */ err |= comedi_check_trigger_arg_is(&cmd->convert_arg, 0); err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len); if (cmd->stop_src == TRIG_COUNT) err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1); else /* TRIG_NONE */ err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0); if (err) return 3; /* step 4: fix up any arguments */ if (cmd->convert_src == TRIG_TIMER) { unsigned int arg = cmd->convert_arg; comedi_8254_cascade_ns_to_timer(dev->pacer, &arg, cmd->flags); err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg); } if (err) return 4; /* step 5: complain about special chanlist considerations */ if (cmd->chanlist) { if (!check_channel_list(dev, s, cmd->chanlist, cmd->chanlist_len)) return 5; /* incorrect channels list */ } return 0; } static int pcl816_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct pcl816_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_cmd *cmd = &s->async->cmd; unsigned int ctrl; unsigned int seglen; if (devpriv->ai_cmd_running) return -EBUSY; seglen = check_channel_list(dev, s, cmd->chanlist, cmd->chanlist_len); if (seglen < 1) return -EINVAL; pcl816_ai_setup_chanlist(dev, cmd->chanlist, seglen); udelay(1); devpriv->ai_cmd_running = 1; devpriv->ai_poll_ptr = 0; devpriv->ai_cmd_canceled = 0; /* setup and enable dma for the first buffer */ dma->cur_dma = 0; pcl816_ai_setup_dma(dev, s, 0); comedi_8254_set_mode(dev->pacer, 0, I8254_MODE1 | I8254_BINARY); comedi_8254_write(dev->pacer, 0, 0x0ff); udelay(1); comedi_8254_update_divisors(dev->pacer); comedi_8254_pacer_enable(dev->pacer, 1, 2, true); ctrl = PCL816_CTRL_INTEN | PCL816_CTRL_DMAEN | PCL816_CTRL_DMASRC_SLOT(0); if (cmd->convert_src == TRIG_TIMER) ctrl |= PCL816_CTRL_PACER_TRIG; else /* TRIG_EXT */ ctrl |= PCL816_CTRL_EXT_TRIG; outb(ctrl, dev->iobase + PCL816_CTRL_REG); outb((dma->chan << 4) | dev->irq, dev->iobase + PCL816_STATUS_REG); return 0; } static int pcl816_ai_poll(struct comedi_device *dev, struct comedi_subdevice *s) { struct pcl816_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_isadma_desc *desc; unsigned long flags; unsigned int poll; int ret; spin_lock_irqsave(&dev->spinlock, flags); poll = comedi_isadma_poll(dma); poll = comedi_bytes_to_samples(s, poll); if (poll > devpriv->ai_poll_ptr) { desc = &dma->desc[dma->cur_dma]; transfer_from_dma_buf(dev, s, desc->virt_addr, devpriv->ai_poll_ptr, poll - devpriv->ai_poll_ptr); /* new buffer position */ devpriv->ai_poll_ptr = poll; comedi_handle_events(dev, s); ret = comedi_buf_n_bytes_ready(s); } else { /* no new samples */ ret = 0; } spin_unlock_irqrestore(&dev->spinlock, flags); return ret; } static int pcl816_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { struct pcl816_private *devpriv = dev->private; if (!devpriv->ai_cmd_running) return 0; outb(0, dev->iobase + PCL816_CTRL_REG); pcl816_ai_clear_eoc(dev); comedi_8254_pacer_enable(dev->pacer, 1, 2, false); devpriv->ai_cmd_running = 0; devpriv->ai_cmd_canceled = 1; return 0; } static int pcl816_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { unsigned int chan = CR_CHAN(insn->chanspec); unsigned int range = CR_RANGE(insn->chanspec); int ret = 0; int i; outb(PCL816_CTRL_SOFT_TRIG, dev->iobase + PCL816_CTRL_REG); pcl816_ai_set_chan_range(dev, chan, range); pcl816_ai_set_chan_scan(dev, chan, chan); for (i = 0; i < insn->n; i++) { pcl816_ai_clear_eoc(dev); pcl816_ai_soft_trig(dev); ret = comedi_timeout(dev, s, insn, pcl816_ai_eoc, 0); if (ret) break; data[i] = pcl816_ai_get_sample(dev, s); } outb(0, dev->iobase + PCL816_CTRL_REG); pcl816_ai_clear_eoc(dev); return ret ? ret : insn->n; } static int pcl816_di_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { data[1] = inb(dev->iobase + PCL816_DO_DI_LSB_REG) | (inb(dev->iobase + PCL816_DO_DI_MSB_REG) << 8); return insn->n; } static int pcl816_do_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { if (comedi_dio_update_state(s, data)) { outb(s->state & 0xff, dev->iobase + PCL816_DO_DI_LSB_REG); outb((s->state >> 8), dev->iobase + PCL816_DO_DI_MSB_REG); } data[1] = s->state; return insn->n; } static void pcl816_reset(struct comedi_device *dev) { outb(0, dev->iobase + PCL816_CTRL_REG); pcl816_ai_set_chan_range(dev, 0, 0); pcl816_ai_clear_eoc(dev); /* set all digital outputs low */ outb(0, dev->iobase + PCL816_DO_DI_LSB_REG); outb(0, dev->iobase + PCL816_DO_DI_MSB_REG); } static void pcl816_alloc_irq_and_dma(struct comedi_device *dev, struct comedi_devconfig *it) { struct pcl816_private *devpriv = dev->private; unsigned int irq_num = it->options[1]; unsigned int dma_chan = it->options[2]; /* only IRQs 2-7 and DMA channels 3 and 1 are valid */ if (!(irq_num >= 2 && irq_num <= 7) || !(dma_chan == 3 || dma_chan == 1)) return; if (request_irq(irq_num, pcl816_interrupt, 0, dev->board_name, dev)) return; /* DMA uses two 16K buffers */ devpriv->dma = comedi_isadma_alloc(dev, 2, dma_chan, dma_chan, PAGE_SIZE * 4, COMEDI_ISADMA_READ); if (!devpriv->dma) free_irq(irq_num, dev); else dev->irq = irq_num; } static void pcl816_free_dma(struct comedi_device *dev) { struct pcl816_private *devpriv = dev->private; if (devpriv) comedi_isadma_free(devpriv->dma); } static int pcl816_attach(struct comedi_device *dev, struct comedi_devconfig *it) { const struct pcl816_board *board = dev->board_ptr; struct pcl816_private *devpriv; struct comedi_subdevice *s; int ret; devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); if (!devpriv) return -ENOMEM; ret = comedi_request_region(dev, it->options[0], 0x10); if (ret) return ret; /* an IRQ and DMA are required to support async commands */ pcl816_alloc_irq_and_dma(dev, it); dev->pacer = comedi_8254_io_alloc(dev->iobase + PCL816_TIMER_BASE, I8254_OSC_BASE_10MHZ, I8254_IO8, 0); if (IS_ERR(dev->pacer)) return PTR_ERR(dev->pacer); ret = comedi_alloc_subdevices(dev, 4); if (ret) return ret; s = &dev->subdevices[0]; s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_CMD_READ | SDF_DIFF; s->n_chan = 16; s->maxdata = board->ai_maxdata; s->range_table = &range_pcl816; s->insn_read = pcl816_ai_insn_read; if (dev->irq) { dev->read_subdev = s; s->subdev_flags |= SDF_CMD_READ; s->len_chanlist = board->ai_chanlist; s->do_cmdtest = pcl816_ai_cmdtest; s->do_cmd = pcl816_ai_cmd; s->poll = pcl816_ai_poll; s->cancel = pcl816_ai_cancel; } /* Piggyback Slot1 subdevice */ s = &dev->subdevices[1]; s->type = COMEDI_SUBD_UNUSED; /* Digital Input subdevice */ s = &dev->subdevices[2]; s->type = COMEDI_SUBD_DI; s->subdev_flags = SDF_READABLE; s->n_chan = 16; s->maxdata = 1; s->range_table = &range_digital; s->insn_bits = pcl816_di_insn_bits; /* Digital Output subdevice */ s = &dev->subdevices[3]; s->type = COMEDI_SUBD_DO; s->subdev_flags = SDF_WRITABLE; s->n_chan = 16; s->maxdata = 1; s->range_table = &range_digital; s->insn_bits = pcl816_do_insn_bits; pcl816_reset(dev); return 0; } static void pcl816_detach(struct comedi_device *dev) { if (dev->private) { pcl816_ai_cancel(dev, dev->read_subdev); pcl816_reset(dev); } pcl816_free_dma(dev); comedi_legacy_detach(dev); } static struct comedi_driver pcl816_driver = { .driver_name = "pcl816", .module = THIS_MODULE, .attach = pcl816_attach, .detach = pcl816_detach, .board_name = &boardtypes[0].name, .num_names = ARRAY_SIZE(boardtypes), .offset = sizeof(struct pcl816_board), }; module_comedi_driver(pcl816_driver); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL");
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RATELIMIT_H #define _LINUX_RATELIMIT_H #include <linux/ratelimit_types.h> #include <linux/sched.h> #include <linux/spinlock.h> static inline void ratelimit_state_init(struct ratelimit_state *rs, int interval, int burst) { memset(rs, 0, sizeof(*rs)); raw_spin_lock_init(&rs->lock); rs->interval = interval; rs->burst = burst; } static inline void ratelimit_default_init(struct ratelimit_state *rs) { return ratelimit_state_init(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); } static inline void ratelimit_state_inc_miss(struct ratelimit_state *rs) { atomic_inc(&rs->missed); } static inline int ratelimit_state_get_miss(struct ratelimit_state *rs) { return atomic_read(&rs->missed); } static inline int ratelimit_state_reset_miss(struct ratelimit_state *rs) { return atomic_xchg_relaxed(&rs->missed, 0); } static inline void ratelimit_state_reset_interval(struct ratelimit_state *rs, int interval_init) { unsigned long flags; raw_spin_lock_irqsave(&rs->lock, flags); rs->interval = interval_init; rs->flags &= ~RATELIMIT_INITIALIZED; atomic_set(&rs->rs_n_left, rs->burst); ratelimit_state_reset_miss(rs); raw_spin_unlock_irqrestore(&rs->lock, flags); } static inline void ratelimit_state_exit(struct ratelimit_state *rs) { int m; if (!(rs->flags & RATELIMIT_MSG_ON_RELEASE)) return; m = ratelimit_state_reset_miss(rs); if (m) pr_warn("%s: %d output lines suppressed due to ratelimiting\n", current->comm, m); } static inline void ratelimit_set_flags(struct ratelimit_state *rs, unsigned long flags) { rs->flags = flags; } extern struct ratelimit_state printk_ratelimit_state; #ifdef CONFIG_PRINTK #define WARN_ON_RATELIMIT(condition, state) ({ \ bool __rtn_cond = !!(condition); \ WARN_ON(__rtn_cond && __ratelimit(state)); \ __rtn_cond; \ }) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ int rtn = !!(condition); \ \ if (unlikely(rtn && __ratelimit(&_rs))) \ WARN(rtn, format, ##__VA_ARGS__); \ \ rtn; \ }) #else #define WARN_ON_RATELIMIT(condition, state) \ WARN_ON(condition) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ int rtn = WARN(condition, format, ##__VA_ARGS__); \ rtn; \ }) #endif #endif /* _LINUX_RATELIMIT_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 // SPDX-License-Identifier: GPL-2.0-only /* DVB USB compliant linux driver for mobile DVB-T USB devices based on * reference designs made by DiBcom (http://www.dibcom.fr/) (DiB3000M-C/P) * * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@posteo.de) * * based on GPL code from DiBcom, which has * Copyright (C) 2004 Amaury Demol for DiBcom * * see Documentation/driver-api/media/drivers/dvb-usb.rst for more information */ #include "dibusb.h" DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); /* USB Driver stuff */ static struct dvb_usb_device_properties dibusb_mc_properties; static int dibusb_mc_probe(struct usb_interface *intf, const struct usb_device_id *id) { return dvb_usb_device_init(intf, &dibusb_mc_properties, THIS_MODULE, NULL, adapter_nr); } /* do not change the order of the ID table */ enum { DIBCOM_MOD3001_COLD, DIBCOM_MOD3001_WARM, ULTIMA_TVBOX_USB2_COLD, ULTIMA_TVBOX_USB2_WARM, LITEON_DVB_T_COLD, LITEON_DVB_T_WARM, EMPIA_DIGIVOX_MINI_SL_COLD, EMPIA_DIGIVOX_MINI_SL_WARM, GRANDTEC_DVBT_USB2_COLD, GRANDTEC_DVBT_USB2_WARM, ULTIMA_ARTEC_T14_COLD, ULTIMA_ARTEC_T14_WARM, LEADTEK_WINFAST_DTV_DONGLE_COLD, LEADTEK_WINFAST_DTV_DONGLE_WARM, HUMAX_DVB_T_STICK_HIGH_SPEED_COLD, HUMAX_DVB_T_STICK_HIGH_SPEED_WARM, }; static const struct usb_device_id dibusb_dib3000mc_table[] = { DVB_USB_DEV(DIBCOM, DIBCOM_MOD3001_COLD), DVB_USB_DEV(DIBCOM, DIBCOM_MOD3001_WARM), DVB_USB_DEV(ULTIMA_ELECTRONIC, ULTIMA_TVBOX_USB2_COLD), DVB_USB_DEV(ULTIMA_ELECTRONIC, ULTIMA_TVBOX_USB2_WARM), DVB_USB_DEV(LITEON, LITEON_DVB_T_COLD), DVB_USB_DEV(LITEON, LITEON_DVB_T_WARM), DVB_USB_DEV(EMPIA, EMPIA_DIGIVOX_MINI_SL_COLD), DVB_USB_DEV(EMPIA, EMPIA_DIGIVOX_MINI_SL_WARM), DVB_USB_DEV(GRANDTEC, GRANDTEC_DVBT_USB2_COLD), DVB_USB_DEV(GRANDTEC, GRANDTEC_DVBT_USB2_WARM), DVB_USB_DEV(ULTIMA_ELECTRONIC, ULTIMA_ARTEC_T14_COLD), DVB_USB_DEV(ULTIMA_ELECTRONIC, ULTIMA_ARTEC_T14_WARM), DVB_USB_DEV(LEADTEK, LEADTEK_WINFAST_DTV_DONGLE_COLD), DVB_USB_DEV(LEADTEK, LEADTEK_WINFAST_DTV_DONGLE_WARM), DVB_USB_DEV(HUMAX_COEX, HUMAX_DVB_T_STICK_HIGH_SPEED_COLD), DVB_USB_DEV(HUMAX_COEX, HUMAX_DVB_T_STICK_HIGH_SPEED_WARM), { } }; MODULE_DEVICE_TABLE (usb, dibusb_dib3000mc_table); static struct dvb_usb_device_properties dibusb_mc_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = CYPRESS_FX2, .firmware = "dvb-usb-dibusb-6.0.0.8.fw", .num_adapters = 1, .adapter = { { .num_frontends = 1, .fe = {{ .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .streaming_ctrl = dibusb2_0_streaming_ctrl, .pid_filter = dibusb_pid_filter, .pid_filter_ctrl = dibusb_pid_filter_ctrl, .frontend_attach = dibusb_dib3000mc_frontend_attach, .tuner_attach = dibusb_dib3000mc_tuner_attach, /* parameter for the MPEG2-data transfer */ .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x06, .u = { .bulk = { .buffersize = 4096, } } }, }}, .size_of_priv = sizeof(struct dibusb_state), } }, .power_ctrl = dibusb2_0_power_ctrl, .rc.legacy = { .rc_interval = DEFAULT_RC_INTERVAL, .rc_map_table = rc_map_dibusb_table, .rc_map_size = 111, /* FIXME */ .rc_query = dibusb_rc_query, }, .i2c_algo = &dibusb_i2c_algo, .generic_bulk_ctrl_endpoint = 0x01, .num_device_descs = 8, .devices = { { "DiBcom USB2.0 DVB-T reference design (MOD3000P)", { &dibusb_dib3000mc_table[DIBCOM_MOD3001_COLD], NULL }, { &dibusb_dib3000mc_table[DIBCOM_MOD3001_WARM], NULL }, }, { "Artec T1 USB2.0 TVBOX (please check the warm ID)", { &dibusb_dib3000mc_table[ULTIMA_TVBOX_USB2_COLD], NULL }, { &dibusb_dib3000mc_table[ULTIMA_TVBOX_USB2_WARM], NULL }, }, { "LITE-ON USB2.0 DVB-T Tuner", /* Also rebranded as Intuix S800, Toshiba */ { &dibusb_dib3000mc_table[LITEON_DVB_T_COLD], NULL }, { &dibusb_dib3000mc_table[LITEON_DVB_T_WARM], NULL }, }, { "MSI Digivox Mini SL", { &dibusb_dib3000mc_table[EMPIA_DIGIVOX_MINI_SL_COLD], NULL }, { &dibusb_dib3000mc_table[EMPIA_DIGIVOX_MINI_SL_WARM], NULL }, }, { "GRAND - USB2.0 DVB-T adapter", { &dibusb_dib3000mc_table[GRANDTEC_DVBT_USB2_COLD], NULL }, { &dibusb_dib3000mc_table[GRANDTEC_DVBT_USB2_WARM], NULL }, }, { "Artec T14 - USB2.0 DVB-T", { &dibusb_dib3000mc_table[ULTIMA_ARTEC_T14_COLD], NULL }, { &dibusb_dib3000mc_table[ULTIMA_ARTEC_T14_WARM], NULL }, }, { "Leadtek - USB2.0 Winfast DTV dongle", { &dibusb_dib3000mc_table[LEADTEK_WINFAST_DTV_DONGLE_COLD], NULL }, { &dibusb_dib3000mc_table[LEADTEK_WINFAST_DTV_DONGLE_WARM], NULL }, }, { "Humax/Coex DVB-T USB Stick 2.0 High Speed", { &dibusb_dib3000mc_table[HUMAX_DVB_T_STICK_HIGH_SPEED_COLD], NULL }, { &dibusb_dib3000mc_table[HUMAX_DVB_T_STICK_HIGH_SPEED_WARM], NULL }, }, { NULL }, } }; static struct usb_driver dibusb_mc_driver = { .name = "dvb_usb_dibusb_mc", .probe = dibusb_mc_probe, .disconnect = dvb_usb_device_exit, .id_table = dibusb_dib3000mc_table, }; module_usb_driver(dibusb_mc_driver); MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); MODULE_DESCRIPTION("Driver for DiBcom USB2.0 DVB-T (DiB3000M-C/P based) devices"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL");
5915 2035 5917 5929 5929 2035 5911 5922 5906 19 19 19 3 17 19 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 Red Hat, Inc., Peter Zijlstra * * Provides a framework for enqueueing and running callbacks from hardirq * context. The enqueueing is NMI-safe. */ #include <linux/bug.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/irq_work.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/irqflags.h> #include <linux/sched.h> #include <linux/tick.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/smp.h> #include <linux/smpboot.h> #include <asm/processor.h> #include <linux/kasan.h> #include <trace/events/ipi.h> static DEFINE_PER_CPU(struct llist_head, raised_list); static DEFINE_PER_CPU(struct llist_head, lazy_list); static DEFINE_PER_CPU(struct task_struct *, irq_workd); static void wake_irq_workd(void) { struct task_struct *tsk = __this_cpu_read(irq_workd); if (!llist_empty(this_cpu_ptr(&lazy_list)) && tsk) wake_up_process(tsk); } #ifdef CONFIG_SMP static void irq_work_wake(struct irq_work *entry) { wake_irq_workd(); } static DEFINE_PER_CPU(struct irq_work, irq_work_wakeup) = IRQ_WORK_INIT_HARD(irq_work_wake); #endif static int irq_workd_should_run(unsigned int cpu) { return !llist_empty(this_cpu_ptr(&lazy_list)); } /* * Claim the entry so that no one else will poke at it. */ static bool irq_work_claim(struct irq_work *work) { int oflags; oflags = atomic_fetch_or(IRQ_WORK_CLAIMED | CSD_TYPE_IRQ_WORK, &work->node.a_flags); /* * If the work is already pending, no need to raise the IPI. * The pairing smp_mb() in irq_work_single() makes sure * everything we did before is visible. */ if (oflags & IRQ_WORK_PENDING) return false; return true; } void __weak arch_irq_work_raise(void) { /* * Lame architectures will get the timer tick callback */ } static __always_inline void irq_work_raise(struct irq_work *work) { if (trace_ipi_send_cpu_enabled() && arch_irq_work_has_interrupt()) trace_ipi_send_cpu(smp_processor_id(), _RET_IP_, work->func); arch_irq_work_raise(); } /* Enqueue on current CPU, work must already be claimed and preempt disabled */ static void __irq_work_queue_local(struct irq_work *work) { struct llist_head *list; bool rt_lazy_work = false; bool lazy_work = false; int work_flags; work_flags = atomic_read(&work->node.a_flags); if (work_flags & IRQ_WORK_LAZY) lazy_work = true; else if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(work_flags & IRQ_WORK_HARD_IRQ)) rt_lazy_work = true; if (lazy_work || rt_lazy_work) list = this_cpu_ptr(&lazy_list); else list = this_cpu_ptr(&raised_list); if (!llist_add(&work->node.llist, list)) return; /* If the work is "lazy", handle it from next tick if any */ if (!lazy_work || tick_nohz_tick_stopped()) irq_work_raise(work); } /* Enqueue the irq work @work on the current CPU */ bool irq_work_queue(struct irq_work *work) { /* Only queue if not already pending */ if (!irq_work_claim(work)) return false; /* Queue the entry and raise the IPI if needed. */ preempt_disable(); __irq_work_queue_local(work); preempt_enable(); return true; } EXPORT_SYMBOL_GPL(irq_work_queue); /* * Enqueue the irq_work @work on @cpu unless it's already pending * somewhere. * * Can be re-enqueued while the callback is still in progress. */ bool irq_work_queue_on(struct irq_work *work, int cpu) { #ifndef CONFIG_SMP return irq_work_queue(work); #else /* CONFIG_SMP: */ /* All work should have been flushed before going offline */ WARN_ON_ONCE(cpu_is_offline(cpu)); /* Only queue if not already pending */ if (!irq_work_claim(work)) return false; kasan_record_aux_stack(work); preempt_disable(); if (cpu != smp_processor_id()) { /* Arch remote IPI send/receive backend aren't NMI safe */ WARN_ON_ONCE(in_nmi()); /* * On PREEMPT_RT the items which are not marked as * IRQ_WORK_HARD_IRQ are added to the lazy list and a HARD work * item is used on the remote CPU to wake the thread. */ if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(atomic_read(&work->node.a_flags) & IRQ_WORK_HARD_IRQ)) { if (!llist_add(&work->node.llist, &per_cpu(lazy_list, cpu))) goto out; work = &per_cpu(irq_work_wakeup, cpu); if (!irq_work_claim(work)) goto out; } __smp_call_single_queue(cpu, &work->node.llist); } else { __irq_work_queue_local(work); } out: preempt_enable(); return true; #endif /* CONFIG_SMP */ } bool irq_work_needs_cpu(void) { struct llist_head *raised, *lazy; raised = this_cpu_ptr(&raised_list); lazy = this_cpu_ptr(&lazy_list); if (llist_empty(raised) || arch_irq_work_has_interrupt()) if (llist_empty(lazy)) return false; /* All work should have been flushed before going offline */ WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); return true; } void irq_work_single(void *arg) { struct irq_work *work = arg; int flags; /* * Clear the PENDING bit, after this point the @work can be re-used. * The PENDING bit acts as a lock, and we own it, so we can clear it * without atomic ops. */ flags = atomic_read(&work->node.a_flags); flags &= ~IRQ_WORK_PENDING; atomic_set(&work->node.a_flags, flags); /* * See irq_work_claim(). */ smp_mb(); lockdep_irq_work_enter(flags); work->func(work); lockdep_irq_work_exit(flags); /* * Clear the BUSY bit, if set, and return to the free state if no-one * else claimed it meanwhile. */ (void)atomic_cmpxchg(&work->node.a_flags, flags, flags & ~IRQ_WORK_BUSY); if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || !arch_irq_work_has_interrupt()) rcuwait_wake_up(&work->irqwait); } static void irq_work_run_list(struct llist_head *list) { struct irq_work *work, *tmp; struct llist_node *llnode; /* * On PREEMPT_RT IRQ-work which is not marked as HARD will be processed * in a per-CPU thread in preemptible context. Only the items which are * marked as IRQ_WORK_HARD_IRQ will be processed in hardirq context. */ BUG_ON(!irqs_disabled() && !IS_ENABLED(CONFIG_PREEMPT_RT)); if (llist_empty(list)) return; llnode = llist_del_all(list); llist_for_each_entry_safe(work, tmp, llnode, node.llist) irq_work_single(work); } /* * hotplug calls this through: * hotplug_cfd() -> flush_smp_call_function_queue() */ void irq_work_run(void) { irq_work_run_list(this_cpu_ptr(&raised_list)); if (!IS_ENABLED(CONFIG_PREEMPT_RT)) irq_work_run_list(this_cpu_ptr(&lazy_list)); else wake_irq_workd(); } EXPORT_SYMBOL_GPL(irq_work_run); void irq_work_tick(void) { struct llist_head *raised = this_cpu_ptr(&raised_list); if (!llist_empty(raised) && !arch_irq_work_has_interrupt()) irq_work_run_list(raised); if (!IS_ENABLED(CONFIG_PREEMPT_RT)) irq_work_run_list(this_cpu_ptr(&lazy_list)); else wake_irq_workd(); } /* * Synchronize against the irq_work @entry, ensures the entry is not * currently in use. */ void irq_work_sync(struct irq_work *work) { lockdep_assert_irqs_enabled(); might_sleep(); if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || !arch_irq_work_has_interrupt()) { rcuwait_wait_event(&work->irqwait, !irq_work_is_busy(work), TASK_UNINTERRUPTIBLE); return; } while (irq_work_is_busy(work)) cpu_relax(); } EXPORT_SYMBOL_GPL(irq_work_sync); static void run_irq_workd(unsigned int cpu) { irq_work_run_list(this_cpu_ptr(&lazy_list)); } static void irq_workd_setup(unsigned int cpu) { sched_set_fifo_low(current); } static struct smp_hotplug_thread irqwork_threads = { .store = &irq_workd, .setup = irq_workd_setup, .thread_should_run = irq_workd_should_run, .thread_fn = run_irq_workd, .thread_comm = "irq_work/%u", }; static __init int irq_work_init_threads(void) { if (IS_ENABLED(CONFIG_PREEMPT_RT)) BUG_ON(smpboot_register_percpu_thread(&irqwork_threads)); return 0; } early_initcall(irq_work_init_threads);
1 1 1 1 2519 3 2518 2387 2388 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 // SPDX-License-Identifier: GPL-2.0 /* * devtmpfs - kernel-maintained tmpfs-based /dev * * Copyright (C) 2009, Kay Sievers <kay.sievers@vrfy.org> * * During bootup, before any driver core device is registered, * devtmpfs, a tmpfs-based filesystem is created. Every driver-core * device which requests a device node, will add a node in this * filesystem. * By default, all devices are named after the name of the device, * owned by root and have a default mode of 0600. Subsystems can * overwrite the default setting if needed. */ #define pr_fmt(fmt) "devtmpfs: " fmt #include <linux/kernel.h> #include <linux/syscalls.h> #include <linux/mount.h> #include <linux/device.h> #include <linux/blkdev.h> #include <linux/namei.h> #include <linux/fs.h> #include <linux/shmem_fs.h> #include <linux/ramfs.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/kthread.h> #include <linux/init_syscalls.h> #include <uapi/linux/mount.h> #include "base.h" #ifdef CONFIG_DEVTMPFS_SAFE #define DEVTMPFS_MFLAGS (MS_SILENT | MS_NOEXEC | MS_NOSUID) #else #define DEVTMPFS_MFLAGS (MS_SILENT) #endif static struct task_struct *thread; static int __initdata mount_dev = IS_ENABLED(CONFIG_DEVTMPFS_MOUNT); static DEFINE_SPINLOCK(req_lock); static struct req { struct req *next; struct completion done; int err; const char *name; umode_t mode; /* 0 => delete */ kuid_t uid; kgid_t gid; struct device *dev; } *requests; static int __init mount_param(char *str) { mount_dev = simple_strtoul(str, NULL, 0); return 1; } __setup("devtmpfs.mount=", mount_param); static struct vfsmount *mnt; static struct file_system_type internal_fs_type = { .name = "devtmpfs", #ifdef CONFIG_TMPFS .init_fs_context = shmem_init_fs_context, #else .init_fs_context = ramfs_init_fs_context, #endif .kill_sb = kill_litter_super, }; /* Simply take a ref on the existing mount */ static int devtmpfs_get_tree(struct fs_context *fc) { struct super_block *sb = mnt->mnt_sb; atomic_inc(&sb->s_active); down_write(&sb->s_umount); fc->root = dget(sb->s_root); return 0; } /* Ops are filled in during init depending on underlying shmem or ramfs type */ struct fs_context_operations devtmpfs_context_ops = {}; /* Call the underlying initialization and set to our ops */ static int devtmpfs_init_fs_context(struct fs_context *fc) { int ret; #ifdef CONFIG_TMPFS ret = shmem_init_fs_context(fc); #else ret = ramfs_init_fs_context(fc); #endif if (ret < 0) return ret; fc->ops = &devtmpfs_context_ops; return 0; } static struct file_system_type dev_fs_type = { .name = "devtmpfs", .init_fs_context = devtmpfs_init_fs_context, }; static int devtmpfs_submit_req(struct req *req, const char *tmp) { init_completion(&req->done); spin_lock(&req_lock); req->next = requests; requests = req; spin_unlock(&req_lock); wake_up_process(thread); wait_for_completion(&req->done); kfree(tmp); return req->err; } int devtmpfs_create_node(struct device *dev) { const char *tmp = NULL; struct req req; if (!thread) return 0; req.mode = 0; req.uid = GLOBAL_ROOT_UID; req.gid = GLOBAL_ROOT_GID; req.name = device_get_devnode(dev, &req.mode, &req.uid, &req.gid, &tmp); if (!req.name) return -ENOMEM; if (req.mode == 0) req.mode = 0600; if (is_blockdev(dev)) req.mode |= S_IFBLK; else req.mode |= S_IFCHR; req.dev = dev; return devtmpfs_submit_req(&req, tmp); } int devtmpfs_delete_node(struct device *dev) { const char *tmp = NULL; struct req req; if (!thread) return 0; req.name = device_get_devnode(dev, NULL, NULL, NULL, &tmp); if (!req.name) return -ENOMEM; req.mode = 0; req.dev = dev; return devtmpfs_submit_req(&req, tmp); } static int dev_mkdir(const char *name, umode_t mode) { struct dentry *dentry; struct path path; dentry = kern_path_create(AT_FDCWD, name, &path, LOOKUP_DIRECTORY); if (IS_ERR(dentry)) return PTR_ERR(dentry); dentry = vfs_mkdir(&nop_mnt_idmap, d_inode(path.dentry), dentry, mode); if (!IS_ERR(dentry)) /* mark as kernel-created inode */ d_inode(dentry)->i_private = &thread; done_path_create(&path, dentry); return PTR_ERR_OR_ZERO(dentry); } static int create_path(const char *nodepath) { char *path; char *s; int err = 0; /* parent directories do not exist, create them */ path = kstrdup(nodepath, GFP_KERNEL); if (!path) return -ENOMEM; s = path; for (;;) { s = strchr(s, '/'); if (!s) break; s[0] = '\0'; err = dev_mkdir(path, 0755); if (err && err != -EEXIST) break; s[0] = '/'; s++; } kfree(path); return err; } static int handle_create(const char *nodename, umode_t mode, kuid_t uid, kgid_t gid, struct device *dev) { struct dentry *dentry; struct path path; int err; dentry = kern_path_create(AT_FDCWD, nodename, &path, 0); if (dentry == ERR_PTR(-ENOENT)) { create_path(nodename); dentry = kern_path_create(AT_FDCWD, nodename, &path, 0); } if (IS_ERR(dentry)) return PTR_ERR(dentry); err = vfs_mknod(&nop_mnt_idmap, d_inode(path.dentry), dentry, mode, dev->devt); if (!err) { struct iattr newattrs; newattrs.ia_mode = mode; newattrs.ia_uid = uid; newattrs.ia_gid = gid; newattrs.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID; inode_lock(d_inode(dentry)); notify_change(&nop_mnt_idmap, dentry, &newattrs, NULL); inode_unlock(d_inode(dentry)); /* mark as kernel-created inode */ d_inode(dentry)->i_private = &thread; } done_path_create(&path, dentry); return err; } static int dev_rmdir(const char *name) { struct path parent; struct dentry *dentry; int err; dentry = kern_path_locked(name, &parent); if (IS_ERR(dentry)) return PTR_ERR(dentry); if (d_inode(dentry)->i_private == &thread) err = vfs_rmdir(&nop_mnt_idmap, d_inode(parent.dentry), dentry); else err = -EPERM; dput(dentry); inode_unlock(d_inode(parent.dentry)); path_put(&parent); return err; } static int delete_path(const char *nodepath) { char *path; int err = 0; path = kstrdup(nodepath, GFP_KERNEL); if (!path) return -ENOMEM; for (;;) { char *base; base = strrchr(path, '/'); if (!base) break; base[0] = '\0'; err = dev_rmdir(path); if (err) break; } kfree(path); return err; } static int dev_mynode(struct device *dev, struct inode *inode) { /* did we create it */ if (inode->i_private != &thread) return 0; /* does the dev_t match */ if (is_blockdev(dev)) { if (!S_ISBLK(inode->i_mode)) return 0; } else { if (!S_ISCHR(inode->i_mode)) return 0; } if (inode->i_rdev != dev->devt) return 0; /* ours */ return 1; } static int handle_remove(const char *nodename, struct device *dev) { struct path parent; struct dentry *dentry; struct inode *inode; int deleted = 0; int err = 0; dentry = kern_path_locked(nodename, &parent); if (IS_ERR(dentry)) return PTR_ERR(dentry); inode = d_inode(dentry); if (dev_mynode(dev, inode)) { struct iattr newattrs; /* * before unlinking this node, reset permissions * of possible references like hardlinks */ newattrs.ia_uid = GLOBAL_ROOT_UID; newattrs.ia_gid = GLOBAL_ROOT_GID; newattrs.ia_mode = inode->i_mode & ~0777; newattrs.ia_valid = ATTR_UID|ATTR_GID|ATTR_MODE; inode_lock(d_inode(dentry)); notify_change(&nop_mnt_idmap, dentry, &newattrs, NULL); inode_unlock(d_inode(dentry)); err = vfs_unlink(&nop_mnt_idmap, d_inode(parent.dentry), dentry, NULL); if (!err || err == -ENOENT) deleted = 1; } dput(dentry); inode_unlock(d_inode(parent.dentry)); path_put(&parent); if (deleted && strchr(nodename, '/')) delete_path(nodename); return err; } /* * If configured, or requested by the commandline, devtmpfs will be * auto-mounted after the kernel mounted the root filesystem. */ int __init devtmpfs_mount(void) { int err; if (!mount_dev) return 0; if (!thread) return 0; err = init_mount("devtmpfs", "dev", "devtmpfs", DEVTMPFS_MFLAGS, NULL); if (err) pr_info("error mounting %d\n", err); else pr_info("mounted\n"); return err; } static __initdata DECLARE_COMPLETION(setup_done); static int handle(const char *name, umode_t mode, kuid_t uid, kgid_t gid, struct device *dev) { if (mode) return handle_create(name, mode, uid, gid, dev); else return handle_remove(name, dev); } static void __noreturn devtmpfs_work_loop(void) { while (1) { spin_lock(&req_lock); while (requests) { struct req *req = requests; requests = NULL; spin_unlock(&req_lock); while (req) { struct req *next = req->next; req->err = handle(req->name, req->mode, req->uid, req->gid, req->dev); complete(&req->done); req = next; } spin_lock(&req_lock); } __set_current_state(TASK_INTERRUPTIBLE); spin_unlock(&req_lock); schedule(); } } static noinline int __init devtmpfs_setup(void *p) { int err; err = ksys_unshare(CLONE_NEWNS); if (err) goto out; err = init_mount("devtmpfs", "/", "devtmpfs", DEVTMPFS_MFLAGS, NULL); if (err) goto out; init_chdir("/.."); /* will traverse into overmounted root */ init_chroot("."); out: *(int *)p = err; return err; } /* * The __ref is because devtmpfs_setup needs to be __init for the routines it * calls. That call is done while devtmpfs_init, which is marked __init, * synchronously waits for it to complete. */ static int __ref devtmpfsd(void *p) { int err = devtmpfs_setup(p); complete(&setup_done); if (err) return err; devtmpfs_work_loop(); return 0; } /* * Get the underlying (shmem/ramfs) context ops to build ours */ static int devtmpfs_configure_context(void) { struct fs_context *fc; fc = fs_context_for_reconfigure(mnt->mnt_root, mnt->mnt_sb->s_flags, MS_RMT_MASK); if (IS_ERR(fc)) return PTR_ERR(fc); /* Set up devtmpfs_context_ops based on underlying type */ devtmpfs_context_ops.free = fc->ops->free; devtmpfs_context_ops.dup = fc->ops->dup; devtmpfs_context_ops.parse_param = fc->ops->parse_param; devtmpfs_context_ops.parse_monolithic = fc->ops->parse_monolithic; devtmpfs_context_ops.get_tree = &devtmpfs_get_tree; devtmpfs_context_ops.reconfigure = fc->ops->reconfigure; put_fs_context(fc); return 0; } /* * Create devtmpfs instance, driver-core devices will add their device * nodes here. */ int __init devtmpfs_init(void) { char opts[] = "mode=0755"; int err; mnt = vfs_kern_mount(&internal_fs_type, 0, "devtmpfs", opts); if (IS_ERR(mnt)) { pr_err("unable to create devtmpfs %ld\n", PTR_ERR(mnt)); return PTR_ERR(mnt); } err = devtmpfs_configure_context(); if (err) { pr_err("unable to configure devtmpfs type %d\n", err); return err; } err = register_filesystem(&dev_fs_type); if (err) { pr_err("unable to register devtmpfs type %d\n", err); return err; } thread = kthread_run(devtmpfsd, &err, "kdevtmpfs"); if (!IS_ERR(thread)) { wait_for_completion(&setup_done); } else { err = PTR_ERR(thread); thread = NULL; } if (err) { pr_err("unable to create devtmpfs %d\n", err); unregister_filesystem(&dev_fs_type); thread = NULL; return err; } pr_info("initialized\n"); return 0; }
3 3 44 3 3 3 3 2 1 3 6 47 19 39 39 52 53 9 7 4 1 1 2 2 2 1 1 1 1 1 5 5 5 5 5 9 9 14 9 8 8 7 5 4 5 4 5 5 3 3 3 3 3 3 3 3 8 7 8 8 7 6 7 2 2 9 9 9 8 3 3 2 1 1 15 14 8 8 7 6 7 3 3 3 3 3 3 3 3 8 8 7 7 3 1 1 1 3 3 1 1 2 2 2 1 1 5 4 1 1 2 2 3 3 3 4 4 8 2 7 7 7 7 7 7 15 14 8 7 8 8 8 8 8 7 7 8 8 5 5 5 5 5 4 87 87 84 86 5 5 5 560 561 560 49 5 12 12 12 560 6 7 3 4 4 7 2 1 2 2 4 4 4 8 4 8 7 4 8 7 8 8 8 8 8 8 8 8 8 6 8 8 8 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 7 8 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 8 8 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 7 8 8 8 8 8 7 8 8 8 8 7 8 7 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 7 8 7 7 8 8 8 8 8 8 8 7 8 8 8 8 8 7 8 8 1 1 5 5 2 5 226 210 5 5 553 548 25 228 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 /* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/netdevice.h> #include <net/net_namespace.h> #include <linux/security.h> #include <linux/notifier.h> #include <linux/hashtable.h> #include <rdma/rdma_netlink.h> #include <rdma/ib_addr.h> #include <rdma/ib_cache.h> #include <rdma/rdma_counter.h> #include "core_priv.h" #include "restrack.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("core kernel InfiniBand API"); MODULE_LICENSE("Dual BSD/GPL"); struct workqueue_struct *ib_comp_wq; struct workqueue_struct *ib_comp_unbound_wq; struct workqueue_struct *ib_wq; EXPORT_SYMBOL_GPL(ib_wq); static struct workqueue_struct *ib_unreg_wq; /* * Each of the three rwsem locks (devices, clients, client_data) protects the * xarray of the same name. Specifically it allows the caller to assert that * the MARK will/will not be changing under the lock, and for devices and * clients, that the value in the xarray is still a valid pointer. Change of * the MARK is linked to the object state, so holding the lock and testing the * MARK also asserts that the contained object is in a certain state. * * This is used to build a two stage register/unregister flow where objects * can continue to be in the xarray even though they are still in progress to * register/unregister. * * The xarray itself provides additional locking, and restartable iteration, * which is also relied on. * * Locks should not be nested, with the exception of client_data, which is * allowed to nest under the read side of the other two locks. * * The devices_rwsem also protects the device name list, any change or * assignment of device name must also hold the write side to guarantee unique * names. */ /* * devices contains devices that have had their names assigned. The * devices may not be registered. Users that care about the registration * status need to call ib_device_try_get() on the device to ensure it is * registered, and keep it registered, for the required duration. * */ static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); static DECLARE_RWSEM(devices_rwsem); #define DEVICE_REGISTERED XA_MARK_1 static u32 highest_client_id; #define CLIENT_REGISTERED XA_MARK_1 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); static DECLARE_RWSEM(clients_rwsem); static void ib_client_put(struct ib_client *client) { if (refcount_dec_and_test(&client->uses)) complete(&client->uses_zero); } /* * If client_data is registered then the corresponding client must also still * be registered. */ #define CLIENT_DATA_REGISTERED XA_MARK_1 unsigned int rdma_dev_net_id; /* * A list of net namespaces is maintained in an xarray. This is necessary * because we can't get the locking right using the existing net ns list. We * would require a init_net callback after the list is updated. */ static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); /* * rwsem to protect accessing the rdma_nets xarray entries. */ static DECLARE_RWSEM(rdma_nets_rwsem); bool ib_devices_shared_netns = true; module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); MODULE_PARM_DESC(netns_mode, "Share device among net namespaces; default=1 (shared)"); /** * rdma_dev_access_netns() - Return whether an rdma device can be accessed * from a specified net namespace or not. * @dev: Pointer to rdma device which needs to be checked * @net: Pointer to net namesapce for which access to be checked * * When the rdma device is in shared mode, it ignores the net namespace. * When the rdma device is exclusive to a net namespace, rdma device net * namespace is checked against the specified one. */ bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) { return (ib_devices_shared_netns || net_eq(read_pnet(&dev->coredev.rdma_net), net)); } EXPORT_SYMBOL(rdma_dev_access_netns); /** * rdma_dev_has_raw_cap() - Returns whether a specified rdma device has * CAP_NET_RAW capability or not. * * @dev: Pointer to rdma device whose capability to be checked * * Returns true if a rdma device's owning user namespace has CAP_NET_RAW * capability, otherwise false. When rdma subsystem is in legacy shared network, * namespace mode, the default net namespace is considered. */ bool rdma_dev_has_raw_cap(const struct ib_device *dev) { const struct net *net; /* Network namespace is the resource whose user namespace * to be considered. When in shared mode, there is no reliable * network namespace resource, so consider the default net namespace. */ if (ib_devices_shared_netns) net = &init_net; else net = read_pnet(&dev->coredev.rdma_net); return ns_capable(net->user_ns, CAP_NET_RAW); } EXPORT_SYMBOL(rdma_dev_has_raw_cap); /* * xarray has this behavior where it won't iterate over NULL values stored in * allocated arrays. So we need our own iterator to see all values stored in * the array. This does the same thing as xa_for_each except that it also * returns NULL valued entries if the array is allocating. Simplified to only * work on simple xarrays. */ static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, xa_mark_t filter) { XA_STATE(xas, xa, *indexp); void *entry; rcu_read_lock(); do { entry = xas_find_marked(&xas, ULONG_MAX, filter); if (xa_is_zero(entry)) break; } while (xas_retry(&xas, entry)); rcu_read_unlock(); if (entry) { *indexp = xas.xa_index; if (xa_is_zero(entry)) return NULL; return entry; } return XA_ERROR(-ENOENT); } #define xan_for_each_marked(xa, index, entry, filter) \ for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ !xa_is_err(entry); \ (index)++, entry = xan_find_marked(xa, &(index), filter)) /* RCU hash table mapping netdevice pointers to struct ib_port_data */ static DEFINE_SPINLOCK(ndev_hash_lock); static DECLARE_HASHTABLE(ndev_hash, 5); static void free_netdevs(struct ib_device *ib_dev); static void ib_unregister_work(struct work_struct *work); static void __ib_unregister_device(struct ib_device *device); static int ib_security_change(struct notifier_block *nb, unsigned long event, void *lsm_data); static void ib_policy_change_task(struct work_struct *work); static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); static void __ibdev_printk(const char *level, const struct ib_device *ibdev, struct va_format *vaf) { if (ibdev && ibdev->dev.parent) dev_printk_emit(level[1] - '0', ibdev->dev.parent, "%s %s %s: %pV", dev_driver_string(ibdev->dev.parent), dev_name(ibdev->dev.parent), dev_name(&ibdev->dev), vaf); else if (ibdev) printk("%s%s: %pV", level, dev_name(&ibdev->dev), vaf); else printk("%s(NULL ib_device): %pV", level, vaf); } #define define_ibdev_printk_level(func, level) \ void func(const struct ib_device *ibdev, const char *fmt, ...) \ { \ struct va_format vaf; \ va_list args; \ \ va_start(args, fmt); \ \ vaf.fmt = fmt; \ vaf.va = &args; \ \ __ibdev_printk(level, ibdev, &vaf); \ \ va_end(args); \ } \ EXPORT_SYMBOL(func); define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); define_ibdev_printk_level(ibdev_alert, KERN_ALERT); define_ibdev_printk_level(ibdev_crit, KERN_CRIT); define_ibdev_printk_level(ibdev_err, KERN_ERR); define_ibdev_printk_level(ibdev_warn, KERN_WARNING); define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); define_ibdev_printk_level(ibdev_info, KERN_INFO); static struct notifier_block ibdev_lsm_nb = { .notifier_call = ib_security_change, }; static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, struct net *net); /* Pointer to the RCU head at the start of the ib_port_data array */ struct ib_port_data_rcu { struct rcu_head rcu_head; struct ib_port_data pdata[]; }; static void ib_device_check_mandatory(struct ib_device *device) { #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } static const struct { size_t offset; char *name; } mandatory_table[] = { IB_MANDATORY_FUNC(query_device), IB_MANDATORY_FUNC(query_port), IB_MANDATORY_FUNC(alloc_pd), IB_MANDATORY_FUNC(dealloc_pd), IB_MANDATORY_FUNC(create_qp), IB_MANDATORY_FUNC(modify_qp), IB_MANDATORY_FUNC(destroy_qp), IB_MANDATORY_FUNC(post_send), IB_MANDATORY_FUNC(post_recv), IB_MANDATORY_FUNC(create_cq), IB_MANDATORY_FUNC(destroy_cq), IB_MANDATORY_FUNC(poll_cq), IB_MANDATORY_FUNC(req_notify_cq), IB_MANDATORY_FUNC(get_dma_mr), IB_MANDATORY_FUNC(reg_user_mr), IB_MANDATORY_FUNC(dereg_mr), IB_MANDATORY_FUNC(get_port_immutable) }; int i; device->kverbs_provider = true; for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { if (!*(void **) ((void *) &device->ops + mandatory_table[i].offset)) { device->kverbs_provider = false; break; } } } /* * Caller must perform ib_device_put() to return the device reference count * when ib_device_get_by_index() returns valid device pointer. */ struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) { struct ib_device *device; down_read(&devices_rwsem); device = xa_load(&devices, index); if (device) { if (!rdma_dev_access_netns(device, net)) { device = NULL; goto out; } if (!ib_device_try_get(device)) device = NULL; } out: up_read(&devices_rwsem); return device; } /** * ib_device_put - Release IB device reference * @device: device whose reference to be released * * ib_device_put() releases reference to the IB device to allow it to be * unregistered and eventually free. */ void ib_device_put(struct ib_device *device) { if (refcount_dec_and_test(&device->refcount)) complete(&device->unreg_completion); } EXPORT_SYMBOL(ib_device_put); static struct ib_device *__ib_device_get_by_name(const char *name) { struct ib_device *device; unsigned long index; xa_for_each (&devices, index, device) if (!strcmp(name, dev_name(&device->dev))) return device; return NULL; } /** * ib_device_get_by_name - Find an IB device by name * @name: The name to look for * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) * * Find and hold an ib_device by its name. The caller must call * ib_device_put() on the returned pointer. */ struct ib_device *ib_device_get_by_name(const char *name, enum rdma_driver_id driver_id) { struct ib_device *device; down_read(&devices_rwsem); device = __ib_device_get_by_name(name); if (device && driver_id != RDMA_DRIVER_UNKNOWN && device->ops.driver_id != driver_id) device = NULL; if (device) { if (!ib_device_try_get(device)) device = NULL; } up_read(&devices_rwsem); return device; } EXPORT_SYMBOL(ib_device_get_by_name); static int rename_compat_devs(struct ib_device *device) { struct ib_core_device *cdev; unsigned long index; int ret = 0; mutex_lock(&device->compat_devs_mutex); xa_for_each (&device->compat_devs, index, cdev) { ret = device_rename(&cdev->dev, dev_name(&device->dev)); if (ret) { dev_warn(&cdev->dev, "Fail to rename compatdev to new name %s\n", dev_name(&device->dev)); break; } } mutex_unlock(&device->compat_devs_mutex); return ret; } int ib_device_rename(struct ib_device *ibdev, const char *name) { unsigned long index; void *client_data; int ret; down_write(&devices_rwsem); if (!strcmp(name, dev_name(&ibdev->dev))) { up_write(&devices_rwsem); return 0; } if (__ib_device_get_by_name(name)) { up_write(&devices_rwsem); return -EEXIST; } ret = device_rename(&ibdev->dev, name); if (ret) { up_write(&devices_rwsem); return ret; } strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX); ret = rename_compat_devs(ibdev); downgrade_write(&devices_rwsem); down_read(&ibdev->client_data_rwsem); xan_for_each_marked(&ibdev->client_data, index, client_data, CLIENT_DATA_REGISTERED) { struct ib_client *client = xa_load(&clients, index); if (!client || !client->rename) continue; client->rename(ibdev, client_data); } up_read(&ibdev->client_data_rwsem); rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT); up_read(&devices_rwsem); return 0; } int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) { if (use_dim > 1) return -EINVAL; ibdev->use_cq_dim = use_dim; return 0; } static int alloc_name(struct ib_device *ibdev, const char *name) { struct ib_device *device; unsigned long index; struct ida inuse; int rc; int i; lockdep_assert_held_write(&devices_rwsem); ida_init(&inuse); xa_for_each (&devices, index, device) { char buf[IB_DEVICE_NAME_MAX]; if (sscanf(dev_name(&device->dev), name, &i) != 1) continue; if (i < 0 || i >= INT_MAX) continue; snprintf(buf, sizeof buf, name, i); if (strcmp(buf, dev_name(&device->dev)) != 0) continue; rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); if (rc < 0) goto out; } rc = ida_alloc(&inuse, GFP_KERNEL); if (rc < 0) goto out; rc = dev_set_name(&ibdev->dev, name, rc); out: ida_destroy(&inuse); return rc; } static void ib_device_release(struct device *device) { struct ib_device *dev = container_of(device, struct ib_device, dev); free_netdevs(dev); WARN_ON(refcount_read(&dev->refcount)); if (dev->hw_stats_data) ib_device_release_hw_stats(dev->hw_stats_data); if (dev->port_data) { ib_cache_release_one(dev); ib_security_release_port_pkey_list(dev); rdma_counter_release(dev); kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, pdata[0]), rcu_head); } mutex_destroy(&dev->subdev_lock); mutex_destroy(&dev->unregistration_lock); mutex_destroy(&dev->compat_devs_mutex); xa_destroy(&dev->compat_devs); xa_destroy(&dev->client_data); kfree_rcu(dev, rcu_head); } static int ib_device_uevent(const struct device *device, struct kobj_uevent_env *env) { if (add_uevent_var(env, "NAME=%s", dev_name(device))) return -ENOMEM; /* * It would be nice to pass the node GUID with the event... */ return 0; } static const void *net_namespace(const struct device *d) { const struct ib_core_device *coredev = container_of(d, struct ib_core_device, dev); return read_pnet(&coredev->rdma_net); } static struct class ib_class = { .name = "infiniband", .dev_release = ib_device_release, .dev_uevent = ib_device_uevent, .ns_type = &net_ns_type_operations, .namespace = net_namespace, }; static void rdma_init_coredev(struct ib_core_device *coredev, struct ib_device *dev, struct net *net) { bool is_full_dev = &dev->coredev == coredev; /* This BUILD_BUG_ON is intended to catch layout change * of union of ib_core_device and device. * dev must be the first element as ib_core and providers * driver uses it. Adding anything in ib_core_device before * device will break this assumption. */ BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != offsetof(struct ib_device, dev)); coredev->dev.class = &ib_class; coredev->dev.groups = dev->groups; /* * Don't expose hw counters outside of the init namespace. */ if (!is_full_dev && dev->hw_stats_attr_index) coredev->dev.groups[dev->hw_stats_attr_index] = NULL; device_initialize(&coredev->dev); coredev->owner = dev; INIT_LIST_HEAD(&coredev->port_list); write_pnet(&coredev->rdma_net, net); } /** * _ib_alloc_device - allocate an IB device struct * @size:size of structure to allocate * @net: network namespace device should be located in, namespace * must stay valid until ib_register_device() is completed. * * Low-level drivers should use ib_alloc_device() to allocate &struct * ib_device. @size is the size of the structure to be allocated, * including any private data used by the low-level driver. * ib_dealloc_device() must be used to free structures allocated with * ib_alloc_device(). */ struct ib_device *_ib_alloc_device(size_t size, struct net *net) { struct ib_device *device; unsigned int i; if (WARN_ON(size < sizeof(struct ib_device))) return NULL; device = kzalloc(size, GFP_KERNEL); if (!device) return NULL; if (rdma_restrack_init(device)) { kfree(device); return NULL; } /* ib_devices_shared_netns can't change while we have active namespaces * in the system which means either init_net is passed or the user has * no idea what they are doing. * * To avoid breaking backward compatibility, when in shared mode, * force to init the device in the init_net. */ net = ib_devices_shared_netns ? &init_net : net; rdma_init_coredev(&device->coredev, device, net); INIT_LIST_HEAD(&device->event_handler_list); spin_lock_init(&device->qp_open_list_lock); init_rwsem(&device->event_handler_rwsem); mutex_init(&device->unregistration_lock); /* * client_data needs to be alloc because we don't want our mark to be * destroyed if the user stores NULL in the client data. */ xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); init_rwsem(&device->client_data_rwsem); xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); mutex_init(&device->compat_devs_mutex); init_completion(&device->unreg_completion); INIT_WORK(&device->unregistration_work, ib_unregister_work); spin_lock_init(&device->cq_pools_lock); for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++) INIT_LIST_HEAD(&device->cq_pools[i]); rwlock_init(&device->cache_lock); device->uverbs_cmd_mask = BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) | BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) | BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) | BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) | BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) | BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) | BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) | BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) | BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) | BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) | BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) | BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) | BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) | BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) | BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) | BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) | BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) | BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) | BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) | BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) | BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) | BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) | BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) | BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) | BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) | BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) | BIT_ULL(IB_USER_VERBS_CMD_REG_MR) | BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) | BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ); mutex_init(&device->subdev_lock); INIT_LIST_HEAD(&device->subdev_list_head); INIT_LIST_HEAD(&device->subdev_list); return device; } EXPORT_SYMBOL(_ib_alloc_device); /** * ib_dealloc_device - free an IB device struct * @device:structure to free * * Free a structure allocated with ib_alloc_device(). */ void ib_dealloc_device(struct ib_device *device) { if (device->ops.dealloc_driver) device->ops.dealloc_driver(device); /* * ib_unregister_driver() requires all devices to remain in the xarray * while their ops are callable. The last op we call is dealloc_driver * above. This is needed to create a fence on op callbacks prior to * allowing the driver module to unload. */ down_write(&devices_rwsem); if (xa_load(&devices, device->index) == device) xa_erase(&devices, device->index); up_write(&devices_rwsem); /* Expedite releasing netdev references */ free_netdevs(device); WARN_ON(!xa_empty(&device->compat_devs)); WARN_ON(!xa_empty(&device->client_data)); WARN_ON(refcount_read(&device->refcount)); rdma_restrack_clean(device); /* Balances with device_initialize */ put_device(&device->dev); } EXPORT_SYMBOL(ib_dealloc_device); /* * add_client_context() and remove_client_context() must be safe against * parallel calls on the same device - registration/unregistration of both the * device and client can be occurring in parallel. * * The routines need to be a fence, any caller must not return until the add * or remove is fully completed. */ static int add_client_context(struct ib_device *device, struct ib_client *client) { int ret = 0; if (!device->kverbs_provider && !client->no_kverbs_req) return 0; down_write(&device->client_data_rwsem); /* * So long as the client is registered hold both the client and device * unregistration locks. */ if (!refcount_inc_not_zero(&client->uses)) goto out_unlock; refcount_inc(&device->refcount); /* * Another caller to add_client_context got here first and has already * completely initialized context. */ if (xa_get_mark(&device->client_data, client->client_id, CLIENT_DATA_REGISTERED)) goto out; ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, GFP_KERNEL)); if (ret) goto out; downgrade_write(&device->client_data_rwsem); if (client->add) { if (client->add(device)) { /* * If a client fails to add then the error code is * ignored, but we won't call any more ops on this * client. */ xa_erase(&device->client_data, client->client_id); up_read(&device->client_data_rwsem); ib_device_put(device); ib_client_put(client); return 0; } } /* Readers shall not see a client until add has been completed */ xa_set_mark(&device->client_data, client->client_id, CLIENT_DATA_REGISTERED); up_read(&device->client_data_rwsem); return 0; out: ib_device_put(device); ib_client_put(client); out_unlock: up_write(&device->client_data_rwsem); return ret; } static void remove_client_context(struct ib_device *device, unsigned int client_id) { struct ib_client *client; void *client_data; down_write(&device->client_data_rwsem); if (!xa_get_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED)) { up_write(&device->client_data_rwsem); return; } client_data = xa_load(&device->client_data, client_id); xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); client = xa_load(&clients, client_id); up_write(&device->client_data_rwsem); /* * Notice we cannot be holding any exclusive locks when calling the * remove callback as the remove callback can recurse back into any * public functions in this module and thus try for any locks those * functions take. * * For this reason clients and drivers should not call the * unregistration functions will holdling any locks. */ if (client->remove) client->remove(device, client_data); xa_erase(&device->client_data, client_id); ib_device_put(device); ib_client_put(client); } static int alloc_port_data(struct ib_device *device) { struct ib_port_data_rcu *pdata_rcu; u32 port; if (device->port_data) return 0; /* This can only be called once the physical port range is defined */ if (WARN_ON(!device->phys_port_cnt)) return -EINVAL; /* Reserve U32_MAX so the logic to go over all the ports is sane */ if (WARN_ON(device->phys_port_cnt == U32_MAX)) return -EINVAL; /* * device->port_data is indexed directly by the port number to make * access to this data as efficient as possible. * * Therefore port_data is declared as a 1 based array with potential * empty slots at the beginning. */ pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, size_add(rdma_end_port(device), 1)), GFP_KERNEL); if (!pdata_rcu) return -ENOMEM; /* * The rcu_head is put in front of the port data array and the stored * pointer is adjusted since we never need to see that member until * kfree_rcu. */ device->port_data = pdata_rcu->pdata; rdma_for_each_port (device, port) { struct ib_port_data *pdata = &device->port_data[port]; pdata->ib_dev = device; spin_lock_init(&pdata->pkey_list_lock); INIT_LIST_HEAD(&pdata->pkey_list); spin_lock_init(&pdata->netdev_lock); INIT_HLIST_NODE(&pdata->ndev_hash_link); } return 0; } static int verify_immutable(const struct ib_device *dev, u32 port) { return WARN_ON(!rdma_cap_ib_mad(dev, port) && rdma_max_mad_size(dev, port) != 0); } static int setup_port_data(struct ib_device *device) { u32 port; int ret; ret = alloc_port_data(device); if (ret) return ret; rdma_for_each_port (device, port) { struct ib_port_data *pdata = &device->port_data[port]; ret = device->ops.get_port_immutable(device, port, &pdata->immutable); if (ret) return ret; if (verify_immutable(device, port)) return -EINVAL; } return 0; } /** * ib_port_immutable_read() - Read rdma port's immutable data * @dev: IB device * @port: port number whose immutable data to read. It starts with index 1 and * valid upto including rdma_end_port(). */ const struct ib_port_immutable* ib_port_immutable_read(struct ib_device *dev, unsigned int port) { WARN_ON(!rdma_is_port_valid(dev, port)); return &dev->port_data[port].immutable; } EXPORT_SYMBOL(ib_port_immutable_read); void ib_get_device_fw_str(struct ib_device *dev, char *str) { if (dev->ops.get_dev_fw_str) dev->ops.get_dev_fw_str(dev, str); else str[0] = '\0'; } EXPORT_SYMBOL(ib_get_device_fw_str); static void ib_policy_change_task(struct work_struct *work) { struct ib_device *dev; unsigned long index; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { unsigned int i; rdma_for_each_port (dev, i) { u64 sp; ib_get_cached_subnet_prefix(dev, i, &sp); ib_security_cache_change(dev, i, sp); } } up_read(&devices_rwsem); } static int ib_security_change(struct notifier_block *nb, unsigned long event, void *lsm_data) { if (event != LSM_POLICY_CHANGE) return NOTIFY_DONE; schedule_work(&ib_policy_change_work); ib_mad_agent_security_change(); return NOTIFY_OK; } static void compatdev_release(struct device *dev) { struct ib_core_device *cdev = container_of(dev, struct ib_core_device, dev); kfree(cdev); } static int add_one_compat_dev(struct ib_device *device, struct rdma_dev_net *rnet) { struct ib_core_device *cdev; int ret; lockdep_assert_held(&rdma_nets_rwsem); if (!ib_devices_shared_netns) return 0; /* * Create and add compat device in all namespaces other than where it * is currently bound to. */ if (net_eq(read_pnet(&rnet->net), read_pnet(&device->coredev.rdma_net))) return 0; /* * The first of init_net() or ib_register_device() to take the * compat_devs_mutex wins and gets to add the device. Others will wait * for completion here. */ mutex_lock(&device->compat_devs_mutex); cdev = xa_load(&device->compat_devs, rnet->id); if (cdev) { ret = 0; goto done; } ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); if (ret) goto done; cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); if (!cdev) { ret = -ENOMEM; goto cdev_err; } cdev->dev.parent = device->dev.parent; rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); cdev->dev.release = compatdev_release; ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); if (ret) goto add_err; ret = device_add(&cdev->dev); if (ret) goto add_err; ret = ib_setup_port_attrs(cdev); if (ret) goto port_err; ret = xa_err(xa_store(&device->compat_devs, rnet->id, cdev, GFP_KERNEL)); if (ret) goto insert_err; mutex_unlock(&device->compat_devs_mutex); return 0; insert_err: ib_free_port_attrs(cdev); port_err: device_del(&cdev->dev); add_err: put_device(&cdev->dev); cdev_err: xa_release(&device->compat_devs, rnet->id); done: mutex_unlock(&device->compat_devs_mutex); return ret; } static void remove_one_compat_dev(struct ib_device *device, u32 id) { struct ib_core_device *cdev; mutex_lock(&device->compat_devs_mutex); cdev = xa_erase(&device->compat_devs, id); mutex_unlock(&device->compat_devs_mutex); if (cdev) { ib_free_port_attrs(cdev); device_del(&cdev->dev); put_device(&cdev->dev); } } static void remove_compat_devs(struct ib_device *device) { struct ib_core_device *cdev; unsigned long index; xa_for_each (&device->compat_devs, index, cdev) remove_one_compat_dev(device, index); } static int add_compat_devs(struct ib_device *device) { struct rdma_dev_net *rnet; unsigned long index; int ret = 0; lockdep_assert_held(&devices_rwsem); down_read(&rdma_nets_rwsem); xa_for_each (&rdma_nets, index, rnet) { ret = add_one_compat_dev(device, rnet); if (ret) break; } up_read(&rdma_nets_rwsem); return ret; } static void remove_all_compat_devs(void) { struct ib_compat_device *cdev; struct ib_device *dev; unsigned long index; down_read(&devices_rwsem); xa_for_each (&devices, index, dev) { unsigned long c_index = 0; /* Hold nets_rwsem so that any other thread modifying this * system param can sync with this thread. */ down_read(&rdma_nets_rwsem); xa_for_each (&dev->compat_devs, c_index, cdev) remove_one_compat_dev(dev, c_index); up_read(&rdma_nets_rwsem); } up_read(&devices_rwsem); } static int add_all_compat_devs(void) { struct rdma_dev_net *rnet; struct ib_device *dev; unsigned long index; int ret = 0; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { unsigned long net_index = 0; /* Hold nets_rwsem so that any other thread modifying this * system param can sync with this thread. */ down_read(&rdma_nets_rwsem); xa_for_each (&rdma_nets, net_index, rnet) { ret = add_one_compat_dev(dev, rnet); if (ret) break; } up_read(&rdma_nets_rwsem); } up_read(&devices_rwsem); if (ret) remove_all_compat_devs(); return ret; } int rdma_compatdev_set(u8 enable) { struct rdma_dev_net *rnet; unsigned long index; int ret = 0; down_write(&rdma_nets_rwsem); if (ib_devices_shared_netns == enable) { up_write(&rdma_nets_rwsem); return 0; } /* enable/disable of compat devices is not supported * when more than default init_net exists. */ xa_for_each (&rdma_nets, index, rnet) { ret++; break; } if (!ret) ib_devices_shared_netns = enable; up_write(&rdma_nets_rwsem); if (ret) return -EBUSY; if (enable) ret = add_all_compat_devs(); else remove_all_compat_devs(); return ret; } static void rdma_dev_exit_net(struct net *net) { struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); struct ib_device *dev; unsigned long index; int ret; down_write(&rdma_nets_rwsem); /* * Prevent the ID from being re-used and hide the id from xa_for_each. */ ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); WARN_ON(ret); up_write(&rdma_nets_rwsem); down_read(&devices_rwsem); xa_for_each (&devices, index, dev) { get_device(&dev->dev); /* * Release the devices_rwsem so that pontentially blocking * device_del, doesn't hold the devices_rwsem for too long. */ up_read(&devices_rwsem); remove_one_compat_dev(dev, rnet->id); /* * If the real device is in the NS then move it back to init. */ rdma_dev_change_netns(dev, net, &init_net); put_device(&dev->dev); down_read(&devices_rwsem); } up_read(&devices_rwsem); rdma_nl_net_exit(rnet); xa_erase(&rdma_nets, rnet->id); } static __net_init int rdma_dev_init_net(struct net *net) { struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); unsigned long index; struct ib_device *dev; int ret; write_pnet(&rnet->net, net); ret = rdma_nl_net_init(rnet); if (ret) return ret; /* No need to create any compat devices in default init_net. */ if (net_eq(net, &init_net)) return 0; ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); if (ret) { rdma_nl_net_exit(rnet); return ret; } down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { /* Hold nets_rwsem so that netlink command cannot change * system configuration for device sharing mode. */ down_read(&rdma_nets_rwsem); ret = add_one_compat_dev(dev, rnet); up_read(&rdma_nets_rwsem); if (ret) break; } up_read(&devices_rwsem); if (ret) rdma_dev_exit_net(net); return ret; } /* * Assign the unique string device name and the unique device index. This is * undone by ib_dealloc_device. */ static int assign_name(struct ib_device *device, const char *name) { static u32 last_id; int ret; down_write(&devices_rwsem); /* Assign a unique name to the device */ if (strchr(name, '%')) ret = alloc_name(device, name); else ret = dev_set_name(&device->dev, name); if (ret) goto out; if (__ib_device_get_by_name(dev_name(&device->dev))) { ret = -ENFILE; goto out; } strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, &last_id, GFP_KERNEL); if (ret > 0) ret = 0; out: up_write(&devices_rwsem); return ret; } /* * setup_device() allocates memory and sets up data that requires calling the * device ops, this is the only reason these actions are not done during * ib_alloc_device. It is undone by ib_dealloc_device(). */ static int setup_device(struct ib_device *device) { struct ib_udata uhw = {.outlen = 0, .inlen = 0}; int ret; ib_device_check_mandatory(device); ret = setup_port_data(device); if (ret) { dev_warn(&device->dev, "Couldn't create per-port data\n"); return ret; } memset(&device->attrs, 0, sizeof(device->attrs)); ret = device->ops.query_device(device, &device->attrs, &uhw); if (ret) { dev_warn(&device->dev, "Couldn't query the device attributes\n"); return ret; } return 0; } static void disable_device(struct ib_device *device) { u32 cid; WARN_ON(!refcount_read(&device->refcount)); down_write(&devices_rwsem); xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); up_write(&devices_rwsem); /* * Remove clients in LIFO order, see assign_client_id. This could be * more efficient if xarray learns to reverse iterate. Since no new * clients can be added to this ib_device past this point we only need * the maximum possible client_id value here. */ down_read(&clients_rwsem); cid = highest_client_id; up_read(&clients_rwsem); while (cid) { cid--; remove_client_context(device, cid); } ib_cq_pool_cleanup(device); /* Pairs with refcount_set in enable_device */ ib_device_put(device); wait_for_completion(&device->unreg_completion); /* * compat devices must be removed after device refcount drops to zero. * Otherwise init_net() may add more compatdevs after removing compat * devices and before device is disabled. */ remove_compat_devs(device); } /* * An enabled device is visible to all clients and to all the public facing * APIs that return a device pointer. This always returns with a new get, even * if it fails. */ static int enable_device_and_get(struct ib_device *device) { struct ib_client *client; unsigned long index; int ret = 0; /* * One ref belongs to the xa and the other belongs to this * thread. This is needed to guard against parallel unregistration. */ refcount_set(&device->refcount, 2); down_write(&devices_rwsem); xa_set_mark(&devices, device->index, DEVICE_REGISTERED); /* * By using downgrade_write() we ensure that no other thread can clear * DEVICE_REGISTERED while we are completing the client setup. */ downgrade_write(&devices_rwsem); if (device->ops.enable_driver) { ret = device->ops.enable_driver(device); if (ret) goto out; } down_read(&clients_rwsem); xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { ret = add_client_context(device, client); if (ret) break; } up_read(&clients_rwsem); if (!ret) ret = add_compat_devs(device); out: up_read(&devices_rwsem); return ret; } static void prevent_dealloc_device(struct ib_device *ib_dev) { } static void ib_device_notify_register(struct ib_device *device) { struct net_device *netdev; u32 port; int ret; down_read(&devices_rwsem); /* Mark for userspace that device is ready */ kobject_uevent(&device->dev.kobj, KOBJ_ADD); ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT); if (ret) goto out; rdma_for_each_port(device, port) { netdev = ib_device_get_netdev(device, port); if (!netdev) continue; ret = rdma_nl_notify_event(device, port, RDMA_NETDEV_ATTACH_EVENT); dev_put(netdev); if (ret) goto out; } out: up_read(&devices_rwsem); } /** * ib_register_device - Register an IB device with IB core * @device: Device to register * @name: unique string device name. This may include a '%' which will * cause a unique index to be added to the passed device name. * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB * device will be used. In this case the caller should fully * setup the ibdev for DMA. This usually means using dma_virt_ops. * * Low-level drivers use ib_register_device() to register their * devices with the IB core. All registered clients will receive a * callback for each device that is added. @device must be allocated * with ib_alloc_device(). * * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() * asynchronously then the device pointer may become freed as soon as this * function returns. */ int ib_register_device(struct ib_device *device, const char *name, struct device *dma_device) { int ret; ret = assign_name(device, name); if (ret) return ret; /* * If the caller does not provide a DMA capable device then the IB core * will set up ib_sge and scatterlist structures that stash the kernel * virtual address into the address field. */ WARN_ON(dma_device && !dma_device->dma_parms); device->dma_device = dma_device; ret = setup_device(device); if (ret) return ret; ret = ib_cache_setup_one(device); if (ret) { dev_warn(&device->dev, "Couldn't set up InfiniBand P_Key/GID cache\n"); return ret; } device->groups[0] = &ib_dev_attr_group; device->groups[1] = device->ops.device_group; ret = ib_setup_device_attrs(device); if (ret) goto cache_cleanup; ib_device_register_rdmacg(device); rdma_counter_init(device); /* * Ensure that ADD uevent is not fired because it * is too early amd device is not initialized yet. */ dev_set_uevent_suppress(&device->dev, true); ret = device_add(&device->dev); if (ret) goto cg_cleanup; ret = ib_setup_port_attrs(&device->coredev); if (ret) { dev_warn(&device->dev, "Couldn't register device with driver model\n"); goto dev_cleanup; } ret = enable_device_and_get(device); if (ret) { void (*dealloc_fn)(struct ib_device *); /* * If we hit this error flow then we don't want to * automatically dealloc the device since the caller is * expected to call ib_dealloc_device() after * ib_register_device() fails. This is tricky due to the * possibility for a parallel unregistration along with this * error flow. Since we have a refcount here we know any * parallel flow is stopped in disable_device and will see the * special dealloc_driver pointer, causing the responsibility to * ib_dealloc_device() to revert back to this thread. */ dealloc_fn = device->ops.dealloc_driver; device->ops.dealloc_driver = prevent_dealloc_device; ib_device_put(device); __ib_unregister_device(device); device->ops.dealloc_driver = dealloc_fn; dev_set_uevent_suppress(&device->dev, false); return ret; } dev_set_uevent_suppress(&device->dev, false); ib_device_notify_register(device); ib_device_put(device); return 0; dev_cleanup: device_del(&device->dev); cg_cleanup: dev_set_uevent_suppress(&device->dev, false); ib_device_unregister_rdmacg(device); cache_cleanup: ib_cache_cleanup_one(device); return ret; } EXPORT_SYMBOL(ib_register_device); /* Callers must hold a get on the device. */ static void __ib_unregister_device(struct ib_device *ib_dev) { struct ib_device *sub, *tmp; mutex_lock(&ib_dev->subdev_lock); list_for_each_entry_safe_reverse(sub, tmp, &ib_dev->subdev_list_head, subdev_list) { list_del(&sub->subdev_list); ib_dev->ops.del_sub_dev(sub); ib_device_put(ib_dev); } mutex_unlock(&ib_dev->subdev_lock); /* * We have a registration lock so that all the calls to unregister are * fully fenced, once any unregister returns the device is truely * unregistered even if multiple callers are unregistering it at the * same time. This also interacts with the registration flow and * provides sane semantics if register and unregister are racing. */ mutex_lock(&ib_dev->unregistration_lock); if (!refcount_read(&ib_dev->refcount)) goto out; disable_device(ib_dev); rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT); /* Expedite removing unregistered pointers from the hash table */ free_netdevs(ib_dev); ib_free_port_attrs(&ib_dev->coredev); device_del(&ib_dev->dev); ib_device_unregister_rdmacg(ib_dev); ib_cache_cleanup_one(ib_dev); /* * Drivers using the new flow may not call ib_dealloc_device except * in error unwind prior to registration success. */ if (ib_dev->ops.dealloc_driver && ib_dev->ops.dealloc_driver != prevent_dealloc_device) { WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); ib_dealloc_device(ib_dev); } out: mutex_unlock(&ib_dev->unregistration_lock); } /** * ib_unregister_device - Unregister an IB device * @ib_dev: The device to unregister * * Unregister an IB device. All clients will receive a remove callback. * * Callers should call this routine only once, and protect against races with * registration. Typically it should only be called as part of a remove * callback in an implementation of driver core's struct device_driver and * related. * * If ops.dealloc_driver is used then ib_dev will be freed upon return from * this function. */ void ib_unregister_device(struct ib_device *ib_dev) { get_device(&ib_dev->dev); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); } EXPORT_SYMBOL(ib_unregister_device); /** * ib_unregister_device_and_put - Unregister a device while holding a 'get' * @ib_dev: The device to unregister * * This is the same as ib_unregister_device(), except it includes an internal * ib_device_put() that should match a 'get' obtained by the caller. * * It is safe to call this routine concurrently from multiple threads while * holding the 'get'. When the function returns the device is fully * unregistered. * * Drivers using this flow MUST use the driver_unregister callback to clean up * their resources associated with the device and dealloc it. */ void ib_unregister_device_and_put(struct ib_device *ib_dev) { WARN_ON(!ib_dev->ops.dealloc_driver); get_device(&ib_dev->dev); ib_device_put(ib_dev); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); } EXPORT_SYMBOL(ib_unregister_device_and_put); /** * ib_unregister_driver - Unregister all IB devices for a driver * @driver_id: The driver to unregister * * This implements a fence for device unregistration. It only returns once all * devices associated with the driver_id have fully completed their * unregistration and returned from ib_unregister_device*(). * * If device's are not yet unregistered it goes ahead and starts unregistering * them. * * This does not block creation of new devices with the given driver_id, that * is the responsibility of the caller. */ void ib_unregister_driver(enum rdma_driver_id driver_id) { struct ib_device *ib_dev; unsigned long index; down_read(&devices_rwsem); xa_for_each (&devices, index, ib_dev) { if (ib_dev->ops.driver_id != driver_id) continue; get_device(&ib_dev->dev); up_read(&devices_rwsem); WARN_ON(!ib_dev->ops.dealloc_driver); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); down_read(&devices_rwsem); } up_read(&devices_rwsem); } EXPORT_SYMBOL(ib_unregister_driver); static void ib_unregister_work(struct work_struct *work) { struct ib_device *ib_dev = container_of(work, struct ib_device, unregistration_work); __ib_unregister_device(ib_dev); put_device(&ib_dev->dev); } /** * ib_unregister_device_queued - Unregister a device using a work queue * @ib_dev: The device to unregister * * This schedules an asynchronous unregistration using a WQ for the device. A * driver should use this to avoid holding locks while doing unregistration, * such as holding the RTNL lock. * * Drivers using this API must use ib_unregister_driver before module unload * to ensure that all scheduled unregistrations have completed. */ void ib_unregister_device_queued(struct ib_device *ib_dev) { WARN_ON(!refcount_read(&ib_dev->refcount)); WARN_ON(!ib_dev->ops.dealloc_driver); get_device(&ib_dev->dev); if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work)) put_device(&ib_dev->dev); } EXPORT_SYMBOL(ib_unregister_device_queued); /* * The caller must pass in a device that has the kref held and the refcount * released. If the device is in cur_net and still registered then it is moved * into net. */ static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, struct net *net) { int ret2 = -EINVAL; int ret; mutex_lock(&device->unregistration_lock); /* * If a device not under ib_device_get() or if the unregistration_lock * is not held, the namespace can be changed, or it can be unregistered. * Check again under the lock. */ if (refcount_read(&device->refcount) == 0 || !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { ret = -ENODEV; goto out; } kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); disable_device(device); /* * At this point no one can be using the device, so it is safe to * change the namespace. */ write_pnet(&device->coredev.rdma_net, net); down_read(&devices_rwsem); /* * Currently rdma devices are system wide unique. So the device name * is guaranteed free in the new namespace. Publish the new namespace * at the sysfs level. */ ret = device_rename(&device->dev, dev_name(&device->dev)); up_read(&devices_rwsem); if (ret) { dev_warn(&device->dev, "%s: Couldn't rename device after namespace change\n", __func__); /* Try and put things back and re-enable the device */ write_pnet(&device->coredev.rdma_net, cur_net); } ret2 = enable_device_and_get(device); if (ret2) { /* * This shouldn't really happen, but if it does, let the user * retry at later point. So don't disable the device. */ dev_warn(&device->dev, "%s: Couldn't re-enable device after namespace change\n", __func__); } kobject_uevent(&device->dev.kobj, KOBJ_ADD); ib_device_put(device); out: mutex_unlock(&device->unregistration_lock); if (ret) return ret; return ret2; } int ib_device_set_netns_put(struct sk_buff *skb, struct ib_device *dev, u32 ns_fd) { struct net *net; int ret; net = get_net_ns_by_fd(ns_fd); if (IS_ERR(net)) { ret = PTR_ERR(net); goto net_err; } if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { ret = -EPERM; goto ns_err; } /* * All the ib_clients, including uverbs, are reset when the namespace is * changed and this cannot be blocked waiting for userspace to do * something, so disassociation is mandatory. */ if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) { ret = -EOPNOTSUPP; goto ns_err; } get_device(&dev->dev); ib_device_put(dev); ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); put_device(&dev->dev); put_net(net); return ret; ns_err: put_net(net); net_err: ib_device_put(dev); return ret; } static struct pernet_operations rdma_dev_net_ops = { .init = rdma_dev_init_net, .exit = rdma_dev_exit_net, .id = &rdma_dev_net_id, .size = sizeof(struct rdma_dev_net), }; static int assign_client_id(struct ib_client *client) { int ret; lockdep_assert_held(&clients_rwsem); /* * The add/remove callbacks must be called in FIFO/LIFO order. To * achieve this we assign client_ids so they are sorted in * registration order. */ client->client_id = highest_client_id; ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); if (ret) return ret; highest_client_id++; xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); return 0; } static void remove_client_id(struct ib_client *client) { down_write(&clients_rwsem); xa_erase(&clients, client->client_id); for (; highest_client_id; highest_client_id--) if (xa_load(&clients, highest_client_id - 1)) break; up_write(&clients_rwsem); } /** * ib_register_client - Register an IB client * @client:Client to register * * Upper level users of the IB drivers can use ib_register_client() to * register callbacks for IB device addition and removal. When an IB * device is added, each registered client's add method will be called * (in the order the clients were registered), and when a device is * removed, each client's remove method will be called (in the reverse * order that clients were registered). In addition, when * ib_register_client() is called, the client will receive an add * callback for all devices already registered. */ int ib_register_client(struct ib_client *client) { struct ib_device *device; unsigned long index; bool need_unreg = false; int ret; refcount_set(&client->uses, 1); init_completion(&client->uses_zero); /* * The devices_rwsem is held in write mode to ensure that a racing * ib_register_device() sees a consisent view of clients and devices. */ down_write(&devices_rwsem); down_write(&clients_rwsem); ret = assign_client_id(client); if (ret) goto out; need_unreg = true; xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { ret = add_client_context(device, client); if (ret) goto out; } ret = 0; out: up_write(&clients_rwsem); up_write(&devices_rwsem); if (need_unreg && ret) ib_unregister_client(client); return ret; } EXPORT_SYMBOL(ib_register_client); /** * ib_unregister_client - Unregister an IB client * @client:Client to unregister * * Upper level users use ib_unregister_client() to remove their client * registration. When ib_unregister_client() is called, the client * will receive a remove callback for each IB device still registered. * * This is a full fence, once it returns no client callbacks will be called, * or are running in another thread. */ void ib_unregister_client(struct ib_client *client) { struct ib_device *device; unsigned long index; down_write(&clients_rwsem); ib_client_put(client); xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); up_write(&clients_rwsem); /* We do not want to have locks while calling client->remove() */ rcu_read_lock(); xa_for_each (&devices, index, device) { if (!ib_device_try_get(device)) continue; rcu_read_unlock(); remove_client_context(device, client->client_id); ib_device_put(device); rcu_read_lock(); } rcu_read_unlock(); /* * remove_client_context() is not a fence, it can return even though a * removal is ongoing. Wait until all removals are completed. */ wait_for_completion(&client->uses_zero); remove_client_id(client); } EXPORT_SYMBOL(ib_unregister_client); static int __ib_get_global_client_nl_info(const char *client_name, struct ib_client_nl_info *res) { struct ib_client *client; unsigned long index; int ret = -ENOENT; down_read(&clients_rwsem); xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { if (strcmp(client->name, client_name) != 0) continue; if (!client->get_global_nl_info) { ret = -EOPNOTSUPP; break; } ret = client->get_global_nl_info(res); if (WARN_ON(ret == -ENOENT)) ret = -EINVAL; if (!ret && res->cdev) get_device(res->cdev); break; } up_read(&clients_rwsem); return ret; } static int __ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, struct ib_client_nl_info *res) { unsigned long index; void *client_data; int ret = -ENOENT; down_read(&ibdev->client_data_rwsem); xan_for_each_marked (&ibdev->client_data, index, client_data, CLIENT_DATA_REGISTERED) { struct ib_client *client = xa_load(&clients, index); if (!client || strcmp(client->name, client_name) != 0) continue; if (!client->get_nl_info) { ret = -EOPNOTSUPP; break; } ret = client->get_nl_info(ibdev, client_data, res); if (WARN_ON(ret == -ENOENT)) ret = -EINVAL; /* * The cdev is guaranteed valid as long as we are inside the * client_data_rwsem as remove_one can't be called. Keep it * valid for the caller. */ if (!ret && res->cdev) get_device(res->cdev); break; } up_read(&ibdev->client_data_rwsem); return ret; } /** * ib_get_client_nl_info - Fetch the nl_info from a client * @ibdev: IB device * @client_name: Name of the client * @res: Result of the query */ int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, struct ib_client_nl_info *res) { int ret; if (ibdev) ret = __ib_get_client_nl_info(ibdev, client_name, res); else ret = __ib_get_global_client_nl_info(client_name, res); #ifdef CONFIG_MODULES if (ret == -ENOENT) { request_module("rdma-client-%s", client_name); if (ibdev) ret = __ib_get_client_nl_info(ibdev, client_name, res); else ret = __ib_get_global_client_nl_info(client_name, res); } #endif if (ret) { if (ret == -ENOENT) return -EOPNOTSUPP; return ret; } if (WARN_ON(!res->cdev)) return -EINVAL; return 0; } /** * ib_set_client_data - Set IB client context * @device:Device to set context for * @client:Client to set context for * @data:Context to set * * ib_set_client_data() sets client context data that can be retrieved with * ib_get_client_data(). This can only be called while the client is * registered to the device, once the ib_client remove() callback returns this * cannot be called. */ void ib_set_client_data(struct ib_device *device, struct ib_client *client, void *data) { void *rc; if (WARN_ON(IS_ERR(data))) data = NULL; rc = xa_store(&device->client_data, client->client_id, data, GFP_KERNEL); WARN_ON(xa_is_err(rc)); } EXPORT_SYMBOL(ib_set_client_data); /** * ib_register_event_handler - Register an IB event handler * @event_handler:Handler to register * * ib_register_event_handler() registers an event handler that will be * called back when asynchronous IB events occur (as defined in * chapter 11 of the InfiniBand Architecture Specification). This * callback occurs in workqueue context. */ void ib_register_event_handler(struct ib_event_handler *event_handler) { down_write(&event_handler->device->event_handler_rwsem); list_add_tail(&event_handler->list, &event_handler->device->event_handler_list); up_write(&event_handler->device->event_handler_rwsem); } EXPORT_SYMBOL(ib_register_event_handler); /** * ib_unregister_event_handler - Unregister an event handler * @event_handler:Handler to unregister * * Unregister an event handler registered with * ib_register_event_handler(). */ void ib_unregister_event_handler(struct ib_event_handler *event_handler) { down_write(&event_handler->device->event_handler_rwsem); list_del(&event_handler->list); up_write(&event_handler->device->event_handler_rwsem); } EXPORT_SYMBOL(ib_unregister_event_handler); void ib_dispatch_event_clients(struct ib_event *event) { struct ib_event_handler *handler; down_read(&event->device->event_handler_rwsem); list_for_each_entry(handler, &event->device->event_handler_list, list) handler->handler(handler, event); up_read(&event->device->event_handler_rwsem); } static int iw_query_port(struct ib_device *device, u32 port_num, struct ib_port_attr *port_attr) { struct in_device *inetdev; struct net_device *netdev; memset(port_attr, 0, sizeof(*port_attr)); netdev = ib_device_get_netdev(device, port_num); if (!netdev) return -ENODEV; port_attr->max_mtu = IB_MTU_4096; port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); if (!netif_carrier_ok(netdev)) { port_attr->state = IB_PORT_DOWN; port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; } else { rcu_read_lock(); inetdev = __in_dev_get_rcu(netdev); if (inetdev && inetdev->ifa_list) { port_attr->state = IB_PORT_ACTIVE; port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; } else { port_attr->state = IB_PORT_INIT; port_attr->phys_state = IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; } rcu_read_unlock(); } dev_put(netdev); return device->ops.query_port(device, port_num, port_attr); } static int __ib_query_port(struct ib_device *device, u32 port_num, struct ib_port_attr *port_attr) { int err; memset(port_attr, 0, sizeof(*port_attr)); err = device->ops.query_port(device, port_num, port_attr); if (err || port_attr->subnet_prefix) return err; if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND) return 0; ib_get_cached_subnet_prefix(device, port_num, &port_attr->subnet_prefix); return 0; } /** * ib_query_port - Query IB port attributes * @device:Device to query * @port_num:Port number to query * @port_attr:Port attributes * * ib_query_port() returns the attributes of a port through the * @port_attr pointer. */ int ib_query_port(struct ib_device *device, u32 port_num, struct ib_port_attr *port_attr) { if (!rdma_is_port_valid(device, port_num)) return -EINVAL; if (rdma_protocol_iwarp(device, port_num)) return iw_query_port(device, port_num, port_attr); else return __ib_query_port(device, port_num, port_attr); } EXPORT_SYMBOL(ib_query_port); static void add_ndev_hash(struct ib_port_data *pdata) { unsigned long flags; might_sleep(); spin_lock_irqsave(&ndev_hash_lock, flags); if (hash_hashed(&pdata->ndev_hash_link)) { hash_del_rcu(&pdata->ndev_hash_link); spin_unlock_irqrestore(&ndev_hash_lock, flags); /* * We cannot do hash_add_rcu after a hash_del_rcu until the * grace period */ synchronize_rcu(); spin_lock_irqsave(&ndev_hash_lock, flags); } if (pdata->netdev) hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, (uintptr_t)pdata->netdev); spin_unlock_irqrestore(&ndev_hash_lock, flags); } /** * ib_device_set_netdev - Associate the ib_dev with an underlying net_device * @ib_dev: Device to modify * @ndev: net_device to affiliate, may be NULL * @port: IB port the net_device is connected to * * Drivers should use this to link the ib_device to a netdev so the netdev * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be * affiliated with any port. * * The caller must ensure that the given ndev is not unregistered or * unregistering, and that either the ib_device is unregistered or * ib_device_set_netdev() is called with NULL when the ndev sends a * NETDEV_UNREGISTER event. */ int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, u32 port) { enum rdma_nl_notify_event_type etype; struct net_device *old_ndev; struct ib_port_data *pdata; unsigned long flags; int ret; if (!rdma_is_port_valid(ib_dev, port)) return -EINVAL; /* * Drivers wish to call this before ib_register_driver, so we have to * setup the port data early. */ ret = alloc_port_data(ib_dev); if (ret) return ret; pdata = &ib_dev->port_data[port]; spin_lock_irqsave(&pdata->netdev_lock, flags); old_ndev = rcu_dereference_protected( pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); if (old_ndev == ndev) { spin_unlock_irqrestore(&pdata->netdev_lock, flags); return 0; } rcu_assign_pointer(pdata->netdev, ndev); netdev_put(old_ndev, &pdata->netdev_tracker); netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC); spin_unlock_irqrestore(&pdata->netdev_lock, flags); add_ndev_hash(pdata); /* Make sure that the device is registered before we send events */ if (xa_load(&devices, ib_dev->index) != ib_dev) return 0; etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT; rdma_nl_notify_event(ib_dev, port, etype); return 0; } EXPORT_SYMBOL(ib_device_set_netdev); static void free_netdevs(struct ib_device *ib_dev) { unsigned long flags; u32 port; if (!ib_dev->port_data) return; rdma_for_each_port (ib_dev, port) { struct ib_port_data *pdata = &ib_dev->port_data[port]; struct net_device *ndev; spin_lock_irqsave(&pdata->netdev_lock, flags); ndev = rcu_dereference_protected( pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); if (ndev) { spin_lock(&ndev_hash_lock); hash_del_rcu(&pdata->ndev_hash_link); spin_unlock(&ndev_hash_lock); /* * If this is the last dev_put there is still a * synchronize_rcu before the netdev is kfreed, so we * can continue to rely on unlocked pointer * comparisons after the put */ rcu_assign_pointer(pdata->netdev, NULL); netdev_put(ndev, &pdata->netdev_tracker); } spin_unlock_irqrestore(&pdata->netdev_lock, flags); } } struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, u32 port) { struct ib_port_data *pdata; struct net_device *res; if (!rdma_is_port_valid(ib_dev, port)) return NULL; if (!ib_dev->port_data) return NULL; pdata = &ib_dev->port_data[port]; /* * New drivers should use ib_device_set_netdev() not the legacy * get_netdev(). */ if (ib_dev->ops.get_netdev) res = ib_dev->ops.get_netdev(ib_dev, port); else { spin_lock(&pdata->netdev_lock); res = rcu_dereference_protected( pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); dev_hold(res); spin_unlock(&pdata->netdev_lock); } return res; } EXPORT_SYMBOL(ib_device_get_netdev); /** * ib_query_netdev_port - Query the port number of a net_device * associated with an ibdev * @ibdev: IB device * @ndev: Network device * @port: IB port the net_device is connected to */ int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev, u32 *port) { struct net_device *ib_ndev; u32 port_num; rdma_for_each_port(ibdev, port_num) { ib_ndev = ib_device_get_netdev(ibdev, port_num); if (ndev == ib_ndev) { *port = port_num; dev_put(ib_ndev); return 0; } dev_put(ib_ndev); } return -ENOENT; } EXPORT_SYMBOL(ib_query_netdev_port); /** * ib_device_get_by_netdev - Find an IB device associated with a netdev * @ndev: netdev to locate * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) * * Find and hold an ib_device that is associated with a netdev via * ib_device_set_netdev(). The caller must call ib_device_put() on the * returned pointer. */ struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, enum rdma_driver_id driver_id) { struct ib_device *res = NULL; struct ib_port_data *cur; rcu_read_lock(); hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, (uintptr_t)ndev) { if (rcu_access_pointer(cur->netdev) == ndev && (driver_id == RDMA_DRIVER_UNKNOWN || cur->ib_dev->ops.driver_id == driver_id) && ib_device_try_get(cur->ib_dev)) { res = cur->ib_dev; break; } } rcu_read_unlock(); return res; } EXPORT_SYMBOL(ib_device_get_by_netdev); /** * ib_enum_roce_netdev - enumerate all RoCE ports * @ib_dev : IB device we want to query * @filter: Should we call the callback? * @filter_cookie: Cookie passed to filter * @cb: Callback to call for each found RoCE ports * @cookie: Cookie passed back to the callback * * Enumerates all of the physical RoCE ports of ib_dev * which are related to netdevice and calls callback() on each * device for which filter() function returns non zero. */ void ib_enum_roce_netdev(struct ib_device *ib_dev, roce_netdev_filter filter, void *filter_cookie, roce_netdev_callback cb, void *cookie) { u32 port; rdma_for_each_port (ib_dev, port) if (rdma_protocol_roce(ib_dev, port)) { struct net_device *idev = ib_device_get_netdev(ib_dev, port); if (filter(ib_dev, port, idev, filter_cookie)) cb(ib_dev, port, idev, cookie); dev_put(idev); } } /** * ib_enum_all_roce_netdevs - enumerate all RoCE devices * @filter: Should we call the callback? * @filter_cookie: Cookie passed to filter * @cb: Callback to call for each found RoCE ports * @cookie: Cookie passed back to the callback * * Enumerates all RoCE devices' physical ports which are related * to netdevices and calls callback() on each device for which * filter() function returns non zero. */ void ib_enum_all_roce_netdevs(roce_netdev_filter filter, void *filter_cookie, roce_netdev_callback cb, void *cookie) { struct ib_device *dev; unsigned long index; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); up_read(&devices_rwsem); } /* * ib_enum_all_devs - enumerate all ib_devices * @cb: Callback to call for each found ib_device * * Enumerates all ib_devices and calls callback() on each device. */ int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, struct netlink_callback *cb) { unsigned long index; struct ib_device *dev; unsigned int idx = 0; int ret = 0; down_read(&devices_rwsem); xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) continue; ret = nldev_cb(dev, skb, cb, idx); if (ret) break; idx++; } up_read(&devices_rwsem); return ret; } /** * ib_query_pkey - Get P_Key table entry * @device:Device to query * @port_num:Port number to query * @index:P_Key table index to query * @pkey:Returned P_Key * * ib_query_pkey() fetches the specified P_Key table entry. */ int ib_query_pkey(struct ib_device *device, u32 port_num, u16 index, u16 *pkey) { if (!rdma_is_port_valid(device, port_num)) return -EINVAL; if (!device->ops.query_pkey) return -EOPNOTSUPP; return device->ops.query_pkey(device, port_num, index, pkey); } EXPORT_SYMBOL(ib_query_pkey); /** * ib_modify_device - Change IB device attributes * @device:Device to modify * @device_modify_mask:Mask of attributes to change * @device_modify:New attribute values * * ib_modify_device() changes a device's attributes as specified by * the @device_modify_mask and @device_modify structure. */ int ib_modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify) { if (!device->ops.modify_device) return -EOPNOTSUPP; return device->ops.modify_device(device, device_modify_mask, device_modify); } EXPORT_SYMBOL(ib_modify_device); /** * ib_modify_port - Modifies the attributes for the specified port. * @device: The device to modify. * @port_num: The number of the port to modify. * @port_modify_mask: Mask used to specify which attributes of the port * to change. * @port_modify: New attribute values for the port. * * ib_modify_port() changes a port's attributes as specified by the * @port_modify_mask and @port_modify structure. */ int ib_modify_port(struct ib_device *device, u32 port_num, int port_modify_mask, struct ib_port_modify *port_modify) { int rc; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; if (device->ops.modify_port) rc = device->ops.modify_port(device, port_num, port_modify_mask, port_modify); else if (rdma_protocol_roce(device, port_num) && ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) rc = 0; else rc = -EOPNOTSUPP; return rc; } EXPORT_SYMBOL(ib_modify_port); /** * ib_find_gid - Returns the port number and GID table index where * a specified GID value occurs. Its searches only for IB link layer. * @device: The device to query. * @gid: The GID value to search for. * @port_num: The port number of the device where the GID value was found. * @index: The index into the GID table where the GID was found. This * parameter may be NULL. */ int ib_find_gid(struct ib_device *device, union ib_gid *gid, u32 *port_num, u16 *index) { union ib_gid tmp_gid; u32 port; int ret, i; rdma_for_each_port (device, port) { if (!rdma_protocol_ib(device, port)) continue; for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; ++i) { ret = rdma_query_gid(device, port, i, &tmp_gid); if (ret) continue; if (!memcmp(&tmp_gid, gid, sizeof *gid)) { *port_num = port; if (index) *index = i; return 0; } } } return -ENOENT; } EXPORT_SYMBOL(ib_find_gid); /** * ib_find_pkey - Returns the PKey table index where a specified * PKey value occurs. * @device: The device to query. * @port_num: The port number of the device to search for the PKey. * @pkey: The PKey value to search for. * @index: The index into the PKey table where the PKey was found. */ int ib_find_pkey(struct ib_device *device, u32 port_num, u16 pkey, u16 *index) { int ret, i; u16 tmp_pkey; int partial_ix = -1; for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; ++i) { ret = ib_query_pkey(device, port_num, i, &tmp_pkey); if (ret) return ret; if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { /* if there is full-member pkey take it.*/ if (tmp_pkey & 0x8000) { *index = i; return 0; } if (partial_ix < 0) partial_ix = i; } } /*no full-member, if exists take the limited*/ if (partial_ix >= 0) { *index = partial_ix; return 0; } return -ENOENT; } EXPORT_SYMBOL(ib_find_pkey); /** * ib_get_net_dev_by_params() - Return the appropriate net_dev * for a received CM request * @dev: An RDMA device on which the request has been received. * @port: Port number on the RDMA device. * @pkey: The Pkey the request came on. * @gid: A GID that the net_dev uses to communicate. * @addr: Contains the IP address that the request specified as its * destination. * */ struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr) { struct net_device *net_dev = NULL; unsigned long index; void *client_data; if (!rdma_protocol_ib(dev, port)) return NULL; /* * Holding the read side guarantees that the client will not become * unregistered while we are calling get_net_dev_by_params() */ down_read(&dev->client_data_rwsem); xan_for_each_marked (&dev->client_data, index, client_data, CLIENT_DATA_REGISTERED) { struct ib_client *client = xa_load(&clients, index); if (!client || !client->get_net_dev_by_params) continue; net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, addr, client_data); if (net_dev) break; } up_read(&dev->client_data_rwsem); return net_dev; } EXPORT_SYMBOL(ib_get_net_dev_by_params); void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) { struct ib_device_ops *dev_ops = &dev->ops; #define SET_DEVICE_OP(ptr, name) \ do { \ if (ops->name) \ if (!((ptr)->name)) \ (ptr)->name = ops->name; \ } while (0) #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && dev_ops->driver_id != ops->driver_id); dev_ops->driver_id = ops->driver_id; } if (ops->owner) { WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); dev_ops->owner = ops->owner; } if (ops->uverbs_abi_ver) dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; dev_ops->uverbs_no_driver_id_binding |= ops->uverbs_no_driver_id_binding; SET_DEVICE_OP(dev_ops, add_gid); SET_DEVICE_OP(dev_ops, add_sub_dev); SET_DEVICE_OP(dev_ops, advise_mr); SET_DEVICE_OP(dev_ops, alloc_dm); SET_DEVICE_OP(dev_ops, alloc_dmah); SET_DEVICE_OP(dev_ops, alloc_hw_device_stats); SET_DEVICE_OP(dev_ops, alloc_hw_port_stats); SET_DEVICE_OP(dev_ops, alloc_mr); SET_DEVICE_OP(dev_ops, alloc_mr_integrity); SET_DEVICE_OP(dev_ops, alloc_mw); SET_DEVICE_OP(dev_ops, alloc_pd); SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); SET_DEVICE_OP(dev_ops, alloc_ucontext); SET_DEVICE_OP(dev_ops, alloc_xrcd); SET_DEVICE_OP(dev_ops, attach_mcast); SET_DEVICE_OP(dev_ops, check_mr_status); SET_DEVICE_OP(dev_ops, counter_alloc_stats); SET_DEVICE_OP(dev_ops, counter_bind_qp); SET_DEVICE_OP(dev_ops, counter_dealloc); SET_DEVICE_OP(dev_ops, counter_init); SET_DEVICE_OP(dev_ops, counter_unbind_qp); SET_DEVICE_OP(dev_ops, counter_update_stats); SET_DEVICE_OP(dev_ops, create_ah); SET_DEVICE_OP(dev_ops, create_counters); SET_DEVICE_OP(dev_ops, create_cq); SET_DEVICE_OP(dev_ops, create_cq_umem); SET_DEVICE_OP(dev_ops, create_flow); SET_DEVICE_OP(dev_ops, create_qp); SET_DEVICE_OP(dev_ops, create_rwq_ind_table); SET_DEVICE_OP(dev_ops, create_srq); SET_DEVICE_OP(dev_ops, create_user_ah); SET_DEVICE_OP(dev_ops, create_wq); SET_DEVICE_OP(dev_ops, dealloc_dm); SET_DEVICE_OP(dev_ops, dealloc_dmah); SET_DEVICE_OP(dev_ops, dealloc_driver); SET_DEVICE_OP(dev_ops, dealloc_mw); SET_DEVICE_OP(dev_ops, dealloc_pd); SET_DEVICE_OP(dev_ops, dealloc_ucontext); SET_DEVICE_OP(dev_ops, dealloc_xrcd); SET_DEVICE_OP(dev_ops, del_gid); SET_DEVICE_OP(dev_ops, del_sub_dev); SET_DEVICE_OP(dev_ops, dereg_mr); SET_DEVICE_OP(dev_ops, destroy_ah); SET_DEVICE_OP(dev_ops, destroy_counters); SET_DEVICE_OP(dev_ops, destroy_cq); SET_DEVICE_OP(dev_ops, destroy_flow); SET_DEVICE_OP(dev_ops, destroy_flow_action); SET_DEVICE_OP(dev_ops, destroy_qp); SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); SET_DEVICE_OP(dev_ops, destroy_srq); SET_DEVICE_OP(dev_ops, destroy_wq); SET_DEVICE_OP(dev_ops, device_group); SET_DEVICE_OP(dev_ops, detach_mcast); SET_DEVICE_OP(dev_ops, disassociate_ucontext); SET_DEVICE_OP(dev_ops, drain_rq); SET_DEVICE_OP(dev_ops, drain_sq); SET_DEVICE_OP(dev_ops, enable_driver); SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry); SET_DEVICE_OP(dev_ops, fill_res_cq_entry); SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw); SET_DEVICE_OP(dev_ops, fill_res_mr_entry); SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw); SET_DEVICE_OP(dev_ops, fill_res_qp_entry); SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw); SET_DEVICE_OP(dev_ops, fill_res_srq_entry); SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw); SET_DEVICE_OP(dev_ops, fill_stat_mr_entry); SET_DEVICE_OP(dev_ops, get_dev_fw_str); SET_DEVICE_OP(dev_ops, get_dma_mr); SET_DEVICE_OP(dev_ops, get_hw_stats); SET_DEVICE_OP(dev_ops, get_link_layer); SET_DEVICE_OP(dev_ops, get_netdev); SET_DEVICE_OP(dev_ops, get_numa_node); SET_DEVICE_OP(dev_ops, get_port_immutable); SET_DEVICE_OP(dev_ops, get_vector_affinity); SET_DEVICE_OP(dev_ops, get_vf_config); SET_DEVICE_OP(dev_ops, get_vf_guid); SET_DEVICE_OP(dev_ops, get_vf_stats); SET_DEVICE_OP(dev_ops, iw_accept); SET_DEVICE_OP(dev_ops, iw_add_ref); SET_DEVICE_OP(dev_ops, iw_connect); SET_DEVICE_OP(dev_ops, iw_create_listen); SET_DEVICE_OP(dev_ops, iw_destroy_listen); SET_DEVICE_OP(dev_ops, iw_get_qp); SET_DEVICE_OP(dev_ops, iw_reject); SET_DEVICE_OP(dev_ops, iw_rem_ref); SET_DEVICE_OP(dev_ops, map_mr_sg); SET_DEVICE_OP(dev_ops, map_mr_sg_pi); SET_DEVICE_OP(dev_ops, mmap); SET_DEVICE_OP(dev_ops, mmap_free); SET_DEVICE_OP(dev_ops, modify_ah); SET_DEVICE_OP(dev_ops, modify_cq); SET_DEVICE_OP(dev_ops, modify_device); SET_DEVICE_OP(dev_ops, modify_hw_stat); SET_DEVICE_OP(dev_ops, modify_port); SET_DEVICE_OP(dev_ops, modify_qp); SET_DEVICE_OP(dev_ops, modify_srq); SET_DEVICE_OP(dev_ops, modify_wq); SET_DEVICE_OP(dev_ops, peek_cq); SET_DEVICE_OP(dev_ops, pre_destroy_cq); SET_DEVICE_OP(dev_ops, poll_cq); SET_DEVICE_OP(dev_ops, port_groups); SET_DEVICE_OP(dev_ops, post_destroy_cq); SET_DEVICE_OP(dev_ops, post_recv); SET_DEVICE_OP(dev_ops, post_send); SET_DEVICE_OP(dev_ops, post_srq_recv); SET_DEVICE_OP(dev_ops, process_mad); SET_DEVICE_OP(dev_ops, query_ah); SET_DEVICE_OP(dev_ops, query_device); SET_DEVICE_OP(dev_ops, query_gid); SET_DEVICE_OP(dev_ops, query_pkey); SET_DEVICE_OP(dev_ops, query_port); SET_DEVICE_OP(dev_ops, query_qp); SET_DEVICE_OP(dev_ops, query_srq); SET_DEVICE_OP(dev_ops, query_ucontext); SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); SET_DEVICE_OP(dev_ops, read_counters); SET_DEVICE_OP(dev_ops, reg_dm_mr); SET_DEVICE_OP(dev_ops, reg_user_mr); SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf); SET_DEVICE_OP(dev_ops, req_notify_cq); SET_DEVICE_OP(dev_ops, rereg_user_mr); SET_DEVICE_OP(dev_ops, resize_cq); SET_DEVICE_OP(dev_ops, set_vf_guid); SET_DEVICE_OP(dev_ops, set_vf_link_state); SET_DEVICE_OP(dev_ops, ufile_hw_cleanup); SET_DEVICE_OP(dev_ops, report_port_event); SET_OBJ_SIZE(dev_ops, ib_ah); SET_OBJ_SIZE(dev_ops, ib_counters); SET_OBJ_SIZE(dev_ops, ib_cq); SET_OBJ_SIZE(dev_ops, ib_dmah); SET_OBJ_SIZE(dev_ops, ib_mw); SET_OBJ_SIZE(dev_ops, ib_pd); SET_OBJ_SIZE(dev_ops, ib_qp); SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table); SET_OBJ_SIZE(dev_ops, ib_srq); SET_OBJ_SIZE(dev_ops, ib_ucontext); SET_OBJ_SIZE(dev_ops, ib_xrcd); SET_OBJ_SIZE(dev_ops, rdma_counter); } EXPORT_SYMBOL(ib_set_device_ops); int ib_add_sub_device(struct ib_device *parent, enum rdma_nl_dev_type type, const char *name) { struct ib_device *sub; int ret = 0; if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev) return -EOPNOTSUPP; if (!ib_device_try_get(parent)) return -EINVAL; sub = parent->ops.add_sub_dev(parent, type, name); if (IS_ERR(sub)) { ib_device_put(parent); return PTR_ERR(sub); } sub->type = type; sub->parent = parent; mutex_lock(&parent->subdev_lock); list_add_tail(&parent->subdev_list_head, &sub->subdev_list); mutex_unlock(&parent->subdev_lock); return ret; } EXPORT_SYMBOL(ib_add_sub_device); int ib_del_sub_device_and_put(struct ib_device *sub) { struct ib_device *parent = sub->parent; if (!parent) return -EOPNOTSUPP; mutex_lock(&parent->subdev_lock); list_del(&sub->subdev_list); mutex_unlock(&parent->subdev_lock); ib_device_put(sub); parent->ops.del_sub_dev(sub); ib_device_put(parent); return 0; } EXPORT_SYMBOL(ib_del_sub_device_and_put); #ifdef CONFIG_INFINIBAND_VIRT_DMA int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { sg_dma_address(s) = (uintptr_t)sg_virt(s); sg_dma_len(s) = s->length; } return nents; } EXPORT_SYMBOL(ib_dma_virt_map_sg); #endif /* CONFIG_INFINIBAND_VIRT_DMA */ static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { [RDMA_NL_LS_OP_RESOLVE] = { .doit = ib_nl_handle_resolve_resp, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NL_LS_OP_SET_TIMEOUT] = { .doit = ib_nl_handle_set_timeout, .flags = RDMA_NL_ADMIN_PERM, }, [RDMA_NL_LS_OP_IP_RESOLVE] = { .doit = ib_nl_handle_ip_res_resp, .flags = RDMA_NL_ADMIN_PERM, }, }; void ib_dispatch_port_state_event(struct ib_device *ibdev, struct net_device *ndev) { enum ib_port_state curr_state; struct ib_event ibevent = {}; u32 port; if (ib_query_netdev_port(ibdev, ndev, &port)) return; curr_state = ib_get_curr_port_state(ndev); write_lock_irq(&ibdev->cache_lock); if (ibdev->port_data[port].cache.last_port_state == curr_state) { write_unlock_irq(&ibdev->cache_lock); return; } ibdev->port_data[port].cache.last_port_state = curr_state; write_unlock_irq(&ibdev->cache_lock); ibevent.event = (curr_state == IB_PORT_DOWN) ? IB_EVENT_PORT_ERR : IB_EVENT_PORT_ACTIVE; ibevent.device = ibdev; ibevent.element.port_num = port; ib_dispatch_event(&ibevent); } EXPORT_SYMBOL(ib_dispatch_port_state_event); static void handle_port_event(struct net_device *ndev, unsigned long event) { struct ib_device *ibdev; /* Currently, link events in bonding scenarios are still * reported by drivers that support bonding. */ if (netif_is_lag_master(ndev) || netif_is_lag_port(ndev)) return; ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN); if (!ibdev) return; if (ibdev->ops.report_port_event) { ibdev->ops.report_port_event(ibdev, ndev, event); goto put_ibdev; } ib_dispatch_port_state_event(ibdev, ndev); put_ibdev: ib_device_put(ibdev); }; static int ib_netdevice_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct ib_device *ibdev; u32 port; switch (event) { case NETDEV_CHANGENAME: ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN); if (!ibdev) return NOTIFY_DONE; if (ib_query_netdev_port(ibdev, ndev, &port)) { ib_device_put(ibdev); break; } rdma_nl_notify_event(ibdev, port, RDMA_NETDEV_RENAME_EVENT); ib_device_put(ibdev); break; case NETDEV_UP: case NETDEV_CHANGE: case NETDEV_DOWN: handle_port_event(ndev, event); break; default: break; } return NOTIFY_DONE; } static struct notifier_block nb_netdevice = { .notifier_call = ib_netdevice_event, }; static int __init ib_core_init(void) { int ret = -ENOMEM; ib_wq = alloc_workqueue("infiniband", 0, 0); if (!ib_wq) return -ENOMEM; ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); if (!ib_unreg_wq) goto err; ib_comp_wq = alloc_workqueue("ib-comp-wq", WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!ib_comp_wq) goto err_unbound; ib_comp_unbound_wq = alloc_workqueue("ib-comp-unb-wq", WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); if (!ib_comp_unbound_wq) goto err_comp; ret = class_register(&ib_class); if (ret) { pr_warn("Couldn't create InfiniBand device class\n"); goto err_comp_unbound; } rdma_nl_init(); ret = addr_init(); if (ret) { pr_warn("Couldn't init IB address resolution\n"); goto err_ibnl; } ret = ib_mad_init(); if (ret) { pr_warn("Couldn't init IB MAD\n"); goto err_addr; } ret = ib_sa_init(); if (ret) { pr_warn("Couldn't init SA\n"); goto err_mad; } ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); if (ret) { pr_warn("Couldn't register LSM notifier. ret %d\n", ret); goto err_sa; } ret = register_pernet_device(&rdma_dev_net_ops); if (ret) { pr_warn("Couldn't init compat dev. ret %d\n", ret); goto err_compat; } nldev_init(); rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); ret = roce_gid_mgmt_init(); if (ret) { pr_warn("Couldn't init RoCE GID management\n"); goto err_parent; } register_netdevice_notifier(&nb_netdevice); return 0; err_parent: rdma_nl_unregister(RDMA_NL_LS); nldev_exit(); unregister_pernet_device(&rdma_dev_net_ops); err_compat: unregister_blocking_lsm_notifier(&ibdev_lsm_nb); err_sa: ib_sa_cleanup(); err_mad: ib_mad_cleanup(); err_addr: addr_cleanup(); err_ibnl: class_unregister(&ib_class); err_comp_unbound: destroy_workqueue(ib_comp_unbound_wq); err_comp: destroy_workqueue(ib_comp_wq); err_unbound: destroy_workqueue(ib_unreg_wq); err: destroy_workqueue(ib_wq); return ret; } static void __exit ib_core_cleanup(void) { unregister_netdevice_notifier(&nb_netdevice); roce_gid_mgmt_cleanup(); rdma_nl_unregister(RDMA_NL_LS); nldev_exit(); unregister_pernet_device(&rdma_dev_net_ops); unregister_blocking_lsm_notifier(&ibdev_lsm_nb); ib_sa_cleanup(); ib_mad_cleanup(); addr_cleanup(); rdma_nl_exit(); class_unregister(&ib_class); destroy_workqueue(ib_comp_unbound_wq); destroy_workqueue(ib_comp_wq); /* Make sure that any pending umem accounting work is done. */ destroy_workqueue(ib_wq); destroy_workqueue(ib_unreg_wq); WARN_ON(!xa_empty(&clients)); WARN_ON(!xa_empty(&devices)); } MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); /* ib core relies on netdev stack to first register net_ns_type_operations * ns kobject type before ib_core initialization. */ fs_initcall(ib_core_init); module_exit(ib_core_cleanup);
1 5 13 1 2 20 1 16 3 15 1 18 4 11 1 1 7 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 3 1 1 10 3 7 6 1 1 1 1 3 5 1 4 4 1 3 3 1 1 2 17 1 7 5 4 1 6 1 1 2 2 1 3 3 3 2 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 IBM Corporation * Copyright (C) 2010 Politecnico di Torino, Italy * TORSEC group -- https://security.polito.it * * Authors: * Mimi Zohar <zohar@us.ibm.com> * Roberto Sassu <roberto.sassu@polito.it> * * See Documentation/security/keys/trusted-encrypted.rst */ #include <linux/uaccess.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/parser.h> #include <linux/string.h> #include <linux/err.h> #include <keys/user-type.h> #include <keys/trusted-type.h> #include <keys/encrypted-type.h> #include <linux/key-type.h> #include <linux/random.h> #include <linux/rcupdate.h> #include <linux/scatterlist.h> #include <linux/ctype.h> #include <crypto/aes.h> #include <crypto/hash.h> #include <crypto/sha2.h> #include <crypto/skcipher.h> #include <crypto/utils.h> #include "encrypted.h" #include "ecryptfs_format.h" static const char KEY_TRUSTED_PREFIX[] = "trusted:"; static const char KEY_USER_PREFIX[] = "user:"; static const char hash_alg[] = "sha256"; static const char hmac_alg[] = "hmac(sha256)"; static const char blkcipher_alg[] = "cbc(aes)"; static const char key_format_default[] = "default"; static const char key_format_ecryptfs[] = "ecryptfs"; static const char key_format_enc32[] = "enc32"; static unsigned int ivsize; static int blksize; #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) #define KEY_ECRYPTFS_DESC_LEN 16 #define HASH_SIZE SHA256_DIGEST_SIZE #define MAX_DATA_SIZE 4096 #define MIN_DATA_SIZE 20 #define KEY_ENC32_PAYLOAD_LEN 32 static struct crypto_shash *hash_tfm; enum { Opt_new, Opt_load, Opt_update, Opt_err }; enum { Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error }; static const match_table_t key_format_tokens = { {Opt_default, "default"}, {Opt_ecryptfs, "ecryptfs"}, {Opt_enc32, "enc32"}, {Opt_error, NULL} }; static const match_table_t key_tokens = { {Opt_new, "new"}, {Opt_load, "load"}, {Opt_update, "update"}, {Opt_err, NULL} }; static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA); module_param(user_decrypted_data, bool, 0); MODULE_PARM_DESC(user_decrypted_data, "Allow instantiation of encrypted keys using provided decrypted data"); static int aes_get_sizes(void) { struct crypto_skcipher *tfm; tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", PTR_ERR(tfm)); return PTR_ERR(tfm); } ivsize = crypto_skcipher_ivsize(tfm); blksize = crypto_skcipher_blocksize(tfm); crypto_free_skcipher(tfm); return 0; } /* * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key * * The description of a encrypted key with format 'ecryptfs' must contain * exactly 16 hexadecimal characters. * */ static int valid_ecryptfs_desc(const char *ecryptfs_desc) { int i; if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) { pr_err("encrypted_key: key description must be %d hexadecimal " "characters long\n", KEY_ECRYPTFS_DESC_LEN); return -EINVAL; } for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) { if (!isxdigit(ecryptfs_desc[i])) { pr_err("encrypted_key: key description must contain " "only hexadecimal characters\n"); return -EINVAL; } } return 0; } /* * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key * * key-type:= "trusted:" | "user:" * desc:= master-key description * * Verify that 'key-type' is valid and that 'desc' exists. On key update, * only the master key description is permitted to change, not the key-type. * The key-type remains constant. * * On success returns 0, otherwise -EINVAL. */ static int valid_master_desc(const char *new_desc, const char *orig_desc) { int prefix_len; if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) prefix_len = KEY_TRUSTED_PREFIX_LEN; else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) prefix_len = KEY_USER_PREFIX_LEN; else return -EINVAL; if (!new_desc[prefix_len]) return -EINVAL; if (orig_desc && strncmp(new_desc, orig_desc, prefix_len)) return -EINVAL; return 0; } /* * datablob_parse - parse the keyctl data * * datablob format: * new [<format>] <master-key name> <decrypted data length> [<decrypted data>] * load [<format>] <master-key name> <decrypted data length> * <encrypted iv + data> * update <new-master-key name> * * Tokenizes a copy of the keyctl data, returning a pointer to each token, * which is null terminated. * * On success returns 0, otherwise -EINVAL. */ static int datablob_parse(char *datablob, const char **format, char **master_desc, char **decrypted_datalen, char **hex_encoded_iv, char **decrypted_data) { substring_t args[MAX_OPT_ARGS]; int ret = -EINVAL; int key_cmd; int key_format; char *p, *keyword; keyword = strsep(&datablob, " \t"); if (!keyword) { pr_info("encrypted_key: insufficient parameters specified\n"); return ret; } key_cmd = match_token(keyword, key_tokens, args); /* Get optional format: default | ecryptfs */ p = strsep(&datablob, " \t"); if (!p) { pr_err("encrypted_key: insufficient parameters specified\n"); return ret; } key_format = match_token(p, key_format_tokens, args); switch (key_format) { case Opt_ecryptfs: case Opt_enc32: case Opt_default: *format = p; *master_desc = strsep(&datablob, " \t"); break; case Opt_error: *master_desc = p; break; } if (!*master_desc) { pr_info("encrypted_key: master key parameter is missing\n"); goto out; } if (valid_master_desc(*master_desc, NULL) < 0) { pr_info("encrypted_key: master key parameter \'%s\' " "is invalid\n", *master_desc); goto out; } if (decrypted_datalen) { *decrypted_datalen = strsep(&datablob, " \t"); if (!*decrypted_datalen) { pr_info("encrypted_key: keylen parameter is missing\n"); goto out; } } switch (key_cmd) { case Opt_new: if (!decrypted_datalen) { pr_info("encrypted_key: keyword \'%s\' not allowed " "when called from .update method\n", keyword); break; } *decrypted_data = strsep(&datablob, " \t"); ret = 0; break; case Opt_load: if (!decrypted_datalen) { pr_info("encrypted_key: keyword \'%s\' not allowed " "when called from .update method\n", keyword); break; } *hex_encoded_iv = strsep(&datablob, " \t"); if (!*hex_encoded_iv) { pr_info("encrypted_key: hex blob is missing\n"); break; } ret = 0; break; case Opt_update: if (decrypted_datalen) { pr_info("encrypted_key: keyword \'%s\' not allowed " "when called from .instantiate method\n", keyword); break; } ret = 0; break; case Opt_err: pr_info("encrypted_key: keyword \'%s\' not recognized\n", keyword); break; } out: return ret; } /* * datablob_format - format as an ascii string, before copying to userspace */ static char *datablob_format(struct encrypted_key_payload *epayload, size_t asciiblob_len) { char *ascii_buf, *bufp; u8 *iv = epayload->iv; int len; int i; ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); if (!ascii_buf) goto out; ascii_buf[asciiblob_len] = '\0'; /* copy datablob master_desc and datalen strings */ len = sprintf(ascii_buf, "%s %s %s ", epayload->format, epayload->master_desc, epayload->datalen); /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ bufp = &ascii_buf[len]; for (i = 0; i < (asciiblob_len - len) / 2; i++) bufp = hex_byte_pack(bufp, iv[i]); out: return ascii_buf; } /* * request_user_key - request the user key * * Use a user provided key to encrypt/decrypt an encrypted-key. */ static struct key *request_user_key(const char *master_desc, const u8 **master_key, size_t *master_keylen) { const struct user_key_payload *upayload; struct key *ukey; ukey = request_key(&key_type_user, master_desc, NULL); if (IS_ERR(ukey)) goto error; down_read(&ukey->sem); upayload = user_key_payload_locked(ukey); if (!upayload) { /* key was revoked before we acquired its semaphore */ up_read(&ukey->sem); key_put(ukey); ukey = ERR_PTR(-EKEYREVOKED); goto error; } *master_key = upayload->data; *master_keylen = upayload->datalen; error: return ukey; } static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, const u8 *buf, unsigned int buflen) { struct crypto_shash *tfm; int err; tfm = crypto_alloc_shash(hmac_alg, 0, 0); if (IS_ERR(tfm)) { pr_err("encrypted_key: can't alloc %s transform: %ld\n", hmac_alg, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = crypto_shash_setkey(tfm, key, keylen); if (!err) err = crypto_shash_tfm_digest(tfm, buf, buflen, digest); crypto_free_shash(tfm); return err; } enum derived_key_type { ENC_KEY, AUTH_KEY }; /* Derive authentication/encryption key from trusted key */ static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, const u8 *master_key, size_t master_keylen) { u8 *derived_buf; unsigned int derived_buf_len; int ret; derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; if (derived_buf_len < HASH_SIZE) derived_buf_len = HASH_SIZE; derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); if (!derived_buf) return -ENOMEM; if (key_type) strcpy(derived_buf, "AUTH_KEY"); else strcpy(derived_buf, "ENC_KEY"); memcpy(derived_buf + strlen(derived_buf) + 1, master_key, master_keylen); ret = crypto_shash_tfm_digest(hash_tfm, derived_buf, derived_buf_len, derived_key); kfree_sensitive(derived_buf); return ret; } static struct skcipher_request *init_skcipher_req(const u8 *key, unsigned int key_len) { struct skcipher_request *req; struct crypto_skcipher *tfm; int ret; tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { pr_err("encrypted_key: failed to load %s transform (%ld)\n", blkcipher_alg, PTR_ERR(tfm)); return ERR_CAST(tfm); } ret = crypto_skcipher_setkey(tfm, key, key_len); if (ret < 0) { pr_err("encrypted_key: failed to setkey (%d)\n", ret); crypto_free_skcipher(tfm); return ERR_PTR(ret); } req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("encrypted_key: failed to allocate request for %s\n", blkcipher_alg); crypto_free_skcipher(tfm); return ERR_PTR(-ENOMEM); } skcipher_request_set_callback(req, 0, NULL, NULL); return req; } static struct key *request_master_key(struct encrypted_key_payload *epayload, const u8 **master_key, size_t *master_keylen) { struct key *mkey = ERR_PTR(-EINVAL); if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { mkey = request_trusted_key(epayload->master_desc + KEY_TRUSTED_PREFIX_LEN, master_key, master_keylen); } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { mkey = request_user_key(epayload->master_desc + KEY_USER_PREFIX_LEN, master_key, master_keylen); } else goto out; if (IS_ERR(mkey)) { int ret = PTR_ERR(mkey); if (ret == -ENOTSUPP) pr_info("encrypted_key: key %s not supported", epayload->master_desc); else pr_info("encrypted_key: key %s not found", epayload->master_desc); goto out; } dump_master_key(*master_key, *master_keylen); out: return mkey; } /* Before returning data to userspace, encrypt decrypted data. */ static int derived_key_encrypt(struct encrypted_key_payload *epayload, const u8 *derived_key, unsigned int derived_keylen) { struct scatterlist sg_in[2]; struct scatterlist sg_out[1]; struct crypto_skcipher *tfm; struct skcipher_request *req; unsigned int encrypted_datalen; u8 iv[AES_BLOCK_SIZE]; int ret; encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); req = init_skcipher_req(derived_key, derived_keylen); ret = PTR_ERR(req); if (IS_ERR(req)) goto out; dump_decrypted_data(epayload); sg_init_table(sg_in, 2); sg_set_buf(&sg_in[0], epayload->decrypted_data, epayload->decrypted_datalen); sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0); sg_init_table(sg_out, 1); sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); memcpy(iv, epayload->iv, sizeof(iv)); skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv); ret = crypto_skcipher_encrypt(req); tfm = crypto_skcipher_reqtfm(req); skcipher_request_free(req); crypto_free_skcipher(tfm); if (ret < 0) pr_err("encrypted_key: failed to encrypt (%d)\n", ret); else dump_encrypted_data(epayload, encrypted_datalen); out: return ret; } static int datablob_hmac_append(struct encrypted_key_payload *epayload, const u8 *master_key, size_t master_keylen) { u8 derived_key[HASH_SIZE]; u8 *digest; int ret; ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); if (ret < 0) goto out; digest = epayload->format + epayload->datablob_len; ret = calc_hmac(digest, derived_key, sizeof derived_key, epayload->format, epayload->datablob_len); if (!ret) dump_hmac(NULL, digest, HASH_SIZE); out: memzero_explicit(derived_key, sizeof(derived_key)); return ret; } /* verify HMAC before decrypting encrypted key */ static int datablob_hmac_verify(struct encrypted_key_payload *epayload, const u8 *format, const u8 *master_key, size_t master_keylen) { u8 derived_key[HASH_SIZE]; u8 digest[HASH_SIZE]; int ret; char *p; unsigned short len; ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); if (ret < 0) goto out; len = epayload->datablob_len; if (!format) { p = epayload->master_desc; len -= strlen(epayload->format) + 1; } else p = epayload->format; ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len); if (ret < 0) goto out; ret = crypto_memneq(digest, epayload->format + epayload->datablob_len, sizeof(digest)); if (ret) { ret = -EINVAL; dump_hmac("datablob", epayload->format + epayload->datablob_len, HASH_SIZE); dump_hmac("calc", digest, HASH_SIZE); } out: memzero_explicit(derived_key, sizeof(derived_key)); return ret; } static int derived_key_decrypt(struct encrypted_key_payload *epayload, const u8 *derived_key, unsigned int derived_keylen) { struct scatterlist sg_in[1]; struct scatterlist sg_out[2]; struct crypto_skcipher *tfm; struct skcipher_request *req; unsigned int encrypted_datalen; u8 iv[AES_BLOCK_SIZE]; u8 *pad; int ret; /* Throwaway buffer to hold the unused zero padding at the end */ pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL); if (!pad) return -ENOMEM; encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); req = init_skcipher_req(derived_key, derived_keylen); ret = PTR_ERR(req); if (IS_ERR(req)) goto out; dump_encrypted_data(epayload, encrypted_datalen); sg_init_table(sg_in, 1); sg_init_table(sg_out, 2); sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); sg_set_buf(&sg_out[0], epayload->decrypted_data, epayload->decrypted_datalen); sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE); memcpy(iv, epayload->iv, sizeof(iv)); skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv); ret = crypto_skcipher_decrypt(req); tfm = crypto_skcipher_reqtfm(req); skcipher_request_free(req); crypto_free_skcipher(tfm); if (ret < 0) goto out; dump_decrypted_data(epayload); out: kfree(pad); return ret; } /* Allocate memory for decrypted key and datablob. */ static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, const char *format, const char *master_desc, const char *datalen, const char *decrypted_data) { struct encrypted_key_payload *epayload = NULL; unsigned short datablob_len; unsigned short decrypted_datalen; unsigned short payload_datalen; unsigned int encrypted_datalen; unsigned int format_len; long dlen; int i; int ret; ret = kstrtol(datalen, 10, &dlen); if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) return ERR_PTR(-EINVAL); format_len = (!format) ? strlen(key_format_default) : strlen(format); decrypted_datalen = dlen; payload_datalen = decrypted_datalen; if (decrypted_data) { if (!user_decrypted_data) { pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n"); return ERR_PTR(-EINVAL); } if (strlen(decrypted_data) != decrypted_datalen * 2) { pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n"); return ERR_PTR(-EINVAL); } for (i = 0; i < strlen(decrypted_data); i++) { if (!isxdigit(decrypted_data[i])) { pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n"); return ERR_PTR(-EINVAL); } } } if (format) { if (!strcmp(format, key_format_ecryptfs)) { if (dlen != ECRYPTFS_MAX_KEY_BYTES) { pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n", ECRYPTFS_MAX_KEY_BYTES); return ERR_PTR(-EINVAL); } decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES; payload_datalen = sizeof(struct ecryptfs_auth_tok); } else if (!strcmp(format, key_format_enc32)) { if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) { pr_err("encrypted_key: enc32 key payload incorrect length: %d\n", decrypted_datalen); return ERR_PTR(-EINVAL); } } } encrypted_datalen = roundup(decrypted_datalen, blksize); datablob_len = format_len + 1 + strlen(master_desc) + 1 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen; ret = key_payload_reserve(key, payload_datalen + datablob_len + HASH_SIZE + 1); if (ret < 0) return ERR_PTR(ret); epayload = kzalloc(sizeof(*epayload) + payload_datalen + datablob_len + HASH_SIZE + 1, GFP_KERNEL); if (!epayload) return ERR_PTR(-ENOMEM); epayload->payload_datalen = payload_datalen; epayload->decrypted_datalen = decrypted_datalen; epayload->datablob_len = datablob_len; return epayload; } static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, const char *format, const char *hex_encoded_iv) { struct key *mkey; u8 derived_key[HASH_SIZE]; const u8 *master_key; u8 *hmac; const char *hex_encoded_data; unsigned int encrypted_datalen; size_t master_keylen; size_t asciilen; int ret; encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; if (strlen(hex_encoded_iv) != asciilen) return -EINVAL; hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize); if (ret < 0) return -EINVAL; ret = hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); if (ret < 0) return -EINVAL; hmac = epayload->format + epayload->datablob_len; ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); if (ret < 0) return -EINVAL; mkey = request_master_key(epayload, &master_key, &master_keylen); if (IS_ERR(mkey)) return PTR_ERR(mkey); ret = datablob_hmac_verify(epayload, format, master_key, master_keylen); if (ret < 0) { pr_err("encrypted_key: bad hmac (%d)\n", ret); goto out; } ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); if (ret < 0) goto out; ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); if (ret < 0) pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); out: up_read(&mkey->sem); key_put(mkey); memzero_explicit(derived_key, sizeof(derived_key)); return ret; } static void __ekey_init(struct encrypted_key_payload *epayload, const char *format, const char *master_desc, const char *datalen) { unsigned int format_len; format_len = (!format) ? strlen(key_format_default) : strlen(format); epayload->format = epayload->payload_data + epayload->payload_datalen; epayload->master_desc = epayload->format + format_len + 1; epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; epayload->iv = epayload->datalen + strlen(datalen) + 1; epayload->encrypted_data = epayload->iv + ivsize + 1; epayload->decrypted_data = epayload->payload_data; if (!format) memcpy(epayload->format, key_format_default, format_len); else { if (!strcmp(format, key_format_ecryptfs)) epayload->decrypted_data = ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data); memcpy(epayload->format, format, format_len); } memcpy(epayload->master_desc, master_desc, strlen(master_desc)); memcpy(epayload->datalen, datalen, strlen(datalen)); } /* * encrypted_init - initialize an encrypted key * * For a new key, use either a random number or user-provided decrypted data in * case it is provided. A random number is used for the iv in both cases. For * an old key, decrypt the hex encoded data. */ static int encrypted_init(struct encrypted_key_payload *epayload, const char *key_desc, const char *format, const char *master_desc, const char *datalen, const char *hex_encoded_iv, const char *decrypted_data) { int ret = 0; if (format && !strcmp(format, key_format_ecryptfs)) { ret = valid_ecryptfs_desc(key_desc); if (ret < 0) return ret; ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data, key_desc); } __ekey_init(epayload, format, master_desc, datalen); if (hex_encoded_iv) { ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv); } else if (decrypted_data) { get_random_bytes(epayload->iv, ivsize); ret = hex2bin(epayload->decrypted_data, decrypted_data, epayload->decrypted_datalen); } else { get_random_bytes(epayload->iv, ivsize); get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen); } return ret; } /* * encrypted_instantiate - instantiate an encrypted key * * Instantiates the key: * - by decrypting an existing encrypted datablob, or * - by creating a new encrypted key based on a kernel random number, or * - using provided decrypted data. * * On success, return 0. Otherwise return errno. */ static int encrypted_instantiate(struct key *key, struct key_preparsed_payload *prep) { struct encrypted_key_payload *epayload = NULL; char *datablob = NULL; const char *format = NULL; char *master_desc = NULL; char *decrypted_datalen = NULL; char *hex_encoded_iv = NULL; char *decrypted_data = NULL; size_t datalen = prep->datalen; int ret; if (datalen <= 0 || datalen > 32767 || !prep->data) return -EINVAL; datablob = kmalloc(datalen + 1, GFP_KERNEL); if (!datablob) return -ENOMEM; datablob[datalen] = 0; memcpy(datablob, prep->data, datalen); ret = datablob_parse(datablob, &format, &master_desc, &decrypted_datalen, &hex_encoded_iv, &decrypted_data); if (ret < 0) goto out; epayload = encrypted_key_alloc(key, format, master_desc, decrypted_datalen, decrypted_data); if (IS_ERR(epayload)) { ret = PTR_ERR(epayload); goto out; } ret = encrypted_init(epayload, key->description, format, master_desc, decrypted_datalen, hex_encoded_iv, decrypted_data); if (ret < 0) { kfree_sensitive(epayload); goto out; } rcu_assign_keypointer(key, epayload); out: kfree_sensitive(datablob); return ret; } static void encrypted_rcu_free(struct rcu_head *rcu) { struct encrypted_key_payload *epayload; epayload = container_of(rcu, struct encrypted_key_payload, rcu); kfree_sensitive(epayload); } /* * encrypted_update - update the master key description * * Change the master key description for an existing encrypted key. * The next read will return an encrypted datablob using the new * master key description. * * On success, return 0. Otherwise return errno. */ static int encrypted_update(struct key *key, struct key_preparsed_payload *prep) { struct encrypted_key_payload *epayload = key->payload.data[0]; struct encrypted_key_payload *new_epayload; char *buf; char *new_master_desc = NULL; const char *format = NULL; size_t datalen = prep->datalen; int ret = 0; if (key_is_negative(key)) return -ENOKEY; if (datalen <= 0 || datalen > 32767 || !prep->data) return -EINVAL; buf = kmalloc(datalen + 1, GFP_KERNEL); if (!buf) return -ENOMEM; buf[datalen] = 0; memcpy(buf, prep->data, datalen); ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL); if (ret < 0) goto out; ret = valid_master_desc(new_master_desc, epayload->master_desc); if (ret < 0) goto out; new_epayload = encrypted_key_alloc(key, epayload->format, new_master_desc, epayload->datalen, NULL); if (IS_ERR(new_epayload)) { ret = PTR_ERR(new_epayload); goto out; } __ekey_init(new_epayload, epayload->format, new_master_desc, epayload->datalen); memcpy(new_epayload->iv, epayload->iv, ivsize); memcpy(new_epayload->payload_data, epayload->payload_data, epayload->payload_datalen); rcu_assign_keypointer(key, new_epayload); call_rcu(&epayload->rcu, encrypted_rcu_free); out: kfree_sensitive(buf); return ret; } /* * encrypted_read - format and copy out the encrypted data * * The resulting datablob format is: * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> * * On success, return to userspace the encrypted key datablob size. */ static long encrypted_read(const struct key *key, char *buffer, size_t buflen) { struct encrypted_key_payload *epayload; struct key *mkey; const u8 *master_key; size_t master_keylen; char derived_key[HASH_SIZE]; char *ascii_buf; size_t asciiblob_len; int ret; epayload = dereference_key_locked(key); /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ asciiblob_len = epayload->datablob_len + ivsize + 1 + roundup(epayload->decrypted_datalen, blksize) + (HASH_SIZE * 2); if (!buffer || buflen < asciiblob_len) return asciiblob_len; mkey = request_master_key(epayload, &master_key, &master_keylen); if (IS_ERR(mkey)) return PTR_ERR(mkey); ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); if (ret < 0) goto out; ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); if (ret < 0) goto out; ret = datablob_hmac_append(epayload, master_key, master_keylen); if (ret < 0) goto out; ascii_buf = datablob_format(epayload, asciiblob_len); if (!ascii_buf) { ret = -ENOMEM; goto out; } up_read(&mkey->sem); key_put(mkey); memzero_explicit(derived_key, sizeof(derived_key)); memcpy(buffer, ascii_buf, asciiblob_len); kfree_sensitive(ascii_buf); return asciiblob_len; out: up_read(&mkey->sem); key_put(mkey); memzero_explicit(derived_key, sizeof(derived_key)); return ret; } /* * encrypted_destroy - clear and free the key's payload */ static void encrypted_destroy(struct key *key) { kfree_sensitive(key->payload.data[0]); } struct key_type key_type_encrypted = { .name = "encrypted", .instantiate = encrypted_instantiate, .update = encrypted_update, .destroy = encrypted_destroy, .describe = user_describe, .read = encrypted_read, }; EXPORT_SYMBOL_GPL(key_type_encrypted); static int __init init_encrypted(void) { int ret; hash_tfm = crypto_alloc_shash(hash_alg, 0, 0); if (IS_ERR(hash_tfm)) { pr_err("encrypted_key: can't allocate %s transform: %ld\n", hash_alg, PTR_ERR(hash_tfm)); return PTR_ERR(hash_tfm); } ret = aes_get_sizes(); if (ret < 0) goto out; ret = register_key_type(&key_type_encrypted); if (ret < 0) goto out; return 0; out: crypto_free_shash(hash_tfm); return ret; } static void __exit cleanup_encrypted(void) { crypto_free_shash(hash_tfm); unregister_key_type(&key_type_encrypted); } late_initcall(init_encrypted); module_exit(cleanup_encrypted); MODULE_DESCRIPTION("Encrypted key type"); MODULE_LICENSE("GPL");
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 /* SPDX-License-Identifier: GPL-2.0 * * page_pool/helpers.h * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> * Copyright (C) 2016 Red Hat, Inc. */ /** * DOC: page_pool allocator * * The page_pool allocator is optimized for recycling page or page fragment used * by skb packet and xdp frame. * * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(), * which allocate memory with or without page splitting depending on the * requested memory size. * * If the driver knows that it always requires full pages or its allocations are * always smaller than half a page, it can use one of the more specific API * calls: * * 1. page_pool_alloc_pages(): allocate memory without page splitting when * driver knows that the memory it need is always bigger than half of the page * allocated from page pool. There is no cache line dirtying for 'struct page' * when a page is recycled back to the page pool. * * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver * knows that the memory it need is always smaller than or equal to half of the * page allocated from page pool. Page splitting enables memory saving and thus * avoids TLB/cache miss for data access, but there also is some cost to * implement page splitting, mainly some cache line dirtying/bouncing for * 'struct page' and atomic operation for page->pp_ref_count. * * The API keeps track of in-flight pages, in order to let API users know when * it is safe to free a page_pool object, the API users must call * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or * attach the page_pool object to a page_pool-aware object like skbs marked with * skb_mark_for_recycle(). * * page_pool_put_page() may be called multiple times on the same page if a page * is split into multiple fragments. For the last fragment, it will either * recycle the page, or in case of page->_refcount > 1, it will release the DMA * mapping and in-flight state accounting. * * dma_sync_single_range_for_device() is only called for the last fragment when * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the * last freed fragment to do the sync_for_device operation for all fragments in * the same page when a page is split. The API user must setup pool->p.max_len * and pool->p.offset correctly and ensure that page_pool_put_page() is called * with dma_sync_size being -1 for fragment API. */ #ifndef _NET_PAGE_POOL_HELPERS_H #define _NET_PAGE_POOL_HELPERS_H #include <linux/dma-mapping.h> #include <net/page_pool/types.h> #include <net/net_debug.h> #include <net/netmem.h> #ifdef CONFIG_PAGE_POOL_STATS /* Deprecated driver-facing API, use netlink instead */ int page_pool_ethtool_stats_get_count(void); u8 *page_pool_ethtool_stats_get_strings(u8 *data); u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats); bool page_pool_get_stats(const struct page_pool *pool, struct page_pool_stats *stats); #else static inline int page_pool_ethtool_stats_get_count(void) { return 0; } static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data) { return data; } static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) { return data; } #endif /** * page_pool_dev_alloc_pages() - allocate a page. * @pool: pool from which to allocate * * Get a page from the page allocator or page_pool caches. */ static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_pages(pool, gfp); } /** * page_pool_dev_alloc_frag() - allocate a page fragment. * @pool: pool from which to allocate * @offset: offset to the allocated page * @size: requested size * * Get a page fragment from the page allocator or page_pool caches. * * Return: allocated page fragment, otherwise return NULL. */ static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, unsigned int *offset, unsigned int size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_frag(pool, offset, size, gfp); } static inline netmem_ref page_pool_alloc_netmem(struct page_pool *pool, unsigned int *offset, unsigned int *size, gfp_t gfp) { unsigned int max_size = PAGE_SIZE << pool->p.order; netmem_ref netmem; if ((*size << 1) > max_size) { *size = max_size; *offset = 0; return page_pool_alloc_netmems(pool, gfp); } netmem = page_pool_alloc_frag_netmem(pool, offset, *size, gfp); if (unlikely(!netmem)) return 0; /* There is very likely not enough space for another fragment, so append * the remaining size to the current fragment to avoid truesize * underestimate problem. */ if (pool->frag_offset + *size > max_size) { *size = max_size - *offset; pool->frag_offset = max_size; } return netmem; } static inline netmem_ref page_pool_dev_alloc_netmem(struct page_pool *pool, unsigned int *offset, unsigned int *size) { gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; return page_pool_alloc_netmem(pool, offset, size, gfp); } static inline netmem_ref page_pool_dev_alloc_netmems(struct page_pool *pool) { gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; return page_pool_alloc_netmems(pool, gfp); } static inline struct page *page_pool_alloc(struct page_pool *pool, unsigned int *offset, unsigned int *size, gfp_t gfp) { return netmem_to_page(page_pool_alloc_netmem(pool, offset, size, gfp)); } /** * page_pool_dev_alloc() - allocate a page or a page fragment. * @pool: pool from which to allocate * @offset: offset to the allocated page * @size: in as the requested size, out as the allocated size * * Get a page or a page fragment from the page allocator or page_pool caches * depending on the requested size in order to allocate memory with least memory * utilization and performance penalty. * * Return: allocated page or page fragment, otherwise return NULL. */ static inline struct page *page_pool_dev_alloc(struct page_pool *pool, unsigned int *offset, unsigned int *size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc(pool, offset, size, gfp); } static inline void *page_pool_alloc_va(struct page_pool *pool, unsigned int *size, gfp_t gfp) { unsigned int offset; struct page *page; /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */ page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM); if (unlikely(!page)) return NULL; return page_address(page) + offset; } /** * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its * va. * @pool: pool from which to allocate * @size: in as the requested size, out as the allocated size * * This is just a thin wrapper around the page_pool_alloc() API, and * it returns va of the allocated page or page fragment. * * Return: the va for the allocated page or page fragment, otherwise return NULL. */ static inline void *page_pool_dev_alloc_va(struct page_pool *pool, unsigned int *size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_va(pool, size, gfp); } /** * page_pool_get_dma_dir() - Retrieve the stored DMA direction. * @pool: pool from which page was allocated * * Get the stored dma direction. A driver might decide to store this locally * and avoid the extra cache line from page_pool to determine the direction. */ static inline enum dma_data_direction page_pool_get_dma_dir(const struct page_pool *pool) { return pool->p.dma_dir; } static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr) { atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr); } /** * page_pool_fragment_page() - split a fresh page into fragments * @page: page to split * @nr: references to set * * pp_ref_count represents the number of outstanding references to the page, * which will be freed using page_pool APIs (rather than page allocator APIs * like put_page()). Such references are usually held by page_pool-aware * objects like skbs marked for page pool recycling. * * This helper allows the caller to take (set) multiple references to a * freshly allocated page. The page must be freshly allocated (have a * pp_ref_count of 1). This is commonly done by drivers and * "fragment allocators" to save atomic operations - either when they know * upfront how many references they will need; or to take MAX references and * return the unused ones with a single atomic dec(), instead of performing * multiple atomic inc() operations. */ static inline void page_pool_fragment_page(struct page *page, long nr) { page_pool_fragment_netmem(page_to_netmem(page), nr); } static inline long page_pool_unref_netmem(netmem_ref netmem, long nr) { atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem); long ret; /* If nr == pp_ref_count then we have cleared all remaining * references to the page: * 1. 'n == 1': no need to actually overwrite it. * 2. 'n != 1': overwrite it with one, which is the rare case * for pp_ref_count draining. * * The main advantage to doing this is that not only we avoid a atomic * update, as an atomic_read is generally a much cheaper operation than * an atomic update, especially when dealing with a page that may be * referenced by only 2 or 3 users; but also unify the pp_ref_count * handling by ensuring all pages have partitioned into only 1 piece * initially, and only overwrite it when the page is partitioned into * more than one piece. */ if (atomic_long_read(pp_ref_count) == nr) { /* As we have ensured nr is always one for constant case using * the BUILD_BUG_ON(), only need to handle the non-constant case * here for pp_ref_count draining, which is a rare case. */ BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1); if (!__builtin_constant_p(nr)) atomic_long_set(pp_ref_count, 1); return 0; } ret = atomic_long_sub_return(nr, pp_ref_count); WARN_ON(ret < 0); /* We are the last user here too, reset pp_ref_count back to 1 to * ensure all pages have been partitioned into 1 piece initially, * this should be the rare case when the last two fragment users call * page_pool_unref_page() currently. */ if (unlikely(!ret)) atomic_long_set(pp_ref_count, 1); return ret; } static inline long page_pool_unref_page(struct page *page, long nr) { return page_pool_unref_netmem(page_to_netmem(page), nr); } static inline void page_pool_ref_netmem(netmem_ref netmem) { atomic_long_inc(netmem_get_pp_ref_count_ref(netmem)); } static inline void page_pool_ref_page(struct page *page) { page_pool_ref_netmem(page_to_netmem(page)); } static inline bool page_pool_unref_and_test(netmem_ref netmem) { /* If page_pool_unref_page() returns 0, we were the last user */ return page_pool_unref_netmem(netmem, 1) == 0; } static inline void page_pool_put_netmem(struct page_pool *pool, netmem_ref netmem, unsigned int dma_sync_size, bool allow_direct) { /* When page_pool isn't compiled-in, net/core/xdp.c doesn't * allow registering MEM_TYPE_PAGE_POOL, but shield linker. */ #ifdef CONFIG_PAGE_POOL if (!page_pool_unref_and_test(netmem)) return; page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct); #endif } /** * page_pool_put_page() - release a reference to a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * @dma_sync_size: how much of the page may have been touched by the device * @allow_direct: released by the consumer, allow lockless caching * * The outcome of this depends on the page refcnt. If the driver bumps * the refcnt > 1 this will unmap the page. If the page refcnt is 1 * the allocator owns the page and will try to recycle it in one of the pool * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device * using dma_sync_single_range_for_device(). */ static inline void page_pool_put_page(struct page_pool *pool, struct page *page, unsigned int dma_sync_size, bool allow_direct) { page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size, allow_direct); } static inline void page_pool_put_full_netmem(struct page_pool *pool, netmem_ref netmem, bool allow_direct) { page_pool_put_netmem(pool, netmem, -1, allow_direct); } /** * page_pool_put_full_page() - release a reference on a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * @allow_direct: released by the consumer, allow lockless caching * * Similar to page_pool_put_page(), but will DMA sync the entire memory area * as configured in &page_pool_params.max_len. */ static inline void page_pool_put_full_page(struct page_pool *pool, struct page *page, bool allow_direct) { page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct); } /** * page_pool_recycle_direct() - release a reference on a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * * Similar to page_pool_put_full_page() but caller must guarantee safe context * (e.g NAPI), since it will recycle the page directly into the pool fast cache. */ static inline void page_pool_recycle_direct(struct page_pool *pool, struct page *page) { page_pool_put_full_page(pool, page, true); } static inline void page_pool_recycle_direct_netmem(struct page_pool *pool, netmem_ref netmem) { page_pool_put_full_netmem(pool, netmem, true); } #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \ (sizeof(dma_addr_t) > sizeof(unsigned long)) /** * page_pool_free_va() - free a va into the page_pool * @pool: pool from which va was allocated * @va: va to be freed * @allow_direct: freed by the consumer, allow lockless caching * * Free a va allocated from page_pool_allo_va(). */ static inline void page_pool_free_va(struct page_pool *pool, void *va, bool allow_direct) { page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct); } static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem) { dma_addr_t ret = netmem_get_dma_addr(netmem); if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) ret <<= PAGE_SHIFT; return ret; } /** * page_pool_get_dma_addr() - Retrieve the stored DMA address. * @page: page allocated from a page pool * * Fetch the DMA address of the page. The page pool to which the page belongs * must had been created with PP_FLAG_DMA_MAP. */ static inline dma_addr_t page_pool_get_dma_addr(const struct page *page) { return page_pool_get_dma_addr_netmem(page_to_netmem(page)); } static inline void __page_pool_dma_sync_for_cpu(const struct page_pool *pool, const dma_addr_t dma_addr, u32 offset, u32 dma_sync_size) { dma_sync_single_range_for_cpu(pool->p.dev, dma_addr, offset + pool->p.offset, dma_sync_size, page_pool_get_dma_dir(pool)); } /** * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW * @pool: &page_pool the @page belongs to * @page: page to sync * @offset: offset from page start to "hard" start if using PP frags * @dma_sync_size: size of the data written to the page * * Can be used as a shorthand to sync Rx pages before accessing them in the * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``. * Note that this version performs DMA sync unconditionally, even if the * associated PP doesn't perform sync-for-device. */ static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool, const struct page *page, u32 offset, u32 dma_sync_size) { __page_pool_dma_sync_for_cpu(pool, page_pool_get_dma_addr(page), offset, dma_sync_size); } static inline void page_pool_dma_sync_netmem_for_cpu(const struct page_pool *pool, const netmem_ref netmem, u32 offset, u32 dma_sync_size) { if (!pool->dma_sync_for_cpu) return; __page_pool_dma_sync_for_cpu(pool, page_pool_get_dma_addr_netmem(netmem), offset, dma_sync_size); } static inline bool page_pool_put(struct page_pool *pool) { return refcount_dec_and_test(&pool->user_cnt); } static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) { if (unlikely(pool->p.nid != new_nid)) page_pool_update_nid(pool, new_nid); } static inline bool page_pool_is_unreadable(struct page_pool *pool) { return !!pool->mp_ops; } #endif /* _NET_PAGE_POOL_HELPERS_H */
8 8 243 216 234 233 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef RQ_QOS_H #define RQ_QOS_H #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/blk_types.h> #include <linux/atomic.h> #include <linux/wait.h> #include <linux/blk-mq.h> #include "blk-mq-debugfs.h" struct blk_mq_debugfs_attr; extern struct static_key_false block_rq_qos; enum rq_qos_id { RQ_QOS_WBT, RQ_QOS_LATENCY, RQ_QOS_COST, }; struct rq_wait { wait_queue_head_t wait; atomic_t inflight; }; struct rq_qos { const struct rq_qos_ops *ops; struct gendisk *disk; enum rq_qos_id id; struct rq_qos *next; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *debugfs_dir; #endif }; struct rq_qos_ops { void (*throttle)(struct rq_qos *, struct bio *); void (*track)(struct rq_qos *, struct request *, struct bio *); void (*merge)(struct rq_qos *, struct request *, struct bio *); void (*issue)(struct rq_qos *, struct request *); void (*requeue)(struct rq_qos *, struct request *); void (*done)(struct rq_qos *, struct request *); void (*done_bio)(struct rq_qos *, struct bio *); void (*cleanup)(struct rq_qos *, struct bio *); void (*queue_depth_changed)(struct rq_qos *); void (*exit)(struct rq_qos *); const struct blk_mq_debugfs_attr *debugfs_attrs; }; struct rq_depth { unsigned int max_depth; int scale_step; bool scaled_max; unsigned int queue_depth; unsigned int default_depth; }; static inline struct rq_qos *rq_qos_id(struct request_queue *q, enum rq_qos_id id) { struct rq_qos *rqos; for (rqos = q->rq_qos; rqos; rqos = rqos->next) { if (rqos->id == id) break; } return rqos; } static inline struct rq_qos *wbt_rq_qos(struct request_queue *q) { return rq_qos_id(q, RQ_QOS_WBT); } static inline struct rq_qos *iolat_rq_qos(struct request_queue *q) { return rq_qos_id(q, RQ_QOS_LATENCY); } static inline void rq_wait_init(struct rq_wait *rq_wait) { atomic_set(&rq_wait->inflight, 0); init_waitqueue_head(&rq_wait->wait); } int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id, const struct rq_qos_ops *ops); void rq_qos_del(struct rq_qos *rqos); typedef bool (acquire_inflight_cb_t)(struct rq_wait *rqw, void *private_data); typedef void (cleanup_cb_t)(struct rq_wait *rqw, void *private_data); void rq_qos_wait(struct rq_wait *rqw, void *private_data, acquire_inflight_cb_t *acquire_inflight_cb, cleanup_cb_t *cleanup_cb); bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit); bool rq_depth_scale_up(struct rq_depth *rqd); bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle); bool rq_depth_calc_max_depth(struct rq_depth *rqd); void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio); void __rq_qos_done(struct rq_qos *rqos, struct request *rq); void __rq_qos_issue(struct rq_qos *rqos, struct request *rq); void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq); void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio); void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio); void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio); void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio); void __rq_qos_queue_depth_changed(struct rq_qos *rqos); static inline void rq_qos_cleanup(struct request_queue *q, struct bio *bio) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) __rq_qos_cleanup(q->rq_qos, bio); } static inline void rq_qos_done(struct request_queue *q, struct request *rq) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos && !blk_rq_is_passthrough(rq)) __rq_qos_done(q->rq_qos, rq); } static inline void rq_qos_issue(struct request_queue *q, struct request *rq) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) __rq_qos_issue(q->rq_qos, rq); } static inline void rq_qos_requeue(struct request_queue *q, struct request *rq) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) __rq_qos_requeue(q->rq_qos, rq); } static inline void rq_qos_done_bio(struct bio *bio) { if (static_branch_unlikely(&block_rq_qos) && bio->bi_bdev && (bio_flagged(bio, BIO_QOS_THROTTLED) || bio_flagged(bio, BIO_QOS_MERGED))) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); if (q->rq_qos) __rq_qos_done_bio(q->rq_qos, bio); } } static inline void rq_qos_throttle(struct request_queue *q, struct bio *bio) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) { bio_set_flag(bio, BIO_QOS_THROTTLED); __rq_qos_throttle(q->rq_qos, bio); } } static inline void rq_qos_track(struct request_queue *q, struct request *rq, struct bio *bio) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) __rq_qos_track(q->rq_qos, rq, bio); } static inline void rq_qos_merge(struct request_queue *q, struct request *rq, struct bio *bio) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) { bio_set_flag(bio, BIO_QOS_MERGED); __rq_qos_merge(q->rq_qos, rq, bio); } } static inline void rq_qos_queue_depth_changed(struct request_queue *q) { if (static_branch_unlikely(&block_rq_qos) && q->rq_qos) __rq_qos_queue_depth_changed(q->rq_qos); } void rq_qos_exit(struct request_queue *); #endif
1 44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_TABLES_IPV6_H_ #define _NF_TABLES_IPV6_H_ #include <linux/netfilter_ipv6/ip6_tables.h> #include <net/ipv6.h> #include <net/netfilter/nf_tables.h> static inline void nft_set_pktinfo_ipv6(struct nft_pktinfo *pkt) { unsigned int flags = IP6_FH_F_AUTH; int protohdr, thoff = 0; unsigned short frag_off; protohdr = ipv6_find_hdr(pkt->skb, &thoff, -1, &frag_off, &flags); if (protohdr < 0 || thoff > U16_MAX) { nft_set_pktinfo_unspec(pkt); return; } pkt->flags = NFT_PKTINFO_L4PROTO; pkt->tprot = protohdr; pkt->thoff = thoff; pkt->fragoff = frag_off; } static inline int __nft_set_pktinfo_ipv6_validate(struct nft_pktinfo *pkt) { #if IS_ENABLED(CONFIG_IPV6) unsigned int flags = IP6_FH_F_AUTH; struct ipv6hdr *ip6h, _ip6h; unsigned int thoff = 0; unsigned short frag_off; u32 pkt_len, skb_len; int protohdr; ip6h = skb_header_pointer(pkt->skb, skb_network_offset(pkt->skb), sizeof(*ip6h), &_ip6h); if (!ip6h) return -1; if (ip6h->version != 6) return -1; pkt_len = ntohs(ip6h->payload_len); skb_len = pkt->skb->len - skb_network_offset(pkt->skb); if (pkt_len + sizeof(*ip6h) > skb_len) return -1; protohdr = ipv6_find_hdr(pkt->skb, &thoff, -1, &frag_off, &flags); if (protohdr < 0 || thoff > U16_MAX) return -1; pkt->flags = NFT_PKTINFO_L4PROTO; pkt->tprot = protohdr; pkt->thoff = thoff; pkt->fragoff = frag_off; return 0; #else return -1; #endif } static inline void nft_set_pktinfo_ipv6_validate(struct nft_pktinfo *pkt) { if (__nft_set_pktinfo_ipv6_validate(pkt) < 0) nft_set_pktinfo_unspec(pkt); } static inline int nft_set_pktinfo_ipv6_ingress(struct nft_pktinfo *pkt) { #if IS_ENABLED(CONFIG_IPV6) unsigned int flags = IP6_FH_F_AUTH; unsigned short frag_off; unsigned int thoff = 0; struct inet6_dev *idev; struct ipv6hdr *ip6h; int protohdr; u32 pkt_len; if (!pskb_may_pull(pkt->skb, sizeof(*ip6h))) return -1; ip6h = ipv6_hdr(pkt->skb); if (ip6h->version != 6) goto inhdr_error; pkt_len = ntohs(ip6h->payload_len); if (pkt_len + sizeof(*ip6h) > pkt->skb->len) { idev = __in6_dev_get(nft_in(pkt)); __IP6_INC_STATS(nft_net(pkt), idev, IPSTATS_MIB_INTRUNCATEDPKTS); return -1; } protohdr = ipv6_find_hdr(pkt->skb, &thoff, -1, &frag_off, &flags); if (protohdr < 0 || thoff > U16_MAX) goto inhdr_error; pkt->flags = NFT_PKTINFO_L4PROTO; pkt->tprot = protohdr; pkt->thoff = thoff; pkt->fragoff = frag_off; return 0; inhdr_error: idev = __in6_dev_get(nft_in(pkt)); __IP6_INC_STATS(nft_net(pkt), idev, IPSTATS_MIB_INHDRERRORS); return -1; #else return -1; #endif } #endif
6 4 1 1 15 5 14 4 1 1 1 1 1 15 15 15 14 14 1 1 14 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 4 4 4 3 3 1 5 20 20 4 16 16 1 11 12 5 14 14 14 11 3 3 14 2 1 1 3 4 1 10 14 14 2 12 14 15 6 6 15 15 6 6 6 15 15 14 14 14 13 11 2 2 10 2 2 10 2 2 10 10 12 8 4 11 602 603 602 73 574 599 571 6 1 1 4 4 3 1 2 1 1 2 74 2 8 8 15 15 17 18 13 77 76 76 77 77 77 77 77 76 76 76 76 76 76 76 75 75 76 76 75 75 76 2 43 9 3 19 3 1 1 1 15 15 10 5 5 6 36 9 34 34 34 3 6 34 1 136 133 16 1 15 15 1 282 257 259 275 1 2 2 2 2 2 423 29 1 392 142 284 278 136 416 277 2 2 137 283 3 411 413 15 257 2 3 254 138 392 396 397 399 394 399 398 2 399 31 1 131 1 1 259 386 385 2 3 3 50 38 15 421 35 422 417 3 7 1 1 4 4 8 3 5 5 2 3 1 1 5 5 13 11 11 1 11 11 2 14 1 13 11 10 15 3 14 9 5 14 15 15 15 15 15 15 10 75 178 1 177 177 1 1 2 2 165 26 297 1 295 1 1 20 16 1 3 1 6 5 1 1 1 2 1 5 6 6 4 3 4 7 7 3 3 4 1 1 2 2 1 3 1 7 7 2 24 19 23 5 3 3 2 1 1 6 3 3 2 2 1 1 17 12 1 1 1 2 136 32 2 34 108 1 10 1 1 1 12 9 1 1 1 1 3 102 2 1 1 2 3 2 1 1 1 3 1 3 1 3 1 17 1 4 1 6 1 1 1 1 1 3 1 1 24 1 2 1 1 1 1 1 3 1 11 3 105 136 2 1 1 1 1 14 14 2 1 1 35 14 2 1 1 10 2 4 1 1 6 5 6 6 551 492 64 6 18 17 4 2 2 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 // SPDX-License-Identifier: GPL-2.0-or-later /* * TUN - Universal TUN/TAP device driver. * Copyright (C) 1999-2002 Maxim Krasnyansky <maxk@qualcomm.com> * * $Id: tun.c,v 1.15 2002/03/01 02:44:24 maxk Exp $ */ /* * Changes: * * Mike Kershaw <dragorn@kismetwireless.net> 2005/08/14 * Add TUNSETLINK ioctl to set the link encapsulation * * Mark Smith <markzzzsmith@yahoo.com.au> * Use eth_random_addr() for tap MAC address. * * Harald Roelle <harald.roelle@ifi.lmu.de> 2004/04/20 * Fixes in packet dropping, queue length setting and queue wakeup. * Increased default tx queue length. * Added ethtool API. * Minor cleanups * * Daniel Podlejski <underley@underley.eu.org> * Modifications for 2.3.99-pre5 kernel. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define DRV_NAME "tun" #define DRV_VERSION "1.6" #define DRV_DESCRIPTION "Universal TUN/TAP device driver" #define DRV_COPYRIGHT "(C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>" #include <linux/module.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/major.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/fcntl.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/miscdevice.h> #include <linux/ethtool.h> #include <linux/rtnetlink.h> #include <linux/compat.h> #include <linux/if.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_tun.h> #include <linux/if_vlan.h> #include <linux/crc32.h> #include <linux/math.h> #include <linux/nsproxy.h> #include <linux/virtio_net.h> #include <linux/rcupdate.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/rtnetlink.h> #include <net/sock.h> #include <net/xdp.h> #include <net/ip_tunnels.h> #include <linux/seq_file.h> #include <linux/uio.h> #include <linux/skb_array.h> #include <linux/bpf.h> #include <linux/bpf_trace.h> #include <linux/mutex.h> #include <linux/ieee802154.h> #include <uapi/linux/if_ltalk.h> #include <uapi/linux/if_fddi.h> #include <uapi/linux/if_hippi.h> #include <uapi/linux/if_fc.h> #include <net/ax25.h> #include <net/rose.h> #include <net/6lowpan.h> #include <net/rps.h> #include <linux/uaccess.h> #include <linux/proc_fs.h> #include "tun_vnet.h" static void tun_default_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd); #define TUN_RX_PAD (NET_IP_ALIGN + NET_SKB_PAD) /* TUN device flags */ /* IFF_ATTACH_QUEUE is never stored in device flags, * overload it to mean fasync when stored there. */ #define TUN_FASYNC IFF_ATTACH_QUEUE #define TUN_FEATURES (IFF_NO_PI | IFF_ONE_QUEUE | IFF_VNET_HDR | \ IFF_MULTI_QUEUE | IFF_NAPI | IFF_NAPI_FRAGS) #define GOODCOPY_LEN 128 #define FLT_EXACT_COUNT 8 struct tap_filter { unsigned int count; /* Number of addrs. Zero means disabled */ u32 mask[2]; /* Mask of the hashed addrs */ unsigned char addr[FLT_EXACT_COUNT][ETH_ALEN]; }; /* MAX_TAP_QUEUES 256 is chosen to allow rx/tx queues to be equal * to max number of VCPUs in guest. */ #define MAX_TAP_QUEUES 256 #define MAX_TAP_FLOWS 4096 #define TUN_FLOW_EXPIRE (3 * HZ) /* A tun_file connects an open character device to a tuntap netdevice. It * also contains all socket related structures (except sock_fprog and tap_filter) * to serve as one transmit queue for tuntap device. The sock_fprog and * tap_filter were kept in tun_struct since they were used for filtering for the * netdevice not for a specific queue (at least I didn't see the requirement for * this). * * RCU usage: * The tun_file and tun_struct are loosely coupled, the pointer from one to the * other can only be read while rcu_read_lock or rtnl_lock is held. */ struct tun_file { struct sock sk; struct socket socket; struct tun_struct __rcu *tun; struct fasync_struct *fasync; /* only used for fasnyc */ unsigned int flags; union { u16 queue_index; unsigned int ifindex; }; struct napi_struct napi; bool napi_enabled; bool napi_frags_enabled; struct mutex napi_mutex; /* Protects access to the above napi */ struct list_head next; struct tun_struct *detached; struct ptr_ring tx_ring; struct xdp_rxq_info xdp_rxq; }; struct tun_page { struct page *page; int count; }; struct tun_flow_entry { struct hlist_node hash_link; struct rcu_head rcu; struct tun_struct *tun; u32 rxhash; u32 rps_rxhash; int queue_index; unsigned long updated ____cacheline_aligned_in_smp; }; #define TUN_NUM_FLOW_ENTRIES 1024 #define TUN_MASK_FLOW_ENTRIES (TUN_NUM_FLOW_ENTRIES - 1) struct tun_prog { struct rcu_head rcu; struct bpf_prog *prog; }; /* Since the socket were moved to tun_file, to preserve the behavior of persist * device, socket filter, sndbuf and vnet header size were restore when the * file were attached to a persist device. */ struct tun_struct { struct tun_file __rcu *tfiles[MAX_TAP_QUEUES]; unsigned int numqueues; unsigned int flags; kuid_t owner; kgid_t group; struct net_device *dev; netdev_features_t set_features; #define TUN_USER_FEATURES (NETIF_F_HW_CSUM|NETIF_F_TSO_ECN|NETIF_F_TSO| \ NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4 | \ NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM) int align; int vnet_hdr_sz; int sndbuf; struct tap_filter txflt; struct sock_fprog fprog; /* protected by rtnl lock */ bool filter_attached; u32 msg_enable; spinlock_t lock; struct hlist_head flows[TUN_NUM_FLOW_ENTRIES]; struct timer_list flow_gc_timer; unsigned long ageing_time; unsigned int numdisabled; struct list_head disabled; void *security; u32 flow_count; u32 rx_batched; atomic_long_t rx_frame_errors; struct bpf_prog __rcu *xdp_prog; struct tun_prog __rcu *steering_prog; struct tun_prog __rcu *filter_prog; struct ethtool_link_ksettings link_ksettings; /* init args */ struct file *file; struct ifreq *ifr; }; struct veth { __be16 h_vlan_proto; __be16 h_vlan_TCI; }; static void tun_flow_init(struct tun_struct *tun); static void tun_flow_uninit(struct tun_struct *tun); static int tun_napi_receive(struct napi_struct *napi, int budget) { struct tun_file *tfile = container_of(napi, struct tun_file, napi); struct sk_buff_head *queue = &tfile->sk.sk_write_queue; struct sk_buff_head process_queue; struct sk_buff *skb; int received = 0; __skb_queue_head_init(&process_queue); spin_lock(&queue->lock); skb_queue_splice_tail_init(queue, &process_queue); spin_unlock(&queue->lock); while (received < budget && (skb = __skb_dequeue(&process_queue))) { napi_gro_receive(napi, skb); ++received; } if (!skb_queue_empty(&process_queue)) { spin_lock(&queue->lock); skb_queue_splice(&process_queue, queue); spin_unlock(&queue->lock); } return received; } static int tun_napi_poll(struct napi_struct *napi, int budget) { unsigned int received; received = tun_napi_receive(napi, budget); if (received < budget) napi_complete_done(napi, received); return received; } static void tun_napi_init(struct tun_struct *tun, struct tun_file *tfile, bool napi_en, bool napi_frags) { tfile->napi_enabled = napi_en; tfile->napi_frags_enabled = napi_en && napi_frags; if (napi_en) { netif_napi_add_tx(tun->dev, &tfile->napi, tun_napi_poll); napi_enable(&tfile->napi); } } static void tun_napi_enable(struct tun_file *tfile) { if (tfile->napi_enabled) napi_enable(&tfile->napi); } static void tun_napi_disable(struct tun_file *tfile) { if (tfile->napi_enabled) napi_disable(&tfile->napi); } static void tun_napi_del(struct tun_file *tfile) { if (tfile->napi_enabled) netif_napi_del(&tfile->napi); } static bool tun_napi_frags_enabled(const struct tun_file *tfile) { return tfile->napi_frags_enabled; } static inline u32 tun_hashfn(u32 rxhash) { return rxhash & TUN_MASK_FLOW_ENTRIES; } static struct tun_flow_entry *tun_flow_find(struct hlist_head *head, u32 rxhash) { struct tun_flow_entry *e; hlist_for_each_entry_rcu(e, head, hash_link) { if (e->rxhash == rxhash) return e; } return NULL; } static struct tun_flow_entry *tun_flow_create(struct tun_struct *tun, struct hlist_head *head, u32 rxhash, u16 queue_index) { struct tun_flow_entry *e = kmalloc(sizeof(*e), GFP_ATOMIC); if (e) { netif_info(tun, tx_queued, tun->dev, "create flow: hash %u index %u\n", rxhash, queue_index); e->updated = jiffies; e->rxhash = rxhash; e->rps_rxhash = 0; e->queue_index = queue_index; e->tun = tun; hlist_add_head_rcu(&e->hash_link, head); ++tun->flow_count; } return e; } static void tun_flow_delete(struct tun_struct *tun, struct tun_flow_entry *e) { netif_info(tun, tx_queued, tun->dev, "delete flow: hash %u index %u\n", e->rxhash, e->queue_index); hlist_del_rcu(&e->hash_link); kfree_rcu(e, rcu); --tun->flow_count; } static void tun_flow_flush(struct tun_struct *tun) { int i; spin_lock_bh(&tun->lock); for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) { struct tun_flow_entry *e; struct hlist_node *n; hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) tun_flow_delete(tun, e); } spin_unlock_bh(&tun->lock); } static void tun_flow_delete_by_queue(struct tun_struct *tun, u16 queue_index) { int i; spin_lock_bh(&tun->lock); for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) { struct tun_flow_entry *e; struct hlist_node *n; hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) { if (e->queue_index == queue_index) tun_flow_delete(tun, e); } } spin_unlock_bh(&tun->lock); } static void tun_flow_cleanup(struct timer_list *t) { struct tun_struct *tun = timer_container_of(tun, t, flow_gc_timer); unsigned long delay = tun->ageing_time; unsigned long next_timer = jiffies + delay; unsigned long count = 0; int i; spin_lock(&tun->lock); for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) { struct tun_flow_entry *e; struct hlist_node *n; hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) { unsigned long this_timer; this_timer = e->updated + delay; if (time_before_eq(this_timer, jiffies)) { tun_flow_delete(tun, e); continue; } count++; if (time_before(this_timer, next_timer)) next_timer = this_timer; } } if (count) mod_timer(&tun->flow_gc_timer, round_jiffies_up(next_timer)); spin_unlock(&tun->lock); } static void tun_flow_update(struct tun_struct *tun, u32 rxhash, struct tun_file *tfile) { struct hlist_head *head; struct tun_flow_entry *e; unsigned long delay = tun->ageing_time; u16 queue_index = tfile->queue_index; head = &tun->flows[tun_hashfn(rxhash)]; rcu_read_lock(); e = tun_flow_find(head, rxhash); if (likely(e)) { /* TODO: keep queueing to old queue until it's empty? */ if (READ_ONCE(e->queue_index) != queue_index) WRITE_ONCE(e->queue_index, queue_index); if (e->updated != jiffies) e->updated = jiffies; sock_rps_record_flow_hash(e->rps_rxhash); } else { spin_lock_bh(&tun->lock); if (!tun_flow_find(head, rxhash) && tun->flow_count < MAX_TAP_FLOWS) tun_flow_create(tun, head, rxhash, queue_index); if (!timer_pending(&tun->flow_gc_timer)) mod_timer(&tun->flow_gc_timer, round_jiffies_up(jiffies + delay)); spin_unlock_bh(&tun->lock); } rcu_read_unlock(); } /* Save the hash received in the stack receive path and update the * flow_hash table accordingly. */ static inline void tun_flow_save_rps_rxhash(struct tun_flow_entry *e, u32 hash) { if (unlikely(e->rps_rxhash != hash)) e->rps_rxhash = hash; } /* We try to identify a flow through its rxhash. The reason that * we do not check rxq no. is because some cards(e.g 82599), chooses * the rxq based on the txq where the last packet of the flow comes. As * the userspace application move between processors, we may get a * different rxq no. here. */ static u16 tun_automq_select_queue(struct tun_struct *tun, struct sk_buff *skb) { struct tun_flow_entry *e; u32 txq, numqueues; numqueues = READ_ONCE(tun->numqueues); txq = __skb_get_hash_symmetric(skb); e = tun_flow_find(&tun->flows[tun_hashfn(txq)], txq); if (e) { tun_flow_save_rps_rxhash(e, txq); txq = e->queue_index; } else { txq = reciprocal_scale(txq, numqueues); } return txq; } static u16 tun_ebpf_select_queue(struct tun_struct *tun, struct sk_buff *skb) { struct tun_prog *prog; u32 numqueues; u16 ret = 0; numqueues = READ_ONCE(tun->numqueues); if (!numqueues) return 0; prog = rcu_dereference(tun->steering_prog); if (prog) ret = bpf_prog_run_clear_cb(prog->prog, skb); return ret % numqueues; } static u16 tun_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { struct tun_struct *tun = netdev_priv(dev); u16 ret; rcu_read_lock(); if (rcu_dereference(tun->steering_prog)) ret = tun_ebpf_select_queue(tun, skb); else ret = tun_automq_select_queue(tun, skb); rcu_read_unlock(); return ret; } static inline bool tun_not_capable(struct tun_struct *tun) { const struct cred *cred = current_cred(); struct net *net = dev_net(tun->dev); return ((uid_valid(tun->owner) && !uid_eq(cred->euid, tun->owner)) || (gid_valid(tun->group) && !in_egroup_p(tun->group))) && !ns_capable(net->user_ns, CAP_NET_ADMIN); } static void tun_set_real_num_queues(struct tun_struct *tun) { netif_set_real_num_tx_queues(tun->dev, tun->numqueues); netif_set_real_num_rx_queues(tun->dev, tun->numqueues); } static void tun_disable_queue(struct tun_struct *tun, struct tun_file *tfile) { tfile->detached = tun; list_add_tail(&tfile->next, &tun->disabled); ++tun->numdisabled; } static struct tun_struct *tun_enable_queue(struct tun_file *tfile) { struct tun_struct *tun = tfile->detached; tfile->detached = NULL; list_del_init(&tfile->next); --tun->numdisabled; return tun; } void tun_ptr_free(void *ptr) { if (!ptr) return; if (tun_is_xdp_frame(ptr)) { struct xdp_frame *xdpf = tun_ptr_to_xdp(ptr); xdp_return_frame(xdpf); } else { __skb_array_destroy_skb(ptr); } } EXPORT_SYMBOL_GPL(tun_ptr_free); static void tun_queue_purge(struct tun_file *tfile) { void *ptr; while ((ptr = ptr_ring_consume(&tfile->tx_ring)) != NULL) tun_ptr_free(ptr); skb_queue_purge(&tfile->sk.sk_write_queue); skb_queue_purge(&tfile->sk.sk_error_queue); } static void __tun_detach(struct tun_file *tfile, bool clean) { struct tun_file *ntfile; struct tun_struct *tun; tun = rtnl_dereference(tfile->tun); if (tun && clean) { if (!tfile->detached) tun_napi_disable(tfile); tun_napi_del(tfile); } if (tun && !tfile->detached) { u16 index = tfile->queue_index; BUG_ON(index >= tun->numqueues); rcu_assign_pointer(tun->tfiles[index], tun->tfiles[tun->numqueues - 1]); ntfile = rtnl_dereference(tun->tfiles[index]); ntfile->queue_index = index; ntfile->xdp_rxq.queue_index = index; rcu_assign_pointer(tun->tfiles[tun->numqueues - 1], NULL); --tun->numqueues; if (clean) { RCU_INIT_POINTER(tfile->tun, NULL); sock_put(&tfile->sk); } else { tun_disable_queue(tun, tfile); tun_napi_disable(tfile); } synchronize_net(); tun_flow_delete_by_queue(tun, tun->numqueues + 1); /* Drop read queue */ tun_queue_purge(tfile); tun_set_real_num_queues(tun); } else if (tfile->detached && clean) { tun = tun_enable_queue(tfile); sock_put(&tfile->sk); } if (clean) { if (tun && tun->numqueues == 0 && tun->numdisabled == 0) { netif_carrier_off(tun->dev); if (!(tun->flags & IFF_PERSIST) && tun->dev->reg_state == NETREG_REGISTERED) unregister_netdevice(tun->dev); } if (tun) xdp_rxq_info_unreg(&tfile->xdp_rxq); ptr_ring_cleanup(&tfile->tx_ring, tun_ptr_free); } } static void tun_detach(struct tun_file *tfile, bool clean) { struct tun_struct *tun; struct net_device *dev; rtnl_lock(); tun = rtnl_dereference(tfile->tun); dev = tun ? tun->dev : NULL; __tun_detach(tfile, clean); if (dev) netdev_state_change(dev); rtnl_unlock(); if (clean) sock_put(&tfile->sk); } static void tun_detach_all(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); struct tun_file *tfile, *tmp; int i, n = tun->numqueues; for (i = 0; i < n; i++) { tfile = rtnl_dereference(tun->tfiles[i]); BUG_ON(!tfile); tun_napi_disable(tfile); tfile->socket.sk->sk_shutdown = RCV_SHUTDOWN; tfile->socket.sk->sk_data_ready(tfile->socket.sk); RCU_INIT_POINTER(tfile->tun, NULL); --tun->numqueues; } list_for_each_entry(tfile, &tun->disabled, next) { tfile->socket.sk->sk_shutdown = RCV_SHUTDOWN; tfile->socket.sk->sk_data_ready(tfile->socket.sk); RCU_INIT_POINTER(tfile->tun, NULL); } BUG_ON(tun->numqueues != 0); synchronize_net(); for (i = 0; i < n; i++) { tfile = rtnl_dereference(tun->tfiles[i]); tun_napi_del(tfile); /* Drop read queue */ tun_queue_purge(tfile); xdp_rxq_info_unreg(&tfile->xdp_rxq); sock_put(&tfile->sk); } list_for_each_entry_safe(tfile, tmp, &tun->disabled, next) { tun_napi_del(tfile); tun_enable_queue(tfile); tun_queue_purge(tfile); xdp_rxq_info_unreg(&tfile->xdp_rxq); sock_put(&tfile->sk); } BUG_ON(tun->numdisabled != 0); if (tun->flags & IFF_PERSIST) module_put(THIS_MODULE); } static int tun_attach(struct tun_struct *tun, struct file *file, bool skip_filter, bool napi, bool napi_frags, bool publish_tun) { struct tun_file *tfile = file->private_data; struct net_device *dev = tun->dev; int err; err = security_tun_dev_attach(tfile->socket.sk, tun->security); if (err < 0) goto out; err = -EINVAL; if (rtnl_dereference(tfile->tun) && !tfile->detached) goto out; err = -EBUSY; if (!(tun->flags & IFF_MULTI_QUEUE) && tun->numqueues == 1) goto out; err = -E2BIG; if (!tfile->detached && tun->numqueues + tun->numdisabled == MAX_TAP_QUEUES) goto out; err = 0; /* Re-attach the filter to persist device */ if (!skip_filter && (tun->filter_attached == true)) { lock_sock(tfile->socket.sk); err = sk_attach_filter(&tun->fprog, tfile->socket.sk); release_sock(tfile->socket.sk); if (!err) goto out; } if (!tfile->detached && ptr_ring_resize(&tfile->tx_ring, dev->tx_queue_len, GFP_KERNEL, tun_ptr_free)) { err = -ENOMEM; goto out; } tfile->queue_index = tun->numqueues; tfile->socket.sk->sk_shutdown &= ~RCV_SHUTDOWN; if (tfile->detached) { /* Re-attach detached tfile, updating XDP queue_index */ WARN_ON(!xdp_rxq_info_is_reg(&tfile->xdp_rxq)); if (tfile->xdp_rxq.queue_index != tfile->queue_index) tfile->xdp_rxq.queue_index = tfile->queue_index; } else { /* Setup XDP RX-queue info, for new tfile getting attached */ err = xdp_rxq_info_reg(&tfile->xdp_rxq, tun->dev, tfile->queue_index, 0); if (err < 0) goto out; err = xdp_rxq_info_reg_mem_model(&tfile->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err < 0) { xdp_rxq_info_unreg(&tfile->xdp_rxq); goto out; } err = 0; } if (tfile->detached) { tun_enable_queue(tfile); tun_napi_enable(tfile); } else { sock_hold(&tfile->sk); tun_napi_init(tun, tfile, napi, napi_frags); } if (rtnl_dereference(tun->xdp_prog)) sock_set_flag(&tfile->sk, SOCK_XDP); /* device is allowed to go away first, so no need to hold extra * refcnt. */ /* Publish tfile->tun and tun->tfiles only after we've fully * initialized tfile; otherwise we risk using half-initialized * object. */ if (publish_tun) rcu_assign_pointer(tfile->tun, tun); rcu_assign_pointer(tun->tfiles[tun->numqueues], tfile); tun->numqueues++; tun_set_real_num_queues(tun); out: return err; } static struct tun_struct *tun_get(struct tun_file *tfile) { struct tun_struct *tun; rcu_read_lock(); tun = rcu_dereference(tfile->tun); if (tun) dev_hold(tun->dev); rcu_read_unlock(); return tun; } static void tun_put(struct tun_struct *tun) { dev_put(tun->dev); } /* TAP filtering */ static void addr_hash_set(u32 *mask, const u8 *addr) { int n = ether_crc(ETH_ALEN, addr) >> 26; mask[n >> 5] |= (1 << (n & 31)); } static unsigned int addr_hash_test(const u32 *mask, const u8 *addr) { int n = ether_crc(ETH_ALEN, addr) >> 26; return mask[n >> 5] & (1 << (n & 31)); } static int update_filter(struct tap_filter *filter, void __user *arg) { struct { u8 u[ETH_ALEN]; } *addr; struct tun_filter uf; int err, alen, n, nexact; if (copy_from_user(&uf, arg, sizeof(uf))) return -EFAULT; if (!uf.count) { /* Disabled */ filter->count = 0; return 0; } alen = ETH_ALEN * uf.count; addr = memdup_user(arg + sizeof(uf), alen); if (IS_ERR(addr)) return PTR_ERR(addr); /* The filter is updated without holding any locks. Which is * perfectly safe. We disable it first and in the worst * case we'll accept a few undesired packets. */ filter->count = 0; wmb(); /* Use first set of addresses as an exact filter */ for (n = 0; n < uf.count && n < FLT_EXACT_COUNT; n++) memcpy(filter->addr[n], addr[n].u, ETH_ALEN); nexact = n; /* Remaining multicast addresses are hashed, * unicast will leave the filter disabled. */ memset(filter->mask, 0, sizeof(filter->mask)); for (; n < uf.count; n++) { if (!is_multicast_ether_addr(addr[n].u)) { err = 0; /* no filter */ goto free_addr; } addr_hash_set(filter->mask, addr[n].u); } /* For ALLMULTI just set the mask to all ones. * This overrides the mask populated above. */ if ((uf.flags & TUN_FLT_ALLMULTI)) memset(filter->mask, ~0, sizeof(filter->mask)); /* Now enable the filter */ wmb(); filter->count = nexact; /* Return the number of exact filters */ err = nexact; free_addr: kfree(addr); return err; } /* Returns: 0 - drop, !=0 - accept */ static int run_filter(struct tap_filter *filter, const struct sk_buff *skb) { /* Cannot use eth_hdr(skb) here because skb_mac_hdr() is incorrect * at this point. */ struct ethhdr *eh = (struct ethhdr *) skb->data; int i; /* Exact match */ for (i = 0; i < filter->count; i++) if (ether_addr_equal(eh->h_dest, filter->addr[i])) return 1; /* Inexact match (multicast only) */ if (is_multicast_ether_addr(eh->h_dest)) return addr_hash_test(filter->mask, eh->h_dest); return 0; } /* * Checks whether the packet is accepted or not. * Returns: 0 - drop, !=0 - accept */ static int check_filter(struct tap_filter *filter, const struct sk_buff *skb) { if (!filter->count) return 1; return run_filter(filter, skb); } /* Network device part of the driver */ static const struct ethtool_ops tun_ethtool_ops; static int tun_net_init(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); struct ifreq *ifr = tun->ifr; int err; spin_lock_init(&tun->lock); err = security_tun_dev_alloc_security(&tun->security); if (err < 0) return err; tun_flow_init(tun); dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; dev->hw_features = NETIF_F_SG | NETIF_F_FRAGLIST | TUN_USER_FEATURES | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; dev->hw_enc_features = dev->hw_features; dev->features = dev->hw_features; dev->vlan_features = dev->features & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX); dev->lltx = true; tun->flags = (tun->flags & ~TUN_FEATURES) | (ifr->ifr_flags & TUN_FEATURES); INIT_LIST_HEAD(&tun->disabled); err = tun_attach(tun, tun->file, false, ifr->ifr_flags & IFF_NAPI, ifr->ifr_flags & IFF_NAPI_FRAGS, false); if (err < 0) { tun_flow_uninit(tun); security_tun_dev_free_security(tun->security); return err; } return 0; } /* Net device detach from fd. */ static void tun_net_uninit(struct net_device *dev) { tun_detach_all(dev); } /* Net device open. */ static int tun_net_open(struct net_device *dev) { netif_tx_start_all_queues(dev); return 0; } /* Net device close. */ static int tun_net_close(struct net_device *dev) { netif_tx_stop_all_queues(dev); return 0; } /* Net device start xmit */ static void tun_automq_xmit(struct tun_struct *tun, struct sk_buff *skb) { #ifdef CONFIG_RPS if (tun->numqueues == 1 && static_branch_unlikely(&rps_needed)) { /* Select queue was not called for the skbuff, so we extract the * RPS hash and save it into the flow_table here. */ struct tun_flow_entry *e; __u32 rxhash; rxhash = __skb_get_hash_symmetric(skb); e = tun_flow_find(&tun->flows[tun_hashfn(rxhash)], rxhash); if (e) tun_flow_save_rps_rxhash(e, rxhash); } #endif } static unsigned int run_ebpf_filter(struct tun_struct *tun, struct sk_buff *skb, int len) { struct tun_prog *prog = rcu_dereference(tun->filter_prog); if (prog) len = bpf_prog_run_clear_cb(prog->prog, skb); return len; } /* Net device start xmit */ static netdev_tx_t tun_net_xmit(struct sk_buff *skb, struct net_device *dev) { enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; struct tun_struct *tun = netdev_priv(dev); int txq = skb->queue_mapping; struct netdev_queue *queue; struct tun_file *tfile; int len = skb->len; rcu_read_lock(); tfile = rcu_dereference(tun->tfiles[txq]); /* Drop packet if interface is not attached */ if (!tfile) { drop_reason = SKB_DROP_REASON_DEV_READY; goto drop; } if (!rcu_dereference(tun->steering_prog)) tun_automq_xmit(tun, skb); netif_info(tun, tx_queued, tun->dev, "%s %d\n", __func__, skb->len); /* Drop if the filter does not like it. * This is a noop if the filter is disabled. * Filter can be enabled only for the TAP devices. */ if (!check_filter(&tun->txflt, skb)) { drop_reason = SKB_DROP_REASON_TAP_TXFILTER; goto drop; } if (tfile->socket.sk->sk_filter && sk_filter_reason(tfile->socket.sk, skb, &drop_reason)) goto drop; len = run_ebpf_filter(tun, skb, len); if (len == 0) { drop_reason = SKB_DROP_REASON_TAP_FILTER; goto drop; } if (pskb_trim(skb, len)) { drop_reason = SKB_DROP_REASON_NOMEM; goto drop; } if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) { drop_reason = SKB_DROP_REASON_SKB_UCOPY_FAULT; goto drop; } skb_tx_timestamp(skb); /* Orphan the skb - required as we might hang on to it * for indefinite time. */ skb_orphan(skb); nf_reset_ct(skb); if (ptr_ring_produce(&tfile->tx_ring, skb)) { drop_reason = SKB_DROP_REASON_FULL_RING; goto drop; } /* dev->lltx requires to do our own update of trans_start */ queue = netdev_get_tx_queue(dev, txq); txq_trans_cond_update(queue); /* Notify and wake up reader process */ if (tfile->flags & TUN_FASYNC) kill_fasync(&tfile->fasync, SIGIO, POLL_IN); tfile->socket.sk->sk_data_ready(tfile->socket.sk); rcu_read_unlock(); return NETDEV_TX_OK; drop: dev_core_stats_tx_dropped_inc(dev); skb_tx_error(skb); kfree_skb_reason(skb, drop_reason); rcu_read_unlock(); return NET_XMIT_DROP; } static void tun_net_mclist(struct net_device *dev) { /* * This callback is supposed to deal with mc filter in * _rx_ path and has nothing to do with the _tx_ path. * In rx path we always accept everything userspace gives us. */ } static netdev_features_t tun_net_fix_features(struct net_device *dev, netdev_features_t features) { struct tun_struct *tun = netdev_priv(dev); return (features & tun->set_features) | (features & ~TUN_USER_FEATURES); } static void tun_set_headroom(struct net_device *dev, int new_hr) { struct tun_struct *tun = netdev_priv(dev); if (new_hr < NET_SKB_PAD) new_hr = NET_SKB_PAD; tun->align = new_hr; } static void tun_net_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct tun_struct *tun = netdev_priv(dev); dev_get_tstats64(dev, stats); stats->rx_frame_errors += (unsigned long)atomic_long_read(&tun->rx_frame_errors); } static int tun_xdp_set(struct net_device *dev, struct bpf_prog *prog, struct netlink_ext_ack *extack) { struct tun_struct *tun = netdev_priv(dev); struct tun_file *tfile; struct bpf_prog *old_prog; int i; old_prog = rtnl_dereference(tun->xdp_prog); rcu_assign_pointer(tun->xdp_prog, prog); if (old_prog) bpf_prog_put(old_prog); for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); if (prog) sock_set_flag(&tfile->sk, SOCK_XDP); else sock_reset_flag(&tfile->sk, SOCK_XDP); } list_for_each_entry(tfile, &tun->disabled, next) { if (prog) sock_set_flag(&tfile->sk, SOCK_XDP); else sock_reset_flag(&tfile->sk, SOCK_XDP); } return 0; } static int tun_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return tun_xdp_set(dev, xdp->prog, xdp->extack); default: return -EINVAL; } } static int tun_net_change_carrier(struct net_device *dev, bool new_carrier) { if (new_carrier) { struct tun_struct *tun = netdev_priv(dev); if (!tun->numqueues) return -EPERM; netif_carrier_on(dev); } else { netif_carrier_off(dev); } return 0; } static const struct net_device_ops tun_netdev_ops = { .ndo_init = tun_net_init, .ndo_uninit = tun_net_uninit, .ndo_open = tun_net_open, .ndo_stop = tun_net_close, .ndo_start_xmit = tun_net_xmit, .ndo_fix_features = tun_net_fix_features, .ndo_select_queue = tun_select_queue, .ndo_set_rx_headroom = tun_set_headroom, .ndo_get_stats64 = tun_net_get_stats64, .ndo_change_carrier = tun_net_change_carrier, }; static void __tun_xdp_flush_tfile(struct tun_file *tfile) { /* Notify and wake up reader process */ if (tfile->flags & TUN_FASYNC) kill_fasync(&tfile->fasync, SIGIO, POLL_IN); tfile->socket.sk->sk_data_ready(tfile->socket.sk); } static int tun_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct tun_struct *tun = netdev_priv(dev); struct tun_file *tfile; u32 numqueues; int nxmit = 0; int i; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; rcu_read_lock(); resample: numqueues = READ_ONCE(tun->numqueues); if (!numqueues) { rcu_read_unlock(); return -ENXIO; /* Caller will free/return all frames */ } tfile = rcu_dereference(tun->tfiles[smp_processor_id() % numqueues]); if (unlikely(!tfile)) goto resample; spin_lock(&tfile->tx_ring.producer_lock); for (i = 0; i < n; i++) { struct xdp_frame *xdp = frames[i]; /* Encode the XDP flag into lowest bit for consumer to differ * XDP buffer from sk_buff. */ void *frame = tun_xdp_to_ptr(xdp); if (__ptr_ring_produce(&tfile->tx_ring, frame)) { dev_core_stats_tx_dropped_inc(dev); break; } nxmit++; } spin_unlock(&tfile->tx_ring.producer_lock); if (flags & XDP_XMIT_FLUSH) __tun_xdp_flush_tfile(tfile); rcu_read_unlock(); return nxmit; } static int tun_xdp_tx(struct net_device *dev, struct xdp_buff *xdp) { struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp); int nxmit; if (unlikely(!frame)) return -EOVERFLOW; nxmit = tun_xdp_xmit(dev, 1, &frame, XDP_XMIT_FLUSH); if (!nxmit) xdp_return_frame_rx_napi(frame); return nxmit; } static const struct net_device_ops tap_netdev_ops = { .ndo_init = tun_net_init, .ndo_uninit = tun_net_uninit, .ndo_open = tun_net_open, .ndo_stop = tun_net_close, .ndo_start_xmit = tun_net_xmit, .ndo_fix_features = tun_net_fix_features, .ndo_set_rx_mode = tun_net_mclist, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_select_queue = tun_select_queue, .ndo_features_check = passthru_features_check, .ndo_set_rx_headroom = tun_set_headroom, .ndo_bpf = tun_xdp, .ndo_xdp_xmit = tun_xdp_xmit, .ndo_change_carrier = tun_net_change_carrier, }; static void tun_flow_init(struct tun_struct *tun) { int i; for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) INIT_HLIST_HEAD(&tun->flows[i]); tun->ageing_time = TUN_FLOW_EXPIRE; timer_setup(&tun->flow_gc_timer, tun_flow_cleanup, 0); mod_timer(&tun->flow_gc_timer, round_jiffies_up(jiffies + tun->ageing_time)); } static void tun_flow_uninit(struct tun_struct *tun) { timer_delete_sync(&tun->flow_gc_timer); tun_flow_flush(tun); } #define MIN_MTU 68 #define MAX_MTU 65535 /* Initialize net device. */ static void tun_net_initialize(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); switch (tun->flags & TUN_TYPE_MASK) { case IFF_TUN: dev->netdev_ops = &tun_netdev_ops; dev->header_ops = &ip_tunnel_header_ops; /* Point-to-Point TUN Device */ dev->hard_header_len = 0; dev->addr_len = 0; dev->mtu = 1500; /* Zero header length */ dev->type = ARPHRD_NONE; dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; break; case IFF_TAP: dev->netdev_ops = &tap_netdev_ops; /* Ethernet TAP Device */ ether_setup(dev); dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; eth_hw_addr_random(dev); /* Currently tun does not support XDP, only tap does. */ dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT; break; } dev->min_mtu = MIN_MTU; dev->max_mtu = MAX_MTU - dev->hard_header_len; } static bool tun_sock_writeable(struct tun_struct *tun, struct tun_file *tfile) { struct sock *sk = tfile->socket.sk; return (tun->dev->flags & IFF_UP) && sock_writeable(sk); } /* Character device part */ /* Poll */ static __poll_t tun_chr_poll(struct file *file, poll_table *wait) { struct tun_file *tfile = file->private_data; struct tun_struct *tun = tun_get(tfile); struct sock *sk; __poll_t mask = 0; if (!tun) return EPOLLERR; sk = tfile->socket.sk; poll_wait(file, sk_sleep(sk), wait); if (!ptr_ring_empty(&tfile->tx_ring)) mask |= EPOLLIN | EPOLLRDNORM; /* Make sure SOCKWQ_ASYNC_NOSPACE is set if not writable to * guarantee EPOLLOUT to be raised by either here or * tun_sock_write_space(). Then process could get notification * after it writes to a down device and meets -EIO. */ if (tun_sock_writeable(tun, tfile) || (!test_and_set_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags) && tun_sock_writeable(tun, tfile))) mask |= EPOLLOUT | EPOLLWRNORM; if (tun->dev->reg_state != NETREG_REGISTERED) mask = EPOLLERR; tun_put(tun); return mask; } static struct sk_buff *tun_napi_alloc_frags(struct tun_file *tfile, size_t len, const struct iov_iter *it) { struct sk_buff *skb; size_t linear; int err; int i; if (it->nr_segs > MAX_SKB_FRAGS + 1 || len > (ETH_MAX_MTU - NET_SKB_PAD - NET_IP_ALIGN)) return ERR_PTR(-EMSGSIZE); local_bh_disable(); skb = napi_get_frags(&tfile->napi); local_bh_enable(); if (!skb) return ERR_PTR(-ENOMEM); linear = iov_iter_single_seg_count(it); err = __skb_grow(skb, linear); if (err) goto free; skb->len = len; skb->data_len = len - linear; skb->truesize += skb->data_len; for (i = 1; i < it->nr_segs; i++) { const struct iovec *iov = iter_iov(it) + i; size_t fragsz = iov->iov_len; struct page *page; void *frag; if (fragsz == 0 || fragsz > PAGE_SIZE) { err = -EINVAL; goto free; } frag = netdev_alloc_frag(fragsz); if (!frag) { err = -ENOMEM; goto free; } page = virt_to_head_page(frag); skb_fill_page_desc(skb, i - 1, page, frag - page_address(page), fragsz); } return skb; free: /* frees skb and all frags allocated with napi_alloc_frag() */ napi_free_frags(&tfile->napi); return ERR_PTR(err); } /* prepad is the amount to reserve at front. len is length after that. * linear is a hint as to how much to copy (usually headers). */ static struct sk_buff *tun_alloc_skb(struct tun_file *tfile, size_t prepad, size_t len, size_t linear, int noblock) { struct sock *sk = tfile->socket.sk; struct sk_buff *skb; int err; /* Under a page? Don't bother with paged skb. */ if (prepad + len < PAGE_SIZE) linear = len; if (len - linear > MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) linear = len - MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER); skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, &err, PAGE_ALLOC_COSTLY_ORDER); if (!skb) return ERR_PTR(err); skb_reserve(skb, prepad); skb_put(skb, linear); skb->data_len = len - linear; skb->len += len - linear; return skb; } static void tun_rx_batched(struct tun_struct *tun, struct tun_file *tfile, struct sk_buff *skb, int more) { struct sk_buff_head *queue = &tfile->sk.sk_write_queue; struct sk_buff_head process_queue; u32 rx_batched = tun->rx_batched; bool rcv = false; if (!rx_batched || (!more && skb_queue_empty(queue))) { local_bh_disable(); skb_record_rx_queue(skb, tfile->queue_index); netif_receive_skb(skb); local_bh_enable(); return; } spin_lock(&queue->lock); if (!more || skb_queue_len(queue) == rx_batched) { __skb_queue_head_init(&process_queue); skb_queue_splice_tail_init(queue, &process_queue); rcv = true; } else { __skb_queue_tail(queue, skb); } spin_unlock(&queue->lock); if (rcv) { struct sk_buff *nskb; local_bh_disable(); while ((nskb = __skb_dequeue(&process_queue))) { skb_record_rx_queue(nskb, tfile->queue_index); netif_receive_skb(nskb); } skb_record_rx_queue(skb, tfile->queue_index); netif_receive_skb(skb); local_bh_enable(); } } static bool tun_can_build_skb(struct tun_struct *tun, struct tun_file *tfile, int len, int noblock, bool zerocopy) { if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) return false; if (tfile->socket.sk->sk_sndbuf != INT_MAX) return false; if (!noblock) return false; if (zerocopy) return false; if (SKB_DATA_ALIGN(len + TUN_RX_PAD + XDP_PACKET_HEADROOM) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) > PAGE_SIZE) return false; return true; } static struct sk_buff *__tun_build_skb(struct tun_file *tfile, struct page_frag *alloc_frag, char *buf, int buflen, int len, int pad, int metasize) { struct sk_buff *skb = build_skb(buf, buflen); if (!skb) return ERR_PTR(-ENOMEM); skb_reserve(skb, pad); skb_put(skb, len); if (metasize) skb_metadata_set(skb, metasize); skb_set_owner_w(skb, tfile->socket.sk); get_page(alloc_frag->page); alloc_frag->offset += buflen; return skb; } static int tun_xdp_act(struct tun_struct *tun, struct bpf_prog *xdp_prog, struct xdp_buff *xdp, u32 act) { int err; switch (act) { case XDP_REDIRECT: err = xdp_do_redirect(tun->dev, xdp, xdp_prog); if (err) { dev_core_stats_rx_dropped_inc(tun->dev); return err; } dev_sw_netstats_rx_add(tun->dev, xdp->data_end - xdp->data); break; case XDP_TX: err = tun_xdp_tx(tun->dev, xdp); if (err < 0) { dev_core_stats_rx_dropped_inc(tun->dev); return err; } dev_sw_netstats_rx_add(tun->dev, xdp->data_end - xdp->data); break; case XDP_PASS: break; default: bpf_warn_invalid_xdp_action(tun->dev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(tun->dev, xdp_prog, act); fallthrough; case XDP_DROP: dev_core_stats_rx_dropped_inc(tun->dev); break; } return act; } static struct sk_buff *tun_build_skb(struct tun_struct *tun, struct tun_file *tfile, struct iov_iter *from, struct virtio_net_hdr *hdr, int len, int *skb_xdp) { struct page_frag *alloc_frag = &current->task_frag; struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; struct bpf_prog *xdp_prog; int buflen = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); char *buf; size_t copied; int pad = TUN_RX_PAD; int metasize = 0; int err = 0; rcu_read_lock(); xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) pad += XDP_PACKET_HEADROOM; buflen += SKB_DATA_ALIGN(len + pad); rcu_read_unlock(); alloc_frag->offset = ALIGN((u64)alloc_frag->offset, SMP_CACHE_BYTES); if (unlikely(!skb_page_frag_refill(buflen, alloc_frag, GFP_KERNEL))) return ERR_PTR(-ENOMEM); buf = (char *)page_address(alloc_frag->page) + alloc_frag->offset; copied = copy_page_from_iter(alloc_frag->page, alloc_frag->offset + pad, len, from); if (copied != len) return ERR_PTR(-EFAULT); /* There's a small window that XDP may be set after the check * of xdp_prog above, this should be rare and for simplicity * we do XDP on skb in case the headroom is not enough. */ if (hdr->gso_type || !xdp_prog) { *skb_xdp = 1; return __tun_build_skb(tfile, alloc_frag, buf, buflen, len, pad, metasize); } *skb_xdp = 0; local_bh_disable(); rcu_read_lock(); bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) { struct xdp_buff xdp; u32 act; xdp_init_buff(&xdp, buflen, &tfile->xdp_rxq); xdp_prepare_buff(&xdp, buf, pad, len, true); act = bpf_prog_run_xdp(xdp_prog, &xdp); if (act == XDP_REDIRECT || act == XDP_TX) { get_page(alloc_frag->page); alloc_frag->offset += buflen; } err = tun_xdp_act(tun, xdp_prog, &xdp, act); if (err < 0) { if (act == XDP_REDIRECT || act == XDP_TX) put_page(alloc_frag->page); goto out; } if (err == XDP_REDIRECT) xdp_do_flush(); if (err != XDP_PASS) goto out; pad = xdp.data - xdp.data_hard_start; len = xdp.data_end - xdp.data; /* It is known that the xdp_buff was prepared with metadata * support, so the metasize will never be negative. */ metasize = xdp.data - xdp.data_meta; } bpf_net_ctx_clear(bpf_net_ctx); rcu_read_unlock(); local_bh_enable(); return __tun_build_skb(tfile, alloc_frag, buf, buflen, len, pad, metasize); out: bpf_net_ctx_clear(bpf_net_ctx); rcu_read_unlock(); local_bh_enable(); return NULL; } /* Get packet from user space buffer */ static ssize_t tun_get_user(struct tun_struct *tun, struct tun_file *tfile, void *msg_control, struct iov_iter *from, int noblock, bool more) { struct tun_pi pi = { 0, cpu_to_be16(ETH_P_IP) }; struct sk_buff *skb; size_t total_len = iov_iter_count(from); size_t len = total_len, align = tun->align, linear; struct virtio_net_hdr_v1_hash_tunnel hdr; struct virtio_net_hdr *gso; int good_linear; int copylen; int hdr_len = 0; bool zerocopy = false; int err; u32 rxhash = 0; int skb_xdp = 1; bool frags = tun_napi_frags_enabled(tfile); enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; netdev_features_t features = 0; /* * Keep it easy and always zero the whole buffer, even if the * tunnel-related field will be touched only when the feature * is enabled and the hdr size id compatible. */ memset(&hdr, 0, sizeof(hdr)); gso = (struct virtio_net_hdr *)&hdr; if (!(tun->flags & IFF_NO_PI)) { if (len < sizeof(pi)) return -EINVAL; len -= sizeof(pi); if (!copy_from_iter_full(&pi, sizeof(pi), from)) return -EFAULT; } if (tun->flags & IFF_VNET_HDR) { int vnet_hdr_sz = READ_ONCE(tun->vnet_hdr_sz); features = tun_vnet_hdr_guest_features(vnet_hdr_sz); hdr_len = __tun_vnet_hdr_get(vnet_hdr_sz, tun->flags, features, from, gso); if (hdr_len < 0) return hdr_len; len -= vnet_hdr_sz; } if ((tun->flags & TUN_TYPE_MASK) == IFF_TAP) { align += NET_IP_ALIGN; if (unlikely(len < ETH_HLEN || (hdr_len && hdr_len < ETH_HLEN))) return -EINVAL; } good_linear = SKB_MAX_HEAD(align); if (msg_control) { struct iov_iter i = *from; /* There are 256 bytes to be copied in skb, so there is * enough room for skb expand head in case it is used. * The rest of the buffer is mapped from userspace. */ copylen = min(hdr_len ? hdr_len : GOODCOPY_LEN, good_linear); linear = copylen; iov_iter_advance(&i, copylen); if (iov_iter_npages(&i, INT_MAX) <= MAX_SKB_FRAGS) zerocopy = true; } if (!frags && tun_can_build_skb(tun, tfile, len, noblock, zerocopy)) { /* For the packet that is not easy to be processed * (e.g gso or jumbo packet), we will do it at after * skb was created with generic XDP routine. */ skb = tun_build_skb(tun, tfile, from, gso, len, &skb_xdp); err = PTR_ERR_OR_ZERO(skb); if (err) goto drop; if (!skb) return total_len; } else { if (!zerocopy) { copylen = len; linear = min(hdr_len, good_linear); } if (frags) { mutex_lock(&tfile->napi_mutex); skb = tun_napi_alloc_frags(tfile, copylen, from); /* tun_napi_alloc_frags() enforces a layout for the skb. * If zerocopy is enabled, then this layout will be * overwritten by zerocopy_sg_from_iter(). */ zerocopy = false; } else { if (!linear) linear = min_t(size_t, good_linear, copylen); skb = tun_alloc_skb(tfile, align, copylen, linear, noblock); } err = PTR_ERR_OR_ZERO(skb); if (err) goto drop; if (zerocopy) err = zerocopy_sg_from_iter(skb, from); else err = skb_copy_datagram_from_iter(skb, 0, from, len); if (err) { err = -EFAULT; drop_reason = SKB_DROP_REASON_SKB_UCOPY_FAULT; goto drop; } } if (tun_vnet_hdr_tnl_to_skb(tun->flags, features, skb, &hdr)) { atomic_long_inc(&tun->rx_frame_errors); err = -EINVAL; goto free_skb; } switch (tun->flags & TUN_TYPE_MASK) { case IFF_TUN: if (tun->flags & IFF_NO_PI) { u8 ip_version = skb->len ? (skb->data[0] >> 4) : 0; switch (ip_version) { case 4: pi.proto = htons(ETH_P_IP); break; case 6: pi.proto = htons(ETH_P_IPV6); break; default: err = -EINVAL; goto drop; } } skb_reset_mac_header(skb); skb->protocol = pi.proto; skb->dev = tun->dev; break; case IFF_TAP: if (frags && !pskb_may_pull(skb, ETH_HLEN)) { err = -ENOMEM; drop_reason = SKB_DROP_REASON_HDR_TRUNC; goto drop; } skb->protocol = eth_type_trans(skb, tun->dev); break; } /* copy skb_ubuf_info for callback when skb has no error */ if (zerocopy) { skb_zcopy_init(skb, msg_control); } else if (msg_control) { struct ubuf_info *uarg = msg_control; uarg->ops->complete(NULL, uarg, false); } skb_reset_network_header(skb); skb_probe_transport_header(skb); skb_record_rx_queue(skb, tfile->queue_index); if (skb_xdp) { struct bpf_prog *xdp_prog; int ret; local_bh_disable(); rcu_read_lock(); xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) { ret = do_xdp_generic(xdp_prog, &skb); if (ret != XDP_PASS) { rcu_read_unlock(); local_bh_enable(); goto unlock_frags; } } rcu_read_unlock(); local_bh_enable(); } /* Compute the costly rx hash only if needed for flow updates. * We may get a very small possibility of OOO during switching, not * worth to optimize. */ if (!rcu_access_pointer(tun->steering_prog) && tun->numqueues > 1 && !tfile->detached) rxhash = __skb_get_hash_symmetric(skb); rcu_read_lock(); if (unlikely(!(tun->dev->flags & IFF_UP))) { err = -EIO; rcu_read_unlock(); drop_reason = SKB_DROP_REASON_DEV_READY; goto drop; } if (frags) { u32 headlen; /* Exercise flow dissector code path. */ skb_push(skb, ETH_HLEN); headlen = eth_get_headlen(tun->dev, skb->data, skb_headlen(skb)); if (unlikely(headlen > skb_headlen(skb))) { WARN_ON_ONCE(1); err = -ENOMEM; dev_core_stats_rx_dropped_inc(tun->dev); napi_busy: napi_free_frags(&tfile->napi); rcu_read_unlock(); mutex_unlock(&tfile->napi_mutex); return err; } if (likely(napi_schedule_prep(&tfile->napi))) { local_bh_disable(); napi_gro_frags(&tfile->napi); napi_complete(&tfile->napi); local_bh_enable(); } else { err = -EBUSY; goto napi_busy; } mutex_unlock(&tfile->napi_mutex); } else if (tfile->napi_enabled) { struct sk_buff_head *queue = &tfile->sk.sk_write_queue; int queue_len; spin_lock_bh(&queue->lock); if (unlikely(tfile->detached)) { spin_unlock_bh(&queue->lock); rcu_read_unlock(); err = -EBUSY; goto free_skb; } __skb_queue_tail(queue, skb); queue_len = skb_queue_len(queue); spin_unlock(&queue->lock); if (!more || queue_len > NAPI_POLL_WEIGHT) napi_schedule(&tfile->napi); local_bh_enable(); } else if (!IS_ENABLED(CONFIG_4KSTACKS)) { tun_rx_batched(tun, tfile, skb, more); } else { netif_rx(skb); } rcu_read_unlock(); preempt_disable(); dev_sw_netstats_rx_add(tun->dev, len); preempt_enable(); if (rxhash) tun_flow_update(tun, rxhash, tfile); return total_len; drop: if (err != -EAGAIN) dev_core_stats_rx_dropped_inc(tun->dev); free_skb: if (!IS_ERR_OR_NULL(skb)) kfree_skb_reason(skb, drop_reason); unlock_frags: if (frags) { tfile->napi.skb = NULL; mutex_unlock(&tfile->napi_mutex); } return err ?: total_len; } static ssize_t tun_chr_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct tun_file *tfile = file->private_data; struct tun_struct *tun = tun_get(tfile); ssize_t result; int noblock = 0; if (!tun) return -EBADFD; if ((file->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) noblock = 1; result = tun_get_user(tun, tfile, NULL, from, noblock, false); tun_put(tun); return result; } static ssize_t tun_put_user_xdp(struct tun_struct *tun, struct tun_file *tfile, struct xdp_frame *xdp_frame, struct iov_iter *iter) { int vnet_hdr_sz = 0; size_t size = xdp_frame->len; ssize_t ret; if (tun->flags & IFF_VNET_HDR) { struct virtio_net_hdr gso = { 0 }; vnet_hdr_sz = READ_ONCE(tun->vnet_hdr_sz); ret = tun_vnet_hdr_put(vnet_hdr_sz, iter, &gso); if (ret) return ret; } ret = copy_to_iter(xdp_frame->data, size, iter) + vnet_hdr_sz; preempt_disable(); dev_sw_netstats_tx_add(tun->dev, 1, ret); preempt_enable(); return ret; } /* Put packet to the user space buffer */ static ssize_t tun_put_user(struct tun_struct *tun, struct tun_file *tfile, struct sk_buff *skb, struct iov_iter *iter) { struct tun_pi pi = { 0, skb->protocol }; ssize_t total; int vlan_offset = 0; int vlan_hlen = 0; int vnet_hdr_sz = 0; int ret; if (skb_vlan_tag_present(skb)) vlan_hlen = VLAN_HLEN; if (tun->flags & IFF_VNET_HDR) vnet_hdr_sz = READ_ONCE(tun->vnet_hdr_sz); total = skb->len + vlan_hlen + vnet_hdr_sz; if (!(tun->flags & IFF_NO_PI)) { if (iov_iter_count(iter) < sizeof(pi)) return -EINVAL; total += sizeof(pi); if (iov_iter_count(iter) < total) { /* Packet will be striped */ pi.flags |= TUN_PKT_STRIP; } if (copy_to_iter(&pi, sizeof(pi), iter) != sizeof(pi)) return -EFAULT; } if (vnet_hdr_sz) { struct virtio_net_hdr_v1_hash_tunnel hdr; struct virtio_net_hdr *gso; ret = tun_vnet_hdr_tnl_from_skb(tun->flags, tun->dev, skb, &hdr); if (ret) return ret; /* * Drop the packet if the configured header size is too small * WRT the enabled offloads. */ gso = (struct virtio_net_hdr *)&hdr; ret = __tun_vnet_hdr_put(vnet_hdr_sz, tun->dev->features, iter, gso); if (ret) return ret; } if (vlan_hlen) { int ret; struct veth veth; veth.h_vlan_proto = skb->vlan_proto; veth.h_vlan_TCI = htons(skb_vlan_tag_get(skb)); vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto); ret = skb_copy_datagram_iter(skb, 0, iter, vlan_offset); if (ret || !iov_iter_count(iter)) goto done; ret = copy_to_iter(&veth, sizeof(veth), iter); if (ret != sizeof(veth) || !iov_iter_count(iter)) goto done; } skb_copy_datagram_iter(skb, vlan_offset, iter, skb->len - vlan_offset); done: /* caller is in process context, */ preempt_disable(); dev_sw_netstats_tx_add(tun->dev, 1, skb->len + vlan_hlen); preempt_enable(); return total; } static void *tun_ring_recv(struct tun_file *tfile, int noblock, int *err) { DECLARE_WAITQUEUE(wait, current); void *ptr = NULL; int error = 0; ptr = ptr_ring_consume(&tfile->tx_ring); if (ptr) goto out; if (noblock) { error = -EAGAIN; goto out; } add_wait_queue(&tfile->socket.wq.wait, &wait); while (1) { set_current_state(TASK_INTERRUPTIBLE); ptr = ptr_ring_consume(&tfile->tx_ring); if (ptr) break; if (signal_pending(current)) { error = -ERESTARTSYS; break; } if (tfile->socket.sk->sk_shutdown & RCV_SHUTDOWN) { error = -EFAULT; break; } schedule(); } __set_current_state(TASK_RUNNING); remove_wait_queue(&tfile->socket.wq.wait, &wait); out: *err = error; return ptr; } static ssize_t tun_do_read(struct tun_struct *tun, struct tun_file *tfile, struct iov_iter *to, int noblock, void *ptr) { ssize_t ret; int err; if (!iov_iter_count(to)) { tun_ptr_free(ptr); return 0; } if (!ptr) { /* Read frames from ring */ ptr = tun_ring_recv(tfile, noblock, &err); if (!ptr) return err; } if (tun_is_xdp_frame(ptr)) { struct xdp_frame *xdpf = tun_ptr_to_xdp(ptr); ret = tun_put_user_xdp(tun, tfile, xdpf, to); xdp_return_frame(xdpf); } else { struct sk_buff *skb = ptr; ret = tun_put_user(tun, tfile, skb, to); if (unlikely(ret < 0)) kfree_skb(skb); else consume_skb(skb); } return ret; } static ssize_t tun_chr_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct tun_file *tfile = file->private_data; struct tun_struct *tun = tun_get(tfile); ssize_t len = iov_iter_count(to), ret; int noblock = 0; if (!tun) return -EBADFD; if ((file->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) noblock = 1; ret = tun_do_read(tun, tfile, to, noblock, NULL); ret = min_t(ssize_t, ret, len); if (ret > 0) iocb->ki_pos = ret; tun_put(tun); return ret; } static void tun_prog_free(struct rcu_head *rcu) { struct tun_prog *prog = container_of(rcu, struct tun_prog, rcu); bpf_prog_destroy(prog->prog); kfree(prog); } static int __tun_set_ebpf(struct tun_struct *tun, struct tun_prog __rcu **prog_p, struct bpf_prog *prog) { struct tun_prog *old, *new = NULL; if (prog) { new = kmalloc(sizeof(*new), GFP_KERNEL); if (!new) return -ENOMEM; new->prog = prog; } spin_lock_bh(&tun->lock); old = rcu_dereference_protected(*prog_p, lockdep_is_held(&tun->lock)); rcu_assign_pointer(*prog_p, new); spin_unlock_bh(&tun->lock); if (old) call_rcu(&old->rcu, tun_prog_free); return 0; } static void tun_free_netdev(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); BUG_ON(!(list_empty(&tun->disabled))); tun_flow_uninit(tun); security_tun_dev_free_security(tun->security); __tun_set_ebpf(tun, &tun->steering_prog, NULL); __tun_set_ebpf(tun, &tun->filter_prog, NULL); } static void tun_setup(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); tun->owner = INVALID_UID; tun->group = INVALID_GID; tun_default_link_ksettings(dev, &tun->link_ksettings); dev->ethtool_ops = &tun_ethtool_ops; dev->needs_free_netdev = true; dev->priv_destructor = tun_free_netdev; /* We prefer our own queue length */ dev->tx_queue_len = TUN_READQ_SIZE; } /* Trivial set of netlink ops to allow deleting tun or tap * device with netlink. */ static int tun_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "tun/tap creation via rtnetlink is not supported."); return -EOPNOTSUPP; } static size_t tun_get_size(const struct net_device *dev) { BUILD_BUG_ON(sizeof(u32) != sizeof(uid_t)); BUILD_BUG_ON(sizeof(u32) != sizeof(gid_t)); return nla_total_size(sizeof(uid_t)) + /* OWNER */ nla_total_size(sizeof(gid_t)) + /* GROUP */ nla_total_size(sizeof(u8)) + /* TYPE */ nla_total_size(sizeof(u8)) + /* PI */ nla_total_size(sizeof(u8)) + /* VNET_HDR */ nla_total_size(sizeof(u8)) + /* PERSIST */ nla_total_size(sizeof(u8)) + /* MULTI_QUEUE */ nla_total_size(sizeof(u32)) + /* NUM_QUEUES */ nla_total_size(sizeof(u32)) + /* NUM_DISABLED_QUEUES */ 0; } static int tun_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); if (nla_put_u8(skb, IFLA_TUN_TYPE, tun->flags & TUN_TYPE_MASK)) goto nla_put_failure; if (uid_valid(tun->owner) && nla_put_u32(skb, IFLA_TUN_OWNER, from_kuid_munged(current_user_ns(), tun->owner))) goto nla_put_failure; if (gid_valid(tun->group) && nla_put_u32(skb, IFLA_TUN_GROUP, from_kgid_munged(current_user_ns(), tun->group))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_PI, !(tun->flags & IFF_NO_PI))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_VNET_HDR, !!(tun->flags & IFF_VNET_HDR))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_PERSIST, !!(tun->flags & IFF_PERSIST))) goto nla_put_failure; if (nla_put_u8(skb, IFLA_TUN_MULTI_QUEUE, !!(tun->flags & IFF_MULTI_QUEUE))) goto nla_put_failure; if (tun->flags & IFF_MULTI_QUEUE) { if (nla_put_u32(skb, IFLA_TUN_NUM_QUEUES, tun->numqueues)) goto nla_put_failure; if (nla_put_u32(skb, IFLA_TUN_NUM_DISABLED_QUEUES, tun->numdisabled)) goto nla_put_failure; } return 0; nla_put_failure: return -EMSGSIZE; } static struct rtnl_link_ops tun_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct tun_struct), .setup = tun_setup, .validate = tun_validate, .get_size = tun_get_size, .fill_info = tun_fill_info, }; static void tun_sock_write_space(struct sock *sk) { struct tun_file *tfile; wait_queue_head_t *wqueue; if (!sock_writeable(sk)) return; if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags)) return; wqueue = sk_sleep(sk); if (wqueue && waitqueue_active(wqueue)) wake_up_interruptible_sync_poll(wqueue, EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); tfile = container_of(sk, struct tun_file, sk); kill_fasync(&tfile->fasync, SIGIO, POLL_OUT); } static void tun_put_page(struct tun_page *tpage) { if (tpage->page) __page_frag_cache_drain(tpage->page, tpage->count); } static int tun_xdp_one(struct tun_struct *tun, struct tun_file *tfile, struct xdp_buff *xdp, int *flush, struct tun_page *tpage) { unsigned int datasize = xdp->data_end - xdp->data; struct virtio_net_hdr *gso = xdp->data_hard_start; struct virtio_net_hdr_v1_hash_tunnel *tnl_hdr; struct bpf_prog *xdp_prog; struct sk_buff *skb = NULL; struct sk_buff_head *queue; netdev_features_t features; u32 rxhash = 0, act; int buflen = xdp->frame_sz; int metasize = 0; int ret = 0; bool skb_xdp = false; struct page *page; if (unlikely(datasize < ETH_HLEN)) return -EINVAL; xdp_prog = rcu_dereference(tun->xdp_prog); if (xdp_prog) { if (gso->gso_type) { skb_xdp = true; goto build; } xdp_init_buff(xdp, buflen, &tfile->xdp_rxq); act = bpf_prog_run_xdp(xdp_prog, xdp); ret = tun_xdp_act(tun, xdp_prog, xdp, act); if (ret < 0) { put_page(virt_to_head_page(xdp->data)); return ret; } switch (ret) { case XDP_REDIRECT: *flush = true; fallthrough; case XDP_TX: return 0; case XDP_PASS: break; default: page = virt_to_head_page(xdp->data); if (tpage->page == page) { ++tpage->count; } else { tun_put_page(tpage); tpage->page = page; tpage->count = 1; } return 0; } } build: skb = build_skb(xdp->data_hard_start, buflen); if (!skb) { ret = -ENOMEM; goto out; } skb_reserve(skb, xdp->data - xdp->data_hard_start); skb_put(skb, xdp->data_end - xdp->data); /* The externally provided xdp_buff may have no metadata support, which * is marked by xdp->data_meta being xdp->data + 1. This will lead to a * metasize of -1 and is the reason why the condition checks for > 0. */ metasize = xdp->data - xdp->data_meta; if (metasize > 0) skb_metadata_set(skb, metasize); features = tun_vnet_hdr_guest_features(READ_ONCE(tun->vnet_hdr_sz)); tnl_hdr = (struct virtio_net_hdr_v1_hash_tunnel *)gso; if (tun_vnet_hdr_tnl_to_skb(tun->flags, features, skb, tnl_hdr)) { atomic_long_inc(&tun->rx_frame_errors); kfree_skb(skb); ret = -EINVAL; goto out; } skb->protocol = eth_type_trans(skb, tun->dev); skb_reset_network_header(skb); skb_probe_transport_header(skb); skb_record_rx_queue(skb, tfile->queue_index); if (skb_xdp) { ret = do_xdp_generic(xdp_prog, &skb); if (ret != XDP_PASS) { ret = 0; goto out; } } if (!rcu_dereference(tun->steering_prog) && tun->numqueues > 1 && !tfile->detached) rxhash = __skb_get_hash_symmetric(skb); if (tfile->napi_enabled) { queue = &tfile->sk.sk_write_queue; spin_lock(&queue->lock); if (unlikely(tfile->detached)) { spin_unlock(&queue->lock); kfree_skb(skb); return -EBUSY; } __skb_queue_tail(queue, skb); spin_unlock(&queue->lock); ret = 1; } else { netif_receive_skb(skb); ret = 0; } /* No need to disable preemption here since this function is * always called with bh disabled */ dev_sw_netstats_rx_add(tun->dev, datasize); if (rxhash) tun_flow_update(tun, rxhash, tfile); out: return ret; } static int tun_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) { int ret, i; struct tun_file *tfile = container_of(sock, struct tun_file, socket); struct tun_struct *tun = tun_get(tfile); struct tun_msg_ctl *ctl = m->msg_control; struct xdp_buff *xdp; if (!tun) return -EBADFD; if (m->msg_controllen == sizeof(struct tun_msg_ctl) && ctl && ctl->type == TUN_MSG_PTR) { struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; struct tun_page tpage; int n = ctl->num; int flush = 0, queued = 0; memset(&tpage, 0, sizeof(tpage)); local_bh_disable(); rcu_read_lock(); bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); for (i = 0; i < n; i++) { xdp = &((struct xdp_buff *)ctl->ptr)[i]; ret = tun_xdp_one(tun, tfile, xdp, &flush, &tpage); if (ret > 0) queued += ret; } if (flush) xdp_do_flush(); if (tfile->napi_enabled && queued > 0) napi_schedule(&tfile->napi); bpf_net_ctx_clear(bpf_net_ctx); rcu_read_unlock(); local_bh_enable(); tun_put_page(&tpage); ret = total_len; goto out; } ret = tun_get_user(tun, tfile, ctl ? ctl->ptr : NULL, &m->msg_iter, m->msg_flags & MSG_DONTWAIT, m->msg_flags & MSG_MORE); out: tun_put(tun); return ret; } static int tun_recvmsg(struct socket *sock, struct msghdr *m, size_t total_len, int flags) { struct tun_file *tfile = container_of(sock, struct tun_file, socket); struct tun_struct *tun = tun_get(tfile); void *ptr = m->msg_control; int ret; if (!tun) { ret = -EBADFD; goto out_free; } if (flags & ~(MSG_DONTWAIT|MSG_TRUNC|MSG_ERRQUEUE)) { ret = -EINVAL; goto out_put_tun; } if (flags & MSG_ERRQUEUE) { ret = sock_recv_errqueue(sock->sk, m, total_len, SOL_PACKET, TUN_TX_TIMESTAMP); goto out; } ret = tun_do_read(tun, tfile, &m->msg_iter, flags & MSG_DONTWAIT, ptr); if (ret > (ssize_t)total_len) { m->msg_flags |= MSG_TRUNC; ret = flags & MSG_TRUNC ? ret : total_len; } out: tun_put(tun); return ret; out_put_tun: tun_put(tun); out_free: tun_ptr_free(ptr); return ret; } static int tun_ptr_peek_len(void *ptr) { if (likely(ptr)) { if (tun_is_xdp_frame(ptr)) { struct xdp_frame *xdpf = tun_ptr_to_xdp(ptr); return xdpf->len; } return __skb_array_len_with_tag(ptr); } else { return 0; } } static int tun_peek_len(struct socket *sock) { struct tun_file *tfile = container_of(sock, struct tun_file, socket); struct tun_struct *tun; int ret = 0; tun = tun_get(tfile); if (!tun) return 0; ret = PTR_RING_PEEK_CALL(&tfile->tx_ring, tun_ptr_peek_len); tun_put(tun); return ret; } /* Ops structure to mimic raw sockets with tun */ static const struct proto_ops tun_socket_ops = { .peek_len = tun_peek_len, .sendmsg = tun_sendmsg, .recvmsg = tun_recvmsg, }; static struct proto tun_proto = { .name = "tun", .owner = THIS_MODULE, .obj_size = sizeof(struct tun_file), }; static int tun_flags(struct tun_struct *tun) { return tun->flags & (TUN_FEATURES | IFF_PERSIST | IFF_TUN | IFF_TAP); } static ssize_t tun_flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tun_struct *tun = netdev_priv(to_net_dev(dev)); return sysfs_emit(buf, "0x%x\n", tun_flags(tun)); } static ssize_t owner_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tun_struct *tun = netdev_priv(to_net_dev(dev)); return uid_valid(tun->owner)? sysfs_emit(buf, "%u\n", from_kuid_munged(current_user_ns(), tun->owner)) : sysfs_emit(buf, "-1\n"); } static ssize_t group_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tun_struct *tun = netdev_priv(to_net_dev(dev)); return gid_valid(tun->group) ? sysfs_emit(buf, "%u\n", from_kgid_munged(current_user_ns(), tun->group)) : sysfs_emit(buf, "-1\n"); } static DEVICE_ATTR_RO(tun_flags); static DEVICE_ATTR_RO(owner); static DEVICE_ATTR_RO(group); static struct attribute *tun_dev_attrs[] = { &dev_attr_tun_flags.attr, &dev_attr_owner.attr, &dev_attr_group.attr, NULL }; static const struct attribute_group tun_attr_group = { .attrs = tun_dev_attrs }; static int tun_set_iff(struct net *net, struct file *file, struct ifreq *ifr) { struct tun_struct *tun; struct tun_file *tfile = file->private_data; struct net_device *dev; int err; if (tfile->detached) return -EINVAL; if ((ifr->ifr_flags & IFF_NAPI_FRAGS)) { if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!(ifr->ifr_flags & IFF_NAPI) || (ifr->ifr_flags & TUN_TYPE_MASK) != IFF_TAP) return -EINVAL; } dev = __dev_get_by_name(net, ifr->ifr_name); if (dev) { if (ifr->ifr_flags & IFF_TUN_EXCL) return -EBUSY; if ((ifr->ifr_flags & IFF_TUN) && dev->netdev_ops == &tun_netdev_ops) tun = netdev_priv(dev); else if ((ifr->ifr_flags & IFF_TAP) && dev->netdev_ops == &tap_netdev_ops) tun = netdev_priv(dev); else return -EINVAL; if (!!(ifr->ifr_flags & IFF_MULTI_QUEUE) != !!(tun->flags & IFF_MULTI_QUEUE)) return -EINVAL; if (tun_not_capable(tun)) return -EPERM; err = security_tun_dev_open(tun->security); if (err < 0) return err; err = tun_attach(tun, file, ifr->ifr_flags & IFF_NOFILTER, ifr->ifr_flags & IFF_NAPI, ifr->ifr_flags & IFF_NAPI_FRAGS, true); if (err < 0) return err; if (tun->flags & IFF_MULTI_QUEUE && (tun->numqueues + tun->numdisabled > 1)) { /* One or more queue has already been attached, no need * to initialize the device again. */ netdev_state_change(dev); return 0; } tun->flags = (tun->flags & ~TUN_FEATURES) | (ifr->ifr_flags & TUN_FEATURES); netdev_state_change(dev); } else { char *name; unsigned long flags = 0; int queues = ifr->ifr_flags & IFF_MULTI_QUEUE ? MAX_TAP_QUEUES : 1; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; err = security_tun_dev_create(); if (err < 0) return err; /* Set dev type */ if (ifr->ifr_flags & IFF_TUN) { /* TUN device */ flags |= IFF_TUN; name = "tun%d"; } else if (ifr->ifr_flags & IFF_TAP) { /* TAP device */ flags |= IFF_TAP; name = "tap%d"; } else return -EINVAL; if (*ifr->ifr_name) name = ifr->ifr_name; dev = alloc_netdev_mqs(sizeof(struct tun_struct), name, NET_NAME_UNKNOWN, tun_setup, queues, queues); if (!dev) return -ENOMEM; dev_net_set(dev, net); dev->rtnl_link_ops = &tun_link_ops; dev->ifindex = tfile->ifindex; dev->sysfs_groups[0] = &tun_attr_group; tun = netdev_priv(dev); tun->dev = dev; tun->flags = flags; tun->txflt.count = 0; tun->vnet_hdr_sz = sizeof(struct virtio_net_hdr); tun->align = NET_SKB_PAD; tun->filter_attached = false; tun->sndbuf = tfile->socket.sk->sk_sndbuf; tun->rx_batched = 0; RCU_INIT_POINTER(tun->steering_prog, NULL); tun->ifr = ifr; tun->file = file; tun_net_initialize(dev); err = register_netdevice(tun->dev); if (err < 0) { free_netdev(dev); return err; } /* free_netdev() won't check refcnt, to avoid race * with dev_put() we need publish tun after registration. */ rcu_assign_pointer(tfile->tun, tun); } if (ifr->ifr_flags & IFF_NO_CARRIER) netif_carrier_off(tun->dev); else netif_carrier_on(tun->dev); /* Make sure persistent devices do not get stuck in * xoff state. */ if (netif_running(tun->dev)) netif_tx_wake_all_queues(tun->dev); strcpy(ifr->ifr_name, tun->dev->name); return 0; } static void tun_get_iff(struct tun_struct *tun, struct ifreq *ifr) { strcpy(ifr->ifr_name, tun->dev->name); ifr->ifr_flags = tun_flags(tun); } #define PLAIN_GSO (NETIF_F_GSO_UDP_L4 | NETIF_F_TSO | NETIF_F_TSO6) /* This is like a cut-down ethtool ops, except done via tun fd so no * privs required. */ static int set_offload(struct tun_struct *tun, unsigned long arg) { netdev_features_t features = 0; if (arg & TUN_F_CSUM) { features |= NETIF_F_HW_CSUM; arg &= ~TUN_F_CSUM; if (arg & (TUN_F_TSO4|TUN_F_TSO6)) { if (arg & TUN_F_TSO_ECN) { features |= NETIF_F_TSO_ECN; arg &= ~TUN_F_TSO_ECN; } if (arg & TUN_F_TSO4) features |= NETIF_F_TSO; if (arg & TUN_F_TSO6) features |= NETIF_F_TSO6; arg &= ~(TUN_F_TSO4|TUN_F_TSO6); } arg &= ~TUN_F_UFO; /* TODO: for now USO4 and USO6 should work simultaneously */ if (arg & TUN_F_USO4 && arg & TUN_F_USO6) { features |= NETIF_F_GSO_UDP_L4; arg &= ~(TUN_F_USO4 | TUN_F_USO6); } /* * Tunnel offload is allowed only if some plain offload is * available, too. */ if (features & PLAIN_GSO && arg & TUN_F_UDP_TUNNEL_GSO) { features |= NETIF_F_GSO_UDP_TUNNEL; if (arg & TUN_F_UDP_TUNNEL_GSO_CSUM) features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; arg &= ~(TUN_F_UDP_TUNNEL_GSO | TUN_F_UDP_TUNNEL_GSO_CSUM); } } /* This gives the user a way to test for new features in future by * trying to set them. */ if (arg) return -EINVAL; tun->set_features = features; tun->dev->wanted_features &= ~TUN_USER_FEATURES; tun->dev->wanted_features |= features; netdev_update_features(tun->dev); return 0; } static void tun_detach_filter(struct tun_struct *tun, int n) { int i; struct tun_file *tfile; for (i = 0; i < n; i++) { tfile = rtnl_dereference(tun->tfiles[i]); lock_sock(tfile->socket.sk); sk_detach_filter(tfile->socket.sk); release_sock(tfile->socket.sk); } tun->filter_attached = false; } static int tun_attach_filter(struct tun_struct *tun) { int i, ret = 0; struct tun_file *tfile; for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); lock_sock(tfile->socket.sk); ret = sk_attach_filter(&tun->fprog, tfile->socket.sk); release_sock(tfile->socket.sk); if (ret) { tun_detach_filter(tun, i); return ret; } } tun->filter_attached = true; return ret; } static void tun_set_sndbuf(struct tun_struct *tun) { struct tun_file *tfile; int i; for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); tfile->socket.sk->sk_sndbuf = tun->sndbuf; } } static int tun_set_queue(struct file *file, struct ifreq *ifr) { struct tun_file *tfile = file->private_data; struct tun_struct *tun; int ret = 0; rtnl_lock(); if (ifr->ifr_flags & IFF_ATTACH_QUEUE) { tun = tfile->detached; if (!tun) { ret = -EINVAL; goto unlock; } ret = security_tun_dev_attach_queue(tun->security); if (ret < 0) goto unlock; ret = tun_attach(tun, file, false, tun->flags & IFF_NAPI, tun->flags & IFF_NAPI_FRAGS, true); } else if (ifr->ifr_flags & IFF_DETACH_QUEUE) { tun = rtnl_dereference(tfile->tun); if (!tun || !(tun->flags & IFF_MULTI_QUEUE) || tfile->detached) ret = -EINVAL; else __tun_detach(tfile, false); } else ret = -EINVAL; if (ret >= 0) netdev_state_change(tun->dev); unlock: rtnl_unlock(); return ret; } static int tun_set_ebpf(struct tun_struct *tun, struct tun_prog __rcu **prog_p, void __user *data) { struct bpf_prog *prog; int fd; if (copy_from_user(&fd, data, sizeof(fd))) return -EFAULT; if (fd == -1) { prog = NULL; } else { prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); if (IS_ERR(prog)) return PTR_ERR(prog); } return __tun_set_ebpf(tun, prog_p, prog); } /* Return correct value for tun->dev->addr_len based on tun->dev->type. */ static unsigned char tun_get_addr_len(unsigned short type) { switch (type) { case ARPHRD_IP6GRE: case ARPHRD_TUNNEL6: return sizeof(struct in6_addr); case ARPHRD_IPGRE: case ARPHRD_TUNNEL: case ARPHRD_SIT: return 4; case ARPHRD_ETHER: return ETH_ALEN; case ARPHRD_IEEE802154: case ARPHRD_IEEE802154_MONITOR: return IEEE802154_EXTENDED_ADDR_LEN; case ARPHRD_PHONET_PIPE: case ARPHRD_PPP: case ARPHRD_NONE: return 0; case ARPHRD_6LOWPAN: return EUI64_ADDR_LEN; case ARPHRD_FDDI: return FDDI_K_ALEN; case ARPHRD_HIPPI: return HIPPI_ALEN; case ARPHRD_IEEE802: return FC_ALEN; case ARPHRD_ROSE: return ROSE_ADDR_LEN; case ARPHRD_NETROM: return AX25_ADDR_LEN; case ARPHRD_LOCALTLK: return LTALK_ALEN; default: return 0; } } static long __tun_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg, int ifreq_len) { struct tun_file *tfile = file->private_data; struct net *net = sock_net(&tfile->sk); struct tun_struct *tun; void __user* argp = (void __user*)arg; unsigned int carrier; struct ifreq ifr; kuid_t owner; kgid_t group; int ifindex; int sndbuf; int ret; bool do_notify = false; if (cmd == TUNSETIFF || cmd == TUNSETQUEUE || (_IOC_TYPE(cmd) == SOCK_IOC_TYPE && cmd != SIOCGSKNS)) { if (copy_from_user(&ifr, argp, ifreq_len)) return -EFAULT; } else { memset(&ifr, 0, sizeof(ifr)); } if (cmd == TUNGETFEATURES) { /* Currently this just means: "what IFF flags are valid?". * This is needed because we never checked for invalid flags on * TUNSETIFF. */ return put_user(IFF_TUN | IFF_TAP | IFF_NO_CARRIER | TUN_FEATURES, (unsigned int __user*)argp); } else if (cmd == TUNSETQUEUE) { return tun_set_queue(file, &ifr); } else if (cmd == SIOCGSKNS) { if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; return open_related_ns(&net->ns, get_net_ns); } rtnl_lock(); tun = tun_get(tfile); if (cmd == TUNSETIFF) { ret = -EEXIST; if (tun) goto unlock; ifr.ifr_name[IFNAMSIZ-1] = '\0'; ret = tun_set_iff(net, file, &ifr); if (ret) goto unlock; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; goto unlock; } if (cmd == TUNSETIFINDEX) { ret = -EPERM; if (tun) goto unlock; ret = -EFAULT; if (copy_from_user(&ifindex, argp, sizeof(ifindex))) goto unlock; ret = -EINVAL; if (ifindex < 0) goto unlock; ret = 0; tfile->ifindex = ifindex; goto unlock; } ret = -EBADFD; if (!tun) goto unlock; netif_info(tun, drv, tun->dev, "tun_chr_ioctl cmd %u\n", cmd); net = dev_net(tun->dev); ret = 0; switch (cmd) { case TUNGETIFF: tun_get_iff(tun, &ifr); if (tfile->detached) ifr.ifr_flags |= IFF_DETACH_QUEUE; if (!tfile->socket.sk->sk_filter) ifr.ifr_flags |= IFF_NOFILTER; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case TUNSETNOCSUM: /* Disable/Enable checksum */ /* [unimplemented] */ netif_info(tun, drv, tun->dev, "ignored: set checksum %s\n", arg ? "disabled" : "enabled"); break; case TUNSETPERSIST: /* Disable/Enable persist mode. Keep an extra reference to the * module to prevent the module being unprobed. */ if (arg && !(tun->flags & IFF_PERSIST)) { tun->flags |= IFF_PERSIST; __module_get(THIS_MODULE); do_notify = true; } if (!arg && (tun->flags & IFF_PERSIST)) { tun->flags &= ~IFF_PERSIST; module_put(THIS_MODULE); do_notify = true; } netif_info(tun, drv, tun->dev, "persist %s\n", arg ? "enabled" : "disabled"); break; case TUNSETOWNER: /* Set owner of the device */ owner = make_kuid(current_user_ns(), arg); if (!uid_valid(owner)) { ret = -EINVAL; break; } tun->owner = owner; do_notify = true; netif_info(tun, drv, tun->dev, "owner set to %u\n", from_kuid(&init_user_ns, tun->owner)); break; case TUNSETGROUP: /* Set group of the device */ group = make_kgid(current_user_ns(), arg); if (!gid_valid(group)) { ret = -EINVAL; break; } tun->group = group; do_notify = true; netif_info(tun, drv, tun->dev, "group set to %u\n", from_kgid(&init_user_ns, tun->group)); break; case TUNSETLINK: /* Only allow setting the type when the interface is down */ if (tun->dev->flags & IFF_UP) { netif_info(tun, drv, tun->dev, "Linktype set failed because interface is up\n"); ret = -EBUSY; } else { ret = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, tun->dev); ret = notifier_to_errno(ret); if (ret) { netif_info(tun, drv, tun->dev, "Refused to change device type\n"); break; } tun->dev->type = (int) arg; tun->dev->addr_len = tun_get_addr_len(tun->dev->type); netif_info(tun, drv, tun->dev, "linktype set to %d\n", tun->dev->type); call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, tun->dev); } break; case TUNSETDEBUG: tun->msg_enable = (u32)arg; break; case TUNSETOFFLOAD: ret = set_offload(tun, arg); break; case TUNSETTXFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = update_filter(&tun->txflt, (void __user *)arg); break; case SIOCGIFHWADDR: /* Get hw address */ netif_get_mac_address(&ifr.ifr_hwaddr, net, tun->dev->name); if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case SIOCSIFHWADDR: /* Set hw address */ if (tun->dev->addr_len > sizeof(ifr.ifr_hwaddr)) { ret = -EINVAL; break; } ret = dev_set_mac_address_user(tun->dev, (struct sockaddr_storage *)&ifr.ifr_hwaddr, NULL); break; case TUNGETSNDBUF: sndbuf = tfile->socket.sk->sk_sndbuf; if (copy_to_user(argp, &sndbuf, sizeof(sndbuf))) ret = -EFAULT; break; case TUNSETSNDBUF: if (copy_from_user(&sndbuf, argp, sizeof(sndbuf))) { ret = -EFAULT; break; } if (sndbuf <= 0) { ret = -EINVAL; break; } tun->sndbuf = sndbuf; tun_set_sndbuf(tun); break; case TUNATTACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = -EFAULT; if (copy_from_user(&tun->fprog, argp, sizeof(tun->fprog))) break; ret = tun_attach_filter(tun); break; case TUNDETACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = 0; tun_detach_filter(tun, tun->numqueues); break; case TUNGETFILTER: ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP) break; ret = -EFAULT; if (copy_to_user(argp, &tun->fprog, sizeof(tun->fprog))) break; ret = 0; break; case TUNSETSTEERINGEBPF: ret = tun_set_ebpf(tun, &tun->steering_prog, argp); break; case TUNSETFILTEREBPF: ret = tun_set_ebpf(tun, &tun->filter_prog, argp); break; case TUNSETCARRIER: ret = -EFAULT; if (copy_from_user(&carrier, argp, sizeof(carrier))) goto unlock; ret = tun_net_change_carrier(tun->dev, (bool)carrier); break; case TUNGETDEVNETNS: ret = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) goto unlock; ret = open_related_ns(&net->ns, get_net_ns); break; default: ret = tun_vnet_ioctl(&tun->vnet_hdr_sz, &tun->flags, cmd, argp); break; } if (do_notify) netdev_state_change(tun->dev); unlock: rtnl_unlock(); if (tun) tun_put(tun); return ret; } static long tun_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return __tun_chr_ioctl(file, cmd, arg, sizeof (struct ifreq)); } #ifdef CONFIG_COMPAT static long tun_chr_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case TUNSETIFF: case TUNGETIFF: case TUNSETTXFILTER: case TUNGETSNDBUF: case TUNSETSNDBUF: case SIOCGIFHWADDR: case SIOCSIFHWADDR: arg = (unsigned long)compat_ptr(arg); break; default: arg = (compat_ulong_t)arg; break; } /* * compat_ifreq is shorter than ifreq, so we must not access beyond * the end of that structure. All fields that are used in this * driver are compatible though, we don't need to convert the * contents. */ return __tun_chr_ioctl(file, cmd, arg, sizeof(struct compat_ifreq)); } #endif /* CONFIG_COMPAT */ static int tun_chr_fasync(int fd, struct file *file, int on) { struct tun_file *tfile = file->private_data; int ret; if (on) { ret = file_f_owner_allocate(file); if (ret) goto out; } if ((ret = fasync_helper(fd, file, on, &tfile->fasync)) < 0) goto out; if (on) { __f_setown(file, task_pid(current), PIDTYPE_TGID, 0); tfile->flags |= TUN_FASYNC; } else tfile->flags &= ~TUN_FASYNC; ret = 0; out: return ret; } static int tun_chr_open(struct inode *inode, struct file * file) { struct net *net = current->nsproxy->net_ns; struct tun_file *tfile; tfile = (struct tun_file *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL, &tun_proto, 0); if (!tfile) return -ENOMEM; if (ptr_ring_init(&tfile->tx_ring, 0, GFP_KERNEL)) { sk_free(&tfile->sk); return -ENOMEM; } mutex_init(&tfile->napi_mutex); RCU_INIT_POINTER(tfile->tun, NULL); tfile->flags = 0; tfile->ifindex = 0; init_waitqueue_head(&tfile->socket.wq.wait); tfile->socket.file = file; tfile->socket.ops = &tun_socket_ops; sock_init_data_uid(&tfile->socket, &tfile->sk, current_fsuid()); tfile->sk.sk_write_space = tun_sock_write_space; tfile->sk.sk_sndbuf = INT_MAX; file->private_data = tfile; INIT_LIST_HEAD(&tfile->next); sock_set_flag(&tfile->sk, SOCK_ZEROCOPY); /* tun groks IOCB_NOWAIT just fine, mark it as such */ file->f_mode |= FMODE_NOWAIT; return 0; } static int tun_chr_close(struct inode *inode, struct file *file) { struct tun_file *tfile = file->private_data; tun_detach(tfile, true); return 0; } #ifdef CONFIG_PROC_FS static void tun_chr_show_fdinfo(struct seq_file *m, struct file *file) { struct tun_file *tfile = file->private_data; struct tun_struct *tun; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); rtnl_lock(); tun = tun_get(tfile); if (tun) tun_get_iff(tun, &ifr); rtnl_unlock(); if (tun) tun_put(tun); seq_printf(m, "iff:\t%s\n", ifr.ifr_name); } #endif static const struct file_operations tun_fops = { .owner = THIS_MODULE, .read_iter = tun_chr_read_iter, .write_iter = tun_chr_write_iter, .poll = tun_chr_poll, .unlocked_ioctl = tun_chr_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = tun_chr_compat_ioctl, #endif .open = tun_chr_open, .release = tun_chr_close, .fasync = tun_chr_fasync, #ifdef CONFIG_PROC_FS .show_fdinfo = tun_chr_show_fdinfo, #endif }; static struct miscdevice tun_miscdev = { .minor = TUN_MINOR, .name = "tun", .nodename = "net/tun", .fops = &tun_fops, }; /* ethtool interface */ static void tun_default_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { ethtool_link_ksettings_zero_link_mode(cmd, supported); ethtool_link_ksettings_zero_link_mode(cmd, advertising); cmd->base.speed = SPEED_10000; cmd->base.duplex = DUPLEX_FULL; cmd->base.port = PORT_TP; cmd->base.phy_address = 0; cmd->base.autoneg = AUTONEG_DISABLE; } static int tun_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct tun_struct *tun = netdev_priv(dev); memcpy(cmd, &tun->link_ksettings, sizeof(*cmd)); return 0; } static int tun_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct tun_struct *tun = netdev_priv(dev); memcpy(&tun->link_ksettings, cmd, sizeof(*cmd)); return 0; } static void tun_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct tun_struct *tun = netdev_priv(dev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); switch (tun->flags & TUN_TYPE_MASK) { case IFF_TUN: strscpy(info->bus_info, "tun", sizeof(info->bus_info)); break; case IFF_TAP: strscpy(info->bus_info, "tap", sizeof(info->bus_info)); break; } } static u32 tun_get_msglevel(struct net_device *dev) { struct tun_struct *tun = netdev_priv(dev); return tun->msg_enable; } static void tun_set_msglevel(struct net_device *dev, u32 value) { struct tun_struct *tun = netdev_priv(dev); tun->msg_enable = value; } static int tun_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct tun_struct *tun = netdev_priv(dev); ec->rx_max_coalesced_frames = tun->rx_batched; return 0; } static int tun_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct tun_struct *tun = netdev_priv(dev); if (ec->rx_max_coalesced_frames > NAPI_POLL_WEIGHT) tun->rx_batched = NAPI_POLL_WEIGHT; else tun->rx_batched = ec->rx_max_coalesced_frames; return 0; } static void tun_get_channels(struct net_device *dev, struct ethtool_channels *channels) { struct tun_struct *tun = netdev_priv(dev); channels->combined_count = tun->numqueues; channels->max_combined = tun->flags & IFF_MULTI_QUEUE ? MAX_TAP_QUEUES : 1; } static const struct ethtool_ops tun_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_RX_MAX_FRAMES, .get_drvinfo = tun_get_drvinfo, .get_msglevel = tun_get_msglevel, .set_msglevel = tun_set_msglevel, .get_link = ethtool_op_get_link, .get_channels = tun_get_channels, .get_ts_info = ethtool_op_get_ts_info, .get_coalesce = tun_get_coalesce, .set_coalesce = tun_set_coalesce, .get_link_ksettings = tun_get_link_ksettings, .set_link_ksettings = tun_set_link_ksettings, }; static int tun_queue_resize(struct tun_struct *tun) { struct net_device *dev = tun->dev; struct tun_file *tfile; struct ptr_ring **rings; int n = tun->numqueues + tun->numdisabled; int ret, i; rings = kmalloc_array(n, sizeof(*rings), GFP_KERNEL); if (!rings) return -ENOMEM; for (i = 0; i < tun->numqueues; i++) { tfile = rtnl_dereference(tun->tfiles[i]); rings[i] = &tfile->tx_ring; } list_for_each_entry(tfile, &tun->disabled, next) rings[i++] = &tfile->tx_ring; ret = ptr_ring_resize_multiple_bh(rings, n, dev->tx_queue_len, GFP_KERNEL, tun_ptr_free); kfree(rings); return ret; } static int tun_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct tun_struct *tun = netdev_priv(dev); int i; if (dev->rtnl_link_ops != &tun_link_ops) return NOTIFY_DONE; switch (event) { case NETDEV_CHANGE_TX_QUEUE_LEN: if (tun_queue_resize(tun)) return NOTIFY_BAD; break; case NETDEV_UP: for (i = 0; i < tun->numqueues; i++) { struct tun_file *tfile; tfile = rtnl_dereference(tun->tfiles[i]); tfile->socket.sk->sk_write_space(tfile->socket.sk); } break; default: break; } return NOTIFY_DONE; } static struct notifier_block tun_notifier_block __read_mostly = { .notifier_call = tun_device_event, }; static int __init tun_init(void) { int ret = 0; pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); ret = rtnl_link_register(&tun_link_ops); if (ret) { pr_err("Can't register link_ops\n"); goto err_linkops; } ret = misc_register(&tun_miscdev); if (ret) { pr_err("Can't register misc device %d\n", TUN_MINOR); goto err_misc; } ret = register_netdevice_notifier(&tun_notifier_block); if (ret) { pr_err("Can't register netdevice notifier\n"); goto err_notifier; } return 0; err_notifier: misc_deregister(&tun_miscdev); err_misc: rtnl_link_unregister(&tun_link_ops); err_linkops: return ret; } static void __exit tun_cleanup(void) { misc_deregister(&tun_miscdev); rtnl_link_unregister(&tun_link_ops); unregister_netdevice_notifier(&tun_notifier_block); } /* Get an underlying socket object from tun file. Returns error unless file is * attached to a device. The returned object works like a packet socket, it * can be used for sock_sendmsg/sock_recvmsg. The caller is responsible for * holding a reference to the file for as long as the socket is in use. */ struct socket *tun_get_socket(struct file *file) { struct tun_file *tfile; if (file->f_op != &tun_fops) return ERR_PTR(-EINVAL); tfile = file->private_data; if (!tfile) return ERR_PTR(-EBADFD); return &tfile->socket; } EXPORT_SYMBOL_GPL(tun_get_socket); struct ptr_ring *tun_get_tx_ring(struct file *file) { struct tun_file *tfile; if (file->f_op != &tun_fops) return ERR_PTR(-EINVAL); tfile = file->private_data; if (!tfile) return ERR_PTR(-EBADFD); return &tfile->tx_ring; } EXPORT_SYMBOL_GPL(tun_get_tx_ring); module_init(tun_init); module_exit(tun_cleanup); MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); MODULE_ALIAS_MISCDEV(TUN_MINOR); MODULE_ALIAS("devname:net/tun"); MODULE_IMPORT_NS("NETDEV_INTERNAL");
383 382 312 20 290 294 9 810 805 816 815 331 1 13 18 317 331 707 397 165 13 22 131 144 237 239 16 14 14 1 47 45 35 25 9 16 16 5 13 14 14 14 5 11 32 32 31 16 1 1 1 1 241 379 20 808 802 537 276 8 268 272 103 91 3 9 298 15 13 59 55 15 55 54 54 53 54 4 50 93 89 677 2 497 674 671 93 611 145 674 674 141 672 10 663 1 2 671 496 498 208 1 679 57 59 1 729 730 111 729 731 734 734 1 1 1 1 1 1 665 104 53 564 1 49 755 6 1 751 2 512 490 31 304 51 732 2 72 1 2 815 818 816 810 814 2 18 67 67 2 1 44 714 731 734 712 670 707 163 535 13 13 547 706 790 4 5 18 18 9 9 4 1 1 4 108 97 492 223 166 437 197 130 521 216 349 24 108 108 3 105 7 383 495 584 173 172 174 172 173 172 7 7 168 19 19 19 19 19 171 144 174 26 6 6 46 124 129 50 45 14 4 51 47 12 12 54 42 55 55 55 54 55 54 256 199 62 13 50 1157 1139 16 1161 113 114 266 266 809 18 1 793 1 761 31 1 372 802 15 800 2 791 795 898 20 8 20 19 1 19 55 5 20 912 754 54 960 1000 5 1008 1004 1000 996 1014 1000 640 366 1001 1014 1014 637 365 1007 639 369 406 600 2 1014 820 89 146 404 406 236 233 370 367 18 18 15 15 1 1 6 6 1 3 2 5 3 2 4 5 5 5 5 4 5 5 5 5 5 4 4 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 // SPDX-License-Identifier: GPL-2.0-only #include <linux/kernel.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/memfd.h> #include <linux/memremap.h> #include <linux/pagemap.h> #include <linux/rmap.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/secretmem.h> #include <linux/sched/signal.h> #include <linux/rwsem.h> #include <linux/hugetlb.h> #include <linux/migrate.h> #include <linux/mm_inline.h> #include <linux/pagevec.h> #include <linux/sched/mm.h> #include <linux/shmem_fs.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> #include "internal.h" #include "swap.h" struct follow_page_context { struct dev_pagemap *pgmap; unsigned int page_mask; }; static inline void sanity_check_pinned_pages(struct page **pages, unsigned long npages) { if (!IS_ENABLED(CONFIG_DEBUG_VM)) return; /* * We only pin anonymous pages if they are exclusive. Once pinned, we * can no longer turn them possibly shared and PageAnonExclusive() will * stick around until the page is freed. * * We'd like to verify that our pinned anonymous pages are still mapped * exclusively. The issue with anon THP is that we don't know how * they are/were mapped when pinning them. However, for anon * THP we can assume that either the given page (PTE-mapped THP) or * the head page (PMD-mapped THP) should be PageAnonExclusive(). If * neither is the case, there is certainly something wrong. */ for (; npages; npages--, pages++) { struct page *page = *pages; struct folio *folio; if (!page) continue; folio = page_folio(page); if (is_zero_page(page) || !folio_test_anon(folio)) continue; if (!folio_test_large(folio) || folio_test_hugetlb(folio)) VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio); else /* Either a PTE-mapped or a PMD-mapped THP. */ VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) && !PageAnonExclusive(page), page); } } /* * Return the folio with ref appropriately incremented, * or NULL if that failed. */ static inline struct folio *try_get_folio(struct page *page, int refs) { struct folio *folio; retry: folio = page_folio(page); if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) return NULL; if (unlikely(!folio_ref_try_add(folio, refs))) return NULL; /* * At this point we have a stable reference to the folio; but it * could be that between calling page_folio() and the refcount * increment, the folio was split, in which case we'd end up * holding a reference on a folio that has nothing to do with the page * we were given anymore. * So now that the folio is stable, recheck that the page still * belongs to this folio. */ if (unlikely(page_folio(page) != folio)) { folio_put_refs(folio, refs); goto retry; } return folio; } static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) { if (flags & FOLL_PIN) { if (is_zero_folio(folio)) return; node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); if (folio_has_pincount(folio)) atomic_sub(refs, &folio->_pincount); else refs *= GUP_PIN_COUNTING_BIAS; } folio_put_refs(folio, refs); } /** * try_grab_folio() - add a folio's refcount by a flag-dependent amount * @folio: pointer to folio to be grabbed * @refs: the value to (effectively) add to the folio's refcount * @flags: gup flags: these are the FOLL_* flag values * * This might not do anything at all, depending on the flags argument. * * "grab" names in this file mean, "look at flags to decide whether to use * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. * * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same * time. * * Return: 0 for success, or if no action was required (if neither FOLL_PIN * nor FOLL_GET was set, nothing is done). A negative error code for failure: * * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not * be grabbed. * * It is called when we have a stable reference for the folio, typically in * GUP slow path. */ int __must_check try_grab_folio(struct folio *folio, int refs, unsigned int flags) { if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) return -ENOMEM; if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) return -EREMOTEIO; if (flags & FOLL_GET) folio_ref_add(folio, refs); else if (flags & FOLL_PIN) { /* * Don't take a pin on the zero page - it's not going anywhere * and it is used in a *lot* of places. */ if (is_zero_folio(folio)) return 0; /* * Increment the normal page refcount field at least once, * so that the page really is pinned. */ if (folio_has_pincount(folio)) { folio_ref_add(folio, refs); atomic_add(refs, &folio->_pincount); } else { folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); } node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); } return 0; } /** * unpin_user_page() - release a dma-pinned page * @page: pointer to page to be released * * Pages that were pinned via pin_user_pages*() must be released via either * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so * that such pages can be separately tracked and uniquely handled. In * particular, interactions with RDMA and filesystems need special handling. */ void unpin_user_page(struct page *page) { sanity_check_pinned_pages(&page, 1); gup_put_folio(page_folio(page), 1, FOLL_PIN); } EXPORT_SYMBOL(unpin_user_page); /** * unpin_folio() - release a dma-pinned folio * @folio: pointer to folio to be released * * Folios that were pinned via memfd_pin_folios() or other similar routines * must be released either using unpin_folio() or unpin_folios(). */ void unpin_folio(struct folio *folio) { gup_put_folio(folio, 1, FOLL_PIN); } EXPORT_SYMBOL_GPL(unpin_folio); /** * folio_add_pin - Try to get an additional pin on a pinned folio * @folio: The folio to be pinned * * Get an additional pin on a folio we already have a pin on. Makes no change * if the folio is a zero_page. */ void folio_add_pin(struct folio *folio) { if (is_zero_folio(folio)) return; /* * Similar to try_grab_folio(): be sure to *also* increment the normal * page refcount field at least once, so that the page really is * pinned. */ if (folio_has_pincount(folio)) { WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); folio_ref_inc(folio); atomic_inc(&folio->_pincount); } else { WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); } } static inline struct folio *gup_folio_range_next(struct page *start, unsigned long npages, unsigned long i, unsigned int *ntails) { struct page *next = nth_page(start, i); struct folio *folio = page_folio(next); unsigned int nr = 1; if (folio_test_large(folio)) nr = min_t(unsigned int, npages - i, folio_nr_pages(folio) - folio_page_idx(folio, next)); *ntails = nr; return folio; } static inline struct folio *gup_folio_next(struct page **list, unsigned long npages, unsigned long i, unsigned int *ntails) { struct folio *folio = page_folio(list[i]); unsigned int nr; for (nr = i + 1; nr < npages; nr++) { if (page_folio(list[nr]) != folio) break; } *ntails = nr - i; return folio; } /** * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages * @pages: array of pages to be maybe marked dirty, and definitely released. * @npages: number of pages in the @pages array. * @make_dirty: whether to mark the pages dirty * * "gup-pinned page" refers to a page that has had one of the get_user_pages() * variants called on that page. * * For each page in the @pages array, make that page (or its head page, if a * compound page) dirty, if @make_dirty is true, and if the page was previously * listed as clean. In any case, releases all pages using unpin_user_page(), * possibly via unpin_user_pages(), for the non-dirty case. * * Please see the unpin_user_page() documentation for details. * * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is * required, then the caller should a) verify that this is really correct, * because _lock() is usually required, and b) hand code it: * set_page_dirty_lock(), unpin_user_page(). * */ void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty) { unsigned long i; struct folio *folio; unsigned int nr; if (!make_dirty) { unpin_user_pages(pages, npages); return; } sanity_check_pinned_pages(pages, npages); for (i = 0; i < npages; i += nr) { folio = gup_folio_next(pages, npages, i, &nr); /* * Checking PageDirty at this point may race with * clear_page_dirty_for_io(), but that's OK. Two key * cases: * * 1) This code sees the page as already dirty, so it * skips the call to set_page_dirty(). That could happen * because clear_page_dirty_for_io() called * folio_mkclean(), followed by set_page_dirty(). * However, now the page is going to get written back, * which meets the original intention of setting it * dirty, so all is well: clear_page_dirty_for_io() goes * on to call TestClearPageDirty(), and write the page * back. * * 2) This code sees the page as clean, so it calls * set_page_dirty(). The page stays dirty, despite being * written back, so it gets written back again in the * next writeback cycle. This is harmless. */ if (!folio_test_dirty(folio)) { folio_lock(folio); folio_mark_dirty(folio); folio_unlock(folio); } gup_put_folio(folio, nr, FOLL_PIN); } } EXPORT_SYMBOL(unpin_user_pages_dirty_lock); /** * unpin_user_page_range_dirty_lock() - release and optionally dirty * gup-pinned page range * * @page: the starting page of a range maybe marked dirty, and definitely released. * @npages: number of consecutive pages to release. * @make_dirty: whether to mark the pages dirty * * "gup-pinned page range" refers to a range of pages that has had one of the * pin_user_pages() variants called on that page. * * For the page ranges defined by [page .. page+npages], make that range (or * its head pages, if a compound page) dirty, if @make_dirty is true, and if the * page range was previously listed as clean. * * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is * required, then the caller should a) verify that this is really correct, * because _lock() is usually required, and b) hand code it: * set_page_dirty_lock(), unpin_user_page(). * */ void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, bool make_dirty) { unsigned long i; struct folio *folio; unsigned int nr; for (i = 0; i < npages; i += nr) { folio = gup_folio_range_next(page, npages, i, &nr); if (make_dirty && !folio_test_dirty(folio)) { folio_lock(folio); folio_mark_dirty(folio); folio_unlock(folio); } gup_put_folio(folio, nr, FOLL_PIN); } } EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) { unsigned long i; struct folio *folio; unsigned int nr; /* * Don't perform any sanity checks because we might have raced with * fork() and some anonymous pages might now actually be shared -- * which is why we're unpinning after all. */ for (i = 0; i < npages; i += nr) { folio = gup_folio_next(pages, npages, i, &nr); gup_put_folio(folio, nr, FOLL_PIN); } } /** * unpin_user_pages() - release an array of gup-pinned pages. * @pages: array of pages to be marked dirty and released. * @npages: number of pages in the @pages array. * * For each page in the @pages array, release the page using unpin_user_page(). * * Please see the unpin_user_page() documentation for details. */ void unpin_user_pages(struct page **pages, unsigned long npages) { unsigned long i; struct folio *folio; unsigned int nr; /* * If this WARN_ON() fires, then the system *might* be leaking pages (by * leaving them pinned), but probably not. More likely, gup/pup returned * a hard -ERRNO error to the caller, who erroneously passed it here. */ if (WARN_ON(IS_ERR_VALUE(npages))) return; sanity_check_pinned_pages(pages, npages); for (i = 0; i < npages; i += nr) { if (!pages[i]) { nr = 1; continue; } folio = gup_folio_next(pages, npages, i, &nr); gup_put_folio(folio, nr, FOLL_PIN); } } EXPORT_SYMBOL(unpin_user_pages); /** * unpin_user_folio() - release pages of a folio * @folio: pointer to folio to be released * @npages: number of pages of same folio * * Release npages of the folio */ void unpin_user_folio(struct folio *folio, unsigned long npages) { gup_put_folio(folio, npages, FOLL_PIN); } EXPORT_SYMBOL(unpin_user_folio); /** * unpin_folios() - release an array of gup-pinned folios. * @folios: array of folios to be marked dirty and released. * @nfolios: number of folios in the @folios array. * * For each folio in the @folios array, release the folio using gup_put_folio. * * Please see the unpin_folio() documentation for details. */ void unpin_folios(struct folio **folios, unsigned long nfolios) { unsigned long i = 0, j; /* * If this WARN_ON() fires, then the system *might* be leaking folios * (by leaving them pinned), but probably not. More likely, gup/pup * returned a hard -ERRNO error to the caller, who erroneously passed * it here. */ if (WARN_ON(IS_ERR_VALUE(nfolios))) return; while (i < nfolios) { for (j = i + 1; j < nfolios; j++) if (folios[i] != folios[j]) break; if (folios[i]) gup_put_folio(folios[i], j - i, FOLL_PIN); i = j; } } EXPORT_SYMBOL_GPL(unpin_folios); /* * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's * lifecycle. Avoid setting the bit unless necessary, or it might cause write * cache bouncing on large SMP machines for concurrent pinned gups. */ static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) { if (!test_bit(MMF_HAS_PINNED, mm_flags)) set_bit(MMF_HAS_PINNED, mm_flags); } #ifdef CONFIG_MMU #ifdef CONFIG_HAVE_GUP_FAST static int record_subpages(struct page *page, unsigned long sz, unsigned long addr, unsigned long end, struct page **pages) { struct page *start_page; int nr; start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) pages[nr] = nth_page(start_page, nr); return nr; } /** * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. * @page: pointer to page to be grabbed * @refs: the value to (effectively) add to the folio's refcount * @flags: gup flags: these are the FOLL_* flag values. * * "grab" names in this file mean, "look at flags to decide whether to use * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. * * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the * same time. (That's true throughout the get_user_pages*() and * pin_user_pages*() APIs.) Cases: * * FOLL_GET: folio's refcount will be incremented by @refs. * * FOLL_PIN on large folios: folio's refcount will be incremented by * @refs, and its pincount will be incremented by @refs. * * FOLL_PIN on single-page folios: folio's refcount will be incremented by * @refs * GUP_PIN_COUNTING_BIAS. * * Return: The folio containing @page (with refcount appropriately * incremented) for success, or NULL upon failure. If neither FOLL_GET * nor FOLL_PIN was set, that's considered failure, and furthermore, * a likely bug in the caller, so a warning is also emitted. * * It uses add ref unless zero to elevate the folio refcount and must be called * in fast path only. */ static struct folio *try_grab_folio_fast(struct page *page, int refs, unsigned int flags) { struct folio *folio; /* Raise warn if it is not called in fast GUP */ VM_WARN_ON_ONCE(!irqs_disabled()); if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) return NULL; if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) return NULL; if (flags & FOLL_GET) return try_get_folio(page, refs); /* FOLL_PIN is set */ /* * Don't take a pin on the zero page - it's not going anywhere * and it is used in a *lot* of places. */ if (is_zero_page(page)) return page_folio(page); folio = try_get_folio(page, refs); if (!folio) return NULL; /* * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a * right zone, so fail and let the caller fall back to the slow * path. */ if (unlikely((flags & FOLL_LONGTERM) && !folio_is_longterm_pinnable(folio))) { folio_put_refs(folio, refs); return NULL; } /* * When pinning a large folio, use an exact count to track it. * * However, be sure to *also* increment the normal folio * refcount field at least once, so that the folio really * is pinned. That's why the refcount from the earlier * try_get_folio() is left intact. */ if (folio_has_pincount(folio)) atomic_add(refs, &folio->_pincount); else folio_ref_add(folio, refs * (GUP_PIN_COUNTING_BIAS - 1)); /* * Adjust the pincount before re-checking the PTE for changes. * This is essentially a smp_mb() and is paired with a memory * barrier in folio_try_share_anon_rmap_*(). */ smp_mb__after_atomic(); node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); return folio; } #endif /* CONFIG_HAVE_GUP_FAST */ /* Common code for can_follow_write_* */ static inline bool can_follow_write_common(struct page *page, struct vm_area_struct *vma, unsigned int flags) { /* Maybe FOLL_FORCE is set to override it? */ if (!(flags & FOLL_FORCE)) return false; /* But FOLL_FORCE has no effect on shared mappings */ if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) return false; /* ... or read-only private ones */ if (!(vma->vm_flags & VM_MAYWRITE)) return false; /* ... or already writable ones that just need to take a write fault */ if (vma->vm_flags & VM_WRITE) return false; /* * See can_change_pte_writable(): we broke COW and could map the page * writable if we have an exclusive anonymous page ... */ return page && PageAnon(page) && PageAnonExclusive(page); } static struct page *no_page_table(struct vm_area_struct *vma, unsigned int flags, unsigned long address) { if (!(flags & FOLL_DUMP)) return NULL; /* * When core dumping, we don't want to allocate unnecessary pages or * page tables. Return error instead of NULL to skip handle_mm_fault, * then get_dump_page() will return NULL to leave a hole in the dump. * But we can only make this optimization where a hole would surely * be zero-filled if handle_mm_fault() actually did handle it. */ if (is_vm_hugetlb_page(vma)) { struct hstate *h = hstate_vma(vma); if (!hugetlbfs_pagecache_present(h, vma, address)) return ERR_PTR(-EFAULT); } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { return ERR_PTR(-EFAULT); } return NULL; } #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */ static inline bool can_follow_write_pud(pud_t pud, struct page *page, struct vm_area_struct *vma, unsigned int flags) { /* If the pud is writable, we can write to the page. */ if (pud_write(pud)) return true; return can_follow_write_common(page, vma, flags); } static struct page *follow_huge_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp, int flags, struct follow_page_context *ctx) { struct mm_struct *mm = vma->vm_mm; struct page *page; pud_t pud = *pudp; unsigned long pfn = pud_pfn(pud); int ret; assert_spin_locked(pud_lockptr(mm, pudp)); if (!pud_present(pud)) return NULL; if ((flags & FOLL_WRITE) && !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags)) return NULL; pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; page = pfn_to_page(pfn); if (!pud_write(pud) && gup_must_unshare(vma, flags, page)) return ERR_PTR(-EMLINK); ret = try_grab_folio(page_folio(page), 1, flags); if (ret) page = ERR_PTR(ret); else ctx->page_mask = HPAGE_PUD_NR - 1; return page; } /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, struct vm_area_struct *vma, unsigned int flags) { /* If the pmd is writable, we can write to the page. */ if (pmd_write(pmd)) return true; if (!can_follow_write_common(page, vma, flags)) return false; /* ... and a write-fault isn't required for other reasons. */ if (pmd_needs_soft_dirty_wp(vma, pmd)) return false; return !userfaultfd_huge_pmd_wp(vma, pmd); } static struct page *follow_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, unsigned int flags, struct follow_page_context *ctx) { struct mm_struct *mm = vma->vm_mm; pmd_t pmdval = *pmd; struct page *page; int ret; assert_spin_locked(pmd_lockptr(mm, pmd)); page = pmd_page(pmdval); if ((flags & FOLL_WRITE) && !can_follow_write_pmd(pmdval, page, vma, flags)) return NULL; /* Avoid dumping huge zero page */ if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) return ERR_PTR(-EFAULT); if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) return NULL; if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) return ERR_PTR(-EMLINK); VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && !PageAnonExclusive(page), page); ret = try_grab_folio(page_folio(page), 1, flags); if (ret) return ERR_PTR(ret); #ifdef CONFIG_TRANSPARENT_HUGEPAGE if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; ctx->page_mask = HPAGE_PMD_NR - 1; return page; } #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ static struct page *follow_huge_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp, int flags, struct follow_page_context *ctx) { return NULL; } static struct page *follow_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, unsigned int flags, struct follow_page_context *ctx) { return NULL; } #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, pte_t *pte, unsigned int flags) { if (flags & FOLL_TOUCH) { pte_t orig_entry = ptep_get(pte); pte_t entry = orig_entry; if (flags & FOLL_WRITE) entry = pte_mkdirty(entry); entry = pte_mkyoung(entry); if (!pte_same(orig_entry, entry)) { set_pte_at(vma->vm_mm, address, pte, entry); update_mmu_cache(vma, address, pte); } } /* Proper page table entry exists, but no corresponding struct page */ return -EEXIST; } /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ static inline bool can_follow_write_pte(pte_t pte, struct page *page, struct vm_area_struct *vma, unsigned int flags) { /* If the pte is writable, we can write to the page. */ if (pte_write(pte)) return true; if (!can_follow_write_common(page, vma, flags)) return false; /* ... and a write-fault isn't required for other reasons. */ if (pte_needs_soft_dirty_wp(vma, pte)) return false; return !userfaultfd_pte_wp(vma, pte); } static struct page *follow_page_pte(struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, unsigned int flags, struct dev_pagemap **pgmap) { struct mm_struct *mm = vma->vm_mm; struct folio *folio; struct page *page; spinlock_t *ptl; pte_t *ptep, pte; int ret; ptep = pte_offset_map_lock(mm, pmd, address, &ptl); if (!ptep) return no_page_table(vma, flags, address); pte = ptep_get(ptep); if (!pte_present(pte)) goto no_page; if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) goto no_page; page = vm_normal_page(vma, address, pte); /* * We only care about anon pages in can_follow_write_pte(). */ if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, page, vma, flags)) { page = NULL; goto out; } if (unlikely(!page)) { if (flags & FOLL_DUMP) { /* Avoid special (like zero) pages in core dumps */ page = ERR_PTR(-EFAULT); goto out; } if (is_zero_pfn(pte_pfn(pte))) { page = pte_page(pte); } else { ret = follow_pfn_pte(vma, address, ptep, flags); page = ERR_PTR(ret); goto out; } } folio = page_folio(page); if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { page = ERR_PTR(-EMLINK); goto out; } VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && !PageAnonExclusive(page), page); /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ ret = try_grab_folio(folio, 1, flags); if (unlikely(ret)) { page = ERR_PTR(ret); goto out; } /* * We need to make the page accessible if and only if we are going * to access its content (the FOLL_PIN case). Please see * Documentation/core-api/pin_user_pages.rst for details. */ if (flags & FOLL_PIN) { ret = arch_make_folio_accessible(folio); if (ret) { unpin_user_page(page); page = ERR_PTR(ret); goto out; } } if (flags & FOLL_TOUCH) { if ((flags & FOLL_WRITE) && !pte_dirty(pte) && !folio_test_dirty(folio)) folio_mark_dirty(folio); /* * pte_mkyoung() would be more correct here, but atomic care * is needed to avoid losing the dirty bit: it is easier to use * folio_mark_accessed(). */ folio_mark_accessed(folio); } out: pte_unmap_unlock(ptep, ptl); return page; no_page: pte_unmap_unlock(ptep, ptl); if (!pte_none(pte)) return NULL; return no_page_table(vma, flags, address); } static struct page *follow_pmd_mask(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, unsigned int flags, struct follow_page_context *ctx) { pmd_t *pmd, pmdval; spinlock_t *ptl; struct page *page; struct mm_struct *mm = vma->vm_mm; pmd = pmd_offset(pudp, address); pmdval = pmdp_get_lockless(pmd); if (pmd_none(pmdval)) return no_page_table(vma, flags, address); if (!pmd_present(pmdval)) return no_page_table(vma, flags, address); if (likely(!pmd_leaf(pmdval))) return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) return no_page_table(vma, flags, address); ptl = pmd_lock(mm, pmd); pmdval = *pmd; if (unlikely(!pmd_present(pmdval))) { spin_unlock(ptl); return no_page_table(vma, flags, address); } if (unlikely(!pmd_leaf(pmdval))) { spin_unlock(ptl); return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); } if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { spin_unlock(ptl); split_huge_pmd(vma, pmd, address); /* If pmd was left empty, stuff a page table in there quickly */ return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); } page = follow_huge_pmd(vma, address, pmd, flags, ctx); spin_unlock(ptl); return page; } static struct page *follow_pud_mask(struct vm_area_struct *vma, unsigned long address, p4d_t *p4dp, unsigned int flags, struct follow_page_context *ctx) { pud_t *pudp, pud; spinlock_t *ptl; struct page *page; struct mm_struct *mm = vma->vm_mm; pudp = pud_offset(p4dp, address); pud = READ_ONCE(*pudp); if (!pud_present(pud)) return no_page_table(vma, flags, address); if (pud_leaf(pud)) { ptl = pud_lock(mm, pudp); page = follow_huge_pud(vma, address, pudp, flags, ctx); spin_unlock(ptl); if (page) return page; return no_page_table(vma, flags, address); } if (unlikely(pud_bad(pud))) return no_page_table(vma, flags, address); return follow_pmd_mask(vma, address, pudp, flags, ctx); } static struct page *follow_p4d_mask(struct vm_area_struct *vma, unsigned long address, pgd_t *pgdp, unsigned int flags, struct follow_page_context *ctx) { p4d_t *p4dp, p4d; p4dp = p4d_offset(pgdp, address); p4d = READ_ONCE(*p4dp); BUILD_BUG_ON(p4d_leaf(p4d)); if (!p4d_present(p4d) || p4d_bad(p4d)) return no_page_table(vma, flags, address); return follow_pud_mask(vma, address, p4dp, flags, ctx); } /** * follow_page_mask - look up a page descriptor from a user-virtual address * @vma: vm_area_struct mapping @address * @address: virtual address to look up * @flags: flags modifying lookup behaviour * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a * pointer to output page_mask * * @flags can have FOLL_ flags set, defined in <linux/mm.h> * * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches * the device's dev_pagemap metadata to avoid repeating expensive lookups. * * When getting an anonymous page and the caller has to trigger unsharing * of a shared anonymous page first, -EMLINK is returned. The caller should * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only * relevant with FOLL_PIN and !FOLL_WRITE. * * On output, the @ctx->page_mask is set according to the size of the page. * * Return: the mapped (struct page *), %NULL if no mapping exists, or * an error pointer if there is a mapping to something not represented * by a page descriptor (see also vm_normal_page()). */ static struct page *follow_page_mask(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct follow_page_context *ctx) { pgd_t *pgd; struct mm_struct *mm = vma->vm_mm; struct page *page; vma_pgtable_walk_begin(vma); ctx->page_mask = 0; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) page = no_page_table(vma, flags, address); else page = follow_p4d_mask(vma, address, pgd, flags, ctx); vma_pgtable_walk_end(vma); return page; } static int get_gate_page(struct mm_struct *mm, unsigned long address, unsigned int gup_flags, struct vm_area_struct **vma, struct page **page) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; pte_t entry; int ret = -EFAULT; /* user gate pages are read-only */ if (gup_flags & FOLL_WRITE) return -EFAULT; pgd = pgd_offset(mm, address); if (pgd_none(*pgd)) return -EFAULT; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d)) return -EFAULT; pud = pud_offset(p4d, address); if (pud_none(*pud)) return -EFAULT; pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return -EFAULT; pte = pte_offset_map(pmd, address); if (!pte) return -EFAULT; entry = ptep_get(pte); if (pte_none(entry)) goto unmap; *vma = get_gate_vma(mm); if (!page) goto out; *page = vm_normal_page(*vma, address, entry); if (!*page) { if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) goto unmap; *page = pte_page(entry); } ret = try_grab_folio(page_folio(*page), 1, gup_flags); if (unlikely(ret)) goto unmap; out: ret = 0; unmap: pte_unmap(pte); return ret; } /* * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set * to 0 and -EBUSY returned. */ static int faultin_page(struct vm_area_struct *vma, unsigned long address, unsigned int flags, bool unshare, int *locked) { unsigned int fault_flags = 0; vm_fault_t ret; if (flags & FOLL_NOFAULT) return -EFAULT; if (flags & FOLL_WRITE) fault_flags |= FAULT_FLAG_WRITE; if (flags & FOLL_REMOTE) fault_flags |= FAULT_FLAG_REMOTE; if (flags & FOLL_UNLOCKABLE) { fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; /* * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. * That's because some callers may not be prepared to * handle early exits caused by non-fatal signals. */ if (flags & FOLL_INTERRUPTIBLE) fault_flags |= FAULT_FLAG_INTERRUPTIBLE; } if (flags & FOLL_NOWAIT) fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; if (flags & FOLL_TRIED) { /* * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED * can co-exist */ fault_flags |= FAULT_FLAG_TRIED; } if (unshare) { fault_flags |= FAULT_FLAG_UNSHARE; /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE); } ret = handle_mm_fault(vma, address, fault_flags, NULL); if (ret & VM_FAULT_COMPLETED) { /* * With FAULT_FLAG_RETRY_NOWAIT we'll never release the * mmap lock in the page fault handler. Sanity check this. */ WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); *locked = 0; /* * We should do the same as VM_FAULT_RETRY, but let's not * return -EBUSY since that's not reflecting the reality of * what has happened - we've just fully completed a page * fault, with the mmap lock released. Use -EAGAIN to show * that we want to take the mmap lock _again_. */ return -EAGAIN; } if (ret & VM_FAULT_ERROR) { int err = vm_fault_to_errno(ret, flags); if (err) return err; BUG(); } if (ret & VM_FAULT_RETRY) { if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) *locked = 0; return -EBUSY; } return 0; } /* * Writing to file-backed mappings which require folio dirty tracking using GUP * is a fundamentally broken operation, as kernel write access to GUP mappings * do not adhere to the semantics expected by a file system. * * Consider the following scenario:- * * 1. A folio is written to via GUP which write-faults the memory, notifying * the file system and dirtying the folio. * 2. Later, writeback is triggered, resulting in the folio being cleaned and * the PTE being marked read-only. * 3. The GUP caller writes to the folio, as it is mapped read/write via the * direct mapping. * 4. The GUP caller, now done with the page, unpins it and sets it dirty * (though it does not have to). * * This results in both data being written to a folio without writenotify, and * the folio being dirtied unexpectedly (if the caller decides to do so). */ static bool writable_file_mapping_allowed(struct vm_area_struct *vma, unsigned long gup_flags) { /* * If we aren't pinning then no problematic write can occur. A long term * pin is the most egregious case so this is the case we disallow. */ if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != (FOLL_PIN | FOLL_LONGTERM)) return true; /* * If the VMA does not require dirty tracking then no problematic write * can occur either. */ return !vma_needs_dirty_tracking(vma); } static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) { vm_flags_t vm_flags = vma->vm_flags; int write = (gup_flags & FOLL_WRITE); int foreign = (gup_flags & FOLL_REMOTE); bool vma_anon = vma_is_anonymous(vma); if (vm_flags & (VM_IO | VM_PFNMAP)) return -EFAULT; if ((gup_flags & FOLL_ANON) && !vma_anon) return -EFAULT; if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) return -EOPNOTSUPP; if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma)) return -EOPNOTSUPP; if (vma_is_secretmem(vma)) return -EFAULT; if (write) { if (!vma_anon && !writable_file_mapping_allowed(vma, gup_flags)) return -EFAULT; if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { if (!(gup_flags & FOLL_FORCE)) return -EFAULT; /* * We used to let the write,force case do COW in a * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could * set a breakpoint in a read-only mapping of an * executable, without corrupting the file (yet only * when that file had been opened for writing!). * Anon pages in shared mappings are surprising: now * just reject it. */ if (!is_cow_mapping(vm_flags)) return -EFAULT; } } else if (!(vm_flags & VM_READ)) { if (!(gup_flags & FOLL_FORCE)) return -EFAULT; /* * Is there actually any vma we can reach here which does not * have VM_MAYREAD set? */ if (!(vm_flags & VM_MAYREAD)) return -EFAULT; } /* * gups are always data accesses, not instruction * fetches, so execute=false here */ if (!arch_vma_access_permitted(vma, write, false, foreign)) return -EFAULT; return 0; } /* * This is "vma_lookup()", but with a warning if we would have * historically expanded the stack in the GUP code. */ static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, unsigned long addr) { #ifdef CONFIG_STACK_GROWSUP return vma_lookup(mm, addr); #else static volatile unsigned long next_warn; struct vm_area_struct *vma; unsigned long now, next; vma = find_vma(mm, addr); if (!vma || (addr >= vma->vm_start)) return vma; /* Only warn for half-way relevant accesses */ if (!(vma->vm_flags & VM_GROWSDOWN)) return NULL; if (vma->vm_start - addr > 65536) return NULL; /* Let's not warn more than once an hour.. */ now = jiffies; next = next_warn; if (next && time_before(now, next)) return NULL; next_warn = now + 60*60*HZ; /* Let people know things may have changed. */ pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", current->comm, task_pid_nr(current), vma->vm_start, vma->vm_end, addr); dump_stack(); return NULL; #endif } /** * __get_user_pages() - pin user pages in memory * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. Or NULL, if caller * only intends to ensure the pages are faulted in. * @locked: whether we're still with the mmap_lock held * * Returns either number of pages pinned (which may be less than the * number requested), or an error. Details about the return value: * * -- If nr_pages is 0, returns 0. * -- If nr_pages is >0, but no pages were pinned, returns -errno. * -- If nr_pages is >0, and some pages were pinned, returns the number of * pages pinned. Again, this may be less than nr_pages. * -- 0 return value is possible when the fault would need to be retried. * * The caller is responsible for releasing returned @pages, via put_page(). * * Must be called with mmap_lock held. It may be released. See below. * * __get_user_pages walks a process's page tables and takes a reference to * each struct page that each user address corresponds to at a given * instant. That is, it takes the page that would be accessed if a user * thread accesses the given user virtual address at that instant. * * This does not guarantee that the page exists in the user mappings when * __get_user_pages returns, and there may even be a completely different * page there in some cases (eg. if mmapped pagecache has been invalidated * and subsequently re-faulted). However it does guarantee that the page * won't be freed completely. And mostly callers simply care that the page * contains data that was valid *at some point in time*. Typically, an IO * or similar operation cannot guarantee anything stronger anyway because * locks can't be held over the syscall boundary. * * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If * the page is written to, set_page_dirty (or set_page_dirty_lock, as * appropriate) must be called after the page is finished with, and * before put_page is called. * * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may * be released. If this happens *@locked will be set to 0 on return. * * A caller using such a combination of @gup_flags must therefore hold the * mmap_lock for reading only, and recognize when it's been released. Otherwise, * it must be held for either reading or writing and will not be released. * * In most cases, get_user_pages or get_user_pages_fast should be used * instead of __get_user_pages. __get_user_pages should be used only if * you need some special @gup_flags. */ static long __get_user_pages(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked) { long ret = 0, i = 0; struct vm_area_struct *vma = NULL; struct follow_page_context ctx = { NULL }; if (!nr_pages) return 0; start = untagged_addr_remote(mm, start); VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); /* FOLL_GET and FOLL_PIN are mutually exclusive. */ VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == (FOLL_PIN | FOLL_GET)); do { struct page *page; unsigned int page_increm; /* first iteration or cross vma bound */ if (!vma || start >= vma->vm_end) { /* * MADV_POPULATE_(READ|WRITE) wants to handle VMA * lookups+error reporting differently. */ if (gup_flags & FOLL_MADV_POPULATE) { vma = vma_lookup(mm, start); if (!vma) { ret = -ENOMEM; goto out; } if (check_vma_flags(vma, gup_flags)) { ret = -EINVAL; goto out; } goto retry; } vma = gup_vma_lookup(mm, start); if (!vma && in_gate_area(mm, start)) { ret = get_gate_page(mm, start & PAGE_MASK, gup_flags, &vma, pages ? &page : NULL); if (ret) goto out; ctx.page_mask = 0; goto next_page; } if (!vma) { ret = -EFAULT; goto out; } ret = check_vma_flags(vma, gup_flags); if (ret) goto out; } retry: /* * If we have a pending SIGKILL, don't keep faulting pages and * potentially allocating memory. */ if (fatal_signal_pending(current)) { ret = -EINTR; goto out; } cond_resched(); page = follow_page_mask(vma, start, gup_flags, &ctx); if (!page || PTR_ERR(page) == -EMLINK) { ret = faultin_page(vma, start, gup_flags, PTR_ERR(page) == -EMLINK, locked); switch (ret) { case 0: goto retry; case -EBUSY: case -EAGAIN: ret = 0; fallthrough; case -EFAULT: case -ENOMEM: case -EHWPOISON: goto out; } BUG(); } else if (PTR_ERR(page) == -EEXIST) { /* * Proper page table entry exists, but no corresponding * struct page. If the caller expects **pages to be * filled in, bail out now, because that can't be done * for this page. */ if (pages) { ret = PTR_ERR(page); goto out; } } else if (IS_ERR(page)) { ret = PTR_ERR(page); goto out; } next_page: page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); if (page_increm > nr_pages) page_increm = nr_pages; if (pages) { struct page *subpage; unsigned int j; /* * This must be a large folio (and doesn't need to * be the whole folio; it can be part of it), do * the refcount work for all the subpages too. * * NOTE: here the page may not be the head page * e.g. when start addr is not thp-size aligned. * try_grab_folio() should have taken care of tail * pages. */ if (page_increm > 1) { struct folio *folio = page_folio(page); /* * Since we already hold refcount on the * large folio, this should never fail. */ if (try_grab_folio(folio, page_increm - 1, gup_flags)) { /* * Release the 1st page ref if the * folio is problematic, fail hard. */ gup_put_folio(folio, 1, gup_flags); ret = -EFAULT; goto out; } } for (j = 0; j < page_increm; j++) { subpage = nth_page(page, j); pages[i + j] = subpage; flush_anon_page(vma, subpage, start + j * PAGE_SIZE); flush_dcache_page(subpage); } } i += page_increm; start += page_increm * PAGE_SIZE; nr_pages -= page_increm; } while (nr_pages); out: if (ctx.pgmap) put_dev_pagemap(ctx.pgmap); return i ? i : ret; } static bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags) { bool write = !!(fault_flags & FAULT_FLAG_WRITE); bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; if (!(vm_flags & vma->vm_flags)) return false; /* * The architecture might have a hardware protection * mechanism other than read/write that can deny access. * * gup always represents data access, not instruction * fetches, so execute=false here: */ if (!arch_vma_access_permitted(vma, write, false, foreign)) return false; return true; } /** * fixup_user_fault() - manually resolve a user page fault * @mm: mm_struct of target mm * @address: user address * @fault_flags:flags to pass down to handle_mm_fault() * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller * does not allow retry. If NULL, the caller must guarantee * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. * * This is meant to be called in the specific scenario where for locking reasons * we try to access user memory in atomic context (within a pagefault_disable() * section), this returns -EFAULT, and we want to resolve the user fault before * trying again. * * Typically this is meant to be used by the futex code. * * The main difference with get_user_pages() is that this function will * unconditionally call handle_mm_fault() which will in turn perform all the * necessary SW fixup of the dirty and young bits in the PTE, while * get_user_pages() only guarantees to update these in the struct page. * * This is important for some architectures where those bits also gate the * access permission to the page because they are maintained in software. On * such architectures, gup() will not be enough to make a subsequent access * succeed. * * This function will not return with an unlocked mmap_lock. So it has not the * same semantics wrt the @mm->mmap_lock as does filemap_fault(). */ int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked) { struct vm_area_struct *vma; vm_fault_t ret; address = untagged_addr_remote(mm, address); if (unlocked) fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; retry: vma = gup_vma_lookup(mm, address); if (!vma) return -EFAULT; if (!vma_permits_fault(vma, fault_flags)) return -EFAULT; if ((fault_flags & FAULT_FLAG_KILLABLE) && fatal_signal_pending(current)) return -EINTR; ret = handle_mm_fault(vma, address, fault_flags, NULL); if (ret & VM_FAULT_COMPLETED) { /* * NOTE: it's a pity that we need to retake the lock here * to pair with the unlock() in the callers. Ideally we * could tell the callers so they do not need to unlock. */ mmap_read_lock(mm); *unlocked = true; return 0; } if (ret & VM_FAULT_ERROR) { int err = vm_fault_to_errno(ret, 0); if (err) return err; BUG(); } if (ret & VM_FAULT_RETRY) { mmap_read_lock(mm); *unlocked = true; fault_flags |= FAULT_FLAG_TRIED; goto retry; } return 0; } EXPORT_SYMBOL_GPL(fixup_user_fault); /* * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is * specified, it'll also respond to generic signals. The caller of GUP * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. */ static bool gup_signal_pending(unsigned int flags) { if (fatal_signal_pending(current)) return true; if (!(flags & FOLL_INTERRUPTIBLE)) return false; return signal_pending(current); } /* * Locking: (*locked == 1) means that the mmap_lock has already been acquired by * the caller. This function may drop the mmap_lock. If it does so, then it will * set (*locked = 0). * * (*locked == 0) means that the caller expects this function to acquire and * drop the mmap_lock. Therefore, the value of *locked will still be zero when * the function returns, even though it may have changed temporarily during * function execution. * * Please note that this function, unlike __get_user_pages(), will not return 0 * for nr_pages > 0, unless FOLL_NOWAIT is used. */ static __always_inline long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, struct page **pages, int *locked, unsigned int flags) { long ret, pages_done; bool must_unlock = false; if (!nr_pages) return 0; /* * The internal caller expects GUP to manage the lock internally and the * lock must be released when this returns. */ if (!*locked) { if (mmap_read_lock_killable(mm)) return -EAGAIN; must_unlock = true; *locked = 1; } else mmap_assert_locked(mm); if (flags & FOLL_PIN) mm_set_has_pinned_flag(&mm->flags); /* * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior * is to set FOLL_GET if the caller wants pages[] filled in (but has * carelessly failed to specify FOLL_GET), so keep doing that, but only * for FOLL_GET, not for the newer FOLL_PIN. * * FOLL_PIN always expects pages to be non-null, but no need to assert * that here, as any failures will be obvious enough. */ if (pages && !(flags & FOLL_PIN)) flags |= FOLL_GET; pages_done = 0; for (;;) { ret = __get_user_pages(mm, start, nr_pages, flags, pages, locked); if (!(flags & FOLL_UNLOCKABLE)) { /* VM_FAULT_RETRY couldn't trigger, bypass */ pages_done = ret; break; } /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages)); if (ret > 0) { nr_pages -= ret; pages_done += ret; if (!nr_pages) break; } if (*locked) { /* * VM_FAULT_RETRY didn't trigger or it was a * FOLL_NOWAIT. */ if (!pages_done) pages_done = ret; break; } /* * VM_FAULT_RETRY triggered, so seek to the faulting offset. * For the prefault case (!pages) we only update counts. */ if (likely(pages)) pages += ret; start += ret << PAGE_SHIFT; /* The lock was temporarily dropped, so we must unlock later */ must_unlock = true; retry: /* * Repeat on the address that fired VM_FAULT_RETRY * with both FAULT_FLAG_ALLOW_RETRY and * FAULT_FLAG_TRIED. Note that GUP can be interrupted * by fatal signals of even common signals, depending on * the caller's request. So we need to check it before we * start trying again otherwise it can loop forever. */ if (gup_signal_pending(flags)) { if (!pages_done) pages_done = -EINTR; break; } ret = mmap_read_lock_killable(mm); if (ret) { if (!pages_done) pages_done = ret; break; } *locked = 1; ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, pages, locked); if (!*locked) { /* Continue to retry until we succeeded */ VM_WARN_ON_ONCE(ret != 0); goto retry; } if (ret != 1) { VM_WARN_ON_ONCE(ret > 1); if (!pages_done) pages_done = ret; break; } nr_pages--; pages_done++; if (!nr_pages) break; if (likely(pages)) pages++; start += PAGE_SIZE; } if (must_unlock && *locked) { /* * We either temporarily dropped the lock, or the caller * requested that we both acquire and drop the lock. Either way, * we must now unlock, and notify the caller of that state. */ mmap_read_unlock(mm); *locked = 0; } /* * Failing to pin anything implies something has gone wrong (except when * FOLL_NOWAIT is specified). */ if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) return -EFAULT; return pages_done; } /** * populate_vma_page_range() - populate a range of pages in the vma. * @vma: target vma * @start: start address * @end: end address * @locked: whether the mmap_lock is still held * * This takes care of mlocking the pages too if VM_LOCKED is set. * * Return either number of pages pinned in the vma, or a negative error * code on error. * * vma->vm_mm->mmap_lock must be held. * * If @locked is NULL, it may be held for read or write and will * be unperturbed. * * If @locked is non-NULL, it must held for read only and may be * released. If it's released, *@locked will be set to 0. */ long populate_vma_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, int *locked) { struct mm_struct *mm = vma->vm_mm; unsigned long nr_pages = (end - start) / PAGE_SIZE; int local_locked = 1; int gup_flags; long ret; VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma); VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma); mmap_assert_locked(mm); /* * Rightly or wrongly, the VM_LOCKONFAULT case has never used * faultin_page() to break COW, so it has no work to do here. */ if (vma->vm_flags & VM_LOCKONFAULT) return nr_pages; /* ... similarly, we've never faulted in PROT_NONE pages */ if (!vma_is_accessible(vma)) return -EFAULT; gup_flags = FOLL_TOUCH; /* * We want to touch writable mappings with a write fault in order * to break COW, except for shared mappings because these don't COW * and we would not want to dirty them for nothing. * * Otherwise, do a read fault, and use FOLL_FORCE in case it's not * readable (ie write-only or executable). */ if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) gup_flags |= FOLL_WRITE; else gup_flags |= FOLL_FORCE; if (locked) gup_flags |= FOLL_UNLOCKABLE; /* * We made sure addr is within a VMA, so the following will * not result in a stack expansion that recurses back here. */ ret = __get_user_pages(mm, start, nr_pages, gup_flags, NULL, locked ? locked : &local_locked); lru_add_drain(); return ret; } /* * faultin_page_range() - populate (prefault) page tables inside the * given range readable/writable * * This takes care of mlocking the pages, too, if VM_LOCKED is set. * * @mm: the mm to populate page tables in * @start: start address * @end: end address * @write: whether to prefault readable or writable * @locked: whether the mmap_lock is still held * * Returns either number of processed pages in the MM, or a negative error * code on error (see __get_user_pages()). Note that this function reports * errors related to VMAs, such as incompatible mappings, as expected by * MADV_POPULATE_(READ|WRITE). * * The range must be page-aligned. * * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. */ long faultin_page_range(struct mm_struct *mm, unsigned long start, unsigned long end, bool write, int *locked) { unsigned long nr_pages = (end - start) / PAGE_SIZE; int gup_flags; long ret; VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); mmap_assert_locked(mm); /* * FOLL_TOUCH: Mark page accessed and thereby young; will also mark * the page dirty with FOLL_WRITE -- which doesn't make a * difference with !FOLL_FORCE, because the page is writable * in the page table. * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit * a poisoned page. * !FOLL_FORCE: Require proper access permissions. */ gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | FOLL_MADV_POPULATE; if (write) gup_flags |= FOLL_WRITE; ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, gup_flags); lru_add_drain(); return ret; } /* * __mm_populate - populate and/or mlock pages within a range of address space. * * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap * flags. VMAs must be already marked with the desired vm_flags, and * mmap_lock must not be held. */ int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) { struct mm_struct *mm = current->mm; unsigned long end, nstart, nend; struct vm_area_struct *vma = NULL; int locked = 0; long ret = 0; end = start + len; for (nstart = start; nstart < end; nstart = nend) { /* * We want to fault in pages for [nstart; end) address range. * Find first corresponding VMA. */ if (!locked) { locked = 1; mmap_read_lock(mm); vma = find_vma_intersection(mm, nstart, end); } else if (nstart >= vma->vm_end) vma = find_vma_intersection(mm, vma->vm_end, end); if (!vma) break; /* * Set [nstart; nend) to intersection of desired address * range with the first VMA. Also, skip undesirable VMA types. */ nend = min(end, vma->vm_end); if (vma->vm_flags & (VM_IO | VM_PFNMAP)) continue; if (nstart < vma->vm_start) nstart = vma->vm_start; /* * Now fault in a range of pages. populate_vma_page_range() * double checks the vma flags, so that it won't mlock pages * if the vma was already munlocked. */ ret = populate_vma_page_range(vma, nstart, nend, &locked); if (ret < 0) { if (ignore_errors) { ret = 0; continue; /* continue at next VMA */ } break; } nend = nstart + ret * PAGE_SIZE; ret = 0; } if (locked) mmap_read_unlock(mm); return ret; /* 0 or negative error code */ } #else /* CONFIG_MMU */ static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, struct page **pages, int *locked, unsigned int foll_flags) { struct vm_area_struct *vma; bool must_unlock = false; vm_flags_t vm_flags; long i; if (!nr_pages) return 0; /* * The internal caller expects GUP to manage the lock internally and the * lock must be released when this returns. */ if (!*locked) { if (mmap_read_lock_killable(mm)) return -EAGAIN; must_unlock = true; *locked = 1; } /* calculate required read or write permissions. * If FOLL_FORCE is set, we only require the "MAY" flags. */ vm_flags = (foll_flags & FOLL_WRITE) ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); vm_flags &= (foll_flags & FOLL_FORCE) ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); for (i = 0; i < nr_pages; i++) { vma = find_vma(mm, start); if (!vma) break; /* protect what we can, including chardevs */ if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || !(vm_flags & vma->vm_flags)) break; if (pages) { pages[i] = virt_to_page((void *)start); if (pages[i]) get_page(pages[i]); } start = (start + PAGE_SIZE) & PAGE_MASK; } if (must_unlock && *locked) { mmap_read_unlock(mm); *locked = 0; } return i ? : -EFAULT; } #endif /* !CONFIG_MMU */ /** * fault_in_writeable - fault in userspace address range for writing * @uaddr: start of address range * @size: size of address range * * Returns the number of bytes not faulted in (like copy_to_user() and * copy_from_user()). */ size_t fault_in_writeable(char __user *uaddr, size_t size) { const unsigned long start = (unsigned long)uaddr; const unsigned long end = start + size; unsigned long cur; if (unlikely(size == 0)) return 0; if (!user_write_access_begin(uaddr, size)) return size; /* Stop once we overflow to 0. */ for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) unsafe_put_user(0, (char __user *)cur, out); out: user_write_access_end(); if (size > cur - start) return size - (cur - start); return 0; } EXPORT_SYMBOL(fault_in_writeable); /** * fault_in_subpage_writeable - fault in an address range for writing * @uaddr: start of address range * @size: size of address range * * Fault in a user address range for writing while checking for permissions at * sub-page granularity (e.g. arm64 MTE). This function should be used when * the caller cannot guarantee forward progress of a copy_to_user() loop. * * Returns the number of bytes not faulted in (like copy_to_user() and * copy_from_user()). */ size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) { size_t faulted_in; /* * Attempt faulting in at page granularity first for page table * permission checking. The arch-specific probe_subpage_writeable() * functions may not check for this. */ faulted_in = size - fault_in_writeable(uaddr, size); if (faulted_in) faulted_in -= probe_subpage_writeable(uaddr, faulted_in); return size - faulted_in; } EXPORT_SYMBOL(fault_in_subpage_writeable); /* * fault_in_safe_writeable - fault in an address range for writing * @uaddr: start of address range * @size: length of address range * * Faults in an address range for writing. This is primarily useful when we * already know that some or all of the pages in the address range aren't in * memory. * * Unlike fault_in_writeable(), this function is non-destructive. * * Note that we don't pin or otherwise hold the pages referenced that we fault * in. There's no guarantee that they'll stay in memory for any duration of * time. * * Returns the number of bytes not faulted in, like copy_to_user() and * copy_from_user(). */ size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) { const unsigned long start = (unsigned long)uaddr; const unsigned long end = start + size; unsigned long cur; struct mm_struct *mm = current->mm; bool unlocked = false; if (unlikely(size == 0)) return 0; mmap_read_lock(mm); /* Stop once we overflow to 0. */ for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked)) break; mmap_read_unlock(mm); if (size > cur - start) return size - (cur - start); return 0; } EXPORT_SYMBOL(fault_in_safe_writeable); /** * fault_in_readable - fault in userspace address range for reading * @uaddr: start of user address range * @size: size of user address range * * Returns the number of bytes not faulted in (like copy_to_user() and * copy_from_user()). */ size_t fault_in_readable(const char __user *uaddr, size_t size) { const unsigned long start = (unsigned long)uaddr; const unsigned long end = start + size; unsigned long cur; volatile char c; if (unlikely(size == 0)) return 0; if (!user_read_access_begin(uaddr, size)) return size; /* Stop once we overflow to 0. */ for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) unsafe_get_user(c, (const char __user *)cur, out); out: user_read_access_end(); (void)c; if (size > cur - start) return size - (cur - start); return 0; } EXPORT_SYMBOL(fault_in_readable); /** * get_dump_page() - pin user page in memory while writing it to core dump * @addr: user address * @locked: a pointer to an int denoting whether the mmap sem is held * * Returns struct page pointer of user page pinned for dump, * to be freed afterwards by put_page(). * * Returns NULL on any kind of failure - a hole must then be inserted into * the corefile, to preserve alignment with its headers; and also returns * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - * allowing a hole to be left in the corefile to save disk space. * * Called without mmap_lock (takes and releases the mmap_lock by itself). */ #ifdef CONFIG_ELF_CORE struct page *get_dump_page(unsigned long addr, int *locked) { struct page *page; int ret; ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked, FOLL_FORCE | FOLL_DUMP | FOLL_GET); return (ret == 1) ? page : NULL; } #endif /* CONFIG_ELF_CORE */ #ifdef CONFIG_MIGRATION /* * An array of either pages or folios ("pofs"). Although it may seem tempting to * avoid this complication, by simply interpreting a list of folios as a list of * pages, that approach won't work in the longer term, because eventually the * layouts of struct page and struct folio will become completely different. * Furthermore, this pof approach avoids excessive page_folio() calls. */ struct pages_or_folios { union { struct page **pages; struct folio **folios; void **entries; }; bool has_folios; long nr_entries; }; static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) { if (pofs->has_folios) return pofs->folios[i]; return page_folio(pofs->pages[i]); } static void pofs_clear_entry(struct pages_or_folios *pofs, long i) { pofs->entries[i] = NULL; } static void pofs_unpin(struct pages_or_folios *pofs) { if (pofs->has_folios) unpin_folios(pofs->folios, pofs->nr_entries); else unpin_user_pages(pofs->pages, pofs->nr_entries); } static struct folio *pofs_next_folio(struct folio *folio, struct pages_or_folios *pofs, long *index_ptr) { long i = *index_ptr + 1; if (!pofs->has_folios && folio_test_large(folio)) { const unsigned long start_pfn = folio_pfn(folio); const unsigned long end_pfn = start_pfn + folio_nr_pages(folio); for (; i < pofs->nr_entries; i++) { unsigned long pfn = page_to_pfn(pofs->pages[i]); /* Is this page part of this folio? */ if (pfn < start_pfn || pfn >= end_pfn) break; } } if (unlikely(i == pofs->nr_entries)) return NULL; *index_ptr = i; return pofs_get_folio(pofs, i); } /* * Returns the number of collected folios. Return value is always >= 0. */ static unsigned long collect_longterm_unpinnable_folios( struct list_head *movable_folio_list, struct pages_or_folios *pofs) { unsigned long collected = 0; bool drain_allow = true; struct folio *folio; long i = 0; for (folio = pofs_get_folio(pofs, i); folio; folio = pofs_next_folio(folio, pofs, &i)) { if (folio_is_longterm_pinnable(folio)) continue; collected++; if (folio_is_device_coherent(folio)) continue; if (folio_test_hugetlb(folio)) { folio_isolate_hugetlb(folio, movable_folio_list); continue; } if (!folio_test_lru(folio) && drain_allow) { lru_add_drain_all(); drain_allow = false; } if (!folio_isolate_lru(folio)) continue; list_add_tail(&folio->lru, movable_folio_list); node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), folio_nr_pages(folio)); } return collected; } /* * Unpins all folios and migrates device coherent folios and movable_folio_list. * Returns -EAGAIN if all folios were successfully migrated or -errno for * failure (or partial success). */ static int migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, struct pages_or_folios *pofs) { int ret; unsigned long i; for (i = 0; i < pofs->nr_entries; i++) { struct folio *folio = pofs_get_folio(pofs, i); if (folio_is_device_coherent(folio)) { /* * Migration will fail if the folio is pinned, so * convert the pin on the source folio to a normal * reference. */ pofs_clear_entry(pofs, i); folio_get(folio); gup_put_folio(folio, 1, FOLL_PIN); if (migrate_device_coherent_folio(folio)) { ret = -EBUSY; goto err; } continue; } /* * We can't migrate folios with unexpected references, so drop * the reference obtained by __get_user_pages_locked(). * Migrating folios have been added to movable_folio_list after * calling folio_isolate_lru() which takes a reference so the * folio won't be freed if it's migrating. */ unpin_folio(folio); pofs_clear_entry(pofs, i); } if (!list_empty(movable_folio_list)) { struct migration_target_control mtc = { .nid = NUMA_NO_NODE, .gfp_mask = GFP_USER | __GFP_NOWARN, .reason = MR_LONGTERM_PIN, }; if (migrate_pages(movable_folio_list, alloc_migration_target, NULL, (unsigned long)&mtc, MIGRATE_SYNC, MR_LONGTERM_PIN, NULL)) { ret = -ENOMEM; goto err; } } putback_movable_pages(movable_folio_list); return -EAGAIN; err: pofs_unpin(pofs); putback_movable_pages(movable_folio_list); return ret; } static long check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) { LIST_HEAD(movable_folio_list); unsigned long collected; collected = collect_longterm_unpinnable_folios(&movable_folio_list, pofs); if (!collected) return 0; return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); } /* * Check whether all folios are *allowed* to be pinned indefinitely (long term). * Rather confusingly, all folios in the range are required to be pinned via * FOLL_PIN, before calling this routine. * * Return values: * * 0: if everything is OK and all folios in the range are allowed to be pinned, * then this routine leaves all folios pinned and returns zero for success. * * -EAGAIN: if any folios in the range are not allowed to be pinned, then this * routine will migrate those folios away, unpin all the folios in the range. If * migration of the entire set of folios succeeds, then -EAGAIN is returned. The * caller should re-pin the entire range with FOLL_PIN and then call this * routine again. * * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this * indicates a migration failure. The caller should give up, and propagate the * error back up the call stack. The caller does not need to unpin any folios in * that case, because this routine will do the unpinning. */ static long check_and_migrate_movable_folios(unsigned long nr_folios, struct folio **folios) { struct pages_or_folios pofs = { .folios = folios, .has_folios = true, .nr_entries = nr_folios, }; return check_and_migrate_movable_pages_or_folios(&pofs); } /* * Return values and behavior are the same as those for * check_and_migrate_movable_folios(). */ static long check_and_migrate_movable_pages(unsigned long nr_pages, struct page **pages) { struct pages_or_folios pofs = { .pages = pages, .has_folios = false, .nr_entries = nr_pages, }; return check_and_migrate_movable_pages_or_folios(&pofs); } #else static long check_and_migrate_movable_pages(unsigned long nr_pages, struct page **pages) { return 0; } static long check_and_migrate_movable_folios(unsigned long nr_folios, struct folio **folios) { return 0; } #endif /* CONFIG_MIGRATION */ /* * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which * allows us to process the FOLL_LONGTERM flag. */ static long __gup_longterm_locked(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, struct page **pages, int *locked, unsigned int gup_flags) { unsigned int flags; long rc, nr_pinned_pages; if (!(gup_flags & FOLL_LONGTERM)) return __get_user_pages_locked(mm, start, nr_pages, pages, locked, gup_flags); flags = memalloc_pin_save(); do { nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, pages, locked, gup_flags); if (nr_pinned_pages <= 0) { rc = nr_pinned_pages; break; } /* FOLL_LONGTERM implies FOLL_PIN */ rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); } while (rc == -EAGAIN); memalloc_pin_restore(flags); return rc ? rc : nr_pinned_pages; } /* * Check that the given flags are valid for the exported gup/pup interface, and * update them with the required flags that the caller must have set. */ static bool is_valid_gup_args(struct page **pages, int *locked, unsigned int *gup_flags_p, unsigned int to_set) { unsigned int gup_flags = *gup_flags_p; /* * These flags not allowed to be specified externally to the gup * interfaces: * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL */ if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) return false; gup_flags |= to_set; if (locked) { /* At the external interface locked must be set */ if (WARN_ON_ONCE(*locked != 1)) return false; gup_flags |= FOLL_UNLOCKABLE; } /* FOLL_GET and FOLL_PIN are mutually exclusive. */ if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == (FOLL_PIN | FOLL_GET))) return false; /* LONGTERM can only be specified when pinning */ if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) return false; /* Pages input must be given if using GET/PIN */ if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) return false; /* We want to allow the pgmap to be hot-unplugged at all times */ if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))) return false; *gup_flags_p = gup_flags; return true; } #ifdef CONFIG_MMU /** * get_user_pages_remote() - pin user pages in memory * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying lookup behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. Or NULL, if caller * only intends to ensure the pages are faulted in. * @locked: pointer to lock flag indicating whether lock is held and * subsequently whether VM_FAULT_RETRY functionality can be * utilised. Lock must initially be held. * * Returns either number of pages pinned (which may be less than the * number requested), or an error. Details about the return value: * * -- If nr_pages is 0, returns 0. * -- If nr_pages is >0, but no pages were pinned, returns -errno. * -- If nr_pages is >0, and some pages were pinned, returns the number of * pages pinned. Again, this may be less than nr_pages. * * The caller is responsible for releasing returned @pages, via put_page(). * * Must be called with mmap_lock held for read or write. * * get_user_pages_remote walks a process's page tables and takes a reference * to each struct page that each user address corresponds to at a given * instant. That is, it takes the page that would be accessed if a user * thread accesses the given user virtual address at that instant. * * This does not guarantee that the page exists in the user mappings when * get_user_pages_remote returns, and there may even be a completely different * page there in some cases (eg. if mmapped pagecache has been invalidated * and subsequently re-faulted). However it does guarantee that the page * won't be freed completely. And mostly callers simply care that the page * contains data that was valid *at some point in time*. Typically, an IO * or similar operation cannot guarantee anything stronger anyway because * locks can't be held over the syscall boundary. * * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must * be called after the page is finished with, and before put_page is called. * * get_user_pages_remote is typically used for fewer-copy IO operations, * to get a handle on the memory by some means other than accesses * via the user virtual addresses. The pages may be submitted for * DMA to devices or accessed via their kernel linear mapping (via the * kmap APIs). Care should be taken to use the correct cache flushing APIs. * * See also get_user_pages_fast, for performance critical applications. * * get_user_pages_remote should be phased out in favor of * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing * should use get_user_pages_remote because it cannot pass * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. */ long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked) { int local_locked = 1; if (!is_valid_gup_args(pages, locked, &gup_flags, FOLL_TOUCH | FOLL_REMOTE)) return -EINVAL; return __get_user_pages_locked(mm, start, nr_pages, pages, locked ? locked : &local_locked, gup_flags); } EXPORT_SYMBOL(get_user_pages_remote); #else /* CONFIG_MMU */ long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked) { return 0; } #endif /* !CONFIG_MMU */ /** * get_user_pages() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying lookup behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. Or NULL, if caller * only intends to ensure the pages are faulted in. * * This is the same as get_user_pages_remote(), just with a less-flexible * calling convention where we assume that the mm being operated on belongs to * the current task, and doesn't allow passing of a locked parameter. We also * obviously don't pass FOLL_REMOTE in here. */ long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages) { int locked = 1; if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) return -EINVAL; return __get_user_pages_locked(current->mm, start, nr_pages, pages, &locked, gup_flags); } EXPORT_SYMBOL(get_user_pages); /* * get_user_pages_unlocked() is suitable to replace the form: * * mmap_read_lock(mm); * get_user_pages(mm, ..., pages, NULL); * mmap_read_unlock(mm); * * with: * * get_user_pages_unlocked(mm, ..., pages); * * It is functionally equivalent to get_user_pages_fast so * get_user_pages_fast should be used instead if specific gup_flags * (e.g. FOLL_FORCE) are not required. */ long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags) { int locked = 0; if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH | FOLL_UNLOCKABLE)) return -EINVAL; return __get_user_pages_locked(current->mm, start, nr_pages, pages, &locked, gup_flags); } EXPORT_SYMBOL(get_user_pages_unlocked); /* * GUP-fast * * get_user_pages_fast attempts to pin user pages by walking the page * tables directly and avoids taking locks. Thus the walker needs to be * protected from page table pages being freed from under it, and should * block any THP splits. * * One way to achieve this is to have the walker disable interrupts, and * rely on IPIs from the TLB flushing code blocking before the page table * pages are freed. This is unsuitable for architectures that do not need * to broadcast an IPI when invalidating TLBs. * * Another way to achieve this is to batch up page table containing pages * belonging to more than one mm_user, then rcu_sched a callback to free those * pages. Disabling interrupts will allow the gup_fast() walker to both block * the rcu_sched callback, and an IPI that we broadcast for splitting THPs * (which is a relatively rare event). The code below adopts this strategy. * * Before activating this code, please be aware that the following assumptions * are currently made: * * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to * free pages containing page tables or TLB flushing requires IPI broadcast. * * *) ptes can be read atomically by the architecture. * * *) valid user addesses are below TASK_MAX_SIZE * * The last two assumptions can be relaxed by the addition of helper functions. * * This code is based heavily on the PowerPC implementation by Nick Piggin. */ #ifdef CONFIG_HAVE_GUP_FAST /* * Used in the GUP-fast path to determine whether GUP is permitted to work on * a specific folio. * * This call assumes the caller has pinned the folio, that the lowest page table * level still points to this folio, and that interrupts have been disabled. * * GUP-fast must reject all secretmem folios. * * Writing to pinned file-backed dirty tracked folios is inherently problematic * (see comment describing the writable_file_mapping_allowed() function). We * therefore try to avoid the most egregious case of a long-term mapping doing * so. * * This function cannot be as thorough as that one as the VMA is not available * in the fast path, so instead we whitelist known good cases and if in doubt, * fall back to the slow path. */ static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) { bool reject_file_backed = false; struct address_space *mapping; bool check_secretmem = false; unsigned long mapping_flags; /* * If we aren't pinning then no problematic write can occur. A long term * pin is the most egregious case so this is the one we disallow. */ if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) reject_file_backed = true; /* We hold a folio reference, so we can safely access folio fields. */ /* secretmem folios are always order-0 folios. */ if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) check_secretmem = true; if (!reject_file_backed && !check_secretmem) return true; if (WARN_ON_ONCE(folio_test_slab(folio))) return false; /* hugetlb neither requires dirty-tracking nor can be secretmem. */ if (folio_test_hugetlb(folio)) return true; /* * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods * cannot proceed, which means no actions performed under RCU can * proceed either. * * inodes and thus their mappings are freed under RCU, which means the * mapping cannot be freed beneath us and thus we can safely dereference * it. */ lockdep_assert_irqs_disabled(); /* * However, there may be operations which _alter_ the mapping, so ensure * we read it once and only once. */ mapping = READ_ONCE(folio->mapping); /* * The mapping may have been truncated, in any case we cannot determine * if this mapping is safe - fall back to slow path to determine how to * proceed. */ if (!mapping) return false; /* Anonymous folios pose no problem. */ mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS; if (mapping_flags) return mapping_flags & FOLIO_MAPPING_ANON; /* * At this point, we know the mapping is non-null and points to an * address_space object. */ if (check_secretmem && secretmem_mapping(mapping)) return false; /* The only remaining allowed file system is shmem. */ return !reject_file_backed || shmem_mapping(mapping); } static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, unsigned int flags, struct page **pages) { while ((*nr) - nr_start) { struct folio *folio = page_folio(pages[--(*nr)]); folio_clear_referenced(folio); gup_put_folio(folio, 1, flags); } } #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL /* * GUP-fast relies on pte change detection to avoid concurrent pgtable * operations. * * To pin the page, GUP-fast needs to do below in order: * (1) pin the page (by prefetching pte), then (2) check pte not changed. * * For the rest of pgtable operations where pgtable updates can be racy * with GUP-fast, we need to do (1) clear pte, then (2) check whether page * is pinned. * * Above will work for all pte-level operations, including THP split. * * For THP collapse, it's a bit more complicated because GUP-fast may be * walking a pgtable page that is being freed (pte is still valid but pmd * can be cleared already). To avoid race in such condition, we need to * also check pmd here to make sure pmd doesn't change (corresponds to * pmdp_collapse_flush() in the THP collapse code path). */ static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { struct dev_pagemap *pgmap = NULL; int ret = 0; pte_t *ptep, *ptem; ptem = ptep = pte_offset_map(&pmd, addr); if (!ptep) return 0; do { pte_t pte = ptep_get_lockless(ptep); struct page *page; struct folio *folio; /* * Always fallback to ordinary GUP on PROT_NONE-mapped pages: * pte_access_permitted() better should reject these pages * either way: otherwise, GUP-fast might succeed in * cases where ordinary GUP would fail due to VMA access * permissions. */ if (pte_protnone(pte)) goto pte_unmap; if (!pte_access_permitted(pte, flags & FOLL_WRITE)) goto pte_unmap; if (pte_special(pte)) goto pte_unmap; /* If it's not marked as special it must have a valid memmap. */ VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte))); page = pte_page(pte); folio = try_grab_folio_fast(page, 1, flags); if (!folio) goto pte_unmap; if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { gup_put_folio(folio, 1, flags); goto pte_unmap; } if (!gup_fast_folio_allowed(folio, flags)) { gup_put_folio(folio, 1, flags); goto pte_unmap; } if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { gup_put_folio(folio, 1, flags); goto pte_unmap; } /* * We need to make the page accessible if and only if we are * going to access its content (the FOLL_PIN case). Please * see Documentation/core-api/pin_user_pages.rst for * details. */ if (flags & FOLL_PIN) { ret = arch_make_folio_accessible(folio); if (ret) { gup_put_folio(folio, 1, flags); goto pte_unmap; } } folio_set_referenced(folio); pages[*nr] = page; (*nr)++; } while (ptep++, addr += PAGE_SIZE, addr != end); ret = 1; pte_unmap: if (pgmap) put_dev_pagemap(pgmap); pte_unmap(ptem); return ret; } #else /* * If we can't determine whether or not a pte is special, then fail immediately * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not * to be special. * * For a futex to be placed on a THP tail page, get_futex_key requires a * get_user_pages_fast_only implementation that can pin pages. Thus it's still * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. */ static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { return 0; } #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { struct page *page; struct folio *folio; int refs; if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) return 0; if (pmd_special(orig)) return 0; page = pmd_page(orig); refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); folio = try_grab_folio_fast(page, refs, flags); if (!folio) return 0; if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { gup_put_folio(folio, refs, flags); return 0; } if (!gup_fast_folio_allowed(folio, flags)) { gup_put_folio(folio, refs, flags); return 0; } if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { gup_put_folio(folio, refs, flags); return 0; } *nr += refs; folio_set_referenced(folio); return 1; } static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { struct page *page; struct folio *folio; int refs; if (!pud_access_permitted(orig, flags & FOLL_WRITE)) return 0; if (pud_special(orig)) return 0; page = pud_page(orig); refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); folio = try_grab_folio_fast(page, refs, flags); if (!folio) return 0; if (unlikely(pud_val(orig) != pud_val(*pudp))) { gup_put_folio(folio, refs, flags); return 0; } if (!gup_fast_folio_allowed(folio, flags)) { gup_put_folio(folio, refs, flags); return 0; } if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { gup_put_folio(folio, refs, flags); return 0; } *nr += refs; folio_set_referenced(folio); return 1; } static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; pmd_t *pmdp; pmdp = pmd_offset_lockless(pudp, pud, addr); do { pmd_t pmd = pmdp_get_lockless(pmdp); next = pmd_addr_end(addr, end); if (!pmd_present(pmd)) return 0; if (unlikely(pmd_leaf(pmd))) { /* See gup_fast_pte_range() */ if (pmd_protnone(pmd)) return 0; if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, pages, nr)) return 0; } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) return 0; } while (pmdp++, addr = next, addr != end); return 1; } static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; pud_t *pudp; pudp = pud_offset_lockless(p4dp, p4d, addr); do { pud_t pud = READ_ONCE(*pudp); next = pud_addr_end(addr, end); if (unlikely(!pud_present(pud))) return 0; if (unlikely(pud_leaf(pud))) { if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, pages, nr)) return 0; } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, pages, nr)) return 0; } while (pudp++, addr = next, addr != end); return 1; } static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; p4d_t *p4dp; p4dp = p4d_offset_lockless(pgdp, pgd, addr); do { p4d_t p4d = READ_ONCE(*p4dp); next = p4d_addr_end(addr, end); if (!p4d_present(p4d)) return 0; BUILD_BUG_ON(p4d_leaf(p4d)); if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) return 0; } while (p4dp++, addr = next, addr != end); return 1; } static void gup_fast_pgd_range(unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { unsigned long next; pgd_t *pgdp; pgdp = pgd_offset(current->mm, addr); do { pgd_t pgd = READ_ONCE(*pgdp); next = pgd_addr_end(addr, end); if (pgd_none(pgd)) return; BUILD_BUG_ON(pgd_leaf(pgd)); if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) return; } while (pgdp++, addr = next, addr != end); } #else static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, unsigned int flags, struct page **pages, int *nr) { } #endif /* CONFIG_HAVE_GUP_FAST */ #ifndef gup_fast_permitted /* * Check if it's allowed to use get_user_pages_fast_only() for the range, or * we need to fall back to the slow version: */ static bool gup_fast_permitted(unsigned long start, unsigned long end) { return true; } #endif static unsigned long gup_fast(unsigned long start, unsigned long end, unsigned int gup_flags, struct page **pages) { unsigned long flags; int nr_pinned = 0; unsigned seq; if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || !gup_fast_permitted(start, end)) return 0; if (gup_flags & FOLL_PIN) { if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq)) return 0; } /* * Disable interrupts. The nested form is used, in order to allow full, * general purpose use of this routine. * * With interrupts disabled, we block page table pages from being freed * from under us. See struct mmu_table_batch comments in * include/asm-generic/tlb.h for more details. * * We do not adopt an rcu_read_lock() here as we also want to block IPIs * that come from callers of tlb_remove_table_sync_one(). */ local_irq_save(flags); gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); local_irq_restore(flags); /* * When pinning pages for DMA there could be a concurrent write protect * from fork() via copy_page_range(), in this case always fail GUP-fast. */ if (gup_flags & FOLL_PIN) { if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) { gup_fast_unpin_user_pages(pages, nr_pinned); return 0; } else { sanity_check_pinned_pages(pages, nr_pinned); } } return nr_pinned; } static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages) { unsigned long len, end; unsigned long nr_pinned; int locked = 0; int ret; if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | FOLL_FORCE | FOLL_PIN | FOLL_GET | FOLL_FAST_ONLY | FOLL_NOFAULT | FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) return -EINVAL; if (gup_flags & FOLL_PIN) mm_set_has_pinned_flag(&current->mm->flags); if (!(gup_flags & FOLL_FAST_ONLY)) might_lock_read(&current->mm->mmap_lock); start = untagged_addr(start) & PAGE_MASK; len = nr_pages << PAGE_SHIFT; if (check_add_overflow(start, len, &end)) return -EOVERFLOW; if (end > TASK_SIZE_MAX) return -EFAULT; nr_pinned = gup_fast(start, end, gup_flags, pages); if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) return nr_pinned; /* Slow path: try to get the remaining pages with get_user_pages */ start += nr_pinned << PAGE_SHIFT; pages += nr_pinned; ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, pages, &locked, gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); if (ret < 0) { /* * The caller has to unpin the pages we already pinned so * returning -errno is not an option */ if (nr_pinned) return nr_pinned; return ret; } return ret + nr_pinned; } /** * get_user_pages_fast_only() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to * the regular GUP. * * If the architecture does not support this function, simply return with no * pages pinned. * * Careful, careful! COW breaking can go either way, so a non-write * access can get ambiguous page results. If you call this function without * 'write' set, you'd better be sure that you're ok with that ambiguity. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages) { /* * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, * because gup fast is always a "pin with a +1 page refcount" request. * * FOLL_FAST_ONLY is required in order to match the API description of * this routine: no fall back to regular ("slow") GUP. */ if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET | FOLL_FAST_ONLY)) return -EINVAL; return gup_fast_fallback(start, nr_pages, gup_flags, pages); } EXPORT_SYMBOL_GPL(get_user_pages_fast_only); /** * get_user_pages_fast() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Attempt to pin user pages in memory without taking mm->mmap_lock. * If not successful, it will fall back to taking the lock and * calling get_user_pages(). * * Returns number of pages pinned. This may be fewer than the number requested. * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns * -errno. */ int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages) { /* * The caller may or may not have explicitly set FOLL_GET; either way is * OK. However, internally (within mm/gup.c), gup fast variants must set * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" * request. */ if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) return -EINVAL; return gup_fast_fallback(start, nr_pages, gup_flags, pages); } EXPORT_SYMBOL_GPL(get_user_pages_fast); /** * pin_user_pages_fast() - pin user pages in memory without taking locks * * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying pin behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See * get_user_pages_fast() for documentation on the function arguments, because * the arguments here are identical. * * FOLL_PIN means that the pages must be released via unpin_user_page(). Please * see Documentation/core-api/pin_user_pages.rst for further details. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page() will not remove pins from it. */ int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages) { if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) return -EINVAL; return gup_fast_fallback(start, nr_pages, gup_flags, pages); } EXPORT_SYMBOL_GPL(pin_user_pages_fast); /** * pin_user_pages_remote() - pin pages of a remote process * * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying lookup behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * @locked: pointer to lock flag indicating whether lock is held and * subsequently whether VM_FAULT_RETRY functionality can be * utilised. Lock must initially be held. * * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See * get_user_pages_remote() for documentation on the function arguments, because * the arguments here are identical. * * FOLL_PIN means that the pages must be released via unpin_user_page(). Please * see Documentation/core-api/pin_user_pages.rst for details. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page*() will not remove pins from it. */ long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked) { int local_locked = 1; if (!is_valid_gup_args(pages, locked, &gup_flags, FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) return 0; return __gup_longterm_locked(mm, start, nr_pages, pages, locked ? locked : &local_locked, gup_flags); } EXPORT_SYMBOL(pin_user_pages_remote); /** * pin_user_pages() - pin user pages in memory for use by other devices * * @start: starting user address * @nr_pages: number of pages from start to pin * @gup_flags: flags modifying lookup behaviour * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and * FOLL_PIN is set. * * FOLL_PIN means that the pages must be released via unpin_user_page(). Please * see Documentation/core-api/pin_user_pages.rst for details. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page*() will not remove pins from it. */ long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages) { int locked = 1; if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) return 0; return __gup_longterm_locked(current->mm, start, nr_pages, pages, &locked, gup_flags); } EXPORT_SYMBOL(pin_user_pages); /* * pin_user_pages_unlocked() is the FOLL_PIN variant of * get_user_pages_unlocked(). Behavior is the same, except that this one sets * FOLL_PIN and rejects FOLL_GET. * * Note that if a zero_page is amongst the returned pages, it will not have * pins in it and unpin_user_page*() will not remove pins from it. */ long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags) { int locked = 0; if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) return 0; return __gup_longterm_locked(current->mm, start, nr_pages, pages, &locked, gup_flags); } EXPORT_SYMBOL(pin_user_pages_unlocked); /** * memfd_pin_folios() - pin folios associated with a memfd * @memfd: the memfd whose folios are to be pinned * @start: the first memfd offset * @end: the last memfd offset (inclusive) * @folios: array that receives pointers to the folios pinned * @max_folios: maximum number of entries in @folios * @offset: the offset into the first folio * * Attempt to pin folios associated with a memfd in the contiguous range * [start, end]. Given that a memfd is either backed by shmem or hugetlb, * the folios can either be found in the page cache or need to be allocated * if necessary. Once the folios are located, they are all pinned via * FOLL_PIN and @offset is populatedwith the offset into the first folio. * And, eventually, these pinned folios must be released either using * unpin_folios() or unpin_folio(). * * It must be noted that the folios may be pinned for an indefinite amount * of time. And, in most cases, the duration of time they may stay pinned * would be controlled by the userspace. This behavior is effectively the * same as using FOLL_LONGTERM with other GUP APIs. * * Returns number of folios pinned, which could be less than @max_folios * as it depends on the folio sizes that cover the range [start, end]. * If no folios were pinned, it returns -errno. */ long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, struct folio **folios, unsigned int max_folios, pgoff_t *offset) { unsigned int flags, nr_folios, nr_found; unsigned int i, pgshift = PAGE_SHIFT; pgoff_t start_idx, end_idx; struct folio *folio = NULL; struct folio_batch fbatch; struct hstate *h; long ret = -EINVAL; if (start < 0 || start > end || !max_folios) return -EINVAL; if (!memfd) return -EINVAL; if (!shmem_file(memfd) && !is_file_hugepages(memfd)) return -EINVAL; if (end >= i_size_read(file_inode(memfd))) return -EINVAL; if (is_file_hugepages(memfd)) { h = hstate_file(memfd); pgshift = huge_page_shift(h); } flags = memalloc_pin_save(); do { nr_folios = 0; start_idx = start >> pgshift; end_idx = end >> pgshift; if (is_file_hugepages(memfd)) { start_idx <<= huge_page_order(h); end_idx <<= huge_page_order(h); } folio_batch_init(&fbatch); while (start_idx <= end_idx && nr_folios < max_folios) { /* * In most cases, we should be able to find the folios * in the page cache. If we cannot find them for some * reason, we try to allocate them and add them to the * page cache. */ nr_found = filemap_get_folios_contig(memfd->f_mapping, &start_idx, end_idx, &fbatch); if (folio) { folio_put(folio); folio = NULL; } for (i = 0; i < nr_found; i++) { folio = fbatch.folios[i]; if (try_grab_folio(folio, 1, FOLL_PIN)) { folio_batch_release(&fbatch); ret = -EINVAL; goto err; } if (nr_folios == 0) *offset = offset_in_folio(folio, start); folios[nr_folios] = folio; if (++nr_folios == max_folios) break; } folio = NULL; folio_batch_release(&fbatch); if (!nr_found) { folio = memfd_alloc_folio(memfd, start_idx); if (IS_ERR(folio)) { ret = PTR_ERR(folio); if (ret != -EEXIST) goto err; folio = NULL; } } } ret = check_and_migrate_movable_folios(nr_folios, folios); } while (ret == -EAGAIN); memalloc_pin_restore(flags); return ret ? ret : nr_folios; err: memalloc_pin_restore(flags); unpin_folios(folios, nr_folios); return ret; } EXPORT_SYMBOL_GPL(memfd_pin_folios); /** * folio_add_pins() - add pins to an already-pinned folio * @folio: the folio to add more pins to * @pins: number of pins to add * * Try to add more pins to an already-pinned folio. The semantics * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot * be changed. * * This function is helpful when having obtained a pin on a large folio * using memfd_pin_folios(), but wanting to logically unpin parts * (e.g., individual pages) of the folio later, for example, using * unpin_user_page_range_dirty_lock(). * * This is not the right interface to initially pin a folio. */ int folio_add_pins(struct folio *folio, unsigned int pins) { VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); return try_grab_folio(folio, pins, FOLL_PIN); } EXPORT_SYMBOL_GPL(folio_add_pins);
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) International Business Machines Corp., 2006 * * Author: Artem Bityutskiy (Битюцкий Артём) */ #include "ubi.h" #include <linux/debugfs.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/fault-inject.h> #ifdef CONFIG_MTD_UBI_FAULT_INJECTION static DECLARE_FAULT_ATTR(fault_eccerr_attr); static DECLARE_FAULT_ATTR(fault_bitflips_attr); static DECLARE_FAULT_ATTR(fault_read_failure_attr); static DECLARE_FAULT_ATTR(fault_write_failure_attr); static DECLARE_FAULT_ATTR(fault_erase_failure_attr); static DECLARE_FAULT_ATTR(fault_power_cut_attr); static DECLARE_FAULT_ATTR(fault_io_ff_attr); static DECLARE_FAULT_ATTR(fault_io_ff_bitflips_attr); static DECLARE_FAULT_ATTR(fault_bad_hdr_attr); static DECLARE_FAULT_ATTR(fault_bad_hdr_ebadmsg_attr); #define FAIL_ACTION(name, fault_attr) \ bool should_fail_##name(void) \ { \ return should_fail(&fault_attr, 1); \ } FAIL_ACTION(eccerr, fault_eccerr_attr) FAIL_ACTION(bitflips, fault_bitflips_attr) FAIL_ACTION(read_failure, fault_read_failure_attr) FAIL_ACTION(write_failure, fault_write_failure_attr) FAIL_ACTION(erase_failure, fault_erase_failure_attr) FAIL_ACTION(power_cut, fault_power_cut_attr) FAIL_ACTION(io_ff, fault_io_ff_attr) FAIL_ACTION(io_ff_bitflips, fault_io_ff_bitflips_attr) FAIL_ACTION(bad_hdr, fault_bad_hdr_attr) FAIL_ACTION(bad_hdr_ebadmsg, fault_bad_hdr_ebadmsg_attr) #endif /** * ubi_dump_flash - dump a region of flash. * @ubi: UBI device description object * @pnum: the physical eraseblock number to dump * @offset: the starting offset within the physical eraseblock to dump * @len: the length of the region to dump */ void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len) { int err; size_t read; void *buf; loff_t addr = (loff_t)pnum * ubi->peb_size + offset; buf = vmalloc(len); if (!buf) return; err = mtd_read(ubi->mtd, addr, len, &read, buf); if (err && err != -EUCLEAN) { ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", err, len, pnum, offset, read); goto out; } ubi_msg(ubi, "dumping %d bytes of data from PEB %d, offset %d", len, pnum, offset); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); out: vfree(buf); return; } /** * ubi_dump_ec_hdr - dump an erase counter header. * @ec_hdr: the erase counter header to dump */ void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) { pr_err("Erase counter header dump:\n"); pr_err("\tmagic %#08x\n", be32_to_cpu(ec_hdr->magic)); pr_err("\tversion %d\n", (int)ec_hdr->version); pr_err("\tec %llu\n", (long long)be64_to_cpu(ec_hdr->ec)); pr_err("\tvid_hdr_offset %d\n", be32_to_cpu(ec_hdr->vid_hdr_offset)); pr_err("\tdata_offset %d\n", be32_to_cpu(ec_hdr->data_offset)); pr_err("\timage_seq %d\n", be32_to_cpu(ec_hdr->image_seq)); pr_err("\thdr_crc %#08x\n", be32_to_cpu(ec_hdr->hdr_crc)); pr_err("erase counter header hexdump:\n"); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, ec_hdr, UBI_EC_HDR_SIZE, 1); } /** * ubi_dump_vid_hdr - dump a volume identifier header. * @vid_hdr: the volume identifier header to dump */ void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) { pr_err("Volume identifier header dump:\n"); pr_err("\tmagic %08x\n", be32_to_cpu(vid_hdr->magic)); pr_err("\tversion %d\n", (int)vid_hdr->version); pr_err("\tvol_type %d\n", (int)vid_hdr->vol_type); pr_err("\tcopy_flag %d\n", (int)vid_hdr->copy_flag); pr_err("\tcompat %d\n", (int)vid_hdr->compat); pr_err("\tvol_id %d\n", be32_to_cpu(vid_hdr->vol_id)); pr_err("\tlnum %d\n", be32_to_cpu(vid_hdr->lnum)); pr_err("\tdata_size %d\n", be32_to_cpu(vid_hdr->data_size)); pr_err("\tused_ebs %d\n", be32_to_cpu(vid_hdr->used_ebs)); pr_err("\tdata_pad %d\n", be32_to_cpu(vid_hdr->data_pad)); pr_err("\tsqnum %llu\n", (unsigned long long)be64_to_cpu(vid_hdr->sqnum)); pr_err("\thdr_crc %08x\n", be32_to_cpu(vid_hdr->hdr_crc)); pr_err("Volume identifier header hexdump:\n"); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, vid_hdr, UBI_VID_HDR_SIZE, 1); } /** * ubi_dump_vol_info - dump volume information. * @vol: UBI volume description object */ void ubi_dump_vol_info(const struct ubi_volume *vol) { pr_err("Volume information dump:\n"); pr_err("\tvol_id %d\n", vol->vol_id); pr_err("\treserved_pebs %d\n", vol->reserved_pebs); pr_err("\talignment %d\n", vol->alignment); pr_err("\tdata_pad %d\n", vol->data_pad); pr_err("\tvol_type %d\n", vol->vol_type); pr_err("\tname_len %d\n", vol->name_len); pr_err("\tusable_leb_size %d\n", vol->usable_leb_size); pr_err("\tused_ebs %d\n", vol->used_ebs); pr_err("\tused_bytes %lld\n", vol->used_bytes); pr_err("\tlast_eb_bytes %d\n", vol->last_eb_bytes); pr_err("\tcorrupted %d\n", vol->corrupted); pr_err("\tupd_marker %d\n", vol->upd_marker); pr_err("\tskip_check %d\n", vol->skip_check); if (vol->name_len <= UBI_VOL_NAME_MAX && strnlen(vol->name, vol->name_len + 1) == vol->name_len) { pr_err("\tname %s\n", vol->name); } else { pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", vol->name[0], vol->name[1], vol->name[2], vol->name[3], vol->name[4]); } } /** * ubi_dump_vtbl_record - dump a &struct ubi_vtbl_record object. * @r: the object to dump * @idx: volume table index */ void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) { int name_len = be16_to_cpu(r->name_len); pr_err("Volume table record %d dump:\n", idx); pr_err("\treserved_pebs %d\n", be32_to_cpu(r->reserved_pebs)); pr_err("\talignment %d\n", be32_to_cpu(r->alignment)); pr_err("\tdata_pad %d\n", be32_to_cpu(r->data_pad)); pr_err("\tvol_type %d\n", (int)r->vol_type); pr_err("\tupd_marker %d\n", (int)r->upd_marker); pr_err("\tname_len %d\n", name_len); if (r->name[0] == '\0') { pr_err("\tname NULL\n"); return; } if (name_len <= UBI_VOL_NAME_MAX && strnlen(&r->name[0], name_len + 1) == name_len) { pr_err("\tname %s\n", &r->name[0]); } else { pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", r->name[0], r->name[1], r->name[2], r->name[3], r->name[4]); } pr_err("\tcrc %#08x\n", be32_to_cpu(r->crc)); } /** * ubi_dump_av - dump a &struct ubi_ainf_volume object. * @av: the object to dump */ void ubi_dump_av(const struct ubi_ainf_volume *av) { pr_err("Volume attaching information dump:\n"); pr_err("\tvol_id %d\n", av->vol_id); pr_err("\thighest_lnum %d\n", av->highest_lnum); pr_err("\tleb_count %d\n", av->leb_count); pr_err("\tcompat %d\n", av->compat); pr_err("\tvol_type %d\n", av->vol_type); pr_err("\tused_ebs %d\n", av->used_ebs); pr_err("\tlast_data_size %d\n", av->last_data_size); pr_err("\tdata_pad %d\n", av->data_pad); } /** * ubi_dump_aeb - dump a &struct ubi_ainf_peb object. * @aeb: the object to dump * @type: object type: 0 - not corrupted, 1 - corrupted */ void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type) { pr_err("eraseblock attaching information dump:\n"); pr_err("\tec %d\n", aeb->ec); pr_err("\tpnum %d\n", aeb->pnum); if (type == 0) { pr_err("\tlnum %d\n", aeb->lnum); pr_err("\tscrub %d\n", aeb->scrub); pr_err("\tsqnum %llu\n", aeb->sqnum); } } /** * ubi_dump_mkvol_req - dump a &struct ubi_mkvol_req object. * @req: the object to dump */ void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req) { char nm[17]; pr_err("Volume creation request dump:\n"); pr_err("\tvol_id %d\n", req->vol_id); pr_err("\talignment %d\n", req->alignment); pr_err("\tbytes %lld\n", (long long)req->bytes); pr_err("\tvol_type %d\n", req->vol_type); pr_err("\tname_len %d\n", req->name_len); memcpy(nm, req->name, 16); nm[16] = 0; pr_err("\t1st 16 characters of name: %s\n", nm); } /* * Root directory for UBI stuff in debugfs. Contains sub-directories which * contain the stuff specific to particular UBI devices. */ static struct dentry *dfs_rootdir; #ifdef CONFIG_MTD_UBI_FAULT_INJECTION static void dfs_create_fault_entry(struct dentry *parent) { struct dentry *dir; dir = debugfs_create_dir("fault_inject", parent); if (IS_ERR_OR_NULL(dir)) { int err = dir ? PTR_ERR(dir) : -ENODEV; pr_warn("UBI error: cannot create \"fault_inject\" debugfs directory, error %d\n", err); return; } fault_create_debugfs_attr("emulate_eccerr", dir, &fault_eccerr_attr); fault_create_debugfs_attr("emulate_read_failure", dir, &fault_read_failure_attr); fault_create_debugfs_attr("emulate_bitflips", dir, &fault_bitflips_attr); fault_create_debugfs_attr("emulate_write_failure", dir, &fault_write_failure_attr); fault_create_debugfs_attr("emulate_erase_failure", dir, &fault_erase_failure_attr); fault_create_debugfs_attr("emulate_power_cut", dir, &fault_power_cut_attr); fault_create_debugfs_attr("emulate_io_ff", dir, &fault_io_ff_attr); fault_create_debugfs_attr("emulate_io_ff_bitflips", dir, &fault_io_ff_bitflips_attr); fault_create_debugfs_attr("emulate_bad_hdr", dir, &fault_bad_hdr_attr); fault_create_debugfs_attr("emulate_bad_hdr_ebadmsg", dir, &fault_bad_hdr_ebadmsg_attr); } #endif /** * ubi_debugfs_init - create UBI debugfs directory. * * Create UBI debugfs directory. Returns zero in case of success and a negative * error code in case of failure. */ int ubi_debugfs_init(void) { if (!IS_ENABLED(CONFIG_DEBUG_FS)) return 0; dfs_rootdir = debugfs_create_dir("ubi", NULL); if (IS_ERR_OR_NULL(dfs_rootdir)) { int err = dfs_rootdir ? PTR_ERR(dfs_rootdir) : -ENODEV; pr_err("UBI error: cannot create \"ubi\" debugfs directory, error %d\n", err); return err; } #ifdef CONFIG_MTD_UBI_FAULT_INJECTION dfs_create_fault_entry(dfs_rootdir); #endif return 0; } /** * ubi_debugfs_exit - remove UBI debugfs directory. */ void ubi_debugfs_exit(void) { if (IS_ENABLED(CONFIG_DEBUG_FS)) debugfs_remove(dfs_rootdir); } /* Read an UBI debugfs file */ static ssize_t dfs_file_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { unsigned long ubi_num = (unsigned long)file->private_data; struct dentry *dent = file->f_path.dentry; struct ubi_device *ubi; struct ubi_debug_info *d; char buf[16]; int val; ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; d = &ubi->dbg; if (dent == d->dfs_chk_gen) val = d->chk_gen; else if (dent == d->dfs_chk_io) val = d->chk_io; else if (dent == d->dfs_chk_fastmap) val = d->chk_fastmap; else if (dent == d->dfs_disable_bgt) val = d->disable_bgt; else if (dent == d->dfs_emulate_bitflips) val = d->emulate_bitflips; else if (dent == d->dfs_emulate_io_failures) val = d->emulate_io_failures; else if (dent == d->dfs_emulate_failures) { snprintf(buf, sizeof(buf), "0x%04x\n", d->emulate_failures); count = simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); goto out; } else if (dent == d->dfs_emulate_power_cut) { snprintf(buf, sizeof(buf), "%u\n", d->emulate_power_cut); count = simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); goto out; } else if (dent == d->dfs_power_cut_min) { snprintf(buf, sizeof(buf), "%u\n", d->power_cut_min); count = simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); goto out; } else if (dent == d->dfs_power_cut_max) { snprintf(buf, sizeof(buf), "%u\n", d->power_cut_max); count = simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); goto out; } else { count = -EINVAL; goto out; } if (val) buf[0] = '1'; else buf[0] = '0'; buf[1] = '\n'; buf[2] = 0x00; count = simple_read_from_buffer(user_buf, count, ppos, buf, 2); out: ubi_put_device(ubi); return count; } /* Write an UBI debugfs file */ static ssize_t dfs_file_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { unsigned long ubi_num = (unsigned long)file->private_data; struct dentry *dent = file->f_path.dentry; struct ubi_device *ubi; struct ubi_debug_info *d; size_t buf_size; char buf[16] = {0}; int val; ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; d = &ubi->dbg; buf_size = min_t(size_t, count, (sizeof(buf) - 1)); if (copy_from_user(buf, user_buf, buf_size)) { count = -EFAULT; goto out; } if (dent == d->dfs_emulate_failures) { if (kstrtouint(buf, 0, &d->emulate_failures) != 0) count = -EINVAL; goto out; } else if (dent == d->dfs_power_cut_min) { if (kstrtouint(buf, 0, &d->power_cut_min) != 0) count = -EINVAL; goto out; } else if (dent == d->dfs_power_cut_max) { if (kstrtouint(buf, 0, &d->power_cut_max) != 0) count = -EINVAL; goto out; } else if (dent == d->dfs_emulate_power_cut) { if (kstrtoint(buf, 0, &val) != 0) count = -EINVAL; else d->emulate_power_cut = val; goto out; } if (buf[0] == '1') val = 1; else if (buf[0] == '0') val = 0; else { count = -EINVAL; goto out; } if (dent == d->dfs_chk_gen) d->chk_gen = val; else if (dent == d->dfs_chk_io) d->chk_io = val; else if (dent == d->dfs_chk_fastmap) d->chk_fastmap = val; else if (dent == d->dfs_disable_bgt) d->disable_bgt = val; else if (dent == d->dfs_emulate_bitflips) d->emulate_bitflips = val; else if (dent == d->dfs_emulate_io_failures) d->emulate_io_failures = val; else count = -EINVAL; out: ubi_put_device(ubi); return count; } /* File operations for all UBI debugfs files except * detailed_erase_block_info */ static const struct file_operations dfs_fops = { .read = dfs_file_read, .write = dfs_file_write, .open = simple_open, .owner = THIS_MODULE, }; /* As long as the position is less then that total number of erase blocks, * we still have more to print. */ static void *eraseblk_count_seq_start(struct seq_file *s, loff_t *pos) { struct ubi_device *ubi = s->private; if (*pos < ubi->peb_count) return pos; return NULL; } /* Since we are using the position as the iterator, we just need to check if we * are done and increment the position. */ static void *eraseblk_count_seq_next(struct seq_file *s, void *v, loff_t *pos) { struct ubi_device *ubi = s->private; (*pos)++; if (*pos < ubi->peb_count) return pos; return NULL; } static void eraseblk_count_seq_stop(struct seq_file *s, void *v) { } static int eraseblk_count_seq_show(struct seq_file *s, void *iter) { struct ubi_device *ubi = s->private; struct ubi_wl_entry *wl; int *block_number = iter; int erase_count = -1; int err; /* If this is the start, print a header */ if (*block_number == 0) seq_puts(s, "physical_block_number\terase_count\n"); err = ubi_io_is_bad(ubi, *block_number); if (err) return err; spin_lock(&ubi->wl_lock); wl = ubi->lookuptbl[*block_number]; if (wl) erase_count = wl->ec; spin_unlock(&ubi->wl_lock); if (erase_count < 0) return 0; seq_printf(s, "%-22d\t%-11d\n", *block_number, erase_count); return 0; } static const struct seq_operations eraseblk_count_seq_ops = { .start = eraseblk_count_seq_start, .next = eraseblk_count_seq_next, .stop = eraseblk_count_seq_stop, .show = eraseblk_count_seq_show }; static int eraseblk_count_open(struct inode *inode, struct file *f) { struct seq_file *s; int err; err = seq_open(f, &eraseblk_count_seq_ops); if (err) return err; s = f->private_data; s->private = ubi_get_device((unsigned long)inode->i_private); if (!s->private) return -ENODEV; else return 0; } static int eraseblk_count_release(struct inode *inode, struct file *f) { struct seq_file *s = f->private_data; struct ubi_device *ubi = s->private; ubi_put_device(ubi); return seq_release(inode, f); } static const struct file_operations eraseblk_count_fops = { .owner = THIS_MODULE, .open = eraseblk_count_open, .read = seq_read, .llseek = seq_lseek, .release = eraseblk_count_release, }; /** * ubi_debugfs_init_dev - initialize debugfs for an UBI device. * @ubi: UBI device description object * * This function creates all debugfs files for UBI device @ubi. Returns zero in * case of success and a negative error code in case of failure. */ int ubi_debugfs_init_dev(struct ubi_device *ubi) { unsigned long ubi_num = ubi->ubi_num; struct ubi_debug_info *d = &ubi->dbg; umode_t mode = S_IRUSR | S_IWUSR; int n; if (!IS_ENABLED(CONFIG_DEBUG_FS)) return 0; n = snprintf(d->dfs_dir_name, UBI_DFS_DIR_LEN, UBI_DFS_DIR_NAME, ubi->ubi_num); if (n >= UBI_DFS_DIR_LEN) { /* The array size is too small */ return -EINVAL; } d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir); d->dfs_chk_gen = debugfs_create_file("chk_gen", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_chk_io = debugfs_create_file("chk_io", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_chk_fastmap = debugfs_create_file("chk_fastmap", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_disable_bgt = debugfs_create_file("tst_disable_bgt", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_emulate_bitflips = debugfs_create_file("tst_emulate_bitflips", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_emulate_io_failures = debugfs_create_file("tst_emulate_io_failures", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_emulate_power_cut = debugfs_create_file("tst_emulate_power_cut", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_power_cut_min = debugfs_create_file("tst_emulate_power_cut_min", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); d->dfs_power_cut_max = debugfs_create_file("tst_emulate_power_cut_max", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); debugfs_create_file("detailed_erase_block_info", S_IRUSR, d->dfs_dir, (void *)ubi_num, &eraseblk_count_fops); #ifdef CONFIG_MTD_UBI_FAULT_INJECTION d->dfs_emulate_failures = debugfs_create_file("emulate_failures", mode, d->dfs_dir, (void *)ubi_num, &dfs_fops); #endif return 0; } /** * ubi_debugfs_exit_dev - free all debugfs files corresponding to device @ubi * @ubi: UBI device description object */ void ubi_debugfs_exit_dev(struct ubi_device *ubi) { if (IS_ENABLED(CONFIG_DEBUG_FS)) debugfs_remove_recursive(ubi->dbg.dfs_dir); } /** * ubi_dbg_power_cut - emulate a power cut if it is time to do so * @ubi: UBI device description object * @caller: Flags set to indicate from where the function is being called * * Returns non-zero if a power cut was emulated, zero if not. */ int ubi_dbg_power_cut(struct ubi_device *ubi, int caller) { unsigned int range; if ((ubi->dbg.emulate_power_cut & caller) == 0) return 0; if (ubi->dbg.power_cut_counter == 0) { ubi->dbg.power_cut_counter = ubi->dbg.power_cut_min; if (ubi->dbg.power_cut_max > ubi->dbg.power_cut_min) { range = ubi->dbg.power_cut_max - ubi->dbg.power_cut_min; ubi->dbg.power_cut_counter += get_random_u32_below(range); } return 0; } ubi->dbg.power_cut_counter--; if (ubi->dbg.power_cut_counter) return 0; return 1; }
4 4 44 59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vmscan #if !defined(_TRACE_VMSCAN_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_VMSCAN_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <trace/events/mmflags.h> #define RECLAIM_WB_ANON 0x0001u #define RECLAIM_WB_FILE 0x0002u #define RECLAIM_WB_MIXED 0x0010u #define RECLAIM_WB_SYNC 0x0004u /* Unused, all reclaim async */ #define RECLAIM_WB_ASYNC 0x0008u #define RECLAIM_WB_LRU (RECLAIM_WB_ANON|RECLAIM_WB_FILE) #define show_reclaim_flags(flags) \ (flags) ? __print_flags(flags, "|", \ {RECLAIM_WB_ANON, "RECLAIM_WB_ANON"}, \ {RECLAIM_WB_FILE, "RECLAIM_WB_FILE"}, \ {RECLAIM_WB_MIXED, "RECLAIM_WB_MIXED"}, \ {RECLAIM_WB_SYNC, "RECLAIM_WB_SYNC"}, \ {RECLAIM_WB_ASYNC, "RECLAIM_WB_ASYNC"} \ ) : "RECLAIM_WB_NONE" #define _VMSCAN_THROTTLE_WRITEBACK (1 << VMSCAN_THROTTLE_WRITEBACK) #define _VMSCAN_THROTTLE_ISOLATED (1 << VMSCAN_THROTTLE_ISOLATED) #define _VMSCAN_THROTTLE_NOPROGRESS (1 << VMSCAN_THROTTLE_NOPROGRESS) #define _VMSCAN_THROTTLE_CONGESTED (1 << VMSCAN_THROTTLE_CONGESTED) #define show_throttle_flags(flags) \ (flags) ? __print_flags(flags, "|", \ {_VMSCAN_THROTTLE_WRITEBACK, "VMSCAN_THROTTLE_WRITEBACK"}, \ {_VMSCAN_THROTTLE_ISOLATED, "VMSCAN_THROTTLE_ISOLATED"}, \ {_VMSCAN_THROTTLE_NOPROGRESS, "VMSCAN_THROTTLE_NOPROGRESS"}, \ {_VMSCAN_THROTTLE_CONGESTED, "VMSCAN_THROTTLE_CONGESTED"} \ ) : "VMSCAN_THROTTLE_NONE" #define trace_reclaim_flags(file) ( \ (file ? RECLAIM_WB_FILE : RECLAIM_WB_ANON) | \ (RECLAIM_WB_ASYNC) \ ) TRACE_EVENT(mm_vmscan_kswapd_sleep, TP_PROTO(int nid), TP_ARGS(nid), TP_STRUCT__entry( __field( int, nid ) ), TP_fast_assign( __entry->nid = nid; ), TP_printk("nid=%d", __entry->nid) ); TRACE_EVENT(mm_vmscan_kswapd_wake, TP_PROTO(int nid, int zid, int order), TP_ARGS(nid, zid, order), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; ), TP_printk("nid=%d order=%d", __entry->nid, __entry->order) ); TRACE_EVENT(mm_vmscan_wakeup_kswapd, TP_PROTO(int nid, int zid, int order, gfp_t gfp_flags), TP_ARGS(nid, zid, order, gfp_flags), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) __field( unsigned long, gfp_flags ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; __entry->gfp_flags = (__force unsigned long)gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_begin_template, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags), TP_STRUCT__entry( __field( int, order ) __field( unsigned long, gfp_flags ) ), TP_fast_assign( __entry->order = order; __entry->gfp_flags = (__force unsigned long)gfp_flags; ), TP_printk("order=%d gfp_flags=%s", __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_direct_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_softlimit_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #endif /* CONFIG_MEMCG */ DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_end_template, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed), TP_STRUCT__entry( __field( unsigned long, nr_reclaimed ) ), TP_fast_assign( __entry->nr_reclaimed = nr_reclaimed; ), TP_printk("nr_reclaimed=%lu", __entry->nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_direct_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_softlimit_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* CONFIG_MEMCG */ TRACE_EVENT(mm_shrink_slab_start, TP_PROTO(struct shrinker *shr, struct shrink_control *sc, long nr_objects_to_shrink, unsigned long cache_items, unsigned long long delta, unsigned long total_scan, int priority), TP_ARGS(shr, sc, nr_objects_to_shrink, cache_items, delta, total_scan, priority), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(void *, shrink) __field(int, nid) __field(long, nr_objects_to_shrink) __field(unsigned long, gfp_flags) __field(unsigned long, cache_items) __field(unsigned long long, delta) __field(unsigned long, total_scan) __field(int, priority) ), TP_fast_assign( __entry->shr = shr; __entry->shrink = shr->scan_objects; __entry->nid = sc->nid; __entry->nr_objects_to_shrink = nr_objects_to_shrink; __entry->gfp_flags = (__force unsigned long)sc->gfp_mask; __entry->cache_items = cache_items; __entry->delta = delta; __entry->total_scan = total_scan; __entry->priority = priority; ), TP_printk("%pS %p: nid: %d objects to shrink %ld gfp_flags %s cache items %ld delta %lld total_scan %ld priority %d", __entry->shrink, __entry->shr, __entry->nid, __entry->nr_objects_to_shrink, show_gfp_flags(__entry->gfp_flags), __entry->cache_items, __entry->delta, __entry->total_scan, __entry->priority) ); TRACE_EVENT(mm_shrink_slab_end, TP_PROTO(struct shrinker *shr, int nid, int shrinker_retval, long unused_scan_cnt, long new_scan_cnt, long total_scan), TP_ARGS(shr, nid, shrinker_retval, unused_scan_cnt, new_scan_cnt, total_scan), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(int, nid) __field(void *, shrink) __field(long, unused_scan) __field(long, new_scan) __field(int, retval) __field(long, total_scan) ), TP_fast_assign( __entry->shr = shr; __entry->nid = nid; __entry->shrink = shr->scan_objects; __entry->unused_scan = unused_scan_cnt; __entry->new_scan = new_scan_cnt; __entry->retval = shrinker_retval; __entry->total_scan = total_scan; ), TP_printk("%pS %p: nid: %d unused scan count %ld new scan count %ld total_scan %ld last shrinker return val %d", __entry->shrink, __entry->shr, __entry->nid, __entry->unused_scan, __entry->new_scan, __entry->total_scan, __entry->retval) ); TRACE_EVENT(mm_vmscan_lru_isolate, TP_PROTO(int highest_zoneidx, int order, unsigned long nr_requested, unsigned long nr_scanned, unsigned long nr_skipped, unsigned long nr_taken, int lru), TP_ARGS(highest_zoneidx, order, nr_requested, nr_scanned, nr_skipped, nr_taken, lru), TP_STRUCT__entry( __field(int, highest_zoneidx) __field(int, order) __field(unsigned long, nr_requested) __field(unsigned long, nr_scanned) __field(unsigned long, nr_skipped) __field(unsigned long, nr_taken) __field(int, lru) ), TP_fast_assign( __entry->highest_zoneidx = highest_zoneidx; __entry->order = order; __entry->nr_requested = nr_requested; __entry->nr_scanned = nr_scanned; __entry->nr_skipped = nr_skipped; __entry->nr_taken = nr_taken; __entry->lru = lru; ), /* * classzone is previous name of the highest_zoneidx. * Reason not to change it is the ABI requirement of the tracepoint. */ TP_printk("classzone=%d order=%d nr_requested=%lu nr_scanned=%lu nr_skipped=%lu nr_taken=%lu lru=%s", __entry->highest_zoneidx, __entry->order, __entry->nr_requested, __entry->nr_scanned, __entry->nr_skipped, __entry->nr_taken, __print_symbolic(__entry->lru, LRU_NAMES)) ); TRACE_EVENT(mm_vmscan_write_folio, TP_PROTO(struct folio *folio), TP_ARGS(folio), TP_STRUCT__entry( __field(unsigned long, pfn) __field(int, reclaim_flags) ), TP_fast_assign( __entry->pfn = folio_pfn(folio); __entry->reclaim_flags = trace_reclaim_flags( folio_is_file_lru(folio)); ), TP_printk("page=%p pfn=0x%lx flags=%s", pfn_to_page(__entry->pfn), __entry->pfn, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_reclaim_pages, TP_PROTO(int nid, unsigned long nr_scanned, unsigned long nr_reclaimed, struct reclaim_stat *stat), TP_ARGS(nid, nr_scanned, nr_reclaimed, stat), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_scanned) __field(unsigned long, nr_reclaimed) __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, nr_congested) __field(unsigned long, nr_immediate) __field(unsigned int, nr_activate0) __field(unsigned int, nr_activate1) __field(unsigned long, nr_ref_keep) __field(unsigned long, nr_unmap_fail) ), TP_fast_assign( __entry->nid = nid; __entry->nr_scanned = nr_scanned; __entry->nr_reclaimed = nr_reclaimed; __entry->nr_dirty = stat->nr_dirty; __entry->nr_writeback = stat->nr_writeback; __entry->nr_congested = stat->nr_congested; __entry->nr_immediate = stat->nr_immediate; __entry->nr_activate0 = stat->nr_activate[0]; __entry->nr_activate1 = stat->nr_activate[1]; __entry->nr_ref_keep = stat->nr_ref_keep; __entry->nr_unmap_fail = stat->nr_unmap_fail; ), TP_printk("nid=%d nr_scanned=%ld nr_reclaimed=%ld nr_dirty=%ld nr_writeback=%ld nr_congested=%ld nr_immediate=%ld nr_activate_anon=%d nr_activate_file=%d nr_ref_keep=%ld nr_unmap_fail=%ld", __entry->nid, __entry->nr_scanned, __entry->nr_reclaimed, __entry->nr_dirty, __entry->nr_writeback, __entry->nr_congested, __entry->nr_immediate, __entry->nr_activate0, __entry->nr_activate1, __entry->nr_ref_keep, __entry->nr_unmap_fail) ); TRACE_EVENT(mm_vmscan_lru_shrink_inactive, TP_PROTO(int nid, unsigned long nr_scanned, unsigned long nr_reclaimed, struct reclaim_stat *stat, int priority, int file), TP_ARGS(nid, nr_scanned, nr_reclaimed, stat, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_scanned) __field(unsigned long, nr_reclaimed) __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, nr_congested) __field(unsigned long, nr_immediate) __field(unsigned int, nr_activate0) __field(unsigned int, nr_activate1) __field(unsigned long, nr_ref_keep) __field(unsigned long, nr_unmap_fail) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_scanned = nr_scanned; __entry->nr_reclaimed = nr_reclaimed; __entry->nr_dirty = stat->nr_dirty; __entry->nr_writeback = stat->nr_writeback; __entry->nr_congested = stat->nr_congested; __entry->nr_immediate = stat->nr_immediate; __entry->nr_activate0 = stat->nr_activate[0]; __entry->nr_activate1 = stat->nr_activate[1]; __entry->nr_ref_keep = stat->nr_ref_keep; __entry->nr_unmap_fail = stat->nr_unmap_fail; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_scanned=%ld nr_reclaimed=%ld nr_dirty=%ld nr_writeback=%ld nr_congested=%ld nr_immediate=%ld nr_activate_anon=%d nr_activate_file=%d nr_ref_keep=%ld nr_unmap_fail=%ld priority=%d flags=%s", __entry->nid, __entry->nr_scanned, __entry->nr_reclaimed, __entry->nr_dirty, __entry->nr_writeback, __entry->nr_congested, __entry->nr_immediate, __entry->nr_activate0, __entry->nr_activate1, __entry->nr_ref_keep, __entry->nr_unmap_fail, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_active, TP_PROTO(int nid, unsigned long nr_taken, unsigned long nr_active, unsigned long nr_deactivated, unsigned long nr_referenced, int priority, int file), TP_ARGS(nid, nr_taken, nr_active, nr_deactivated, nr_referenced, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_taken) __field(unsigned long, nr_active) __field(unsigned long, nr_deactivated) __field(unsigned long, nr_referenced) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_taken = nr_taken; __entry->nr_active = nr_active; __entry->nr_deactivated = nr_deactivated; __entry->nr_referenced = nr_referenced; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_taken=%ld nr_active=%ld nr_deactivated=%ld nr_referenced=%ld priority=%d flags=%s", __entry->nid, __entry->nr_taken, __entry->nr_active, __entry->nr_deactivated, __entry->nr_referenced, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_node_reclaim_begin, TP_PROTO(int nid, int order, gfp_t gfp_flags), TP_ARGS(nid, order, gfp_flags), TP_STRUCT__entry( __field(int, nid) __field(int, order) __field(unsigned long, gfp_flags) ), TP_fast_assign( __entry->nid = nid; __entry->order = order; __entry->gfp_flags = (__force unsigned long)gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_node_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); TRACE_EVENT(mm_vmscan_throttled, TP_PROTO(int nid, int usec_timeout, int usec_delayed, int reason), TP_ARGS(nid, usec_timeout, usec_delayed, reason), TP_STRUCT__entry( __field(int, nid) __field(int, usec_timeout) __field(int, usec_delayed) __field(int, reason) ), TP_fast_assign( __entry->nid = nid; __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; __entry->reason = 1U << reason; ), TP_printk("nid=%d usec_timeout=%d usect_delayed=%d reason=%s", __entry->nid, __entry->usec_timeout, __entry->usec_delayed, show_throttle_flags(__entry->reason)) ); #endif /* _TRACE_VMSCAN_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
16 25 14 14 3 1 4 9 9 6 17 5 6 27 7 11 102 14 94 19 19 10 18 11 11 11 29 29 29 28 29 29 10 33 3 10 10 7 7 161 106 103 29 75 488 482 18 18 18 1 8 18 11 11 18 18 16 490 487 491 18 16 16 16 16 6 473 489 488 26 26 26 7 7 7 7 7 7 7 7 7 2 7 7 6 1 7 7 7 19 19 18 18 10 18 18 18 18 18 17 18 18 1 18 19 18 19 7 18 18 18 18 17 3 45 2 32 15 10 26 26 26 26 26 3 26 25 27 5 5 21 14 18 15 14 14 2 14 17 17 51 15 39 50 15 38 10 43 52 7 7 6 10 5 5 1 4 7 17 7 10 4 6 14 12 26 26 26 5 2 1 1 1 1 1 1 7 43 42 41 43 43 43 42 1 1 10 9 1 8 9 31 31 7 6 1 6 31 31 31 31 31 6 13 6 15 17 17 2 16 17 1 16 11 16 10 16 16 16 15 15 16 5 18 2 16 13 8 18 16 16 16 2 16 14 14 17 18 16 16 5 6 18 17 18 16 17 15 16 17 16 6 17 17 16 16 15 17 18 18 18 17 1 1 1 16 3 15 16 16 5 6 11 10 11 5 6 11 11 10 17 4 14 12 14 3 11 7 6 13 1 14 13 13 13 13 13 1 2 1 1 1 7 7 6 7 7 6 7 24 24 24 24 1 7 7 7 6 17 17 17 17 17 17 16 17 11 11 17 17 17 17 7 14 14 17 5 17 7 7 7 7 7 7 2 7 5 7 7 7 7 7 2 1 3 1 11 9 1 10 10 1 5 3 9 1 5 9 2 3 3 4 6 6 1 1 1 1 1 3 1 2 2 3 2 1 1 1 2 1 1 1 1 1 4 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 2 2 3 3 1 1 2 2 2 2 3 3 2 1 1 1 1 1 2 6 1 1 4 2 2 1 2 2 2 4 1 1 2 5 5 5 10 5 5 9 116 118 1 114 110 8 8 1 5 1 1 3 1 2 10 7 10 3 7 50 38 11 1 1 14 13 6 20 20 21 21 21 21 21 21 14 7 7 9 7 1 30 57 1 30 35 32 15 34 14 35 9 25 25 25 24 25 24 21 22 8 8 8 2 8 19 19 2 19 1 9 8 2 2 19 17 19 10 10 1 9 10 19 19 19 10 9 9 9 10 10 19 1 2 8 19 4 15 18 19 10 18 19 10 19 9 10 16 3 18 1 3 1 2 2 2 3 3 1 1 2 2 2 7 6 3 6 6 6 6 6 4 2 5 1 1 3 2 1 3 14 14 14 14 14 14 14 6 12 14 14 14 14 14 10 10 1 9 1 8 2 9 10 1 10 4 6 10 8 10 10 10 10 7 7 7 5 5 1 5 5 5 5 5 5 5 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 521 2 4 6 2 1 470 7 481 480 477 476 471 1 6 3 1 2 4 1 5 5 7 473 472 2 473 2 479 481 7 476 2 2 2 471 2 470 474 474 475 466 5 6 475 14 14 14 6 2 4 4 4 4 3 3 3 3 3 3 419 419 418 416 1 340 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 /* * Generic process-grouping system. * * Based originally on the cpuset system, extracted by Paul Menage * Copyright (C) 2006 Google, Inc * * Notifications support * Copyright (C) 2009 Nokia Corporation * Author: Kirill A. Shutemov * * Copyright notices from the original cpuset code: * -------------------------------------------------- * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2006 Silicon Graphics, Inc. * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * --------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "cgroup-internal.h" #include <linux/bpf-cgroup.h> #include <linux/cred.h> #include <linux/errno.h> #include <linux/init_task.h> #include <linux/kernel.h> #include <linux/magic.h> #include <linux/mutex.h> #include <linux/mount.h> #include <linux/pagemap.h> #include <linux/proc_fs.h> #include <linux/rcupdate.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/percpu-rwsem.h> #include <linux/string.h> #include <linux/hashtable.h> #include <linux/idr.h> #include <linux/kthread.h> #include <linux/atomic.h> #include <linux/cpuset.h> #include <linux/proc_ns.h> #include <linux/nsproxy.h> #include <linux/file.h> #include <linux/fs_parser.h> #include <linux/sched/cputime.h> #include <linux/sched/deadline.h> #include <linux/psi.h> #include <net/sock.h> #define CREATE_TRACE_POINTS #include <trace/events/cgroup.h> #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ MAX_CFTYPE_NAME + 2) /* let's not notify more than 100 times per second */ #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) /* * To avoid confusing the compiler (and generating warnings) with code * that attempts to access what would be a 0-element array (i.e. sized * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this * constant expression can be added. */ #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) /* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * * css_set_lock protects task->cgroups pointer, the list of css_set * objects, and the chain of tasks off each css_set. * * These locks are exported if CONFIG_PROVE_RCU so that accessors in * cgroup.h can use them for lockdep annotations. */ DEFINE_MUTEX(cgroup_mutex); DEFINE_SPINLOCK(css_set_lock); #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP) EXPORT_SYMBOL_GPL(cgroup_mutex); EXPORT_SYMBOL_GPL(css_set_lock); #endif struct blocking_notifier_head cgroup_lifetime_notifier = BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier); DEFINE_SPINLOCK(trace_cgroup_path_lock); char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; static bool cgroup_debug __read_mostly; /* * Protects cgroup_idr and css_idr so that IDs can be released without * grabbing cgroup_mutex. */ static DEFINE_SPINLOCK(cgroup_idr_lock); /* * Protects cgroup_file->kn for !self csses. It synchronizes notifications * against file removal/re-creation across css hiding. */ static DEFINE_SPINLOCK(cgroup_file_kn_lock); DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); #define cgroup_assert_mutex_or_rcu_locked() \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ !lockdep_is_held(&cgroup_mutex), \ "cgroup_mutex or RCU read lock required"); /* * cgroup destruction makes heavy use of work items and there can be a lot * of concurrent destructions. Use a separate workqueue so that cgroup * destruction work items don't end up filling up max_active of system_wq * which may lead to deadlock. */ static struct workqueue_struct *cgroup_destroy_wq; /* generate an array of cgroup subsystem pointers */ #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, struct cgroup_subsys *cgroup_subsys[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS /* array of cgroup subsystem names */ #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, static const char *cgroup_subsys_name[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ #define SUBSYS(_x) \ DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); #include <linux/cgroup_subsys.h> #undef SUBSYS #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, static struct static_key_true *cgroup_subsys_enabled_key[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, static struct static_key_true *cgroup_subsys_on_dfl_key[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu); static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu); /* the default hierarchy */ struct cgroup_root cgrp_dfl_root = { .cgrp.self.rstat_cpu = &root_rstat_cpu, .cgrp.rstat_base_cpu = &root_rstat_base_cpu, }; EXPORT_SYMBOL_GPL(cgrp_dfl_root); /* * The default hierarchy always exists but is hidden until mounted for the * first time. This is for backward compatibility. */ bool cgrp_dfl_visible; /* some controllers are not supported in the default hierarchy */ static u16 cgrp_dfl_inhibit_ss_mask; /* some controllers are implicitly enabled on the default hierarchy */ static u16 cgrp_dfl_implicit_ss_mask; /* some controllers can be threaded on the default hierarchy */ static u16 cgrp_dfl_threaded_ss_mask; /* The list of hierarchy roots */ LIST_HEAD(cgroup_roots); static int cgroup_root_count; /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ static DEFINE_IDR(cgroup_hierarchy_idr); /* * Assign a monotonically increasing serial number to csses. It guarantees * cgroups with bigger numbers are newer than those with smaller numbers. * Also, as csses are always appended to the parent's ->children list, it * guarantees that sibling csses are always sorted in the ascending serial * number order on the list. Protected by cgroup_mutex. */ static u64 css_serial_nr_next = 1; /* * These bitmasks identify subsystems with specific features to avoid * having to do iterative checks repeatedly. */ static u16 have_fork_callback __read_mostly; static u16 have_exit_callback __read_mostly; static u16 have_release_callback __read_mostly; static u16 have_canfork_callback __read_mostly; static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); /* cgroup namespace for init task */ struct cgroup_namespace init_cgroup_ns = { .ns.count = REFCOUNT_INIT(2), .user_ns = &init_user_ns, .ns.ops = &cgroupns_operations, .ns.inum = PROC_CGROUP_INIT_INO, .root_cset = &init_css_set, }; static struct file_system_type cgroup2_fs_type; static struct cftype cgroup_base_files[]; static struct cftype cgroup_psi_files[]; /* cgroup optional features */ enum cgroup_opt_features { #ifdef CONFIG_PSI OPT_FEATURE_PRESSURE, #endif OPT_FEATURE_COUNT }; static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { #ifdef CONFIG_PSI "pressure", #endif }; static u16 cgroup_feature_disable_mask __read_mostly; static int cgroup_apply_control(struct cgroup *cgrp); static void cgroup_finalize_control(struct cgroup *cgrp, int ret); static void css_task_iter_skip(struct css_task_iter *it, struct task_struct *task); static int cgroup_destroy_locked(struct cgroup *cgrp); static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss); static void css_release(struct percpu_ref *ref); static void kill_css(struct cgroup_subsys_state *css); static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add); #ifdef CONFIG_DEBUG_CGROUP_REF #define CGROUP_REF_FN_ATTRS noinline #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); #include <linux/cgroup_refcnt.h> #endif /** * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID * @ssid: subsys ID of interest * * cgroup_subsys_enabled() can only be used with literal subsys names which * is fine for individual subsystems but unsuitable for cgroup core. This * is slower static_key_enabled() based test indexed by @ssid. */ bool cgroup_ssid_enabled(int ssid) { if (!CGROUP_HAS_SUBSYS_CONFIG) return false; return static_key_enabled(cgroup_subsys_enabled_key[ssid]); } /** * cgroup_on_dfl - test whether a cgroup is on the default hierarchy * @cgrp: the cgroup of interest * * The default hierarchy is the v2 interface of cgroup and this function * can be used to test whether a cgroup is on the default hierarchy for * cases where a subsystem should behave differently depending on the * interface version. * * List of changed behaviors: * * - Mount options "noprefix", "xattr", "clone_children", "release_agent" * and "name" are disallowed. * * - When mounting an existing superblock, mount options should match. * * - rename(2) is disallowed. * * - "tasks" is removed. Everything should be at process granularity. Use * "cgroup.procs" instead. * * - "cgroup.procs" is not sorted. pids will be unique unless they got * recycled in-between reads. * * - "release_agent" and "notify_on_release" are removed. Replacement * notification mechanism will be implemented. * * - "cgroup.clone_children" is removed. * * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup * and its descendants contain no task; otherwise, 1. The file also * generates kernfs notification which can be monitored through poll and * [di]notify when the value of the file changes. * * - cpuset: tasks will be kept in empty cpusets when hotplug happens and * take masks of ancestors with non-empty cpus/mems, instead of being * moved to an ancestor. * * - cpuset: a task can be moved into an empty cpuset, and again it takes * masks of ancestors. * * - blkcg: blk-throttle becomes properly hierarchical. */ bool cgroup_on_dfl(const struct cgroup *cgrp) { return cgrp->root == &cgrp_dfl_root; } /* IDR wrappers which synchronize using cgroup_idr_lock */ static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) { int ret; idr_preload(gfp_mask); spin_lock_bh(&cgroup_idr_lock); ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); spin_unlock_bh(&cgroup_idr_lock); idr_preload_end(); return ret; } static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) { void *ret; spin_lock_bh(&cgroup_idr_lock); ret = idr_replace(idr, ptr, id); spin_unlock_bh(&cgroup_idr_lock); return ret; } static void cgroup_idr_remove(struct idr *idr, int id) { spin_lock_bh(&cgroup_idr_lock); idr_remove(idr, id); spin_unlock_bh(&cgroup_idr_lock); } static bool cgroup_has_tasks(struct cgroup *cgrp) { return cgrp->nr_populated_csets; } static bool cgroup_is_threaded(struct cgroup *cgrp) { return cgrp->dom_cgrp != cgrp; } /* can @cgrp host both domain and threaded children? */ static bool cgroup_is_mixable(struct cgroup *cgrp) { /* * Root isn't under domain level resource control exempting it from * the no-internal-process constraint, so it can serve as a thread * root and a parent of resource domains at the same time. */ return !cgroup_parent(cgrp); } /* can @cgrp become a thread root? Should always be true for a thread root */ static bool cgroup_can_be_thread_root(struct cgroup *cgrp) { /* mixables don't care */ if (cgroup_is_mixable(cgrp)) return true; /* domain roots can't be nested under threaded */ if (cgroup_is_threaded(cgrp)) return false; /* can only have either domain or threaded children */ if (cgrp->nr_populated_domain_children) return false; /* and no domain controllers can be enabled */ if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) return false; return true; } /* is @cgrp root of a threaded subtree? */ static bool cgroup_is_thread_root(struct cgroup *cgrp) { /* thread root should be a domain */ if (cgroup_is_threaded(cgrp)) return false; /* a domain w/ threaded children is a thread root */ if (cgrp->nr_threaded_children) return true; /* * A domain which has tasks and explicit threaded controllers * enabled is a thread root. */ if (cgroup_has_tasks(cgrp) && (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) return true; return false; } /* a domain which isn't connected to the root w/o brekage can't be used */ static bool cgroup_is_valid_domain(struct cgroup *cgrp) { /* the cgroup itself can be a thread root */ if (cgroup_is_threaded(cgrp)) return false; /* but the ancestors can't be unless mixable */ while ((cgrp = cgroup_parent(cgrp))) { if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) return false; if (cgroup_is_threaded(cgrp)) return false; } return true; } /* subsystems visibly enabled on a cgroup */ static u16 cgroup_control(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); u16 root_ss_mask = cgrp->root->subsys_mask; if (parent) { u16 ss_mask = parent->subtree_control; /* threaded cgroups can only have threaded controllers */ if (cgroup_is_threaded(cgrp)) ss_mask &= cgrp_dfl_threaded_ss_mask; return ss_mask; } if (cgroup_on_dfl(cgrp)) root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | cgrp_dfl_implicit_ss_mask); return root_ss_mask; } /* subsystems enabled on a cgroup */ static u16 cgroup_ss_mask(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); if (parent) { u16 ss_mask = parent->subtree_ss_mask; /* threaded cgroups can only have threaded controllers */ if (cgroup_is_threaded(cgrp)) ss_mask &= cgrp_dfl_threaded_ss_mask; return ss_mask; } return cgrp->root->subsys_mask; } /** * cgroup_css - obtain a cgroup's css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This * function must be called either under cgroup_mutex or rcu_read_lock() and * the caller is responsible for pinning the returned css if it wants to * keep accessing it outside the said locks. This function may return * %NULL if @cgrp doesn't have @subsys_id enabled. */ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { if (CGROUP_HAS_SUBSYS_CONFIG && ss) return rcu_dereference_check(cgrp->subsys[ss->id], lockdep_is_held(&cgroup_mutex)); else return &cgrp->self; } /** * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * * Similar to cgroup_css() but returns the effective css, which is defined * as the matching css of the nearest ancestor including self which has @ss * enabled. If @ss is associated with the hierarchy @cgrp is on, this * function is guaranteed to return non-NULL css. */ static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, struct cgroup_subsys *ss) { lockdep_assert_held(&cgroup_mutex); if (!ss) return &cgrp->self; /* * This function is used while updating css associations and thus * can't test the csses directly. Test ss_mask. */ while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { cgrp = cgroup_parent(cgrp); if (!cgrp) return NULL; } return cgroup_css(cgrp, ss); } /** * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get the effective css of @cgrp for @ss. The effective css is * defined as the matching css of the nearest ancestor including self which * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, * the root css is returned, so this function always returns a valid css. * * The returned css is not guaranteed to be online, and therefore it is the * callers responsibility to try get a reference for it. */ struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; if (!CGROUP_HAS_SUBSYS_CONFIG) return NULL; do { css = cgroup_css(cgrp, ss); if (css) return css; cgrp = cgroup_parent(cgrp); } while (cgrp); return init_css_set.subsys[ss->id]; } /** * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get the effective css of @cgrp for @ss. The effective css is * defined as the matching css of the nearest ancestor including self which * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, * the root css is returned, so this function always returns a valid css. * The returned css must be put using css_put(). */ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; if (!CGROUP_HAS_SUBSYS_CONFIG) return NULL; rcu_read_lock(); do { css = cgroup_css(cgrp, ss); if (css && css_tryget_online(css)) goto out_unlock; cgrp = cgroup_parent(cgrp); } while (cgrp); css = init_css_set.subsys[ss->id]; css_get(css); out_unlock: rcu_read_unlock(); return css; } EXPORT_SYMBOL_GPL(cgroup_get_e_css); static void cgroup_get_live(struct cgroup *cgrp) { WARN_ON_ONCE(cgroup_is_dead(cgrp)); cgroup_get(cgrp); } /** * __cgroup_task_count - count the number of tasks in a cgroup. The caller * is responsible for taking the css_set_lock. * @cgrp: the cgroup in question */ int __cgroup_task_count(const struct cgroup *cgrp) { int count = 0; struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) count += link->cset->nr_tasks; return count; } /** * cgroup_task_count - count the number of tasks in a cgroup. * @cgrp: the cgroup in question */ int cgroup_task_count(const struct cgroup *cgrp) { int count; spin_lock_irq(&css_set_lock); count = __cgroup_task_count(cgrp); spin_unlock_irq(&css_set_lock); return count; } static struct cgroup *kn_priv(struct kernfs_node *kn) { struct kernfs_node *parent; /* * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT. * Therefore it is always safe to dereference this pointer outside of a * RCU section. */ parent = rcu_dereference_check(kn->__parent, kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT); return parent->priv; } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) { struct cgroup *cgrp = kn_priv(of->kn); struct cftype *cft = of_cft(of); /* * This is open and unprotected implementation of cgroup_css(). * seq_css() is only called from a kernfs file operation which has * an active reference on the file. Because all the subsystem * files are drained before a css is disassociated with a cgroup, * the matching css from the cgroup's subsys table is guaranteed to * be and stay valid until the enclosing operation is complete. */ if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); else return &cgrp->self; } EXPORT_SYMBOL_GPL(of_css); /** * for_each_css - iterate all css's of a cgroup * @css: the iteration cursor * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end * @cgrp: the target cgroup to iterate css's of * * Should be called under cgroup_mutex. */ #define for_each_css(css, ssid, cgrp) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ if (!((css) = rcu_dereference_check( \ (cgrp)->subsys[(ssid)], \ lockdep_is_held(&cgroup_mutex)))) { } \ else /** * do_each_subsys_mask - filter for_each_subsys with a bitmask * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end * @ss_mask: the bitmask * * The block will only run for cases where the ssid-th bit (1 << ssid) of * @ss_mask is set. */ #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ unsigned long __ss_mask = (ss_mask); \ if (!CGROUP_HAS_SUBSYS_CONFIG) { \ (ssid) = 0; \ break; \ } \ for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ (ss) = cgroup_subsys[ssid]; \ { #define while_each_subsys_mask() \ } \ } \ } while (false) /* iterate over child cgrps, lock should be held throughout iteration */ #define cgroup_for_each_live_child(child, cgrp) \ list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ if (({ lockdep_assert_held(&cgroup_mutex); \ cgroup_is_dead(child); })) \ ; \ else /* walk live descendants in pre order */ #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ (dsct) = (d_css)->cgroup; \ cgroup_is_dead(dsct); })) \ ; \ else /* walk live descendants in postorder */ #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ (dsct) = (d_css)->cgroup; \ cgroup_is_dead(dsct); })) \ ; \ else /* * The default css_set - used by init and its children prior to any * hierarchies being mounted. It contains a pointer to the root state * for each subsystem. Also used to anchor the list of css_sets. Not * reference-counted, to improve performance when child cgroups * haven't been created. */ struct css_set init_css_set = { .refcount = REFCOUNT_INIT(1), .dom_cset = &init_css_set, .tasks = LIST_HEAD_INIT(init_css_set.tasks), .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), /* * The following field is re-initialized when this cset gets linked * in cgroup_init(). However, let's initialize the field * statically too so that the default cgroup can be accessed safely * early during boot. */ .dfl_cgrp = &cgrp_dfl_root.cgrp, }; static int css_set_count = 1; /* 1 for init_css_set */ static bool css_set_threaded(struct css_set *cset) { return cset->dom_cset != cset; } /** * css_set_populated - does a css_set contain any tasks? * @cset: target css_set * * css_set_populated() should be the same as !!cset->nr_tasks at steady * state. However, css_set_populated() can be called while a task is being * added to or removed from the linked list before the nr_tasks is * properly updated. Hence, we can't just look at ->nr_tasks here. */ static bool css_set_populated(struct css_set *cset) { lockdep_assert_held(&css_set_lock); return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); } /** * cgroup_update_populated - update the populated count of a cgroup * @cgrp: the target cgroup * @populated: inc or dec populated count * * One of the css_sets associated with @cgrp is either getting its first * task or losing the last. Update @cgrp->nr_populated_* accordingly. The * count is propagated towards root so that a given cgroup's * nr_populated_children is zero iff none of its descendants contain any * tasks. * * @cgrp's interface file "cgroup.populated" is zero if both * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and * 1 otherwise. When the sum changes from or to zero, userland is notified * that the content of the interface file has changed. This can be used to * detect when @cgrp and its descendants become populated or empty. */ static void cgroup_update_populated(struct cgroup *cgrp, bool populated) { struct cgroup *child = NULL; int adj = populated ? 1 : -1; lockdep_assert_held(&css_set_lock); do { bool was_populated = cgroup_is_populated(cgrp); if (!child) { cgrp->nr_populated_csets += adj; } else { if (cgroup_is_threaded(child)) cgrp->nr_populated_threaded_children += adj; else cgrp->nr_populated_domain_children += adj; } if (was_populated == cgroup_is_populated(cgrp)) break; cgroup1_check_for_release(cgrp); TRACE_CGROUP_PATH(notify_populated, cgrp, cgroup_is_populated(cgrp)); cgroup_file_notify(&cgrp->events_file); child = cgrp; cgrp = cgroup_parent(cgrp); } while (cgrp); } /** * css_set_update_populated - update populated state of a css_set * @cset: target css_set * @populated: whether @cset is populated or depopulated * * @cset is either getting the first task or losing the last. Update the * populated counters of all associated cgroups accordingly. */ static void css_set_update_populated(struct css_set *cset, bool populated) { struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) cgroup_update_populated(link->cgrp, populated); } /* * @task is leaving, advance task iterators which are pointing to it so * that they can resume at the next position. Advancing an iterator might * remove it from the list, use safe walk. See css_task_iter_skip() for * details. */ static void css_set_skip_task_iters(struct css_set *cset, struct task_struct *task) { struct css_task_iter *it, *pos; list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) css_task_iter_skip(it, task); } /** * css_set_move_task - move a task from one css_set to another * @task: task being moved * @from_cset: css_set @task currently belongs to (may be NULL) * @to_cset: new css_set @task is being moved to (may be NULL) * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks * * Move @task from @from_cset to @to_cset. If @task didn't belong to any * css_set, @from_cset can be NULL. If @task is being disassociated * instead of moved, @to_cset can be NULL. * * This function automatically handles populated counter updates and * css_task_iter adjustments but the caller is responsible for managing * @from_cset and @to_cset's reference counts. */ static void css_set_move_task(struct task_struct *task, struct css_set *from_cset, struct css_set *to_cset, bool use_mg_tasks) { lockdep_assert_held(&css_set_lock); if (to_cset && !css_set_populated(to_cset)) css_set_update_populated(to_cset, true); if (from_cset) { WARN_ON_ONCE(list_empty(&task->cg_list)); css_set_skip_task_iters(from_cset, task); list_del_init(&task->cg_list); if (!css_set_populated(from_cset)) css_set_update_populated(from_cset, false); } else { WARN_ON_ONCE(!list_empty(&task->cg_list)); } if (to_cset) { /* * We are synchronized through cgroup_threadgroup_rwsem * against PF_EXITING setting such that we can't race * against cgroup_exit()/cgroup_free() dropping the css_set. */ WARN_ON_ONCE(task->flags & PF_EXITING); cgroup_move_task(task, to_cset); list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : &to_cset->tasks); } } /* * hash table for cgroup groups. This improves the performance to find * an existing css_set. This hash doesn't (currently) take into * account cgroups in empty hierarchies. */ #define CSS_SET_HASH_BITS 7 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); static unsigned long css_set_hash(struct cgroup_subsys_state **css) { unsigned long key = 0UL; struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) key += (unsigned long)css[i]; key = (key >> 16) ^ key; return key; } void put_css_set_locked(struct css_set *cset) { struct cgrp_cset_link *link, *tmp_link; struct cgroup_subsys *ss; int ssid; lockdep_assert_held(&css_set_lock); if (!refcount_dec_and_test(&cset->refcount)) return; WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); /* This css_set is dead. Unlink it and release cgroup and css refs */ for_each_subsys(ss, ssid) { list_del(&cset->e_cset_node[ssid]); css_put(cset->subsys[ssid]); } hash_del(&cset->hlist); css_set_count--; list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); if (cgroup_parent(link->cgrp)) cgroup_put(link->cgrp); kfree(link); } if (css_set_threaded(cset)) { list_del(&cset->threaded_csets_node); put_css_set_locked(cset->dom_cset); } kfree_rcu(cset, rcu_head); } /** * compare_css_sets - helper function for find_existing_css_set(). * @cset: candidate css_set being tested * @old_cset: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * * Returns true if "cset" matches "old_cset" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ static bool compare_css_sets(struct css_set *cset, struct css_set *old_cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct cgroup *new_dfl_cgrp; struct list_head *l1, *l2; /* * On the default hierarchy, there can be csets which are * associated with the same set of cgroups but different csses. * Let's first ensure that csses match. */ if (memcmp(template, cset->subsys, sizeof(cset->subsys))) return false; /* @cset's domain should match the default cgroup's */ if (cgroup_on_dfl(new_cgrp)) new_dfl_cgrp = new_cgrp; else new_dfl_cgrp = old_cset->dfl_cgrp; if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) return false; /* * Compare cgroup pointers in order to distinguish between * different cgroups in hierarchies. As different cgroups may * share the same effective css, this comparison is always * necessary. */ l1 = &cset->cgrp_links; l2 = &old_cset->cgrp_links; while (1) { struct cgrp_cset_link *link1, *link2; struct cgroup *cgrp1, *cgrp2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ if (l1 == &cset->cgrp_links) { BUG_ON(l2 != &old_cset->cgrp_links); break; } else { BUG_ON(l2 == &old_cset->cgrp_links); } /* Locate the cgroups associated with these links. */ link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); cgrp1 = link1->cgrp; cgrp2 = link2->cgrp; /* Hierarchies should be linked in the same order. */ BUG_ON(cgrp1->root != cgrp2->root); /* * If this hierarchy is the hierarchy of the cgroup * that's changing, then we need to check that this * css_set points to the new cgroup; if it's any other * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ if (cgrp1->root == new_cgrp->root) { if (cgrp1 != new_cgrp) return false; } else { if (cgrp1 != cgrp2) return false; } } return true; } /** * find_existing_css_set - init css array and find the matching css_set * @old_cset: the css_set that we're using before the cgroup transition * @cgrp: the cgroup that we're moving into * @template: out param for the new set of csses, should be clear on entry */ static struct css_set *find_existing_css_set(struct css_set *old_cset, struct cgroup *cgrp, struct cgroup_subsys_state **template) { struct cgroup_root *root = cgrp->root; struct cgroup_subsys *ss; struct css_set *cset; unsigned long key; int i; /* * Build the set of subsystem state objects that we want to see in the * new css_set. While subsystems can change globally, the entries here * won't change, so no need for locking. */ for_each_subsys(ss, i) { if (root->subsys_mask & (1UL << i)) { /* * @ss is in this hierarchy, so we want the * effective css from @cgrp. */ template[i] = cgroup_e_css_by_mask(cgrp, ss); } else { /* * @ss is not in this hierarchy, so we don't want * to change the css. */ template[i] = old_cset->subsys[i]; } } key = css_set_hash(template); hash_for_each_possible(css_set_table, cset, hlist, key) { if (!compare_css_sets(cset, old_cset, cgrp, template)) continue; /* This css_set matches what we need */ return cset; } /* No existing cgroup group matched */ return NULL; } static void free_cgrp_cset_links(struct list_head *links_to_free) { struct cgrp_cset_link *link, *tmp_link; list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { list_del(&link->cset_link); kfree(link); } } /** * allocate_cgrp_cset_links - allocate cgrp_cset_links * @count: the number of links to allocate * @tmp_links: list_head the allocated links are put on * * Allocate @count cgrp_cset_link structures and chain them on @tmp_links * through ->cset_link. Returns 0 on success or -errno. */ static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) { struct cgrp_cset_link *link; int i; INIT_LIST_HEAD(tmp_links); for (i = 0; i < count; i++) { link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { free_cgrp_cset_links(tmp_links); return -ENOMEM; } list_add(&link->cset_link, tmp_links); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() * @cset: the css_set to be linked * @cgrp: the destination cgroup */ static void link_css_set(struct list_head *tmp_links, struct css_set *cset, struct cgroup *cgrp) { struct cgrp_cset_link *link; BUG_ON(list_empty(tmp_links)); if (cgroup_on_dfl(cgrp)) cset->dfl_cgrp = cgrp; link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); link->cset = cset; link->cgrp = cgrp; /* * Always add links to the tail of the lists so that the lists are * in chronological order. */ list_move_tail(&link->cset_link, &cgrp->cset_links); list_add_tail(&link->cgrp_link, &cset->cgrp_links); if (cgroup_parent(cgrp)) cgroup_get_live(cgrp); } /** * find_css_set - return a new css_set with one cgroup updated * @old_cset: the baseline css_set * @cgrp: the cgroup to be updated * * Return a new css_set that's equivalent to @old_cset, but with @cgrp * substituted into the appropriate hierarchy. */ static struct css_set *find_css_set(struct css_set *old_cset, struct cgroup *cgrp) { struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; struct css_set *cset; struct list_head tmp_links; struct cgrp_cset_link *link; struct cgroup_subsys *ss; unsigned long key; int ssid; lockdep_assert_held(&cgroup_mutex); /* First see if we already have a cgroup group that matches * the desired set */ spin_lock_irq(&css_set_lock); cset = find_existing_css_set(old_cset, cgrp, template); if (cset) get_css_set(cset); spin_unlock_irq(&css_set_lock); if (cset) return cset; cset = kzalloc(sizeof(*cset), GFP_KERNEL); if (!cset) return NULL; /* Allocate all the cgrp_cset_link objects that we'll need */ if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { kfree(cset); return NULL; } refcount_set(&cset->refcount, 1); cset->dom_cset = cset; INIT_LIST_HEAD(&cset->tasks); INIT_LIST_HEAD(&cset->mg_tasks); INIT_LIST_HEAD(&cset->dying_tasks); INIT_LIST_HEAD(&cset->task_iters); INIT_LIST_HEAD(&cset->threaded_csets); INIT_HLIST_NODE(&cset->hlist); INIT_LIST_HEAD(&cset->cgrp_links); INIT_LIST_HEAD(&cset->mg_src_preload_node); INIT_LIST_HEAD(&cset->mg_dst_preload_node); INIT_LIST_HEAD(&cset->mg_node); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ memcpy(cset->subsys, template, sizeof(cset->subsys)); spin_lock_irq(&css_set_lock); /* Add reference counts and links from the new css_set. */ list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == cgrp->root) c = cgrp; link_css_set(&tmp_links, cset, c); } BUG_ON(!list_empty(&tmp_links)); css_set_count++; /* Add @cset to the hash table */ key = css_set_hash(cset->subsys); hash_add(css_set_table, &cset->hlist, key); for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cset->subsys[ssid]; list_add_tail(&cset->e_cset_node[ssid], &css->cgroup->e_csets[ssid]); css_get(css); } spin_unlock_irq(&css_set_lock); /* * If @cset should be threaded, look up the matching dom_cset and * link them up. We first fully initialize @cset then look for the * dom_cset. It's simpler this way and safe as @cset is guaranteed * to stay empty until we return. */ if (cgroup_is_threaded(cset->dfl_cgrp)) { struct css_set *dcset; dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); if (!dcset) { put_css_set(cset); return NULL; } spin_lock_irq(&css_set_lock); cset->dom_cset = dcset; list_add_tail(&cset->threaded_csets_node, &dcset->threaded_csets); spin_unlock_irq(&css_set_lock); } return cset; } struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) { struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; return root_cgrp->root; } void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) { bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ if (favor && !favoring) { rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); root->flags |= CGRP_ROOT_FAVOR_DYNMODS; } else if (!favor && favoring) { rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; } } static int cgroup_init_root_id(struct cgroup_root *root) { int id; lockdep_assert_held(&cgroup_mutex); id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); if (id < 0) return id; root->hierarchy_id = id; return 0; } static void cgroup_exit_root_id(struct cgroup_root *root) { lockdep_assert_held(&cgroup_mutex); idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); } void cgroup_free_root(struct cgroup_root *root) { kfree_rcu(root, rcu); } static void cgroup_destroy_root(struct cgroup_root *root) { struct cgroup *cgrp = &root->cgrp; struct cgrp_cset_link *link, *tmp_link; int ret; trace_cgroup_destroy_root(root); cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); BUG_ON(atomic_read(&root->nr_cgrps)); BUG_ON(!list_empty(&cgrp->self.children)); ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, CGROUP_LIFETIME_OFFLINE, cgrp); WARN_ON_ONCE(notifier_to_errno(ret)); /* Rebind all subsystems back to the default hierarchy */ WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); /* * Release all the links from cset_links to this hierarchy's * root cgroup */ spin_lock_irq(&css_set_lock); list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); kfree(link); } spin_unlock_irq(&css_set_lock); WARN_ON_ONCE(list_empty(&root->root_list)); list_del_rcu(&root->root_list); cgroup_root_count--; if (!have_favordynmods) cgroup_favor_dynmods(root, false); cgroup_exit_root_id(root); cgroup_unlock(); kernfs_destroy_root(root->kf_root); cgroup_free_root(root); } /* * Returned cgroup is without refcount but it's valid as long as cset pins it. */ static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, struct cgroup_root *root) { struct cgroup *res_cgroup = NULL; if (cset == &init_css_set) { res_cgroup = &root->cgrp; } else if (root == &cgrp_dfl_root) { res_cgroup = cset->dfl_cgrp; } else { struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == root) { res_cgroup = c; break; } } } /* * If cgroup_mutex is not held, the cgrp_cset_link will be freed * before we remove the cgroup root from the root_list. Consequently, * when accessing a cgroup root, the cset_link may have already been * freed, resulting in a NULL res_cgroup. However, by holding the * cgroup_mutex, we ensure that res_cgroup can't be NULL. * If we don't hold cgroup_mutex in the caller, we must do the NULL * check. */ return res_cgroup; } /* * look up cgroup associated with current task's cgroup namespace on the * specified hierarchy */ static struct cgroup * current_cgns_cgroup_from_root(struct cgroup_root *root) { struct cgroup *res = NULL; struct css_set *cset; lockdep_assert_held(&css_set_lock); rcu_read_lock(); cset = current->nsproxy->cgroup_ns->root_cset; res = __cset_cgroup_from_root(cset, root); rcu_read_unlock(); /* * The namespace_sem is held by current, so the root cgroup can't * be umounted. Therefore, we can ensure that the res is non-NULL. */ WARN_ON_ONCE(!res); return res; } /* * Look up cgroup associated with current task's cgroup namespace on the default * hierarchy. * * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu * pointers. * - css_set_lock is not needed because we just read cset->dfl_cgrp. * - As a bonus returned cgrp is pinned with the current because it cannot * switch cgroup_ns asynchronously. */ static struct cgroup *current_cgns_cgroup_dfl(void) { struct css_set *cset; if (current->nsproxy) { cset = current->nsproxy->cgroup_ns->root_cset; return __cset_cgroup_from_root(cset, &cgrp_dfl_root); } else { /* * NOTE: This function may be called from bpf_cgroup_from_id() * on a task which has already passed exit_task_namespaces() and * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all * cgroups visible for lookups. */ return &cgrp_dfl_root.cgrp; } } /* look up cgroup associated with given css_set on the specified hierarchy */ static struct cgroup *cset_cgroup_from_root(struct css_set *cset, struct cgroup_root *root) { lockdep_assert_held(&css_set_lock); return __cset_cgroup_from_root(cset, root); } /* * Return the cgroup for "task" from the given hierarchy. Must be * called with css_set_lock held to prevent task's groups from being modified. * Must be called with either cgroup_mutex or rcu read lock to prevent the * cgroup root from being destroyed. */ struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root) { /* * No need to lock the task - since we hold css_set_lock the * task can't change groups. */ return cset_cgroup_from_root(task_css_set(task), root); } /* * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. * So in general, code holding cgroup_mutex can't rely on the count * field not changing. However, if the count goes to zero, then only * cgroup_attach_task() can increment it again. Because a count of zero * means that no tasks are currently attached, therefore there is no * way a task attached to that cgroup can fork (the other way to * increment the count). So code holding cgroup_mutex can safely * assume that if the count is zero, it will stay zero. Similarly, if * a task holds cgroup_mutex on a cgroup with zero count, it * knows that the cgroup won't be removed, as cgroup_rmdir() * needs that mutex. * * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at * least one task in the system (init, pid == 1), therefore, root cgroup * always has either children cgroups and/or using tasks. So we don't * need a special hack to ensure that root cgroup cannot be deleted. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ static struct kernfs_syscall_ops cgroup_kf_syscall_ops; static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, char *buf) { struct cgroup_subsys *ss = cft->ss; if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, cft->name); } else { strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); } return buf; } /** * cgroup_file_mode - deduce file mode of a control file * @cft: the control file in question * * S_IRUGO for read, S_IWUSR for write. */ static umode_t cgroup_file_mode(const struct cftype *cft) { umode_t mode = 0; if (cft->read_u64 || cft->read_s64 || cft->seq_show) mode |= S_IRUGO; if (cft->write_u64 || cft->write_s64 || cft->write) { if (cft->flags & CFTYPE_WORLD_WRITABLE) mode |= S_IWUGO; else mode |= S_IWUSR; } return mode; } /** * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask * @subtree_control: the new subtree_control mask to consider * @this_ss_mask: available subsystems * * On the default hierarchy, a subsystem may request other subsystems to be * enabled together through its ->depends_on mask. In such cases, more * subsystems than specified in "cgroup.subtree_control" may be enabled. * * This function calculates which subsystems need to be enabled if * @subtree_control is to be applied while restricted to @this_ss_mask. */ static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) { u16 cur_ss_mask = subtree_control; struct cgroup_subsys *ss; int ssid; lockdep_assert_held(&cgroup_mutex); cur_ss_mask |= cgrp_dfl_implicit_ss_mask; while (true) { u16 new_ss_mask = cur_ss_mask; do_each_subsys_mask(ss, ssid, cur_ss_mask) { new_ss_mask |= ss->depends_on; } while_each_subsys_mask(); /* * Mask out subsystems which aren't available. This can * happen only if some depended-upon subsystems were bound * to non-default hierarchies. */ new_ss_mask &= this_ss_mask; if (new_ss_mask == cur_ss_mask) break; cur_ss_mask = new_ss_mask; } return cur_ss_mask; } /** * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods * @kn: the kernfs_node being serviced * * This helper undoes cgroup_kn_lock_live() and should be invoked before * the method finishes if locking succeeded. Note that once this function * returns the cgroup returned by cgroup_kn_lock_live() may become * inaccessible any time. If the caller intends to continue to access the * cgroup, it should pin it before invoking this function. */ void cgroup_kn_unlock(struct kernfs_node *kn) { struct cgroup *cgrp; if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else cgrp = kn_priv(kn); cgroup_unlock(); kernfs_unbreak_active_protection(kn); cgroup_put(cgrp); } /** * cgroup_kn_lock_live - locking helper for cgroup kernfs methods * @kn: the kernfs_node being serviced * @drain_offline: perform offline draining on the cgroup * * This helper is to be used by a cgroup kernfs method currently servicing * @kn. It breaks the active protection, performs cgroup locking and * verifies that the associated cgroup is alive. Returns the cgroup if * alive; otherwise, %NULL. A successful return should be undone by a * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the * cgroup is drained of offlining csses before return. * * Any cgroup kernfs method implementation which requires locking the * associated cgroup should use this helper. It avoids nesting cgroup * locking under kernfs active protection and allows all kernfs operations * including self-removal. */ struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) { struct cgroup *cgrp; if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else cgrp = kn_priv(kn); /* * We're gonna grab cgroup_mutex which nests outside kernfs * active_ref. cgroup liveliness check alone provides enough * protection against removal. Ensure @cgrp stays accessible and * break the active_ref protection. */ if (!cgroup_tryget(cgrp)) return NULL; kernfs_break_active_protection(kn); if (drain_offline) cgroup_lock_and_drain_offline(cgrp); else cgroup_lock(); if (!cgroup_is_dead(cgrp)) return cgrp; cgroup_kn_unlock(kn); return NULL; } static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) { char name[CGROUP_FILE_NAME_MAX]; lockdep_assert_held(&cgroup_mutex); if (cft->file_offset) { struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); struct cgroup_file *cfile = (void *)css + cft->file_offset; spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = NULL; spin_unlock_irq(&cgroup_file_kn_lock); timer_delete_sync(&cfile->notify_timer); } kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); } /** * css_clear_dir - remove subsys files in a cgroup directory * @css: target css */ static void css_clear_dir(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; struct cftype *cfts; if (!(css->flags & CSS_VISIBLE)) return; css->flags &= ~CSS_VISIBLE; if (css_is_self(css)) { if (cgroup_on_dfl(cgrp)) { cgroup_addrm_files(css, cgrp, cgroup_base_files, false); if (cgroup_psi_enabled()) cgroup_addrm_files(css, cgrp, cgroup_psi_files, false); } else { cgroup_addrm_files(css, cgrp, cgroup1_base_files, false); } } else { list_for_each_entry(cfts, &css->ss->cfts, node) cgroup_addrm_files(css, cgrp, cfts, false); } } /** * css_populate_dir - create subsys files in a cgroup directory * @css: target css * * On failure, no file is added. */ static int css_populate_dir(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; struct cftype *cfts, *failed_cfts; int ret; if (css->flags & CSS_VISIBLE) return 0; if (css_is_self(css)) { if (cgroup_on_dfl(cgrp)) { ret = cgroup_addrm_files(css, cgrp, cgroup_base_files, true); if (ret < 0) return ret; if (cgroup_psi_enabled()) { ret = cgroup_addrm_files(css, cgrp, cgroup_psi_files, true); if (ret < 0) { cgroup_addrm_files(css, cgrp, cgroup_base_files, false); return ret; } } } else { ret = cgroup_addrm_files(css, cgrp, cgroup1_base_files, true); if (ret < 0) return ret; } } else { list_for_each_entry(cfts, &css->ss->cfts, node) { ret = cgroup_addrm_files(css, cgrp, cfts, true); if (ret < 0) { failed_cfts = cfts; goto err; } } } css->flags |= CSS_VISIBLE; return 0; err: list_for_each_entry(cfts, &css->ss->cfts, node) { if (cfts == failed_cfts) break; cgroup_addrm_files(css, cgrp, cfts, false); } return ret; } int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) { struct cgroup *dcgrp = &dst_root->cgrp; struct cgroup_subsys *ss; int ssid, ret; u16 dfl_disable_ss_mask = 0; lockdep_assert_held(&cgroup_mutex); do_each_subsys_mask(ss, ssid, ss_mask) { /* * If @ss has non-root csses attached to it, can't move. * If @ss is an implicit controller, it is exempt from this * rule and can be stolen. */ if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && !ss->implicit_on_dfl) return -EBUSY; /* can't move between two non-dummy roots either */ if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) return -EBUSY; /* * Collect ssid's that need to be disabled from default * hierarchy. */ if (ss->root == &cgrp_dfl_root) dfl_disable_ss_mask |= 1 << ssid; } while_each_subsys_mask(); if (dfl_disable_ss_mask) { struct cgroup *scgrp = &cgrp_dfl_root.cgrp; /* * Controllers from default hierarchy that need to be rebound * are all disabled together in one go. */ cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; WARN_ON(cgroup_apply_control(scgrp)); cgroup_finalize_control(scgrp, 0); } do_each_subsys_mask(ss, ssid, ss_mask) { struct cgroup_root *src_root = ss->root; struct cgroup *scgrp = &src_root->cgrp; struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); struct css_set *cset, *cset_pos; struct css_task_iter *it; WARN_ON(!css || cgroup_css(dcgrp, ss)); if (src_root != &cgrp_dfl_root) { /* disable from the source */ src_root->subsys_mask &= ~(1 << ssid); WARN_ON(cgroup_apply_control(scgrp)); cgroup_finalize_control(scgrp, 0); } /* rebind */ RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); rcu_assign_pointer(dcgrp->subsys[ssid], css); ss->root = dst_root; spin_lock_irq(&css_set_lock); css->cgroup = dcgrp; WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], e_cset_node[ss->id]) { list_move_tail(&cset->e_cset_node[ss->id], &dcgrp->e_csets[ss->id]); /* * all css_sets of scgrp together in same order to dcgrp, * patch in-flight iterators to preserve correct iteration. * since the iterator is always advanced right away and * finished when it->cset_pos meets it->cset_head, so only * update it->cset_head is enough here. */ list_for_each_entry(it, &cset->task_iters, iters_node) if (it->cset_head == &scgrp->e_csets[ss->id]) it->cset_head = &dcgrp->e_csets[ss->id]; } spin_unlock_irq(&css_set_lock); /* default hierarchy doesn't enable controllers by default */ dst_root->subsys_mask |= 1 << ssid; if (dst_root == &cgrp_dfl_root) { static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); } else { dcgrp->subtree_control |= 1 << ssid; static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); } ret = cgroup_apply_control(dcgrp); if (ret) pr_warn("partial failure to rebind %s controller (err=%d)\n", ss->name, ret); if (ss->bind) ss->bind(css); } while_each_subsys_mask(); kernfs_activate(dcgrp->kn); return 0; } int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root) { int len = 0; char *buf = NULL; struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); struct cgroup *ns_cgroup; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) return -ENOMEM; spin_lock_irq(&css_set_lock); ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); spin_unlock_irq(&css_set_lock); if (len == -E2BIG) len = -ERANGE; else if (len > 0) { seq_escape(sf, buf, " \t\n\\"); len = 0; } kfree(buf); return len; } enum cgroup2_param { Opt_nsdelegate, Opt_favordynmods, Opt_memory_localevents, Opt_memory_recursiveprot, Opt_memory_hugetlb_accounting, Opt_pids_localevents, nr__cgroup2_params }; static const struct fs_parameter_spec cgroup2_fs_parameters[] = { fsparam_flag("nsdelegate", Opt_nsdelegate), fsparam_flag("favordynmods", Opt_favordynmods), fsparam_flag("memory_localevents", Opt_memory_localevents), fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), fsparam_flag("pids_localevents", Opt_pids_localevents), {} }; static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct fs_parse_result result; int opt; opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_nsdelegate: ctx->flags |= CGRP_ROOT_NS_DELEGATE; return 0; case Opt_favordynmods: ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; return 0; case Opt_memory_localevents: ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; return 0; case Opt_memory_recursiveprot: ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; return 0; case Opt_memory_hugetlb_accounting: ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; return 0; case Opt_pids_localevents: ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; return 0; } return -EINVAL; } struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) { struct cgroup_file_ctx *ctx = of->priv; return &ctx->peak; } static void apply_cgroup_root_flags(unsigned int root_flags) { if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { if (root_flags & CGRP_ROOT_NS_DELEGATE) cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; else cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; cgroup_favor_dynmods(&cgrp_dfl_root, root_flags & CGRP_ROOT_FAVOR_DYNMODS); if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; else cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; else cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; else cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; else cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; } } static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) { if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) seq_puts(seq, ",nsdelegate"); if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) seq_puts(seq, ",favordynmods"); if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) seq_puts(seq, ",memory_localevents"); if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) seq_puts(seq, ",memory_recursiveprot"); if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) seq_puts(seq, ",memory_hugetlb_accounting"); if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) seq_puts(seq, ",pids_localevents"); return 0; } static int cgroup_reconfigure(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); apply_cgroup_root_flags(ctx->flags); return 0; } static void init_cgroup_housekeeping(struct cgroup *cgrp) { struct cgroup_subsys *ss; int ssid; INIT_LIST_HEAD(&cgrp->self.sibling); INIT_LIST_HEAD(&cgrp->self.children); INIT_LIST_HEAD(&cgrp->cset_links); INIT_LIST_HEAD(&cgrp->pidlists); mutex_init(&cgrp->pidlist_mutex); cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE; cgrp->dom_cgrp = cgrp; cgrp->max_descendants = INT_MAX; cgrp->max_depth = INT_MAX; prev_cputime_init(&cgrp->prev_cputime); for_each_subsys(ss, ssid) INIT_LIST_HEAD(&cgrp->e_csets[ssid]); #ifdef CONFIG_CGROUP_BPF for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++) cgrp->bpf.revisions[i] = 1; #endif init_waitqueue_head(&cgrp->offline_waitq); INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); } void init_cgroup_root(struct cgroup_fs_context *ctx) { struct cgroup_root *root = ctx->root; struct cgroup *cgrp = &root->cgrp; INIT_LIST_HEAD_RCU(&root->root_list); atomic_set(&root->nr_cgrps, 1); cgrp->root = root; init_cgroup_housekeeping(cgrp); /* DYNMODS must be modified through cgroup_favor_dynmods() */ root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; if (ctx->release_agent) strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); if (ctx->name) strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); if (ctx->cpuset_clone_children) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); } int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) { LIST_HEAD(tmp_links); struct cgroup *root_cgrp = &root->cgrp; struct kernfs_syscall_ops *kf_sops; struct css_set *cset; int i, ret; lockdep_assert_held(&cgroup_mutex); ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, GFP_KERNEL); if (ret) goto out; /* * We're accessing css_set_count without locking css_set_lock here, * but that's OK - it can only be increased by someone holding * cgroup_lock, and that's us. Later rebinding may disable * controllers on the default hierarchy and thus create new csets, * which can't be more than the existing ones. Allocate 2x. */ ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); if (ret) goto cancel_ref; ret = cgroup_init_root_id(root); if (ret) goto cancel_ref; kf_sops = root == &cgrp_dfl_root ? &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; root->kf_root = kernfs_create_root(kf_sops, KERNFS_ROOT_CREATE_DEACTIVATED | KERNFS_ROOT_SUPPORT_EXPORTOP | KERNFS_ROOT_SUPPORT_USER_XATTR | KERNFS_ROOT_INVARIANT_PARENT, root_cgrp); if (IS_ERR(root->kf_root)) { ret = PTR_ERR(root->kf_root); goto exit_root_id; } root_cgrp->kn = kernfs_root_to_node(root->kf_root); WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); root_cgrp->ancestors[0] = root_cgrp; ret = css_populate_dir(&root_cgrp->self); if (ret) goto destroy_root; ret = css_rstat_init(&root_cgrp->self); if (ret) goto destroy_root; ret = rebind_subsystems(root, ss_mask); if (ret) goto exit_stats; ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, CGROUP_LIFETIME_ONLINE, root_cgrp); WARN_ON_ONCE(notifier_to_errno(ret)); trace_cgroup_setup_root(root); /* * There must be no failure case after here, since rebinding takes * care of subsystems' refcounts, which are explicitly dropped in * the failure exit path. */ list_add_rcu(&root->root_list, &cgroup_roots); cgroup_root_count++; /* * Link the root cgroup in this hierarchy into all the css_set * objects. */ spin_lock_irq(&css_set_lock); hash_for_each(css_set_table, i, cset, hlist) { link_css_set(&tmp_links, cset, root_cgrp); if (css_set_populated(cset)) cgroup_update_populated(root_cgrp, true); } spin_unlock_irq(&css_set_lock); BUG_ON(!list_empty(&root_cgrp->self.children)); BUG_ON(atomic_read(&root->nr_cgrps) != 1); ret = 0; goto out; exit_stats: css_rstat_exit(&root_cgrp->self); destroy_root: kernfs_destroy_root(root->kf_root); root->kf_root = NULL; exit_root_id: cgroup_exit_root_id(root); cancel_ref: percpu_ref_exit(&root_cgrp->self.refcnt); out: free_cgrp_cset_links(&tmp_links); return ret; } int cgroup_do_get_tree(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; ctx->kfc.root = ctx->root->kf_root; if (fc->fs_type == &cgroup2_fs_type) ctx->kfc.magic = CGROUP2_SUPER_MAGIC; else ctx->kfc.magic = CGROUP_SUPER_MAGIC; ret = kernfs_get_tree(fc); /* * In non-init cgroup namespace, instead of root cgroup's dentry, * we return the dentry corresponding to the cgroupns->root_cgrp. */ if (!ret && ctx->ns != &init_cgroup_ns) { struct dentry *nsdentry; struct super_block *sb = fc->root->d_sb; struct cgroup *cgrp; cgroup_lock(); spin_lock_irq(&css_set_lock); cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); spin_unlock_irq(&css_set_lock); cgroup_unlock(); nsdentry = kernfs_node_dentry(cgrp->kn, sb); dput(fc->root); if (IS_ERR(nsdentry)) { deactivate_locked_super(sb); ret = PTR_ERR(nsdentry); nsdentry = NULL; } fc->root = nsdentry; } if (!ctx->kfc.new_sb_created) cgroup_put(&ctx->root->cgrp); return ret; } /* * Destroy a cgroup filesystem context. */ static void cgroup_fs_context_free(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); kfree(ctx->name); kfree(ctx->release_agent); put_cgroup_ns(ctx->ns); kernfs_free_fs_context(fc); kfree(ctx); } static int cgroup_get_tree(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; WRITE_ONCE(cgrp_dfl_visible, true); cgroup_get_live(&cgrp_dfl_root.cgrp); ctx->root = &cgrp_dfl_root; ret = cgroup_do_get_tree(fc); if (!ret) apply_cgroup_root_flags(ctx->flags); return ret; } static const struct fs_context_operations cgroup_fs_context_ops = { .free = cgroup_fs_context_free, .parse_param = cgroup2_parse_param, .get_tree = cgroup_get_tree, .reconfigure = cgroup_reconfigure, }; static const struct fs_context_operations cgroup1_fs_context_ops = { .free = cgroup_fs_context_free, .parse_param = cgroup1_parse_param, .get_tree = cgroup1_get_tree, .reconfigure = cgroup1_reconfigure, }; /* * Initialise the cgroup filesystem creation/reconfiguration context. Notably, * we select the namespace we're going to use. */ static int cgroup_init_fs_context(struct fs_context *fc) { struct cgroup_fs_context *ctx; ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->ns = current->nsproxy->cgroup_ns; get_cgroup_ns(ctx->ns); fc->fs_private = &ctx->kfc; if (fc->fs_type == &cgroup2_fs_type) fc->ops = &cgroup_fs_context_ops; else fc->ops = &cgroup1_fs_context_ops; put_user_ns(fc->user_ns); fc->user_ns = get_user_ns(ctx->ns->user_ns); fc->global = true; if (have_favordynmods) ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; return 0; } static void cgroup_kill_sb(struct super_block *sb) { struct kernfs_root *kf_root = kernfs_root_from_sb(sb); struct cgroup_root *root = cgroup_root_from_kf(kf_root); /* * If @root doesn't have any children, start killing it. * This prevents new mounts by disabling percpu_ref_tryget_live(). * * And don't kill the default root. */ if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && !percpu_ref_is_dying(&root->cgrp.self.refcnt)) percpu_ref_kill(&root->cgrp.self.refcnt); cgroup_put(&root->cgrp); kernfs_kill_sb(sb); } struct file_system_type cgroup_fs_type = { .name = "cgroup", .init_fs_context = cgroup_init_fs_context, .parameters = cgroup1_fs_parameters, .kill_sb = cgroup_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; static struct file_system_type cgroup2_fs_type = { .name = "cgroup2", .init_fs_context = cgroup_init_fs_context, .parameters = cgroup2_fs_parameters, .kill_sb = cgroup_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; #ifdef CONFIG_CPUSETS_V1 enum cpuset_param { Opt_cpuset_v2_mode, }; static const struct fs_parameter_spec cpuset_fs_parameters[] = { fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), {} }; static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct fs_parse_result result; int opt; opt = fs_parse(fc, cpuset_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_cpuset_v2_mode: ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; return 0; } return -EINVAL; } static const struct fs_context_operations cpuset_fs_context_ops = { .get_tree = cgroup1_get_tree, .free = cgroup_fs_context_free, .parse_param = cpuset_parse_param, }; /* * This is ugly, but preserves the userspace API for existing cpuset * users. If someone tries to mount the "cpuset" filesystem, we * silently switch it to mount "cgroup" instead */ static int cpuset_init_fs_context(struct fs_context *fc) { char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); struct cgroup_fs_context *ctx; int err; err = cgroup_init_fs_context(fc); if (err) { kfree(agent); return err; } fc->ops = &cpuset_fs_context_ops; ctx = cgroup_fc2context(fc); ctx->subsys_mask = 1 << cpuset_cgrp_id; ctx->flags |= CGRP_ROOT_NOPREFIX; ctx->release_agent = agent; get_filesystem(&cgroup_fs_type); put_filesystem(fc->fs_type); fc->fs_type = &cgroup_fs_type; return 0; } static struct file_system_type cpuset_fs_type = { .name = "cpuset", .init_fs_context = cpuset_init_fs_context, .parameters = cpuset_fs_parameters, .fs_flags = FS_USERNS_MOUNT, }; #endif int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); } int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { int ret; cgroup_lock(); spin_lock_irq(&css_set_lock); ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); spin_unlock_irq(&css_set_lock); cgroup_unlock(); return ret; } EXPORT_SYMBOL_GPL(cgroup_path_ns); /** * cgroup_attach_lock - Lock for ->attach() * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem * * cgroup migration sometimes needs to stabilize threadgroups against forks and * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() * implementations (e.g. cpuset), also need to disable CPU hotplug. * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can * lead to deadlocks. * * Bringing up a CPU may involve creating and destroying tasks which requires * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while * write-locking threadgroup_rwsem, the locking order is reversed and we end up * waiting for an on-going CPU hotplug operation which in turn is waiting for * the threadgroup_rwsem to be released to create new tasks. For more details: * * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu * * Resolve the situation by always acquiring cpus_read_lock() before optionally * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that * CPU hotplug is disabled on entry. */ void cgroup_attach_lock(bool lock_threadgroup) { cpus_read_lock(); if (lock_threadgroup) percpu_down_write(&cgroup_threadgroup_rwsem); } /** * cgroup_attach_unlock - Undo cgroup_attach_lock() * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem */ void cgroup_attach_unlock(bool lock_threadgroup) { if (lock_threadgroup) percpu_up_write(&cgroup_threadgroup_rwsem); cpus_read_unlock(); } /** * cgroup_migrate_add_task - add a migration target task to a migration context * @task: target task * @mgctx: target migration context * * Add @task, which is a migration target, to @mgctx->tset. This function * becomes noop if @task doesn't need to be migrated. @task's css_set * should have been added as a migration source and @task->cg_list will be * moved from the css_set's tasks list to mg_tasks one. */ static void cgroup_migrate_add_task(struct task_struct *task, struct cgroup_mgctx *mgctx) { struct css_set *cset; lockdep_assert_held(&css_set_lock); /* @task either already exited or can't exit until the end */ if (task->flags & PF_EXITING) return; /* cgroup_threadgroup_rwsem protects racing against forks */ WARN_ON_ONCE(list_empty(&task->cg_list)); cset = task_css_set(task); if (!cset->mg_src_cgrp) return; mgctx->tset.nr_tasks++; list_move_tail(&task->cg_list, &cset->mg_tasks); if (list_empty(&cset->mg_node)) list_add_tail(&cset->mg_node, &mgctx->tset.src_csets); if (list_empty(&cset->mg_dst_cset->mg_node)) list_add_tail(&cset->mg_dst_cset->mg_node, &mgctx->tset.dst_csets); } /** * cgroup_taskset_first - reset taskset and return the first task * @tset: taskset of interest * @dst_cssp: output variable for the destination css * * @tset iteration is initialized and the first task is returned. */ struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp) { tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); tset->cur_task = NULL; return cgroup_taskset_next(tset, dst_cssp); } /** * cgroup_taskset_next - iterate to the next task in taskset * @tset: taskset of interest * @dst_cssp: output variable for the destination css * * Return the next task in @tset. Iteration must have been initialized * with cgroup_taskset_first(). */ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp) { struct css_set *cset = tset->cur_cset; struct task_struct *task = tset->cur_task; while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { if (!task) task = list_first_entry(&cset->mg_tasks, struct task_struct, cg_list); else task = list_next_entry(task, cg_list); if (&task->cg_list != &cset->mg_tasks) { tset->cur_cset = cset; tset->cur_task = task; /* * This function may be called both before and * after cgroup_migrate_execute(). The two cases * can be distinguished by looking at whether @cset * has its ->mg_dst_cset set. */ if (cset->mg_dst_cset) *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; else *dst_cssp = cset->subsys[tset->ssid]; return task; } cset = list_next_entry(cset, mg_node); task = NULL; } return NULL; } /** * cgroup_migrate_execute - migrate a taskset * @mgctx: migration context * * Migrate tasks in @mgctx as setup by migration preparation functions. * This function fails iff one of the ->can_attach callbacks fails and * guarantees that either all or none of the tasks in @mgctx are migrated. * @mgctx is consumed regardless of success. */ static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) { struct cgroup_taskset *tset = &mgctx->tset; struct cgroup_subsys *ss; struct task_struct *task, *tmp_task; struct css_set *cset, *tmp_cset; int ssid, failed_ssid, ret; /* check that we can legitimately attach to the cgroup */ if (tset->nr_tasks) { do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { if (ss->can_attach) { tset->ssid = ssid; ret = ss->can_attach(tset); if (ret) { failed_ssid = ssid; goto out_cancel_attach; } } } while_each_subsys_mask(); } /* * Now that we're guaranteed success, proceed to move all tasks to * the new cgroup. There are no failure cases after here, so this * is the commit point. */ spin_lock_irq(&css_set_lock); list_for_each_entry(cset, &tset->src_csets, mg_node) { list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { struct css_set *from_cset = task_css_set(task); struct css_set *to_cset = cset->mg_dst_cset; get_css_set(to_cset); to_cset->nr_tasks++; css_set_move_task(task, from_cset, to_cset, true); from_cset->nr_tasks--; /* * If the source or destination cgroup is frozen, * the task might require to change its state. */ cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, to_cset->dfl_cgrp); put_css_set_locked(from_cset); } } spin_unlock_irq(&css_set_lock); /* * Migration is committed, all target tasks are now on dst_csets. * Nothing is sensitive to fork() after this point. Notify * controllers that migration is complete. */ tset->csets = &tset->dst_csets; if (tset->nr_tasks) { do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { if (ss->attach) { tset->ssid = ssid; ss->attach(tset); } } while_each_subsys_mask(); } ret = 0; goto out_release_tset; out_cancel_attach: if (tset->nr_tasks) { do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { if (ssid == failed_ssid) break; if (ss->cancel_attach) { tset->ssid = ssid; ss->cancel_attach(tset); } } while_each_subsys_mask(); } out_release_tset: spin_lock_irq(&css_set_lock); list_splice_init(&tset->dst_csets, &tset->src_csets); list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { list_splice_tail_init(&cset->mg_tasks, &cset->tasks); list_del_init(&cset->mg_node); } spin_unlock_irq(&css_set_lock); /* * Re-initialize the cgroup_taskset structure in case it is reused * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() * iteration. */ tset->nr_tasks = 0; tset->csets = &tset->src_csets; return ret; } /** * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination * @dst_cgrp: destination cgroup to test * * On the default hierarchy, except for the mixable, (possible) thread root * and threaded cgroups, subtree_control must be zero for migration * destination cgroups with tasks so that child cgroups don't compete * against tasks. */ int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) { /* v1 doesn't have any restriction */ if (!cgroup_on_dfl(dst_cgrp)) return 0; /* verify @dst_cgrp can host resources */ if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) return -EOPNOTSUPP; /* * If @dst_cgrp is already or can become a thread root or is * threaded, it doesn't matter. */ if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) return 0; /* apply no-internal-process constraint */ if (dst_cgrp->subtree_control) return -EBUSY; return 0; } /** * cgroup_migrate_finish - cleanup after attach * @mgctx: migration context * * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See * those functions for details. */ void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) { struct css_set *cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, mg_src_preload_node) { cset->mg_src_cgrp = NULL; cset->mg_dst_cgrp = NULL; cset->mg_dst_cset = NULL; list_del_init(&cset->mg_src_preload_node); put_css_set_locked(cset); } list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, mg_dst_preload_node) { cset->mg_src_cgrp = NULL; cset->mg_dst_cgrp = NULL; cset->mg_dst_cset = NULL; list_del_init(&cset->mg_dst_preload_node); put_css_set_locked(cset); } spin_unlock_irq(&css_set_lock); } /** * cgroup_migrate_add_src - add a migration source css_set * @src_cset: the source css_set to add * @dst_cgrp: the destination cgroup * @mgctx: migration context * * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin * @src_cset and add it to @mgctx->src_csets, which should later be cleaned * up by cgroup_migrate_finish(). * * This function may be called without holding cgroup_threadgroup_rwsem * even if the target is a process. Threads may be created and destroyed * but as long as cgroup_mutex is not dropped, no new css_set can be put * into play and the preloaded css_sets are guaranteed to cover all * migrations. */ void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx) { struct cgroup *src_cgrp; lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&css_set_lock); /* * If ->dead, @src_set is associated with one or more dead cgroups * and doesn't contain any migratable tasks. Ignore it early so * that the rest of migration path doesn't get confused by it. */ if (src_cset->dead) return; if (!list_empty(&src_cset->mg_src_preload_node)) return; src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); WARN_ON(src_cset->mg_src_cgrp); WARN_ON(src_cset->mg_dst_cgrp); WARN_ON(!list_empty(&src_cset->mg_tasks)); WARN_ON(!list_empty(&src_cset->mg_node)); src_cset->mg_src_cgrp = src_cgrp; src_cset->mg_dst_cgrp = dst_cgrp; get_css_set(src_cset); list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); } /** * cgroup_migrate_prepare_dst - prepare destination css_sets for migration * @mgctx: migration context * * Tasks are about to be moved and all the source css_sets have been * preloaded to @mgctx->preloaded_src_csets. This function looks up and * pins all destination css_sets, links each to its source, and append them * to @mgctx->preloaded_dst_csets. * * This function must be called after cgroup_migrate_add_src() has been * called on each migration source css_set. After migration is performed * using cgroup_migrate(), cgroup_migrate_finish() must be called on * @mgctx. */ int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) { struct css_set *src_cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); /* look up the dst cset for each src cset and link it to src */ list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, mg_src_preload_node) { struct css_set *dst_cset; struct cgroup_subsys *ss; int ssid; dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); if (!dst_cset) return -ENOMEM; WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); /* * If src cset equals dst, it's noop. Drop the src. * cgroup_migrate() will skip the cset too. Note that we * can't handle src == dst as some nodes are used by both. */ if (src_cset == dst_cset) { src_cset->mg_src_cgrp = NULL; src_cset->mg_dst_cgrp = NULL; list_del_init(&src_cset->mg_src_preload_node); put_css_set(src_cset); put_css_set(dst_cset); continue; } src_cset->mg_dst_cset = dst_cset; if (list_empty(&dst_cset->mg_dst_preload_node)) list_add_tail(&dst_cset->mg_dst_preload_node, &mgctx->preloaded_dst_csets); else put_css_set(dst_cset); for_each_subsys(ss, ssid) if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) mgctx->ss_mask |= 1 << ssid; } return 0; } /** * cgroup_migrate - migrate a process or task to a cgroup * @leader: the leader of the process or the task to migrate * @threadgroup: whether @leader points to the whole process or a single task * @mgctx: migration context * * Migrate a process or task denoted by @leader. If migrating a process, * the caller must be holding cgroup_threadgroup_rwsem. The caller is also * responsible for invoking cgroup_migrate_add_src() and * cgroup_migrate_prepare_dst() on the targets before invoking this * function and following up with cgroup_migrate_finish(). * * As long as a controller's ->can_attach() doesn't fail, this function is * guaranteed to succeed. This means that, excluding ->can_attach() * failure, when migrating multiple targets, the success or failure can be * decided for all targets by invoking group_migrate_prepare_dst() before * actually starting migrating. */ int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct cgroup_mgctx *mgctx) { struct task_struct *task; /* * The following thread iteration should be inside an RCU critical * section to prevent tasks from being freed while taking the snapshot. * spin_lock_irq() implies RCU critical section here. */ spin_lock_irq(&css_set_lock); task = leader; do { cgroup_migrate_add_task(task, mgctx); if (!threadgroup) break; } while_each_thread(leader, task); spin_unlock_irq(&css_set_lock); return cgroup_migrate_execute(mgctx); } /** * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup * @dst_cgrp: the cgroup to attach to * @leader: the task or the leader of the threadgroup to be attached * @threadgroup: attach the whole threadgroup? * * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. */ int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup) { DEFINE_CGROUP_MGCTX(mgctx); struct task_struct *task; int ret = 0; /* look up all src csets */ spin_lock_irq(&css_set_lock); rcu_read_lock(); task = leader; do { cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); if (!threadgroup) break; } while_each_thread(leader, task); rcu_read_unlock(); spin_unlock_irq(&css_set_lock); /* prepare dst csets and commit */ ret = cgroup_migrate_prepare_dst(&mgctx); if (!ret) ret = cgroup_migrate(leader, threadgroup, &mgctx); cgroup_migrate_finish(&mgctx); if (!ret) TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); return ret; } struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, bool *threadgroup_locked) { struct task_struct *tsk; pid_t pid; if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) return ERR_PTR(-EINVAL); /* * If we migrate a single thread, we don't care about threadgroup * stability. If the thread is `current`, it won't exit(2) under our * hands or change PID through exec(2). We exclude * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write * callers by cgroup_mutex. * Therefore, we can skip the global lock. */ lockdep_assert_held(&cgroup_mutex); *threadgroup_locked = pid || threadgroup; cgroup_attach_lock(*threadgroup_locked); rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { tsk = ERR_PTR(-ESRCH); goto out_unlock_threadgroup; } } else { tsk = current; } if (threadgroup) tsk = tsk->group_leader; /* * kthreads may acquire PF_NO_SETAFFINITY during initialization. * If userland migrates such a kthread to a non-root cgroup, it can * become trapped in a cpuset, or RT kthread may be born in a * cgroup with no rt_runtime allocated. Just say no. */ if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { tsk = ERR_PTR(-EINVAL); goto out_unlock_threadgroup; } get_task_struct(tsk); goto out_unlock_rcu; out_unlock_threadgroup: cgroup_attach_unlock(*threadgroup_locked); *threadgroup_locked = false; out_unlock_rcu: rcu_read_unlock(); return tsk; } void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) { struct cgroup_subsys *ss; int ssid; /* release reference from cgroup_procs_write_start() */ put_task_struct(task); cgroup_attach_unlock(threadgroup_locked); for_each_subsys(ss, ssid) if (ss->post_attach) ss->post_attach(); } static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) { struct cgroup_subsys *ss; bool printed = false; int ssid; do_each_subsys_mask(ss, ssid, ss_mask) { if (printed) seq_putc(seq, ' '); seq_puts(seq, ss->name); printed = true; } while_each_subsys_mask(); if (printed) seq_putc(seq, '\n'); } /* show controllers which are enabled from the parent */ static int cgroup_controllers_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; cgroup_print_ss_mask(seq, cgroup_control(cgrp)); return 0; } /* show controllers which are enabled for a given cgroup's children */ static int cgroup_subtree_control_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; cgroup_print_ss_mask(seq, cgrp->subtree_control); return 0; } /** * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy * @cgrp: root of the subtree to update csses for * * @cgrp's control masks have changed and its subtree's css associations * need to be updated accordingly. This function looks up all css_sets * which are attached to the subtree, creates the matching updated css_sets * and migrates the tasks to the new ones. */ static int cgroup_update_dfl_csses(struct cgroup *cgrp) { DEFINE_CGROUP_MGCTX(mgctx); struct cgroup_subsys_state *d_css; struct cgroup *dsct; struct css_set *src_cset; bool has_tasks; int ret; lockdep_assert_held(&cgroup_mutex); /* look up all csses currently attached to @cgrp's subtree */ spin_lock_irq(&css_set_lock); cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { struct cgrp_cset_link *link; /* * As cgroup_update_dfl_csses() is only called by * cgroup_apply_control(). The csses associated with the * given cgrp will not be affected by changes made to * its subtree_control file. We can skip them. */ if (dsct == cgrp) continue; list_for_each_entry(link, &dsct->cset_links, cset_link) cgroup_migrate_add_src(link->cset, dsct, &mgctx); } spin_unlock_irq(&css_set_lock); /* * We need to write-lock threadgroup_rwsem while migrating tasks. * However, if there are no source csets for @cgrp, changing its * controllers isn't gonna produce any task migrations and the * write-locking can be skipped safely. */ has_tasks = !list_empty(&mgctx.preloaded_src_csets); cgroup_attach_lock(has_tasks); /* NULL dst indicates self on default hierarchy */ ret = cgroup_migrate_prepare_dst(&mgctx); if (ret) goto out_finish; spin_lock_irq(&css_set_lock); list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_src_preload_node) { struct task_struct *task, *ntask; /* all tasks in src_csets need to be migrated */ list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) cgroup_migrate_add_task(task, &mgctx); } spin_unlock_irq(&css_set_lock); ret = cgroup_migrate_execute(&mgctx); out_finish: cgroup_migrate_finish(&mgctx); cgroup_attach_unlock(has_tasks); return ret; } /** * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses * @cgrp: root of the target subtree * * Because css offlining is asynchronous, userland may try to re-enable a * controller while the previous css is still around. This function grabs * cgroup_mutex and drains the previous css instances of @cgrp's subtree. */ void cgroup_lock_and_drain_offline(struct cgroup *cgrp) __acquires(&cgroup_mutex) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid; restart: cgroup_lock(); cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); DEFINE_WAIT(wait); if (!css || !percpu_ref_is_dying(&css->refcnt)) continue; cgroup_get_live(dsct); prepare_to_wait(&dsct->offline_waitq, &wait, TASK_UNINTERRUPTIBLE); cgroup_unlock(); schedule(); finish_wait(&dsct->offline_waitq, &wait); cgroup_put(dsct); goto restart; } } } /** * cgroup_save_control - save control masks and dom_cgrp of a subtree * @cgrp: root of the target subtree * * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the * respective old_ prefixed fields for @cgrp's subtree including @cgrp * itself. */ static void cgroup_save_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->old_subtree_control = dsct->subtree_control; dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; dsct->old_dom_cgrp = dsct->dom_cgrp; } } /** * cgroup_propagate_control - refresh control masks of a subtree * @cgrp: root of the target subtree * * For @cgrp and its subtree, ensure ->subtree_ss_mask matches * ->subtree_control and propagate controller availability through the * subtree so that descendants don't have unavailable controllers enabled. */ static void cgroup_propagate_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->subtree_control &= cgroup_control(dsct); dsct->subtree_ss_mask = cgroup_calc_subtree_ss_mask(dsct->subtree_control, cgroup_ss_mask(dsct)); } } /** * cgroup_restore_control - restore control masks and dom_cgrp of a subtree * @cgrp: root of the target subtree * * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the * respective old_ prefixed fields for @cgrp's subtree including @cgrp * itself. */ static void cgroup_restore_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { dsct->subtree_control = dsct->old_subtree_control; dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; dsct->dom_cgrp = dsct->old_dom_cgrp; } } static bool css_visible(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; if (cgroup_control(cgrp) & (1 << ss->id)) return true; if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) return false; return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; } /** * cgroup_apply_control_enable - enable or show csses according to control * @cgrp: root of the target subtree * * Walk @cgrp's subtree and create new csses or make the existing ones * visible. A css is created invisible if it's being implicitly enabled * through dependency. An invisible css is made visible when the userland * explicitly enables it. * * Returns 0 on success, -errno on failure. On failure, csses which have * been processed already aren't cleaned up. The caller is responsible for * cleaning up with cgroup_apply_control_disable(). */ static int cgroup_apply_control_enable(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid, ret; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) continue; if (!css) { css = css_create(dsct, ss); if (IS_ERR(css)) return PTR_ERR(css); } WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); if (css_visible(css)) { ret = css_populate_dir(css); if (ret) return ret; } } } return 0; } /** * cgroup_apply_control_disable - kill or hide csses according to control * @cgrp: root of the target subtree * * Walk @cgrp's subtree and kill and hide csses so that they match * cgroup_ss_mask() and cgroup_visible_mask(). * * A css is hidden when the userland requests it to be disabled while other * subsystems are still depending on it. The css must not actively control * resources and be in the vanilla state if it's made visible again later. * Controllers which may be depended upon should provide ->css_reset() for * this purpose. */ static void cgroup_apply_control_disable(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid; cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); if (!css) continue; WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); if (css->parent && !(cgroup_ss_mask(dsct) & (1 << ss->id))) { kill_css(css); } else if (!css_visible(css)) { css_clear_dir(css); if (ss->css_reset) ss->css_reset(css); } } } } /** * cgroup_apply_control - apply control mask updates to the subtree * @cgrp: root of the target subtree * * subsystems can be enabled and disabled in a subtree using the following * steps. * * 1. Call cgroup_save_control() to stash the current state. * 2. Update ->subtree_control masks in the subtree as desired. * 3. Call cgroup_apply_control() to apply the changes. * 4. Optionally perform other related operations. * 5. Call cgroup_finalize_control() to finish up. * * This function implements step 3 and propagates the mask changes * throughout @cgrp's subtree, updates csses accordingly and perform * process migrations. */ static int cgroup_apply_control(struct cgroup *cgrp) { int ret; cgroup_propagate_control(cgrp); ret = cgroup_apply_control_enable(cgrp); if (ret) return ret; /* * At this point, cgroup_e_css_by_mask() results reflect the new csses * making the following cgroup_update_dfl_csses() properly update * css associations of all tasks in the subtree. */ return cgroup_update_dfl_csses(cgrp); } /** * cgroup_finalize_control - finalize control mask update * @cgrp: root of the target subtree * @ret: the result of the update * * Finalize control mask update. See cgroup_apply_control() for more info. */ static void cgroup_finalize_control(struct cgroup *cgrp, int ret) { if (ret) { cgroup_restore_control(cgrp); cgroup_propagate_control(cgrp); } cgroup_apply_control_disable(cgrp); } static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) { u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; /* if nothing is getting enabled, nothing to worry about */ if (!enable) return 0; /* can @cgrp host any resources? */ if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) return -EOPNOTSUPP; /* mixables don't care */ if (cgroup_is_mixable(cgrp)) return 0; if (domain_enable) { /* can't enable domain controllers inside a thread subtree */ if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) return -EOPNOTSUPP; } else { /* * Threaded controllers can handle internal competitions * and are always allowed inside a (prospective) thread * subtree. */ if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) return 0; } /* * Controllers can't be enabled for a cgroup with tasks to avoid * child cgroups competing against tasks. */ if (cgroup_has_tasks(cgrp)) return -EBUSY; return 0; } /* change the enabled child controllers for a cgroup in the default hierarchy */ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { u16 enable = 0, disable = 0; struct cgroup *cgrp, *child; struct cgroup_subsys *ss; char *tok; int ssid, ret; /* * Parse input - space separated list of subsystem names prefixed * with either + or -. */ buf = strstrip(buf); while ((tok = strsep(&buf, " "))) { if (tok[0] == '\0') continue; do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { if (!cgroup_ssid_enabled(ssid) || strcmp(tok + 1, ss->name)) continue; if (*tok == '+') { enable |= 1 << ssid; disable &= ~(1 << ssid); } else if (*tok == '-') { disable |= 1 << ssid; enable &= ~(1 << ssid); } else { return -EINVAL; } break; } while_each_subsys_mask(); if (ssid == CGROUP_SUBSYS_COUNT) return -EINVAL; } cgrp = cgroup_kn_lock_live(of->kn, true); if (!cgrp) return -ENODEV; for_each_subsys(ss, ssid) { if (enable & (1 << ssid)) { if (cgrp->subtree_control & (1 << ssid)) { enable &= ~(1 << ssid); continue; } if (!(cgroup_control(cgrp) & (1 << ssid))) { ret = -ENOENT; goto out_unlock; } } else if (disable & (1 << ssid)) { if (!(cgrp->subtree_control & (1 << ssid))) { disable &= ~(1 << ssid); continue; } /* a child has it enabled? */ cgroup_for_each_live_child(child, cgrp) { if (child->subtree_control & (1 << ssid)) { ret = -EBUSY; goto out_unlock; } } } } if (!enable && !disable) { ret = 0; goto out_unlock; } ret = cgroup_vet_subtree_control_enable(cgrp, enable); if (ret) goto out_unlock; /* save and update control masks and prepare csses */ cgroup_save_control(cgrp); cgrp->subtree_control |= enable; cgrp->subtree_control &= ~disable; ret = cgroup_apply_control(cgrp); cgroup_finalize_control(cgrp, ret); if (ret) goto out_unlock; kernfs_activate(cgrp->kn); out_unlock: cgroup_kn_unlock(of->kn); return ret ?: nbytes; } /** * cgroup_enable_threaded - make @cgrp threaded * @cgrp: the target cgroup * * Called when "threaded" is written to the cgroup.type interface file and * tries to make @cgrp threaded and join the parent's resource domain. * This function is never called on the root cgroup as cgroup.type doesn't * exist on it. */ static int cgroup_enable_threaded(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup *dom_cgrp = parent->dom_cgrp; struct cgroup *dsct; struct cgroup_subsys_state *d_css; int ret; lockdep_assert_held(&cgroup_mutex); /* noop if already threaded */ if (cgroup_is_threaded(cgrp)) return 0; /* * If @cgroup is populated or has domain controllers enabled, it * can't be switched. While the below cgroup_can_be_thread_root() * test can catch the same conditions, that's only when @parent is * not mixable, so let's check it explicitly. */ if (cgroup_is_populated(cgrp) || cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) return -EOPNOTSUPP; /* we're joining the parent's domain, ensure its validity */ if (!cgroup_is_valid_domain(dom_cgrp) || !cgroup_can_be_thread_root(dom_cgrp)) return -EOPNOTSUPP; /* * The following shouldn't cause actual migrations and should * always succeed. */ cgroup_save_control(cgrp); cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) if (dsct == cgrp || cgroup_is_threaded(dsct)) dsct->dom_cgrp = dom_cgrp; ret = cgroup_apply_control(cgrp); if (!ret) parent->nr_threaded_children++; cgroup_finalize_control(cgrp, ret); return ret; } static int cgroup_type_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; if (cgroup_is_threaded(cgrp)) seq_puts(seq, "threaded\n"); else if (!cgroup_is_valid_domain(cgrp)) seq_puts(seq, "domain invalid\n"); else if (cgroup_is_thread_root(cgrp)) seq_puts(seq, "domain threaded\n"); else seq_puts(seq, "domain\n"); return 0; } static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; int ret; /* only switching to threaded mode is supported */ if (strcmp(strstrip(buf), "threaded")) return -EINVAL; /* drain dying csses before we re-apply (threaded) subtree control */ cgrp = cgroup_kn_lock_live(of->kn, true); if (!cgrp) return -ENOENT; /* threaded can only be enabled */ ret = cgroup_enable_threaded(cgrp); cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static int cgroup_max_descendants_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; int descendants = READ_ONCE(cgrp->max_descendants); if (descendants == INT_MAX) seq_puts(seq, "max\n"); else seq_printf(seq, "%d\n", descendants); return 0; } static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; int descendants; ssize_t ret; buf = strstrip(buf); if (!strcmp(buf, "max")) { descendants = INT_MAX; } else { ret = kstrtoint(buf, 0, &descendants); if (ret) return ret; } if (descendants < 0) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; cgrp->max_descendants = descendants; cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_max_depth_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; int depth = READ_ONCE(cgrp->max_depth); if (depth == INT_MAX) seq_puts(seq, "max\n"); else seq_printf(seq, "%d\n", depth); return 0; } static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; ssize_t ret; int depth; buf = strstrip(buf); if (!strcmp(buf, "max")) { depth = INT_MAX; } else { ret = kstrtoint(buf, 0, &depth); if (ret) return ret; } if (depth < 0) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; cgrp->max_depth = depth; cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_events_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); return 0; } static int cgroup_stat_show(struct seq_file *seq, void *v) { struct cgroup *cgroup = seq_css(seq)->cgroup; struct cgroup_subsys_state *css; int dying_cnt[CGROUP_SUBSYS_COUNT]; int ssid; seq_printf(seq, "nr_descendants %d\n", cgroup->nr_descendants); /* * Show the number of live and dying csses associated with each of * non-inhibited cgroup subsystems that is bound to cgroup v2. * * Without proper lock protection, racing is possible. So the * numbers may not be consistent when that happens. */ rcu_read_lock(); for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { dying_cnt[ssid] = -1; if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) continue; css = rcu_dereference_raw(cgroup->subsys[ssid]); dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, css ? (css->nr_descendants + 1) : 0); } seq_printf(seq, "nr_dying_descendants %d\n", cgroup->nr_dying_descendants); for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { if (dying_cnt[ssid] >= 0) seq_printf(seq, "nr_dying_subsys_%s %d\n", cgroup_subsys[ssid]->name, dying_cnt[ssid]); } rcu_read_unlock(); return 0; } #ifdef CONFIG_CGROUP_SCHED /** * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get @cgrp's css associated with @ss. If the css doesn't exist * or is offline, %NULL is returned. */ static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; rcu_read_lock(); css = cgroup_css(cgrp, ss); if (css && !css_tryget_online(css)) css = NULL; rcu_read_unlock(); return css; } static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct cgroup_subsys *ss = cgroup_subsys[ssid]; struct cgroup_subsys_state *css; int ret; if (!ss->css_extra_stat_show) return 0; css = cgroup_tryget_css(cgrp, ss); if (!css) return 0; ret = ss->css_extra_stat_show(seq, css); css_put(css); return ret; } static int cgroup_local_stat_show(struct seq_file *seq, struct cgroup *cgrp, int ssid) { struct cgroup_subsys *ss = cgroup_subsys[ssid]; struct cgroup_subsys_state *css; int ret; if (!ss->css_local_stat_show) return 0; css = cgroup_tryget_css(cgrp, ss); if (!css) return 0; ret = ss->css_local_stat_show(seq, css); css_put(css); return ret; } #endif static int cpu_stat_show(struct seq_file *seq, void *v) { int ret = 0; cgroup_base_stat_cputime_show(seq); #ifdef CONFIG_CGROUP_SCHED ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); #endif return ret; } static int cpu_local_stat_show(struct seq_file *seq, void *v) { struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; int ret = 0; #ifdef CONFIG_CGROUP_SCHED ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); #endif return ret; } #ifdef CONFIG_PSI static int cgroup_io_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_IO); } static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_MEM); } static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_CPU); } static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, enum psi_res res) { struct cgroup_file_ctx *ctx = of->priv; struct psi_trigger *new; struct cgroup *cgrp; struct psi_group *psi; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; cgroup_get(cgrp); cgroup_kn_unlock(of->kn); /* Allow only one trigger per file descriptor */ if (ctx->psi.trigger) { cgroup_put(cgrp); return -EBUSY; } psi = cgroup_psi(cgrp); new = psi_trigger_create(psi, buf, res, of->file, of); if (IS_ERR(new)) { cgroup_put(cgrp); return PTR_ERR(new); } smp_store_release(&ctx->psi.trigger, new); cgroup_put(cgrp); return nbytes; } static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_IO); } static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_MEM); } static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_CPU); } #ifdef CONFIG_IRQ_TIME_ACCOUNTING static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); return psi_show(seq, psi, PSI_IRQ); } static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return pressure_write(of, buf, nbytes, PSI_IRQ); } #endif static int cgroup_pressure_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct psi_group *psi = cgroup_psi(cgrp); seq_printf(seq, "%d\n", psi->enabled); return 0; } static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { ssize_t ret; int enable; struct cgroup *cgrp; struct psi_group *psi; ret = kstrtoint(strstrip(buf), 0, &enable); if (ret) return ret; if (enable < 0 || enable > 1) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; psi = cgroup_psi(cgrp); if (psi->enabled != enable) { int i; /* show or hide {cpu,memory,io,irq}.pressure files */ for (i = 0; i < NR_PSI_RESOURCES; i++) cgroup_file_show(&cgrp->psi_files[i], enable); psi->enabled = enable; if (enable) psi_cgroup_restart(psi); } cgroup_kn_unlock(of->kn); return nbytes; } static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, poll_table *pt) { struct cgroup_file_ctx *ctx = of->priv; return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); } static void cgroup_pressure_release(struct kernfs_open_file *of) { struct cgroup_file_ctx *ctx = of->priv; psi_trigger_destroy(ctx->psi.trigger); } bool cgroup_psi_enabled(void) { if (static_branch_likely(&psi_disabled)) return false; return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; } #else /* CONFIG_PSI */ bool cgroup_psi_enabled(void) { return false; } #endif /* CONFIG_PSI */ static int cgroup_freeze_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; seq_printf(seq, "%d\n", cgrp->freezer.freeze); return 0; } static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; ssize_t ret; int freeze; ret = kstrtoint(strstrip(buf), 0, &freeze); if (ret) return ret; if (freeze < 0 || freeze > 1) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; cgroup_freeze(cgrp, freeze); cgroup_kn_unlock(of->kn); return nbytes; } static void __cgroup_kill(struct cgroup *cgrp) { struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); cgrp->kill_seq++; spin_unlock_irq(&css_set_lock); css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); while ((task = css_task_iter_next(&it))) { /* Ignore kernel threads here. */ if (task->flags & PF_KTHREAD) continue; /* Skip tasks that are already dying. */ if (__fatal_signal_pending(task)) continue; send_sig(SIGKILL, task, 0); } css_task_iter_end(&it); } static void cgroup_kill(struct cgroup *cgrp) { struct cgroup_subsys_state *css; struct cgroup *dsct; lockdep_assert_held(&cgroup_mutex); cgroup_for_each_live_descendant_pre(dsct, css, cgrp) __cgroup_kill(dsct); } static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { ssize_t ret = 0; int kill; struct cgroup *cgrp; ret = kstrtoint(strstrip(buf), 0, &kill); if (ret) return ret; if (kill != 1) return -ERANGE; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENOENT; /* * Killing is a process directed operation, i.e. the whole thread-group * is taken down so act like we do for cgroup.procs and only make this * writable in non-threaded cgroups. */ if (cgroup_is_threaded(cgrp)) ret = -EOPNOTSUPP; else cgroup_kill(cgrp); cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static int cgroup_file_open(struct kernfs_open_file *of) { struct cftype *cft = of_cft(of); struct cgroup_file_ctx *ctx; int ret; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->ns = current->nsproxy->cgroup_ns; get_cgroup_ns(ctx->ns); of->priv = ctx; if (!cft->open) return 0; ret = cft->open(of); if (ret) { put_cgroup_ns(ctx->ns); kfree(ctx); } return ret; } static void cgroup_file_release(struct kernfs_open_file *of) { struct cftype *cft = of_cft(of); struct cgroup_file_ctx *ctx = of->priv; if (cft->release) cft->release(of); put_cgroup_ns(ctx->ns); kfree(ctx); } static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup_file_ctx *ctx = of->priv; struct cgroup *cgrp = kn_priv(of->kn); struct cftype *cft = of_cft(of); struct cgroup_subsys_state *css; int ret; if (!nbytes) return 0; /* * If namespaces are delegation boundaries, disallow writes to * files in an non-init namespace root from inside the namespace * except for the files explicitly marked delegatable - * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. */ if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && !(cft->flags & CFTYPE_NS_DELEGATABLE) && ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) return -EPERM; if (cft->write) return cft->write(of, buf, nbytes, off); /* * kernfs guarantees that a file isn't deleted with operations in * flight, which means that the matching css is and stays alive and * doesn't need to be pinned. The RCU locking is not necessary * either. It's just for the convenience of using cgroup_css(). */ rcu_read_lock(); css = cgroup_css(cgrp, cft->ss); rcu_read_unlock(); if (cft->write_u64) { unsigned long long v; ret = kstrtoull(buf, 0, &v); if (!ret) ret = cft->write_u64(css, cft, v); } else if (cft->write_s64) { long long v; ret = kstrtoll(buf, 0, &v); if (!ret) ret = cft->write_s64(css, cft, v); } else { ret = -EINVAL; } return ret ?: nbytes; } static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) { struct cftype *cft = of_cft(of); if (cft->poll) return cft->poll(of, pt); return kernfs_generic_poll(of, pt); } static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { return seq_cft(seq)->seq_start(seq, ppos); } static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) { return seq_cft(seq)->seq_next(seq, v, ppos); } static void cgroup_seqfile_stop(struct seq_file *seq, void *v) { if (seq_cft(seq)->seq_stop) seq_cft(seq)->seq_stop(seq, v); } static int cgroup_seqfile_show(struct seq_file *m, void *arg) { struct cftype *cft = seq_cft(m); struct cgroup_subsys_state *css = seq_css(m); if (cft->seq_show) return cft->seq_show(m, arg); if (cft->read_u64) seq_printf(m, "%llu\n", cft->read_u64(css, cft)); else if (cft->read_s64) seq_printf(m, "%lld\n", cft->read_s64(css, cft)); else return -EINVAL; return 0; } static struct kernfs_ops cgroup_kf_single_ops = { .atomic_write_len = PAGE_SIZE, .open = cgroup_file_open, .release = cgroup_file_release, .write = cgroup_file_write, .poll = cgroup_file_poll, .seq_show = cgroup_seqfile_show, }; static struct kernfs_ops cgroup_kf_ops = { .atomic_write_len = PAGE_SIZE, .open = cgroup_file_open, .release = cgroup_file_release, .write = cgroup_file_write, .poll = cgroup_file_poll, .seq_start = cgroup_seqfile_start, .seq_next = cgroup_seqfile_next, .seq_stop = cgroup_seqfile_stop, .seq_show = cgroup_seqfile_show, }; static void cgroup_file_notify_timer(struct timer_list *timer) { cgroup_file_notify(container_of(timer, struct cgroup_file, notify_timer)); } static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype *cft) { char name[CGROUP_FILE_NAME_MAX]; struct kernfs_node *kn; struct lock_class_key *key = NULL; #ifdef CONFIG_DEBUG_LOCK_ALLOC key = &cft->lockdep_key; #endif kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), cgroup_file_mode(cft), current_fsuid(), current_fsgid(), 0, cft->kf_ops, cft, NULL, key); if (IS_ERR(kn)) return PTR_ERR(kn); if (cft->file_offset) { struct cgroup_file *cfile = (void *)css + cft->file_offset; timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = kn; spin_unlock_irq(&cgroup_file_kn_lock); } return 0; } /** * cgroup_addrm_files - add or remove files to a cgroup directory * @css: the target css * @cgrp: the target cgroup (usually css->cgroup) * @cfts: array of cftypes to be added * @is_add: whether to add or remove * * Depending on @is_add, add or remove files defined by @cfts on @cgrp. * For removals, this function never fails. */ static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add) { struct cftype *cft, *cft_end = NULL; int ret = 0; lockdep_assert_held(&cgroup_mutex); restart: for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { /* does cft->flags tell us to skip this file on @cgrp? */ if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) continue; if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) continue; if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) continue; if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) continue; if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) continue; if (is_add) { ret = cgroup_add_file(css, cgrp, cft); if (ret) { pr_warn("%s: failed to add %s, err=%d\n", __func__, cft->name, ret); cft_end = cft; is_add = false; goto restart; } } else { cgroup_rm_file(cgrp, cft); } } return ret; } static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) { struct cgroup_subsys *ss = cfts[0].ss; struct cgroup *root = &ss->root->cgrp; struct cgroup_subsys_state *css; int ret = 0; lockdep_assert_held(&cgroup_mutex); /* add/rm files for all cgroups created before */ css_for_each_descendant_pre(css, cgroup_css(root, ss)) { struct cgroup *cgrp = css->cgroup; if (!(css->flags & CSS_VISIBLE)) continue; ret = cgroup_addrm_files(css, cgrp, cfts, is_add); if (ret) break; } if (is_add && !ret) kernfs_activate(root->kn); return ret; } static void cgroup_exit_cftypes(struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft->name[0] != '\0'; cft++) { /* free copy for custom atomic_write_len, see init_cftypes() */ if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) kfree(cft->kf_ops); cft->kf_ops = NULL; cft->ss = NULL; /* revert flags set by cgroup core while adding @cfts */ cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | __CFTYPE_ADDED); } } static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; int ret = 0; for (cft = cfts; cft->name[0] != '\0'; cft++) { struct kernfs_ops *kf_ops; WARN_ON(cft->ss || cft->kf_ops); if (cft->flags & __CFTYPE_ADDED) { ret = -EBUSY; break; } if (cft->seq_start) kf_ops = &cgroup_kf_ops; else kf_ops = &cgroup_kf_single_ops; /* * Ugh... if @cft wants a custom max_write_len, we need to * make a copy of kf_ops to set its atomic_write_len. */ if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); if (!kf_ops) { ret = -ENOMEM; break; } kf_ops->atomic_write_len = cft->max_write_len; } cft->kf_ops = kf_ops; cft->ss = ss; cft->flags |= __CFTYPE_ADDED; } if (ret) cgroup_exit_cftypes(cfts); return ret; } static void cgroup_rm_cftypes_locked(struct cftype *cfts) { lockdep_assert_held(&cgroup_mutex); list_del(&cfts->node); cgroup_apply_cftypes(cfts, false); cgroup_exit_cftypes(cfts); } /** * cgroup_rm_cftypes - remove an array of cftypes from a subsystem * @cfts: zero-length name terminated array of cftypes * * Unregister @cfts. Files described by @cfts are removed from all * existing cgroups and all future cgroups won't have them either. This * function can be called anytime whether @cfts' subsys is attached or not. * * Returns 0 on successful unregistration, -ENOENT if @cfts is not * registered. */ int cgroup_rm_cftypes(struct cftype *cfts) { if (!cfts || cfts[0].name[0] == '\0') return 0; if (!(cfts[0].flags & __CFTYPE_ADDED)) return -ENOENT; cgroup_lock(); cgroup_rm_cftypes_locked(cfts); cgroup_unlock(); return 0; } /** * cgroup_add_cftypes - add an array of cftypes to a subsystem * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Register @cfts to @ss. Files described by @cfts are created for all * existing cgroups to which @ss is attached and all future cgroups will * have them too. This function can be called anytime whether @ss is * attached or not. * * Returns 0 on successful registration, -errno on failure. Note that this * function currently returns 0 as long as @cfts registration is successful * even if some file creation attempts on existing cgroups fail. */ int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { int ret; if (!cgroup_ssid_enabled(ss->id)) return 0; if (!cfts || cfts[0].name[0] == '\0') return 0; ret = cgroup_init_cftypes(ss, cfts); if (ret) return ret; cgroup_lock(); list_add_tail(&cfts->node, &ss->cfts); ret = cgroup_apply_cftypes(cfts, true); if (ret) cgroup_rm_cftypes_locked(cfts); cgroup_unlock(); return ret; } /** * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Similar to cgroup_add_cftypes() but the added files are only used for * the default hierarchy. */ int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft && cft->name[0] != '\0'; cft++) cft->flags |= __CFTYPE_ONLY_ON_DFL; return cgroup_add_cftypes(ss, cfts); } /** * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Similar to cgroup_add_cftypes() but the added files are only used for * the legacy hierarchies. */ int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft && cft->name[0] != '\0'; cft++) cft->flags |= __CFTYPE_NOT_ON_DFL; return cgroup_add_cftypes(ss, cfts); } /** * cgroup_file_notify - generate a file modified event for a cgroup_file * @cfile: target cgroup_file * * @cfile must have been obtained by setting cftype->file_offset. */ void cgroup_file_notify(struct cgroup_file *cfile) { unsigned long flags; spin_lock_irqsave(&cgroup_file_kn_lock, flags); if (cfile->kn) { unsigned long last = cfile->notified_at; unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; if (time_in_range(jiffies, last, next)) { timer_reduce(&cfile->notify_timer, next); } else { kernfs_notify(cfile->kn); cfile->notified_at = jiffies; } } spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); } /** * cgroup_file_show - show or hide a hidden cgroup file * @cfile: target cgroup_file obtained by setting cftype->file_offset * @show: whether to show or hide */ void cgroup_file_show(struct cgroup_file *cfile, bool show) { struct kernfs_node *kn; spin_lock_irq(&cgroup_file_kn_lock); kn = cfile->kn; kernfs_get(kn); spin_unlock_irq(&cgroup_file_kn_lock); if (kn) kernfs_show(kn, show); kernfs_put(kn); } /** * css_next_child - find the next child of a given css * @pos: the current position (%NULL to initiate traversal) * @parent: css whose children to walk * * This function returns the next child of @parent and should be called * under either cgroup_mutex or RCU read lock. The only requirement is * that @parent and @pos are accessible. The next sibling is guaranteed to * be returned regardless of their states. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *parent) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* * @pos could already have been unlinked from the sibling list. * Once a cgroup is removed, its ->sibling.next is no longer * updated when its next sibling changes. CSS_RELEASED is set when * @pos is taken off list, at which time its next pointer is valid, * and, as releases are serialized, the one pointed to by the next * pointer is guaranteed to not have started release yet. This * implies that if we observe !CSS_RELEASED on @pos in this RCU * critical section, the one pointed to by its next pointer is * guaranteed to not have finished its RCU grace period even if we * have dropped rcu_read_lock() in-between iterations. * * If @pos has CSS_RELEASED set, its next pointer can't be * dereferenced; however, as each css is given a monotonically * increasing unique serial number and always appended to the * sibling list, the next one can be found by walking the parent's * children until the first css with higher serial number than * @pos's. While this path can be slower, it happens iff iteration * races against release and the race window is very small. */ if (!pos) { next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); } else if (likely(!(pos->flags & CSS_RELEASED))) { next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); } else { list_for_each_entry_rcu(next, &parent->children, sibling, lockdep_is_held(&cgroup_mutex)) if (next->serial_nr > pos->serial_nr) break; } /* * @next, if not pointing to the head, can be dereferenced and is * the next sibling. */ if (&next->sibling != &parent->children) return next; return NULL; } /** * css_next_descendant_pre - find the next descendant for pre-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_pre(). Find the next descendant * to visit for pre-order traversal of @root's descendants. @root is * included in the iteration and the first node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. Additionally, it isn't necessary to hold onto a reference to @pos. * This function will return the correct next descendant as long as both @pos * and @root are accessible and @pos is a descendant of @root. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state * css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit @root */ if (!pos) return root; /* visit the first child if exists */ next = css_next_child(NULL, pos); if (next) return next; /* no child, visit my or the closest ancestor's next sibling */ while (pos != root) { next = css_next_child(pos, pos->parent); if (next) return next; pos = pos->parent; } return NULL; } EXPORT_SYMBOL_GPL(css_next_descendant_pre); /** * css_rightmost_descendant - return the rightmost descendant of a css * @pos: css of interest * * Return the rightmost descendant of @pos. If there's no descendant, @pos * is returned. This can be used during pre-order traversal to skip * subtree of @pos. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. Additionally, it isn't necessary to hold onto a reference to @pos. * This function will return the correct rightmost descendant as long as @pos * is accessible. */ struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last, *tmp; cgroup_assert_mutex_or_rcu_locked(); do { last = pos; /* ->prev isn't RCU safe, walk ->next till the end */ pos = NULL; css_for_each_child(tmp, last) pos = tmp; } while (pos); return last; } static struct cgroup_subsys_state * css_leftmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last; do { last = pos; pos = css_next_child(NULL, pos); } while (pos); return last; } /** * css_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_post(). Find the next descendant * to visit for post-order traversal of @root's descendants. @root is * included in the iteration and the last node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. Additionally, it isn't necessary to hold onto a reference to @pos. * This function will return the correct next descendant as long as both @pos * and @cgroup are accessible and @pos is a descendant of @cgroup. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state * css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit leftmost descendant which may be @root */ if (!pos) return css_leftmost_descendant(root); /* if we visited @root, we're done */ if (pos == root) return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ next = css_next_child(pos, pos->parent); if (next) return css_leftmost_descendant(next); /* no sibling left, visit parent */ return pos->parent; } /** * css_has_online_children - does a css have online children * @css: the target css * * Returns %true if @css has any online children; otherwise, %false. This * function can be called from any context but the caller is responsible * for synchronizing against on/offlining as necessary. */ bool css_has_online_children(struct cgroup_subsys_state *css) { struct cgroup_subsys_state *child; bool ret = false; rcu_read_lock(); css_for_each_child(child, css) { if (child->flags & CSS_ONLINE) { ret = true; break; } } rcu_read_unlock(); return ret; } static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) { struct list_head *l; struct cgrp_cset_link *link; struct css_set *cset; lockdep_assert_held(&css_set_lock); /* find the next threaded cset */ if (it->tcset_pos) { l = it->tcset_pos->next; if (l != it->tcset_head) { it->tcset_pos = l; return container_of(l, struct css_set, threaded_csets_node); } it->tcset_pos = NULL; } /* find the next cset */ l = it->cset_pos; l = l->next; if (l == it->cset_head) { it->cset_pos = NULL; return NULL; } if (it->ss) { cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); } else { link = list_entry(l, struct cgrp_cset_link, cset_link); cset = link->cset; } it->cset_pos = l; /* initialize threaded css_set walking */ if (it->flags & CSS_TASK_ITER_THREADED) { if (it->cur_dcset) put_css_set_locked(it->cur_dcset); it->cur_dcset = cset; get_css_set(cset); it->tcset_head = &cset->threaded_csets; it->tcset_pos = &cset->threaded_csets; } return cset; } /** * css_task_iter_advance_css_set - advance a task iterator to the next css_set * @it: the iterator to advance * * Advance @it to the next css_set to walk. */ static void css_task_iter_advance_css_set(struct css_task_iter *it) { struct css_set *cset; lockdep_assert_held(&css_set_lock); /* Advance to the next non-empty css_set and find first non-empty tasks list*/ while ((cset = css_task_iter_next_css_set(it))) { if (!list_empty(&cset->tasks)) { it->cur_tasks_head = &cset->tasks; break; } else if (!list_empty(&cset->mg_tasks)) { it->cur_tasks_head = &cset->mg_tasks; break; } else if (!list_empty(&cset->dying_tasks)) { it->cur_tasks_head = &cset->dying_tasks; break; } } if (!cset) { it->task_pos = NULL; return; } it->task_pos = it->cur_tasks_head->next; /* * We don't keep css_sets locked across iteration steps and thus * need to take steps to ensure that iteration can be resumed after * the lock is re-acquired. Iteration is performed at two levels - * css_sets and tasks in them. * * Once created, a css_set never leaves its cgroup lists, so a * pinned css_set is guaranteed to stay put and we can resume * iteration afterwards. * * Tasks may leave @cset across iteration steps. This is resolved * by registering each iterator with the css_set currently being * walked and making css_set_move_task() advance iterators whose * next task is leaving. */ if (it->cur_cset) { list_del(&it->iters_node); put_css_set_locked(it->cur_cset); } get_css_set(cset); it->cur_cset = cset; list_add(&it->iters_node, &cset->task_iters); } static void css_task_iter_skip(struct css_task_iter *it, struct task_struct *task) { lockdep_assert_held(&css_set_lock); if (it->task_pos == &task->cg_list) { it->task_pos = it->task_pos->next; it->flags |= CSS_TASK_ITER_SKIPPED; } } static void css_task_iter_advance(struct css_task_iter *it) { struct task_struct *task; lockdep_assert_held(&css_set_lock); repeat: if (it->task_pos) { /* * Advance iterator to find next entry. We go through cset * tasks, mg_tasks and dying_tasks, when consumed we move onto * the next cset. */ if (it->flags & CSS_TASK_ITER_SKIPPED) it->flags &= ~CSS_TASK_ITER_SKIPPED; else it->task_pos = it->task_pos->next; if (it->task_pos == &it->cur_cset->tasks) { it->cur_tasks_head = &it->cur_cset->mg_tasks; it->task_pos = it->cur_tasks_head->next; } if (it->task_pos == &it->cur_cset->mg_tasks) { it->cur_tasks_head = &it->cur_cset->dying_tasks; it->task_pos = it->cur_tasks_head->next; } if (it->task_pos == &it->cur_cset->dying_tasks) css_task_iter_advance_css_set(it); } else { /* called from start, proceed to the first cset */ css_task_iter_advance_css_set(it); } if (!it->task_pos) return; task = list_entry(it->task_pos, struct task_struct, cg_list); if (it->flags & CSS_TASK_ITER_PROCS) { /* if PROCS, skip over tasks which aren't group leaders */ if (!thread_group_leader(task)) goto repeat; /* and dying leaders w/o live member threads */ if (it->cur_tasks_head == &it->cur_cset->dying_tasks && !atomic_read(&task->signal->live)) goto repeat; } else { /* skip all dying ones */ if (it->cur_tasks_head == &it->cur_cset->dying_tasks) goto repeat; } } /** * css_task_iter_start - initiate task iteration * @css: the css to walk tasks of * @flags: CSS_TASK_ITER_* flags * @it: the task iterator to use * * Initiate iteration through the tasks of @css. The caller can call * css_task_iter_next() to walk through the tasks until the function * returns NULL. On completion of iteration, css_task_iter_end() must be * called. */ void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, struct css_task_iter *it) { unsigned long irqflags; memset(it, 0, sizeof(*it)); spin_lock_irqsave(&css_set_lock, irqflags); it->ss = css->ss; it->flags = flags; if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) it->cset_pos = &css->cgroup->e_csets[css->ss->id]; else it->cset_pos = &css->cgroup->cset_links; it->cset_head = it->cset_pos; css_task_iter_advance(it); spin_unlock_irqrestore(&css_set_lock, irqflags); } /** * css_task_iter_next - return the next task for the iterator * @it: the task iterator being iterated * * The "next" function for task iteration. @it should have been * initialized via css_task_iter_start(). Returns NULL when the iteration * reaches the end. */ struct task_struct *css_task_iter_next(struct css_task_iter *it) { unsigned long irqflags; if (it->cur_task) { put_task_struct(it->cur_task); it->cur_task = NULL; } spin_lock_irqsave(&css_set_lock, irqflags); /* @it may be half-advanced by skips, finish advancing */ if (it->flags & CSS_TASK_ITER_SKIPPED) css_task_iter_advance(it); if (it->task_pos) { it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list); get_task_struct(it->cur_task); css_task_iter_advance(it); } spin_unlock_irqrestore(&css_set_lock, irqflags); return it->cur_task; } /** * css_task_iter_end - finish task iteration * @it: the task iterator to finish * * Finish task iteration started by css_task_iter_start(). */ void css_task_iter_end(struct css_task_iter *it) { unsigned long irqflags; if (it->cur_cset) { spin_lock_irqsave(&css_set_lock, irqflags); list_del(&it->iters_node); put_css_set_locked(it->cur_cset); spin_unlock_irqrestore(&css_set_lock, irqflags); } if (it->cur_dcset) put_css_set(it->cur_dcset); if (it->cur_task) put_task_struct(it->cur_task); } static void cgroup_procs_release(struct kernfs_open_file *of) { struct cgroup_file_ctx *ctx = of->priv; if (ctx->procs.started) css_task_iter_end(&ctx->procs.iter); } static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; if (pos) (*pos)++; return css_task_iter_next(&ctx->procs.iter); } static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, unsigned int iter_flags) { struct kernfs_open_file *of = s->private; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_file_ctx *ctx = of->priv; struct css_task_iter *it = &ctx->procs.iter; /* * When a seq_file is seeked, it's always traversed sequentially * from position 0, so we can simply keep iterating on !0 *pos. */ if (!ctx->procs.started) { if (WARN_ON_ONCE((*pos))) return ERR_PTR(-EINVAL); css_task_iter_start(&cgrp->self, iter_flags, it); ctx->procs.started = true; } else if (!(*pos)) { css_task_iter_end(it); css_task_iter_start(&cgrp->self, iter_flags, it); } else return it->cur_task; return cgroup_procs_next(s, NULL, NULL); } static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) { struct cgroup *cgrp = seq_css(s)->cgroup; /* * All processes of a threaded subtree belong to the domain cgroup * of the subtree. Only threads can be distributed across the * subtree. Reject reads on cgroup.procs in the subtree proper. * They're always empty anyway. */ if (cgroup_is_threaded(cgrp)) return ERR_PTR(-EOPNOTSUPP); return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED); } static int cgroup_procs_show(struct seq_file *s, void *v) { seq_printf(s, "%d\n", task_pid_vnr(v)); return 0; } static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) { int ret; struct inode *inode; lockdep_assert_held(&cgroup_mutex); inode = kernfs_get_inode(sb, cgrp->procs_file.kn); if (!inode) return -ENOMEM; ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); iput(inode); return ret; } static int cgroup_procs_write_permission(struct cgroup *src_cgrp, struct cgroup *dst_cgrp, struct super_block *sb, struct cgroup_namespace *ns) { struct cgroup *com_cgrp = src_cgrp; int ret; lockdep_assert_held(&cgroup_mutex); /* find the common ancestor */ while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) com_cgrp = cgroup_parent(com_cgrp); /* %current should be authorized to migrate to the common ancestor */ ret = cgroup_may_write(com_cgrp, sb); if (ret) return ret; /* * If namespaces are delegation boundaries, %current must be able * to see both source and destination cgroups from its namespace. */ if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) return -ENOENT; return 0; } static int cgroup_attach_permissions(struct cgroup *src_cgrp, struct cgroup *dst_cgrp, struct super_block *sb, bool threadgroup, struct cgroup_namespace *ns) { int ret = 0; ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); if (ret) return ret; ret = cgroup_migrate_vet_dst(dst_cgrp); if (ret) return ret; if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) ret = -EOPNOTSUPP; return ret; } static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, bool threadgroup) { struct cgroup_file_ctx *ctx = of->priv; struct cgroup *src_cgrp, *dst_cgrp; struct task_struct *task; const struct cred *saved_cred; ssize_t ret; bool threadgroup_locked; dst_cgrp = cgroup_kn_lock_live(of->kn, false); if (!dst_cgrp) return -ENODEV; task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); ret = PTR_ERR_OR_ZERO(task); if (ret) goto out_unlock; /* find the source cgroup */ spin_lock_irq(&css_set_lock); src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); spin_unlock_irq(&css_set_lock); /* * Process and thread migrations follow same delegation rule. Check * permissions using the credentials from file open to protect against * inherited fd attacks. */ saved_cred = override_creds(of->file->f_cred); ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, of->file->f_path.dentry->d_sb, threadgroup, ctx->ns); revert_creds(saved_cred); if (ret) goto out_finish; ret = cgroup_attach_task(dst_cgrp, task, threadgroup); out_finish: cgroup_procs_write_finish(task, threadgroup_locked); out_unlock: cgroup_kn_unlock(of->kn); return ret; } static ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup_procs_write(of, buf, true) ?: nbytes; } static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) { return __cgroup_procs_start(s, pos, 0); } static ssize_t cgroup_threads_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup_procs_write(of, buf, false) ?: nbytes; } /* cgroup core interface files for the default hierarchy */ static struct cftype cgroup_base_files[] = { { .name = "cgroup.type", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = cgroup_type_show, .write = cgroup_type_write, }, { .name = "cgroup.procs", .flags = CFTYPE_NS_DELEGATABLE, .file_offset = offsetof(struct cgroup, procs_file), .release = cgroup_procs_release, .seq_start = cgroup_procs_start, .seq_next = cgroup_procs_next, .seq_show = cgroup_procs_show, .write = cgroup_procs_write, }, { .name = "cgroup.threads", .flags = CFTYPE_NS_DELEGATABLE, .release = cgroup_procs_release, .seq_start = cgroup_threads_start, .seq_next = cgroup_procs_next, .seq_show = cgroup_procs_show, .write = cgroup_threads_write, }, { .name = "cgroup.controllers", .seq_show = cgroup_controllers_show, }, { .name = "cgroup.subtree_control", .flags = CFTYPE_NS_DELEGATABLE, .seq_show = cgroup_subtree_control_show, .write = cgroup_subtree_control_write, }, { .name = "cgroup.events", .flags = CFTYPE_NOT_ON_ROOT, .file_offset = offsetof(struct cgroup, events_file), .seq_show = cgroup_events_show, }, { .name = "cgroup.max.descendants", .seq_show = cgroup_max_descendants_show, .write = cgroup_max_descendants_write, }, { .name = "cgroup.max.depth", .seq_show = cgroup_max_depth_show, .write = cgroup_max_depth_write, }, { .name = "cgroup.stat", .seq_show = cgroup_stat_show, }, { .name = "cgroup.freeze", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = cgroup_freeze_show, .write = cgroup_freeze_write, }, { .name = "cgroup.kill", .flags = CFTYPE_NOT_ON_ROOT, .write = cgroup_kill_write, }, { .name = "cpu.stat", .seq_show = cpu_stat_show, }, { .name = "cpu.stat.local", .seq_show = cpu_local_stat_show, }, { } /* terminate */ }; static struct cftype cgroup_psi_files[] = { #ifdef CONFIG_PSI { .name = "io.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), .seq_show = cgroup_io_pressure_show, .write = cgroup_io_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, { .name = "memory.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), .seq_show = cgroup_memory_pressure_show, .write = cgroup_memory_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, { .name = "cpu.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), .seq_show = cgroup_cpu_pressure_show, .write = cgroup_cpu_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, #ifdef CONFIG_IRQ_TIME_ACCOUNTING { .name = "irq.pressure", .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), .seq_show = cgroup_irq_pressure_show, .write = cgroup_irq_pressure_write, .poll = cgroup_pressure_poll, .release = cgroup_pressure_release, }, #endif { .name = "cgroup.pressure", .seq_show = cgroup_pressure_show, .write = cgroup_pressure_write, }, #endif /* CONFIG_PSI */ { } /* terminate */ }; /* * css destruction is four-stage process. * * 1. Destruction starts. Killing of the percpu_ref is initiated. * Implemented in kill_css(). * * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs * and thus css_tryget_online() is guaranteed to fail, the css can be * offlined by invoking offline_css(). After offlining, the base ref is * put. Implemented in css_killed_work_fn(). * * 3. When the percpu_ref reaches zero, the only possible remaining * accessors are inside RCU read sections. css_release() schedules the * RCU callback. * * 4. After the grace period, the css can be freed. Implemented in * css_free_rwork_fn(). * * It is actually hairier because both step 2 and 4 require process context * and thus involve punting to css->destroy_work adding two additional * steps to the already complex sequence. */ static void css_free_rwork_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(to_rcu_work(work), struct cgroup_subsys_state, destroy_rwork); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; percpu_ref_exit(&css->refcnt); css_rstat_exit(css); if (!css_is_self(css)) { /* css free path */ struct cgroup_subsys_state *parent = css->parent; int id = css->id; ss->css_free(css); cgroup_idr_remove(&ss->css_idr, id); cgroup_put(cgrp); if (parent) css_put(parent); } else { /* cgroup free path */ atomic_dec(&cgrp->root->nr_cgrps); if (!cgroup_on_dfl(cgrp)) cgroup1_pidlist_destroy_all(cgrp); cancel_work_sync(&cgrp->release_agent_work); bpf_cgrp_storage_free(cgrp); if (cgroup_parent(cgrp)) { /* * We get a ref to the parent, and put the ref when * this cgroup is being freed, so it's guaranteed * that the parent won't be destroyed before its * children. */ cgroup_put(cgroup_parent(cgrp)); kernfs_put(cgrp->kn); psi_cgroup_free(cgrp); kfree(cgrp); } else { /* * This is root cgroup's refcnt reaching zero, * which indicates that the root should be * released. */ cgroup_destroy_root(cgrp->root); } } } static void css_release_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; cgroup_lock(); css->flags |= CSS_RELEASED; list_del_rcu(&css->sibling); if (!css_is_self(css)) { struct cgroup *parent_cgrp; css_rstat_flush(css); cgroup_idr_replace(&ss->css_idr, NULL, css->id); if (ss->css_released) ss->css_released(css); cgrp->nr_dying_subsys[ss->id]--; /* * When a css is released and ready to be freed, its * nr_descendants must be zero. However, the corresponding * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem * is activated and deactivated multiple times with one or * more of its previous activation leaving behind dying csses. */ WARN_ON_ONCE(css->nr_descendants); parent_cgrp = cgroup_parent(cgrp); while (parent_cgrp) { parent_cgrp->nr_dying_subsys[ss->id]--; parent_cgrp = cgroup_parent(parent_cgrp); } } else { struct cgroup *tcgrp; /* cgroup release path */ TRACE_CGROUP_PATH(release, cgrp); css_rstat_flush(&cgrp->self); spin_lock_irq(&css_set_lock); for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) tcgrp->nr_dying_descendants--; spin_unlock_irq(&css_set_lock); /* * There are two control paths which try to determine * cgroup from dentry without going through kernfs - * cgroupstats_build() and css_tryget_online_from_dir(). * Those are supported by RCU protecting clearing of * cgrp->kn->priv backpointer. */ if (cgrp->kn) RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); } cgroup_unlock(); INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); } static void css_release(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); INIT_WORK(&css->destroy_work, css_release_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } static void init_and_link_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss, struct cgroup *cgrp) { lockdep_assert_held(&cgroup_mutex); cgroup_get_live(cgrp); memset(css, 0, sizeof(*css)); css->cgroup = cgrp; css->ss = ss; css->id = -1; INIT_LIST_HEAD(&css->sibling); INIT_LIST_HEAD(&css->children); css->serial_nr = css_serial_nr_next++; atomic_set(&css->online_cnt, 0); if (cgroup_parent(cgrp)) { css->parent = cgroup_css(cgroup_parent(cgrp), ss); css_get(css->parent); } BUG_ON(cgroup_css(cgrp, ss)); } /* invoke ->css_online() on a new CSS and mark it online if successful */ static int online_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; int ret = 0; lockdep_assert_held(&cgroup_mutex); if (ss->css_online) ret = ss->css_online(css); if (!ret) { css->flags |= CSS_ONLINE; rcu_assign_pointer(css->cgroup->subsys[ss->id], css); atomic_inc(&css->online_cnt); if (css->parent) { atomic_inc(&css->parent->online_cnt); while ((css = css->parent)) css->nr_descendants++; } } return ret; } /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ static void offline_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; lockdep_assert_held(&cgroup_mutex); if (!(css->flags & CSS_ONLINE)) return; if (ss->css_offline) ss->css_offline(css); css->flags &= ~CSS_ONLINE; RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); wake_up_all(&css->cgroup->offline_waitq); css->cgroup->nr_dying_subsys[ss->id]++; /* * Parent css and cgroup cannot be freed until after the freeing * of child css, see css_free_rwork_fn(). */ while ((css = css->parent)) { css->nr_descendants--; css->cgroup->nr_dying_subsys[ss->id]++; } } /** * css_create - create a cgroup_subsys_state * @cgrp: the cgroup new css will be associated with * @ss: the subsys of new css * * Create a new css associated with @cgrp - @ss pair. On success, the new * css is online and installed in @cgrp. This function doesn't create the * interface files. Returns 0 on success, -errno on failure. */ static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); struct cgroup_subsys_state *css; int err; lockdep_assert_held(&cgroup_mutex); css = ss->css_alloc(parent_css); if (!css) css = ERR_PTR(-ENOMEM); if (IS_ERR(css)) return css; init_and_link_css(css, ss, cgrp); err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); if (err) goto err_free_css; err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); if (err < 0) goto err_free_css; css->id = err; err = css_rstat_init(css); if (err) goto err_free_css; /* @css is ready to be brought online now, make it visible */ list_add_tail_rcu(&css->sibling, &parent_css->children); cgroup_idr_replace(&ss->css_idr, css, css->id); err = online_css(css); if (err) goto err_list_del; return css; err_list_del: list_del_rcu(&css->sibling); err_free_css: INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); return ERR_PTR(err); } /* * The returned cgroup is fully initialized including its control mask, but * it doesn't have the control mask applied. */ static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, umode_t mode) { struct cgroup_root *root = parent->root; struct cgroup *cgrp, *tcgrp; struct kernfs_node *kn; int i, level = parent->level + 1; int ret; /* allocate the cgroup and its ID, 0 is reserved for the root */ cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); if (!cgrp) return ERR_PTR(-ENOMEM); ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); if (ret) goto out_free_cgrp; /* create the directory */ kn = kernfs_create_dir_ns(parent->kn, name, mode, current_fsuid(), current_fsgid(), cgrp, NULL); if (IS_ERR(kn)) { ret = PTR_ERR(kn); goto out_cancel_ref; } cgrp->kn = kn; init_cgroup_housekeeping(cgrp); cgrp->self.parent = &parent->self; cgrp->root = root; cgrp->level = level; /* * Now that init_cgroup_housekeeping() has been called and cgrp->self * is setup, it is safe to perform rstat initialization on it. */ ret = css_rstat_init(&cgrp->self); if (ret) goto out_kernfs_remove; ret = psi_cgroup_alloc(cgrp); if (ret) goto out_stat_exit; for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) cgrp->ancestors[tcgrp->level] = tcgrp; /* * New cgroup inherits effective freeze counter, and * if the parent has to be frozen, the child has too. */ cgrp->freezer.e_freeze = parent->freezer.e_freeze; if (cgrp->freezer.e_freeze) { /* * Set the CGRP_FREEZE flag, so when a process will be * attached to the child cgroup, it will become frozen. * At this point the new cgroup is unpopulated, so we can * consider it frozen immediately. */ set_bit(CGRP_FREEZE, &cgrp->flags); set_bit(CGRP_FROZEN, &cgrp->flags); } if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); cgrp->self.serial_nr = css_serial_nr_next++; ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier, CGROUP_LIFETIME_ONLINE, CGROUP_LIFETIME_OFFLINE, cgrp); ret = notifier_to_errno(ret); if (ret) goto out_psi_free; /* allocation complete, commit to creation */ spin_lock_irq(&css_set_lock); for (i = 0; i < level; i++) { tcgrp = cgrp->ancestors[i]; tcgrp->nr_descendants++; /* * If the new cgroup is frozen, all ancestor cgroups get a new * frozen descendant, but their state can't change because of * this. */ if (cgrp->freezer.e_freeze) tcgrp->freezer.nr_frozen_descendants++; } spin_unlock_irq(&css_set_lock); list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); atomic_inc(&root->nr_cgrps); cgroup_get_live(parent); /* * On the default hierarchy, a child doesn't automatically inherit * subtree_control from the parent. Each is configured manually. */ if (!cgroup_on_dfl(cgrp)) cgrp->subtree_control = cgroup_control(cgrp); cgroup_propagate_control(cgrp); return cgrp; out_psi_free: psi_cgroup_free(cgrp); out_stat_exit: css_rstat_exit(&cgrp->self); out_kernfs_remove: kernfs_remove(cgrp->kn); out_cancel_ref: percpu_ref_exit(&cgrp->self.refcnt); out_free_cgrp: kfree(cgrp); return ERR_PTR(ret); } static bool cgroup_check_hierarchy_limits(struct cgroup *parent) { struct cgroup *cgroup; int ret = false; int level = 0; lockdep_assert_held(&cgroup_mutex); for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { if (cgroup->nr_descendants >= cgroup->max_descendants) goto fail; if (level >= cgroup->max_depth) goto fail; level++; } ret = true; fail: return ret; } int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) { struct cgroup *parent, *cgrp; int ret; /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ if (strchr(name, '\n')) return -EINVAL; parent = cgroup_kn_lock_live(parent_kn, false); if (!parent) return -ENODEV; if (!cgroup_check_hierarchy_limits(parent)) { ret = -EAGAIN; goto out_unlock; } cgrp = cgroup_create(parent, name, mode); if (IS_ERR(cgrp)) { ret = PTR_ERR(cgrp); goto out_unlock; } /* * This extra ref will be put in css_free_rwork_fn() and guarantees * that @cgrp->kn is always accessible. */ kernfs_get(cgrp->kn); ret = css_populate_dir(&cgrp->self); if (ret) goto out_destroy; ret = cgroup_apply_control_enable(cgrp); if (ret) goto out_destroy; TRACE_CGROUP_PATH(mkdir, cgrp); /* let's create and online css's */ kernfs_activate(cgrp->kn); ret = 0; goto out_unlock; out_destroy: cgroup_destroy_locked(cgrp); out_unlock: cgroup_kn_unlock(parent_kn); return ret; } /* * This is called when the refcnt of a css is confirmed to be killed. * css_tryget_online() is now guaranteed to fail. Tell the subsystem to * initiate destruction and put the css ref from kill_css(). */ static void css_killed_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); cgroup_lock(); do { offline_css(css); css_put(css); /* @css can't go away while we're holding cgroup_mutex */ css = css->parent; } while (css && atomic_dec_and_test(&css->online_cnt)); cgroup_unlock(); } /* css kill confirmation processing requires process context, bounce */ static void css_killed_ref_fn(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); if (atomic_dec_and_test(&css->online_cnt)) { INIT_WORK(&css->destroy_work, css_killed_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } } /** * kill_css - destroy a css * @css: css to destroy * * This function initiates destruction of @css by removing cgroup interface * files and putting its base reference. ->css_offline() will be invoked * asynchronously once css_tryget_online() is guaranteed to fail and when * the reference count reaches zero, @css will be released. */ static void kill_css(struct cgroup_subsys_state *css) { lockdep_assert_held(&cgroup_mutex); if (css->flags & CSS_DYING) return; /* * Call css_killed(), if defined, before setting the CSS_DYING flag */ if (css->ss->css_killed) css->ss->css_killed(css); css->flags |= CSS_DYING; /* * This must happen before css is disassociated with its cgroup. * See seq_css() for details. */ css_clear_dir(css); /* * Killing would put the base ref, but we need to keep it alive * until after ->css_offline(). */ css_get(css); /* * cgroup core guarantees that, by the time ->css_offline() is * invoked, no new css reference will be given out via * css_tryget_online(). We can't simply call percpu_ref_kill() and * proceed to offlining css's because percpu_ref_kill() doesn't * guarantee that the ref is seen as killed on all CPUs on return. * * Use percpu_ref_kill_and_confirm() to get notifications as each * css is confirmed to be seen as killed on all CPUs. */ percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); } /** * cgroup_destroy_locked - the first stage of cgroup destruction * @cgrp: cgroup to be destroyed * * css's make use of percpu refcnts whose killing latency shouldn't be * exposed to userland and are RCU protected. Also, cgroup core needs to * guarantee that css_tryget_online() won't succeed by the time * ->css_offline() is invoked. To satisfy all the requirements, * destruction is implemented in the following two steps. * * s1. Verify @cgrp can be destroyed and mark it dying. Remove all * userland visible parts and start killing the percpu refcnts of * css's. Set up so that the next stage will be kicked off once all * the percpu refcnts are confirmed to be killed. * * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the * rest of destruction. Once all cgroup references are gone, the * cgroup is RCU-freed. * * This function implements s1. After this step, @cgrp is gone as far as * the userland is concerned and a new cgroup with the same name may be * created. As cgroup doesn't care about the names internally, this * doesn't cause any problem. */ static int cgroup_destroy_locked(struct cgroup *cgrp) __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); struct cgroup_subsys_state *css; struct cgrp_cset_link *link; int ssid, ret; lockdep_assert_held(&cgroup_mutex); /* * Only migration can raise populated from zero and we're already * holding cgroup_mutex. */ if (cgroup_is_populated(cgrp)) return -EBUSY; /* * Make sure there's no live children. We can't test emptiness of * ->self.children as dead children linger on it while being * drained; otherwise, "rmdir parent/child parent" may fail. */ if (css_has_online_children(&cgrp->self)) return -EBUSY; /* * Mark @cgrp and the associated csets dead. The former prevents * further task migration and child creation by disabling * cgroup_kn_lock_live(). The latter makes the csets ignored by * the migration path. */ cgrp->self.flags &= ~CSS_ONLINE; spin_lock_irq(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) link->cset->dead = true; spin_unlock_irq(&css_set_lock); /* initiate massacre of all css's */ for_each_css(css, ssid, cgrp) kill_css(css); /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ css_clear_dir(&cgrp->self); kernfs_remove(cgrp->kn); if (cgroup_is_threaded(cgrp)) parent->nr_threaded_children--; spin_lock_irq(&css_set_lock); for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { tcgrp->nr_descendants--; tcgrp->nr_dying_descendants++; /* * If the dying cgroup is frozen, decrease frozen descendants * counters of ancestor cgroups. */ if (test_bit(CGRP_FROZEN, &cgrp->flags)) tcgrp->freezer.nr_frozen_descendants--; } spin_unlock_irq(&css_set_lock); cgroup1_check_for_release(parent); ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, CGROUP_LIFETIME_OFFLINE, cgrp); WARN_ON_ONCE(notifier_to_errno(ret)); /* put the base reference */ percpu_ref_kill(&cgrp->self.refcnt); return 0; }; int cgroup_rmdir(struct kernfs_node *kn) { struct cgroup *cgrp; int ret = 0; cgrp = cgroup_kn_lock_live(kn, false); if (!cgrp) return 0; ret = cgroup_destroy_locked(cgrp); if (!ret) TRACE_CGROUP_PATH(rmdir, cgrp); cgroup_kn_unlock(kn); return ret; } static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { .show_options = cgroup_show_options, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .show_path = cgroup_show_path, }; static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) { struct cgroup_subsys_state *css; pr_debug("Initializing cgroup subsys %s\n", ss->name); cgroup_lock(); idr_init(&ss->css_idr); INIT_LIST_HEAD(&ss->cfts); /* Create the root cgroup state for this subsystem */ ss->root = &cgrp_dfl_root; css = ss->css_alloc(NULL); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); /* * Root csses are never destroyed and we can't initialize * percpu_ref during early init. Disable refcnting. */ css->flags |= CSS_NO_REF; if (early) { /* allocation can't be done safely during early init */ css->id = 1; } else { css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); BUG_ON(ss_rstat_init(ss)); BUG_ON(css_rstat_init(css)); } /* Update the init_css_set to contain a subsys * pointer to this state - since the subsystem is * newly registered, all tasks and hence the * init_css_set is in the subsystem's root cgroup. */ init_css_set.subsys[ss->id] = css; have_fork_callback |= (bool)ss->fork << ss->id; have_exit_callback |= (bool)ss->exit << ss->id; have_release_callback |= (bool)ss->release << ss->id; have_canfork_callback |= (bool)ss->can_fork << ss->id; /* At system boot, before all subsystems have been * registered, no tasks have been forked, so we don't * need to invoke fork callbacks here. */ BUG_ON(!list_empty(&init_task.tasks)); BUG_ON(online_css(css)); cgroup_unlock(); } /** * cgroup_init_early - cgroup initialization at system boot * * Initialize cgroups at system boot, and initialize any * subsystems that request early init. */ int __init cgroup_init_early(void) { static struct cgroup_fs_context __initdata ctx; struct cgroup_subsys *ss; int i; ctx.root = &cgrp_dfl_root; init_cgroup_root(&ctx); cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; RCU_INIT_POINTER(init_task.cgroups, &init_css_set); for_each_subsys(ss, i) { WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, ss->id, ss->name); WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); WARN(ss->early_init && ss->css_rstat_flush, "cgroup rstat cannot be used with early init subsystem\n"); ss->id = i; ss->name = cgroup_subsys_name[i]; if (!ss->legacy_name) ss->legacy_name = cgroup_subsys_name[i]; if (ss->early_init) cgroup_init_subsys(ss, true); } return 0; } /** * cgroup_init - cgroup initialization * * Register cgroup filesystem and /proc file, and initialize * any subsystems that didn't request early init. */ int __init cgroup_init(void) { struct cgroup_subsys *ss; int ssid; BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); BUG_ON(ss_rstat_init(NULL)); get_user_ns(init_cgroup_ns.user_ns); cgroup_lock(); /* * Add init_css_set to the hash table so that dfl_root can link to * it during init. */ hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); cgroup_bpf_lifetime_notifier_init(); BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); cgroup_unlock(); for_each_subsys(ss, ssid) { if (ss->early_init) { struct cgroup_subsys_state *css = init_css_set.subsys[ss->id]; css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); } else { cgroup_init_subsys(ss, false); } list_add_tail(&init_css_set.e_cset_node[ssid], &cgrp_dfl_root.cgrp.e_csets[ssid]); /* * Setting dfl_root subsys_mask needs to consider the * disabled flag and cftype registration needs kmalloc, * both of which aren't available during early_init. */ if (!cgroup_ssid_enabled(ssid)) continue; if (cgroup1_ssid_disabled(ssid)) pr_info("Disabling %s control group subsystem in v1 mounts\n", ss->legacy_name); cgrp_dfl_root.subsys_mask |= 1 << ss->id; /* implicit controllers must be threaded too */ WARN_ON(ss->implicit_on_dfl && !ss->threaded); if (ss->implicit_on_dfl) cgrp_dfl_implicit_ss_mask |= 1 << ss->id; else if (!ss->dfl_cftypes) cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; if (ss->threaded) cgrp_dfl_threaded_ss_mask |= 1 << ss->id; if (ss->dfl_cftypes == ss->legacy_cftypes) { WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); } else { WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); } if (ss->bind) ss->bind(init_css_set.subsys[ssid]); cgroup_lock(); css_populate_dir(init_css_set.subsys[ssid]); cgroup_unlock(); } /* init_css_set.subsys[] has been updated, re-hash */ hash_del(&init_css_set.hlist); hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); WARN_ON(register_filesystem(&cgroup_fs_type)); WARN_ON(register_filesystem(&cgroup2_fs_type)); WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); #ifdef CONFIG_CPUSETS_V1 WARN_ON(register_filesystem(&cpuset_fs_type)); #endif return 0; } static int __init cgroup_wq_init(void) { /* * There isn't much point in executing destruction path in * parallel. Good chunk is serialized with cgroup_mutex anyway. * Use 1 for @max_active. * * We would prefer to do this in cgroup_init() above, but that * is called before init_workqueues(): so leave this until after. */ cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); BUG_ON(!cgroup_destroy_wq); return 0; } core_initcall(cgroup_wq_init); void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) { struct kernfs_node *kn; kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); if (!kn) return; kernfs_path(kn, buf, buflen); kernfs_put(kn); } /* * cgroup_get_from_id : get the cgroup associated with cgroup id * @id: cgroup id * On success return the cgrp or ERR_PTR on failure * Only cgroups within current task's cgroup NS are valid. */ struct cgroup *cgroup_get_from_id(u64 id) { struct kernfs_node *kn; struct cgroup *cgrp, *root_cgrp; kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); if (!kn) return ERR_PTR(-ENOENT); if (kernfs_type(kn) != KERNFS_DIR) { kernfs_put(kn); return ERR_PTR(-ENOENT); } rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (cgrp && !cgroup_tryget(cgrp)) cgrp = NULL; rcu_read_unlock(); kernfs_put(kn); if (!cgrp) return ERR_PTR(-ENOENT); root_cgrp = current_cgns_cgroup_dfl(); if (!cgroup_is_descendant(cgrp, root_cgrp)) { cgroup_put(cgrp); return ERR_PTR(-ENOENT); } return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_id); /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc/<pid>/cgroup. */ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk) { char *buf; int retval; struct cgroup_root *root; retval = -ENOMEM; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; rcu_read_lock(); spin_lock_irq(&css_set_lock); for_each_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; int ssid, count = 0; if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) continue; cgrp = task_cgroup_from_root(tsk, root); /* The root has already been unmounted. */ if (!cgrp) continue; seq_printf(m, "%d:", root->hierarchy_id); if (root != &cgrp_dfl_root) for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_printf(m, "%s%s", count++ ? "," : "", ss->legacy_name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); /* * On traditional hierarchies, all zombie tasks show up as * belonging to the root cgroup. On the default hierarchy, * while a zombie doesn't show up in "cgroup.procs" and * thus can't be migrated, its /proc/PID/cgroup keeps * reporting the cgroup it belonged to before exiting. If * the cgroup is removed before the zombie is reaped, * " (deleted)" is appended to the cgroup path. */ if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, current->nsproxy->cgroup_ns); if (retval == -E2BIG) retval = -ENAMETOOLONG; if (retval < 0) goto out_unlock; seq_puts(m, buf); } else { seq_puts(m, "/"); } if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) seq_puts(m, " (deleted)\n"); else seq_putc(m, '\n'); } retval = 0; out_unlock: spin_unlock_irq(&css_set_lock); rcu_read_unlock(); kfree(buf); out: return retval; } /** * cgroup_fork - initialize cgroup related fields during copy_process() * @child: pointer to task_struct of forking parent process. * * A task is associated with the init_css_set until cgroup_post_fork() * attaches it to the target css_set. */ void cgroup_fork(struct task_struct *child) { RCU_INIT_POINTER(child->cgroups, &init_css_set); INIT_LIST_HEAD(&child->cg_list); } /** * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer * @f: file corresponding to cgroup_dir * * Find the cgroup from a file pointer associated with a cgroup directory. * Returns a pointer to the cgroup on success. ERR_PTR is returned if the * cgroup cannot be found. */ static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) { struct cgroup_subsys_state *css; css = css_tryget_online_from_dir(f->f_path.dentry, NULL); if (IS_ERR(css)) return ERR_CAST(css); return css->cgroup; } /** * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports * cgroup2. * @f: file corresponding to cgroup2_dir */ static struct cgroup *cgroup_get_from_file(struct file *f) { struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); if (IS_ERR(cgrp)) return ERR_CAST(cgrp); if (!cgroup_on_dfl(cgrp)) { cgroup_put(cgrp); return ERR_PTR(-EBADF); } return cgrp; } /** * cgroup_css_set_fork - find or create a css_set for a child process * @kargs: the arguments passed to create the child process * * This functions finds or creates a new css_set which the child * process will be attached to in cgroup_post_fork(). By default, * the child process will be given the same css_set as its parent. * * If CLONE_INTO_CGROUP is specified this function will try to find an * existing css_set which includes the requested cgroup and if not create * a new css_set that the child will be attached to later. If this function * succeeds it will hold cgroup_threadgroup_rwsem on return. If * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex * before grabbing cgroup_threadgroup_rwsem and will hold a reference * to the target cgroup. */ static int cgroup_css_set_fork(struct kernel_clone_args *kargs) __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) { int ret; struct cgroup *dst_cgrp = NULL; struct css_set *cset; struct super_block *sb; if (kargs->flags & CLONE_INTO_CGROUP) cgroup_lock(); cgroup_threadgroup_change_begin(current); spin_lock_irq(&css_set_lock); cset = task_css_set(current); get_css_set(cset); if (kargs->cgrp) kargs->kill_seq = kargs->cgrp->kill_seq; else kargs->kill_seq = cset->dfl_cgrp->kill_seq; spin_unlock_irq(&css_set_lock); if (!(kargs->flags & CLONE_INTO_CGROUP)) { kargs->cset = cset; return 0; } CLASS(fd_raw, f)(kargs->cgroup); if (fd_empty(f)) { ret = -EBADF; goto err; } sb = fd_file(f)->f_path.dentry->d_sb; dst_cgrp = cgroup_get_from_file(fd_file(f)); if (IS_ERR(dst_cgrp)) { ret = PTR_ERR(dst_cgrp); dst_cgrp = NULL; goto err; } if (cgroup_is_dead(dst_cgrp)) { ret = -ENODEV; goto err; } /* * Verify that we the target cgroup is writable for us. This is * usually done by the vfs layer but since we're not going through * the vfs layer here we need to do it "manually". */ ret = cgroup_may_write(dst_cgrp, sb); if (ret) goto err; /* * Spawning a task directly into a cgroup works by passing a file * descriptor to the target cgroup directory. This can even be an O_PATH * file descriptor. But it can never be a cgroup.procs file descriptor. * This was done on purpose so spawning into a cgroup could be * conceptualized as an atomic * * fd = openat(dfd_cgroup, "cgroup.procs", ...); * write(fd, <child-pid>, ...); * * sequence, i.e. it's a shorthand for the caller opening and writing * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us * to always use the caller's credentials. */ ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, !(kargs->flags & CLONE_THREAD), current->nsproxy->cgroup_ns); if (ret) goto err; kargs->cset = find_css_set(cset, dst_cgrp); if (!kargs->cset) { ret = -ENOMEM; goto err; } put_css_set(cset); kargs->cgrp = dst_cgrp; return ret; err: cgroup_threadgroup_change_end(current); cgroup_unlock(); if (dst_cgrp) cgroup_put(dst_cgrp); put_css_set(cset); if (kargs->cset) put_css_set(kargs->cset); return ret; } /** * cgroup_css_set_put_fork - drop references we took during fork * @kargs: the arguments passed to create the child process * * Drop references to the prepared css_set and target cgroup if * CLONE_INTO_CGROUP was requested. */ static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) { struct cgroup *cgrp = kargs->cgrp; struct css_set *cset = kargs->cset; cgroup_threadgroup_change_end(current); if (cset) { put_css_set(cset); kargs->cset = NULL; } if (kargs->flags & CLONE_INTO_CGROUP) { cgroup_unlock(); if (cgrp) { cgroup_put(cgrp); kargs->cgrp = NULL; } } } /** * cgroup_can_fork - called on a new task before the process is exposed * @child: the child process * @kargs: the arguments passed to create the child process * * This prepares a new css_set for the child process which the child will * be attached to in cgroup_post_fork(). * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() * callback returns an error, the fork aborts with that error code. This * allows for a cgroup subsystem to conditionally allow or deny new forks. */ int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) { struct cgroup_subsys *ss; int i, j, ret; ret = cgroup_css_set_fork(kargs); if (ret) return ret; do_each_subsys_mask(ss, i, have_canfork_callback) { ret = ss->can_fork(child, kargs->cset); if (ret) goto out_revert; } while_each_subsys_mask(); return 0; out_revert: for_each_subsys(ss, j) { if (j >= i) break; if (ss->cancel_fork) ss->cancel_fork(child, kargs->cset); } cgroup_css_set_put_fork(kargs); return ret; } /** * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() * @child: the child process * @kargs: the arguments passed to create the child process * * This calls the cancel_fork() callbacks if a fork failed *after* * cgroup_can_fork() succeeded and cleans up references we took to * prepare a new css_set for the child process in cgroup_can_fork(). */ void cgroup_cancel_fork(struct task_struct *child, struct kernel_clone_args *kargs) { struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) if (ss->cancel_fork) ss->cancel_fork(child, kargs->cset); cgroup_css_set_put_fork(kargs); } /** * cgroup_post_fork - finalize cgroup setup for the child process * @child: the child process * @kargs: the arguments passed to create the child process * * Attach the child process to its css_set calling the subsystem fork() * callbacks. */ void cgroup_post_fork(struct task_struct *child, struct kernel_clone_args *kargs) __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) { unsigned int cgrp_kill_seq = 0; unsigned long cgrp_flags = 0; bool kill = false; struct cgroup_subsys *ss; struct css_set *cset; int i; cset = kargs->cset; kargs->cset = NULL; spin_lock_irq(&css_set_lock); /* init tasks are special, only link regular threads */ if (likely(child->pid)) { if (kargs->cgrp) { cgrp_flags = kargs->cgrp->flags; cgrp_kill_seq = kargs->cgrp->kill_seq; } else { cgrp_flags = cset->dfl_cgrp->flags; cgrp_kill_seq = cset->dfl_cgrp->kill_seq; } WARN_ON_ONCE(!list_empty(&child->cg_list)); cset->nr_tasks++; css_set_move_task(child, NULL, cset, false); } else { put_css_set(cset); cset = NULL; } if (!(child->flags & PF_KTHREAD)) { if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { /* * If the cgroup has to be frozen, the new task has * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to * get the task into the frozen state. */ spin_lock(&child->sighand->siglock); WARN_ON_ONCE(child->frozen); child->jobctl |= JOBCTL_TRAP_FREEZE; spin_unlock(&child->sighand->siglock); /* * Calling cgroup_update_frozen() isn't required here, * because it will be called anyway a bit later from * do_freezer_trap(). So we avoid cgroup's transient * switch from the frozen state and back. */ } /* * If the cgroup is to be killed notice it now and take the * child down right after we finished preparing it for * userspace. */ kill = kargs->kill_seq != cgrp_kill_seq; } spin_unlock_irq(&css_set_lock); /* * Call ss->fork(). This must happen after @child is linked on * css_set; otherwise, @child might change state between ->fork() * and addition to css_set. */ do_each_subsys_mask(ss, i, have_fork_callback) { ss->fork(child); } while_each_subsys_mask(); /* Make the new cset the root_cset of the new cgroup namespace. */ if (kargs->flags & CLONE_NEWCGROUP) { struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; get_css_set(cset); child->nsproxy->cgroup_ns->root_cset = cset; put_css_set(rcset); } /* Cgroup has to be killed so take down child immediately. */ if (unlikely(kill)) do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); cgroup_css_set_put_fork(kargs); } /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process * * Description: Detach cgroup from @tsk. * */ void cgroup_exit(struct task_struct *tsk) { struct cgroup_subsys *ss; struct css_set *cset; int i; spin_lock_irq(&css_set_lock); WARN_ON_ONCE(list_empty(&tsk->cg_list)); cset = task_css_set(tsk); css_set_move_task(tsk, cset, NULL, false); cset->nr_tasks--; /* matches the signal->live check in css_task_iter_advance() */ if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) list_add_tail(&tsk->cg_list, &cset->dying_tasks); if (dl_task(tsk)) dec_dl_tasks_cs(tsk); WARN_ON_ONCE(cgroup_task_frozen(tsk)); if (unlikely(!(tsk->flags & PF_KTHREAD) && test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) cgroup_update_frozen(task_dfl_cgroup(tsk)); spin_unlock_irq(&css_set_lock); /* see cgroup_post_fork() for details */ do_each_subsys_mask(ss, i, have_exit_callback) { ss->exit(tsk); } while_each_subsys_mask(); } void cgroup_release(struct task_struct *task) { struct cgroup_subsys *ss; int ssid; do_each_subsys_mask(ss, ssid, have_release_callback) { ss->release(task); } while_each_subsys_mask(); if (!list_empty(&task->cg_list)) { spin_lock_irq(&css_set_lock); css_set_skip_task_iters(task_css_set(task), task); list_del_init(&task->cg_list); spin_unlock_irq(&css_set_lock); } } void cgroup_free(struct task_struct *task) { struct css_set *cset = task_css_set(task); put_css_set(cset); } static int __init cgroup_disable(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; for_each_subsys(ss, i) { if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; static_branch_disable(cgroup_subsys_enabled_key[i]); pr_info("Disabling %s control group subsystem\n", ss->name); } for (i = 0; i < OPT_FEATURE_COUNT; i++) { if (strcmp(token, cgroup_opt_feature_names[i])) continue; cgroup_feature_disable_mask |= 1 << i; pr_info("Disabling %s control group feature\n", cgroup_opt_feature_names[i]); break; } } return 1; } __setup("cgroup_disable=", cgroup_disable); void __init __weak enable_debug_cgroup(void) { } static int __init enable_cgroup_debug(char *str) { cgroup_debug = true; enable_debug_cgroup(); return 1; } __setup("cgroup_debug", enable_cgroup_debug); static int __init cgroup_favordynmods_setup(char *str) { return (kstrtobool(str, &have_favordynmods) == 0); } __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); /** * css_tryget_online_from_dir - get corresponding css from a cgroup dentry * @dentry: directory dentry of interest * @ss: subsystem of interest * * If @dentry is a directory for a cgroup which has @ss enabled on it, try * to get the corresponding css and return it. If such css doesn't exist * or can't be pinned, an ERR_PTR value is returned. */ struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, struct cgroup_subsys *ss) { struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct file_system_type *s_type = dentry->d_sb->s_type; struct cgroup_subsys_state *css = NULL; struct cgroup *cgrp; /* is @dentry a cgroup dir? */ if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || !kn || kernfs_type(kn) != KERNFS_DIR) return ERR_PTR(-EBADF); rcu_read_lock(); /* * This path doesn't originate from kernfs and @kn could already * have been or be removed at any point. @kn->priv is RCU * protected for this access. See css_release_work_fn() for details. */ cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (cgrp) css = cgroup_css(cgrp, ss); if (!css || !css_tryget_online(css)) css = ERR_PTR(-ENOENT); rcu_read_unlock(); return css; } /** * css_from_id - lookup css by id * @id: the cgroup id * @ss: cgroup subsys to be looked into * * Returns the css if there's valid one with @id, otherwise returns NULL. * Should be called under rcu_read_lock(). */ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) { WARN_ON_ONCE(!rcu_read_lock_held()); return idr_find(&ss->css_idr, id); } /** * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path * @path: path on the default hierarchy * * Find the cgroup at @path on the default hierarchy, increment its * reference count and return it. Returns pointer to the found cgroup on * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. */ struct cgroup *cgroup_get_from_path(const char *path) { struct kernfs_node *kn; struct cgroup *cgrp = ERR_PTR(-ENOENT); struct cgroup *root_cgrp; root_cgrp = current_cgns_cgroup_dfl(); kn = kernfs_walk_and_get(root_cgrp->kn, path); if (!kn) goto out; if (kernfs_type(kn) != KERNFS_DIR) { cgrp = ERR_PTR(-ENOTDIR); goto out_kernfs; } rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (!cgrp || !cgroup_tryget(cgrp)) cgrp = ERR_PTR(-ENOENT); rcu_read_unlock(); out_kernfs: kernfs_put(kn); out: return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_path); /** * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd * @fd: fd obtained by open(cgroup_dir) * * Find the cgroup from a fd which should be obtained * by opening a cgroup directory. Returns a pointer to the * cgroup on success. ERR_PTR is returned if the cgroup * cannot be found. */ struct cgroup *cgroup_v1v2_get_from_fd(int fd) { CLASS(fd_raw, f)(fd); if (fd_empty(f)) return ERR_PTR(-EBADF); return cgroup_v1v2_get_from_file(fd_file(f)); } /** * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports * cgroup2. * @fd: fd obtained by open(cgroup2_dir) */ struct cgroup *cgroup_get_from_fd(int fd) { struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); if (IS_ERR(cgrp)) return ERR_CAST(cgrp); if (!cgroup_on_dfl(cgrp)) { cgroup_put(cgrp); return ERR_PTR(-EBADF); } return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_fd); static u64 power_of_ten(int power) { u64 v = 1; while (power--) v *= 10; return v; } /** * cgroup_parse_float - parse a floating number * @input: input string * @dec_shift: number of decimal digits to shift * @v: output * * Parse a decimal floating point number in @input and store the result in * @v with decimal point right shifted @dec_shift times. For example, if * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. * Returns 0 on success, -errno otherwise. * * There's nothing cgroup specific about this function except that it's * currently the only user. */ int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) { s64 whole, frac = 0; int fstart = 0, fend = 0, flen; if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) return -EINVAL; if (frac < 0) return -EINVAL; flen = fend > fstart ? fend - fstart : 0; if (flen < dec_shift) frac *= power_of_ten(dec_shift - flen); else frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); *v = whole * power_of_ten(dec_shift) + frac; return 0; } /* * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data * definition in cgroup-defs.h. */ #ifdef CONFIG_SOCK_CGROUP_DATA void cgroup_sk_alloc(struct sock_cgroup_data *skcd) { struct cgroup *cgroup; rcu_read_lock(); /* Don't associate the sock with unrelated interrupted task's cgroup. */ if (in_interrupt()) { cgroup = &cgrp_dfl_root.cgrp; cgroup_get(cgroup); goto out; } while (true) { struct css_set *cset; cset = task_css_set(current); if (likely(cgroup_tryget(cset->dfl_cgrp))) { cgroup = cset->dfl_cgrp; break; } cpu_relax(); } out: skcd->cgroup = cgroup; cgroup_bpf_get(cgroup); rcu_read_unlock(); } void cgroup_sk_clone(struct sock_cgroup_data *skcd) { struct cgroup *cgrp = sock_cgroup_ptr(skcd); /* * We might be cloning a socket which is left in an empty * cgroup and the cgroup might have already been rmdir'd. * Don't use cgroup_get_live(). */ cgroup_get(cgrp); cgroup_bpf_get(cgrp); } void cgroup_sk_free(struct sock_cgroup_data *skcd) { struct cgroup *cgrp = sock_cgroup_ptr(skcd); cgroup_bpf_put(cgrp); cgroup_put(cgrp); } #endif /* CONFIG_SOCK_CGROUP_DATA */ #ifdef CONFIG_SYSFS static ssize_t show_delegatable_files(struct cftype *files, char *buf, ssize_t size, const char *prefix) { struct cftype *cft; ssize_t ret = 0; for (cft = files; cft && cft->name[0] != '\0'; cft++) { if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) continue; if (prefix) ret += snprintf(buf + ret, size - ret, "%s.", prefix); ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); if (WARN_ON(ret >= size)) break; } return ret; } static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct cgroup_subsys *ss; int ssid; ssize_t ret = 0; ret = show_delegatable_files(cgroup_base_files, buf + ret, PAGE_SIZE - ret, NULL); if (cgroup_psi_enabled()) ret += show_delegatable_files(cgroup_psi_files, buf + ret, PAGE_SIZE - ret, NULL); for_each_subsys(ss, ssid) ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, PAGE_SIZE - ret, cgroup_subsys_name[ssid]); return ret; } static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "nsdelegate\n" "favordynmods\n" "memory_localevents\n" "memory_recursiveprot\n" "memory_hugetlb_accounting\n" "pids_localevents\n"); } static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); static struct attribute *cgroup_sysfs_attrs[] = { &cgroup_delegate_attr.attr, &cgroup_features_attr.attr, NULL, }; static const struct attribute_group cgroup_sysfs_attr_group = { .attrs = cgroup_sysfs_attrs, .name = "cgroup", }; static int __init cgroup_sysfs_init(void) { return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); } subsys_initcall(cgroup_sysfs_init); #endif /* CONFIG_SYSFS */
7 3 4 2 1 1 2 1 1 3 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 // SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2022, Intel Corporation. */ #include "protocol.h" #include "mib.h" #include "mptcp_pm_gen.h" #define mptcp_for_each_userspace_pm_addr(__msk, __entry) \ list_for_each_entry(__entry, \ &((__msk)->pm.userspace_pm_local_addr_list), list) void mptcp_userspace_pm_free_local_addr_list(struct mptcp_sock *msk) { struct mptcp_pm_addr_entry *entry, *tmp; struct sock *sk = (struct sock *)msk; LIST_HEAD(free_list); spin_lock_bh(&msk->pm.lock); list_splice_init(&msk->pm.userspace_pm_local_addr_list, &free_list); spin_unlock_bh(&msk->pm.lock); list_for_each_entry_safe(entry, tmp, &free_list, list) { sock_kfree_s(sk, entry, sizeof(*entry)); } } static struct mptcp_pm_addr_entry * mptcp_userspace_pm_lookup_addr(struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { struct mptcp_pm_addr_entry *entry; mptcp_for_each_userspace_pm_addr(msk, entry) { if (mptcp_addresses_equal(&entry->addr, addr, false)) return entry; } return NULL; } static int mptcp_userspace_pm_append_new_local_addr(struct mptcp_sock *msk, struct mptcp_pm_addr_entry *entry, bool needs_id) { DECLARE_BITMAP(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1); struct sock *sk = (struct sock *)msk; struct mptcp_pm_addr_entry *e; bool addr_match = false; bool id_match = false; int ret = -EINVAL; bitmap_zero(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1); spin_lock_bh(&msk->pm.lock); mptcp_for_each_userspace_pm_addr(msk, e) { addr_match = mptcp_addresses_equal(&e->addr, &entry->addr, true); if (addr_match && entry->addr.id == 0 && needs_id) entry->addr.id = e->addr.id; id_match = (e->addr.id == entry->addr.id); if (addr_match || id_match) break; __set_bit(e->addr.id, id_bitmap); } if (!addr_match && !id_match) { /* Memory for the entry is allocated from the * sock option buffer. */ e = sock_kmemdup(sk, entry, sizeof(*entry), GFP_ATOMIC); if (!e) { ret = -ENOMEM; goto append_err; } if (!e->addr.id && needs_id) e->addr.id = find_next_zero_bit(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1, 1); list_add_tail_rcu(&e->list, &msk->pm.userspace_pm_local_addr_list); msk->pm.local_addr_used++; ret = e->addr.id; } else if (addr_match && id_match) { ret = entry->addr.id; } append_err: spin_unlock_bh(&msk->pm.lock); return ret; } /* If the subflow is closed from the other peer (not via a * subflow destroy command then), we want to keep the entry * not to assign the same ID to another address and to be * able to send RM_ADDR after the removal of the subflow. */ static int mptcp_userspace_pm_delete_local_addr(struct mptcp_sock *msk, struct mptcp_pm_addr_entry *addr) { struct sock *sk = (struct sock *)msk; struct mptcp_pm_addr_entry *entry; entry = mptcp_userspace_pm_lookup_addr(msk, &addr->addr); if (!entry) return -EINVAL; /* TODO: a refcount is needed because the entry can * be used multiple times (e.g. fullmesh mode). */ list_del_rcu(&entry->list); sock_kfree_s(sk, entry, sizeof(*entry)); msk->pm.local_addr_used--; return 0; } static struct mptcp_pm_addr_entry * mptcp_userspace_pm_lookup_addr_by_id(struct mptcp_sock *msk, unsigned int id) { struct mptcp_pm_addr_entry *entry; mptcp_for_each_userspace_pm_addr(msk, entry) { if (entry->addr.id == id) return entry; } return NULL; } int mptcp_userspace_pm_get_local_id(struct mptcp_sock *msk, struct mptcp_pm_addr_entry *skc) { __be16 msk_sport = ((struct inet_sock *) inet_sk((struct sock *)msk))->inet_sport; struct mptcp_pm_addr_entry *entry; spin_lock_bh(&msk->pm.lock); entry = mptcp_userspace_pm_lookup_addr(msk, &skc->addr); spin_unlock_bh(&msk->pm.lock); if (entry) return entry->addr.id; if (skc->addr.port == msk_sport) skc->addr.port = 0; return mptcp_userspace_pm_append_new_local_addr(msk, skc, true); } bool mptcp_userspace_pm_is_backup(struct mptcp_sock *msk, struct mptcp_addr_info *skc) { struct mptcp_pm_addr_entry *entry; bool backup; spin_lock_bh(&msk->pm.lock); entry = mptcp_userspace_pm_lookup_addr(msk, skc); backup = entry && !!(entry->flags & MPTCP_PM_ADDR_FLAG_BACKUP); spin_unlock_bh(&msk->pm.lock); return backup; } static struct mptcp_sock *mptcp_userspace_pm_get_sock(const struct genl_info *info) { struct mptcp_sock *msk; struct nlattr *token; if (GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_TOKEN)) return NULL; token = info->attrs[MPTCP_PM_ATTR_TOKEN]; msk = mptcp_token_get_sock(genl_info_net(info), nla_get_u32(token)); if (!msk) { NL_SET_ERR_MSG_ATTR(info->extack, token, "invalid token"); return NULL; } if (!mptcp_pm_is_userspace(msk)) { NL_SET_ERR_MSG_ATTR(info->extack, token, "userspace PM not selected"); sock_put((struct sock *)msk); return NULL; } return msk; } int mptcp_pm_nl_announce_doit(struct sk_buff *skb, struct genl_info *info) { struct mptcp_pm_addr_entry addr_val; struct mptcp_sock *msk; struct nlattr *addr; int err = -EINVAL; struct sock *sk; if (GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_ADDR)) return err; msk = mptcp_userspace_pm_get_sock(info); if (!msk) return err; sk = (struct sock *)msk; addr = info->attrs[MPTCP_PM_ATTR_ADDR]; err = mptcp_pm_parse_entry(addr, info, true, &addr_val); if (err < 0) goto announce_err; if (addr_val.addr.id == 0) { NL_SET_ERR_MSG_ATTR(info->extack, addr, "invalid addr id"); err = -EINVAL; goto announce_err; } if (!(addr_val.flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) { NL_SET_ERR_MSG_ATTR(info->extack, addr, "invalid addr flags"); err = -EINVAL; goto announce_err; } err = mptcp_userspace_pm_append_new_local_addr(msk, &addr_val, false); if (err < 0) { NL_SET_ERR_MSG_ATTR(info->extack, addr, "did not match address and id"); goto announce_err; } lock_sock(sk); spin_lock_bh(&msk->pm.lock); if (mptcp_pm_alloc_anno_list(msk, &addr_val.addr)) { msk->pm.add_addr_signaled++; mptcp_pm_announce_addr(msk, &addr_val.addr, false); mptcp_pm_addr_send_ack(msk); } spin_unlock_bh(&msk->pm.lock); release_sock(sk); err = 0; announce_err: sock_put(sk); return err; } static int mptcp_userspace_pm_remove_id_zero_address(struct mptcp_sock *msk) { struct mptcp_rm_list list = { .nr = 0 }; struct mptcp_subflow_context *subflow; struct sock *sk = (struct sock *)msk; bool has_id_0 = false; int err = -EINVAL; lock_sock(sk); mptcp_for_each_subflow(msk, subflow) { if (READ_ONCE(subflow->local_id) == 0) { has_id_0 = true; break; } } if (!has_id_0) goto remove_err; list.ids[list.nr++] = 0; spin_lock_bh(&msk->pm.lock); mptcp_pm_remove_addr(msk, &list); spin_unlock_bh(&msk->pm.lock); err = 0; remove_err: release_sock(sk); return err; } void mptcp_pm_remove_addr_entry(struct mptcp_sock *msk, struct mptcp_pm_addr_entry *entry) { struct mptcp_rm_list alist = { .nr = 0 }; int anno_nr = 0; /* only delete if either announced or matching a subflow */ if (mptcp_remove_anno_list_by_saddr(msk, &entry->addr)) anno_nr++; else if (!mptcp_lookup_subflow_by_saddr(&msk->conn_list, &entry->addr)) return; alist.ids[alist.nr++] = entry->addr.id; spin_lock_bh(&msk->pm.lock); msk->pm.add_addr_signaled -= anno_nr; mptcp_pm_remove_addr(msk, &alist); spin_unlock_bh(&msk->pm.lock); } int mptcp_pm_nl_remove_doit(struct sk_buff *skb, struct genl_info *info) { struct mptcp_pm_addr_entry *match; struct mptcp_sock *msk; struct nlattr *id; int err = -EINVAL; struct sock *sk; u8 id_val; if (GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_LOC_ID)) return err; id = info->attrs[MPTCP_PM_ATTR_LOC_ID]; id_val = nla_get_u8(id); msk = mptcp_userspace_pm_get_sock(info); if (!msk) return err; sk = (struct sock *)msk; if (id_val == 0) { err = mptcp_userspace_pm_remove_id_zero_address(msk); goto out; } lock_sock(sk); spin_lock_bh(&msk->pm.lock); match = mptcp_userspace_pm_lookup_addr_by_id(msk, id_val); if (!match) { spin_unlock_bh(&msk->pm.lock); release_sock(sk); goto out; } list_del_rcu(&match->list); spin_unlock_bh(&msk->pm.lock); mptcp_pm_remove_addr_entry(msk, match); release_sock(sk); kfree_rcu_mightsleep(match); /* Adjust sk_omem_alloc like sock_kfree_s() does, to match * with allocation of this memory by sock_kmemdup() */ atomic_sub(sizeof(*match), &sk->sk_omem_alloc); err = 0; out: if (err) NL_SET_ERR_MSG_ATTR_FMT(info->extack, id, "address with id %u not found", id_val); sock_put(sk); return err; } int mptcp_pm_nl_subflow_create_doit(struct sk_buff *skb, struct genl_info *info) { struct mptcp_pm_addr_entry entry = { 0 }; struct mptcp_addr_info addr_r; struct nlattr *raddr, *laddr; struct mptcp_pm_local local; struct mptcp_sock *msk; int err = -EINVAL; struct sock *sk; if (GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_ADDR) || GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_ADDR_REMOTE)) return err; msk = mptcp_userspace_pm_get_sock(info); if (!msk) return err; sk = (struct sock *)msk; laddr = info->attrs[MPTCP_PM_ATTR_ADDR]; err = mptcp_pm_parse_entry(laddr, info, true, &entry); if (err < 0) goto create_err; if (entry.flags & MPTCP_PM_ADDR_FLAG_SIGNAL) { NL_SET_ERR_MSG_ATTR(info->extack, laddr, "invalid addr flags"); err = -EINVAL; goto create_err; } entry.flags |= MPTCP_PM_ADDR_FLAG_SUBFLOW; raddr = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE]; err = mptcp_pm_parse_addr(raddr, info, &addr_r); if (err < 0) goto create_err; if (!mptcp_pm_addr_families_match(sk, &entry.addr, &addr_r)) { GENL_SET_ERR_MSG(info, "families mismatch"); err = -EINVAL; goto create_err; } err = mptcp_userspace_pm_append_new_local_addr(msk, &entry, false); if (err < 0) { NL_SET_ERR_MSG_ATTR(info->extack, laddr, "did not match address and id"); goto create_err; } local.addr = entry.addr; local.flags = entry.flags; local.ifindex = entry.ifindex; lock_sock(sk); err = __mptcp_subflow_connect(sk, &local, &addr_r); release_sock(sk); if (err) GENL_SET_ERR_MSG_FMT(info, "connect error: %d", err); spin_lock_bh(&msk->pm.lock); if (err) mptcp_userspace_pm_delete_local_addr(msk, &entry); else msk->pm.subflows++; spin_unlock_bh(&msk->pm.lock); create_err: sock_put(sk); return err; } static struct sock *mptcp_nl_find_ssk(struct mptcp_sock *msk, const struct mptcp_addr_info *local, const struct mptcp_addr_info *remote) { struct mptcp_subflow_context *subflow; if (local->family != remote->family) return NULL; mptcp_for_each_subflow(msk, subflow) { const struct inet_sock *issk; struct sock *ssk; ssk = mptcp_subflow_tcp_sock(subflow); if (local->family != ssk->sk_family) continue; issk = inet_sk(ssk); switch (ssk->sk_family) { case AF_INET: if (issk->inet_saddr != local->addr.s_addr || issk->inet_daddr != remote->addr.s_addr) continue; break; #if IS_ENABLED(CONFIG_MPTCP_IPV6) case AF_INET6: { if (!ipv6_addr_equal(&local->addr6, &issk->pinet6->saddr) || !ipv6_addr_equal(&remote->addr6, &ssk->sk_v6_daddr)) continue; break; } #endif default: continue; } if (issk->inet_sport == local->port && issk->inet_dport == remote->port) return ssk; } return NULL; } int mptcp_pm_nl_subflow_destroy_doit(struct sk_buff *skb, struct genl_info *info) { struct mptcp_pm_addr_entry addr_l; struct mptcp_addr_info addr_r; struct nlattr *raddr, *laddr; struct mptcp_sock *msk; struct sock *sk, *ssk; int err = -EINVAL; if (GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_ADDR) || GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_ADDR_REMOTE)) return err; msk = mptcp_userspace_pm_get_sock(info); if (!msk) return err; sk = (struct sock *)msk; laddr = info->attrs[MPTCP_PM_ATTR_ADDR]; err = mptcp_pm_parse_entry(laddr, info, true, &addr_l); if (err < 0) goto destroy_err; raddr = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE]; err = mptcp_pm_parse_addr(raddr, info, &addr_r); if (err < 0) goto destroy_err; #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (addr_l.addr.family == AF_INET && ipv6_addr_v4mapped(&addr_r.addr6)) { ipv6_addr_set_v4mapped(addr_l.addr.addr.s_addr, &addr_l.addr.addr6); addr_l.addr.family = AF_INET6; } if (addr_r.family == AF_INET && ipv6_addr_v4mapped(&addr_l.addr.addr6)) { ipv6_addr_set_v4mapped(addr_r.addr.s_addr, &addr_r.addr6); addr_r.family = AF_INET6; } #endif if (addr_l.addr.family != addr_r.family) { GENL_SET_ERR_MSG(info, "address families do not match"); err = -EINVAL; goto destroy_err; } if (!addr_l.addr.port) { NL_SET_ERR_MSG_ATTR(info->extack, laddr, "missing local port"); err = -EINVAL; goto destroy_err; } if (!addr_r.port) { NL_SET_ERR_MSG_ATTR(info->extack, raddr, "missing remote port"); err = -EINVAL; goto destroy_err; } lock_sock(sk); ssk = mptcp_nl_find_ssk(msk, &addr_l.addr, &addr_r); if (!ssk) { GENL_SET_ERR_MSG(info, "subflow not found"); err = -ESRCH; goto release_sock; } spin_lock_bh(&msk->pm.lock); mptcp_userspace_pm_delete_local_addr(msk, &addr_l); spin_unlock_bh(&msk->pm.lock); mptcp_subflow_shutdown(sk, ssk, RCV_SHUTDOWN | SEND_SHUTDOWN); mptcp_close_ssk(sk, ssk, mptcp_subflow_ctx(ssk)); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RMSUBFLOW); release_sock: release_sock(sk); destroy_err: sock_put(sk); return err; } int mptcp_userspace_pm_set_flags(struct mptcp_pm_addr_entry *local, struct genl_info *info) { struct mptcp_addr_info rem = { .family = AF_UNSPEC, }; struct mptcp_pm_addr_entry *entry; struct nlattr *attr, *attr_rem; struct mptcp_sock *msk; int ret = -EINVAL; struct sock *sk; u8 bkup = 0; if (GENL_REQ_ATTR_CHECK(info, MPTCP_PM_ATTR_ADDR_REMOTE)) return ret; msk = mptcp_userspace_pm_get_sock(info); if (!msk) return ret; sk = (struct sock *)msk; attr = info->attrs[MPTCP_PM_ATTR_ADDR]; if (local->addr.family == AF_UNSPEC) { NL_SET_ERR_MSG_ATTR(info->extack, attr, "invalid local address family"); ret = -EINVAL; goto set_flags_err; } attr_rem = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE]; ret = mptcp_pm_parse_addr(attr_rem, info, &rem); if (ret < 0) goto set_flags_err; if (rem.family == AF_UNSPEC) { NL_SET_ERR_MSG_ATTR(info->extack, attr_rem, "invalid remote address family"); ret = -EINVAL; goto set_flags_err; } if (local->flags & MPTCP_PM_ADDR_FLAG_BACKUP) bkup = 1; spin_lock_bh(&msk->pm.lock); entry = mptcp_userspace_pm_lookup_addr(msk, &local->addr); if (entry) { if (bkup) entry->flags |= MPTCP_PM_ADDR_FLAG_BACKUP; else entry->flags &= ~MPTCP_PM_ADDR_FLAG_BACKUP; } spin_unlock_bh(&msk->pm.lock); lock_sock(sk); ret = mptcp_pm_mp_prio_send_ack(msk, &local->addr, &rem, bkup); release_sock(sk); /* mptcp_pm_mp_prio_send_ack() only fails in one case */ if (ret < 0) GENL_SET_ERR_MSG(info, "subflow not found"); set_flags_err: sock_put(sk); return ret; } int mptcp_userspace_pm_dump_addr(struct sk_buff *msg, struct netlink_callback *cb) { struct id_bitmap { DECLARE_BITMAP(map, MPTCP_PM_MAX_ADDR_ID + 1); } *bitmap; const struct genl_info *info = genl_info_dump(cb); struct mptcp_pm_addr_entry *entry; struct mptcp_sock *msk; int ret = -EINVAL; struct sock *sk; BUILD_BUG_ON(sizeof(struct id_bitmap) > sizeof(cb->ctx)); bitmap = (struct id_bitmap *)cb->ctx; msk = mptcp_userspace_pm_get_sock(info); if (!msk) return ret; sk = (struct sock *)msk; lock_sock(sk); spin_lock_bh(&msk->pm.lock); mptcp_for_each_userspace_pm_addr(msk, entry) { if (test_bit(entry->addr.id, bitmap->map)) continue; if (mptcp_pm_genl_fill_addr(msg, cb, entry) < 0) break; __set_bit(entry->addr.id, bitmap->map); } spin_unlock_bh(&msk->pm.lock); release_sock(sk); ret = msg->len; sock_put(sk); return ret; } int mptcp_userspace_pm_get_addr(u8 id, struct mptcp_pm_addr_entry *addr, struct genl_info *info) { struct mptcp_pm_addr_entry *entry; struct mptcp_sock *msk; int ret = -EINVAL; struct sock *sk; msk = mptcp_userspace_pm_get_sock(info); if (!msk) return ret; sk = (struct sock *)msk; lock_sock(sk); spin_lock_bh(&msk->pm.lock); entry = mptcp_userspace_pm_lookup_addr_by_id(msk, id); if (entry) { *addr = *entry; ret = 0; } spin_unlock_bh(&msk->pm.lock); release_sock(sk); sock_put(sk); return ret; } static struct mptcp_pm_ops mptcp_pm_userspace = { .name = "userspace", .owner = THIS_MODULE, }; void __init mptcp_pm_userspace_register(void) { mptcp_pm_register(&mptcp_pm_userspace); }
1 1 1 7 8 1 7 6 3 1 1 555 9 9 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2012 Nicira, Inc. */ #include <linux/if_vlan.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <net/dst.h> #include <net/xfrm.h> #include <net/rtnetlink.h> #include "datapath.h" #include "vport-internal_dev.h" #include "vport-netdev.h" struct internal_dev { struct vport *vport; }; static struct vport_ops ovs_internal_vport_ops; static struct internal_dev *internal_dev_priv(struct net_device *netdev) { return netdev_priv(netdev); } /* Called with rcu_read_lock_bh. */ static netdev_tx_t internal_dev_xmit(struct sk_buff *skb, struct net_device *netdev) { int len, err; /* store len value because skb can be freed inside ovs_vport_receive() */ len = skb->len; rcu_read_lock(); err = ovs_vport_receive(internal_dev_priv(netdev)->vport, skb, NULL); rcu_read_unlock(); if (likely(!err)) dev_sw_netstats_tx_add(netdev, 1, len); else netdev->stats.tx_errors++; return NETDEV_TX_OK; } static int internal_dev_open(struct net_device *netdev) { netif_start_queue(netdev); return 0; } static int internal_dev_stop(struct net_device *netdev) { netif_stop_queue(netdev); return 0; } static void internal_dev_getinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { strscpy(info->driver, "openvswitch", sizeof(info->driver)); } static const struct ethtool_ops internal_dev_ethtool_ops = { .get_drvinfo = internal_dev_getinfo, .get_link = ethtool_op_get_link, }; static void internal_dev_destructor(struct net_device *dev) { struct vport *vport = ovs_internal_dev_get_vport(dev); ovs_vport_free(vport); } static const struct net_device_ops internal_dev_netdev_ops = { .ndo_open = internal_dev_open, .ndo_stop = internal_dev_stop, .ndo_start_xmit = internal_dev_xmit, .ndo_set_mac_address = eth_mac_addr, }; static struct rtnl_link_ops internal_dev_link_ops __read_mostly = { .kind = "openvswitch", }; static void do_setup(struct net_device *netdev) { ether_setup(netdev); netdev->max_mtu = ETH_MAX_MTU; netdev->netdev_ops = &internal_dev_netdev_ops; netdev->priv_flags &= ~IFF_TX_SKB_SHARING; netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_OPENVSWITCH | IFF_NO_QUEUE; netdev->lltx = true; netdev->needs_free_netdev = true; netdev->priv_destructor = NULL; netdev->ethtool_ops = &internal_dev_ethtool_ops; netdev->rtnl_link_ops = &internal_dev_link_ops; netdev->features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL; netdev->vlan_features = netdev->features; netdev->hw_enc_features = netdev->features; netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; netdev->hw_features = netdev->features; eth_hw_addr_random(netdev); } static struct vport *internal_dev_create(const struct vport_parms *parms) { struct vport *vport; struct internal_dev *internal_dev; struct net_device *dev; int err; vport = ovs_vport_alloc(0, &ovs_internal_vport_ops, parms); if (IS_ERR(vport)) { err = PTR_ERR(vport); goto error; } dev = alloc_netdev(sizeof(struct internal_dev), parms->name, NET_NAME_USER, do_setup); vport->dev = dev; if (!vport->dev) { err = -ENOMEM; goto error_free_vport; } dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; dev_net_set(vport->dev, ovs_dp_get_net(vport->dp)); dev->ifindex = parms->desired_ifindex; internal_dev = internal_dev_priv(vport->dev); internal_dev->vport = vport; /* Restrict bridge port to current netns. */ if (vport->port_no == OVSP_LOCAL) vport->dev->netns_immutable = true; rtnl_lock(); err = register_netdevice(vport->dev); if (err) goto error_unlock; vport->dev->priv_destructor = internal_dev_destructor; dev_set_promiscuity(vport->dev, 1); rtnl_unlock(); netif_start_queue(vport->dev); return vport; error_unlock: rtnl_unlock(); free_netdev(dev); error_free_vport: ovs_vport_free(vport); error: return ERR_PTR(err); } static void internal_dev_destroy(struct vport *vport) { netif_stop_queue(vport->dev); rtnl_lock(); dev_set_promiscuity(vport->dev, -1); /* unregister_netdevice() waits for an RCU grace period. */ unregister_netdevice(vport->dev); rtnl_unlock(); } static int internal_dev_recv(struct sk_buff *skb) { struct net_device *netdev = skb->dev; if (unlikely(!(netdev->flags & IFF_UP))) { kfree_skb(skb); netdev->stats.rx_dropped++; return NETDEV_TX_OK; } skb_dst_drop(skb); nf_reset_ct(skb); skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, netdev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); dev_sw_netstats_rx_add(netdev, skb->len); netif_rx(skb); return NETDEV_TX_OK; } static struct vport_ops ovs_internal_vport_ops = { .type = OVS_VPORT_TYPE_INTERNAL, .create = internal_dev_create, .destroy = internal_dev_destroy, .send = internal_dev_recv, }; int ovs_is_internal_dev(const struct net_device *netdev) { return netdev->netdev_ops == &internal_dev_netdev_ops; } struct vport *ovs_internal_dev_get_vport(struct net_device *netdev) { if (!ovs_is_internal_dev(netdev)) return NULL; return internal_dev_priv(netdev)->vport; } int ovs_internal_dev_rtnl_link_register(void) { int err; err = rtnl_link_register(&internal_dev_link_ops); if (err < 0) return err; err = ovs_vport_ops_register(&ovs_internal_vport_ops); if (err < 0) rtnl_link_unregister(&internal_dev_link_ops); return err; } void ovs_internal_dev_rtnl_link_unregister(void) { ovs_vport_ops_unregister(&ovs_internal_vport_ops); rtnl_link_unregister(&internal_dev_link_ops); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM thermal #if !defined(_TRACE_THERMAL_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_THERMAL_H #include <linux/devfreq.h> #include <linux/thermal.h> #include <linux/tracepoint.h> #include "thermal_core.h" TRACE_DEFINE_ENUM(THERMAL_TRIP_CRITICAL); TRACE_DEFINE_ENUM(THERMAL_TRIP_HOT); TRACE_DEFINE_ENUM(THERMAL_TRIP_PASSIVE); TRACE_DEFINE_ENUM(THERMAL_TRIP_ACTIVE); #define show_tzt_type(type) \ __print_symbolic(type, \ { THERMAL_TRIP_CRITICAL, "CRITICAL"}, \ { THERMAL_TRIP_HOT, "HOT"}, \ { THERMAL_TRIP_PASSIVE, "PASSIVE"}, \ { THERMAL_TRIP_ACTIVE, "ACTIVE"}) TRACE_EVENT(thermal_temperature, TP_PROTO(struct thermal_zone_device *tz), TP_ARGS(tz), TP_STRUCT__entry( __string(thermal_zone, tz->type) __field(int, id) __field(int, temp_prev) __field(int, temp) ), TP_fast_assign( __assign_str(thermal_zone); __entry->id = tz->id; __entry->temp_prev = tz->last_temperature; __entry->temp = tz->temperature; ), TP_printk("thermal_zone=%s id=%d temp_prev=%d temp=%d", __get_str(thermal_zone), __entry->id, __entry->temp_prev, __entry->temp) ); TRACE_EVENT(cdev_update, TP_PROTO(struct thermal_cooling_device *cdev, unsigned long target), TP_ARGS(cdev, target), TP_STRUCT__entry( __string(type, cdev->type) __field(unsigned long, target) ), TP_fast_assign( __assign_str(type); __entry->target = target; ), TP_printk("type=%s target=%lu", __get_str(type), __entry->target) ); TRACE_EVENT(thermal_zone_trip, TP_PROTO(struct thermal_zone_device *tz, int trip, enum thermal_trip_type trip_type), TP_ARGS(tz, trip, trip_type), TP_STRUCT__entry( __string(thermal_zone, tz->type) __field(int, id) __field(int, trip) __field(enum thermal_trip_type, trip_type) ), TP_fast_assign( __assign_str(thermal_zone); __entry->id = tz->id; __entry->trip = trip; __entry->trip_type = trip_type; ), TP_printk("thermal_zone=%s id=%d trip=%d trip_type=%s", __get_str(thermal_zone), __entry->id, __entry->trip, show_tzt_type(__entry->trip_type)) ); #ifdef CONFIG_CPU_THERMAL TRACE_EVENT(thermal_power_cpu_get_power_simple, TP_PROTO(int cpu, u32 power), TP_ARGS(cpu, power), TP_STRUCT__entry( __field(int, cpu) __field(u32, power) ), TP_fast_assign( __entry->cpu = cpu; __entry->power = power; ), TP_printk("cpu=%d power=%u", __entry->cpu, __entry->power) ); TRACE_EVENT(thermal_power_cpu_limit, TP_PROTO(const struct cpumask *cpus, unsigned int freq, unsigned long cdev_state, u32 power), TP_ARGS(cpus, freq, cdev_state, power), TP_STRUCT__entry( __bitmask(cpumask, num_possible_cpus()) __field(unsigned int, freq ) __field(unsigned long, cdev_state) __field(u32, power ) ), TP_fast_assign( __assign_bitmask(cpumask, cpumask_bits(cpus), num_possible_cpus()); __entry->freq = freq; __entry->cdev_state = cdev_state; __entry->power = power; ), TP_printk("cpus=%s freq=%u cdev_state=%lu power=%u", __get_bitmask(cpumask), __entry->freq, __entry->cdev_state, __entry->power) ); #endif /* CONFIG_CPU_THERMAL */ #ifdef CONFIG_DEVFREQ_THERMAL TRACE_EVENT(thermal_power_devfreq_get_power, TP_PROTO(struct thermal_cooling_device *cdev, struct devfreq_dev_status *status, unsigned long freq, u32 power), TP_ARGS(cdev, status, freq, power), TP_STRUCT__entry( __string(type, cdev->type ) __field(unsigned long, freq ) __field(u32, busy_time) __field(u32, total_time) __field(u32, power) ), TP_fast_assign( __assign_str(type); __entry->freq = freq; __entry->busy_time = status->busy_time; __entry->total_time = status->total_time; __entry->power = power; ), TP_printk("type=%s freq=%lu load=%u power=%u", __get_str(type), __entry->freq, __entry->total_time == 0 ? 0 : (100 * __entry->busy_time) / __entry->total_time, __entry->power) ); TRACE_EVENT(thermal_power_devfreq_limit, TP_PROTO(struct thermal_cooling_device *cdev, unsigned long freq, unsigned long cdev_state, u32 power), TP_ARGS(cdev, freq, cdev_state, power), TP_STRUCT__entry( __string(type, cdev->type) __field(unsigned int, freq ) __field(unsigned long, cdev_state) __field(u32, power ) ), TP_fast_assign( __assign_str(type); __entry->freq = freq; __entry->cdev_state = cdev_state; __entry->power = power; ), TP_printk("type=%s freq=%u cdev_state=%lu power=%u", __get_str(type), __entry->freq, __entry->cdev_state, __entry->power) ); #endif /* CONFIG_DEVFREQ_THERMAL */ #endif /* _TRACE_THERMAL_H */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE thermal_trace /* This part must be outside protection */ #include <trace/define_trace.h>
1 3 1 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 /* SPDX-License-Identifier: GPL-2.0 */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/fs.h> #include <linux/buffer_head.h> #include "amigaffs.h" #include <linux/mutex.h> #include <linux/workqueue.h> /* Ugly macros make the code more pretty. */ #define AFFS_BLOCK(sb, bh, blk) (AFFS_HEAD(bh)->table[AFFS_SB(sb)->s_hashsize-1-(blk)]) #define AFFS_HEAD(bh) ((struct affs_head *)(bh)->b_data) #define AFFS_TAIL(sb, bh) ((struct affs_tail *)((bh)->b_data+(sb)->s_blocksize-sizeof(struct affs_tail))) #define AFFS_ROOT_HEAD(bh) ((struct affs_root_head *)(bh)->b_data) #define AFFS_ROOT_TAIL(sb, bh) ((struct affs_root_tail *)((bh)->b_data+(sb)->s_blocksize-sizeof(struct affs_root_tail))) #define AFFS_DATA_HEAD(bh) ((struct affs_data_head *)(bh)->b_data) #define AFFS_DATA(bh) (((struct affs_data_head *)(bh)->b_data)->data) #define AFFS_CACHE_SIZE PAGE_SIZE #define AFFS_LC_SIZE (AFFS_CACHE_SIZE/sizeof(u32)/2) #define AFFS_AC_SIZE (AFFS_CACHE_SIZE/sizeof(struct affs_ext_key)/2) #define AFFS_AC_MASK (AFFS_AC_SIZE-1) #define AFFSNAMEMAX 30U struct affs_ext_key { u32 ext; /* idx of the extended block */ u32 key; /* block number */ }; /* * affs fs inode data in memory */ struct affs_inode_info { atomic_t i_opencnt; struct mutex i_link_lock; /* Protects internal inode access. */ struct mutex i_ext_lock; /* Protects internal inode access. */ #define i_hash_lock i_ext_lock u32 i_blkcnt; /* block count */ u32 i_extcnt; /* extended block count */ u32 *i_lc; /* linear cache of extended blocks */ u32 i_lc_size; u32 i_lc_shift; u32 i_lc_mask; struct affs_ext_key *i_ac; /* associative cache of extended blocks */ u32 i_ext_last; /* last accessed extended block */ struct buffer_head *i_ext_bh; /* bh of last extended block */ loff_t mmu_private; u32 i_protect; /* unused attribute bits */ u32 i_lastalloc; /* last allocated block */ int i_pa_cnt; /* number of preallocated blocks */ struct inode vfs_inode; }; /* short cut to get to the affs specific inode data */ static inline struct affs_inode_info *AFFS_I(struct inode *inode) { return container_of(inode, struct affs_inode_info, vfs_inode); } /* * super-block data in memory * * Block numbers are adjusted for their actual size * */ struct affs_bm_info { u32 bm_key; /* Disk block number */ u32 bm_free; /* Free blocks in here */ }; struct affs_sb_info { int s_partition_size; /* Partition size in blocks. */ int s_reserved; /* Number of reserved blocks. */ //u32 s_blksize; /* Initial device blksize */ u32 s_data_blksize; /* size of the data block w/o header */ u32 s_root_block; /* FFS root block number. */ int s_hashsize; /* Size of hash table. */ unsigned long s_flags; /* See below. */ kuid_t s_uid; /* uid to override */ kgid_t s_gid; /* gid to override */ umode_t s_mode; /* mode to override */ struct buffer_head *s_root_bh; /* Cached root block. */ struct mutex s_bmlock; /* Protects bitmap access. */ struct affs_bm_info *s_bitmap; /* Bitmap infos. */ u32 s_bmap_count; /* # of bitmap blocks. */ u32 s_bmap_bits; /* # of bits in one bitmap blocks */ u32 s_last_bmap; struct buffer_head *s_bmap_bh; char *s_prefix; /* Prefix for volumes and assigns. */ char s_volume[32]; /* Volume prefix for absolute symlinks. */ spinlock_t symlink_lock; /* protects the previous two */ struct super_block *sb; /* the VFS superblock object */ int work_queued; /* non-zero delayed work is queued */ struct delayed_work sb_work; /* superblock flush delayed work */ spinlock_t work_lock; /* protects sb_work and work_queued */ struct rcu_head rcu; }; #define AFFS_MOUNT_SF_INTL 0x0001 /* International filesystem. */ #define AFFS_MOUNT_SF_BM_VALID 0x0002 /* Bitmap is valid. */ #define AFFS_MOUNT_SF_IMMUTABLE 0x0004 /* Protection bits cannot be changed */ #define AFFS_MOUNT_SF_QUIET 0x0008 /* chmod errors will be not reported */ #define AFFS_MOUNT_SF_SETUID 0x0010 /* Ignore Amiga uid */ #define AFFS_MOUNT_SF_SETGID 0x0020 /* Ignore Amiga gid */ #define AFFS_MOUNT_SF_SETMODE 0x0040 /* Ignore Amiga protection bits */ #define AFFS_MOUNT_SF_MUFS 0x0100 /* Use MUFS uid/gid mapping */ #define AFFS_MOUNT_SF_OFS 0x0200 /* Old filesystem */ #define AFFS_MOUNT_SF_PREFIX 0x0400 /* Buffer for prefix is allocated */ #define AFFS_MOUNT_SF_VERBOSE 0x0800 /* Talk about fs when mounting */ #define AFFS_MOUNT_SF_NO_TRUNCATE 0x1000 /* Don't truncate filenames */ #define affs_clear_opt(o, opt) (o &= ~AFFS_MOUNT_##opt) #define affs_set_opt(o, opt) (o |= AFFS_MOUNT_##opt) #define affs_test_opt(o, opt) ((o) & AFFS_MOUNT_##opt) /* short cut to get to the affs specific sb data */ static inline struct affs_sb_info *AFFS_SB(struct super_block *sb) { return sb->s_fs_info; } void affs_mark_sb_dirty(struct super_block *sb); /* amigaffs.c */ extern int affs_insert_hash(struct inode *inode, struct buffer_head *bh); extern int affs_remove_hash(struct inode *dir, struct buffer_head *rem_bh); extern int affs_remove_header(struct dentry *dentry); extern u32 affs_checksum_block(struct super_block *sb, struct buffer_head *bh); extern void affs_fix_checksum(struct super_block *sb, struct buffer_head *bh); extern void affs_secs_to_datestamp(time64_t secs, struct affs_date *ds); extern umode_t affs_prot_to_mode(u32 prot); extern void affs_mode_to_prot(struct inode *inode); __printf(3, 4) extern void affs_error(struct super_block *sb, const char *function, const char *fmt, ...); __printf(3, 4) extern void affs_warning(struct super_block *sb, const char *function, const char *fmt, ...); extern bool affs_nofilenametruncate(const struct dentry *dentry); extern int affs_check_name(const unsigned char *name, int len, bool notruncate); extern int affs_copy_name(unsigned char *bstr, struct dentry *dentry); /* bitmap. c */ extern u32 affs_count_free_blocks(struct super_block *s); extern void affs_free_block(struct super_block *sb, u32 block); extern u32 affs_alloc_block(struct inode *inode, u32 goal); extern int affs_init_bitmap(struct super_block *sb, int *flags); extern void affs_free_bitmap(struct super_block *sb); /* namei.c */ extern const struct export_operations affs_export_ops; extern int affs_hash_name(struct super_block *sb, const u8 *name, unsigned int len); extern struct dentry *affs_lookup(struct inode *dir, struct dentry *dentry, unsigned int); extern int affs_unlink(struct inode *dir, struct dentry *dentry); extern int affs_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool); extern struct dentry *affs_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode); extern int affs_rmdir(struct inode *dir, struct dentry *dentry); extern int affs_link(struct dentry *olddentry, struct inode *dir, struct dentry *dentry); extern int affs_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *symname); extern int affs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); /* inode.c */ extern struct inode *affs_new_inode(struct inode *dir); extern int affs_notify_change(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr); extern void affs_evict_inode(struct inode *inode); extern struct inode *affs_iget(struct super_block *sb, unsigned long ino); extern int affs_write_inode(struct inode *inode, struct writeback_control *wbc); extern int affs_add_entry(struct inode *dir, struct inode *inode, struct dentry *dentry, s32 type); /* file.c */ void affs_free_prealloc(struct inode *inode); extern void affs_truncate(struct inode *); int affs_file_fsync(struct file *, loff_t, loff_t, int); /* dir.c */ extern void affs_dir_truncate(struct inode *); /* jump tables */ extern const struct inode_operations affs_file_inode_operations; extern const struct inode_operations affs_dir_inode_operations; extern const struct inode_operations affs_symlink_inode_operations; extern const struct file_operations affs_file_operations; extern const struct file_operations affs_file_operations_ofs; extern const struct file_operations affs_dir_operations; extern const struct address_space_operations affs_symlink_aops; extern const struct address_space_operations affs_aops; extern const struct address_space_operations affs_aops_ofs; extern const struct dentry_operations affs_dentry_operations; extern const struct dentry_operations affs_intl_dentry_operations; static inline bool affs_validblock(struct super_block *sb, int block) { return(block >= AFFS_SB(sb)->s_reserved && block < AFFS_SB(sb)->s_partition_size); } static inline void affs_set_blocksize(struct super_block *sb, int size) { sb_set_blocksize(sb, size); } static inline struct buffer_head * affs_bread(struct super_block *sb, int block) { pr_debug("%s: %d\n", __func__, block); if (affs_validblock(sb, block)) return sb_bread(sb, block); return NULL; } static inline struct buffer_head * affs_getblk(struct super_block *sb, int block) { pr_debug("%s: %d\n", __func__, block); if (affs_validblock(sb, block)) return sb_getblk(sb, block); return NULL; } static inline struct buffer_head * affs_getzeroblk(struct super_block *sb, int block) { struct buffer_head *bh; pr_debug("%s: %d\n", __func__, block); if (affs_validblock(sb, block)) { bh = sb_getblk(sb, block); lock_buffer(bh); memset(bh->b_data, 0 , sb->s_blocksize); set_buffer_uptodate(bh); unlock_buffer(bh); return bh; } return NULL; } static inline struct buffer_head * affs_getemptyblk(struct super_block *sb, int block) { struct buffer_head *bh; pr_debug("%s: %d\n", __func__, block); if (affs_validblock(sb, block)) { bh = sb_getblk(sb, block); wait_on_buffer(bh); set_buffer_uptodate(bh); return bh; } return NULL; } static inline void affs_brelse(struct buffer_head *bh) { if (bh) pr_debug("%s: %lld\n", __func__, (long long) bh->b_blocknr); brelse(bh); } static inline void affs_adjust_checksum(struct buffer_head *bh, u32 val) { u32 tmp = be32_to_cpu(((__be32 *)bh->b_data)[5]); ((__be32 *)bh->b_data)[5] = cpu_to_be32(tmp - val); } static inline void affs_adjust_bitmapchecksum(struct buffer_head *bh, u32 val) { u32 tmp = be32_to_cpu(((__be32 *)bh->b_data)[0]); ((__be32 *)bh->b_data)[0] = cpu_to_be32(tmp - val); } static inline void affs_lock_link(struct inode *inode) { mutex_lock(&AFFS_I(inode)->i_link_lock); } static inline void affs_unlock_link(struct inode *inode) { mutex_unlock(&AFFS_I(inode)->i_link_lock); } static inline void affs_lock_dir(struct inode *inode) { mutex_lock_nested(&AFFS_I(inode)->i_hash_lock, SINGLE_DEPTH_NESTING); } static inline void affs_unlock_dir(struct inode *inode) { mutex_unlock(&AFFS_I(inode)->i_hash_lock); } static inline void affs_lock_ext(struct inode *inode) { mutex_lock(&AFFS_I(inode)->i_ext_lock); } static inline void affs_unlock_ext(struct inode *inode) { mutex_unlock(&AFFS_I(inode)->i_ext_lock); }
1017 4241 328 121 44 4 15 51 306 24 272 75 76 2 1624 14 933 4 4226 4226 1054 960 383 10 128 779 5 7 2553 325 5822 1323 13 2 27 683 695 3 804 93 20 997 225 15 527 11 4 91 16 5 30 1 220 289 9 32 1 2 1 3 1 5 11 14 10 1 1 1 97 14 5 44 1 1 1 1166 1 160 758 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_NETLINK_H #define __NET_NETLINK_H #include <linux/types.h> #include <linux/netlink.h> #include <linux/jiffies.h> #include <linux/in6.h> /* ======================================================================== * Netlink Messages and Attributes Interface (As Seen On TV) * ------------------------------------------------------------------------ * Messages Interface * ------------------------------------------------------------------------ * * Message Format: * <--- nlmsg_total_size(payload) ---> * <-- nlmsg_msg_size(payload) -> * +----------+- - -+-------------+- - -+-------- - - * | nlmsghdr | Pad | Payload | Pad | nlmsghdr * +----------+- - -+-------------+- - -+-------- - - * nlmsg_data(nlh)---^ ^ * nlmsg_next(nlh)-----------------------+ * * Payload Format: * <---------------------- nlmsg_len(nlh) ---------------------> * <------ hdrlen ------> <- nlmsg_attrlen(nlh, hdrlen) -> * +----------------------+- - -+--------------------------------+ * | Family Header | Pad | Attributes | * +----------------------+- - -+--------------------------------+ * nlmsg_attrdata(nlh, hdrlen)---^ * * Data Structures: * struct nlmsghdr netlink message header * * Message Construction: * nlmsg_new() create a new netlink message * nlmsg_put() add a netlink message to an skb * nlmsg_put_answer() callback based nlmsg_put() * nlmsg_end() finalize netlink message * nlmsg_get_pos() return current position in message * nlmsg_trim() trim part of message * nlmsg_cancel() cancel message construction * nlmsg_consume() free a netlink message (expected) * nlmsg_free() free a netlink message (drop) * * Message Sending: * nlmsg_multicast() multicast message to several groups * nlmsg_unicast() unicast a message to a single socket * nlmsg_notify() send notification message * * Message Length Calculations: * nlmsg_msg_size(payload) length of message w/o padding * nlmsg_total_size(payload) length of message w/ padding * nlmsg_padlen(payload) length of padding at tail * * Message Payload Access: * nlmsg_data(nlh) head of message payload * nlmsg_len(nlh) length of message payload * nlmsg_attrdata(nlh, hdrlen) head of attributes data * nlmsg_attrlen(nlh, hdrlen) length of attributes data * * Message Parsing: * nlmsg_ok(nlh, remaining) does nlh fit into remaining bytes? * nlmsg_next(nlh, remaining) get next netlink message * nlmsg_parse() parse attributes of a message * nlmsg_find_attr() find an attribute in a message * nlmsg_for_each_msg() loop over all messages * nlmsg_validate() validate netlink message incl. attrs * nlmsg_for_each_attr() loop over all attributes * nlmsg_for_each_attr_type() loop over all attributes with the * given type * * Misc: * nlmsg_report() report back to application? * * ------------------------------------------------------------------------ * Attributes Interface * ------------------------------------------------------------------------ * * Attribute Format: * <------- nla_total_size(payload) -------> * <---- nla_attr_size(payload) -----> * +----------+- - -+- - - - - - - - - +- - -+-------- - - * | Header | Pad | Payload | Pad | Header * +----------+- - -+- - - - - - - - - +- - -+-------- - - * <- nla_len(nla) -> ^ * nla_data(nla)----^ | * nla_next(nla)-----------------------------' * * Data Structures: * struct nlattr netlink attribute header * * Attribute Construction: * nla_reserve(skb, type, len) reserve room for an attribute * nla_reserve_nohdr(skb, len) reserve room for an attribute w/o hdr * nla_put(skb, type, len, data) add attribute to skb * nla_put_nohdr(skb, len, data) add attribute w/o hdr * nla_append(skb, len, data) append data to skb * * Attribute Construction for Basic Types: * nla_put_u8(skb, type, value) add u8 attribute to skb * nla_put_u16(skb, type, value) add u16 attribute to skb * nla_put_u32(skb, type, value) add u32 attribute to skb * nla_put_u64_64bit(skb, type, * value, padattr) add u64 attribute to skb * nla_put_s8(skb, type, value) add s8 attribute to skb * nla_put_s16(skb, type, value) add s16 attribute to skb * nla_put_s32(skb, type, value) add s32 attribute to skb * nla_put_s64(skb, type, value, * padattr) add s64 attribute to skb * nla_put_string(skb, type, str) add string attribute to skb * nla_put_flag(skb, type) add flag attribute to skb * nla_put_msecs(skb, type, jiffies, * padattr) add msecs attribute to skb * nla_put_in_addr(skb, type, addr) add IPv4 address attribute to skb * nla_put_in6_addr(skb, type, addr) add IPv6 address attribute to skb * * Nested Attributes Construction: * nla_nest_start(skb, type) start a nested attribute * nla_nest_end(skb, nla) finalize a nested attribute * nla_nest_cancel(skb, nla) cancel nested attribute construction * nla_put_empty_nest(skb, type) create an empty nest * * Attribute Length Calculations: * nla_attr_size(payload) length of attribute w/o padding * nla_total_size(payload) length of attribute w/ padding * nla_padlen(payload) length of padding * * Attribute Payload Access: * nla_data(nla) head of attribute payload * nla_len(nla) length of attribute payload * * Attribute Payload Access for Basic Types: * nla_get_uint(nla) get payload for a uint attribute * nla_get_sint(nla) get payload for a sint attribute * nla_get_u8(nla) get payload for a u8 attribute * nla_get_u16(nla) get payload for a u16 attribute * nla_get_u32(nla) get payload for a u32 attribute * nla_get_u64(nla) get payload for a u64 attribute * nla_get_s8(nla) get payload for a s8 attribute * nla_get_s16(nla) get payload for a s16 attribute * nla_get_s32(nla) get payload for a s32 attribute * nla_get_s64(nla) get payload for a s64 attribute * nla_get_flag(nla) return 1 if flag is true * nla_get_msecs(nla) get payload for a msecs attribute * * The same functions also exist with _default(). * * Attribute Misc: * nla_memcpy(dest, nla, count) copy attribute into memory * nla_memcmp(nla, data, size) compare attribute with memory area * nla_strscpy(dst, nla, size) copy attribute to a sized string * nla_strcmp(nla, str) compare attribute with string * * Attribute Parsing: * nla_ok(nla, remaining) does nla fit into remaining bytes? * nla_next(nla, remaining) get next netlink attribute * nla_validate() validate a stream of attributes * nla_validate_nested() validate a stream of nested attributes * nla_find() find attribute in stream of attributes * nla_find_nested() find attribute in nested attributes * nla_parse() parse and validate stream of attrs * nla_parse_nested() parse nested attributes * nla_for_each_attr() loop over all attributes * nla_for_each_attr_type() loop over all attributes with the * given type * nla_for_each_nested() loop over the nested attributes * nla_for_each_nested_type() loop over the nested attributes with * the given type *========================================================================= */ /** * Standard attribute types to specify validation policy */ enum { NLA_UNSPEC, NLA_U8, NLA_U16, NLA_U32, NLA_U64, NLA_STRING, NLA_FLAG, NLA_MSECS, NLA_NESTED, NLA_NESTED_ARRAY, NLA_NUL_STRING, NLA_BINARY, NLA_S8, NLA_S16, NLA_S32, NLA_S64, NLA_BITFIELD32, NLA_REJECT, NLA_BE16, NLA_BE32, NLA_SINT, NLA_UINT, __NLA_TYPE_MAX, }; #define NLA_TYPE_MAX (__NLA_TYPE_MAX - 1) struct netlink_range_validation { u64 min, max; }; struct netlink_range_validation_signed { s64 min, max; }; enum nla_policy_validation { NLA_VALIDATE_NONE, NLA_VALIDATE_RANGE, NLA_VALIDATE_RANGE_WARN_TOO_LONG, NLA_VALIDATE_MIN, NLA_VALIDATE_MAX, NLA_VALIDATE_MASK, NLA_VALIDATE_RANGE_PTR, NLA_VALIDATE_FUNCTION, }; /** * struct nla_policy - attribute validation policy * @type: Type of attribute or NLA_UNSPEC * @validation_type: type of attribute validation done in addition to * type-specific validation (e.g. range, function call), see * &enum nla_policy_validation * @len: Type specific length of payload * * Policies are defined as arrays of this struct, the array must be * accessible by attribute type up to the highest identifier to be expected. * * Meaning of `len' field: * NLA_STRING Maximum length of string * NLA_NUL_STRING Maximum length of string (excluding NUL) * NLA_FLAG Unused * NLA_BINARY Maximum length of attribute payload * (but see also below with the validation type) * NLA_NESTED, * NLA_NESTED_ARRAY Length verification is done by checking len of * nested header (or empty); len field is used if * nested_policy is also used, for the max attr * number in the nested policy. * NLA_SINT, NLA_UINT, * NLA_U8, NLA_U16, * NLA_U32, NLA_U64, * NLA_S8, NLA_S16, * NLA_S32, NLA_S64, * NLA_BE16, NLA_BE32, * NLA_MSECS Leaving the length field zero will verify the * given type fits, using it verifies minimum length * just like "All other" * NLA_BITFIELD32 Unused * NLA_REJECT Unused * All other Minimum length of attribute payload * * Meaning of validation union: * NLA_BITFIELD32 This is a 32-bit bitmap/bitselector attribute and * `bitfield32_valid' is the u32 value of valid flags * NLA_REJECT This attribute is always rejected and `reject_message' * may point to a string to report as the error instead * of the generic one in extended ACK. * NLA_NESTED `nested_policy' to a nested policy to validate, must * also set `len' to the max attribute number. Use the * provided NLA_POLICY_NESTED() macro. * Note that nla_parse() will validate, but of course not * parse, the nested sub-policies. * NLA_NESTED_ARRAY `nested_policy' points to a nested policy to validate, * must also set `len' to the max attribute number. Use * the provided NLA_POLICY_NESTED_ARRAY() macro. * The difference to NLA_NESTED is the structure: * NLA_NESTED has the nested attributes directly inside * while an array has the nested attributes at another * level down and the attribute types directly in the * nesting don't matter. * NLA_UINT, * NLA_U8, * NLA_U16, * NLA_U32, * NLA_U64, * NLA_BE16, * NLA_BE32, * NLA_SINT, * NLA_S8, * NLA_S16, * NLA_S32, * NLA_S64 The `min' and `max' fields are used depending on the * validation_type field, if that is min/max/range then * the min, max or both are used (respectively) to check * the value of the integer attribute. * Note that in the interest of code simplicity and * struct size both limits are s16, so you cannot * enforce a range that doesn't fall within the range * of s16 - do that using the NLA_POLICY_FULL_RANGE() * or NLA_POLICY_FULL_RANGE_SIGNED() macros instead. * Use the NLA_POLICY_MIN(), NLA_POLICY_MAX() and * NLA_POLICY_RANGE() macros. * NLA_UINT, * NLA_U8, * NLA_U16, * NLA_U32, * NLA_U64 If the validation_type field instead is set to * NLA_VALIDATE_RANGE_PTR, `range' must be a pointer * to a struct netlink_range_validation that indicates * the min/max values. * Use NLA_POLICY_FULL_RANGE(). * NLA_SINT, * NLA_S8, * NLA_S16, * NLA_S32, * NLA_S64 If the validation_type field instead is set to * NLA_VALIDATE_RANGE_PTR, `range_signed' must be a * pointer to a struct netlink_range_validation_signed * that indicates the min/max values. * Use NLA_POLICY_FULL_RANGE_SIGNED(). * * NLA_BINARY If the validation type is like the ones for integers * above, then the min/max length (not value like for * integers) of the attribute is enforced. * * All other Unused - but note that it's a union * * Meaning of `validate' field, use via NLA_POLICY_VALIDATE_FN: * NLA_U8, NLA_U16, * NLA_U32, NLA_U64, * NLA_S8, NLA_S16, * NLA_S32, NLA_S64, * NLA_MSECS, * NLA_BINARY Validation function called for the attribute. * * All other Unused - but note that it's a union * * Example: * * static const u32 myvalidflags = 0xff231023; * * static const struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_FOO] = { .type = NLA_U16 }, * [ATTR_BAR] = { .type = NLA_STRING, .len = BARSIZ }, * [ATTR_BAZ] = NLA_POLICY_EXACT_LEN(sizeof(struct mystruct)), * [ATTR_GOO] = NLA_POLICY_BITFIELD32(myvalidflags), * }; */ struct nla_policy { u8 type; u8 validation_type; u16 len; union { /** * @strict_start_type: first attribute to validate strictly * * This entry is special, and used for the attribute at index 0 * only, and specifies special data about the policy, namely it * specifies the "boundary type" where strict length validation * starts for any attribute types >= this value, also, strict * nesting validation starts here. * * Additionally, it means that NLA_UNSPEC is actually NLA_REJECT * for any types >= this, so need to use NLA_POLICY_MIN_LEN() to * get the previous pure { .len = xyz } behaviour. The advantage * of this is that types not specified in the policy will be * rejected. * * For completely new families it should be set to 1 so that the * validation is enforced for all attributes. For existing ones * it should be set at least when new attributes are added to * the enum used by the policy, and be set to the new value that * was added to enforce strict validation from thereon. */ u16 strict_start_type; /* private: use NLA_POLICY_*() to set */ const u32 bitfield32_valid; const u32 mask; const char *reject_message; const struct nla_policy *nested_policy; const struct netlink_range_validation *range; const struct netlink_range_validation_signed *range_signed; struct { s16 min, max; }; int (*validate)(const struct nlattr *attr, struct netlink_ext_ack *extack); }; }; #define NLA_POLICY_ETH_ADDR NLA_POLICY_EXACT_LEN(ETH_ALEN) #define NLA_POLICY_ETH_ADDR_COMPAT NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN) #define _NLA_POLICY_NESTED(maxattr, policy) \ { .type = NLA_NESTED, .nested_policy = policy, .len = maxattr } #define _NLA_POLICY_NESTED_ARRAY(maxattr, policy) \ { .type = NLA_NESTED_ARRAY, .nested_policy = policy, .len = maxattr } #define NLA_POLICY_NESTED(policy) \ _NLA_POLICY_NESTED(ARRAY_SIZE(policy) - 1, policy) #define NLA_POLICY_NESTED_ARRAY(policy) \ _NLA_POLICY_NESTED_ARRAY(ARRAY_SIZE(policy) - 1, policy) #define NLA_POLICY_BITFIELD32(valid) \ { .type = NLA_BITFIELD32, .bitfield32_valid = valid } #define __NLA_IS_UINT_TYPE(tp) \ (tp == NLA_U8 || tp == NLA_U16 || tp == NLA_U32 || \ tp == NLA_U64 || tp == NLA_UINT || \ tp == NLA_BE16 || tp == NLA_BE32) #define __NLA_IS_SINT_TYPE(tp) \ (tp == NLA_S8 || tp == NLA_S16 || tp == NLA_S32 || tp == NLA_S64 || \ tp == NLA_SINT) #define __NLA_ENSURE(condition) BUILD_BUG_ON_ZERO(!(condition)) #define NLA_ENSURE_UINT_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_UINT_TYPE(tp)) + tp) #define NLA_ENSURE_UINT_OR_BINARY_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_UINT_TYPE(tp) || \ tp == NLA_MSECS || \ tp == NLA_BINARY) + tp) #define NLA_ENSURE_SINT_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_SINT_TYPE(tp)) + tp) #define NLA_ENSURE_INT_OR_BINARY_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_UINT_TYPE(tp) || \ __NLA_IS_SINT_TYPE(tp) || \ tp == NLA_MSECS || \ tp == NLA_BINARY) + tp) #define NLA_ENSURE_NO_VALIDATION_PTR(tp) \ (__NLA_ENSURE(tp != NLA_BITFIELD32 && \ tp != NLA_REJECT && \ tp != NLA_NESTED && \ tp != NLA_NESTED_ARRAY) + tp) #define NLA_POLICY_RANGE(tp, _min, _max) { \ .type = NLA_ENSURE_INT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_RANGE, \ .min = _min, \ .max = _max \ } #define NLA_POLICY_FULL_RANGE(tp, _range) { \ .type = NLA_ENSURE_UINT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_RANGE_PTR, \ .range = _range, \ } #define NLA_POLICY_FULL_RANGE_SIGNED(tp, _range) { \ .type = NLA_ENSURE_SINT_TYPE(tp), \ .validation_type = NLA_VALIDATE_RANGE_PTR, \ .range_signed = _range, \ } #define NLA_POLICY_MIN(tp, _min) { \ .type = NLA_ENSURE_INT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_MIN, \ .min = _min, \ } #define NLA_POLICY_MAX(tp, _max) { \ .type = NLA_ENSURE_INT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_MAX, \ .max = _max, \ } #define NLA_POLICY_MASK(tp, _mask) { \ .type = NLA_ENSURE_UINT_TYPE(tp), \ .validation_type = NLA_VALIDATE_MASK, \ .mask = _mask, \ } #define NLA_POLICY_VALIDATE_FN(tp, fn, ...) { \ .type = NLA_ENSURE_NO_VALIDATION_PTR(tp), \ .validation_type = NLA_VALIDATE_FUNCTION, \ .validate = fn, \ .len = __VA_ARGS__ + 0, \ } #define NLA_POLICY_EXACT_LEN(_len) NLA_POLICY_RANGE(NLA_BINARY, _len, _len) #define NLA_POLICY_EXACT_LEN_WARN(_len) { \ .type = NLA_BINARY, \ .validation_type = NLA_VALIDATE_RANGE_WARN_TOO_LONG, \ .min = _len, \ .max = _len \ } #define NLA_POLICY_MIN_LEN(_len) NLA_POLICY_MIN(NLA_BINARY, _len) #define NLA_POLICY_MAX_LEN(_len) NLA_POLICY_MAX(NLA_BINARY, _len) /** * struct nl_info - netlink source information * @nlh: Netlink message header of original request * @nl_net: Network namespace * @portid: Netlink PORTID of requesting application * @skip_notify: Skip netlink notifications to user space * @skip_notify_kernel: Skip selected in-kernel notifications */ struct nl_info { struct nlmsghdr *nlh; struct net *nl_net; u32 portid; u8 skip_notify:1, skip_notify_kernel:1; }; /** * enum netlink_validation - netlink message/attribute validation levels * @NL_VALIDATE_LIBERAL: Old-style "be liberal" validation, not caring about * extra data at the end of the message, attributes being longer than * they should be, or unknown attributes being present. * @NL_VALIDATE_TRAILING: Reject junk data encountered after attribute parsing. * @NL_VALIDATE_MAXTYPE: Reject attributes > max type; Together with _TRAILING * this is equivalent to the old nla_parse_strict()/nlmsg_parse_strict(). * @NL_VALIDATE_UNSPEC: Reject attributes with NLA_UNSPEC in the policy. * This can safely be set by the kernel when the given policy has no * NLA_UNSPEC anymore, and can thus be used to ensure policy entries * are enforced going forward. * @NL_VALIDATE_STRICT_ATTRS: strict attribute policy parsing (e.g. * U8, U16, U32 must have exact size, etc.) * @NL_VALIDATE_NESTED: Check that NLA_F_NESTED is set for NLA_NESTED(_ARRAY) * and unset for other policies. */ enum netlink_validation { NL_VALIDATE_LIBERAL = 0, NL_VALIDATE_TRAILING = BIT(0), NL_VALIDATE_MAXTYPE = BIT(1), NL_VALIDATE_UNSPEC = BIT(2), NL_VALIDATE_STRICT_ATTRS = BIT(3), NL_VALIDATE_NESTED = BIT(4), }; #define NL_VALIDATE_DEPRECATED_STRICT (NL_VALIDATE_TRAILING |\ NL_VALIDATE_MAXTYPE) #define NL_VALIDATE_STRICT (NL_VALIDATE_TRAILING |\ NL_VALIDATE_MAXTYPE |\ NL_VALIDATE_UNSPEC |\ NL_VALIDATE_STRICT_ATTRS |\ NL_VALIDATE_NESTED) int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *)); int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, int report, gfp_t flags); int __nla_validate(const struct nlattr *head, int len, int maxtype, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack); int __nla_parse(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack); int nla_policy_len(const struct nla_policy *, int); struct nlattr *nla_find(const struct nlattr *head, int len, int attrtype); ssize_t nla_strscpy(char *dst, const struct nlattr *nla, size_t dstsize); char *nla_strdup(const struct nlattr *nla, gfp_t flags); int nla_memcpy(void *dest, const struct nlattr *src, int count); int nla_memcmp(const struct nlattr *nla, const void *data, size_t size); int nla_strcmp(const struct nlattr *nla, const char *str); struct nlattr *__nla_reserve(struct sk_buff *skb, int attrtype, int attrlen); struct nlattr *__nla_reserve_64bit(struct sk_buff *skb, int attrtype, int attrlen, int padattr); void *__nla_reserve_nohdr(struct sk_buff *skb, int attrlen); struct nlattr *nla_reserve(struct sk_buff *skb, int attrtype, int attrlen); struct nlattr *nla_reserve_64bit(struct sk_buff *skb, int attrtype, int attrlen, int padattr); void *nla_reserve_nohdr(struct sk_buff *skb, int attrlen); void __nla_put(struct sk_buff *skb, int attrtype, int attrlen, const void *data); void __nla_put_64bit(struct sk_buff *skb, int attrtype, int attrlen, const void *data, int padattr); void __nla_put_nohdr(struct sk_buff *skb, int attrlen, const void *data); int nla_put(struct sk_buff *skb, int attrtype, int attrlen, const void *data); int nla_put_64bit(struct sk_buff *skb, int attrtype, int attrlen, const void *data, int padattr); int nla_put_nohdr(struct sk_buff *skb, int attrlen, const void *data); int nla_append(struct sk_buff *skb, int attrlen, const void *data); /************************************************************************** * Netlink Messages **************************************************************************/ /** * nlmsg_msg_size - length of netlink message not including padding * @payload: length of message payload */ static inline int nlmsg_msg_size(int payload) { return NLMSG_HDRLEN + payload; } /** * nlmsg_total_size - length of netlink message including padding * @payload: length of message payload */ static inline int nlmsg_total_size(int payload) { return NLMSG_ALIGN(nlmsg_msg_size(payload)); } /** * nlmsg_padlen - length of padding at the message's tail * @payload: length of message payload */ static inline int nlmsg_padlen(int payload) { return nlmsg_total_size(payload) - nlmsg_msg_size(payload); } /** * nlmsg_data - head of message payload * @nlh: netlink message header */ static inline void *nlmsg_data(const struct nlmsghdr *nlh) { return (unsigned char *) nlh + NLMSG_HDRLEN; } /** * nlmsg_len - length of message payload * @nlh: netlink message header */ static inline int nlmsg_len(const struct nlmsghdr *nlh) { return nlh->nlmsg_len - NLMSG_HDRLEN; } /** * nlmsg_payload - message payload if the data fits in the len * @nlh: netlink message header * @len: struct length * * Returns: The netlink message payload/data if the length is sufficient, * otherwise NULL. */ static inline void *nlmsg_payload(const struct nlmsghdr *nlh, size_t len) { if (nlh->nlmsg_len < nlmsg_msg_size(len)) return NULL; return nlmsg_data(nlh); } /** * nlmsg_attrdata - head of attributes data * @nlh: netlink message header * @hdrlen: length of family specific header */ static inline struct nlattr *nlmsg_attrdata(const struct nlmsghdr *nlh, int hdrlen) { unsigned char *data = nlmsg_data(nlh); return (struct nlattr *) (data + NLMSG_ALIGN(hdrlen)); } /** * nlmsg_attrlen - length of attributes data * @nlh: netlink message header * @hdrlen: length of family specific header */ static inline int nlmsg_attrlen(const struct nlmsghdr *nlh, int hdrlen) { return nlmsg_len(nlh) - NLMSG_ALIGN(hdrlen); } /** * nlmsg_ok - check if the netlink message fits into the remaining bytes * @nlh: netlink message header * @remaining: number of bytes remaining in message stream */ static inline int nlmsg_ok(const struct nlmsghdr *nlh, int remaining) { return (remaining >= (int) sizeof(struct nlmsghdr) && nlh->nlmsg_len >= sizeof(struct nlmsghdr) && nlh->nlmsg_len <= remaining); } /** * nlmsg_next - next netlink message in message stream * @nlh: netlink message header * @remaining: number of bytes remaining in message stream * * Returns: the next netlink message in the message stream and * decrements remaining by the size of the current message. */ static inline struct nlmsghdr * nlmsg_next(const struct nlmsghdr *nlh, int *remaining) { int totlen = NLMSG_ALIGN(nlh->nlmsg_len); *remaining -= totlen; return (struct nlmsghdr *) ((unsigned char *) nlh + totlen); } /** * nla_parse - Parse a stream of attributes into a tb buffer * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @head: head of attribute stream * @len: length of attribute stream * @policy: validation policy * @extack: extended ACK pointer * * Parses a stream of attributes and stores a pointer to each attribute in * the tb array accessible via the attribute type. Attributes with a type * exceeding maxtype will be rejected, policy must be specified, attributes * will be validated in the strictest way possible. * * Returns: 0 on success or a negative error code. */ static inline int nla_parse(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, head, len, policy, NL_VALIDATE_STRICT, extack); } /** * nla_parse_deprecated - Parse a stream of attributes into a tb buffer * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @head: head of attribute stream * @len: length of attribute stream * @policy: validation policy * @extack: extended ACK pointer * * Parses a stream of attributes and stores a pointer to each attribute in * the tb array accessible via the attribute type. Attributes with a type * exceeding maxtype will be ignored and attributes from the policy are not * always strictly validated (only for new attributes). * * Returns: 0 on success or a negative error code. */ static inline int nla_parse_deprecated(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, head, len, policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_parse_deprecated_strict - Parse a stream of attributes into a tb buffer * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @head: head of attribute stream * @len: length of attribute stream * @policy: validation policy * @extack: extended ACK pointer * * Parses a stream of attributes and stores a pointer to each attribute in * the tb array accessible via the attribute type. Attributes with a type * exceeding maxtype will be rejected as well as trailing data, but the * policy is not completely strictly validated (only for new attributes). * * Returns: 0 on success or a negative error code. */ static inline int nla_parse_deprecated_strict(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, head, len, policy, NL_VALIDATE_DEPRECATED_STRICT, extack); } /** * __nlmsg_parse - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @validate: validation strictness * @extack: extended ACK report struct * * See nla_parse() */ static inline int __nlmsg_parse(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack) { if (nlh->nlmsg_len < nlmsg_msg_size(hdrlen)) { NL_SET_ERR_MSG(extack, "Invalid header length"); return -EINVAL; } return __nla_parse(tb, maxtype, nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), policy, validate, extack); } /** * nlmsg_parse - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse() */ static inline int nlmsg_parse(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, hdrlen, tb, maxtype, policy, NL_VALIDATE_STRICT, extack); } /** * nlmsg_parse_deprecated - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse_deprecated() */ static inline int nlmsg_parse_deprecated(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, hdrlen, tb, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nlmsg_parse_deprecated_strict - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse_deprecated_strict() */ static inline int nlmsg_parse_deprecated_strict(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, hdrlen, tb, maxtype, policy, NL_VALIDATE_DEPRECATED_STRICT, extack); } /** * nlmsg_find_attr - find a specific attribute in a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @attrtype: type of attribute to look for * * Returns: the first attribute which matches the specified type. */ static inline struct nlattr *nlmsg_find_attr(const struct nlmsghdr *nlh, int hdrlen, int attrtype) { return nla_find(nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), attrtype); } /** * nla_validate_deprecated - Validate a stream of attributes * @head: head of attribute stream * @len: length of attribute stream * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * Validates all attributes in the specified attribute stream against the * specified policy. Validation is done in liberal mode. * See documentation of struct nla_policy for more details. * * Returns: 0 on success or a negative error code. */ static inline int nla_validate_deprecated(const struct nlattr *head, int len, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate(head, len, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_validate - Validate a stream of attributes * @head: head of attribute stream * @len: length of attribute stream * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * Validates all attributes in the specified attribute stream against the * specified policy. Validation is done in strict mode. * See documentation of struct nla_policy for more details. * * Returns: 0 on success or a negative error code. */ static inline int nla_validate(const struct nlattr *head, int len, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate(head, len, maxtype, policy, NL_VALIDATE_STRICT, extack); } /** * nlmsg_validate_deprecated - validate a netlink message including attributes * @nlh: netlinket message header * @hdrlen: length of family specific header * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct */ static inline int nlmsg_validate_deprecated(const struct nlmsghdr *nlh, int hdrlen, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { if (nlh->nlmsg_len < nlmsg_msg_size(hdrlen)) return -EINVAL; return __nla_validate(nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nlmsg_report - need to report back to application? * @nlh: netlink message header * * Returns: 1 if a report back to the application is requested. */ static inline int nlmsg_report(const struct nlmsghdr *nlh) { return nlh ? !!(nlh->nlmsg_flags & NLM_F_ECHO) : 0; } /** * nlmsg_seq - return the seq number of netlink message * @nlh: netlink message header * * Returns: 0 if netlink message is NULL */ static inline u32 nlmsg_seq(const struct nlmsghdr *nlh) { return nlh ? nlh->nlmsg_seq : 0; } /** * nlmsg_for_each_attr - iterate over a stream of attributes * @pos: loop counter, set to current attribute * @nlh: netlink message header * @hdrlen: length of family specific header * @rem: initialized to len, holds bytes currently remaining in stream */ #define nlmsg_for_each_attr(pos, nlh, hdrlen, rem) \ nla_for_each_attr(pos, nlmsg_attrdata(nlh, hdrlen), \ nlmsg_attrlen(nlh, hdrlen), rem) /** * nlmsg_for_each_attr_type - iterate over a stream of attributes * @pos: loop counter, set to the current attribute * @type: required attribute type for @pos * @nlh: netlink message header * @hdrlen: length of the family specific header * @rem: initialized to len, holds bytes currently remaining in stream */ #define nlmsg_for_each_attr_type(pos, type, nlh, hdrlen, rem) \ nlmsg_for_each_attr(pos, nlh, hdrlen, rem) \ if (nla_type(pos) == type) /** * nlmsg_put - Add a new netlink message to an skb * @skb: socket buffer to store message in * @portid: netlink PORTID of requesting application * @seq: sequence number of message * @type: message type * @payload: length of message payload * @flags: message flags * * Returns: NULL if the tailroom of the skb is insufficient to store * the message header and payload. */ static inline struct nlmsghdr *nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int payload, int flags) { if (unlikely(skb_tailroom(skb) < nlmsg_total_size(payload))) return NULL; return __nlmsg_put(skb, portid, seq, type, payload, flags); } /** * nlmsg_append - Add more data to a nlmsg in a skb * @skb: socket buffer to store message in * @size: length of message payload * * Append data to an existing nlmsg, used when constructing a message * with multiple fixed-format headers (which is rare). * Returns: NULL if the tailroom of the skb is insufficient to store * the extra payload. */ static inline void *nlmsg_append(struct sk_buff *skb, u32 size) { if (unlikely(skb_tailroom(skb) < NLMSG_ALIGN(size))) return NULL; if (NLMSG_ALIGN(size) - size) memset(skb_tail_pointer(skb) + size, 0, NLMSG_ALIGN(size) - size); return __skb_put(skb, NLMSG_ALIGN(size)); } /** * nlmsg_put_answer - Add a new callback based netlink message to an skb * @skb: socket buffer to store message in * @cb: netlink callback * @type: message type * @payload: length of message payload * @flags: message flags * * Returns: NULL if the tailroom of the skb is insufficient to store * the message header and payload. */ static inline struct nlmsghdr *nlmsg_put_answer(struct sk_buff *skb, struct netlink_callback *cb, int type, int payload, int flags) { return nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, type, payload, flags); } /** * nlmsg_new - Allocate a new netlink message * @payload: size of the message payload * @flags: the type of memory to allocate. * * Use NLMSG_DEFAULT_SIZE if the size of the payload isn't known * and a good default is needed. */ static inline struct sk_buff *nlmsg_new(size_t payload, gfp_t flags) { return alloc_skb(nlmsg_total_size(payload), flags); } /** * nlmsg_new_large - Allocate a new netlink message with non-contiguous * physical memory * @payload: size of the message payload * * The allocated skb is unable to have frag page for shinfo->frags*, * as the NULL setting for skb->head in netlink_skb_destructor() will * bypass most of the handling in skb_release_data() */ static inline struct sk_buff *nlmsg_new_large(size_t payload) { return netlink_alloc_large_skb(nlmsg_total_size(payload), 0); } /** * nlmsg_end - Finalize a netlink message * @skb: socket buffer the message is stored in * @nlh: netlink message header * * Corrects the netlink message header to include the appended * attributes. Only necessary if attributes have been added to * the message. */ static inline void nlmsg_end(struct sk_buff *skb, struct nlmsghdr *nlh) { nlh->nlmsg_len = skb_tail_pointer(skb) - (unsigned char *)nlh; } /** * nlmsg_get_pos - return current position in netlink message * @skb: socket buffer the message is stored in * * Returns: a pointer to the current tail of the message. */ static inline void *nlmsg_get_pos(struct sk_buff *skb) { return skb_tail_pointer(skb); } /** * nlmsg_trim - Trim message to a mark * @skb: socket buffer the message is stored in * @mark: mark to trim to * * Trims the message to the provided mark. */ static inline void nlmsg_trim(struct sk_buff *skb, const void *mark) { if (mark) { WARN_ON((unsigned char *) mark < skb->data); skb_trim(skb, (unsigned char *) mark - skb->data); } } /** * nlmsg_cancel - Cancel construction of a netlink message * @skb: socket buffer the message is stored in * @nlh: netlink message header * * Removes the complete netlink message including all * attributes from the socket buffer again. */ static inline void nlmsg_cancel(struct sk_buff *skb, struct nlmsghdr *nlh) { nlmsg_trim(skb, nlh); } /** * nlmsg_free - drop a netlink message * @skb: socket buffer of netlink message */ static inline void nlmsg_free(struct sk_buff *skb) { kfree_skb(skb); } /** * nlmsg_consume - free a netlink message * @skb: socket buffer of netlink message */ static inline void nlmsg_consume(struct sk_buff *skb) { consume_skb(skb); } /** * nlmsg_multicast_filtered - multicast a netlink message with filter function * @sk: netlink socket to spread messages to * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: multicast group id * @flags: allocation flags * @filter: filter function * @filter_data: filter function private data * * Return: 0 on success, negative error code for failure. */ static inline int nlmsg_multicast_filtered(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags, netlink_filter_fn filter, void *filter_data) { int err; NETLINK_CB(skb).dst_group = group; err = netlink_broadcast_filtered(sk, skb, portid, group, flags, filter, filter_data); if (err > 0) err = 0; return err; } /** * nlmsg_multicast - multicast a netlink message * @sk: netlink socket to spread messages to * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: multicast group id * @flags: allocation flags */ static inline int nlmsg_multicast(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags) { return nlmsg_multicast_filtered(sk, skb, portid, group, flags, NULL, NULL); } /** * nlmsg_unicast - unicast a netlink message * @sk: netlink socket to spread message to * @skb: netlink message as socket buffer * @portid: netlink portid of the destination socket */ static inline int nlmsg_unicast(struct sock *sk, struct sk_buff *skb, u32 portid) { int err; err = netlink_unicast(sk, skb, portid, MSG_DONTWAIT); if (err > 0) err = 0; return err; } /** * nlmsg_for_each_msg - iterate over a stream of messages * @pos: loop counter, set to current message * @head: head of message stream * @len: length of message stream * @rem: initialized to len, holds bytes currently remaining in stream */ #define nlmsg_for_each_msg(pos, head, len, rem) \ for (pos = head, rem = len; \ nlmsg_ok(pos, rem); \ pos = nlmsg_next(pos, &(rem))) /** * nl_dump_check_consistent - check if sequence is consistent and advertise if not * @cb: netlink callback structure that stores the sequence number * @nlh: netlink message header to write the flag to * * This function checks if the sequence (generation) number changed during dump * and if it did, advertises it in the netlink message header. * * The correct way to use it is to set cb->seq to the generation counter when * all locks for dumping have been acquired, and then call this function for * each message that is generated. * * Note that due to initialisation concerns, 0 is an invalid sequence number * and must not be used by code that uses this functionality. */ static inline void nl_dump_check_consistent(struct netlink_callback *cb, struct nlmsghdr *nlh) { if (cb->prev_seq && cb->seq != cb->prev_seq) nlh->nlmsg_flags |= NLM_F_DUMP_INTR; cb->prev_seq = cb->seq; } /************************************************************************** * Netlink Attributes **************************************************************************/ /** * nla_attr_size - length of attribute not including padding * @payload: length of payload */ static inline int nla_attr_size(int payload) { return NLA_HDRLEN + payload; } /** * nla_total_size - total length of attribute including padding * @payload: length of payload */ static inline int nla_total_size(int payload) { return NLA_ALIGN(nla_attr_size(payload)); } /** * nla_padlen - length of padding at the tail of attribute * @payload: length of payload */ static inline int nla_padlen(int payload) { return nla_total_size(payload) - nla_attr_size(payload); } /** * nla_type - attribute type * @nla: netlink attribute */ static inline int nla_type(const struct nlattr *nla) { return nla->nla_type & NLA_TYPE_MASK; } /** * nla_data - head of payload * @nla: netlink attribute */ static inline void *nla_data(const struct nlattr *nla) { return (char *) nla + NLA_HDRLEN; } /** * nla_len - length of payload * @nla: netlink attribute */ static inline u16 nla_len(const struct nlattr *nla) { return nla->nla_len - NLA_HDRLEN; } /** * nla_ok - check if the netlink attribute fits into the remaining bytes * @nla: netlink attribute * @remaining: number of bytes remaining in attribute stream */ static inline int nla_ok(const struct nlattr *nla, int remaining) { return remaining >= (int) sizeof(*nla) && nla->nla_len >= sizeof(*nla) && nla->nla_len <= remaining; } /** * nla_next - next netlink attribute in attribute stream * @nla: netlink attribute * @remaining: number of bytes remaining in attribute stream * * Returns: the next netlink attribute in the attribute stream and * decrements remaining by the size of the current attribute. */ static inline struct nlattr *nla_next(const struct nlattr *nla, int *remaining) { unsigned int totlen = NLA_ALIGN(nla->nla_len); *remaining -= totlen; return (struct nlattr *) ((char *) nla + totlen); } /** * nla_find_nested - find attribute in a set of nested attributes * @nla: attribute containing the nested attributes * @attrtype: type of attribute to look for * * Returns: the first attribute which matches the specified type. */ static inline struct nlattr * nla_find_nested(const struct nlattr *nla, int attrtype) { return nla_find(nla_data(nla), nla_len(nla), attrtype); } /** * nla_parse_nested - parse nested attributes * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @nla: attribute containing the nested attributes * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse() */ static inline int nla_parse_nested(struct nlattr *tb[], int maxtype, const struct nlattr *nla, const struct nla_policy *policy, struct netlink_ext_ack *extack) { if (!(nla->nla_type & NLA_F_NESTED)) { NL_SET_ERR_MSG_ATTR(extack, nla, "NLA_F_NESTED is missing"); return -EINVAL; } return __nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy, NL_VALIDATE_STRICT, extack); } /** * nla_parse_nested_deprecated - parse nested attributes * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @nla: attribute containing the nested attributes * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse_deprecated() */ static inline int nla_parse_nested_deprecated(struct nlattr *tb[], int maxtype, const struct nlattr *nla, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_put_u8 - Add a u8 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_u8(struct sk_buff *skb, int attrtype, u8 value) { /* temporary variables to work around GCC PR81715 with asan-stack=1 */ u8 tmp = value; return nla_put(skb, attrtype, sizeof(u8), &tmp); } /** * nla_put_u16 - Add a u16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_u16(struct sk_buff *skb, int attrtype, u16 value) { u16 tmp = value; return nla_put(skb, attrtype, sizeof(u16), &tmp); } /** * nla_put_be16 - Add a __be16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_be16(struct sk_buff *skb, int attrtype, __be16 value) { __be16 tmp = value; return nla_put(skb, attrtype, sizeof(__be16), &tmp); } /** * nla_put_net16 - Add 16-bit network byte order netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_net16(struct sk_buff *skb, int attrtype, __be16 value) { __be16 tmp = value; return nla_put_be16(skb, attrtype | NLA_F_NET_BYTEORDER, tmp); } /** * nla_put_le16 - Add a __le16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_le16(struct sk_buff *skb, int attrtype, __le16 value) { __le16 tmp = value; return nla_put(skb, attrtype, sizeof(__le16), &tmp); } /** * nla_put_u32 - Add a u32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_u32(struct sk_buff *skb, int attrtype, u32 value) { u32 tmp = value; return nla_put(skb, attrtype, sizeof(u32), &tmp); } /** * nla_put_uint - Add a variable-size unsigned int to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_uint(struct sk_buff *skb, int attrtype, u64 value) { u64 tmp64 = value; u32 tmp32 = value; if (tmp64 == tmp32) return nla_put_u32(skb, attrtype, tmp32); return nla_put(skb, attrtype, sizeof(u64), &tmp64); } /** * nla_put_be32 - Add a __be32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_be32(struct sk_buff *skb, int attrtype, __be32 value) { __be32 tmp = value; return nla_put(skb, attrtype, sizeof(__be32), &tmp); } /** * nla_put_net32 - Add 32-bit network byte order netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_net32(struct sk_buff *skb, int attrtype, __be32 value) { __be32 tmp = value; return nla_put_be32(skb, attrtype | NLA_F_NET_BYTEORDER, tmp); } /** * nla_put_le32 - Add a __le32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_le32(struct sk_buff *skb, int attrtype, __le32 value) { __le32 tmp = value; return nla_put(skb, attrtype, sizeof(__le32), &tmp); } /** * nla_put_u64_64bit - Add a u64 netlink attribute to a skb and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_u64_64bit(struct sk_buff *skb, int attrtype, u64 value, int padattr) { u64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(u64), &tmp, padattr); } /** * nla_put_be64 - Add a __be64 netlink attribute to a socket buffer and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_be64(struct sk_buff *skb, int attrtype, __be64 value, int padattr) { __be64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(__be64), &tmp, padattr); } /** * nla_put_net64 - Add 64-bit network byte order nlattr to a skb and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_net64(struct sk_buff *skb, int attrtype, __be64 value, int padattr) { __be64 tmp = value; return nla_put_be64(skb, attrtype | NLA_F_NET_BYTEORDER, tmp, padattr); } /** * nla_put_le64 - Add a __le64 netlink attribute to a socket buffer and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_le64(struct sk_buff *skb, int attrtype, __le64 value, int padattr) { __le64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(__le64), &tmp, padattr); } /** * nla_put_s8 - Add a s8 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_s8(struct sk_buff *skb, int attrtype, s8 value) { s8 tmp = value; return nla_put(skb, attrtype, sizeof(s8), &tmp); } /** * nla_put_s16 - Add a s16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_s16(struct sk_buff *skb, int attrtype, s16 value) { s16 tmp = value; return nla_put(skb, attrtype, sizeof(s16), &tmp); } /** * nla_put_s32 - Add a s32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_s32(struct sk_buff *skb, int attrtype, s32 value) { s32 tmp = value; return nla_put(skb, attrtype, sizeof(s32), &tmp); } /** * nla_put_s64 - Add a s64 netlink attribute to a socket buffer and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_s64(struct sk_buff *skb, int attrtype, s64 value, int padattr) { s64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(s64), &tmp, padattr); } /** * nla_put_sint - Add a variable-size signed int to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_sint(struct sk_buff *skb, int attrtype, s64 value) { s64 tmp64 = value; s32 tmp32 = value; if (tmp64 == tmp32) return nla_put_s32(skb, attrtype, tmp32); return nla_put(skb, attrtype, sizeof(s64), &tmp64); } /** * nla_put_string - Add a string netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @str: NUL terminated string */ static inline int nla_put_string(struct sk_buff *skb, int attrtype, const char *str) { return nla_put(skb, attrtype, strlen(str) + 1, str); } /** * nla_put_flag - Add a flag netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type */ static inline int nla_put_flag(struct sk_buff *skb, int attrtype) { return nla_put(skb, attrtype, 0, NULL); } /** * nla_put_msecs - Add a msecs netlink attribute to a skb and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @njiffies: number of jiffies to convert to msecs * @padattr: attribute type for the padding */ static inline int nla_put_msecs(struct sk_buff *skb, int attrtype, unsigned long njiffies, int padattr) { u64 tmp = jiffies_to_msecs(njiffies); return nla_put_64bit(skb, attrtype, sizeof(u64), &tmp, padattr); } /** * nla_put_in_addr - Add an IPv4 address netlink attribute to a socket * buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @addr: IPv4 address */ static inline int nla_put_in_addr(struct sk_buff *skb, int attrtype, __be32 addr) { __be32 tmp = addr; return nla_put_be32(skb, attrtype, tmp); } /** * nla_put_in6_addr - Add an IPv6 address netlink attribute to a socket * buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @addr: IPv6 address */ static inline int nla_put_in6_addr(struct sk_buff *skb, int attrtype, const struct in6_addr *addr) { return nla_put(skb, attrtype, sizeof(*addr), addr); } /** * nla_put_bitfield32 - Add a bitfield32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: value carrying bits * @selector: selector of valid bits */ static inline int nla_put_bitfield32(struct sk_buff *skb, int attrtype, __u32 value, __u32 selector) { struct nla_bitfield32 tmp = { value, selector, }; return nla_put(skb, attrtype, sizeof(tmp), &tmp); } /** * nla_get_u32 - return payload of u32 attribute * @nla: u32 netlink attribute */ static inline u32 nla_get_u32(const struct nlattr *nla) { return *(u32 *) nla_data(nla); } /** * nla_get_u32_default - return payload of u32 attribute or default * @nla: u32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u32 nla_get_u32_default(const struct nlattr *nla, u32 defvalue) { if (!nla) return defvalue; return nla_get_u32(nla); } /** * nla_get_be32 - return payload of __be32 attribute * @nla: __be32 netlink attribute */ static inline __be32 nla_get_be32(const struct nlattr *nla) { return *(__be32 *) nla_data(nla); } /** * nla_get_be32_default - return payload of be32 attribute or default * @nla: __be32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be32 nla_get_be32_default(const struct nlattr *nla, __be32 defvalue) { if (!nla) return defvalue; return nla_get_be32(nla); } /** * nla_get_le32 - return payload of __le32 attribute * @nla: __le32 netlink attribute */ static inline __le32 nla_get_le32(const struct nlattr *nla) { return *(__le32 *) nla_data(nla); } /** * nla_get_le32_default - return payload of le32 attribute or default * @nla: __le32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __le32 nla_get_le32_default(const struct nlattr *nla, __le32 defvalue) { if (!nla) return defvalue; return nla_get_le32(nla); } /** * nla_get_u16 - return payload of u16 attribute * @nla: u16 netlink attribute */ static inline u16 nla_get_u16(const struct nlattr *nla) { return *(u16 *) nla_data(nla); } /** * nla_get_u16_default - return payload of u16 attribute or default * @nla: u16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u16 nla_get_u16_default(const struct nlattr *nla, u16 defvalue) { if (!nla) return defvalue; return nla_get_u16(nla); } /** * nla_get_be16 - return payload of __be16 attribute * @nla: __be16 netlink attribute */ static inline __be16 nla_get_be16(const struct nlattr *nla) { return *(__be16 *) nla_data(nla); } /** * nla_get_be16_default - return payload of be16 attribute or default * @nla: __be16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be16 nla_get_be16_default(const struct nlattr *nla, __be16 defvalue) { if (!nla) return defvalue; return nla_get_be16(nla); } /** * nla_get_le16 - return payload of __le16 attribute * @nla: __le16 netlink attribute */ static inline __le16 nla_get_le16(const struct nlattr *nla) { return *(__le16 *) nla_data(nla); } /** * nla_get_le16_default - return payload of le16 attribute or default * @nla: __le16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __le16 nla_get_le16_default(const struct nlattr *nla, __le16 defvalue) { if (!nla) return defvalue; return nla_get_le16(nla); } /** * nla_get_u8 - return payload of u8 attribute * @nla: u8 netlink attribute */ static inline u8 nla_get_u8(const struct nlattr *nla) { return *(u8 *) nla_data(nla); } /** * nla_get_u8_default - return payload of u8 attribute or default * @nla: u8 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u8 nla_get_u8_default(const struct nlattr *nla, u8 defvalue) { if (!nla) return defvalue; return nla_get_u8(nla); } /** * nla_get_u64 - return payload of u64 attribute * @nla: u64 netlink attribute */ static inline u64 nla_get_u64(const struct nlattr *nla) { u64 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_u64_default - return payload of u64 attribute or default * @nla: u64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u64 nla_get_u64_default(const struct nlattr *nla, u64 defvalue) { if (!nla) return defvalue; return nla_get_u64(nla); } /** * nla_get_uint - return payload of uint attribute * @nla: uint netlink attribute */ static inline u64 nla_get_uint(const struct nlattr *nla) { if (nla_len(nla) == sizeof(u32)) return nla_get_u32(nla); return nla_get_u64(nla); } /** * nla_get_uint_default - return payload of uint attribute or default * @nla: uint netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u64 nla_get_uint_default(const struct nlattr *nla, u64 defvalue) { if (!nla) return defvalue; return nla_get_uint(nla); } /** * nla_get_be64 - return payload of __be64 attribute * @nla: __be64 netlink attribute */ static inline __be64 nla_get_be64(const struct nlattr *nla) { __be64 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_be64_default - return payload of be64 attribute or default * @nla: __be64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be64 nla_get_be64_default(const struct nlattr *nla, __be64 defvalue) { if (!nla) return defvalue; return nla_get_be64(nla); } /** * nla_get_le64 - return payload of __le64 attribute * @nla: __le64 netlink attribute */ static inline __le64 nla_get_le64(const struct nlattr *nla) { return *(__le64 *) nla_data(nla); } /** * nla_get_le64_default - return payload of le64 attribute or default * @nla: __le64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __le64 nla_get_le64_default(const struct nlattr *nla, __le64 defvalue) { if (!nla) return defvalue; return nla_get_le64(nla); } /** * nla_get_s32 - return payload of s32 attribute * @nla: s32 netlink attribute */ static inline s32 nla_get_s32(const struct nlattr *nla) { return *(s32 *) nla_data(nla); } /** * nla_get_s32_default - return payload of s32 attribute or default * @nla: s32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s32 nla_get_s32_default(const struct nlattr *nla, s32 defvalue) { if (!nla) return defvalue; return nla_get_s32(nla); } /** * nla_get_s16 - return payload of s16 attribute * @nla: s16 netlink attribute */ static inline s16 nla_get_s16(const struct nlattr *nla) { return *(s16 *) nla_data(nla); } /** * nla_get_s16_default - return payload of s16 attribute or default * @nla: s16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s16 nla_get_s16_default(const struct nlattr *nla, s16 defvalue) { if (!nla) return defvalue; return nla_get_s16(nla); } /** * nla_get_s8 - return payload of s8 attribute * @nla: s8 netlink attribute */ static inline s8 nla_get_s8(const struct nlattr *nla) { return *(s8 *) nla_data(nla); } /** * nla_get_s8_default - return payload of s8 attribute or default * @nla: s8 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s8 nla_get_s8_default(const struct nlattr *nla, s8 defvalue) { if (!nla) return defvalue; return nla_get_s8(nla); } /** * nla_get_s64 - return payload of s64 attribute * @nla: s64 netlink attribute */ static inline s64 nla_get_s64(const struct nlattr *nla) { s64 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_s64_default - return payload of s64 attribute or default * @nla: s64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s64 nla_get_s64_default(const struct nlattr *nla, s64 defvalue) { if (!nla) return defvalue; return nla_get_s64(nla); } /** * nla_get_sint - return payload of uint attribute * @nla: uint netlink attribute */ static inline s64 nla_get_sint(const struct nlattr *nla) { if (nla_len(nla) == sizeof(s32)) return nla_get_s32(nla); return nla_get_s64(nla); } /** * nla_get_sint_default - return payload of sint attribute or default * @nla: sint netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s64 nla_get_sint_default(const struct nlattr *nla, s64 defvalue) { if (!nla) return defvalue; return nla_get_sint(nla); } /** * nla_get_flag - return payload of flag attribute * @nla: flag netlink attribute */ static inline int nla_get_flag(const struct nlattr *nla) { return !!nla; } /** * nla_get_msecs - return payload of msecs attribute * @nla: msecs netlink attribute * * Returns: the number of milliseconds in jiffies. */ static inline unsigned long nla_get_msecs(const struct nlattr *nla) { u64 msecs = nla_get_u64(nla); return msecs_to_jiffies((unsigned long) msecs); } /** * nla_get_msecs_default - return payload of msecs attribute or default * @nla: msecs netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline unsigned long nla_get_msecs_default(const struct nlattr *nla, unsigned long defvalue) { if (!nla) return defvalue; return nla_get_msecs(nla); } /** * nla_get_in_addr - return payload of IPv4 address attribute * @nla: IPv4 address netlink attribute */ static inline __be32 nla_get_in_addr(const struct nlattr *nla) { return *(__be32 *) nla_data(nla); } /** * nla_get_in_addr_default - return payload of be32 attribute or default * @nla: IPv4 address netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be32 nla_get_in_addr_default(const struct nlattr *nla, __be32 defvalue) { if (!nla) return defvalue; return nla_get_in_addr(nla); } /** * nla_get_in6_addr - return payload of IPv6 address attribute * @nla: IPv6 address netlink attribute */ static inline struct in6_addr nla_get_in6_addr(const struct nlattr *nla) { struct in6_addr tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_bitfield32 - return payload of 32 bitfield attribute * @nla: nla_bitfield32 attribute */ static inline struct nla_bitfield32 nla_get_bitfield32(const struct nlattr *nla) { struct nla_bitfield32 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_memdup - duplicate attribute memory (kmemdup) * @src: netlink attribute to duplicate from * @gfp: GFP mask */ static inline void *nla_memdup_noprof(const struct nlattr *src, gfp_t gfp) { return kmemdup_noprof(nla_data(src), nla_len(src), gfp); } #define nla_memdup(...) alloc_hooks(nla_memdup_noprof(__VA_ARGS__)) /** * nla_nest_start_noflag - Start a new level of nested attributes * @skb: socket buffer to add attributes to * @attrtype: attribute type of container * * This function exists for backward compatibility to use in APIs which never * marked their nest attributes with NLA_F_NESTED flag. New APIs should use * nla_nest_start() which sets the flag. * * Returns: the container attribute or NULL on error */ static inline struct nlattr *nla_nest_start_noflag(struct sk_buff *skb, int attrtype) { struct nlattr *start = (struct nlattr *)skb_tail_pointer(skb); if (nla_put(skb, attrtype, 0, NULL) < 0) return NULL; return start; } /** * nla_nest_start - Start a new level of nested attributes, with NLA_F_NESTED * @skb: socket buffer to add attributes to * @attrtype: attribute type of container * * Unlike nla_nest_start_noflag(), mark the nest attribute with NLA_F_NESTED * flag. This is the preferred function to use in new code. * * Returns: the container attribute or NULL on error */ static inline struct nlattr *nla_nest_start(struct sk_buff *skb, int attrtype) { return nla_nest_start_noflag(skb, attrtype | NLA_F_NESTED); } /** * nla_nest_end - Finalize nesting of attributes * @skb: socket buffer the attributes are stored in * @start: container attribute * * Corrects the container attribute header to include the all * appended attributes. * * Returns: the total data length of the skb. */ static inline int nla_nest_end(struct sk_buff *skb, struct nlattr *start) { start->nla_len = skb_tail_pointer(skb) - (unsigned char *)start; return skb->len; } /** * nla_nest_cancel - Cancel nesting of attributes * @skb: socket buffer the message is stored in * @start: container attribute * * Removes the container attribute and including all nested * attributes. Returns -EMSGSIZE */ static inline void nla_nest_cancel(struct sk_buff *skb, struct nlattr *start) { nlmsg_trim(skb, start); } /** * nla_put_empty_nest - Create an empty nest * @skb: socket buffer the message is stored in * @attrtype: attribute type of the container * * This function is a helper for creating empty nests. * * Returns: 0 when successful or -EMSGSIZE on failure. */ static inline int nla_put_empty_nest(struct sk_buff *skb, int attrtype) { return nla_nest_start(skb, attrtype) ? 0 : -EMSGSIZE; } /** * __nla_validate_nested - Validate a stream of nested attributes * @start: container attribute * @maxtype: maximum attribute type to be expected * @policy: validation policy * @validate: validation strictness * @extack: extended ACK report struct * * Validates all attributes in the nested attribute stream against the * specified policy. Attributes with a type exceeding maxtype will be * ignored. See documentation of struct nla_policy for more details. * * Returns: 0 on success or a negative error code. */ static inline int __nla_validate_nested(const struct nlattr *start, int maxtype, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack) { return __nla_validate(nla_data(start), nla_len(start), maxtype, policy, validate, extack); } static inline int nla_validate_nested(const struct nlattr *start, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate_nested(start, maxtype, policy, NL_VALIDATE_STRICT, extack); } static inline int nla_validate_nested_deprecated(const struct nlattr *start, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate_nested(start, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_need_padding_for_64bit - test 64-bit alignment of the next attribute * @skb: socket buffer the message is stored in * * Return: true if padding is needed to align the next attribute (nla_data()) to * a 64-bit aligned area. */ static inline bool nla_need_padding_for_64bit(struct sk_buff *skb) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS /* The nlattr header is 4 bytes in size, that's why we test * if the skb->data _is_ aligned. A NOP attribute, plus * nlattr header for next attribute, will make nla_data() * 8-byte aligned. */ if (IS_ALIGNED((unsigned long)skb_tail_pointer(skb), 8)) return true; #endif return false; } /** * nla_align_64bit - 64-bit align the nla_data() of next attribute * @skb: socket buffer the message is stored in * @padattr: attribute type for the padding * * Conditionally emit a padding netlink attribute in order to make * the next attribute we emit have a 64-bit aligned nla_data() area. * This will only be done in architectures which do not have * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS defined. * * Returns: zero on success or a negative error code. */ static inline int nla_align_64bit(struct sk_buff *skb, int padattr) { if (nla_need_padding_for_64bit(skb) && !nla_reserve(skb, padattr, 0)) return -EMSGSIZE; return 0; } /** * nla_total_size_64bit - total length of attribute including padding * @payload: length of payload */ static inline int nla_total_size_64bit(int payload) { return NLA_ALIGN(nla_attr_size(payload)) #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS + NLA_ALIGN(nla_attr_size(0)) #endif ; } /** * nla_for_each_attr - iterate over a stream of attributes * @pos: loop counter, set to current attribute * @head: head of attribute stream * @len: length of attribute stream * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_attr(pos, head, len, rem) \ for (pos = head, rem = len; \ nla_ok(pos, rem); \ pos = nla_next(pos, &(rem))) /** * nla_for_each_attr_type - iterate over a stream of attributes * @pos: loop counter, set to current attribute * @type: required attribute type for @pos * @head: head of attribute stream * @len: length of attribute stream * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_attr_type(pos, type, head, len, rem) \ nla_for_each_attr(pos, head, len, rem) \ if (nla_type(pos) == type) /** * nla_for_each_nested - iterate over nested attributes * @pos: loop counter, set to current attribute * @nla: attribute containing the nested attributes * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_nested(pos, nla, rem) \ nla_for_each_attr(pos, nla_data(nla), nla_len(nla), rem) /** * nla_for_each_nested_type - iterate over nested attributes * @pos: loop counter, set to current attribute * @type: required attribute type for @pos * @nla: attribute containing the nested attributes * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_nested_type(pos, type, nla, rem) \ nla_for_each_nested(pos, nla, rem) \ if (nla_type(pos) == type) /** * nla_is_last - Test if attribute is last in stream * @nla: attribute to test * @rem: bytes remaining in stream */ static inline bool nla_is_last(const struct nlattr *nla, int rem) { return nla->nla_len == rem; } void nla_get_range_unsigned(const struct nla_policy *pt, struct netlink_range_validation *range); void nla_get_range_signed(const struct nla_policy *pt, struct netlink_range_validation_signed *range); struct netlink_policy_dump_state; int netlink_policy_dump_add_policy(struct netlink_policy_dump_state **pstate, const struct nla_policy *policy, unsigned int maxtype); int netlink_policy_dump_get_policy_idx(struct netlink_policy_dump_state *state, const struct nla_policy *policy, unsigned int maxtype); bool netlink_policy_dump_loop(struct netlink_policy_dump_state *state); int netlink_policy_dump_write(struct sk_buff *skb, struct netlink_policy_dump_state *state); int netlink_policy_dump_attr_size_estimate(const struct nla_policy *pt); int netlink_policy_dump_write_attr(struct sk_buff *skb, const struct nla_policy *pt, int nestattr); void netlink_policy_dump_free(struct netlink_policy_dump_state *state); #endif
4 4 4 4 4 4 4 4 4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 // SPDX-License-Identifier: GPL-2.0+ /* * linux/fs/jbd2/checkpoint.c * * Written by Stephen C. Tweedie <sct@redhat.com>, 1999 * * Copyright 1999 Red Hat Software --- All Rights Reserved * * Checkpoint routines for the generic filesystem journaling code. * Part of the ext2fs journaling system. * * Checkpointing is the process of ensuring that a section of the log is * committed fully to disk, so that that portion of the log can be * reused. */ #include <linux/time.h> #include <linux/fs.h> #include <linux/jbd2.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <trace/events/jbd2.h> /* * Unlink a buffer from a transaction checkpoint list. * * Called with j_list_lock held. */ static inline void __buffer_unlink(struct journal_head *jh) { transaction_t *transaction = jh->b_cp_transaction; jh->b_cpnext->b_cpprev = jh->b_cpprev; jh->b_cpprev->b_cpnext = jh->b_cpnext; if (transaction->t_checkpoint_list == jh) { transaction->t_checkpoint_list = jh->b_cpnext; if (transaction->t_checkpoint_list == jh) transaction->t_checkpoint_list = NULL; } } /* * __jbd2_log_wait_for_space: wait until there is space in the journal. * * Called under j-state_lock *only*. It will be unlocked if we have to wait * for a checkpoint to free up some space in the log. */ void __jbd2_log_wait_for_space(journal_t *journal) __acquires(&journal->j_state_lock) __releases(&journal->j_state_lock) { int nblocks, space_left; /* assert_spin_locked(&journal->j_state_lock); */ nblocks = journal->j_max_transaction_buffers; while (jbd2_log_space_left(journal) < nblocks) { write_unlock(&journal->j_state_lock); mutex_lock_io(&journal->j_checkpoint_mutex); /* * Test again, another process may have checkpointed while we * were waiting for the checkpoint lock. If there are no * transactions ready to be checkpointed, try to recover * journal space by calling cleanup_journal_tail(), and if * that doesn't work, by waiting for the currently committing * transaction to complete. If there is absolutely no way * to make progress, this is either a BUG or corrupted * filesystem, so abort the journal and leave a stack * trace for forensic evidence. */ write_lock(&journal->j_state_lock); if (journal->j_flags & JBD2_ABORT) { mutex_unlock(&journal->j_checkpoint_mutex); return; } spin_lock(&journal->j_list_lock); space_left = jbd2_log_space_left(journal); if (space_left < nblocks) { int chkpt = journal->j_checkpoint_transactions != NULL; tid_t tid = 0; bool has_transaction = false; if (journal->j_committing_transaction) { tid = journal->j_committing_transaction->t_tid; has_transaction = true; } spin_unlock(&journal->j_list_lock); write_unlock(&journal->j_state_lock); if (chkpt) { jbd2_log_do_checkpoint(journal); } else if (jbd2_cleanup_journal_tail(journal) <= 0) { /* * We were able to recover space or the * journal was aborted due to an error. */ ; } else if (has_transaction) { /* * jbd2_journal_commit_transaction() may want * to take the checkpoint_mutex if JBD2_FLUSHED * is set. So we need to temporarily drop it. */ mutex_unlock(&journal->j_checkpoint_mutex); jbd2_log_wait_commit(journal, tid); write_lock(&journal->j_state_lock); continue; } else { printk(KERN_ERR "%s: needed %d blocks and " "only had %d space available\n", __func__, nblocks, space_left); printk(KERN_ERR "%s: no way to get more " "journal space in %s\n", __func__, journal->j_devname); WARN_ON(1); jbd2_journal_abort(journal, -EIO); } write_lock(&journal->j_state_lock); } else { spin_unlock(&journal->j_list_lock); } mutex_unlock(&journal->j_checkpoint_mutex); } } static void __flush_batch(journal_t *journal, int *batch_count) { int i; struct blk_plug plug; blk_start_plug(&plug); for (i = 0; i < *batch_count; i++) write_dirty_buffer(journal->j_chkpt_bhs[i], REQ_SYNC); blk_finish_plug(&plug); for (i = 0; i < *batch_count; i++) { struct buffer_head *bh = journal->j_chkpt_bhs[i]; BUFFER_TRACE(bh, "brelse"); __brelse(bh); journal->j_chkpt_bhs[i] = NULL; } *batch_count = 0; } /* * Perform an actual checkpoint. We take the first transaction on the * list of transactions to be checkpointed and send all its buffers * to disk. We submit larger chunks of data at once. * * The journal should be locked before calling this function. * Called with j_checkpoint_mutex held. */ int jbd2_log_do_checkpoint(journal_t *journal) { struct journal_head *jh; struct buffer_head *bh; transaction_t *transaction; tid_t this_tid; int result, batch_count = 0; jbd2_debug(1, "Start checkpoint\n"); /* * First thing: if there are any transactions in the log which * don't need checkpointing, just eliminate them from the * journal straight away. */ result = jbd2_cleanup_journal_tail(journal); trace_jbd2_checkpoint(journal, result); jbd2_debug(1, "cleanup_journal_tail returned %d\n", result); if (result <= 0) return result; /* * OK, we need to start writing disk blocks. Take one transaction * and write it. */ spin_lock(&journal->j_list_lock); if (!journal->j_checkpoint_transactions) goto out; transaction = journal->j_checkpoint_transactions; if (transaction->t_chp_stats.cs_chp_time == 0) transaction->t_chp_stats.cs_chp_time = jiffies; this_tid = transaction->t_tid; restart: /* * If someone cleaned up this transaction while we slept, we're * done (maybe it's a new transaction, but it fell at the same * address). */ if (journal->j_checkpoint_transactions != transaction || transaction->t_tid != this_tid) goto out; /* checkpoint all of the transaction's buffers */ while (transaction->t_checkpoint_list) { jh = transaction->t_checkpoint_list; bh = jh2bh(jh); if (jh->b_transaction != NULL) { transaction_t *t = jh->b_transaction; tid_t tid = t->t_tid; transaction->t_chp_stats.cs_forced_to_close++; spin_unlock(&journal->j_list_lock); if (unlikely(journal->j_flags & JBD2_UNMOUNT)) /* * The journal thread is dead; so * starting and waiting for a commit * to finish will cause us to wait for * a _very_ long time. */ printk(KERN_ERR "JBD2: %s: Waiting for Godot: block %llu\n", journal->j_devname, (unsigned long long) bh->b_blocknr); if (batch_count) __flush_batch(journal, &batch_count); jbd2_log_start_commit(journal, tid); /* * jbd2_journal_commit_transaction() may want * to take the checkpoint_mutex if JBD2_FLUSHED * is set, jbd2_update_log_tail() called by * jbd2_journal_commit_transaction() may also take * checkpoint_mutex. So we need to temporarily * drop it. */ mutex_unlock(&journal->j_checkpoint_mutex); jbd2_log_wait_commit(journal, tid); mutex_lock_io(&journal->j_checkpoint_mutex); spin_lock(&journal->j_list_lock); goto restart; } if (!trylock_buffer(bh)) { /* * The buffer is locked, it may be writing back, or * flushing out in the last couple of cycles, or * re-adding into a new transaction, need to check * it again until it's unlocked. */ get_bh(bh); spin_unlock(&journal->j_list_lock); wait_on_buffer(bh); /* the journal_head may have gone by now */ BUFFER_TRACE(bh, "brelse"); __brelse(bh); goto retry; } else if (!buffer_dirty(bh)) { unlock_buffer(bh); BUFFER_TRACE(bh, "remove from checkpoint"); /* * If the transaction was released or the checkpoint * list was empty, we're done. */ if (__jbd2_journal_remove_checkpoint(jh) || !transaction->t_checkpoint_list) goto out; } else { unlock_buffer(bh); /* * We are about to write the buffer, it could be * raced by some other transaction shrink or buffer * re-log logic once we release the j_list_lock, * leave it on the checkpoint list and check status * again to make sure it's clean. */ BUFFER_TRACE(bh, "queue"); get_bh(bh); J_ASSERT_BH(bh, !buffer_jwrite(bh)); journal->j_chkpt_bhs[batch_count++] = bh; transaction->t_chp_stats.cs_written++; transaction->t_checkpoint_list = jh->b_cpnext; } if ((batch_count == JBD2_NR_BATCH) || need_resched() || spin_needbreak(&journal->j_list_lock) || jh2bh(transaction->t_checkpoint_list) == journal->j_chkpt_bhs[0]) goto unlock_and_flush; } if (batch_count) { unlock_and_flush: spin_unlock(&journal->j_list_lock); retry: if (batch_count) __flush_batch(journal, &batch_count); spin_lock(&journal->j_list_lock); goto restart; } out: spin_unlock(&journal->j_list_lock); result = jbd2_cleanup_journal_tail(journal); return (result < 0) ? result : 0; } /* * Check the list of checkpoint transactions for the journal to see if * we have already got rid of any since the last update of the log tail * in the journal superblock. If so, we can instantly roll the * superblock forward to remove those transactions from the log. * * Return <0 on error, 0 on success, 1 if there was nothing to clean up. * * Called with the journal lock held. * * This is the only part of the journaling code which really needs to be * aware of transaction aborts. Checkpointing involves writing to the * main filesystem area rather than to the journal, so it can proceed * even in abort state, but we must not update the super block if * checkpointing may have failed. Otherwise, we would lose some metadata * buffers which should be written-back to the filesystem. */ int jbd2_cleanup_journal_tail(journal_t *journal) { tid_t first_tid; unsigned long blocknr; if (is_journal_aborted(journal)) return -EIO; if (!jbd2_journal_get_log_tail(journal, &first_tid, &blocknr)) return 1; J_ASSERT(blocknr != 0); /* * We need to make sure that any blocks that were recently written out * --- perhaps by jbd2_log_do_checkpoint() --- are flushed out before * we drop the transactions from the journal. It's unlikely this will * be necessary, especially with an appropriately sized journal, but we * need this to guarantee correctness. Fortunately * jbd2_cleanup_journal_tail() doesn't get called all that often. */ if (journal->j_flags & JBD2_BARRIER) blkdev_issue_flush(journal->j_fs_dev); return __jbd2_update_log_tail(journal, first_tid, blocknr); } /* Checkpoint list management */ /* * journal_shrink_one_cp_list * * Find all the written-back checkpoint buffers in the given list * and try to release them. If the whole transaction is released, set * the 'released' parameter. Return the number of released checkpointed * buffers. * * Called with j_list_lock held. */ static unsigned long journal_shrink_one_cp_list(struct journal_head *jh, enum jbd2_shrink_type type, bool *released) { struct journal_head *last_jh; struct journal_head *next_jh = jh; unsigned long nr_freed = 0; int ret; *released = false; if (!jh) return 0; last_jh = jh->b_cpprev; do { jh = next_jh; next_jh = jh->b_cpnext; if (type == JBD2_SHRINK_DESTROY) { ret = __jbd2_journal_remove_checkpoint(jh); } else { ret = jbd2_journal_try_remove_checkpoint(jh); if (ret < 0) { if (type == JBD2_SHRINK_BUSY_SKIP) continue; break; } } nr_freed++; if (ret) { *released = true; break; } if (need_resched()) break; } while (jh != last_jh); return nr_freed; } /* * jbd2_journal_shrink_checkpoint_list * * Find 'nr_to_scan' written-back checkpoint buffers in the journal * and try to release them. Return the number of released checkpointed * buffers. * * Called with j_list_lock held. */ unsigned long jbd2_journal_shrink_checkpoint_list(journal_t *journal, unsigned long *nr_to_scan) { transaction_t *transaction, *last_transaction, *next_transaction; bool __maybe_unused released; tid_t first_tid = 0, last_tid = 0, next_tid = 0; tid_t tid = 0; unsigned long nr_freed = 0; unsigned long freed; bool first_set = false; again: spin_lock(&journal->j_list_lock); if (!journal->j_checkpoint_transactions) { spin_unlock(&journal->j_list_lock); goto out; } /* * Get next shrink transaction, resume previous scan or start * over again. If some others do checkpoint and drop transaction * from the checkpoint list, we ignore saved j_shrink_transaction * and start over unconditionally. */ if (journal->j_shrink_transaction) transaction = journal->j_shrink_transaction; else transaction = journal->j_checkpoint_transactions; if (!first_set) { first_tid = transaction->t_tid; first_set = true; } last_transaction = journal->j_checkpoint_transactions->t_cpprev; next_transaction = transaction; last_tid = last_transaction->t_tid; do { transaction = next_transaction; next_transaction = transaction->t_cpnext; tid = transaction->t_tid; freed = journal_shrink_one_cp_list(transaction->t_checkpoint_list, JBD2_SHRINK_BUSY_SKIP, &released); nr_freed += freed; (*nr_to_scan) -= min(*nr_to_scan, freed); if (*nr_to_scan == 0) break; if (need_resched() || spin_needbreak(&journal->j_list_lock)) break; } while (transaction != last_transaction); if (transaction != last_transaction) { journal->j_shrink_transaction = next_transaction; next_tid = next_transaction->t_tid; } else { journal->j_shrink_transaction = NULL; next_tid = 0; } spin_unlock(&journal->j_list_lock); cond_resched(); if (*nr_to_scan && journal->j_shrink_transaction) goto again; out: trace_jbd2_shrink_checkpoint_list(journal, first_tid, tid, last_tid, nr_freed, next_tid); return nr_freed; } /* * journal_clean_checkpoint_list * * Find all the written-back checkpoint buffers in the journal and release them. * If 'type' is JBD2_SHRINK_DESTROY, release all buffers unconditionally. If * 'type' is JBD2_SHRINK_BUSY_STOP, will stop release buffers if encounters a * busy buffer. To avoid wasting CPU cycles scanning the buffer list in some * cases, don't pass JBD2_SHRINK_BUSY_SKIP 'type' for this function. * * Called with j_list_lock held. */ void __jbd2_journal_clean_checkpoint_list(journal_t *journal, enum jbd2_shrink_type type) { transaction_t *transaction, *last_transaction, *next_transaction; bool released; WARN_ON_ONCE(type == JBD2_SHRINK_BUSY_SKIP); transaction = journal->j_checkpoint_transactions; if (!transaction) return; last_transaction = transaction->t_cpprev; next_transaction = transaction; do { transaction = next_transaction; next_transaction = transaction->t_cpnext; journal_shrink_one_cp_list(transaction->t_checkpoint_list, type, &released); /* * This function only frees up some memory if possible so we * dont have an obligation to finish processing. Bail out if * preemption requested: */ if (need_resched()) return; /* * Stop scanning if we couldn't free the transaction. This * avoids pointless scanning of transactions which still * weren't checkpointed. */ if (!released) return; } while (transaction != last_transaction); } /* * Remove buffers from all checkpoint lists as journal is aborted and we just * need to free memory */ void jbd2_journal_destroy_checkpoint(journal_t *journal) { /* * We loop because __jbd2_journal_clean_checkpoint_list() may abort * early due to a need of rescheduling. */ while (1) { spin_lock(&journal->j_list_lock); if (!journal->j_checkpoint_transactions) { spin_unlock(&journal->j_list_lock); break; } __jbd2_journal_clean_checkpoint_list(journal, JBD2_SHRINK_DESTROY); spin_unlock(&journal->j_list_lock); cond_resched(); } } /* * journal_remove_checkpoint: called after a buffer has been committed * to disk (either by being write-back flushed to disk, or being * committed to the log). * * We cannot safely clean a transaction out of the log until all of the * buffer updates committed in that transaction have safely been stored * elsewhere on disk. To achieve this, all of the buffers in a * transaction need to be maintained on the transaction's checkpoint * lists until they have been rewritten, at which point this function is * called to remove the buffer from the existing transaction's * checkpoint lists. * * The function returns 1 if it frees the transaction, 0 otherwise. * The function can free jh and bh. * * This function is called with j_list_lock held. */ int __jbd2_journal_remove_checkpoint(struct journal_head *jh) { struct transaction_chp_stats_s *stats; transaction_t *transaction; journal_t *journal; JBUFFER_TRACE(jh, "entry"); transaction = jh->b_cp_transaction; if (!transaction) { JBUFFER_TRACE(jh, "not on transaction"); return 0; } journal = transaction->t_journal; JBUFFER_TRACE(jh, "removing from transaction"); __buffer_unlink(jh); jh->b_cp_transaction = NULL; percpu_counter_dec(&journal->j_checkpoint_jh_count); jbd2_journal_put_journal_head(jh); /* Is this transaction empty? */ if (transaction->t_checkpoint_list) return 0; /* * There is one special case to worry about: if we have just pulled the * buffer off a running or committing transaction's checkpoing list, * then even if the checkpoint list is empty, the transaction obviously * cannot be dropped! * * The locking here around t_state is a bit sleazy. * See the comment at the end of jbd2_journal_commit_transaction(). */ if (transaction->t_state != T_FINISHED) return 0; /* * OK, that was the last buffer for the transaction, we can now * safely remove this transaction from the log. */ stats = &transaction->t_chp_stats; if (stats->cs_chp_time) stats->cs_chp_time = jbd2_time_diff(stats->cs_chp_time, jiffies); trace_jbd2_checkpoint_stats(journal->j_fs_dev->bd_dev, transaction->t_tid, stats); __jbd2_journal_drop_transaction(journal, transaction); jbd2_journal_free_transaction(transaction); return 1; } /* * Check the checkpoint buffer and try to remove it from the checkpoint * list if it's clean. Returns -EBUSY if it is not clean, returns 1 if * it frees the transaction, 0 otherwise. * * This function is called with j_list_lock held. */ int jbd2_journal_try_remove_checkpoint(struct journal_head *jh) { struct buffer_head *bh = jh2bh(jh); if (jh->b_transaction) return -EBUSY; if (!trylock_buffer(bh)) return -EBUSY; if (buffer_dirty(bh)) { unlock_buffer(bh); return -EBUSY; } unlock_buffer(bh); /* * Buffer is clean and the IO has finished (we held the buffer * lock) so the checkpoint is done. We can safely remove the * buffer from this transaction. */ JBUFFER_TRACE(jh, "remove from checkpoint list"); return __jbd2_journal_remove_checkpoint(jh); } /* * journal_insert_checkpoint: put a committed buffer onto a checkpoint * list so that we know when it is safe to clean the transaction out of * the log. * * Called with the journal locked. * Called with j_list_lock held. */ void __jbd2_journal_insert_checkpoint(struct journal_head *jh, transaction_t *transaction) { JBUFFER_TRACE(jh, "entry"); J_ASSERT_JH(jh, buffer_dirty(jh2bh(jh)) || buffer_jbddirty(jh2bh(jh))); J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); /* Get reference for checkpointing transaction */ jbd2_journal_grab_journal_head(jh2bh(jh)); jh->b_cp_transaction = transaction; if (!transaction->t_checkpoint_list) { jh->b_cpnext = jh->b_cpprev = jh; } else { jh->b_cpnext = transaction->t_checkpoint_list; jh->b_cpprev = transaction->t_checkpoint_list->b_cpprev; jh->b_cpprev->b_cpnext = jh; jh->b_cpnext->b_cpprev = jh; } transaction->t_checkpoint_list = jh; percpu_counter_inc(&transaction->t_journal->j_checkpoint_jh_count); } /* * We've finished with this transaction structure: adios... * * The transaction must have no links except for the checkpoint by this * point. * * Called with the journal locked. * Called with j_list_lock held. */ void __jbd2_journal_drop_transaction(journal_t *journal, transaction_t *transaction) { assert_spin_locked(&journal->j_list_lock); journal->j_shrink_transaction = NULL; if (transaction->t_cpnext) { transaction->t_cpnext->t_cpprev = transaction->t_cpprev; transaction->t_cpprev->t_cpnext = transaction->t_cpnext; if (journal->j_checkpoint_transactions == transaction) journal->j_checkpoint_transactions = transaction->t_cpnext; if (journal->j_checkpoint_transactions == transaction) journal->j_checkpoint_transactions = NULL; } J_ASSERT(transaction->t_state == T_FINISHED); J_ASSERT(transaction->t_buffers == NULL); J_ASSERT(transaction->t_forget == NULL); J_ASSERT(transaction->t_shadow_list == NULL); J_ASSERT(transaction->t_checkpoint_list == NULL); J_ASSERT(atomic_read(&transaction->t_updates) == 0); J_ASSERT(journal->j_committing_transaction != transaction); J_ASSERT(journal->j_running_transaction != transaction); trace_jbd2_drop_transaction(journal, transaction); jbd2_debug(1, "Dropping transaction %d, all done\n", transaction->t_tid); }
2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3 3 1 2 2 3 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner, Simon Wunderlich */ #include "bat_iv_ogm.h" #include "main.h" #include <linux/atomic.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/byteorder/generic.h> #include <linux/cache.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/minmax.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/pkt_sched.h> #include <linux/printk.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/string_choices.h> #include <linux/types.h> #include <linux/workqueue.h> #include <net/genetlink.h> #include <net/netlink.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "bat_algo.h" #include "bitarray.h" #include "gateway_client.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "netlink.h" #include "network-coding.h" #include "originator.h" #include "routing.h" #include "send.h" #include "translation-table.h" #include "tvlv.h" static void batadv_iv_send_outstanding_bat_ogm_packet(struct work_struct *work); /** * enum batadv_dup_status - duplicate status */ enum batadv_dup_status { /** @BATADV_NO_DUP: the packet is no duplicate */ BATADV_NO_DUP = 0, /** * @BATADV_ORIG_DUP: OGM is a duplicate in the originator (but not for * the neighbor) */ BATADV_ORIG_DUP, /** @BATADV_NEIGH_DUP: OGM is a duplicate for the neighbor */ BATADV_NEIGH_DUP, /** * @BATADV_PROTECTED: originator is currently protected (after reboot) */ BATADV_PROTECTED, }; /** * batadv_ring_buffer_set() - update the ring buffer with the given value * @lq_recv: pointer to the ring buffer * @lq_index: index to store the value at * @value: value to store in the ring buffer */ static void batadv_ring_buffer_set(u8 lq_recv[], u8 *lq_index, u8 value) { lq_recv[*lq_index] = value; *lq_index = (*lq_index + 1) % BATADV_TQ_GLOBAL_WINDOW_SIZE; } /** * batadv_ring_buffer_avg() - compute the average of all non-zero values stored * in the given ring buffer * @lq_recv: pointer to the ring buffer * * Return: computed average value. */ static u8 batadv_ring_buffer_avg(const u8 lq_recv[]) { const u8 *ptr; u16 count = 0; u16 i = 0; u16 sum = 0; ptr = lq_recv; while (i < BATADV_TQ_GLOBAL_WINDOW_SIZE) { if (*ptr != 0) { count++; sum += *ptr; } i++; ptr++; } if (count == 0) return 0; return (u8)(sum / count); } /** * batadv_iv_ogm_orig_get() - retrieve or create (if does not exist) an * originator * @bat_priv: the bat priv with all the mesh interface information * @addr: mac address of the originator * * Return: the originator object corresponding to the passed mac address or NULL * on failure. * If the object does not exist, it is created and initialised. */ static struct batadv_orig_node * batadv_iv_ogm_orig_get(struct batadv_priv *bat_priv, const u8 *addr) { struct batadv_orig_node *orig_node; int hash_added; orig_node = batadv_orig_hash_find(bat_priv, addr); if (orig_node) return orig_node; orig_node = batadv_orig_node_new(bat_priv, addr); if (!orig_node) return NULL; spin_lock_init(&orig_node->bat_iv.ogm_cnt_lock); kref_get(&orig_node->refcount); hash_added = batadv_hash_add(bat_priv->orig_hash, batadv_compare_orig, batadv_choose_orig, orig_node, &orig_node->hash_entry); if (hash_added != 0) goto free_orig_node_hash; return orig_node; free_orig_node_hash: /* reference for batadv_hash_add */ batadv_orig_node_put(orig_node); /* reference from batadv_orig_node_new */ batadv_orig_node_put(orig_node); return NULL; } static struct batadv_neigh_node * batadv_iv_ogm_neigh_new(struct batadv_hard_iface *hard_iface, const u8 *neigh_addr, struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh) { struct batadv_neigh_node *neigh_node; neigh_node = batadv_neigh_node_get_or_create(orig_node, hard_iface, neigh_addr); if (!neigh_node) goto out; neigh_node->orig_node = orig_neigh; out: return neigh_node; } static int batadv_iv_ogm_iface_enable(struct batadv_hard_iface *hard_iface) { struct batadv_ogm_packet *batadv_ogm_packet; unsigned char *ogm_buff; u32 random_seqno; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); /* randomize initial seqno to avoid collision */ get_random_bytes(&random_seqno, sizeof(random_seqno)); atomic_set(&hard_iface->bat_iv.ogm_seqno, random_seqno); hard_iface->bat_iv.ogm_buff_len = BATADV_OGM_HLEN; ogm_buff = kmalloc(hard_iface->bat_iv.ogm_buff_len, GFP_ATOMIC); if (!ogm_buff) { mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); return -ENOMEM; } hard_iface->bat_iv.ogm_buff = ogm_buff; batadv_ogm_packet = (struct batadv_ogm_packet *)ogm_buff; batadv_ogm_packet->packet_type = BATADV_IV_OGM; batadv_ogm_packet->version = BATADV_COMPAT_VERSION; batadv_ogm_packet->ttl = 2; batadv_ogm_packet->flags = BATADV_NO_FLAGS; batadv_ogm_packet->reserved = 0; batadv_ogm_packet->tq = BATADV_TQ_MAX_VALUE; mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); return 0; } static void batadv_iv_ogm_iface_disable(struct batadv_hard_iface *hard_iface) { mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); kfree(hard_iface->bat_iv.ogm_buff); hard_iface->bat_iv.ogm_buff = NULL; mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } static void batadv_iv_ogm_iface_update_mac(struct batadv_hard_iface *hard_iface) { struct batadv_ogm_packet *batadv_ogm_packet; void *ogm_buff; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); ogm_buff = hard_iface->bat_iv.ogm_buff; if (!ogm_buff) goto unlock; batadv_ogm_packet = ogm_buff; ether_addr_copy(batadv_ogm_packet->orig, hard_iface->net_dev->dev_addr); ether_addr_copy(batadv_ogm_packet->prev_sender, hard_iface->net_dev->dev_addr); unlock: mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } static void batadv_iv_ogm_primary_iface_set(struct batadv_hard_iface *hard_iface) { struct batadv_ogm_packet *batadv_ogm_packet; void *ogm_buff; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); ogm_buff = hard_iface->bat_iv.ogm_buff; if (!ogm_buff) goto unlock; batadv_ogm_packet = ogm_buff; batadv_ogm_packet->ttl = BATADV_TTL; unlock: mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } /* when do we schedule our own ogm to be sent */ static unsigned long batadv_iv_ogm_emit_send_time(const struct batadv_priv *bat_priv) { unsigned int msecs; msecs = atomic_read(&bat_priv->orig_interval) - BATADV_JITTER; msecs += get_random_u32_below(2 * BATADV_JITTER); return jiffies + msecs_to_jiffies(msecs); } /* when do we schedule a ogm packet to be sent */ static unsigned long batadv_iv_ogm_fwd_send_time(void) { return jiffies + msecs_to_jiffies(get_random_u32_below(BATADV_JITTER / 2)); } /* apply hop penalty for a normal link */ static u8 batadv_hop_penalty(u8 tq, const struct batadv_priv *bat_priv) { int hop_penalty = atomic_read(&bat_priv->hop_penalty); int new_tq; new_tq = tq * (BATADV_TQ_MAX_VALUE - hop_penalty); new_tq /= BATADV_TQ_MAX_VALUE; return new_tq; } /** * batadv_iv_ogm_aggr_packet() - checks if there is another OGM attached * @buff_pos: current position in the skb * @packet_len: total length of the skb * @ogm_packet: potential OGM in buffer * * Return: true if there is enough space for another OGM, false otherwise. */ static bool batadv_iv_ogm_aggr_packet(int buff_pos, int packet_len, const struct batadv_ogm_packet *ogm_packet) { int next_buff_pos = 0; /* check if there is enough space for the header */ next_buff_pos += buff_pos + sizeof(*ogm_packet); if (next_buff_pos > packet_len) return false; /* check if there is enough space for the optional TVLV */ next_buff_pos += ntohs(ogm_packet->tvlv_len); return next_buff_pos <= packet_len; } /* send a batman ogm to a given interface */ static void batadv_iv_ogm_send_to_if(struct batadv_forw_packet *forw_packet, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->mesh_iface); const char *fwd_str; u8 packet_num; s16 buff_pos; struct batadv_ogm_packet *batadv_ogm_packet; struct sk_buff *skb; u8 *packet_pos; if (hard_iface->if_status != BATADV_IF_ACTIVE) return; packet_num = 0; buff_pos = 0; packet_pos = forw_packet->skb->data; batadv_ogm_packet = (struct batadv_ogm_packet *)packet_pos; /* adjust all flags and log packets */ while (batadv_iv_ogm_aggr_packet(buff_pos, forw_packet->packet_len, batadv_ogm_packet)) { /* we might have aggregated direct link packets with an * ordinary base packet */ if (test_bit(packet_num, forw_packet->direct_link_flags) && forw_packet->if_incoming == hard_iface) batadv_ogm_packet->flags |= BATADV_DIRECTLINK; else batadv_ogm_packet->flags &= ~BATADV_DIRECTLINK; if (packet_num > 0 || !forw_packet->own) fwd_str = "Forwarding"; else fwd_str = "Sending own"; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "%s %spacket (originator %pM, seqno %u, TQ %d, TTL %d, IDF %s) on interface %s [%pM]\n", fwd_str, (packet_num > 0 ? "aggregated " : ""), batadv_ogm_packet->orig, ntohl(batadv_ogm_packet->seqno), batadv_ogm_packet->tq, batadv_ogm_packet->ttl, str_on_off(batadv_ogm_packet->flags & BATADV_DIRECTLINK), hard_iface->net_dev->name, hard_iface->net_dev->dev_addr); buff_pos += BATADV_OGM_HLEN; buff_pos += ntohs(batadv_ogm_packet->tvlv_len); packet_num++; packet_pos = forw_packet->skb->data + buff_pos; batadv_ogm_packet = (struct batadv_ogm_packet *)packet_pos; } /* create clone because function is called more than once */ skb = skb_clone(forw_packet->skb, GFP_ATOMIC); if (skb) { batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_TX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_TX_BYTES, skb->len + ETH_HLEN); batadv_send_broadcast_skb(skb, hard_iface); } } /* send a batman ogm packet */ static void batadv_iv_ogm_emit(struct batadv_forw_packet *forw_packet) { struct net_device *mesh_iface; if (!forw_packet->if_incoming) { pr_err("Error - can't forward packet: incoming iface not specified\n"); return; } mesh_iface = forw_packet->if_incoming->mesh_iface; if (WARN_ON(!forw_packet->if_outgoing)) return; if (forw_packet->if_outgoing->mesh_iface != mesh_iface) { pr_warn("%s: mesh interface switch for queued OGM\n", __func__); return; } if (forw_packet->if_incoming->if_status != BATADV_IF_ACTIVE) return; /* only for one specific outgoing interface */ batadv_iv_ogm_send_to_if(forw_packet, forw_packet->if_outgoing); } /** * batadv_iv_ogm_can_aggregate() - find out if an OGM can be aggregated on an * existing forward packet * @new_bat_ogm_packet: OGM packet to be aggregated * @bat_priv: the bat priv with all the mesh interface information * @packet_len: (total) length of the OGM * @send_time: timestamp (jiffies) when the packet is to be sent * @directlink: true if this is a direct link packet * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @forw_packet: the forwarded packet which should be checked * * Return: true if new_packet can be aggregated with forw_packet */ static bool batadv_iv_ogm_can_aggregate(const struct batadv_ogm_packet *new_bat_ogm_packet, struct batadv_priv *bat_priv, int packet_len, unsigned long send_time, bool directlink, const struct batadv_hard_iface *if_incoming, const struct batadv_hard_iface *if_outgoing, const struct batadv_forw_packet *forw_packet) { struct batadv_ogm_packet *batadv_ogm_packet; unsigned int aggregated_bytes = forw_packet->packet_len + packet_len; struct batadv_hard_iface *primary_if = NULL; u8 packet_num = forw_packet->num_packets; bool res = false; unsigned long aggregation_end_time; unsigned int max_bytes; batadv_ogm_packet = (struct batadv_ogm_packet *)forw_packet->skb->data; aggregation_end_time = send_time; aggregation_end_time += msecs_to_jiffies(BATADV_MAX_AGGREGATION_MS); max_bytes = min_t(unsigned int, if_outgoing->net_dev->mtu, BATADV_MAX_AGGREGATION_BYTES); /* we can aggregate the current packet to this aggregated packet * if: * * - the send time is within our MAX_AGGREGATION_MS time * - the resulting packet won't be bigger than * MAX_AGGREGATION_BYTES and MTU of the outgoing interface * - the number of packets is lower than MAX_AGGREGATION_PACKETS * otherwise aggregation is not possible */ if (!time_before(send_time, forw_packet->send_time) || !time_after_eq(aggregation_end_time, forw_packet->send_time)) return false; if (aggregated_bytes > max_bytes) return false; if (packet_num >= BATADV_MAX_AGGREGATION_PACKETS) return false; /* packet is not leaving on the same interface. */ if (forw_packet->if_outgoing != if_outgoing) return false; /* check aggregation compatibility * -> direct link packets are broadcasted on * their interface only * -> aggregate packet if the current packet is * a "global" packet as well as the base * packet */ primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) return false; /* packets without direct link flag and high TTL * are flooded through the net */ if (!directlink && !(batadv_ogm_packet->flags & BATADV_DIRECTLINK) && batadv_ogm_packet->ttl != 1 && /* own packets originating non-primary * interfaces leave only that interface */ (!forw_packet->own || forw_packet->if_incoming == primary_if)) { res = true; goto out; } /* if the incoming packet is sent via this one * interface only - we still can aggregate */ if (directlink && new_bat_ogm_packet->ttl == 1 && forw_packet->if_incoming == if_incoming && /* packets from direct neighbors or * own secondary interface packets * (= secondary interface packets in general) */ (batadv_ogm_packet->flags & BATADV_DIRECTLINK || (forw_packet->own && forw_packet->if_incoming != primary_if))) { res = true; goto out; } out: batadv_hardif_put(primary_if); return res; } /** * batadv_iv_ogm_aggregate_new() - create a new aggregated packet and add this * packet to it. * @packet_buff: pointer to the OGM * @packet_len: (total) length of the OGM * @send_time: timestamp (jiffies) when the packet is to be sent * @direct_link: whether this OGM has direct link status * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @own_packet: true if it is a self-generated ogm */ static void batadv_iv_ogm_aggregate_new(const unsigned char *packet_buff, int packet_len, unsigned long send_time, bool direct_link, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, int own_packet) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_forw_packet *forw_packet_aggr; struct sk_buff *skb; unsigned char *skb_buff; unsigned int skb_size; atomic_t *queue_left = own_packet ? NULL : &bat_priv->batman_queue_left; if (atomic_read(&bat_priv->aggregated_ogms)) skb_size = max_t(unsigned int, BATADV_MAX_AGGREGATION_BYTES, packet_len); else skb_size = packet_len; skb_size += ETH_HLEN; skb = netdev_alloc_skb_ip_align(NULL, skb_size); if (!skb) return; forw_packet_aggr = batadv_forw_packet_alloc(if_incoming, if_outgoing, queue_left, bat_priv, skb); if (!forw_packet_aggr) { kfree_skb(skb); return; } forw_packet_aggr->skb->priority = TC_PRIO_CONTROL; skb_reserve(forw_packet_aggr->skb, ETH_HLEN); skb_buff = skb_put(forw_packet_aggr->skb, packet_len); forw_packet_aggr->packet_len = packet_len; memcpy(skb_buff, packet_buff, packet_len); forw_packet_aggr->own = own_packet; bitmap_zero(forw_packet_aggr->direct_link_flags, BATADV_MAX_AGGREGATION_PACKETS); forw_packet_aggr->send_time = send_time; /* save packet direct link flag status */ if (direct_link) set_bit(0, forw_packet_aggr->direct_link_flags); INIT_DELAYED_WORK(&forw_packet_aggr->delayed_work, batadv_iv_send_outstanding_bat_ogm_packet); batadv_forw_packet_ogmv1_queue(bat_priv, forw_packet_aggr, send_time); } /* aggregate a new packet into the existing ogm packet */ static void batadv_iv_ogm_aggregate(struct batadv_forw_packet *forw_packet_aggr, const unsigned char *packet_buff, int packet_len, bool direct_link) { skb_put_data(forw_packet_aggr->skb, packet_buff, packet_len); forw_packet_aggr->packet_len += packet_len; /* save packet direct link flag status */ if (direct_link) set_bit(forw_packet_aggr->num_packets, forw_packet_aggr->direct_link_flags); forw_packet_aggr->num_packets++; } /** * batadv_iv_ogm_queue_add() - queue up an OGM for transmission * @bat_priv: the bat priv with all the mesh interface information * @packet_buff: pointer to the OGM * @packet_len: (total) length of the OGM * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @own_packet: true if it is a self-generated ogm * @send_time: timestamp (jiffies) when the packet is to be sent */ static void batadv_iv_ogm_queue_add(struct batadv_priv *bat_priv, unsigned char *packet_buff, int packet_len, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, int own_packet, unsigned long send_time) { /* _aggr -> pointer to the packet we want to aggregate with * _pos -> pointer to the position in the queue */ struct batadv_forw_packet *forw_packet_aggr = NULL; struct batadv_forw_packet *forw_packet_pos = NULL; struct batadv_ogm_packet *batadv_ogm_packet; bool direct_link; unsigned long max_aggregation_jiffies; batadv_ogm_packet = (struct batadv_ogm_packet *)packet_buff; direct_link = !!(batadv_ogm_packet->flags & BATADV_DIRECTLINK); max_aggregation_jiffies = msecs_to_jiffies(BATADV_MAX_AGGREGATION_MS); /* find position for the packet in the forward queue */ spin_lock_bh(&bat_priv->forw_bat_list_lock); /* own packets are not to be aggregated */ if (atomic_read(&bat_priv->aggregated_ogms) && !own_packet) { hlist_for_each_entry(forw_packet_pos, &bat_priv->forw_bat_list, list) { if (batadv_iv_ogm_can_aggregate(batadv_ogm_packet, bat_priv, packet_len, send_time, direct_link, if_incoming, if_outgoing, forw_packet_pos)) { forw_packet_aggr = forw_packet_pos; break; } } } /* nothing to aggregate with - either aggregation disabled or no * suitable aggregation packet found */ if (!forw_packet_aggr) { /* the following section can run without the lock */ spin_unlock_bh(&bat_priv->forw_bat_list_lock); /* if we could not aggregate this packet with one of the others * we hold it back for a while, so that it might be aggregated * later on */ if (!own_packet && atomic_read(&bat_priv->aggregated_ogms)) send_time += max_aggregation_jiffies; batadv_iv_ogm_aggregate_new(packet_buff, packet_len, send_time, direct_link, if_incoming, if_outgoing, own_packet); } else { batadv_iv_ogm_aggregate(forw_packet_aggr, packet_buff, packet_len, direct_link); spin_unlock_bh(&bat_priv->forw_bat_list_lock); } } static void batadv_iv_ogm_forward(struct batadv_orig_node *orig_node, const struct ethhdr *ethhdr, struct batadv_ogm_packet *batadv_ogm_packet, bool is_single_hop_neigh, bool is_from_best_next_hop, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); u16 tvlv_len; if (batadv_ogm_packet->ttl <= 1) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "ttl exceeded\n"); return; } if (!is_from_best_next_hop) { /* Mark the forwarded packet when it is not coming from our * best next hop. We still need to forward the packet for our * neighbor link quality detection to work in case the packet * originated from a single hop neighbor. Otherwise we can * simply drop the ogm. */ if (is_single_hop_neigh) batadv_ogm_packet->flags |= BATADV_NOT_BEST_NEXT_HOP; else return; } tvlv_len = ntohs(batadv_ogm_packet->tvlv_len); batadv_ogm_packet->ttl--; ether_addr_copy(batadv_ogm_packet->prev_sender, ethhdr->h_source); /* apply hop penalty */ batadv_ogm_packet->tq = batadv_hop_penalty(batadv_ogm_packet->tq, bat_priv); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding packet: tq: %i, ttl: %i\n", batadv_ogm_packet->tq, batadv_ogm_packet->ttl); if (is_single_hop_neigh) batadv_ogm_packet->flags |= BATADV_DIRECTLINK; else batadv_ogm_packet->flags &= ~BATADV_DIRECTLINK; batadv_iv_ogm_queue_add(bat_priv, (unsigned char *)batadv_ogm_packet, BATADV_OGM_HLEN + tvlv_len, if_incoming, if_outgoing, 0, batadv_iv_ogm_fwd_send_time()); } /** * batadv_iv_ogm_slide_own_bcast_window() - bitshift own OGM broadcast windows * for the given interface * @hard_iface: the interface for which the windows have to be shifted */ static void batadv_iv_ogm_slide_own_bcast_window(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->mesh_iface); struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; struct batadv_orig_node *orig_node; struct batadv_orig_ifinfo *orig_ifinfo; unsigned long *word; u32 i; u8 *w; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) { hlist_for_each_entry_rcu(orig_ifinfo, &orig_node->ifinfo_list, list) { if (orig_ifinfo->if_outgoing != hard_iface) continue; spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); word = orig_ifinfo->bat_iv.bcast_own; batadv_bit_get_packet(bat_priv, word, 1, 0); w = &orig_ifinfo->bat_iv.bcast_own_sum; *w = bitmap_weight(word, BATADV_TQ_LOCAL_WINDOW_SIZE); spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); } } rcu_read_unlock(); } } /** * batadv_iv_ogm_schedule_buff() - schedule submission of hardif ogm buffer * @hard_iface: interface whose ogm buffer should be transmitted */ static void batadv_iv_ogm_schedule_buff(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->mesh_iface); unsigned char **ogm_buff = &hard_iface->bat_iv.ogm_buff; struct batadv_ogm_packet *batadv_ogm_packet; struct batadv_hard_iface *primary_if, *tmp_hard_iface; int *ogm_buff_len = &hard_iface->bat_iv.ogm_buff_len; struct list_head *iter; u32 seqno; u16 tvlv_len = 0; unsigned long send_time; lockdep_assert_held(&hard_iface->bat_iv.ogm_buff_mutex); /* interface already disabled by batadv_iv_ogm_iface_disable */ if (!*ogm_buff) return; /* the interface gets activated here to avoid race conditions between * the moment of activating the interface in * hardif_activate_interface() where the originator mac is set and * outdated packets (especially uninitialized mac addresses) in the * packet queue */ if (hard_iface->if_status == BATADV_IF_TO_BE_ACTIVATED) hard_iface->if_status = BATADV_IF_ACTIVE; primary_if = batadv_primary_if_get_selected(bat_priv); if (hard_iface == primary_if) { /* tt changes have to be committed before the tvlv data is * appended as it may alter the tt tvlv container */ batadv_tt_local_commit_changes(bat_priv); tvlv_len = batadv_tvlv_container_ogm_append(bat_priv, ogm_buff, ogm_buff_len, BATADV_OGM_HLEN); } batadv_ogm_packet = (struct batadv_ogm_packet *)(*ogm_buff); batadv_ogm_packet->tvlv_len = htons(tvlv_len); /* change sequence number to network order */ seqno = (u32)atomic_read(&hard_iface->bat_iv.ogm_seqno); batadv_ogm_packet->seqno = htonl(seqno); atomic_inc(&hard_iface->bat_iv.ogm_seqno); batadv_iv_ogm_slide_own_bcast_window(hard_iface); send_time = batadv_iv_ogm_emit_send_time(bat_priv); if (hard_iface != primary_if) { /* OGMs from secondary interfaces are only scheduled on their * respective interfaces. */ batadv_iv_ogm_queue_add(bat_priv, *ogm_buff, *ogm_buff_len, hard_iface, hard_iface, 1, send_time); goto out; } /* OGMs from primary interfaces are scheduled on all * interfaces. */ rcu_read_lock(); netdev_for_each_lower_private_rcu(hard_iface->mesh_iface, tmp_hard_iface, iter) { if (!kref_get_unless_zero(&tmp_hard_iface->refcount)) continue; batadv_iv_ogm_queue_add(bat_priv, *ogm_buff, *ogm_buff_len, hard_iface, tmp_hard_iface, 1, send_time); batadv_hardif_put(tmp_hard_iface); } rcu_read_unlock(); out: batadv_hardif_put(primary_if); } static void batadv_iv_ogm_schedule(struct batadv_hard_iface *hard_iface) { if (hard_iface->if_status == BATADV_IF_NOT_IN_USE || hard_iface->if_status == BATADV_IF_TO_BE_REMOVED) return; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); batadv_iv_ogm_schedule_buff(hard_iface); mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } /** * batadv_iv_orig_ifinfo_sum() - Get bcast_own sum for originator over interface * @orig_node: originator which reproadcasted the OGMs directly * @if_outgoing: interface which transmitted the original OGM and received the * direct rebroadcast * * Return: Number of replied (rebroadcasted) OGMs which were transmitted by * an originator and directly (without intermediate hop) received by a specific * interface */ static u8 batadv_iv_orig_ifinfo_sum(struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; u8 sum; orig_ifinfo = batadv_orig_ifinfo_get(orig_node, if_outgoing); if (!orig_ifinfo) return 0; spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); sum = orig_ifinfo->bat_iv.bcast_own_sum; spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); batadv_orig_ifinfo_put(orig_ifinfo); return sum; } /** * batadv_iv_ogm_orig_update() - use OGM to update corresponding data in an * originator * @bat_priv: the bat priv with all the mesh interface information * @orig_node: the orig node who originally emitted the ogm packet * @orig_ifinfo: ifinfo for the outgoing interface of the orig_node * @ethhdr: Ethernet header of the OGM * @batadv_ogm_packet: the ogm packet * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @dup_status: the duplicate status of this ogm packet. */ static void batadv_iv_ogm_orig_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_orig_ifinfo *orig_ifinfo, const struct ethhdr *ethhdr, const struct batadv_ogm_packet *batadv_ogm_packet, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, enum batadv_dup_status dup_status) { struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL; struct batadv_neigh_node *neigh_node = NULL; struct batadv_neigh_node *tmp_neigh_node = NULL; struct batadv_neigh_node *router = NULL; u8 sum_orig, sum_neigh; u8 *neigh_addr; u8 tq_avg; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "%s(): Searching and updating originator entry of received packet\n", __func__); rcu_read_lock(); hlist_for_each_entry_rcu(tmp_neigh_node, &orig_node->neigh_list, list) { neigh_addr = tmp_neigh_node->addr; if (batadv_compare_eth(neigh_addr, ethhdr->h_source) && tmp_neigh_node->if_incoming == if_incoming && kref_get_unless_zero(&tmp_neigh_node->refcount)) { if (WARN(neigh_node, "too many matching neigh_nodes")) batadv_neigh_node_put(neigh_node); neigh_node = tmp_neigh_node; continue; } if (dup_status != BATADV_NO_DUP) continue; /* only update the entry for this outgoing interface */ neigh_ifinfo = batadv_neigh_ifinfo_get(tmp_neigh_node, if_outgoing); if (!neigh_ifinfo) continue; spin_lock_bh(&tmp_neigh_node->ifinfo_lock); batadv_ring_buffer_set(neigh_ifinfo->bat_iv.tq_recv, &neigh_ifinfo->bat_iv.tq_index, 0); tq_avg = batadv_ring_buffer_avg(neigh_ifinfo->bat_iv.tq_recv); neigh_ifinfo->bat_iv.tq_avg = tq_avg; spin_unlock_bh(&tmp_neigh_node->ifinfo_lock); batadv_neigh_ifinfo_put(neigh_ifinfo); neigh_ifinfo = NULL; } if (!neigh_node) { struct batadv_orig_node *orig_tmp; orig_tmp = batadv_iv_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_tmp) goto unlock; neigh_node = batadv_iv_ogm_neigh_new(if_incoming, ethhdr->h_source, orig_node, orig_tmp); batadv_orig_node_put(orig_tmp); if (!neigh_node) goto unlock; } else { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Updating existing last-hop neighbor of originator\n"); } rcu_read_unlock(); neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; neigh_node->last_seen = jiffies; spin_lock_bh(&neigh_node->ifinfo_lock); batadv_ring_buffer_set(neigh_ifinfo->bat_iv.tq_recv, &neigh_ifinfo->bat_iv.tq_index, batadv_ogm_packet->tq); tq_avg = batadv_ring_buffer_avg(neigh_ifinfo->bat_iv.tq_recv); neigh_ifinfo->bat_iv.tq_avg = tq_avg; spin_unlock_bh(&neigh_node->ifinfo_lock); if (dup_status == BATADV_NO_DUP) { orig_ifinfo->last_ttl = batadv_ogm_packet->ttl; neigh_ifinfo->last_ttl = batadv_ogm_packet->ttl; } /* if this neighbor already is our next hop there is nothing * to change */ router = batadv_orig_router_get(orig_node, if_outgoing); if (router == neigh_node) goto out; if (router) { router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); if (!router_ifinfo) goto out; /* if this neighbor does not offer a better TQ we won't * consider it */ if (router_ifinfo->bat_iv.tq_avg > neigh_ifinfo->bat_iv.tq_avg) goto out; } /* if the TQ is the same and the link not more symmetric we * won't consider it either */ if (router_ifinfo && neigh_ifinfo->bat_iv.tq_avg == router_ifinfo->bat_iv.tq_avg) { sum_orig = batadv_iv_orig_ifinfo_sum(router->orig_node, router->if_incoming); sum_neigh = batadv_iv_orig_ifinfo_sum(neigh_node->orig_node, neigh_node->if_incoming); if (sum_orig >= sum_neigh) goto out; } batadv_update_route(bat_priv, orig_node, if_outgoing, neigh_node); goto out; unlock: rcu_read_unlock(); out: batadv_neigh_node_put(neigh_node); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(neigh_ifinfo); batadv_neigh_ifinfo_put(router_ifinfo); } /** * batadv_iv_ogm_calc_tq() - calculate tq for current received ogm packet * @orig_node: the orig node who originally emitted the ogm packet * @orig_neigh_node: the orig node struct of the neighbor who sent the packet * @batadv_ogm_packet: the ogm packet * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * * Return: true if the link can be considered bidirectional, false otherwise */ static bool batadv_iv_ogm_calc_tq(struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, struct batadv_ogm_packet *batadv_ogm_packet, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_neigh_node *neigh_node = NULL, *tmp_neigh_node; struct batadv_neigh_ifinfo *neigh_ifinfo; u8 total_count; u8 orig_eq_count, neigh_rq_count, neigh_rq_inv, tq_own; unsigned int tq_iface_hop_penalty = BATADV_TQ_MAX_VALUE; unsigned int neigh_rq_inv_cube, neigh_rq_max_cube; unsigned int tq_asym_penalty, inv_asym_penalty; unsigned int combined_tq; bool ret = false; /* find corresponding one hop neighbor */ rcu_read_lock(); hlist_for_each_entry_rcu(tmp_neigh_node, &orig_neigh_node->neigh_list, list) { if (!batadv_compare_eth(tmp_neigh_node->addr, orig_neigh_node->orig)) continue; if (tmp_neigh_node->if_incoming != if_incoming) continue; if (!kref_get_unless_zero(&tmp_neigh_node->refcount)) continue; neigh_node = tmp_neigh_node; break; } rcu_read_unlock(); if (!neigh_node) neigh_node = batadv_iv_ogm_neigh_new(if_incoming, orig_neigh_node->orig, orig_neigh_node, orig_neigh_node); if (!neigh_node) goto out; /* if orig_node is direct neighbor update neigh_node last_seen */ if (orig_node == orig_neigh_node) neigh_node->last_seen = jiffies; orig_node->last_seen = jiffies; /* find packet count of corresponding one hop neighbor */ orig_eq_count = batadv_iv_orig_ifinfo_sum(orig_neigh_node, if_incoming); neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (neigh_ifinfo) { neigh_rq_count = neigh_ifinfo->bat_iv.real_packet_count; batadv_neigh_ifinfo_put(neigh_ifinfo); } else { neigh_rq_count = 0; } /* pay attention to not get a value bigger than 100 % */ if (orig_eq_count > neigh_rq_count) total_count = neigh_rq_count; else total_count = orig_eq_count; /* if we have too few packets (too less data) we set tq_own to zero * if we receive too few packets it is not considered bidirectional */ if (total_count < BATADV_TQ_LOCAL_BIDRECT_SEND_MINIMUM || neigh_rq_count < BATADV_TQ_LOCAL_BIDRECT_RECV_MINIMUM) tq_own = 0; else /* neigh_node->real_packet_count is never zero as we * only purge old information when getting new * information */ tq_own = (BATADV_TQ_MAX_VALUE * total_count) / neigh_rq_count; /* 1 - ((1-x) ** 3), normalized to TQ_MAX_VALUE this does * affect the nearly-symmetric links only a little, but * punishes asymmetric links more. This will give a value * between 0 and TQ_MAX_VALUE */ neigh_rq_inv = BATADV_TQ_LOCAL_WINDOW_SIZE - neigh_rq_count; neigh_rq_inv_cube = neigh_rq_inv * neigh_rq_inv * neigh_rq_inv; neigh_rq_max_cube = BATADV_TQ_LOCAL_WINDOW_SIZE * BATADV_TQ_LOCAL_WINDOW_SIZE * BATADV_TQ_LOCAL_WINDOW_SIZE; inv_asym_penalty = BATADV_TQ_MAX_VALUE * neigh_rq_inv_cube; inv_asym_penalty /= neigh_rq_max_cube; tq_asym_penalty = BATADV_TQ_MAX_VALUE - inv_asym_penalty; tq_iface_hop_penalty -= atomic_read(&if_incoming->hop_penalty); /* penalize if the OGM is forwarded on the same interface. WiFi * interfaces and other half duplex devices suffer from throughput * drops as they can't send and receive at the same time. */ if (if_outgoing && if_incoming == if_outgoing && batadv_is_wifi_hardif(if_outgoing)) tq_iface_hop_penalty = batadv_hop_penalty(tq_iface_hop_penalty, bat_priv); combined_tq = batadv_ogm_packet->tq * tq_own * tq_asym_penalty * tq_iface_hop_penalty; combined_tq /= BATADV_TQ_MAX_VALUE * BATADV_TQ_MAX_VALUE * BATADV_TQ_MAX_VALUE; batadv_ogm_packet->tq = combined_tq; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "bidirectional: orig = %pM neigh = %pM => own_bcast = %2i, real recv = %2i, local tq: %3i, asym_penalty: %3i, iface_hop_penalty: %3i, total tq: %3i, if_incoming = %s, if_outgoing = %s\n", orig_node->orig, orig_neigh_node->orig, total_count, neigh_rq_count, tq_own, tq_asym_penalty, tq_iface_hop_penalty, batadv_ogm_packet->tq, if_incoming->net_dev->name, if_outgoing ? if_outgoing->net_dev->name : "DEFAULT"); /* if link has the minimum required transmission quality * consider it bidirectional */ if (batadv_ogm_packet->tq >= BATADV_TQ_TOTAL_BIDRECT_LIMIT) ret = true; out: batadv_neigh_node_put(neigh_node); return ret; } /** * batadv_iv_ogm_update_seqnos() - process a batman packet for all interfaces, * adjust the sequence number and find out whether it is a duplicate * @ethhdr: ethernet header of the packet * @batadv_ogm_packet: OGM packet to be considered * @if_incoming: interface on which the OGM packet was received * @if_outgoing: interface for which the retransmission should be considered * * Return: duplicate status as enum batadv_dup_status */ static enum batadv_dup_status batadv_iv_ogm_update_seqnos(const struct ethhdr *ethhdr, const struct batadv_ogm_packet *batadv_ogm_packet, const struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_orig_node *orig_node; struct batadv_orig_ifinfo *orig_ifinfo = NULL; struct batadv_neigh_node *neigh_node; struct batadv_neigh_ifinfo *neigh_ifinfo; bool is_dup; s32 seq_diff; bool need_update = false; int set_mark; enum batadv_dup_status ret = BATADV_NO_DUP; u32 seqno = ntohl(batadv_ogm_packet->seqno); u8 *neigh_addr; u8 packet_count; unsigned long *bitmap; orig_node = batadv_iv_ogm_orig_get(bat_priv, batadv_ogm_packet->orig); if (!orig_node) return BATADV_NO_DUP; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (WARN_ON(!orig_ifinfo)) { batadv_orig_node_put(orig_node); return 0; } spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); seq_diff = seqno - orig_ifinfo->last_real_seqno; /* signalize caller that the packet is to be dropped. */ if (!hlist_empty(&orig_node->neigh_list) && batadv_window_protected(bat_priv, seq_diff, BATADV_TQ_LOCAL_WINDOW_SIZE, &orig_ifinfo->batman_seqno_reset, NULL)) { ret = BATADV_PROTECTED; goto out; } rcu_read_lock(); hlist_for_each_entry_rcu(neigh_node, &orig_node->neigh_list, list) { neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) continue; neigh_addr = neigh_node->addr; is_dup = batadv_test_bit(neigh_ifinfo->bat_iv.real_bits, orig_ifinfo->last_real_seqno, seqno); if (batadv_compare_eth(neigh_addr, ethhdr->h_source) && neigh_node->if_incoming == if_incoming) { set_mark = 1; if (is_dup) ret = BATADV_NEIGH_DUP; } else { set_mark = 0; if (is_dup && ret != BATADV_NEIGH_DUP) ret = BATADV_ORIG_DUP; } /* if the window moved, set the update flag. */ bitmap = neigh_ifinfo->bat_iv.real_bits; need_update |= batadv_bit_get_packet(bat_priv, bitmap, seq_diff, set_mark); packet_count = bitmap_weight(bitmap, BATADV_TQ_LOCAL_WINDOW_SIZE); neigh_ifinfo->bat_iv.real_packet_count = packet_count; batadv_neigh_ifinfo_put(neigh_ifinfo); } rcu_read_unlock(); if (need_update) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "%s updating last_seqno: old %u, new %u\n", if_outgoing ? if_outgoing->net_dev->name : "DEFAULT", orig_ifinfo->last_real_seqno, seqno); orig_ifinfo->last_real_seqno = seqno; } out: spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); batadv_orig_node_put(orig_node); batadv_orig_ifinfo_put(orig_ifinfo); return ret; } /** * batadv_iv_ogm_process_per_outif() - process a batman iv OGM for an outgoing * interface * @skb: the skb containing the OGM * @ogm_offset: offset from skb->data to start of ogm header * @orig_node: the (cached) orig node for the originator of this OGM * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered */ static void batadv_iv_ogm_process_per_outif(const struct sk_buff *skb, int ogm_offset, struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_hardif_neigh_node *hardif_neigh = NULL; struct batadv_neigh_node *router = NULL; struct batadv_neigh_node *router_router = NULL; struct batadv_orig_node *orig_neigh_node; struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_node *orig_neigh_router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL; struct batadv_ogm_packet *ogm_packet; enum batadv_dup_status dup_status; bool is_from_best_next_hop = false; bool is_single_hop_neigh = false; bool sameseq, similar_ttl; struct sk_buff *skb_priv; struct ethhdr *ethhdr; u8 *prev_sender; bool is_bidirect; /* create a private copy of the skb, as some functions change tq value * and/or flags. */ skb_priv = skb_copy(skb, GFP_ATOMIC); if (!skb_priv) return; ethhdr = eth_hdr(skb_priv); ogm_packet = (struct batadv_ogm_packet *)(skb_priv->data + ogm_offset); dup_status = batadv_iv_ogm_update_seqnos(ethhdr, ogm_packet, if_incoming, if_outgoing); if (batadv_compare_eth(ethhdr->h_source, ogm_packet->orig)) is_single_hop_neigh = true; if (dup_status == BATADV_PROTECTED) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: packet within seqno protection time (sender: %pM)\n", ethhdr->h_source); goto out; } if (ogm_packet->tq == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet with tq equal 0\n"); goto out; } if (is_single_hop_neigh) { hardif_neigh = batadv_hardif_neigh_get(if_incoming, ethhdr->h_source); if (hardif_neigh) hardif_neigh->last_seen = jiffies; } router = batadv_orig_router_get(orig_node, if_outgoing); if (router) { router_router = batadv_orig_router_get(router->orig_node, if_outgoing); router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); } if ((router_ifinfo && router_ifinfo->bat_iv.tq_avg != 0) && (batadv_compare_eth(router->addr, ethhdr->h_source))) is_from_best_next_hop = true; prev_sender = ogm_packet->prev_sender; /* avoid temporary routing loops */ if (router && router_router && (batadv_compare_eth(router->addr, prev_sender)) && !(batadv_compare_eth(ogm_packet->orig, prev_sender)) && (batadv_compare_eth(router->addr, router_router->addr))) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: ignoring all rebroadcast packets that may make me loop (sender: %pM)\n", ethhdr->h_source); goto out; } if (if_outgoing == BATADV_IF_DEFAULT) batadv_tvlv_ogm_receive(bat_priv, ogm_packet, orig_node); /* if sender is a direct neighbor the sender mac equals * originator mac */ if (is_single_hop_neigh) orig_neigh_node = orig_node; else orig_neigh_node = batadv_iv_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) goto out; /* Update nc_nodes of the originator */ batadv_nc_update_nc_node(bat_priv, orig_node, orig_neigh_node, ogm_packet, is_single_hop_neigh); orig_neigh_router = batadv_orig_router_get(orig_neigh_node, if_outgoing); /* drop packet if sender is not a direct neighbor and if we * don't route towards it */ if (!is_single_hop_neigh && !orig_neigh_router) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out_neigh; } is_bidirect = batadv_iv_ogm_calc_tq(orig_node, orig_neigh_node, ogm_packet, if_incoming, if_outgoing); /* update ranking if it is not a duplicate or has the same * seqno and similar ttl as the non-duplicate */ orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out_neigh; sameseq = orig_ifinfo->last_real_seqno == ntohl(ogm_packet->seqno); similar_ttl = (orig_ifinfo->last_ttl - 3) <= ogm_packet->ttl; if (is_bidirect && (dup_status == BATADV_NO_DUP || (sameseq && similar_ttl))) { batadv_iv_ogm_orig_update(bat_priv, orig_node, orig_ifinfo, ethhdr, ogm_packet, if_incoming, if_outgoing, dup_status); } batadv_orig_ifinfo_put(orig_ifinfo); /* only forward for specific interface, not for the default one. */ if (if_outgoing == BATADV_IF_DEFAULT) goto out_neigh; /* is single hop (direct) neighbor */ if (is_single_hop_neigh) { /* OGMs from secondary interfaces should only scheduled once * per interface where it has been received, not multiple times */ if (ogm_packet->ttl <= 2 && if_incoming != if_outgoing) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM from secondary interface and wrong outgoing interface\n"); goto out_neigh; } /* mark direct link on incoming interface */ batadv_iv_ogm_forward(orig_node, ethhdr, ogm_packet, is_single_hop_neigh, is_from_best_next_hop, if_incoming, if_outgoing); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding packet: rebroadcast neighbor packet with direct link flag\n"); goto out_neigh; } /* multihop originator */ if (!is_bidirect) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: not received via bidirectional link\n"); goto out_neigh; } if (dup_status == BATADV_NEIGH_DUP) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: duplicate packet received\n"); goto out_neigh; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding packet: rebroadcast originator packet\n"); batadv_iv_ogm_forward(orig_node, ethhdr, ogm_packet, is_single_hop_neigh, is_from_best_next_hop, if_incoming, if_outgoing); out_neigh: if (orig_neigh_node && !is_single_hop_neigh) batadv_orig_node_put(orig_neigh_node); out: batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_node_put(router); batadv_neigh_node_put(router_router); batadv_neigh_node_put(orig_neigh_router); batadv_hardif_neigh_put(hardif_neigh); consume_skb(skb_priv); } /** * batadv_iv_ogm_process_reply() - Check OGM for direct reply and process it * @ogm_packet: rebroadcast OGM packet to process * @if_incoming: the interface where this packet was received * @orig_node: originator which reproadcasted the OGMs * @if_incoming_seqno: OGM sequence number when rebroadcast was received */ static void batadv_iv_ogm_process_reply(struct batadv_ogm_packet *ogm_packet, struct batadv_hard_iface *if_incoming, struct batadv_orig_node *orig_node, u32 if_incoming_seqno) { struct batadv_orig_ifinfo *orig_ifinfo; s32 bit_pos; u8 *weight; /* neighbor has to indicate direct link and it has to * come via the corresponding interface */ if (!(ogm_packet->flags & BATADV_DIRECTLINK)) return; if (!batadv_compare_eth(if_incoming->net_dev->dev_addr, ogm_packet->orig)) return; orig_ifinfo = batadv_orig_ifinfo_get(orig_node, if_incoming); if (!orig_ifinfo) return; /* save packet seqno for bidirectional check */ spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); bit_pos = if_incoming_seqno - 2; bit_pos -= ntohl(ogm_packet->seqno); batadv_set_bit(orig_ifinfo->bat_iv.bcast_own, bit_pos); weight = &orig_ifinfo->bat_iv.bcast_own_sum; *weight = bitmap_weight(orig_ifinfo->bat_iv.bcast_own, BATADV_TQ_LOCAL_WINDOW_SIZE); spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); batadv_orig_ifinfo_put(orig_ifinfo); } /** * batadv_iv_ogm_process() - process an incoming batman iv OGM * @skb: the skb containing the OGM * @ogm_offset: offset to the OGM which should be processed (for aggregates) * @if_incoming: the interface where this packet was received */ static void batadv_iv_ogm_process(const struct sk_buff *skb, int ogm_offset, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_orig_node *orig_neigh_node, *orig_node; struct batadv_hard_iface *hard_iface; struct batadv_ogm_packet *ogm_packet; u32 if_incoming_seqno; bool has_directlink_flag; struct ethhdr *ethhdr; bool is_my_oldorig = false; bool is_my_addr = false; bool is_my_orig = false; struct list_head *iter; ogm_packet = (struct batadv_ogm_packet *)(skb->data + ogm_offset); ethhdr = eth_hdr(skb); /* Silently drop when the batman packet is actually not a * correct packet. * * This might happen if a packet is padded (e.g. Ethernet has a * minimum frame length of 64 byte) and the aggregation interprets * it as an additional length. * * TODO: A more sane solution would be to have a bit in the * batadv_ogm_packet to detect whether the packet is the last * packet in an aggregation. Here we expect that the padding * is always zero (or not 0x01) */ if (ogm_packet->packet_type != BATADV_IV_OGM) return; /* could be changed by schedule_own_packet() */ if_incoming_seqno = atomic_read(&if_incoming->bat_iv.ogm_seqno); if (ogm_packet->flags & BATADV_DIRECTLINK) has_directlink_flag = true; else has_directlink_flag = false; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Received BATMAN packet via NB: %pM, IF: %s [%pM] (from OG: %pM, via prev OG: %pM, seqno %u, tq %d, TTL %d, V %d, IDF %d)\n", ethhdr->h_source, if_incoming->net_dev->name, if_incoming->net_dev->dev_addr, ogm_packet->orig, ogm_packet->prev_sender, ntohl(ogm_packet->seqno), ogm_packet->tq, ogm_packet->ttl, ogm_packet->version, has_directlink_flag); rcu_read_lock(); netdev_for_each_lower_private_rcu(if_incoming->mesh_iface, hard_iface, iter) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (batadv_compare_eth(ethhdr->h_source, hard_iface->net_dev->dev_addr)) is_my_addr = true; if (batadv_compare_eth(ogm_packet->orig, hard_iface->net_dev->dev_addr)) is_my_orig = true; if (batadv_compare_eth(ogm_packet->prev_sender, hard_iface->net_dev->dev_addr)) is_my_oldorig = true; } rcu_read_unlock(); if (is_my_addr) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: received my own broadcast (sender: %pM)\n", ethhdr->h_source); return; } if (is_my_orig) { orig_neigh_node = batadv_iv_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) return; batadv_iv_ogm_process_reply(ogm_packet, if_incoming, orig_neigh_node, if_incoming_seqno); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet from myself (via neighbor)\n"); batadv_orig_node_put(orig_neigh_node); return; } if (is_my_oldorig) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: ignoring all rebroadcast echos (sender: %pM)\n", ethhdr->h_source); return; } if (ogm_packet->flags & BATADV_NOT_BEST_NEXT_HOP) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: ignoring all packets not forwarded from the best next hop (sender: %pM)\n", ethhdr->h_source); return; } orig_node = batadv_iv_ogm_orig_get(bat_priv, ogm_packet->orig); if (!orig_node) return; batadv_iv_ogm_process_per_outif(skb, ogm_offset, orig_node, if_incoming, BATADV_IF_DEFAULT); rcu_read_lock(); netdev_for_each_lower_private_rcu(bat_priv->mesh_iface, hard_iface, iter) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; batadv_iv_ogm_process_per_outif(skb, ogm_offset, orig_node, if_incoming, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); batadv_orig_node_put(orig_node); } static void batadv_iv_send_outstanding_bat_ogm_packet(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_forw_packet *forw_packet; struct batadv_priv *bat_priv; bool dropped = false; delayed_work = to_delayed_work(work); forw_packet = container_of(delayed_work, struct batadv_forw_packet, delayed_work); bat_priv = netdev_priv(forw_packet->if_incoming->mesh_iface); if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_DEACTIVATING) { dropped = true; goto out; } batadv_iv_ogm_emit(forw_packet); /* we have to have at least one packet in the queue to determine the * queues wake up time unless we are shutting down. * * only re-schedule if this is the "original" copy, e.g. the OGM of the * primary interface should only be rescheduled once per period, but * this function will be called for the forw_packet instances of the * other secondary interfaces as well. */ if (forw_packet->own && forw_packet->if_incoming == forw_packet->if_outgoing) batadv_iv_ogm_schedule(forw_packet->if_incoming); out: /* do we get something for free()? */ if (batadv_forw_packet_steal(forw_packet, &bat_priv->forw_bat_list_lock)) batadv_forw_packet_free(forw_packet, dropped); } static int batadv_iv_ogm_receive(struct sk_buff *skb, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->mesh_iface); struct batadv_ogm_packet *ogm_packet; u8 *packet_pos; int ogm_offset; bool res; int ret = NET_RX_DROP; res = batadv_check_management_packet(skb, if_incoming, BATADV_OGM_HLEN); if (!res) goto free_skb; /* did we receive a B.A.T.M.A.N. IV OGM packet on an interface * that does not have B.A.T.M.A.N. IV enabled ? */ if (bat_priv->algo_ops->iface.enable != batadv_iv_ogm_iface_enable) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_RX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_RX_BYTES, skb->len + ETH_HLEN); ogm_offset = 0; ogm_packet = (struct batadv_ogm_packet *)skb->data; /* unpack the aggregated packets and process them one by one */ while (batadv_iv_ogm_aggr_packet(ogm_offset, skb_headlen(skb), ogm_packet)) { batadv_iv_ogm_process(skb, ogm_offset, if_incoming); ogm_offset += BATADV_OGM_HLEN; ogm_offset += ntohs(ogm_packet->tvlv_len); packet_pos = skb->data + ogm_offset; ogm_packet = (struct batadv_ogm_packet *)packet_pos; } ret = NET_RX_SUCCESS; free_skb: if (ret == NET_RX_SUCCESS) consume_skb(skb); else kfree_skb(skb); return ret; } /** * batadv_iv_ogm_neigh_get_tq_avg() - Get the TQ average for a neighbour on a * given outgoing interface. * @neigh_node: Neighbour of interest * @if_outgoing: Outgoing interface of interest * @tq_avg: Pointer of where to store the TQ average * * Return: False if no average TQ available, otherwise true. */ static bool batadv_iv_ogm_neigh_get_tq_avg(struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_outgoing, u8 *tq_avg) { struct batadv_neigh_ifinfo *n_ifinfo; n_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); if (!n_ifinfo) return false; *tq_avg = n_ifinfo->bat_iv.tq_avg; batadv_neigh_ifinfo_put(n_ifinfo); return true; } /** * batadv_iv_ogm_orig_dump_subentry() - Dump an originator subentry into a * message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the mesh interface information * @if_outgoing: Limit dump to entries with this outgoing interface * @orig_node: Originator to dump * @neigh_node: Single hops neighbour * @best: Is the best originator * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_orig_dump_subentry(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, bool best) { void *hdr; u8 tq_avg; unsigned int last_seen_msecs; last_seen_msecs = jiffies_to_msecs(jiffies - orig_node->last_seen); if (!batadv_iv_ogm_neigh_get_tq_avg(neigh_node, if_outgoing, &tq_avg)) return 0; if (if_outgoing != BATADV_IF_DEFAULT && if_outgoing != neigh_node->if_incoming) return 0; hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_ORIGINATORS); if (!hdr) return -ENOBUFS; if (nla_put(msg, BATADV_ATTR_ORIG_ADDRESS, ETH_ALEN, orig_node->orig) || nla_put(msg, BATADV_ATTR_NEIGH_ADDRESS, ETH_ALEN, neigh_node->addr) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, neigh_node->if_incoming->net_dev->name) || nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, neigh_node->if_incoming->net_dev->ifindex) || nla_put_u8(msg, BATADV_ATTR_TQ, tq_avg) || nla_put_u32(msg, BATADV_ATTR_LAST_SEEN_MSECS, last_seen_msecs)) goto nla_put_failure; if (best && nla_put_flag(msg, BATADV_ATTR_FLAG_BEST)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_iv_ogm_orig_dump_entry() - Dump an originator entry into a message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the mesh interface information * @if_outgoing: Limit dump to entries with this outgoing interface * @orig_node: Originator to dump * @sub_s: Number of sub entries to skip * * This function assumes the caller holds rcu_read_lock(). * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_orig_dump_entry(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing, struct batadv_orig_node *orig_node, int *sub_s) { struct batadv_neigh_node *neigh_node_best; struct batadv_neigh_node *neigh_node; int sub = 0; bool best; u8 tq_avg_best; neigh_node_best = batadv_orig_router_get(orig_node, if_outgoing); if (!neigh_node_best) goto out; if (!batadv_iv_ogm_neigh_get_tq_avg(neigh_node_best, if_outgoing, &tq_avg_best)) goto out; if (tq_avg_best == 0) goto out; hlist_for_each_entry_rcu(neigh_node, &orig_node->neigh_list, list) { if (sub++ < *sub_s) continue; best = (neigh_node == neigh_node_best); if (batadv_iv_ogm_orig_dump_subentry(msg, portid, seq, bat_priv, if_outgoing, orig_node, neigh_node, best)) { batadv_neigh_node_put(neigh_node_best); *sub_s = sub - 1; return -EMSGSIZE; } } out: batadv_neigh_node_put(neigh_node_best); *sub_s = 0; return 0; } /** * batadv_iv_ogm_orig_dump_bucket() - Dump an originator bucket into a * message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the mesh interface information * @if_outgoing: Limit dump to entries with this outgoing interface * @head: Bucket to be dumped * @idx_s: Number of entries to be skipped * @sub: Number of sub entries to be skipped * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_orig_dump_bucket(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing, struct hlist_head *head, int *idx_s, int *sub) { struct batadv_orig_node *orig_node; int idx = 0; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) { if (idx++ < *idx_s) continue; if (batadv_iv_ogm_orig_dump_entry(msg, portid, seq, bat_priv, if_outgoing, orig_node, sub)) { rcu_read_unlock(); *idx_s = idx - 1; return -EMSGSIZE; } } rcu_read_unlock(); *idx_s = 0; *sub = 0; return 0; } /** * batadv_iv_ogm_orig_dump() - Dump the originators into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * @bat_priv: The bat priv with all the mesh interface information * @if_outgoing: Limit dump to entries with this outgoing interface */ static void batadv_iv_ogm_orig_dump(struct sk_buff *msg, struct netlink_callback *cb, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; int bucket = cb->args[0]; int idx = cb->args[1]; int sub = cb->args[2]; int portid = NETLINK_CB(cb->skb).portid; while (bucket < hash->size) { head = &hash->table[bucket]; if (batadv_iv_ogm_orig_dump_bucket(msg, portid, cb->nlh->nlmsg_seq, bat_priv, if_outgoing, head, &idx, &sub)) break; bucket++; } cb->args[0] = bucket; cb->args[1] = idx; cb->args[2] = sub; } /** * batadv_iv_ogm_neigh_diff() - calculate tq difference of two neighbors * @neigh1: the first neighbor object of the comparison * @if_outgoing1: outgoing interface for the first neighbor * @neigh2: the second neighbor object of the comparison * @if_outgoing2: outgoing interface for the second neighbor * @diff: pointer to integer receiving the calculated difference * * The content of *@diff is only valid when this function returns true. * It is less, equal to or greater than 0 if the metric via neigh1 is lower, * the same as or higher than the metric via neigh2 * * Return: true when the difference could be calculated, false otherwise */ static bool batadv_iv_ogm_neigh_diff(struct batadv_neigh_node *neigh1, struct batadv_hard_iface *if_outgoing1, struct batadv_neigh_node *neigh2, struct batadv_hard_iface *if_outgoing2, int *diff) { struct batadv_neigh_ifinfo *neigh1_ifinfo, *neigh2_ifinfo; u8 tq1, tq2; bool ret = true; neigh1_ifinfo = batadv_neigh_ifinfo_get(neigh1, if_outgoing1); neigh2_ifinfo = batadv_neigh_ifinfo_get(neigh2, if_outgoing2); if (!neigh1_ifinfo || !neigh2_ifinfo) { ret = false; goto out; } tq1 = neigh1_ifinfo->bat_iv.tq_avg; tq2 = neigh2_ifinfo->bat_iv.tq_avg; *diff = (int)tq1 - (int)tq2; out: batadv_neigh_ifinfo_put(neigh1_ifinfo); batadv_neigh_ifinfo_put(neigh2_ifinfo); return ret; } /** * batadv_iv_ogm_neigh_dump_neigh() - Dump a neighbour into a netlink message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @hardif_neigh: Neighbour to be dumped * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_neigh_dump_neigh(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_hardif_neigh_node *hardif_neigh) { void *hdr; unsigned int last_seen_msecs; last_seen_msecs = jiffies_to_msecs(jiffies - hardif_neigh->last_seen); hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_NEIGHBORS); if (!hdr) return -ENOBUFS; if (nla_put(msg, BATADV_ATTR_NEIGH_ADDRESS, ETH_ALEN, hardif_neigh->addr) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, hardif_neigh->if_incoming->net_dev->name) || nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, hardif_neigh->if_incoming->net_dev->ifindex) || nla_put_u32(msg, BATADV_ATTR_LAST_SEEN_MSECS, last_seen_msecs)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_iv_ogm_neigh_dump_hardif() - Dump the neighbours of a hard interface * into a message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the mesh interface information * @hard_iface: Hard interface to dump the neighbours for * @idx_s: Number of entries to skip * * This function assumes the caller holds rcu_read_lock(). * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_neigh_dump_hardif(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *hard_iface, int *idx_s) { struct batadv_hardif_neigh_node *hardif_neigh; int idx = 0; hlist_for_each_entry_rcu(hardif_neigh, &hard_iface->neigh_list, list) { if (idx++ < *idx_s) continue; if (batadv_iv_ogm_neigh_dump_neigh(msg, portid, seq, hardif_neigh)) { *idx_s = idx - 1; return -EMSGSIZE; } } *idx_s = 0; return 0; } /** * batadv_iv_ogm_neigh_dump() - Dump the neighbours into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * @bat_priv: The bat priv with all the mesh interface information * @single_hardif: Limit dump to this hard interface */ static void batadv_iv_ogm_neigh_dump(struct sk_buff *msg, struct netlink_callback *cb, struct batadv_priv *bat_priv, struct batadv_hard_iface *single_hardif) { struct batadv_hard_iface *hard_iface; struct list_head *iter; int i_hardif = 0; int i_hardif_s = cb->args[0]; int idx = cb->args[1]; int portid = NETLINK_CB(cb->skb).portid; rcu_read_lock(); if (single_hardif) { if (i_hardif_s == 0) { if (batadv_iv_ogm_neigh_dump_hardif(msg, portid, cb->nlh->nlmsg_seq, bat_priv, single_hardif, &idx) == 0) i_hardif++; } } else { netdev_for_each_lower_private_rcu(bat_priv->mesh_iface, hard_iface, iter) { if (i_hardif++ < i_hardif_s) continue; if (batadv_iv_ogm_neigh_dump_hardif(msg, portid, cb->nlh->nlmsg_seq, bat_priv, hard_iface, &idx)) { i_hardif--; break; } } } rcu_read_unlock(); cb->args[0] = i_hardif; cb->args[1] = idx; } /** * batadv_iv_ogm_neigh_cmp() - compare the metrics of two neighbors * @neigh1: the first neighbor object of the comparison * @if_outgoing1: outgoing interface for the first neighbor * @neigh2: the second neighbor object of the comparison * @if_outgoing2: outgoing interface for the second neighbor * * Return: a value less, equal to or greater than 0 if the metric via neigh1 is * lower, the same as or higher than the metric via neigh2 */ static int batadv_iv_ogm_neigh_cmp(struct batadv_neigh_node *neigh1, struct batadv_hard_iface *if_outgoing1, struct batadv_neigh_node *neigh2, struct batadv_hard_iface *if_outgoing2) { bool ret; int diff; ret = batadv_iv_ogm_neigh_diff(neigh1, if_outgoing1, neigh2, if_outgoing2, &diff); if (!ret) return 0; return diff; } /** * batadv_iv_ogm_neigh_is_sob() - check if neigh1 is similarly good or better * than neigh2 from the metric prospective * @neigh1: the first neighbor object of the comparison * @if_outgoing1: outgoing interface for the first neighbor * @neigh2: the second neighbor object of the comparison * @if_outgoing2: outgoing interface for the second neighbor * * Return: true if the metric via neigh1 is equally good or better than * the metric via neigh2, false otherwise. */ static bool batadv_iv_ogm_neigh_is_sob(struct batadv_neigh_node *neigh1, struct batadv_hard_iface *if_outgoing1, struct batadv_neigh_node *neigh2, struct batadv_hard_iface *if_outgoing2) { bool ret; int diff; ret = batadv_iv_ogm_neigh_diff(neigh1, if_outgoing1, neigh2, if_outgoing2, &diff); if (!ret) return false; ret = diff > -BATADV_TQ_SIMILARITY_THRESHOLD; return ret; } static void batadv_iv_iface_enabled(struct batadv_hard_iface *hard_iface) { /* begin scheduling originator messages on that interface */ batadv_iv_ogm_schedule(hard_iface); } /** * batadv_iv_init_sel_class() - initialize GW selection class * @bat_priv: the bat priv with all the mesh interface information */ static void batadv_iv_init_sel_class(struct batadv_priv *bat_priv) { /* set default TQ difference threshold to 20 */ atomic_set(&bat_priv->gw.sel_class, 20); } static struct batadv_gw_node * batadv_iv_gw_get_best_gw_node(struct batadv_priv *bat_priv) { struct batadv_neigh_node *router; struct batadv_neigh_ifinfo *router_ifinfo; struct batadv_gw_node *gw_node, *curr_gw = NULL; u64 max_gw_factor = 0; u64 tmp_gw_factor = 0; u8 max_tq = 0; u8 tq_avg; struct batadv_orig_node *orig_node; rcu_read_lock(); hlist_for_each_entry_rcu(gw_node, &bat_priv->gw.gateway_list, list) { orig_node = gw_node->orig_node; router = batadv_orig_router_get(orig_node, BATADV_IF_DEFAULT); if (!router) continue; router_ifinfo = batadv_neigh_ifinfo_get(router, BATADV_IF_DEFAULT); if (!router_ifinfo) goto next; if (!kref_get_unless_zero(&gw_node->refcount)) goto next; tq_avg = router_ifinfo->bat_iv.tq_avg; switch (atomic_read(&bat_priv->gw.sel_class)) { case 1: /* fast connection */ tmp_gw_factor = tq_avg * tq_avg; tmp_gw_factor *= gw_node->bandwidth_down; tmp_gw_factor *= 100 * 100; tmp_gw_factor >>= 18; if (tmp_gw_factor > max_gw_factor || (tmp_gw_factor == max_gw_factor && tq_avg > max_tq)) { batadv_gw_node_put(curr_gw); curr_gw = gw_node; kref_get(&curr_gw->refcount); } break; default: /* 2: stable connection (use best statistic) * 3: fast-switch (use best statistic but change as * soon as a better gateway appears) * XX: late-switch (use best statistic but change as * soon as a better gateway appears which has * $routing_class more tq points) */ if (tq_avg > max_tq) { batadv_gw_node_put(curr_gw); curr_gw = gw_node; kref_get(&curr_gw->refcount); } break; } if (tq_avg > max_tq) max_tq = tq_avg; if (tmp_gw_factor > max_gw_factor) max_gw_factor = tmp_gw_factor; batadv_gw_node_put(gw_node); next: batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(router_ifinfo); } rcu_read_unlock(); return curr_gw; } static bool batadv_iv_gw_is_eligible(struct batadv_priv *bat_priv, struct batadv_orig_node *curr_gw_orig, struct batadv_orig_node *orig_node) { struct batadv_neigh_ifinfo *router_orig_ifinfo = NULL; struct batadv_neigh_ifinfo *router_gw_ifinfo = NULL; struct batadv_neigh_node *router_gw = NULL; struct batadv_neigh_node *router_orig = NULL; u8 gw_tq_avg, orig_tq_avg; bool ret = false; /* dynamic re-election is performed only on fast or late switch */ if (atomic_read(&bat_priv->gw.sel_class) <= 2) return false; router_gw = batadv_orig_router_get(curr_gw_orig, BATADV_IF_DEFAULT); if (!router_gw) { ret = true; goto out; } router_gw_ifinfo = batadv_neigh_ifinfo_get(router_gw, BATADV_IF_DEFAULT); if (!router_gw_ifinfo) { ret = true; goto out; } router_orig = batadv_orig_router_get(orig_node, BATADV_IF_DEFAULT); if (!router_orig) goto out; router_orig_ifinfo = batadv_neigh_ifinfo_get(router_orig, BATADV_IF_DEFAULT); if (!router_orig_ifinfo) goto out; gw_tq_avg = router_gw_ifinfo->bat_iv.tq_avg; orig_tq_avg = router_orig_ifinfo->bat_iv.tq_avg; /* the TQ value has to be better */ if (orig_tq_avg < gw_tq_avg) goto out; /* if the routing class is greater than 3 the value tells us how much * greater the TQ value of the new gateway must be */ if ((atomic_read(&bat_priv->gw.sel_class) > 3) && (orig_tq_avg - gw_tq_avg < atomic_read(&bat_priv->gw.sel_class))) goto out; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Restarting gateway selection: better gateway found (tq curr: %i, tq new: %i)\n", gw_tq_avg, orig_tq_avg); ret = true; out: batadv_neigh_ifinfo_put(router_gw_ifinfo); batadv_neigh_ifinfo_put(router_orig_ifinfo); batadv_neigh_node_put(router_gw); batadv_neigh_node_put(router_orig); return ret; } /** * batadv_iv_gw_dump_entry() - Dump a gateway into a message * @msg: Netlink message to dump into * @portid: Port making netlink request * @cb: Control block containing additional options * @bat_priv: The bat priv with all the mesh interface information * @gw_node: Gateway to be dumped * * Return: Error code, or 0 on success */ static int batadv_iv_gw_dump_entry(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_priv *bat_priv, struct batadv_gw_node *gw_node) { struct batadv_neigh_ifinfo *router_ifinfo = NULL; struct batadv_neigh_node *router; struct batadv_gw_node *curr_gw = NULL; int ret = 0; void *hdr; router = batadv_orig_router_get(gw_node->orig_node, BATADV_IF_DEFAULT); if (!router) goto out; router_ifinfo = batadv_neigh_ifinfo_get(router, BATADV_IF_DEFAULT); if (!router_ifinfo) goto out; curr_gw = batadv_gw_get_selected_gw_node(bat_priv); hdr = genlmsg_put(msg, portid, cb->nlh->nlmsg_seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_GATEWAYS); if (!hdr) { ret = -ENOBUFS; goto out; } genl_dump_check_consistent(cb, hdr); ret = -EMSGSIZE; if (curr_gw == gw_node) if (nla_put_flag(msg, BATADV_ATTR_FLAG_BEST)) { genlmsg_cancel(msg, hdr); goto out; } if (nla_put(msg, BATADV_ATTR_ORIG_ADDRESS, ETH_ALEN, gw_node->orig_node->orig) || nla_put_u8(msg, BATADV_ATTR_TQ, router_ifinfo->bat_iv.tq_avg) || nla_put(msg, BATADV_ATTR_ROUTER, ETH_ALEN, router->addr) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, router->if_incoming->net_dev->name) || nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, router->if_incoming->net_dev->ifindex) || nla_put_u32(msg, BATADV_ATTR_BANDWIDTH_DOWN, gw_node->bandwidth_down) || nla_put_u32(msg, BATADV_ATTR_BANDWIDTH_UP, gw_node->bandwidth_up)) { genlmsg_cancel(msg, hdr); goto out; } genlmsg_end(msg, hdr); ret = 0; out: batadv_gw_node_put(curr_gw); batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_node_put(router); return ret; } /** * batadv_iv_gw_dump() - Dump gateways into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * @bat_priv: The bat priv with all the mesh interface information */ static void batadv_iv_gw_dump(struct sk_buff *msg, struct netlink_callback *cb, struct batadv_priv *bat_priv) { int portid = NETLINK_CB(cb->skb).portid; struct batadv_gw_node *gw_node; int idx_skip = cb->args[0]; int idx = 0; spin_lock_bh(&bat_priv->gw.list_lock); cb->seq = bat_priv->gw.generation << 1 | 1; hlist_for_each_entry(gw_node, &bat_priv->gw.gateway_list, list) { if (idx++ < idx_skip) continue; if (batadv_iv_gw_dump_entry(msg, portid, cb, bat_priv, gw_node)) { idx_skip = idx - 1; goto unlock; } } idx_skip = idx; unlock: spin_unlock_bh(&bat_priv->gw.list_lock); cb->args[0] = idx_skip; } static struct batadv_algo_ops batadv_batman_iv __read_mostly = { .name = "BATMAN_IV", .iface = { .enable = batadv_iv_ogm_iface_enable, .enabled = batadv_iv_iface_enabled, .disable = batadv_iv_ogm_iface_disable, .update_mac = batadv_iv_ogm_iface_update_mac, .primary_set = batadv_iv_ogm_primary_iface_set, }, .neigh = { .cmp = batadv_iv_ogm_neigh_cmp, .is_similar_or_better = batadv_iv_ogm_neigh_is_sob, .dump = batadv_iv_ogm_neigh_dump, }, .orig = { .dump = batadv_iv_ogm_orig_dump, }, .gw = { .init_sel_class = batadv_iv_init_sel_class, .sel_class_max = BATADV_TQ_MAX_VALUE, .get_best_gw_node = batadv_iv_gw_get_best_gw_node, .is_eligible = batadv_iv_gw_is_eligible, .dump = batadv_iv_gw_dump, }, }; /** * batadv_iv_init() - B.A.T.M.A.N. IV initialization function * * Return: 0 on success or negative error number in case of failure */ int __init batadv_iv_init(void) { int ret; /* batman originator packet */ ret = batadv_recv_handler_register(BATADV_IV_OGM, batadv_iv_ogm_receive); if (ret < 0) goto out; ret = batadv_algo_register(&batadv_batman_iv); if (ret < 0) goto handler_unregister; goto out; handler_unregister: batadv_recv_handler_unregister(BATADV_IV_OGM); out: return ret; }
4 12 3086 1 72 4559 164 152 1025 8 96 127 11 15 1371 5 1872 1351 1847 14 14 2 1351 33 46 3 3 1 33 11 46 34 5212 5181 5175 67 31 9 5 5 548 1 730 5 5143 5 365 11 542 8472 2987 8405 91 1636 100 232 103 69 10 59 182 1 4622 4346 818 802 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) #ifndef __ASSEMBLER__ #include <linux/spinlock.h> #include <asm/x86_init.h> #include <asm/pkru.h> #include <asm/fpu/api.h> #include <asm/coco.h> #include <asm-generic/pgtable_uffd.h> #include <linux/page_table_check.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); struct seq_file; void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); bool ptdump_walk_pgd_level_checkwx(void); #define ptdump_check_wx ptdump_walk_pgd_level_checkwx void ptdump_walk_user_pgd_level_checkwx(void); /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot))) #ifdef CONFIG_DEBUG_WX #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline bool pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY_BITS; } static inline bool pte_shstk(pte_t pte) { return cpu_feature_enabled(X86_FEATURE_SHSTK) && (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline bool pte_decrypted(pte_t pte) { return cc_mkdec(pte_val(pte)) == pte_val(pte); } #define pmd_dirty pmd_dirty static inline bool pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY_BITS; } static inline bool pmd_shstk(pmd_t pmd) { return cpu_feature_enabled(X86_FEATURE_SHSTK) && (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == (_PAGE_DIRTY | _PAGE_PSE); } #define pmd_young pmd_young static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline bool pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY_BITS; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline bool pud_shstk(pud_t pud) { return cpu_feature_enabled(X86_FEATURE_SHSTK) && (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == (_PAGE_DIRTY | _PAGE_PSE); } static inline int pte_write(pte_t pte) { /* * Shadow stack pages are logically writable, but do not have * _PAGE_RW. Check for them separately from _PAGE_RW itself. */ return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte); } #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { /* * Shadow stack pages are logically writable, but do not have * _PAGE_RW. Check for them separately from _PAGE_RW itself. */ return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); #define PFN_PTE_SHIFT PAGE_SHIFT static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } #define pud_pfn pud_pfn static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_leaf static inline bool pmd_leaf(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & _PAGE_PSE) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & _PAGE_PSE) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP static inline bool pmd_special(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SPECIAL; } static inline pmd_t pmd_mkspecial(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SPECIAL); } #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP static inline bool pud_special(pud_t pud) { return pud_flags(pud) & _PAGE_SPECIAL; } static inline pud_t pud_mkspecial(pud_t pud) { return pud_set_flags(pud, _PAGE_SPECIAL); } #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } /* * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So * when creating dirty, write-protected memory, a software bit is used: * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the * Dirty bit to SavedDirty, and vice-vesra. * * This shifting is only done if needed. In the case of shifting * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of * shifting SavedDirty->Dirty, the condition is Write=1. */ static inline pgprotval_t mksaveddirty_shift(pgprotval_t v) { pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1; v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY; v &= ~(cond << _PAGE_BIT_DIRTY); return v; } static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v) { pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1; v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY; v &= ~(cond << _PAGE_BIT_SAVED_DIRTY); return v; } static inline pte_t pte_mksaveddirty(pte_t pte) { pteval_t v = native_pte_val(pte); v = mksaveddirty_shift(v); return native_make_pte(v); } static inline pte_t pte_clear_saveddirty(pte_t pte) { pteval_t v = native_pte_val(pte); v = clear_saveddirty_shift(v); return native_make_pte(v); } static inline pte_t pte_wrprotect(pte_t pte) { pte = pte_clear_flags(pte, _PAGE_RW); /* * Blindly clearing _PAGE_RW might accidentally create * a shadow stack PTE (Write=0,Dirty=1). Move the hardware * dirty value to the software bit, if present. */ return pte_mksaveddirty(pte); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP)); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY_BITS); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); return pte_mksaveddirty(pte); } static inline pte_t pte_mkwrite_shstk(pte_t pte) { pte = pte_clear_flags(pte, _PAGE_RW); return pte_set_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite_novma(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } struct vm_area_struct; pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma); #define pte_mkwrite pte_mkwrite static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } /* See comments above mksaveddirty_shift() */ static inline pmd_t pmd_mksaveddirty(pmd_t pmd) { pmdval_t v = native_pmd_val(pmd); v = mksaveddirty_shift(v); return native_make_pmd(v); } /* See comments above mksaveddirty_shift() */ static inline pmd_t pmd_clear_saveddirty(pmd_t pmd) { pmdval_t v = native_pmd_val(pmd); v = clear_saveddirty_shift(v); return native_make_pmd(v); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd = pmd_clear_flags(pmd, _PAGE_RW); /* * Blindly clearing _PAGE_RW might accidentally create * a shadow stack PMD (RW=0, Dirty=1). Move the hardware * dirty value to the software bit. */ return pmd_mksaveddirty(pmd); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP)); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); return pmd_mksaveddirty(pmd); } static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd) { pmd = pmd_clear_flags(pmd, _PAGE_RW); return pmd_set_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); #define pmd_mkwrite pmd_mkwrite /* See comments above mksaveddirty_shift() */ static inline pud_t pud_mksaveddirty(pud_t pud) { pudval_t v = native_pud_val(pud); v = mksaveddirty_shift(v); return native_make_pud(v); } /* See comments above mksaveddirty_shift() */ static inline pud_t pud_clear_saveddirty(pud_t pud) { pudval_t v = native_pud_val(pud); v = clear_saveddirty_shift(v); return native_make_pud(v); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY_BITS); } static inline pud_t pud_wrprotect(pud_t pud) { pud = pud_clear_flags(pud, _PAGE_RW); /* * Blindly clearing _PAGE_RW might accidentally create * a shadow stack PUD (RW=0, Dirty=1). Move the hardware * dirty value to the software bit. */ return pud_mksaveddirty(pud); } static inline pud_t pud_mkdirty(pud_t pud) { pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); return pud_mksaveddirty(pud); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { pud = pud_set_flags(pud, _PAGE_RW); return pud_clear_saveddirty(pud); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; /* This bit combination is used to mark shadow stacks */ WARN_ON_ONCE((pgprot_val(pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == _PAGE_DIRTY); pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline pud_t pud_mkinvalid(pud_t pud) { return pfn_pud(pud_pfn(pud), __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; pte_t pte_result; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); pte_result = __pte(val); /* * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid: * 1. Marking Write=0 PTEs Dirty=1 * 2. Marking Dirty=1 PTEs Write=0 * * The first case cannot happen because the _PAGE_CHG_MASK will filter * out any Dirty bit passed in newprot. Handle the second case by * going through the mksaveddirty exercise. Only do this if the old * value was Write=1 to avoid doing this on Shadow Stack PTEs. */ if (oldval & _PAGE_RW) pte_result = pte_mksaveddirty(pte_result); else pte_result = pte_clear_saveddirty(pte_result); return pte_result; } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; pmd_t pmd_result; val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY); val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); pmd_result = __pmd(val); /* * Avoid creating shadow stack PMD by accident. See comment in * pte_modify(). */ if (oldval & _PAGE_RW) pmd_result = pmd_mksaveddirty(pmd_result); else pmd_result = pmd_clear_saveddirty(pmd_result); return pmd_result; } static inline pud_t pud_modify(pud_t pud, pgprot_t newprot) { pudval_t val = pud_val(pud), oldval = val; pud_t pud_result; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK); pud_result = __pud(val); /* * Avoid creating shadow stack PUD by accident. See comment in * pte_modify(). */ if (oldval & _PAGE_RW) pud_result = pud_mksaveddirty(pud_result); else pud_result = pud_clear_saveddirty(pud_result); return pud_result; } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLER__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLER__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) { if (__pte_needs_invert(pte_val(pte))) return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT)); return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); } #define pte_advance_pfn pte_advance_pfn static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && atomic_read(&mm->tlb_flush_pending)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) != (_KERNPG_TABLE & ~_PAGE_ACCESSED); } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline pmd_t *pud_pgtable(pud_t pud) { return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_leaf static inline bool pud_leaf(pud_t pud) { return pud_val(pud) & _PAGE_PSE; } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline pud_t *p4d_pgtable(p4d_t p4d) { return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLER__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLER__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { page_table_check_pmd_set(mm, pmdp, pmd); set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { page_table_check_pud_set(mm, pudp, pud); native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); page_table_check_pte_clear(mm, pte); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); page_table_check_pte_clear(mm, pte); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { /* * Avoid accidentally creating shadow stack PTEs * (Write=0,Dirty=1). Use cmpxchg() to prevent races with * the hardware setting Dirty=1. */ pte_t old_pte, new_pte; old_pte = READ_ONCE(*ptep); do { new_pte = pte_wrprotect(old_pte); } while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte)); } #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = native_pmdp_get_and_clear(pmdp); page_table_check_pmd_clear(mm, pmd); return pmd; } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { pud_t pud = native_pudp_get_and_clear(pudp); page_table_check_pud_clear(mm, pud); return pud; } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { /* * Avoid accidentally creating shadow stack PTEs * (Write=0,Dirty=1). Use cmpxchg() to prevent races with * the hardware setting Dirty=1. */ pmd_t old_pmd, new_pmd; old_pmd = READ_ONCE(*pmdp); do { new_pmd = pmd_wrprotect(old_pmd); } while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd)); } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline pud_t pudp_establish(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t pud) { page_table_check_pud_set(vma->vm_mm, pudp, pud); if (IS_ENABLED(CONFIG_SMP)) { return xchg(pudp, pud); } else { pud_t old = *pudp; WRITE_ONCE(*pudp, pud); return old; } } #endif #define __HAVE_ARCH_PMDP_INVALIDATE_AD extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION /* * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anywhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, unsigned int nr) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } static inline pte_t pte_swp_mkexclusive(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE); } static inline bool pte_swp_exclusive(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; /* * Write=0,Dirty=1 PTEs are shadow stack, which the kernel * shouldn't generally allow access to, but since they * are already Write=0, the below logic covers both cases. */ if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_check_zapped_pte arch_check_zapped_pte void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte); #define arch_check_zapped_pmd arch_check_zapped_pmd void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd); #define arch_check_zapped_pud arch_check_zapped_pud void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud); #ifdef CONFIG_XEN_PV #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young static inline bool arch_has_hw_nonleaf_pmd_young(void) { return !cpu_feature_enabled(X86_FEATURE_XENPV); } #endif #ifdef CONFIG_PAGE_TABLE_CHECK static inline bool pte_user_accessible_page(pte_t pte) { return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER); } static inline bool pmd_user_accessible_page(pmd_t pmd) { return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER); } static inline bool pud_user_accessible_page(pud_t pud) { return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER); } #endif #ifdef CONFIG_X86_SGX int arch_memory_failure(unsigned long pfn, int flags); #define arch_memory_failure arch_memory_failure bool arch_is_platform_page(u64 paddr); #define arch_is_platform_page arch_is_platform_page #endif /* * Use set_p*_safe(), and elide TLB flushing, when confident that *no* * TLB flush will be required as a result of the "set". For example, use * in scenarios where it is known ahead of time that the routine is * setting non-present entries, or re-setting an existing entry to the * same value. Otherwise, use the typical "set" helpers and flush the * TLB. */ #define set_pte_safe(ptep, pte) \ ({ \ WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ set_pte(ptep, pte); \ }) #define set_pmd_safe(pmdp, pmd) \ ({ \ WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ set_pmd(pmdp, pmd); \ }) #define set_pud_safe(pudp, pud) \ ({ \ WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ set_pud(pudp, pud); \ }) #define set_p4d_safe(p4dp, p4d) \ ({ \ WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ set_p4d(p4dp, p4d); \ }) #define set_pgd_safe(pgdp, pgd) \ ({ \ WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ set_pgd(pgdp, pgd); \ }) #endif /* __ASSEMBLER__ */ #endif /* _ASM_X86_PGTABLE_H */
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008, 2009 open80211s Ltd. * Copyright (C) 2018 - 2024 Intel Corporation * Authors: Luis Carlos Cobo <luisca@cozybit.com> * Javier Cardona <javier@cozybit.com> */ #include <linux/slab.h> #include <linux/unaligned.h> #include <net/sock.h> #include "ieee80211_i.h" #include "mesh.h" #include "wme.h" #include "driver-ops.h" static int mesh_allocated; static struct kmem_cache *rm_cache; bool mesh_action_is_path_sel(struct ieee80211_mgmt *mgmt) { return (mgmt->u.action.u.mesh_action.action_code == WLAN_MESH_ACTION_HWMP_PATH_SELECTION); } void ieee80211s_init(void) { mesh_allocated = 1; rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry), 0, 0, NULL); } void ieee80211s_stop(void) { if (!mesh_allocated) return; kmem_cache_destroy(rm_cache); } static void ieee80211_mesh_housekeeping_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = timer_container_of(sdata, t, u.mesh.housekeeping_timer); struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags); wiphy_work_queue(local->hw.wiphy, &sdata->work); } /** * mesh_matches_local - check if the config of a mesh point matches ours * * @sdata: local mesh subif * @ie: information elements of a management frame from the mesh peer * * This function checks if the mesh configuration of a mesh point matches the * local mesh configuration, i.e. if both nodes belong to the same mesh network. * * Returns: %true if both nodes belong to the same mesh */ bool mesh_matches_local(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *ie) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 basic_rates = 0; struct cfg80211_chan_def sta_chan_def; struct ieee80211_supported_band *sband; u32 vht_cap_info = 0; /* * As support for each feature is added, check for matching * - On mesh config capabilities * - Power Save Support En * - Sync support enabled * - Sync support active * - Sync support required from peer * - MDA enabled * - Power management control on fc */ if (!(ifmsh->mesh_id_len == ie->mesh_id_len && memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 && (ifmsh->mesh_pp_id == ie->mesh_config->meshconf_psel) && (ifmsh->mesh_pm_id == ie->mesh_config->meshconf_pmetric) && (ifmsh->mesh_cc_id == ie->mesh_config->meshconf_congest) && (ifmsh->mesh_sp_id == ie->mesh_config->meshconf_synch) && (ifmsh->mesh_auth_id == ie->mesh_config->meshconf_auth))) return false; sband = ieee80211_get_sband(sdata); if (!sband) return false; ieee80211_sta_get_rates(sdata, ie, sband->band, &basic_rates); if (sdata->vif.bss_conf.basic_rates != basic_rates) return false; cfg80211_chandef_create(&sta_chan_def, sdata->vif.bss_conf.chanreq.oper.chan, NL80211_CHAN_NO_HT); ieee80211_chandef_ht_oper(ie->ht_operation, &sta_chan_def); if (ie->vht_cap_elem) vht_cap_info = le32_to_cpu(ie->vht_cap_elem->vht_cap_info); ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, ie->vht_operation, ie->ht_operation, &sta_chan_def); ieee80211_chandef_he_6ghz_oper(sdata->local, ie->he_operation, ie->eht_operation, &sta_chan_def); if (!cfg80211_chandef_compatible(&sdata->vif.bss_conf.chanreq.oper, &sta_chan_def)) return false; return true; } /** * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links * * @ie: information elements of a management frame from the mesh peer * * Returns: %true if the mesh peer is willing to establish peer links */ bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie) { return (ie->mesh_config->meshconf_cap & IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS) != 0; } /** * mesh_accept_plinks_update - update accepting_plink in local mesh beacons * * @sdata: mesh interface in which mesh beacons are going to be updated * * Returns: beacon changed flag if the beacon content changed. */ u64 mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata) { bool free_plinks; u64 changed = 0; /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0, * the mesh interface might be able to establish plinks with peers that * are already on the table but are not on PLINK_ESTAB state. However, * in general the mesh interface is not accepting peer link requests * from new peers, and that must be reflected in the beacon */ free_plinks = mesh_plink_availables(sdata); if (free_plinks != sdata->u.mesh.accepting_plinks) { sdata->u.mesh.accepting_plinks = free_plinks; changed = BSS_CHANGED_BEACON; } return changed; } /* * mesh_sta_cleanup - clean up any mesh sta state * * @sta: mesh sta to clean up. */ void mesh_sta_cleanup(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; u64 changed = mesh_plink_deactivate(sta); if (changed) ieee80211_mbss_info_change_notify(sdata, changed); } int mesh_rmc_init(struct ieee80211_sub_if_data *sdata) { int i; sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL); if (!sdata->u.mesh.rmc) return -ENOMEM; sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1; for (i = 0; i < RMC_BUCKETS; i++) INIT_HLIST_HEAD(&sdata->u.mesh.rmc->bucket[i]); return 0; } void mesh_rmc_free(struct ieee80211_sub_if_data *sdata) { struct mesh_rmc *rmc = sdata->u.mesh.rmc; struct rmc_entry *p; struct hlist_node *n; int i; if (!sdata->u.mesh.rmc) return; for (i = 0; i < RMC_BUCKETS; i++) { hlist_for_each_entry_safe(p, n, &rmc->bucket[i], list) { hlist_del(&p->list); kmem_cache_free(rm_cache, p); } } kfree(rmc); sdata->u.mesh.rmc = NULL; } /** * mesh_rmc_check - Check frame in recent multicast cache and add if absent. * * @sdata: interface * @sa: source address * @mesh_hdr: mesh_header * * Returns: 0 if the frame is not in the cache, nonzero otherwise. * * Checks using the source address and the mesh sequence number if we have * received this frame lately. If the frame is not in the cache, it is added to * it. */ int mesh_rmc_check(struct ieee80211_sub_if_data *sdata, const u8 *sa, struct ieee80211s_hdr *mesh_hdr) { struct mesh_rmc *rmc = sdata->u.mesh.rmc; u32 seqnum = 0; int entries = 0; u8 idx; struct rmc_entry *p; struct hlist_node *n; if (!rmc) return -1; /* Don't care about endianness since only match matters */ memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum)); idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask; hlist_for_each_entry_safe(p, n, &rmc->bucket[idx], list) { ++entries; if (time_after(jiffies, p->exp_time) || entries == RMC_QUEUE_MAX_LEN) { hlist_del(&p->list); kmem_cache_free(rm_cache, p); --entries; } else if ((seqnum == p->seqnum) && ether_addr_equal(sa, p->sa)) return -1; } p = kmem_cache_alloc(rm_cache, GFP_ATOMIC); if (!p) return 0; p->seqnum = seqnum; p->exp_time = jiffies + RMC_TIMEOUT; memcpy(p->sa, sa, ETH_ALEN); hlist_add_head(&p->list, &rmc->bucket[idx]); return 0; } int mesh_add_meshconf_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 *pos, neighbors; u8 meshconf_len = sizeof(struct ieee80211_meshconf_ie); bool is_connected_to_gate = ifmsh->num_gates > 0 || ifmsh->mshcfg.dot11MeshGateAnnouncementProtocol || ifmsh->mshcfg.dot11MeshConnectedToMeshGate; bool is_connected_to_as = ifmsh->mshcfg.dot11MeshConnectedToAuthServer; if (skb_tailroom(skb) < 2 + meshconf_len) return -ENOMEM; pos = skb_put(skb, 2 + meshconf_len); *pos++ = WLAN_EID_MESH_CONFIG; *pos++ = meshconf_len; /* save a pointer for quick updates in pre-tbtt */ ifmsh->meshconf_offset = pos - skb->data; /* Active path selection protocol ID */ *pos++ = ifmsh->mesh_pp_id; /* Active path selection metric ID */ *pos++ = ifmsh->mesh_pm_id; /* Congestion control mode identifier */ *pos++ = ifmsh->mesh_cc_id; /* Synchronization protocol identifier */ *pos++ = ifmsh->mesh_sp_id; /* Authentication Protocol identifier */ *pos++ = ifmsh->mesh_auth_id; /* Mesh Formation Info - number of neighbors */ neighbors = atomic_read(&ifmsh->estab_plinks); neighbors = min_t(int, neighbors, IEEE80211_MAX_MESH_PEERINGS); *pos++ = (is_connected_to_as << 7) | (neighbors << 1) | is_connected_to_gate; /* Mesh capability */ *pos = 0x00; *pos |= ifmsh->mshcfg.dot11MeshForwarding ? IEEE80211_MESHCONF_CAPAB_FORWARDING : 0x00; *pos |= ifmsh->accepting_plinks ? IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS : 0x00; /* Mesh PS mode. See IEEE802.11-2012 8.4.2.100.8 */ *pos |= ifmsh->ps_peers_deep_sleep ? IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL : 0x00; return 0; } int mesh_add_meshid_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 *pos; if (skb_tailroom(skb) < 2 + ifmsh->mesh_id_len) return -ENOMEM; pos = skb_put(skb, 2 + ifmsh->mesh_id_len); *pos++ = WLAN_EID_MESH_ID; *pos++ = ifmsh->mesh_id_len; if (ifmsh->mesh_id_len) memcpy(pos, ifmsh->mesh_id, ifmsh->mesh_id_len); return 0; } static int mesh_add_awake_window_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 *pos; /* see IEEE802.11-2012 13.14.6 */ if (ifmsh->ps_peers_light_sleep == 0 && ifmsh->ps_peers_deep_sleep == 0 && ifmsh->nonpeer_pm == NL80211_MESH_POWER_ACTIVE) return 0; if (skb_tailroom(skb) < 4) return -ENOMEM; pos = skb_put(skb, 2 + 2); *pos++ = WLAN_EID_MESH_AWAKE_WINDOW; *pos++ = 2; put_unaligned_le16(ifmsh->mshcfg.dot11MeshAwakeWindowDuration, pos); return 0; } int mesh_add_vendor_ies(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 offset, len; const u8 *data; if (!ifmsh->ie || !ifmsh->ie_len) return 0; /* fast-forward to vendor IEs */ offset = ieee80211_ie_split_vendor(ifmsh->ie, ifmsh->ie_len, 0); if (offset < ifmsh->ie_len) { len = ifmsh->ie_len - offset; data = ifmsh->ie + offset; if (skb_tailroom(skb) < len) return -ENOMEM; skb_put_data(skb, data, len); } return 0; } int mesh_add_rsn_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u8 len = 0; const u8 *data; if (!ifmsh->ie || !ifmsh->ie_len) return 0; /* find RSN IE */ data = cfg80211_find_ie(WLAN_EID_RSN, ifmsh->ie, ifmsh->ie_len); if (!data) return 0; len = data[1] + 2; if (skb_tailroom(skb) < len) return -ENOMEM; skb_put_data(skb, data, len); return 0; } static int mesh_add_ds_params_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *chan; u8 *pos; if (skb_tailroom(skb) < 3) return -ENOMEM; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } chan = chanctx_conf->def.chan; rcu_read_unlock(); pos = skb_put(skb, 2 + 1); *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = ieee80211_frequency_to_channel(chan->center_freq); return 0; } int mesh_add_ht_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; /* HT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!sband->ht_cap.ht_supported || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, sband->ht_cap.cap); return 0; } int mesh_add_ht_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct ieee80211_supported_band *sband; struct ieee80211_sta_ht_cap *ht_cap; u8 *pos; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } channel = chanctx_conf->def.chan; rcu_read_unlock(); sband = local->hw.wiphy->bands[channel->band]; ht_cap = &sband->ht_cap; /* HT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!ht_cap->ht_supported || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_operation)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_operation)); ieee80211_ie_build_ht_oper(pos, ht_cap, &sdata->vif.bss_conf.chanreq.oper, sdata->vif.bss_conf.ht_operation_mode, false); return 0; } int mesh_add_vht_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; /* VHT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!sband->vht_cap.vht_supported || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, sband->vht_cap.cap); return 0; } int mesh_add_vht_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct ieee80211_supported_band *sband; struct ieee80211_sta_vht_cap *vht_cap; u8 *pos; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } channel = chanctx_conf->def.chan; rcu_read_unlock(); sband = local->hw.wiphy->bands[channel->band]; vht_cap = &sband->vht_cap; /* VHT not allowed in 6 GHz */ if (sband->band == NL80211_BAND_6GHZ) return 0; if (!vht_cap->vht_supported || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_operation)) return -ENOMEM; pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_operation)); ieee80211_ie_build_vht_oper(pos, vht_cap, &sdata->vif.bss_conf.chanreq.oper); return 0; } int mesh_add_he_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ie_len) { struct ieee80211_supported_band *sband; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; if (sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; return ieee80211_put_he_cap(skb, sdata, sband, NULL); } int mesh_add_he_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_supported_band *sband; u32 len; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; he_cap = ieee80211_get_he_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); if (!he_cap || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; len = 2 + 1 + sizeof(struct ieee80211_he_operation); if (sdata->vif.bss_conf.chanreq.oper.chan->band == NL80211_BAND_6GHZ) len += sizeof(struct ieee80211_he_6ghz_oper); if (skb_tailroom(skb) < len) return -ENOMEM; pos = skb_put(skb, len); ieee80211_ie_build_he_oper(pos, &sdata->vif.bss_conf.chanreq.oper); return 0; } int mesh_add_he_6ghz_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; const struct ieee80211_sband_iftype_data *iftd; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; iftd = ieee80211_get_sband_iftype_data(sband, NL80211_IFTYPE_MESH_POINT); /* The device doesn't support HE in mesh mode or at all */ if (!iftd) return 0; ieee80211_put_he_6ghz_cap(skb, sdata, sdata->deflink.smps_mode); return 0; } int mesh_add_eht_cap_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ie_len) { struct ieee80211_supported_band *sband; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; if (sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; return ieee80211_put_eht_cap(skb, sdata, sband, NULL); } int mesh_add_eht_oper_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_supported_band *sband; u32 len; u8 *pos; sband = ieee80211_get_sband(sdata); if (!sband) return -EINVAL; eht_cap = ieee80211_get_eht_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); if (!eht_cap || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return 0; len = 2 + 1 + offsetof(struct ieee80211_eht_operation, optional) + offsetof(struct ieee80211_eht_operation_info, optional); if (skb_tailroom(skb) < len) return -ENOMEM; pos = skb_put(skb, len); ieee80211_ie_build_eht_oper(pos, &sdata->vif.bss_conf.chanreq.oper, eht_cap); return 0; } static void ieee80211_mesh_path_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = timer_container_of(sdata, t, u.mesh.mesh_path_timer); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } static void ieee80211_mesh_path_root_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = timer_container_of(sdata, t, u.mesh.mesh_path_root_timer); struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } void ieee80211_mesh_root_setup(struct ieee80211_if_mesh *ifmsh) { if (ifmsh->mshcfg.dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT) set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags); else { clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags); /* stop running timer */ timer_delete_sync(&ifmsh->mesh_path_root_timer); } } static void ieee80211_mesh_update_bss_params(struct ieee80211_sub_if_data *sdata, u8 *ie, u8 ie_len) { struct ieee80211_supported_band *sband; const struct element *cap; const struct ieee80211_he_operation *he_oper = NULL; sband = ieee80211_get_sband(sdata); if (!sband) return; if (!ieee80211_get_he_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT) || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_20_NOHT || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_5 || sdata->vif.bss_conf.chanreq.oper.width == NL80211_CHAN_WIDTH_10) return; sdata->vif.bss_conf.he_support = true; cap = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ie_len); if (cap && cap->datalen >= 1 + sizeof(*he_oper) && cap->datalen >= 1 + ieee80211_he_oper_size(cap->data + 1)) he_oper = (void *)(cap->data + 1); if (he_oper) sdata->vif.bss_conf.he_oper.params = __le32_to_cpu(he_oper->he_oper_params); sdata->vif.bss_conf.eht_support = !!ieee80211_get_eht_iftype_cap(sband, NL80211_IFTYPE_MESH_POINT); } bool ieee80211_mesh_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 ctrl_flags) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_mesh_fast_tx_key key = { .type = MESH_FAST_TX_TYPE_LOCAL }; struct ieee80211_mesh_fast_tx *entry; struct ieee80211s_hdr *meshhdr; u8 sa[ETH_ALEN] __aligned(2); struct tid_ampdu_tx *tid_tx; struct sta_info *sta; bool copy_sa = false; u16 ethertype; u8 tid; if (ctrl_flags & IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP) return false; if (ifmsh->mshcfg.dot11MeshNolearn) return false; /* Add support for these cases later */ if (ifmsh->ps_peers_light_sleep || ifmsh->ps_peers_deep_sleep) return false; if (is_multicast_ether_addr(skb->data)) return false; ethertype = (skb->data[12] << 8) | skb->data[13]; if (ethertype < ETH_P_802_3_MIN) return false; if (sk_requests_wifi_status(skb->sk)) return false; if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_set_transport_header(skb, skb_checksum_start_offset(skb)); if (skb_checksum_help(skb)) return false; } ether_addr_copy(key.addr, skb->data); if (!ether_addr_equal(skb->data + ETH_ALEN, sdata->vif.addr)) key.type = MESH_FAST_TX_TYPE_PROXIED; entry = mesh_fast_tx_get(sdata, &key); if (!entry) return false; if (skb_headroom(skb) < entry->hdrlen + entry->fast_tx.hdr_len) return false; sta = rcu_dereference(entry->mpath->next_hop); if (!sta) return false; tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return true; skb_set_queue_mapping(skb, ieee80211_select_queue(sdata, sta, skb)); meshhdr = (struct ieee80211s_hdr *)entry->hdr; if ((meshhdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) { /* preserve SA from eth header for 6-addr frames */ ether_addr_copy(sa, skb->data + ETH_ALEN); copy_sa = true; } memcpy(skb_push(skb, entry->hdrlen - 2 * ETH_ALEN), entry->hdr, entry->hdrlen); meshhdr = (struct ieee80211s_hdr *)skb->data; put_unaligned_le32(atomic_inc_return(&sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; if (copy_sa) ether_addr_copy(meshhdr->eaddr2, sa); skb_push(skb, 2 * ETH_ALEN); __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, entry->mpath->dst, sdata->vif.addr); return true; } /** * ieee80211_fill_mesh_addresses - fill addresses of a locally originated mesh frame * @hdr: 802.11 frame header * @fc: frame control field * @meshda: destination address in the mesh * @meshsa: source address in the mesh. Same as TA, as frame is * locally originated. * * Returns: the length of the 802.11 frame header (excludes mesh control header) */ int ieee80211_fill_mesh_addresses(struct ieee80211_hdr *hdr, __le16 *fc, const u8 *meshda, const u8 *meshsa) { if (is_multicast_ether_addr(meshda)) { *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA TA SA */ memcpy(hdr->addr1, meshda, ETH_ALEN); memcpy(hdr->addr2, meshsa, ETH_ALEN); memcpy(hdr->addr3, meshsa, ETH_ALEN); return 24; } else { *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ eth_zero_addr(hdr->addr1); /* RA is resolved later */ memcpy(hdr->addr2, meshsa, ETH_ALEN); memcpy(hdr->addr3, meshda, ETH_ALEN); memcpy(hdr->addr4, meshsa, ETH_ALEN); return 30; } } /** * ieee80211_new_mesh_header - create a new mesh header * @sdata: mesh interface to be used * @meshhdr: uninitialized mesh header * @addr4or5: 1st address in the ae header, which may correspond to address 4 * (if addr6 is NULL) or address 5 (if addr6 is present). It may * be NULL. * @addr6: 2nd address in the ae header, which corresponds to addr6 of the * mesh frame * * Returns: the header length */ unsigned int ieee80211_new_mesh_header(struct ieee80211_sub_if_data *sdata, struct ieee80211s_hdr *meshhdr, const char *addr4or5, const char *addr6) { if (WARN_ON(!addr4or5 && addr6)) return 0; memset(meshhdr, 0, sizeof(*meshhdr)); meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; put_unaligned_le32(atomic_inc_return(&sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); if (addr4or5 && !addr6) { meshhdr->flags |= MESH_FLAGS_AE_A4; memcpy(meshhdr->eaddr1, addr4or5, ETH_ALEN); return 2 * ETH_ALEN; } else if (addr4or5 && addr6) { meshhdr->flags |= MESH_FLAGS_AE_A5_A6; memcpy(meshhdr->eaddr1, addr4or5, ETH_ALEN); memcpy(meshhdr->eaddr2, addr6, ETH_ALEN); return 3 * ETH_ALEN; } return ETH_ALEN; } static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u64 changed; if (ifmsh->mshcfg.plink_timeout > 0) ieee80211_sta_expire(sdata, ifmsh->mshcfg.plink_timeout * HZ); mesh_path_expire(sdata); changed = mesh_accept_plinks_update(sdata); ieee80211_mbss_info_change_notify(sdata, changed); mesh_fast_tx_gc(sdata); mod_timer(&ifmsh->housekeeping_timer, round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL)); } static void ieee80211_mesh_rootpath(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 interval; mesh_path_tx_root_frame(sdata); if (ifmsh->mshcfg.dot11MeshHWMPRootMode == IEEE80211_PROACTIVE_RANN) interval = ifmsh->mshcfg.dot11MeshHWMPRannInterval; else interval = ifmsh->mshcfg.dot11MeshHWMProotInterval; mod_timer(&ifmsh->mesh_path_root_timer, round_jiffies(TU_TO_EXP_TIME(interval))); } static int ieee80211_mesh_build_beacon(struct ieee80211_if_mesh *ifmsh) { struct beacon_data *bcn; int head_len, tail_len; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; struct mesh_csa_settings *csa; const struct ieee80211_supported_band *sband; u8 ie_len_he_cap, ie_len_eht_cap; u8 *pos; struct ieee80211_sub_if_data *sdata; int hdr_len = offsetofend(struct ieee80211_mgmt, u.beacon); sdata = container_of(ifmsh, struct ieee80211_sub_if_data, u.mesh); sband = ieee80211_get_sband(sdata); ie_len_he_cap = ieee80211_ie_len_he_cap(sdata); ie_len_eht_cap = ieee80211_ie_len_eht_cap(sdata); head_len = hdr_len + 2 + /* NULL SSID */ /* Channel Switch Announcement */ 2 + sizeof(struct ieee80211_channel_sw_ie) + /* Mesh Channel Switch Parameters */ 2 + sizeof(struct ieee80211_mesh_chansw_params_ie) + /* Channel Switch Wrapper + Wide Bandwidth CSA IE */ 2 + 2 + sizeof(struct ieee80211_wide_bw_chansw_ie) + 2 + sizeof(struct ieee80211_sec_chan_offs_ie) + 2 + 8 + /* supported rates */ 2 + 3; /* DS params */ tail_len = 2 + (IEEE80211_MAX_SUPP_RATES - 8) + 2 + sizeof(struct ieee80211_ht_cap) + 2 + sizeof(struct ieee80211_ht_operation) + 2 + ifmsh->mesh_id_len + 2 + sizeof(struct ieee80211_meshconf_ie) + 2 + sizeof(__le16) + /* awake window */ 2 + sizeof(struct ieee80211_vht_cap) + 2 + sizeof(struct ieee80211_vht_operation) + ie_len_he_cap + 2 + 1 + sizeof(struct ieee80211_he_operation) + sizeof(struct ieee80211_he_6ghz_oper) + 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa) + ie_len_eht_cap + 2 + 1 + offsetof(struct ieee80211_eht_operation, optional) + offsetof(struct ieee80211_eht_operation_info, optional) + ifmsh->ie_len; bcn = kzalloc(sizeof(*bcn) + head_len + tail_len, GFP_KERNEL); /* need an skb for IE builders to operate on */ skb = __dev_alloc_skb(max(head_len, tail_len), GFP_KERNEL); if (!bcn || !skb) goto out_free; /* * pointers go into the block we allocated, * memory is | beacon_data | head | tail | */ bcn->head = ((u8 *) bcn) + sizeof(*bcn); /* fill in the head */ mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); eth_broadcast_addr(mgmt->da); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); ieee80211_mps_set_frame_flags(sdata, NULL, (void *) mgmt); mgmt->u.beacon.beacon_int = cpu_to_le16(sdata->vif.bss_conf.beacon_int); mgmt->u.beacon.capab_info |= cpu_to_le16( sdata->u.mesh.security ? WLAN_CAPABILITY_PRIVACY : 0); pos = skb_put(skb, 2); *pos++ = WLAN_EID_SSID; *pos++ = 0x0; rcu_read_lock(); csa = rcu_dereference(ifmsh->csa); if (csa) { enum nl80211_channel_type ct; struct cfg80211_chan_def *chandef; int ie_len = 2 + sizeof(struct ieee80211_channel_sw_ie) + 2 + sizeof(struct ieee80211_mesh_chansw_params_ie); pos = skb_put_zero(skb, ie_len); *pos++ = WLAN_EID_CHANNEL_SWITCH; *pos++ = 3; *pos++ = 0x0; *pos++ = ieee80211_frequency_to_channel( csa->settings.chandef.chan->center_freq); bcn->cntdwn_current_counter = csa->settings.count; bcn->cntdwn_counter_offsets[0] = hdr_len + 6; *pos++ = csa->settings.count; *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; *pos++ = 6; if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_INIT) { *pos++ = ifmsh->mshcfg.dot11MeshTTL; *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; } else { *pos++ = ifmsh->chsw_ttl; } *pos++ |= csa->settings.block_tx ? WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); pos += 2; put_unaligned_le16(ifmsh->pre_value, pos); pos += 2; switch (csa->settings.chandef.width) { case NL80211_CHAN_WIDTH_40: ie_len = 2 + sizeof(struct ieee80211_sec_chan_offs_ie); pos = skb_put_zero(skb, ie_len); *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ *pos++ = 1; /* len */ ct = cfg80211_get_chandef_type(&csa->settings.chandef); if (ct == NL80211_CHAN_HT40PLUS) *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; break; case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: /* Channel Switch Wrapper + Wide Bandwidth CSA IE */ ie_len = 2 + 2 + sizeof(struct ieee80211_wide_bw_chansw_ie); pos = skb_put_zero(skb, ie_len); *pos++ = WLAN_EID_CHANNEL_SWITCH_WRAPPER; /* EID */ *pos++ = 5; /* len */ /* put sub IE */ chandef = &csa->settings.chandef; ieee80211_ie_build_wide_bw_cs(pos, chandef); break; default: break; } } rcu_read_unlock(); if (ieee80211_put_srates_elem(skb, sband, sdata->vif.bss_conf.basic_rates, 0, WLAN_EID_SUPP_RATES) || mesh_add_ds_params_ie(sdata, skb)) goto out_free; bcn->head_len = skb->len; memcpy(bcn->head, skb->data, bcn->head_len); /* now the tail */ skb_trim(skb, 0); bcn->tail = bcn->head + bcn->head_len; if (ieee80211_put_srates_elem(skb, sband, sdata->vif.bss_conf.basic_rates, 0, WLAN_EID_EXT_SUPP_RATES) || mesh_add_rsn_ie(sdata, skb) || mesh_add_ht_cap_ie(sdata, skb) || mesh_add_ht_oper_ie(sdata, skb) || mesh_add_meshid_ie(sdata, skb) || mesh_add_meshconf_ie(sdata, skb) || mesh_add_awake_window_ie(sdata, skb) || mesh_add_vht_cap_ie(sdata, skb) || mesh_add_vht_oper_ie(sdata, skb) || mesh_add_he_cap_ie(sdata, skb, ie_len_he_cap) || mesh_add_he_oper_ie(sdata, skb) || mesh_add_he_6ghz_cap_ie(sdata, skb) || mesh_add_eht_cap_ie(sdata, skb, ie_len_eht_cap) || mesh_add_eht_oper_ie(sdata, skb) || mesh_add_vendor_ies(sdata, skb)) goto out_free; bcn->tail_len = skb->len; memcpy(bcn->tail, skb->data, bcn->tail_len); ieee80211_mesh_update_bss_params(sdata, bcn->tail, bcn->tail_len); bcn->meshconf = (struct ieee80211_meshconf_ie *) (bcn->tail + ifmsh->meshconf_offset); dev_kfree_skb(skb); rcu_assign_pointer(ifmsh->beacon, bcn); return 0; out_free: kfree(bcn); dev_kfree_skb(skb); return -ENOMEM; } static int ieee80211_mesh_rebuild_beacon(struct ieee80211_sub_if_data *sdata) { struct beacon_data *old_bcn; int ret; old_bcn = sdata_dereference(sdata->u.mesh.beacon, sdata); ret = ieee80211_mesh_build_beacon(&sdata->u.mesh); if (ret) /* just reuse old beacon */ return ret; if (old_bcn) kfree_rcu(old_bcn, rcu_head); return 0; } void ieee80211_mbss_info_change_notify(struct ieee80211_sub_if_data *sdata, u64 changed) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; unsigned long bits[] = { BITMAP_FROM_U64(changed) }; u32 bit; if (!changed) return; /* if we race with running work, worst case this work becomes a noop */ for_each_set_bit(bit, bits, sizeof(changed) * BITS_PER_BYTE) set_bit(bit, ifmsh->mbss_changed); set_bit(MESH_WORK_MBSS_CHANGED, &ifmsh->wrkq_flags); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } int ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_local *local = sdata->local; u64 changed = BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT | BSS_CHANGED_MCAST_RATE; local->fif_other_bss++; /* mesh ifaces must set allmulti to forward mcast traffic */ atomic_inc(&local->iff_allmultis); ieee80211_configure_filter(local); ifmsh->mesh_cc_id = 0; /* Disabled */ /* register sync ops from extensible synchronization framework */ ifmsh->sync_ops = ieee80211_mesh_sync_ops_get(ifmsh->mesh_sp_id); ifmsh->sync_offset_clockdrift_max = 0; set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags); ieee80211_mesh_root_setup(ifmsh); wiphy_work_queue(local->hw.wiphy, &sdata->work); sdata->vif.bss_conf.ht_operation_mode = ifmsh->mshcfg.ht_opmode; sdata->vif.bss_conf.enable_beacon = true; changed |= ieee80211_mps_local_status_update(sdata); if (ieee80211_mesh_build_beacon(ifmsh)) { ieee80211_stop_mesh(sdata); return -ENOMEM; } ieee80211_recalc_dtim(sdata, drv_get_tsf(local, sdata)); ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); netif_carrier_on(sdata->dev); return 0; } void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct beacon_data *bcn; netif_carrier_off(sdata->dev); /* flush STAs and mpaths on this iface */ sta_info_flush(sdata, -1); ieee80211_free_keys(sdata, true); mesh_path_flush_by_iface(sdata); /* stop the beacon */ ifmsh->mesh_id_len = 0; sdata->vif.bss_conf.enable_beacon = false; sdata->beacon_rate_set = false; clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BEACON_ENABLED); /* remove beacon */ bcn = sdata_dereference(ifmsh->beacon, sdata); RCU_INIT_POINTER(ifmsh->beacon, NULL); kfree_rcu(bcn, rcu_head); /* free all potentially still buffered group-addressed frames */ local->total_ps_buffered -= skb_queue_len(&ifmsh->ps.bc_buf); skb_queue_purge(&ifmsh->ps.bc_buf); timer_delete_sync(&sdata->u.mesh.housekeeping_timer); timer_delete_sync(&sdata->u.mesh.mesh_path_root_timer); timer_delete_sync(&sdata->u.mesh.mesh_path_timer); /* clear any mesh work (for next join) we may have accrued */ ifmsh->wrkq_flags = 0; memset(ifmsh->mbss_changed, 0, sizeof(ifmsh->mbss_changed)); local->fif_other_bss--; atomic_dec(&local->iff_allmultis); ieee80211_configure_filter(local); } static void ieee80211_mesh_csa_mark_radar(struct ieee80211_sub_if_data *sdata) { int err; /* if the current channel is a DFS channel, mark the channel as * unavailable. */ err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &sdata->vif.bss_conf.chanreq.oper, NL80211_IFTYPE_MESH_POINT); if (err > 0) cfg80211_radar_event(sdata->local->hw.wiphy, &sdata->vif.bss_conf.chanreq.oper, GFP_ATOMIC); } static bool ieee80211_mesh_process_chnswitch(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, bool beacon) { struct cfg80211_csa_settings params; struct ieee80211_csa_ie csa_ie; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_supported_band *sband; int err; struct ieee80211_conn_settings conn = ieee80211_conn_settings_unlimited; u32 vht_cap_info = 0; lockdep_assert_wiphy(sdata->local->hw.wiphy); sband = ieee80211_get_sband(sdata); if (!sband) return false; switch (sdata->vif.bss_conf.chanreq.oper.width) { case NL80211_CHAN_WIDTH_20_NOHT: conn.mode = IEEE80211_CONN_MODE_LEGACY; conn.bw_limit = IEEE80211_CONN_BW_LIMIT_20; break; case NL80211_CHAN_WIDTH_20: conn.mode = IEEE80211_CONN_MODE_HT; conn.bw_limit = IEEE80211_CONN_BW_LIMIT_20; break; case NL80211_CHAN_WIDTH_40: conn.mode = IEEE80211_CONN_MODE_HT; conn.bw_limit = IEEE80211_CONN_BW_LIMIT_40; break; default: break; } if (elems->vht_cap_elem) vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); memset(&params, 0, sizeof(params)); err = ieee80211_parse_ch_switch_ie(sdata, elems, sband->band, vht_cap_info, &conn, sdata->vif.addr, false, &csa_ie); if (err < 0) return false; if (err) return false; /* Mark the channel unavailable if the reason for the switch is * regulatory. */ if (csa_ie.reason_code == WLAN_REASON_MESH_CHAN_REGULATORY) ieee80211_mesh_csa_mark_radar(sdata); params.chandef = csa_ie.chanreq.oper; params.count = csa_ie.count; if (!cfg80211_chandef_usable(sdata->local->hw.wiphy, &params.chandef, IEEE80211_CHAN_DISABLED) || !cfg80211_reg_can_beacon(sdata->local->hw.wiphy, &params.chandef, NL80211_IFTYPE_MESH_POINT)) { sdata_info(sdata, "mesh STA %pM switches to unsupported channel (%d MHz, width:%d, CF1/2: %d/%d MHz), aborting\n", sdata->vif.addr, params.chandef.chan->center_freq, params.chandef.width, params.chandef.center_freq1, params.chandef.center_freq2); return false; } err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &params.chandef, NL80211_IFTYPE_MESH_POINT); if (err < 0) return false; if (err > 0 && !ifmsh->userspace_handles_dfs) { sdata_info(sdata, "mesh STA %pM switches to channel requiring DFS (%d MHz, width:%d, CF1/2: %d/%d MHz), aborting\n", sdata->vif.addr, params.chandef.chan->center_freq, params.chandef.width, params.chandef.center_freq1, params.chandef.center_freq2); return false; } params.radar_required = err; if (cfg80211_chandef_identical(&params.chandef, &sdata->vif.bss_conf.chanreq.oper)) { mcsa_dbg(sdata, "received csa with an identical chandef, ignoring\n"); return true; } mcsa_dbg(sdata, "received channel switch announcement to go to channel %d MHz\n", params.chandef.chan->center_freq); params.block_tx = csa_ie.mode & WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT; if (beacon) { ifmsh->chsw_ttl = csa_ie.ttl - 1; if (ifmsh->pre_value >= csa_ie.pre_value) return false; ifmsh->pre_value = csa_ie.pre_value; } if (ifmsh->chsw_ttl >= ifmsh->mshcfg.dot11MeshTTL) return false; ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_REPEATER; if (ieee80211_channel_switch(sdata->local->hw.wiphy, sdata->dev, &params) < 0) return false; return true; } static void ieee80211_mesh_rx_probe_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct sk_buff *presp; struct beacon_data *bcn; struct ieee80211_mgmt *hdr; struct ieee802_11_elems *elems; size_t baselen; u8 *pos; pos = mgmt->u.probe_req.variable; baselen = (u8 *) pos - (u8 *) mgmt; if (baselen > len) return; elems = ieee802_11_parse_elems(pos, len - baselen, false, NULL); if (!elems) return; if (!elems->mesh_id) goto free; /* 802.11-2012 10.1.4.3.2 */ if ((!ether_addr_equal(mgmt->da, sdata->vif.addr) && !is_broadcast_ether_addr(mgmt->da)) || elems->ssid_len != 0) goto free; if (elems->mesh_id_len != 0 && (elems->mesh_id_len != ifmsh->mesh_id_len || memcmp(elems->mesh_id, ifmsh->mesh_id, ifmsh->mesh_id_len))) goto free; rcu_read_lock(); bcn = rcu_dereference(ifmsh->beacon); if (!bcn) goto out; presp = dev_alloc_skb(local->tx_headroom + bcn->head_len + bcn->tail_len); if (!presp) goto out; skb_reserve(presp, local->tx_headroom); skb_put_data(presp, bcn->head, bcn->head_len); skb_put_data(presp, bcn->tail, bcn->tail_len); hdr = (struct ieee80211_mgmt *) presp->data; hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); memcpy(hdr->da, mgmt->sa, ETH_ALEN); IEEE80211_SKB_CB(presp)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, presp); out: rcu_read_unlock(); free: kfree(elems); } static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata, u16 stype, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee802_11_elems *elems; struct ieee80211_channel *channel; size_t baselen; int freq; enum nl80211_band band = rx_status->band; /* ignore ProbeResp to foreign address */ if (stype == IEEE80211_STYPE_PROBE_RESP && !ether_addr_equal(mgmt->da, sdata->vif.addr)) return; baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; elems = ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, false, NULL); if (!elems) return; /* ignore non-mesh or secure / insecure mismatch */ if ((!elems->mesh_id || !elems->mesh_config) || (elems->rsn && sdata->u.mesh.security == IEEE80211_MESH_SEC_NONE) || (!elems->rsn && sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)) goto free; if (elems->ds_params) freq = ieee80211_channel_to_frequency(elems->ds_params[0], band); else freq = rx_status->freq; channel = ieee80211_get_channel(local->hw.wiphy, freq); if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) goto free; if (mesh_matches_local(sdata, elems)) { mpl_dbg(sdata, "rssi_threshold=%d,rx_status->signal=%d\n", sdata->u.mesh.mshcfg.rssi_threshold, rx_status->signal); if (!sdata->u.mesh.user_mpm || sdata->u.mesh.mshcfg.rssi_threshold == 0 || sdata->u.mesh.mshcfg.rssi_threshold < rx_status->signal) mesh_neighbour_update(sdata, mgmt->sa, elems, rx_status); if (ifmsh->csa_role != IEEE80211_MESH_CSA_ROLE_INIT && !sdata->vif.bss_conf.csa_active) ieee80211_mesh_process_chnswitch(sdata, elems, true); } if (ifmsh->sync_ops) ifmsh->sync_ops->rx_bcn_presp(sdata, stype, mgmt, len, elems->mesh_config, rx_status); free: kfree(elems); } int ieee80211_mesh_finish_csa(struct ieee80211_sub_if_data *sdata, u64 *changed) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_csa_settings *tmp_csa_settings; int ret = 0; /* Reset the TTL value and Initiator flag */ ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE; ifmsh->chsw_ttl = 0; /* Remove the CSA and MCSP elements from the beacon */ tmp_csa_settings = sdata_dereference(ifmsh->csa, sdata); RCU_INIT_POINTER(ifmsh->csa, NULL); if (tmp_csa_settings) kfree_rcu(tmp_csa_settings, rcu_head); ret = ieee80211_mesh_rebuild_beacon(sdata); if (ret) return -EINVAL; *changed |= BSS_CHANGED_BEACON; mcsa_dbg(sdata, "complete switching to center freq %d MHz", sdata->vif.bss_conf.chanreq.oper.chan->center_freq); return 0; } int ieee80211_mesh_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings, u64 *changed) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct mesh_csa_settings *tmp_csa_settings; int ret = 0; lockdep_assert_wiphy(sdata->local->hw.wiphy); tmp_csa_settings = kmalloc(sizeof(*tmp_csa_settings), GFP_ATOMIC); if (!tmp_csa_settings) return -ENOMEM; memcpy(&tmp_csa_settings->settings, csa_settings, sizeof(struct cfg80211_csa_settings)); rcu_assign_pointer(ifmsh->csa, tmp_csa_settings); ret = ieee80211_mesh_rebuild_beacon(sdata); if (ret) { tmp_csa_settings = rcu_dereference(ifmsh->csa); RCU_INIT_POINTER(ifmsh->csa, NULL); kfree_rcu(tmp_csa_settings, rcu_head); return ret; } *changed |= BSS_CHANGED_BEACON; return 0; } static int mesh_fwd_csa_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee802_11_elems *elems) { struct ieee80211_mgmt *mgmt_fwd; struct sk_buff *skb; struct ieee80211_local *local = sdata->local; skb = dev_alloc_skb(local->tx_headroom + len); if (!skb) return -ENOMEM; skb_reserve(skb, local->tx_headroom); mgmt_fwd = skb_put(skb, len); elems->mesh_chansw_params_ie->mesh_ttl--; elems->mesh_chansw_params_ie->mesh_flags &= ~WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; memcpy(mgmt_fwd, mgmt, len); eth_broadcast_addr(mgmt_fwd->da); memcpy(mgmt_fwd->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt_fwd->bssid, sdata->vif.addr, ETH_ALEN); ieee80211_tx_skb(sdata, skb); return 0; } static void mesh_rx_csa_frame(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee802_11_elems *elems; u16 pre_value; bool fwd_csa = true; size_t baselen; u8 *pos; if (mgmt->u.action.u.measurement.action_code != WLAN_ACTION_SPCT_CHL_SWITCH) return; pos = mgmt->u.action.u.chan_switch.variable; baselen = offsetof(struct ieee80211_mgmt, u.action.u.chan_switch.variable); elems = ieee802_11_parse_elems(pos, len - baselen, true, NULL); if (!elems) return; if (!mesh_matches_local(sdata, elems)) goto free; ifmsh->chsw_ttl = elems->mesh_chansw_params_ie->mesh_ttl; if (!--ifmsh->chsw_ttl) fwd_csa = false; pre_value = le16_to_cpu(elems->mesh_chansw_params_ie->mesh_pre_value); if (ifmsh->pre_value >= pre_value) goto free; ifmsh->pre_value = pre_value; if (!sdata->vif.bss_conf.csa_active && !ieee80211_mesh_process_chnswitch(sdata, elems, false)) { mcsa_dbg(sdata, "Failed to process CSA action frame"); goto free; } /* forward or re-broadcast the CSA frame */ if (fwd_csa) { if (mesh_fwd_csa_frame(sdata, mgmt, len, elems) < 0) mcsa_dbg(sdata, "Failed to forward the CSA frame"); } free: kfree(elems); } static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { switch (mgmt->u.action.category) { case WLAN_CATEGORY_SELF_PROTECTED: switch (mgmt->u.action.u.self_prot.action_code) { case WLAN_SP_MESH_PEERING_OPEN: case WLAN_SP_MESH_PEERING_CLOSE: case WLAN_SP_MESH_PEERING_CONFIRM: mesh_rx_plink_frame(sdata, mgmt, len, rx_status); break; } break; case WLAN_CATEGORY_MESH_ACTION: if (mesh_action_is_path_sel(mgmt)) mesh_rx_path_sel_frame(sdata, mgmt, len); break; case WLAN_CATEGORY_SPECTRUM_MGMT: mesh_rx_csa_frame(sdata, mgmt, len); break; } } void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status; struct ieee80211_mgmt *mgmt; u16 stype; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* mesh already went down */ if (!sdata->u.mesh.mesh_id_len) return; rx_status = IEEE80211_SKB_RXCB(skb); mgmt = (struct ieee80211_mgmt *) skb->data; stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE; switch (stype) { case IEEE80211_STYPE_PROBE_RESP: case IEEE80211_STYPE_BEACON: ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_REQ: ieee80211_mesh_rx_probe_req(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status); break; } } static void mesh_bss_info_changed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; u32 bit; u64 changed = 0; for_each_set_bit(bit, ifmsh->mbss_changed, sizeof(changed) * BITS_PER_BYTE) { clear_bit(bit, ifmsh->mbss_changed); changed |= BIT(bit); } if (sdata->vif.bss_conf.enable_beacon && (changed & (BSS_CHANGED_BEACON | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT))) if (ieee80211_mesh_rebuild_beacon(sdata)) return; ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); } void ieee80211_mesh_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* mesh already went down */ if (!sdata->u.mesh.mesh_id_len) return; if (ifmsh->preq_queue_len && time_after(jiffies, ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval))) mesh_path_start_discovery(sdata); if (test_and_clear_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags)) ieee80211_mesh_housekeeping(sdata); if (test_and_clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags)) ieee80211_mesh_rootpath(sdata); if (test_and_clear_bit(MESH_WORK_DRIFT_ADJUST, &ifmsh->wrkq_flags)) mesh_sync_adjust_tsf(sdata); if (test_and_clear_bit(MESH_WORK_MBSS_CHANGED, &ifmsh->wrkq_flags)) mesh_bss_info_changed(sdata); } void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; static u8 zero_addr[ETH_ALEN] = {}; timer_setup(&ifmsh->housekeeping_timer, ieee80211_mesh_housekeeping_timer, 0); ifmsh->accepting_plinks = true; atomic_set(&ifmsh->mpaths, 0); mesh_rmc_init(sdata); ifmsh->last_preq = jiffies; ifmsh->next_perr = jiffies; ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE; ifmsh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; /* Allocate all mesh structures when creating the first mesh interface. */ if (!mesh_allocated) ieee80211s_init(); mesh_pathtbl_init(sdata); timer_setup(&ifmsh->mesh_path_timer, ieee80211_mesh_path_timer, 0); timer_setup(&ifmsh->mesh_path_root_timer, ieee80211_mesh_path_root_timer, 0); INIT_LIST_HEAD(&ifmsh->preq_queue.list); skb_queue_head_init(&ifmsh->ps.bc_buf); spin_lock_init(&ifmsh->mesh_preq_queue_lock); spin_lock_init(&ifmsh->sync_offset_lock); RCU_INIT_POINTER(ifmsh->beacon, NULL); sdata->vif.bss_conf.bssid = zero_addr; } void ieee80211_mesh_teardown_sdata(struct ieee80211_sub_if_data *sdata) { mesh_rmc_free(sdata); mesh_pathtbl_unregister(sdata); }
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_GENERIC_SECTIONS_H_ #define _ASM_GENERIC_SECTIONS_H_ /* References to section boundaries */ #include <linux/compiler.h> #include <linux/types.h> /* * Usage guidelines: * _text, _data: architecture specific, don't use them in arch-independent code * [_stext, _etext]: contains .text.* sections, may also contain .rodata.* * and/or .init.* sections * [_sdata, _edata]: contains .data.* sections, may also contain .rodata.* * and/or .init.* sections. * [__start_rodata, __end_rodata]: contains .rodata.* sections * [__start_ro_after_init, __end_ro_after_init]: * contains .data..ro_after_init section * [__init_begin, __init_end]: contains .init.* sections, but .init.text.* * may be out of this range on some architectures. * [_sinittext, _einittext]: contains .init.text.* sections * [__bss_start, __bss_stop]: contains BSS sections * * Following global variables are optional and may be unavailable on some * architectures and/or kernel configurations. * _text, _data * __kprobes_text_start, __kprobes_text_end * __entry_text_start, __entry_text_end * __ctors_start, __ctors_end * __irqentry_text_start, __irqentry_text_end * __softirqentry_text_start, __softirqentry_text_end * __start_opd, __end_opd */ extern char _text[], _stext[], _etext[]; extern char _data[], _sdata[], _edata[]; extern char __bss_start[], __bss_stop[]; extern char __init_begin[], __init_end[]; extern char _sinittext[], _einittext[]; extern char __start_ro_after_init[], __end_ro_after_init[]; extern char _end[]; extern char __per_cpu_start[], __per_cpu_end[]; extern char __kprobes_text_start[], __kprobes_text_end[]; extern char __entry_text_start[], __entry_text_end[]; extern char __start_rodata[], __end_rodata[]; extern char __irqentry_text_start[], __irqentry_text_end[]; extern char __softirqentry_text_start[], __softirqentry_text_end[]; extern char __start_once[], __end_once[]; /* Start and end of .ctors section - used for constructor calls. */ extern char __ctors_start[], __ctors_end[]; /* Start and end of .opd section - used for function descriptors. */ extern char __start_opd[], __end_opd[]; /* Start and end of instrumentation protected text section */ extern char __noinstr_text_start[], __noinstr_text_end[]; extern __visible const void __nosave_begin, __nosave_end; /* Function descriptor handling (if any). Override in asm/sections.h */ #ifdef CONFIG_HAVE_FUNCTION_DESCRIPTORS void *dereference_function_descriptor(void *ptr); void *dereference_kernel_function_descriptor(void *ptr); #else #define dereference_function_descriptor(p) ((void *)(p)) #define dereference_kernel_function_descriptor(p) ((void *)(p)) /* An address is simply the address of the function. */ typedef struct { unsigned long addr; } func_desc_t; #endif static inline bool have_function_descriptors(void) { return IS_ENABLED(CONFIG_HAVE_FUNCTION_DESCRIPTORS); } /** * memory_contains - checks if an object is contained within a memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the memory region defined by @begin and @end, false * otherwise. */ static inline bool memory_contains(void *begin, void *end, void *virt, size_t size) { return virt >= begin && virt + size <= end; } /** * memory_intersects - checks if the region occupied by an object intersects * with another memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the region specified by @begin and @end, false otherwise. */ static inline bool memory_intersects(void *begin, void *end, void *virt, size_t size) { void *vend = virt + size; if (virt < end && vend > begin) return true; return false; } /** * init_section_contains - checks if an object is contained within the init * section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the init section, false otherwise. */ static inline bool init_section_contains(void *virt, size_t size) { return memory_contains(__init_begin, __init_end, virt, size); } /** * init_section_intersects - checks if the region occupied by an object * intersects with the init section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the init section, false otherwise. */ static inline bool init_section_intersects(void *virt, size_t size) { return memory_intersects(__init_begin, __init_end, virt, size); } /** * is_kernel_core_data - checks if the pointer address is located in the * .data or .bss section * * @addr: address to check * * Returns: true if the address is located in .data or .bss, false otherwise. * Note: On some archs it may return true for core RODATA, and false * for others. But will always be true for core RW data. */ static inline bool is_kernel_core_data(unsigned long addr) { if (addr >= (unsigned long)_sdata && addr < (unsigned long)_edata) return true; if (addr >= (unsigned long)__bss_start && addr < (unsigned long)__bss_stop) return true; return false; } /** * is_kernel_rodata - checks if the pointer address is located in the * .rodata section * * @addr: address to check * * Returns: true if the address is located in .rodata, false otherwise. */ static inline bool is_kernel_rodata(unsigned long addr) { return addr >= (unsigned long)__start_rodata && addr < (unsigned long)__end_rodata; } static inline bool is_kernel_ro_after_init(unsigned long addr) { return addr >= (unsigned long)__start_ro_after_init && addr < (unsigned long)__end_ro_after_init; } /** * is_kernel_inittext - checks if the pointer address is located in the * .init.text section * * @addr: address to check * * Returns: true if the address is located in .init.text, false otherwise. */ static inline bool is_kernel_inittext(unsigned long addr) { return addr >= (unsigned long)_sinittext && addr < (unsigned long)_einittext; } /** * __is_kernel_text - checks if the pointer address is located in the * .text section * * @addr: address to check * * Returns: true if the address is located in .text, false otherwise. * Note: an internal helper, only check the range of _stext to _etext. */ static inline bool __is_kernel_text(unsigned long addr) { return addr >= (unsigned long)_stext && addr < (unsigned long)_etext; } /** * __is_kernel - checks if the pointer address is located in the kernel range * * @addr: address to check * * Returns: true if the address is located in the kernel range, false otherwise. * Note: an internal helper, check the range of _stext to _end, * and range from __init_begin to __init_end, which can be outside * of the _stext to _end range. */ static inline bool __is_kernel(unsigned long addr) { return ((addr >= (unsigned long)_stext && addr < (unsigned long)_end) || (addr >= (unsigned long)__init_begin && addr < (unsigned long)__init_end)); } #endif /* _ASM_GENERIC_SECTIONS_H_ */
8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 // SPDX-License-Identifier: GPL-2.0 /* * Block stat tracking code * * Copyright (C) 2016 Jens Axboe */ #include <linux/kernel.h> #include <linux/rculist.h> #include "blk-stat.h" #include "blk-mq.h" #include "blk.h" struct blk_queue_stats { struct list_head callbacks; spinlock_t lock; int accounting; }; void blk_rq_stat_init(struct blk_rq_stat *stat) { stat->min = -1ULL; stat->max = stat->nr_samples = stat->mean = 0; stat->batch = 0; } /* src is a per-cpu stat, mean isn't initialized */ void blk_rq_stat_sum(struct blk_rq_stat *dst, struct blk_rq_stat *src) { if (dst->nr_samples + src->nr_samples <= dst->nr_samples) return; dst->min = min(dst->min, src->min); dst->max = max(dst->max, src->max); dst->mean = div_u64(src->batch + dst->mean * dst->nr_samples, dst->nr_samples + src->nr_samples); dst->nr_samples += src->nr_samples; } void blk_rq_stat_add(struct blk_rq_stat *stat, u64 value) { stat->min = min(stat->min, value); stat->max = max(stat->max, value); stat->batch += value; stat->nr_samples++; } void blk_stat_add(struct request *rq, u64 now) { struct request_queue *q = rq->q; struct blk_stat_callback *cb; struct blk_rq_stat *stat; int bucket, cpu; u64 value; value = (now >= rq->io_start_time_ns) ? now - rq->io_start_time_ns : 0; rcu_read_lock(); cpu = get_cpu(); list_for_each_entry_rcu(cb, &q->stats->callbacks, list) { if (!blk_stat_is_active(cb)) continue; bucket = cb->bucket_fn(rq); if (bucket < 0) continue; stat = &per_cpu_ptr(cb->cpu_stat, cpu)[bucket]; blk_rq_stat_add(stat, value); } put_cpu(); rcu_read_unlock(); } static void blk_stat_timer_fn(struct timer_list *t) { struct blk_stat_callback *cb = timer_container_of(cb, t, timer); unsigned int bucket; int cpu; for (bucket = 0; bucket < cb->buckets; bucket++) blk_rq_stat_init(&cb->stat[bucket]); for_each_online_cpu(cpu) { struct blk_rq_stat *cpu_stat; cpu_stat = per_cpu_ptr(cb->cpu_stat, cpu); for (bucket = 0; bucket < cb->buckets; bucket++) { blk_rq_stat_sum(&cb->stat[bucket], &cpu_stat[bucket]); blk_rq_stat_init(&cpu_stat[bucket]); } } cb->timer_fn(cb); } struct blk_stat_callback * blk_stat_alloc_callback(void (*timer_fn)(struct blk_stat_callback *), int (*bucket_fn)(const struct request *), unsigned int buckets, void *data) { struct blk_stat_callback *cb; cb = kmalloc(sizeof(*cb), GFP_KERNEL); if (!cb) return NULL; cb->stat = kmalloc_array(buckets, sizeof(struct blk_rq_stat), GFP_KERNEL); if (!cb->stat) { kfree(cb); return NULL; } cb->cpu_stat = __alloc_percpu(buckets * sizeof(struct blk_rq_stat), __alignof__(struct blk_rq_stat)); if (!cb->cpu_stat) { kfree(cb->stat); kfree(cb); return NULL; } cb->timer_fn = timer_fn; cb->bucket_fn = bucket_fn; cb->data = data; cb->buckets = buckets; timer_setup(&cb->timer, blk_stat_timer_fn, 0); return cb; } void blk_stat_add_callback(struct request_queue *q, struct blk_stat_callback *cb) { unsigned int bucket; unsigned long flags; int cpu; for_each_possible_cpu(cpu) { struct blk_rq_stat *cpu_stat; cpu_stat = per_cpu_ptr(cb->cpu_stat, cpu); for (bucket = 0; bucket < cb->buckets; bucket++) blk_rq_stat_init(&cpu_stat[bucket]); } spin_lock_irqsave(&q->stats->lock, flags); list_add_tail_rcu(&cb->list, &q->stats->callbacks); blk_queue_flag_set(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); } void blk_stat_remove_callback(struct request_queue *q, struct blk_stat_callback *cb) { unsigned long flags; spin_lock_irqsave(&q->stats->lock, flags); list_del_rcu(&cb->list); if (list_empty(&q->stats->callbacks) && !q->stats->accounting) blk_queue_flag_clear(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); timer_delete_sync(&cb->timer); } static void blk_stat_free_callback_rcu(struct rcu_head *head) { struct blk_stat_callback *cb; cb = container_of(head, struct blk_stat_callback, rcu); free_percpu(cb->cpu_stat); kfree(cb->stat); kfree(cb); } void blk_stat_free_callback(struct blk_stat_callback *cb) { if (cb) call_rcu(&cb->rcu, blk_stat_free_callback_rcu); } void blk_stat_disable_accounting(struct request_queue *q) { unsigned long flags; spin_lock_irqsave(&q->stats->lock, flags); if (!--q->stats->accounting && list_empty(&q->stats->callbacks)) blk_queue_flag_clear(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); } EXPORT_SYMBOL_GPL(blk_stat_disable_accounting); void blk_stat_enable_accounting(struct request_queue *q) { unsigned long flags; spin_lock_irqsave(&q->stats->lock, flags); if (!q->stats->accounting++ && list_empty(&q->stats->callbacks)) blk_queue_flag_set(QUEUE_FLAG_STATS, q); spin_unlock_irqrestore(&q->stats->lock, flags); } EXPORT_SYMBOL_GPL(blk_stat_enable_accounting); struct blk_queue_stats *blk_alloc_queue_stats(void) { struct blk_queue_stats *stats; stats = kmalloc(sizeof(*stats), GFP_KERNEL); if (!stats) return NULL; INIT_LIST_HEAD(&stats->callbacks); spin_lock_init(&stats->lock); stats->accounting = 0; return stats; } void blk_free_queue_stats(struct blk_queue_stats *stats) { if (!stats) return; WARN_ON(!list_empty(&stats->callbacks)); kfree(stats); }
3 2 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 // SPDX-License-Identifier: GPL-2.0-only /* * ati_remote2 - ATI/Philips USB RF remote driver * * Copyright (C) 2005-2008 Ville Syrjala <syrjala@sci.fi> * Copyright (C) 2007-2008 Peter Stokes <linux@dadeos.co.uk> */ #include <linux/usb/input.h> #include <linux/slab.h> #include <linux/module.h> #define DRIVER_DESC "ATI/Philips USB RF remote driver" MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("Ville Syrjala <syrjala@sci.fi>"); MODULE_LICENSE("GPL"); /* * ATI Remote Wonder II Channel Configuration * * The remote control can be assigned one of sixteen "channels" in order to facilitate * the use of multiple remote controls within range of each other. * A remote's "channel" may be altered by pressing and holding the "PC" button for * approximately 3 seconds, after which the button will slowly flash the count of the * currently configured "channel", using the numeric keypad enter a number between 1 and * 16 and then press the "PC" button again, the button will slowly flash the count of the * newly configured "channel". */ enum { ATI_REMOTE2_MAX_CHANNEL_MASK = 0xFFFF, ATI_REMOTE2_MAX_MODE_MASK = 0x1F, }; static int ati_remote2_set_mask(const char *val, const struct kernel_param *kp, unsigned int max) { unsigned int mask; int ret; if (!val) return -EINVAL; ret = kstrtouint(val, 0, &mask); if (ret) return ret; if (mask & ~max) return -EINVAL; *(unsigned int *)kp->arg = mask; return 0; } static int ati_remote2_set_channel_mask(const char *val, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return ati_remote2_set_mask(val, kp, ATI_REMOTE2_MAX_CHANNEL_MASK); } static int ati_remote2_get_channel_mask(char *buffer, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return sprintf(buffer, "0x%04x\n", *(unsigned int *)kp->arg); } static int ati_remote2_set_mode_mask(const char *val, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return ati_remote2_set_mask(val, kp, ATI_REMOTE2_MAX_MODE_MASK); } static int ati_remote2_get_mode_mask(char *buffer, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return sprintf(buffer, "0x%02x\n", *(unsigned int *)kp->arg); } static unsigned int channel_mask = ATI_REMOTE2_MAX_CHANNEL_MASK; #define param_check_channel_mask(name, p) __param_check(name, p, unsigned int) static const struct kernel_param_ops param_ops_channel_mask = { .set = ati_remote2_set_channel_mask, .get = ati_remote2_get_channel_mask, }; module_param(channel_mask, channel_mask, 0644); MODULE_PARM_DESC(channel_mask, "Bitmask of channels to accept <15:Channel16>...<1:Channel2><0:Channel1>"); static unsigned int mode_mask = ATI_REMOTE2_MAX_MODE_MASK; #define param_check_mode_mask(name, p) __param_check(name, p, unsigned int) static const struct kernel_param_ops param_ops_mode_mask = { .set = ati_remote2_set_mode_mask, .get = ati_remote2_get_mode_mask, }; module_param(mode_mask, mode_mask, 0644); MODULE_PARM_DESC(mode_mask, "Bitmask of modes to accept <4:PC><3:AUX4><2:AUX3><1:AUX2><0:AUX1>"); static const struct usb_device_id ati_remote2_id_table[] = { { USB_DEVICE(0x0471, 0x0602) }, /* ATI Remote Wonder II */ { } }; MODULE_DEVICE_TABLE(usb, ati_remote2_id_table); static DEFINE_MUTEX(ati_remote2_mutex); enum { ATI_REMOTE2_OPENED = 0x1, ATI_REMOTE2_SUSPENDED = 0x2, }; enum { ATI_REMOTE2_AUX1, ATI_REMOTE2_AUX2, ATI_REMOTE2_AUX3, ATI_REMOTE2_AUX4, ATI_REMOTE2_PC, ATI_REMOTE2_MODES, }; static const struct { u8 hw_code; u16 keycode; } ati_remote2_key_table[] = { { 0x00, KEY_0 }, { 0x01, KEY_1 }, { 0x02, KEY_2 }, { 0x03, KEY_3 }, { 0x04, KEY_4 }, { 0x05, KEY_5 }, { 0x06, KEY_6 }, { 0x07, KEY_7 }, { 0x08, KEY_8 }, { 0x09, KEY_9 }, { 0x0c, KEY_POWER }, { 0x0d, KEY_MUTE }, { 0x10, KEY_VOLUMEUP }, { 0x11, KEY_VOLUMEDOWN }, { 0x20, KEY_CHANNELUP }, { 0x21, KEY_CHANNELDOWN }, { 0x28, KEY_FORWARD }, { 0x29, KEY_REWIND }, { 0x2c, KEY_PLAY }, { 0x30, KEY_PAUSE }, { 0x31, KEY_STOP }, { 0x37, KEY_RECORD }, { 0x38, KEY_DVD }, { 0x39, KEY_TV }, { 0x3f, KEY_PROG1 }, /* AUX1-AUX4 and PC */ { 0x54, KEY_MENU }, { 0x58, KEY_UP }, { 0x59, KEY_DOWN }, { 0x5a, KEY_LEFT }, { 0x5b, KEY_RIGHT }, { 0x5c, KEY_OK }, { 0x78, KEY_A }, { 0x79, KEY_B }, { 0x7a, KEY_C }, { 0x7b, KEY_D }, { 0x7c, KEY_E }, { 0x7d, KEY_F }, { 0x82, KEY_ENTER }, { 0x8e, KEY_VENDOR }, { 0x96, KEY_COFFEE }, { 0xa9, BTN_LEFT }, { 0xaa, BTN_RIGHT }, { 0xbe, KEY_QUESTION }, { 0xd0, KEY_EDIT }, { 0xd5, KEY_FRONT }, { 0xf9, KEY_INFO }, }; struct ati_remote2 { struct input_dev *idev; struct usb_device *udev; struct usb_interface *intf[2]; struct usb_endpoint_descriptor *ep[2]; struct urb *urb[2]; void *buf[2]; dma_addr_t buf_dma[2]; unsigned long jiffies; int mode; char name[64]; char phys[64]; /* Each mode (AUX1-AUX4 and PC) can have an independent keymap. */ u16 keycode[ATI_REMOTE2_MODES][ARRAY_SIZE(ati_remote2_key_table)]; unsigned int flags; unsigned int channel_mask; unsigned int mode_mask; }; static struct usb_driver ati_remote2_driver; static int ati_remote2_submit_urbs(struct ati_remote2 *ar2) { int r; r = usb_submit_urb(ar2->urb[0], GFP_KERNEL); if (r) { dev_err(&ar2->intf[0]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); return r; } r = usb_submit_urb(ar2->urb[1], GFP_KERNEL); if (r) { usb_kill_urb(ar2->urb[0]); dev_err(&ar2->intf[1]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); return r; } return 0; } static void ati_remote2_kill_urbs(struct ati_remote2 *ar2) { usb_kill_urb(ar2->urb[1]); usb_kill_urb(ar2->urb[0]); } static int ati_remote2_open(struct input_dev *idev) { struct ati_remote2 *ar2 = input_get_drvdata(idev); int r; dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); r = usb_autopm_get_interface(ar2->intf[0]); if (r) { dev_err(&ar2->intf[0]->dev, "%s(): usb_autopm_get_interface() = %d\n", __func__, r); return r; } scoped_guard(mutex, &ati_remote2_mutex) { if (!(ar2->flags & ATI_REMOTE2_SUSPENDED)) { r = ati_remote2_submit_urbs(ar2); if (r) break; } ar2->flags |= ATI_REMOTE2_OPENED; } usb_autopm_put_interface(ar2->intf[0]); return r; } static void ati_remote2_close(struct input_dev *idev) { struct ati_remote2 *ar2 = input_get_drvdata(idev); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); guard(mutex)(&ati_remote2_mutex); if (!(ar2->flags & ATI_REMOTE2_SUSPENDED)) ati_remote2_kill_urbs(ar2); ar2->flags &= ~ATI_REMOTE2_OPENED; } static void ati_remote2_input_mouse(struct ati_remote2 *ar2) { struct input_dev *idev = ar2->idev; u8 *data = ar2->buf[0]; int channel, mode; channel = data[0] >> 4; if (!((1 << channel) & ar2->channel_mask)) return; mode = data[0] & 0x0F; if (mode > ATI_REMOTE2_PC) { dev_err(&ar2->intf[0]->dev, "Unknown mode byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } if (!((1 << mode) & ar2->mode_mask)) return; input_event(idev, EV_REL, REL_X, (s8) data[1]); input_event(idev, EV_REL, REL_Y, (s8) data[2]); input_sync(idev); } static int ati_remote2_lookup(unsigned int hw_code) { int i; for (i = 0; i < ARRAY_SIZE(ati_remote2_key_table); i++) if (ati_remote2_key_table[i].hw_code == hw_code) return i; return -1; } static void ati_remote2_input_key(struct ati_remote2 *ar2) { struct input_dev *idev = ar2->idev; u8 *data = ar2->buf[1]; int channel, mode, hw_code, index; channel = data[0] >> 4; if (!((1 << channel) & ar2->channel_mask)) return; mode = data[0] & 0x0F; if (mode > ATI_REMOTE2_PC) { dev_err(&ar2->intf[1]->dev, "Unknown mode byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } hw_code = data[2]; if (hw_code == 0x3f) { /* * For some incomprehensible reason the mouse pad generates * events which look identical to the events from the last * pressed mode key. Naturally we don't want to generate key * events for the mouse pad so we filter out any subsequent * events from the same mode key. */ if (ar2->mode == mode) return; if (data[1] == 0) ar2->mode = mode; } if (!((1 << mode) & ar2->mode_mask)) return; index = ati_remote2_lookup(hw_code); if (index < 0) { dev_err(&ar2->intf[1]->dev, "Unknown code byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } switch (data[1]) { case 0: /* release */ break; case 1: /* press */ ar2->jiffies = jiffies + msecs_to_jiffies(idev->rep[REP_DELAY]); break; case 2: /* repeat */ /* No repeat for mouse buttons. */ if (ar2->keycode[mode][index] == BTN_LEFT || ar2->keycode[mode][index] == BTN_RIGHT) return; if (!time_after_eq(jiffies, ar2->jiffies)) return; ar2->jiffies = jiffies + msecs_to_jiffies(idev->rep[REP_PERIOD]); break; default: dev_err(&ar2->intf[1]->dev, "Unknown state byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } input_event(idev, EV_KEY, ar2->keycode[mode][index], data[1]); input_sync(idev); } static void ati_remote2_complete_mouse(struct urb *urb) { struct ati_remote2 *ar2 = urb->context; int r; switch (urb->status) { case 0: usb_mark_last_busy(ar2->udev); ati_remote2_input_mouse(ar2); break; case -ENOENT: case -EILSEQ: case -ECONNRESET: case -ESHUTDOWN: dev_dbg(&ar2->intf[0]->dev, "%s(): urb status = %d\n", __func__, urb->status); return; default: usb_mark_last_busy(ar2->udev); dev_err(&ar2->intf[0]->dev, "%s(): urb status = %d\n", __func__, urb->status); } r = usb_submit_urb(urb, GFP_ATOMIC); if (r) dev_err(&ar2->intf[0]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); } static void ati_remote2_complete_key(struct urb *urb) { struct ati_remote2 *ar2 = urb->context; int r; switch (urb->status) { case 0: usb_mark_last_busy(ar2->udev); ati_remote2_input_key(ar2); break; case -ENOENT: case -EILSEQ: case -ECONNRESET: case -ESHUTDOWN: dev_dbg(&ar2->intf[1]->dev, "%s(): urb status = %d\n", __func__, urb->status); return; default: usb_mark_last_busy(ar2->udev); dev_err(&ar2->intf[1]->dev, "%s(): urb status = %d\n", __func__, urb->status); } r = usb_submit_urb(urb, GFP_ATOMIC); if (r) dev_err(&ar2->intf[1]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); } static int ati_remote2_getkeycode(struct input_dev *idev, struct input_keymap_entry *ke) { struct ati_remote2 *ar2 = input_get_drvdata(idev); unsigned int mode; int offset; unsigned int index; unsigned int scancode; if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; if (index >= ATI_REMOTE2_MODES * ARRAY_SIZE(ati_remote2_key_table)) return -EINVAL; mode = ke->index / ARRAY_SIZE(ati_remote2_key_table); offset = ke->index % ARRAY_SIZE(ati_remote2_key_table); scancode = (mode << 8) + ati_remote2_key_table[offset].hw_code; } else { if (input_scancode_to_scalar(ke, &scancode)) return -EINVAL; mode = scancode >> 8; if (mode > ATI_REMOTE2_PC) return -EINVAL; offset = ati_remote2_lookup(scancode & 0xff); if (offset < 0) return -EINVAL; index = mode * ARRAY_SIZE(ati_remote2_key_table) + offset; } ke->keycode = ar2->keycode[mode][offset]; ke->len = sizeof(scancode); memcpy(&ke->scancode, &scancode, sizeof(scancode)); ke->index = index; return 0; } static int ati_remote2_setkeycode(struct input_dev *idev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { struct ati_remote2 *ar2 = input_get_drvdata(idev); unsigned int mode; int offset; unsigned int index; unsigned int scancode; if (ke->flags & INPUT_KEYMAP_BY_INDEX) { if (ke->index >= ATI_REMOTE2_MODES * ARRAY_SIZE(ati_remote2_key_table)) return -EINVAL; mode = ke->index / ARRAY_SIZE(ati_remote2_key_table); offset = ke->index % ARRAY_SIZE(ati_remote2_key_table); } else { if (input_scancode_to_scalar(ke, &scancode)) return -EINVAL; mode = scancode >> 8; if (mode > ATI_REMOTE2_PC) return -EINVAL; offset = ati_remote2_lookup(scancode & 0xff); if (offset < 0) return -EINVAL; } *old_keycode = ar2->keycode[mode][offset]; ar2->keycode[mode][offset] = ke->keycode; __set_bit(ke->keycode, idev->keybit); for (mode = 0; mode < ATI_REMOTE2_MODES; mode++) { for (index = 0; index < ARRAY_SIZE(ati_remote2_key_table); index++) { if (ar2->keycode[mode][index] == *old_keycode) return 0; } } __clear_bit(*old_keycode, idev->keybit); return 0; } static int ati_remote2_input_init(struct ati_remote2 *ar2) { struct input_dev *idev; int index, mode, retval; idev = input_allocate_device(); if (!idev) return -ENOMEM; ar2->idev = idev; input_set_drvdata(idev, ar2); idev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP) | BIT_MASK(EV_REL); idev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT); idev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); for (mode = 0; mode < ATI_REMOTE2_MODES; mode++) { for (index = 0; index < ARRAY_SIZE(ati_remote2_key_table); index++) { ar2->keycode[mode][index] = ati_remote2_key_table[index].keycode; __set_bit(ar2->keycode[mode][index], idev->keybit); } } /* AUX1-AUX4 and PC generate the same scancode. */ index = ati_remote2_lookup(0x3f); ar2->keycode[ATI_REMOTE2_AUX1][index] = KEY_PROG1; ar2->keycode[ATI_REMOTE2_AUX2][index] = KEY_PROG2; ar2->keycode[ATI_REMOTE2_AUX3][index] = KEY_PROG3; ar2->keycode[ATI_REMOTE2_AUX4][index] = KEY_PROG4; ar2->keycode[ATI_REMOTE2_PC][index] = KEY_PC; __set_bit(KEY_PROG1, idev->keybit); __set_bit(KEY_PROG2, idev->keybit); __set_bit(KEY_PROG3, idev->keybit); __set_bit(KEY_PROG4, idev->keybit); __set_bit(KEY_PC, idev->keybit); idev->rep[REP_DELAY] = 250; idev->rep[REP_PERIOD] = 33; idev->open = ati_remote2_open; idev->close = ati_remote2_close; idev->getkeycode = ati_remote2_getkeycode; idev->setkeycode = ati_remote2_setkeycode; idev->name = ar2->name; idev->phys = ar2->phys; usb_to_input_id(ar2->udev, &idev->id); idev->dev.parent = &ar2->udev->dev; retval = input_register_device(idev); if (retval) input_free_device(idev); return retval; } static int ati_remote2_urb_init(struct ati_remote2 *ar2) { struct usb_device *udev = ar2->udev; int i, pipe, maxp; for (i = 0; i < 2; i++) { ar2->buf[i] = usb_alloc_coherent(udev, 4, GFP_KERNEL, &ar2->buf_dma[i]); if (!ar2->buf[i]) return -ENOMEM; ar2->urb[i] = usb_alloc_urb(0, GFP_KERNEL); if (!ar2->urb[i]) return -ENOMEM; pipe = usb_rcvintpipe(udev, ar2->ep[i]->bEndpointAddress); maxp = usb_maxpacket(udev, pipe); maxp = maxp > 4 ? 4 : maxp; usb_fill_int_urb(ar2->urb[i], udev, pipe, ar2->buf[i], maxp, i ? ati_remote2_complete_key : ati_remote2_complete_mouse, ar2, ar2->ep[i]->bInterval); ar2->urb[i]->transfer_dma = ar2->buf_dma[i]; ar2->urb[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; } return 0; } static void ati_remote2_urb_cleanup(struct ati_remote2 *ar2) { int i; for (i = 0; i < 2; i++) { usb_free_urb(ar2->urb[i]); usb_free_coherent(ar2->udev, 4, ar2->buf[i], ar2->buf_dma[i]); } } static int ati_remote2_setup(struct ati_remote2 *ar2, unsigned int ch_mask) { int r, i, channel; /* * Configure receiver to only accept input from remote "channel" * channel == 0 -> Accept input from any remote channel * channel == 1 -> Only accept input from remote channel 1 * channel == 2 -> Only accept input from remote channel 2 * ... * channel == 16 -> Only accept input from remote channel 16 */ channel = 0; for (i = 0; i < 16; i++) { if ((1 << i) & ch_mask) { if (!(~(1 << i) & ch_mask)) channel = i + 1; break; } } r = usb_control_msg(ar2->udev, usb_sndctrlpipe(ar2->udev, 0), 0x20, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, channel, 0x0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (r) { dev_err(&ar2->udev->dev, "%s - failed to set channel due to error: %d\n", __func__, r); return r; } return 0; } static ssize_t ati_remote2_show_channel_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); return sprintf(buf, "0x%04x\n", ar2->channel_mask); } static ssize_t ati_remote2_store_channel_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); unsigned int mask; int r; r = kstrtouint(buf, 0, &mask); if (r) return r; if (mask & ~ATI_REMOTE2_MAX_CHANNEL_MASK) return -EINVAL; r = usb_autopm_get_interface(ar2->intf[0]); if (r) { dev_err(&ar2->intf[0]->dev, "%s(): usb_autopm_get_interface() = %d\n", __func__, r); return r; } scoped_guard(mutex, &ati_remote2_mutex) { if (mask != ar2->channel_mask) { r = ati_remote2_setup(ar2, mask); if (!r) ar2->channel_mask = mask; } } usb_autopm_put_interface(ar2->intf[0]); return r ? r : count; } static ssize_t ati_remote2_show_mode_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); return sprintf(buf, "0x%02x\n", ar2->mode_mask); } static ssize_t ati_remote2_store_mode_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); unsigned int mask; int err; err = kstrtouint(buf, 0, &mask); if (err) return err; if (mask & ~ATI_REMOTE2_MAX_MODE_MASK) return -EINVAL; ar2->mode_mask = mask; return count; } static DEVICE_ATTR(channel_mask, 0644, ati_remote2_show_channel_mask, ati_remote2_store_channel_mask); static DEVICE_ATTR(mode_mask, 0644, ati_remote2_show_mode_mask, ati_remote2_store_mode_mask); static struct attribute *ati_remote2_attrs[] = { &dev_attr_channel_mask.attr, &dev_attr_mode_mask.attr, NULL, }; ATTRIBUTE_GROUPS(ati_remote2); static int ati_remote2_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_host_interface *alt = interface->cur_altsetting; struct ati_remote2 *ar2; int r; if (alt->desc.bInterfaceNumber) return -ENODEV; ar2 = kzalloc(sizeof (struct ati_remote2), GFP_KERNEL); if (!ar2) return -ENOMEM; ar2->udev = udev; /* Sanity check, first interface must have an endpoint */ if (alt->desc.bNumEndpoints < 1 || !alt->endpoint) { dev_err(&interface->dev, "%s(): interface 0 must have an endpoint\n", __func__); r = -ENODEV; goto fail1; } ar2->intf[0] = interface; ar2->ep[0] = &alt->endpoint[0].desc; /* Sanity check, the device must have two interfaces */ ar2->intf[1] = usb_ifnum_to_if(udev, 1); if ((udev->actconfig->desc.bNumInterfaces < 2) || !ar2->intf[1]) { dev_err(&interface->dev, "%s(): need 2 interfaces, found %d\n", __func__, udev->actconfig->desc.bNumInterfaces); r = -ENODEV; goto fail1; } r = usb_driver_claim_interface(&ati_remote2_driver, ar2->intf[1], ar2); if (r) goto fail1; /* Sanity check, second interface must have an endpoint */ alt = ar2->intf[1]->cur_altsetting; if (alt->desc.bNumEndpoints < 1 || !alt->endpoint) { dev_err(&interface->dev, "%s(): interface 1 must have an endpoint\n", __func__); r = -ENODEV; goto fail2; } ar2->ep[1] = &alt->endpoint[0].desc; r = ati_remote2_urb_init(ar2); if (r) goto fail3; ar2->channel_mask = channel_mask; ar2->mode_mask = mode_mask; r = ati_remote2_setup(ar2, ar2->channel_mask); if (r) goto fail3; usb_make_path(udev, ar2->phys, sizeof(ar2->phys)); strlcat(ar2->phys, "/input0", sizeof(ar2->phys)); strlcat(ar2->name, "ATI Remote Wonder II", sizeof(ar2->name)); r = ati_remote2_input_init(ar2); if (r) goto fail3; usb_set_intfdata(interface, ar2); interface->needs_remote_wakeup = 1; return 0; fail3: ati_remote2_urb_cleanup(ar2); fail2: usb_driver_release_interface(&ati_remote2_driver, ar2->intf[1]); fail1: kfree(ar2); return r; } static void ati_remote2_disconnect(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; if (alt->desc.bInterfaceNumber) return; ar2 = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); input_unregister_device(ar2->idev); ati_remote2_urb_cleanup(ar2); usb_driver_release_interface(&ati_remote2_driver, ar2->intf[1]); kfree(ar2); } static int ati_remote2_suspend(struct usb_interface *interface, pm_message_t message) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); guard(mutex)(&ati_remote2_mutex); if (ar2->flags & ATI_REMOTE2_OPENED) ati_remote2_kill_urbs(ar2); ar2->flags |= ATI_REMOTE2_SUSPENDED; return 0; } static int ati_remote2_resume(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; int r = 0; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); guard(mutex)(&ati_remote2_mutex); if (ar2->flags & ATI_REMOTE2_OPENED) r = ati_remote2_submit_urbs(ar2); if